1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciMethodData.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/connode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/divnode.hpp"
  39 #include "opto/idealGraphPrinter.hpp"
  40 #include "opto/loopnode.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/mulnode.hpp"
  43 #include "opto/opaquenode.hpp"
  44 #include "opto/opcodes.hpp"
  45 #include "opto/predicates.hpp"
  46 #include "opto/rootnode.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/vectorization.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "utilities/checkedCast.hpp"
  51 #include "utilities/powerOfTwo.hpp"
  52 
  53 //=============================================================================
  54 //--------------------------is_cloop_ind_var-----------------------------------
  55 // Determine if a node is a counted loop induction variable.
  56 // NOTE: The method is declared in "node.hpp".
  57 bool Node::is_cloop_ind_var() const {
  58   return (is_Phi() &&
  59           as_Phi()->region()->is_CountedLoop() &&
  60           as_Phi()->region()->as_CountedLoop()->phi() == this);
  61 }
  62 
  63 //=============================================================================
  64 //------------------------------dump_spec--------------------------------------
  65 // Dump special per-node info
  66 #ifndef PRODUCT
  67 void LoopNode::dump_spec(outputStream *st) const {
  68   RegionNode::dump_spec(st);
  69   if (is_inner_loop()) st->print( "inner " );
  70   if (is_partial_peel_loop()) st->print( "partial_peel " );
  71   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  72 }
  73 #endif
  74 
  75 //------------------------------is_valid_counted_loop-------------------------
  76 bool LoopNode::is_valid_counted_loop(BasicType bt) const {
  77   if (is_BaseCountedLoop() && as_BaseCountedLoop()->bt() == bt) {
  78     BaseCountedLoopNode*    l  = as_BaseCountedLoop();
  79     BaseCountedLoopEndNode* le = l->loopexit_or_null();
  80     if (le != nullptr &&
  81         le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  82       Node* phi  = l->phi();
  83       Node* exit = le->proj_out_or_null(0 /* false */);
  84       if (exit != nullptr && exit->Opcode() == Op_IfFalse &&
  85           phi != nullptr && phi->is_Phi() &&
  86           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  87           le->loopnode() == l && le->stride_is_con()) {
  88         return true;
  89       }
  90     }
  91   }
  92   return false;
  93 }
  94 
  95 //------------------------------get_early_ctrl---------------------------------
  96 // Compute earliest legal control
  97 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  98   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  99   uint i;
 100   Node *early;
 101   if (n->in(0) && !n->is_expensive()) {
 102     early = n->in(0);
 103     if (!early->is_CFG()) // Might be a non-CFG multi-def
 104       early = get_ctrl(early);        // So treat input as a straight data input
 105     i = 1;
 106   } else {
 107     early = get_ctrl(n->in(1));
 108     i = 2;
 109   }
 110   uint e_d = dom_depth(early);
 111   assert( early, "" );
 112   for (; i < n->req(); i++) {
 113     Node *cin = get_ctrl(n->in(i));
 114     assert( cin, "" );
 115     // Keep deepest dominator depth
 116     uint c_d = dom_depth(cin);
 117     if (c_d > e_d) {           // Deeper guy?
 118       early = cin;              // Keep deepest found so far
 119       e_d = c_d;
 120     } else if (c_d == e_d &&    // Same depth?
 121                early != cin) { // If not equal, must use slower algorithm
 122       // If same depth but not equal, one _must_ dominate the other
 123       // and we want the deeper (i.e., dominated) guy.
 124       Node *n1 = early;
 125       Node *n2 = cin;
 126       while (1) {
 127         n1 = idom(n1);          // Walk up until break cycle
 128         n2 = idom(n2);
 129         if (n1 == cin ||        // Walked early up to cin
 130             dom_depth(n2) < c_d)
 131           break;                // early is deeper; keep him
 132         if (n2 == early ||      // Walked cin up to early
 133             dom_depth(n1) < c_d) {
 134           early = cin;          // cin is deeper; keep him
 135           break;
 136         }
 137       }
 138       e_d = dom_depth(early);   // Reset depth register cache
 139     }
 140   }
 141 
 142   // Return earliest legal location
 143   assert(early == find_non_split_ctrl(early), "unexpected early control");
 144 
 145   if (n->is_expensive() && !_verify_only && !_verify_me) {
 146     assert(n->in(0), "should have control input");
 147     early = get_early_ctrl_for_expensive(n, early);
 148   }
 149 
 150   return early;
 151 }
 152 
 153 //------------------------------get_early_ctrl_for_expensive---------------------------------
 154 // Move node up the dominator tree as high as legal while still beneficial
 155 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 156   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 157   assert(OptimizeExpensiveOps, "optimization off?");
 158 
 159   Node* ctl = n->in(0);
 160   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 161   uint min_dom_depth = dom_depth(earliest);
 162 #ifdef ASSERT
 163   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 164     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 165     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 166   }
 167 #endif
 168   if (dom_depth(ctl) < min_dom_depth) {
 169     return earliest;
 170   }
 171 
 172   while (true) {
 173     Node* next = ctl;
 174     // Moving the node out of a loop on the projection of an If
 175     // confuses Loop Predication. So, once we hit a loop in an If branch
 176     // that doesn't branch to an UNC, we stop. The code that process
 177     // expensive nodes will notice the loop and skip over it to try to
 178     // move the node further up.
 179     if (ctl->is_CountedLoop() && ctl->in(1) != nullptr && ctl->in(1)->in(0) != nullptr && ctl->in(1)->in(0)->is_If()) {
 180       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern()) {
 181         break;
 182       }
 183       next = idom(ctl->in(1)->in(0));
 184     } else if (ctl->is_Proj()) {
 185       // We only move it up along a projection if the projection is
 186       // the single control projection for its parent: same code path,
 187       // if it's a If with UNC or fallthrough of a call.
 188       Node* parent_ctl = ctl->in(0);
 189       if (parent_ctl == nullptr) {
 190         break;
 191       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != nullptr) {
 192         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 193       } else if (parent_ctl->is_If()) {
 194         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern()) {
 195           break;
 196         }
 197         assert(idom(ctl) == parent_ctl, "strange");
 198         next = idom(parent_ctl);
 199       } else if (ctl->is_CatchProj()) {
 200         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 201           break;
 202         }
 203         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 204         next = parent_ctl->in(0)->in(0)->in(0);
 205       } else {
 206         // Check if parent control has a single projection (this
 207         // control is the only possible successor of the parent
 208         // control). If so, we can try to move the node above the
 209         // parent control.
 210         int nb_ctl_proj = 0;
 211         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 212           Node *p = parent_ctl->fast_out(i);
 213           if (p->is_Proj() && p->is_CFG()) {
 214             nb_ctl_proj++;
 215             if (nb_ctl_proj > 1) {
 216               break;
 217             }
 218           }
 219         }
 220 
 221         if (nb_ctl_proj > 1) {
 222           break;
 223         }
 224         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() ||
 225                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node");
 226         assert(idom(ctl) == parent_ctl, "strange");
 227         next = idom(parent_ctl);
 228       }
 229     } else {
 230       next = idom(ctl);
 231     }
 232     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 233       break;
 234     }
 235     ctl = next;
 236   }
 237 
 238   if (ctl != n->in(0)) {
 239     _igvn.replace_input_of(n, 0, ctl);
 240     _igvn.hash_insert(n);
 241   }
 242 
 243   return ctl;
 244 }
 245 
 246 
 247 //------------------------------set_early_ctrl---------------------------------
 248 // Set earliest legal control
 249 void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) {
 250   Node *early = get_early_ctrl(n);
 251 
 252   // Record earliest legal location
 253   set_ctrl(n, early);
 254   IdealLoopTree *loop = get_loop(early);
 255   if (update_body && loop->_child == nullptr) {
 256     loop->_body.push(n);
 257   }
 258 }
 259 
 260 //------------------------------set_subtree_ctrl-------------------------------
 261 // set missing _ctrl entries on new nodes
 262 void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) {
 263   // Already set?  Get out.
 264   if (_loop_or_ctrl[n->_idx]) return;
 265   // Recursively set _loop_or_ctrl array to indicate where the Node goes
 266   uint i;
 267   for (i = 0; i < n->req(); ++i) {
 268     Node *m = n->in(i);
 269     if (m && m != C->root()) {
 270       set_subtree_ctrl(m, update_body);
 271     }
 272   }
 273 
 274   // Fixup self
 275   set_early_ctrl(n, update_body);
 276 }
 277 
 278 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) {
 279   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
 280   IdealLoopTree* parent = loop->_parent;
 281   IdealLoopTree* sibling = parent->_child;
 282   if (sibling == loop) {
 283     parent->_child = outer_ilt;
 284   } else {
 285     while (sibling->_next != loop) {
 286       sibling = sibling->_next;
 287     }
 288     sibling->_next = outer_ilt;
 289   }
 290   outer_ilt->_next = loop->_next;
 291   outer_ilt->_parent = parent;
 292   outer_ilt->_child = loop;
 293   outer_ilt->_nest = loop->_nest;
 294   loop->_parent = outer_ilt;
 295   loop->_next = nullptr;
 296   loop->_nest++;
 297   assert(loop->_nest <= SHRT_MAX, "sanity");
 298   return outer_ilt;
 299 }
 300 
 301 // Create a skeleton strip mined outer loop: a Loop head before the
 302 // inner strip mined loop, a safepoint and an exit condition guarded
 303 // by an opaque node after the inner strip mined loop with a backedge
 304 // to the loop head. The inner strip mined loop is left as it is. Only
 305 // once loop optimizations are over, do we adjust the inner loop exit
 306 // condition to limit its number of iterations, set the outer loop
 307 // exit condition and add Phis to the outer loop head. Some loop
 308 // optimizations that operate on the inner strip mined loop need to be
 309 // aware of the outer strip mined loop: loop unswitching needs to
 310 // clone the outer loop as well as the inner, unrolling needs to only
 311 // clone the inner loop etc. No optimizations need to change the outer
 312 // strip mined loop as it is only a skeleton.
 313 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
 314                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
 315                                                              Node*& entry_control, Node*& iffalse) {
 316   Node* outer_test = intcon(0);
 317   Node *orig = iffalse;
 318   iffalse = iffalse->clone();
 319   _igvn.register_new_node_with_optimizer(iffalse);
 320   set_idom(iffalse, idom(orig), dom_depth(orig));
 321 
 322   IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt);
 323   Node *outer_ift = new IfTrueNode (outer_le);
 324   Node* outer_iff = orig;
 325   _igvn.replace_input_of(outer_iff, 0, outer_le);
 326 
 327   LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift);
 328   entry_control = outer_l;
 329 
 330   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift);
 331 
 332   set_loop(iffalse, outer_ilt);
 333   // When this code runs, loop bodies have not yet been populated.
 334   const bool body_populated = false;
 335   register_control(outer_le, outer_ilt, iffalse, body_populated);
 336   register_control(outer_ift, outer_ilt, outer_le, body_populated);
 337   set_idom(outer_iff, outer_le, dom_depth(outer_le));
 338   _igvn.register_new_node_with_optimizer(outer_l);
 339   set_loop(outer_l, outer_ilt);
 340   set_idom(outer_l, init_control, dom_depth(init_control)+1);
 341 
 342   return outer_ilt;
 343 }
 344 
 345 void PhaseIdealLoop::insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj,
 346                                                        Node* cmp_limit, Node* bol) {
 347   assert(loop_limit_check_parse_proj->in(0)->is_ParsePredicate(), "must be parse predicate");
 348   Node* new_predicate_proj = create_new_if_for_predicate(loop_limit_check_parse_proj, nullptr,
 349                                                          Deoptimization::Reason_loop_limit_check,
 350                                                          Op_If);
 351   Node* iff = new_predicate_proj->in(0);
 352   cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 353   bol = _igvn.register_new_node_with_optimizer(bol);
 354   set_subtree_ctrl(bol, false);
 355   _igvn.replace_input_of(iff, 1, bol);
 356 
 357 #ifndef PRODUCT
 358   // report that the loop predication has been actually performed
 359   // for this loop
 360   if (TraceLoopLimitCheck) {
 361     tty->print_cr("Counted Loop Limit Check generated:");
 362     debug_only( bol->dump(2); )
 363   }
 364 #endif
 365 }
 366 
 367 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) {
 368   // Counted loop head must be a good RegionNode with only 3 not null
 369   // control input edges: Self, Entry, LoopBack.
 370   if (x->in(LoopNode::Self) == nullptr || x->req() != 3 || loop->_irreducible) {
 371     return nullptr;
 372   }
 373   Node *init_control = x->in(LoopNode::EntryControl);
 374   Node *back_control = x->in(LoopNode::LoopBackControl);
 375   if (init_control == nullptr || back_control == nullptr) {   // Partially dead
 376     return nullptr;
 377   }
 378   // Must also check for TOP when looking for a dead loop
 379   if (init_control->is_top() || back_control->is_top()) {
 380     return nullptr;
 381   }
 382 
 383   // Allow funny placement of Safepoint
 384   if (back_control->Opcode() == Op_SafePoint) {
 385     back_control = back_control->in(TypeFunc::Control);
 386   }
 387 
 388   // Controlling test for loop
 389   Node *iftrue = back_control;
 390   uint iftrue_op = iftrue->Opcode();
 391   if (iftrue_op != Op_IfTrue &&
 392       iftrue_op != Op_IfFalse) {
 393     // I have a weird back-control.  Probably the loop-exit test is in
 394     // the middle of the loop and I am looking at some trailing control-flow
 395     // merge point.  To fix this I would have to partially peel the loop.
 396     return nullptr; // Obscure back-control
 397   }
 398 
 399   // Get boolean guarding loop-back test
 400   Node *iff = iftrue->in(0);
 401   if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) {
 402     return nullptr;
 403   }
 404   return iftrue;
 405 }
 406 
 407 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) {
 408   Node* iftrue = back_control;
 409   uint iftrue_op = iftrue->Opcode();
 410   Node* iff = iftrue->in(0);
 411   BoolNode* test = iff->in(1)->as_Bool();
 412   bt = test->_test._test;
 413   cl_prob = iff->as_If()->_prob;
 414   if (iftrue_op == Op_IfFalse) {
 415     bt = BoolTest(bt).negate();
 416     cl_prob = 1.0 - cl_prob;
 417   }
 418   // Get backedge compare
 419   Node* cmp = test->in(1);
 420   if (!cmp->is_Cmp()) {
 421     return nullptr;
 422   }
 423 
 424   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 425   incr  = cmp->in(1);
 426   limit = cmp->in(2);
 427 
 428   // ---------
 429   // need 'loop()' test to tell if limit is loop invariant
 430   // ---------
 431 
 432   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 433     Node* tmp = incr;            // Then reverse order into the CmpI
 434     incr = limit;
 435     limit = tmp;
 436     bt = BoolTest(bt).commute(); // And commute the exit test
 437   }
 438   if (is_member(loop, get_ctrl(limit))) { // Limit must be loop-invariant
 439     return nullptr;
 440   }
 441   if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant
 442     return nullptr;
 443   }
 444   return cmp;
 445 }
 446 
 447 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) {
 448   if (incr->is_Phi()) {
 449     if (incr->as_Phi()->region() != x || incr->req() != 3) {
 450       return nullptr; // Not simple trip counter expression
 451     }
 452     phi_incr = incr;
 453     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 454     if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant
 455       return nullptr;
 456     }
 457   }
 458   return incr;
 459 }
 460 
 461 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi) {
 462   assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp.");
 463   // Get merge point
 464   xphi = incr->in(1);
 465   Node *stride = incr->in(2);
 466   if (!stride->is_Con()) {     // Oops, swap these
 467     if (!xphi->is_Con()) {     // Is the other guy a constant?
 468       return nullptr;          // Nope, unknown stride, bail out
 469     }
 470     Node *tmp = xphi;          // 'incr' is commutative, so ok to swap
 471     xphi = stride;
 472     stride = tmp;
 473   }
 474   return stride;
 475 }
 476 
 477 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop) {
 478   if (!xphi->is_Phi()) {
 479     return nullptr; // Too much math on the trip counter
 480   }
 481   if (phi_incr != nullptr && phi_incr != xphi) {
 482     return nullptr;
 483   }
 484   PhiNode *phi = xphi->as_Phi();
 485 
 486   // Phi must be of loop header; backedge must wrap to increment
 487   if (phi->region() != x) {
 488     return nullptr;
 489   }
 490   return phi;
 491 }
 492 
 493 static int check_stride_overflow(jlong final_correction, const TypeInteger* limit_t, BasicType bt) {
 494   if (final_correction > 0) {
 495     if (limit_t->lo_as_long() > (max_signed_integer(bt) - final_correction)) {
 496       return -1;
 497     }
 498     if (limit_t->hi_as_long() > (max_signed_integer(bt) - final_correction)) {
 499       return 1;
 500     }
 501   } else {
 502     if (limit_t->hi_as_long() < (min_signed_integer(bt) - final_correction)) {
 503       return -1;
 504     }
 505     if (limit_t->lo_as_long() < (min_signed_integer(bt) - final_correction)) {
 506       return 1;
 507     }
 508   }
 509   return 0;
 510 }
 511 
 512 static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) {
 513   // If the condition is inverted and we will be rolling
 514   // through MININT to MAXINT, then bail out.
 515   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 516       // Odd stride
 517       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
 518       // Count down loop rolls through MAXINT
 519       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
 520       // Count up loop rolls through MININT
 521       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
 522     return false; // Bail out
 523   }
 524   return true;
 525 }
 526 
 527 Node* PhaseIdealLoop::loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head,
 528                                            BasicType bt) {
 529   Node* iv_as_long;
 530   if (bt == T_LONG) {
 531     iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT);
 532     register_new_node(iv_as_long, inner_head);
 533   } else {
 534     iv_as_long = inner_iv;
 535   }
 536   Node* iv_replacement = AddNode::make(outer_phi, iv_as_long, bt);
 537   register_new_node(iv_replacement, inner_head);
 538   for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) {
 539     Node* u = iv_to_replace->last_out(i);
 540 #ifdef ASSERT
 541     if (!is_dominator(inner_head, ctrl_or_self(u))) {
 542       assert(u->is_Phi(), "should be a Phi");
 543       for (uint j = 1; j < u->req(); j++) {
 544         if (u->in(j) == iv_to_replace) {
 545           assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?");
 546         }
 547       }
 548     }
 549 #endif
 550     _igvn.rehash_node_delayed(u);
 551     int nb = u->replace_edge(iv_to_replace, iv_replacement, &_igvn);
 552     i -= nb;
 553   }
 554   return iv_replacement;
 555 }
 556 
 557 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
 558 void PhaseIdealLoop::add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop,
 559                                          SafePointNode* sfpt) {
 560   if (!C->too_many_traps(reason)) {
 561     ParsePredicateNode* parse_predicate = new ParsePredicateNode(inner_head->in(LoopNode::EntryControl), reason, &_igvn);
 562     register_control(parse_predicate, loop, inner_head->in(LoopNode::EntryControl));
 563     Node* if_false = new IfFalseNode(parse_predicate);
 564     register_control(if_false, _ltree_root, parse_predicate);
 565     Node* if_true = new IfTrueNode(parse_predicate);
 566     register_control(if_true, loop, parse_predicate);
 567 
 568     int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile);
 569     address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
 570     const TypePtr* no_memory_effects = nullptr;
 571     JVMState* jvms = sfpt->jvms();
 572     CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap",
 573                                            no_memory_effects);
 574 
 575     Node* mem = nullptr;
 576     Node* i_o = nullptr;
 577     if (sfpt->is_Call()) {
 578       mem = sfpt->proj_out(TypeFunc::Memory);
 579       i_o = sfpt->proj_out(TypeFunc::I_O);
 580     } else {
 581       mem = sfpt->memory();
 582       i_o = sfpt->i_o();
 583     }
 584 
 585     Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr);
 586     register_new_node(frame, C->start());
 587     Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr);
 588     register_new_node(ret, C->start());
 589 
 590     unc->init_req(TypeFunc::Control, if_false);
 591     unc->init_req(TypeFunc::I_O, i_o);
 592     unc->init_req(TypeFunc::Memory, mem); // may gc ptrs
 593     unc->init_req(TypeFunc::FramePtr, frame);
 594     unc->init_req(TypeFunc::ReturnAdr, ret);
 595     unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request));
 596     unc->set_cnt(PROB_UNLIKELY_MAG(4));
 597     unc->copy_call_debug_info(&_igvn, sfpt);
 598 
 599     for (uint i = TypeFunc::Parms; i < unc->req(); i++) {
 600       set_subtree_ctrl(unc->in(i), false);
 601     }
 602     register_control(unc, _ltree_root, if_false);
 603 
 604     Node* ctrl = new ProjNode(unc, TypeFunc::Control);
 605     register_control(ctrl, _ltree_root, unc);
 606     Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false));
 607     register_control(halt, _ltree_root, ctrl);
 608     _igvn.add_input_to(C->root(), halt);
 609 
 610     _igvn.replace_input_of(inner_head, LoopNode::EntryControl, if_true);
 611     set_idom(inner_head, if_true, dom_depth(inner_head));
 612   }
 613 }
 614 
 615 // Find a safepoint node that dominates the back edge. We need a
 616 // SafePointNode so we can use its jvm state to create empty
 617 // predicates.
 618 static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm, PhaseIdealLoop* phase) {
 619   SafePointNode* safepoint = nullptr;
 620   for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
 621     Node* u = x->fast_out(i);
 622     if (u->is_memory_phi()) {
 623       Node* m = u->in(LoopNode::LoopBackControl);
 624       if (u->adr_type() == TypePtr::BOTTOM) {
 625         if (m->is_MergeMem() && mem->is_MergeMem()) {
 626           if (m != mem DEBUG_ONLY(|| true)) {
 627             // MergeMemStream can modify m, for example to adjust the length to mem.
 628             // This is unfortunate, and probably unnecessary. But as it is, we need
 629             // to add m to the igvn worklist, else we may have a modified node that
 630             // is not on the igvn worklist.
 631             phase->igvn()._worklist.push(m);
 632             for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
 633               if (!mms.is_empty()) {
 634                 if (mms.memory() != mms.memory2()) {
 635                   return false;
 636                 }
 637 #ifdef ASSERT
 638                 if (mms.alias_idx() != Compile::AliasIdxBot) {
 639                   mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 640                 }
 641 #endif
 642               }
 643             }
 644           }
 645         } else if (mem->is_MergeMem()) {
 646           if (m != mem->as_MergeMem()->base_memory()) {
 647             return false;
 648           }
 649         } else {
 650           return false;
 651         }
 652       } else {
 653         if (mem->is_MergeMem()) {
 654           if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) {
 655             return false;
 656           }
 657 #ifdef ASSERT
 658           mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory());
 659 #endif
 660         } else {
 661           if (m != mem) {
 662             return false;
 663           }
 664         }
 665       }
 666     }
 667   }
 668   return true;
 669 }
 670 
 671 SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) {
 672   IfNode* exit_test = back_control->in(0)->as_If();
 673   SafePointNode* safepoint = nullptr;
 674   if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) {
 675     safepoint = exit_test->in(0)->as_SafePoint();
 676   } else {
 677     Node* c = back_control;
 678     while (c != x && c->Opcode() != Op_SafePoint) {
 679       c = idom(c);
 680     }
 681 
 682     if (c->Opcode() == Op_SafePoint) {
 683       safepoint = c->as_SafePoint();
 684     }
 685 
 686     if (safepoint == nullptr) {
 687       return nullptr;
 688     }
 689 
 690     Node* mem = safepoint->in(TypeFunc::Memory);
 691 
 692     // We can only use that safepoint if there's no side effect between the backedge and the safepoint.
 693 
 694     // mm is the memory state at the safepoint (when it's a MergeMem)
 695     // no_side_effect_since_safepoint() goes over the memory state at the backedge. It resets the mm input for each
 696     // component of the memory state it encounters so it points to the base memory. Once no_side_effect_since_safepoint()
 697     // is done, if no side effect after the safepoint was found, mm should transform to the base memory: the states at
 698     // the backedge and safepoint are the same so all components of the memory state at the safepoint should have been
 699     // reset.
 700     MergeMemNode* mm = nullptr;
 701 #ifdef ASSERT
 702     if (mem->is_MergeMem()) {
 703       mm = mem->clone()->as_MergeMem();
 704       _igvn._worklist.push(mm);
 705       for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) {
 706         // Loop invariant memory state won't be reset by no_side_effect_since_safepoint(). Do it here.
 707         // Escape Analysis can add state to mm that it doesn't add to the backedge memory Phis, breaking verification
 708         // code that relies on mm. Clear that extra state here.
 709         if (mms.alias_idx() != Compile::AliasIdxBot &&
 710             (loop != get_loop(ctrl_or_self(mms.memory())) ||
 711              (mms.adr_type()->isa_oop_ptr() && mms.adr_type()->is_known_instance()))) {
 712           mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 713         }
 714       }
 715     }
 716 #endif
 717     if (!no_side_effect_since_safepoint(C, x, mem, mm, this)) {
 718       safepoint = nullptr;
 719     } else {
 720       assert(mm == nullptr|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed");
 721     }
 722 #ifdef ASSERT
 723     if (mm != nullptr) {
 724       _igvn.remove_dead_node(mm);
 725     }
 726 #endif
 727   }
 728   return safepoint;
 729 }
 730 
 731 // If the loop has the shape of a counted loop but with a long
 732 // induction variable, transform the loop in a loop nest: an inner
 733 // loop that iterates for at most max int iterations with an integer
 734 // induction variable and an outer loop that iterates over the full
 735 // range of long values from the initial loop in (at most) max int
 736 // steps. That is:
 737 //
 738 // x: for (long phi = init; phi < limit; phi += stride) {
 739 //   // phi := Phi(L, init, incr)
 740 //   // incr := AddL(phi, longcon(stride))
 741 //   long incr = phi + stride;
 742 //   ... use phi and incr ...
 743 // }
 744 //
 745 // OR:
 746 //
 747 // x: for (long phi = init; (phi += stride) < limit; ) {
 748 //   // phi := Phi(L, AddL(init, stride), incr)
 749 //   // incr := AddL(phi, longcon(stride))
 750 //   long incr = phi + stride;
 751 //   ... use phi and (phi + stride) ...
 752 // }
 753 //
 754 // ==transform=>
 755 //
 756 // const ulong inner_iters_limit = INT_MAX - stride - 1;  //near 0x7FFFFFF0
 757 // assert(stride <= inner_iters_limit);  // else abort transform
 758 // assert((extralong)limit + stride <= LONG_MAX);  // else deopt
 759 // outer_head: for (long outer_phi = init;;) {
 760 //   // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi)))
 761 //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi));
 762 //   long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max);
 763 //   assert(inner_iters_actual == (int)inner_iters_actual);
 764 //   int inner_phi, inner_incr;
 765 //   x: for (inner_phi = 0;; inner_phi = inner_incr) {
 766 //     // inner_phi := Phi(x, intcon(0), inner_incr)
 767 //     // inner_incr := AddI(inner_phi, intcon(stride))
 768 //     inner_incr = inner_phi + stride;
 769 //     if (inner_incr < inner_iters_actual) {
 770 //       ... use phi=>(outer_phi+inner_phi) ...
 771 //       continue;
 772 //     }
 773 //     else break;
 774 //   }
 775 //   if ((outer_phi+inner_phi) < limit)  //OR (outer_phi+inner_incr) < limit
 776 //     continue;
 777 //   else break;
 778 // }
 779 //
 780 // The same logic is used to transform an int counted loop that contains long range checks into a loop nest of 2 int
 781 // loops with long range checks transformed to int range checks in the inner loop.
 782 bool PhaseIdealLoop::create_loop_nest(IdealLoopTree* loop, Node_List &old_new) {
 783   Node* x = loop->_head;
 784   // Only for inner loops
 785   if (loop->_child != nullptr || !x->is_BaseCountedLoop() || x->as_Loop()->is_loop_nest_outer_loop()) {
 786     return false;
 787   }
 788 
 789   if (x->is_CountedLoop() && !x->as_CountedLoop()->is_main_loop() && !x->as_CountedLoop()->is_normal_loop()) {
 790     return false;
 791   }
 792 
 793   BaseCountedLoopNode* head = x->as_BaseCountedLoop();
 794   BasicType bt = x->as_BaseCountedLoop()->bt();
 795 
 796   check_counted_loop_shape(loop, x, bt);
 797 
 798 #ifndef PRODUCT
 799   if (bt == T_LONG) {
 800     Atomic::inc(&_long_loop_candidates);
 801   }
 802 #endif
 803 
 804   jlong stride_con_long = head->stride_con();
 805   assert(stride_con_long != 0, "missed some peephole opt");
 806   // We can't iterate for more than max int at a time.
 807   if (stride_con_long != (jint)stride_con_long || stride_con_long == min_jint) {
 808     assert(bt == T_LONG, "only for long loops");
 809     return false;
 810   }
 811   jint stride_con = checked_cast<jint>(stride_con_long);
 812   // The number of iterations for the integer count loop: guarantee no
 813   // overflow: max_jint - stride_con max. -1 so there's no need for a
 814   // loop limit check if the exit test is <= or >=.
 815   int iters_limit = max_jint - ABS(stride_con) - 1;
 816 #ifdef ASSERT
 817   if (bt == T_LONG && StressLongCountedLoop > 0) {
 818     iters_limit = iters_limit / StressLongCountedLoop;
 819   }
 820 #endif
 821   // At least 2 iterations so counted loop construction doesn't fail
 822   if (iters_limit/ABS(stride_con) < 2) {
 823     return false;
 824   }
 825 
 826   PhiNode* phi = head->phi()->as_Phi();
 827   Node* incr = head->incr();
 828 
 829   Node* back_control = head->in(LoopNode::LoopBackControl);
 830 
 831   // data nodes on back branch not supported
 832   if (back_control->outcnt() > 1) {
 833     return false;
 834   }
 835 
 836   Node* limit = head->limit();
 837   // We'll need to use the loop limit before the inner loop is entered
 838   if (!is_dominator(get_ctrl(limit), x)) {
 839     return false;
 840   }
 841 
 842   IfNode* exit_test = head->loopexit();
 843 
 844   assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge");
 845 
 846   Node_List range_checks;
 847   iters_limit = extract_long_range_checks(loop, stride_con, iters_limit, phi, range_checks);
 848 
 849   if (bt == T_INT) {
 850     // The only purpose of creating a loop nest is to handle long range checks. If there are none, do not proceed further.
 851     if (range_checks.size() == 0) {
 852       return false;
 853     }
 854   }
 855 
 856   // Take what we know about the number of iterations of the long counted loop into account when computing the limit of
 857   // the inner loop.
 858   const Node* init = head->init_trip();
 859   const TypeInteger* lo = _igvn.type(init)->is_integer(bt);
 860   const TypeInteger* hi = _igvn.type(limit)->is_integer(bt);
 861   if (stride_con < 0) {
 862     swap(lo, hi);
 863   }
 864   if (hi->hi_as_long() <= lo->lo_as_long()) {
 865     // not a loop after all
 866     return false;
 867   }
 868 
 869   if (range_checks.size() > 0) {
 870     // This transformation requires peeling one iteration. Also, if it has range checks and they are eliminated by Loop
 871     // Predication, then 2 Hoisted Check Predicates are added for one range check. Finally, transforming a long range
 872     // check requires extra logic to be executed before the loop is entered and for the outer loop. As a result, the
 873     // transformations can't pay off for a small number of iterations: roughly, if the loop runs for 3 iterations, it's
 874     // going to execute as many range checks once transformed with range checks eliminated (1 peeled iteration with
 875     // range checks + 2 predicates per range checks) as it would have not transformed. It also has to pay for the extra
 876     // logic on loop entry and for the outer loop.
 877     loop->compute_trip_count(this);
 878     if (head->is_CountedLoop() && head->as_CountedLoop()->has_exact_trip_count()) {
 879       if (head->as_CountedLoop()->trip_count() <= 3) {
 880         return false;
 881       }
 882     } else {
 883       loop->compute_profile_trip_cnt(this);
 884       if (!head->is_profile_trip_failed() && head->profile_trip_cnt() <= 3) {
 885         return false;
 886       }
 887     }
 888   }
 889 
 890   julong orig_iters = (julong)hi->hi_as_long() - lo->lo_as_long();
 891   iters_limit = checked_cast<int>(MIN2((julong)iters_limit, orig_iters));
 892 
 893   // We need a safepoint to insert Parse Predicates for the inner loop.
 894   SafePointNode* safepoint;
 895   if (bt == T_INT && head->as_CountedLoop()->is_strip_mined()) {
 896     // Loop is strip mined: use the safepoint of the outer strip mined loop
 897     OuterStripMinedLoopNode* outer_loop = head->as_CountedLoop()->outer_loop();
 898     assert(outer_loop != nullptr, "no outer loop");
 899     safepoint = outer_loop->outer_safepoint();
 900     outer_loop->transform_to_counted_loop(&_igvn, this);
 901     exit_test = head->loopexit();
 902   } else {
 903     safepoint = find_safepoint(back_control, x, loop);
 904   }
 905 
 906   Node* exit_branch = exit_test->proj_out(false);
 907   Node* entry_control = head->in(LoopNode::EntryControl);
 908 
 909   // Clone the control flow of the loop to build an outer loop
 910   Node* outer_back_branch = back_control->clone();
 911   Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
 912   Node* inner_exit_branch = exit_branch->clone();
 913 
 914   LoopNode* outer_head = new LoopNode(entry_control, outer_back_branch);
 915   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head, outer_back_branch);
 916 
 917   const bool body_populated = true;
 918   register_control(outer_head, outer_ilt, entry_control, body_populated);
 919 
 920   _igvn.register_new_node_with_optimizer(inner_exit_branch);
 921   set_loop(inner_exit_branch, outer_ilt);
 922   set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch));
 923 
 924   outer_exit_test->set_req(0, inner_exit_branch);
 925   register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated);
 926 
 927   _igvn.replace_input_of(exit_branch, 0, outer_exit_test);
 928   set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch));
 929 
 930   outer_back_branch->set_req(0, outer_exit_test);
 931   register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated);
 932 
 933   _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head);
 934   set_idom(x, outer_head, dom_depth(x));
 935 
 936   // add an iv phi to the outer loop and use it to compute the inner
 937   // loop iteration limit
 938   Node* outer_phi = phi->clone();
 939   outer_phi->set_req(0, outer_head);
 940   register_new_node(outer_phi, outer_head);
 941 
 942   Node* inner_iters_max = nullptr;
 943   if (stride_con > 0) {
 944     inner_iters_max = MaxNode::max_diff_with_zero(limit, outer_phi, TypeInteger::bottom(bt), _igvn);
 945   } else {
 946     inner_iters_max = MaxNode::max_diff_with_zero(outer_phi, limit, TypeInteger::bottom(bt), _igvn);
 947   }
 948 
 949   Node* inner_iters_limit = _igvn.integercon(iters_limit, bt);
 950   // inner_iters_max may not fit in a signed integer (iterating from
 951   // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned
 952   // min.
 953   const TypeInteger* inner_iters_actual_range = TypeInteger::make(0, iters_limit, Type::WidenMin, bt);
 954   Node* inner_iters_actual = MaxNode::unsigned_min(inner_iters_max, inner_iters_limit, inner_iters_actual_range, _igvn);
 955 
 956   Node* inner_iters_actual_int;
 957   if (bt == T_LONG) {
 958     inner_iters_actual_int = new ConvL2INode(inner_iters_actual);
 959     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
 960     // When the inner loop is transformed to a counted loop, a loop limit check is not expected to be needed because
 961     // the loop limit is less or equal to max_jint - stride - 1 (if stride is positive but a similar argument exists for
 962     // a negative stride). We add a CastII here to guarantee that, when the counted loop is created in a subsequent loop
 963     // opts pass, an accurate range of values for the limits is found.
 964     const TypeInt* inner_iters_actual_int_range = TypeInt::make(0, iters_limit, Type::WidenMin);
 965     inner_iters_actual_int = new CastIINode(outer_head, inner_iters_actual_int, inner_iters_actual_int_range, ConstraintCastNode::UnconditionalDependency);
 966     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
 967   } else {
 968     inner_iters_actual_int = inner_iters_actual;
 969   }
 970 
 971   Node* int_zero = intcon(0);
 972   if (stride_con < 0) {
 973     inner_iters_actual_int = new SubINode(int_zero, inner_iters_actual_int);
 974     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
 975   }
 976 
 977   // Clone the iv data nodes as an integer iv
 978   Node* int_stride = intcon(stride_con);
 979   Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT);
 980   Node* inner_incr = new AddINode(inner_phi, int_stride);
 981   Node* inner_cmp = nullptr;
 982   inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int);
 983   Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test);
 984   inner_phi->set_req(LoopNode::EntryControl, int_zero);
 985   inner_phi->set_req(LoopNode::LoopBackControl, inner_incr);
 986   register_new_node(inner_phi, x);
 987   register_new_node(inner_incr, x);
 988   register_new_node(inner_cmp, x);
 989   register_new_node(inner_bol, x);
 990 
 991   _igvn.replace_input_of(exit_test, 1, inner_bol);
 992 
 993   // Clone inner loop phis to outer loop
 994   for (uint i = 0; i < head->outcnt(); i++) {
 995     Node* u = head->raw_out(i);
 996     if (u->is_Phi() && u != inner_phi && u != phi) {
 997       assert(u->in(0) == head, "inconsistent");
 998       Node* clone = u->clone();
 999       clone->set_req(0, outer_head);
1000       register_new_node(clone, outer_head);
1001       _igvn.replace_input_of(u, LoopNode::EntryControl, clone);
1002     }
1003   }
1004 
1005   // Replace inner loop long iv phi as inner loop int iv phi + outer
1006   // loop iv phi
1007   Node* iv_add = loop_nest_replace_iv(phi, inner_phi, outer_phi, head, bt);
1008 
1009   set_subtree_ctrl(inner_iters_actual_int, body_populated);
1010 
1011   LoopNode* inner_head = create_inner_head(loop, head, exit_test);
1012 
1013   // Summary of steps from initial loop to loop nest:
1014   //
1015   // == old IR nodes =>
1016   //
1017   // entry_control: {...}
1018   // x:
1019   // for (long phi = init;;) {
1020   //   // phi := Phi(x, init, incr)
1021   //   // incr := AddL(phi, longcon(stride))
1022   //   exit_test:
1023   //   if (phi < limit)
1024   //     back_control: fallthrough;
1025   //   else
1026   //     exit_branch: break;
1027   //   long incr = phi + stride;
1028   //   ... use phi and incr ...
1029   //   phi = incr;
1030   // }
1031   //
1032   // == new IR nodes (just before final peel) =>
1033   //
1034   // entry_control: {...}
1035   // long adjusted_limit = limit + stride;  //because phi_incr != nullptr
1036   // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit);  // else deopt
1037   // ulong inner_iters_limit = max_jint - ABS(stride) - 1;  //near 0x7FFFFFF0
1038   // outer_head:
1039   // for (long outer_phi = init;;) {
1040   //   // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr)
1041   //   // REPLACE phi  => AddL(outer_phi, I2L(inner_phi))
1042   //   // REPLACE incr => AddL(outer_phi, I2L(inner_incr))
1043   //   // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr)))
1044   //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride));
1045   //   int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride);
1046   //   inner_head: x: //in(1) := outer_head
1047   //   int inner_phi;
1048   //   for (inner_phi = 0;;) {
1049   //     // inner_phi := Phi(x, intcon(0), inner_phi + stride)
1050   //     int inner_incr = inner_phi + stride;
1051   //     bool inner_bol = (inner_incr < inner_iters_actual_int);
1052   //     exit_test: //exit_test->in(1) := inner_bol;
1053   //     if (inner_bol) // WAS (phi < limit)
1054   //       back_control: fallthrough;
1055   //     else
1056   //       inner_exit_branch: break;  //exit_branch->clone()
1057   //     ... use phi=>(outer_phi+inner_phi) ...
1058   //     inner_phi = inner_phi + stride;  // inner_incr
1059   //   }
1060   //   outer_exit_test:  //exit_test->clone(), in(0):=inner_exit_branch
1061   //   if ((outer_phi+inner_phi) < limit)  // WAS (phi < limit)
1062   //     outer_back_branch: fallthrough;  //back_control->clone(), in(0):=outer_exit_test
1063   //   else
1064   //     exit_branch: break;  //in(0) := outer_exit_test
1065   // }
1066 
1067   if (bt == T_INT) {
1068     outer_phi = new ConvI2LNode(outer_phi);
1069     register_new_node(outer_phi, outer_head);
1070   }
1071 
1072   transform_long_range_checks(stride_con, range_checks, outer_phi, inner_iters_actual_int,
1073                               inner_phi, iv_add, inner_head);
1074   // Peel one iteration of the loop and use the safepoint at the end
1075   // of the peeled iteration to insert Parse Predicates. If no well
1076   // positioned safepoint peel to guarantee a safepoint in the outer
1077   // loop.
1078   if (safepoint != nullptr || !loop->_has_call) {
1079     old_new.clear();
1080     do_peeling(loop, old_new);
1081   } else {
1082     C->set_major_progress();
1083   }
1084 
1085   if (safepoint != nullptr) {
1086     SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint();
1087 
1088     if (UseLoopPredicate) {
1089       add_parse_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt);
1090       if (UseProfiledLoopPredicate) {
1091         add_parse_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt);
1092       }
1093     }
1094 
1095     // We only want to use the auto-vectorization check as a trap once per bci. And
1096     // PhaseIdealLoop::add_parse_predicate only checks trap limits per method, so
1097     // we do a custom check here.
1098     if (!C->too_many_traps(cloned_sfpt->jvms()->method(), cloned_sfpt->jvms()->bci(), Deoptimization::Reason_auto_vectorization_check)) {
1099       add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, inner_head, outer_ilt, cloned_sfpt);
1100     }
1101 
1102     add_parse_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt);
1103   }
1104 
1105 #ifndef PRODUCT
1106   if (bt == T_LONG) {
1107     Atomic::inc(&_long_loop_nests);
1108   }
1109 #endif
1110 
1111   inner_head->mark_loop_nest_inner_loop();
1112   outer_head->mark_loop_nest_outer_loop();
1113 
1114   return true;
1115 }
1116 
1117 int PhaseIdealLoop::extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
1118                                               Node_List& range_checks) {
1119   const jlong min_iters = 2;
1120   jlong reduced_iters_limit = iters_limit;
1121   jlong original_iters_limit = iters_limit;
1122   for (uint i = 0; i < loop->_body.size(); i++) {
1123     Node* c = loop->_body.at(i);
1124     if (c->is_IfProj() && c->in(0)->is_RangeCheck()) {
1125       IfProjNode* if_proj = c->as_IfProj();
1126       CallStaticJavaNode* call = if_proj->is_uncommon_trap_if_pattern();
1127       if (call != nullptr) {
1128         Node* range = nullptr;
1129         Node* offset = nullptr;
1130         jlong scale = 0;
1131         if (loop->is_range_check_if(if_proj, this, T_LONG, phi, range, offset, scale) &&
1132             loop->is_invariant(range) && loop->is_invariant(offset) &&
1133             scale != min_jlong &&
1134             original_iters_limit / ABS(scale) >= min_iters * ABS(stride_con)) {
1135           assert(scale == (jint)scale, "scale should be an int");
1136           reduced_iters_limit = MIN2(reduced_iters_limit, original_iters_limit/ABS(scale));
1137           range_checks.push(c);
1138         }
1139       }
1140     }
1141   }
1142 
1143   return checked_cast<int>(reduced_iters_limit);
1144 }
1145 
1146 // One execution of the inner loop covers a sub-range of the entire iteration range of the loop: [A,Z), aka [A=init,
1147 // Z=limit). If the loop has at least one trip (which is the case here), the iteration variable i always takes A as its
1148 // first value, followed by A+S (S is the stride), next A+2S, etc. The limit is exclusive, so that the final value B of
1149 // i is never Z.  It will be B=Z-1 if S=1, or B=Z+1 if S=-1.
1150 
1151 // If |S|>1 the formula for the last value B would require a floor operation, specifically B=floor((Z-sgn(S)-A)/S)*S+A,
1152 // which is B=Z-sgn(S)U for some U in [1,|S|].  So when S>0, i ranges as i:[A,Z) or i:[A,B=Z-U], or else (in reverse)
1153 // as i:(Z,A] or i:[B=Z+U,A].  It will become important to reason about this inclusive range [A,B] or [B,A].
1154 
1155 // Within the loop there may be many range checks.  Each such range check (R.C.) is of the form 0 <= i*K+L < R, where K
1156 // is a scale factor applied to the loop iteration variable i, and L is some offset; K, L, and R are loop-invariant.
1157 // Because R is never negative (see below), this check can always be simplified to an unsigned check i*K+L <u R.
1158 
1159 // When a long loop over a 64-bit variable i (outer_iv) is decomposed into a series of shorter sub-loops over a 32-bit
1160 // variable j (inner_iv), j ranges over a shorter interval j:[0,B_2] or [0,Z_2) (assuming S > 0), where the limit is
1161 // chosen to prevent various cases of 32-bit overflow (including multiplications j*K below).  In the sub-loop the
1162 // logical value i is offset from j by a 64-bit constant C, so i ranges in i:C+[0,Z_2).
1163 
1164 // For S<0, j ranges (in reverse!) through j:[-|B_2|,0] or (-|Z_2|,0].  For either sign of S, we can say i=j+C and j
1165 // ranges through 32-bit ranges [A_2,B_2] or [B_2,A_2] (A_2=0 of course).
1166 
1167 // The disjoint union of all the C+[A_2,B_2] ranges from the sub-loops must be identical to the whole range [A,B].
1168 // Assuming S>0, the first C must be A itself, and the next C value is the previous C+B_2, plus S.  If |S|=1, the next
1169 // C value is also the previous C+Z_2.  In each sub-loop, j counts from j=A_2=0 and i counts from C+0 and exits at
1170 // j=B_2 (i=C+B_2), just before it gets to i=C+Z_2.  Both i and j count up (from C and 0) if S>0; otherwise they count
1171 // down (from C and 0 again).
1172 
1173 // Returning to range checks, we see that each i*K+L <u R expands to (C+j)*K+L <u R, or j*K+Q <u R, where Q=(C*K+L).
1174 // (Recall that K and L and R are loop-invariant scale, offset and range values for a particular R.C.)  This is still a
1175 // 64-bit comparison, so the range check elimination logic will not apply to it.  (The R.C.E. transforms operate only on
1176 // 32-bit indexes and comparisons, because they use 64-bit temporary values to avoid overflow; see
1177 // PhaseIdealLoop::add_constraint.)
1178 
1179 // We must transform this comparison so that it gets the same answer, but by means of a 32-bit R.C. (using j not i) of
1180 // the form j*K+L_2 <u32 R_2.  Note that L_2 and R_2 must be loop-invariant, but only with respect to the sub-loop.  Thus, the
1181 // problem reduces to computing values for L_2 and R_2 (for each R.C. in the loop) in the loop header for the sub-loop.
1182 // Then the standard R.C.E. transforms can take those as inputs and further compute the necessary minimum and maximum
1183 // values for the 32-bit counter j within which the range checks can be eliminated.
1184 
1185 // So, given j*K+Q <u R, we need to find some j*K+L_2 <u32 R_2, where L_2 and R_2 fit in 32 bits, and the 32-bit operations do
1186 // not overflow. We also need to cover the cases where i*K+L (= j*K+Q) overflows to a 64-bit negative, since that is
1187 // allowed as an input to the R.C., as long as the R.C. as a whole fails.
1188 
1189 // If 32-bit multiplication j*K might overflow, we adjust the sub-loop limit Z_2 closer to zero to reduce j's range.
1190 
1191 // For each R.C. j*K+Q <u32 R, the range of mathematical values of j*K+Q in the sub-loop is [Q_min, Q_max], where
1192 // Q_min=Q and Q_max=B_2*K+Q (if S>0 and K>0), Q_min=A_2*K+Q and Q_max=Q (if S<0 and K>0),
1193 // Q_min=B_2*K+Q and Q_max=Q if (S>0 and K<0), Q_min=Q and Q_max=A_2*K+Q (if S<0 and K<0)
1194 
1195 // Note that the first R.C. value is always Q=(S*K>0 ? Q_min : Q_max).  Also Q_{min,max} = Q + {min,max}(A_2*K,B_2*K).
1196 // If S*K>0 then, as the loop iterations progress, each R.C. value i*K+L = j*K+Q goes up from Q=Q_min towards Q_max.
1197 // If S*K<0 then j*K+Q starts at Q=Q_max and goes down towards Q_min.
1198 
1199 // Case A: Some Negatives (but no overflow).
1200 // Number line:
1201 // |s64_min   .    .    .    0    .    .    .   s64_max|
1202 // |    .  Q_min..Q_max .    0    .    .    .     .    |  s64 negative
1203 // |    .     .    .    .    R=0  R<   R<   R<    R<   |  (against R values)
1204 // |    .     .    .  Q_min..0..Q_max  .    .     .    |  small mixed
1205 // |    .     .    .    .    R    R    R<   R<    R<   |  (against R values)
1206 //
1207 // R values which are out of range (>Q_max+1) are reduced to max(0,Q_max+1).  They are marked on the number line as R<.
1208 //
1209 // So, if Q_min <s64 0, then use this test:
1210 // j*K + s32_trunc(Q_min) <u32 clamp(R, 0, Q_max+1) if S*K>0 (R.C.E. steps upward)
1211 // j*K + s32_trunc(Q_max) <u32 clamp(R, 0, Q_max+1) if S*K<0 (R.C.E. steps downward)
1212 // Both formulas reduce to adding j*K to the 32-bit truncated value of the first R.C. expression value, Q:
1213 // j*K + s32_trunc(Q) <u32 clamp(R, 0, Q_max+1) for all S,K
1214 
1215 // If the 32-bit truncation loses information, no harm is done, since certainly the clamp also will return R_2=zero.
1216 
1217 // Case B: No Negatives.
1218 // Number line:
1219 // |s64_min   .    .    .    0    .    .    .   s64_max|
1220 // |    .     .    .    .    0 Q_min..Q_max .     .    |  small positive
1221 // |    .     .    .    .    R>   R    R    R<    R<   |  (against R values)
1222 // |    .     .    .    .    0    . Q_min..Q_max  .    |  s64 positive
1223 // |    .     .    .    .    R>   R>   R    R     R<   |  (against R values)
1224 //
1225 // R values which are out of range (<Q_min or >Q_max+1) are reduced as marked: R> up to Q_min, R< down to Q_max+1.
1226 // Then the whole comparison is shifted left by Q_min, so it can take place at zero, which is a nice 32-bit value.
1227 //
1228 // So, if both Q_min, Q_max+1 >=s64 0, then use this test:
1229 // j*K + 0         <u32 clamp(R, Q_min, Q_max+1) - Q_min if S*K>0
1230 // More generally:
1231 // j*K + Q - Q_min <u32 clamp(R, Q_min, Q_max+1) - Q_min for all S,K
1232 
1233 // Case C: Overflow in the 64-bit domain
1234 // Number line:
1235 // |..Q_max-2^64   .    .    0    .    .    .   Q_min..|  s64 overflow
1236 // |    .     .    .    .    R>   R>   R>   R>    R    |  (against R values)
1237 //
1238 // In this case, Q_min >s64 Q_max+1, even though the mathematical values of Q_min and Q_max+1 are correctly ordered.
1239 // The formulas from the previous case can be used, except that the bad upper bound Q_max is replaced by max_jlong.
1240 // (In fact, we could use any replacement bound from R to max_jlong inclusive, as the input to the clamp function.)
1241 //
1242 // So if Q_min >=s64 0 but Q_max+1 <s64 0, use this test:
1243 // j*K + 0         <u32 clamp(R, Q_min, max_jlong) - Q_min if S*K>0
1244 // More generally:
1245 // j*K + Q - Q_min <u32 clamp(R, Q_min, max_jlong) - Q_min for all S,K
1246 //
1247 // Dropping the bad bound means only Q_min is used to reduce the range of R:
1248 // j*K + Q - Q_min <u32 max(Q_min, R) - Q_min for all S,K
1249 //
1250 // Here the clamp function is a 64-bit min/max that reduces the dynamic range of its R operand to the required [L,H]:
1251 //     clamp(X, L, H) := max(L, min(X, H))
1252 // When degenerately L > H, it returns L not H.
1253 //
1254 // All of the formulas above can be merged into a single one:
1255 //     L_clamp = Q_min < 0 ? 0 : Q_min        --whether and how far to left-shift
1256 //     H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1257 //             = Q_max+1 < 0 && Q_min >= 0 ? max_jlong : Q_max+1
1258 //     Q_first = Q = (S*K>0 ? Q_min : Q_max) = (C*K+L)
1259 //     R_clamp = clamp(R, L_clamp, H_clamp)   --reduced dynamic range
1260 //     replacement R.C.:
1261 //       j*K + Q_first - L_clamp <u32 R_clamp - L_clamp
1262 //     or equivalently:
1263 //       j*K + L_2 <u32 R_2
1264 //     where
1265 //       L_2 = Q_first - L_clamp
1266 //       R_2 = R_clamp - L_clamp
1267 //
1268 // Note on why R is never negative:
1269 //
1270 // Various details of this transformation would break badly if R could be negative, so this transformation only
1271 // operates after obtaining hard evidence that R<0 is impossible.  For example, if R comes from a LoadRange node, we
1272 // know R cannot be negative.  For explicit checks (of both int and long) a proof is constructed in
1273 // inline_preconditions_checkIndex, which triggers an uncommon trap if R<0, then wraps R in a ConstraintCastNode with a
1274 // non-negative type.  Later on, when IdealLoopTree::is_range_check_if looks for an optimizable R.C., it checks that
1275 // the type of that R node is non-negative.  Any "wild" R node that could be negative is not treated as an optimizable
1276 // R.C., but R values from a.length and inside checkIndex are good to go.
1277 //
1278 void PhaseIdealLoop::transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1279                                                  Node* inner_iters_actual_int, Node* inner_phi,
1280                                                  Node* iv_add, LoopNode* inner_head) {
1281   Node* long_zero = longcon(0);
1282   Node* int_zero = intcon(0);
1283   Node* long_one = longcon(1);
1284   Node* int_stride = intcon(checked_cast<int>(stride_con));
1285 
1286   for (uint i = 0; i < range_checks.size(); i++) {
1287     ProjNode* proj = range_checks.at(i)->as_Proj();
1288     ProjNode* unc_proj = proj->other_if_proj();
1289     RangeCheckNode* rc = proj->in(0)->as_RangeCheck();
1290     jlong scale = 0;
1291     Node* offset = nullptr;
1292     Node* rc_bol = rc->in(1);
1293     Node* rc_cmp = rc_bol->in(1);
1294     if (rc_cmp->Opcode() == Op_CmpU) {
1295       // could be shared and have already been taken care of
1296       continue;
1297     }
1298     bool short_scale = false;
1299     bool ok = is_scaled_iv_plus_offset(rc_cmp->in(1), iv_add, T_LONG, &scale, &offset, &short_scale);
1300     assert(ok, "inconsistent: was tested before");
1301     Node* range = rc_cmp->in(2);
1302     Node* c = rc->in(0);
1303     Node* entry_control = inner_head->in(LoopNode::EntryControl);
1304 
1305     Node* R = range;
1306     Node* K = longcon(scale);
1307 
1308     Node* L = offset;
1309 
1310     if (short_scale) {
1311       // This converts:
1312       // (int)i*K + L <u64 R
1313       // with K an int into:
1314       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1315       // to protect against an overflow of (int)i*K
1316       //
1317       // Because if (int)i*K overflows, there are K,L where:
1318       // (int)i*K + L <u64 R is false because (int)i*K+L overflows to a negative which becomes a huge u64 value.
1319       // But if i*(long)K + L is >u64 (long)max_jint and still is <u64 R, then
1320       // i*(long)K + L <u64 R is true.
1321       //
1322       // As a consequence simply converting i*K + L <u64 R to i*(long)K + L <u64 R could cause incorrect execution.
1323       //
1324       // It's always true that:
1325       // (int)i*K <u64 (long)max_jint + 1
1326       // which implies (int)i*K + L <u64 (long)max_jint + 1 + L
1327       // As a consequence:
1328       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1329       // is always false in case of overflow of i*K
1330       //
1331       // Note, there are also K,L where i*K overflows and
1332       // i*K + L <u64 R is true, but
1333       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) is false
1334       // So this transformation could cause spurious deoptimizations and failed range check elimination
1335       // (but not incorrect execution) for unlikely corner cases with overflow.
1336       // If this causes problems in practice, we could maybe direct execution to a post-loop, instead of deoptimizing.
1337       Node* max_jint_plus_one_long = longcon((jlong)max_jint + 1);
1338       Node* max_range = new AddLNode(max_jint_plus_one_long, L);
1339       register_new_node(max_range, entry_control);
1340       R = MaxNode::unsigned_min(R, max_range, TypeLong::POS, _igvn);
1341       set_subtree_ctrl(R, true);
1342     }
1343 
1344     Node* C = outer_phi;
1345 
1346     // Start with 64-bit values:
1347     //   i*K + L <u64 R
1348     //   (C+j)*K + L <u64 R
1349     //   j*K + Q <u64 R    where Q = Q_first = C*K+L
1350     Node* Q_first = new MulLNode(C, K);
1351     register_new_node(Q_first, entry_control);
1352     Q_first = new AddLNode(Q_first, L);
1353     register_new_node(Q_first, entry_control);
1354 
1355     // Compute endpoints of the range of values j*K + Q.
1356     //  Q_min = (j=0)*K + Q;  Q_max = (j=B_2)*K + Q
1357     Node* Q_min = Q_first;
1358 
1359     // Compute the exact ending value B_2 (which is really A_2 if S < 0)
1360     Node* B_2 = new LoopLimitNode(this->C, int_zero, inner_iters_actual_int, int_stride);
1361     register_new_node(B_2, entry_control);
1362     B_2 = new SubINode(B_2, int_stride);
1363     register_new_node(B_2, entry_control);
1364     B_2 = new ConvI2LNode(B_2);
1365     register_new_node(B_2, entry_control);
1366 
1367     Node* Q_max = new MulLNode(B_2, K);
1368     register_new_node(Q_max, entry_control);
1369     Q_max = new AddLNode(Q_max, Q_first);
1370     register_new_node(Q_max, entry_control);
1371 
1372     if (scale * stride_con < 0) {
1373       swap(Q_min, Q_max);
1374     }
1375     // Now, mathematically, Q_max > Q_min, and they are close enough so that (Q_max-Q_min) fits in 32 bits.
1376 
1377     // L_clamp = Q_min < 0 ? 0 : Q_min
1378     Node* Q_min_cmp = new CmpLNode(Q_min, long_zero);
1379     register_new_node(Q_min_cmp, entry_control);
1380     Node* Q_min_bool = new BoolNode(Q_min_cmp, BoolTest::lt);
1381     register_new_node(Q_min_bool, entry_control);
1382     Node* L_clamp = new CMoveLNode(Q_min_bool, Q_min, long_zero, TypeLong::LONG);
1383     register_new_node(L_clamp, entry_control);
1384     // (This could also be coded bitwise as L_clamp = Q_min & ~(Q_min>>63).)
1385 
1386     Node* Q_max_plus_one = new AddLNode(Q_max, long_one);
1387     register_new_node(Q_max_plus_one, entry_control);
1388 
1389     // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1390     // (Because Q_min and Q_max are close, the overflow check could also be encoded as Q_max+1 < 0 & Q_min >= 0.)
1391     Node* max_jlong_long = longcon(max_jlong);
1392     Node* Q_max_cmp = new CmpLNode(Q_max_plus_one, Q_min);
1393     register_new_node(Q_max_cmp, entry_control);
1394     Node* Q_max_bool = new BoolNode(Q_max_cmp, BoolTest::lt);
1395     register_new_node(Q_max_bool, entry_control);
1396     Node* H_clamp = new CMoveLNode(Q_max_bool, Q_max_plus_one, max_jlong_long, TypeLong::LONG);
1397     register_new_node(H_clamp, entry_control);
1398     // (This could also be coded bitwise as H_clamp = ((Q_max+1)<<1 | M)>>>1 where M = (Q_max+1)>>63 & ~Q_min>>63.)
1399 
1400     // R_2 = clamp(R, L_clamp, H_clamp) - L_clamp
1401     // that is:  R_2 = clamp(R, L_clamp=0, H_clamp=Q_max)      if Q_min < 0
1402     // or else:  R_2 = clamp(R, L_clamp,   H_clamp) - Q_min    if Q_min >= 0
1403     // and also: R_2 = clamp(R, L_clamp,   Q_max+1) - L_clamp  if Q_min < Q_max+1 (no overflow)
1404     // or else:  R_2 = clamp(R, L_clamp, *no limit*)- L_clamp  if Q_max+1 < Q_min (overflow)
1405     Node* R_2 = clamp(R, L_clamp, H_clamp);
1406     R_2 = new SubLNode(R_2, L_clamp);
1407     register_new_node(R_2, entry_control);
1408     R_2 = new ConvL2INode(R_2, TypeInt::POS);
1409     register_new_node(R_2, entry_control);
1410 
1411     // L_2 = Q_first - L_clamp
1412     // We are subtracting L_clamp from both sides of the <u32 comparison.
1413     // If S*K>0, then Q_first == 0 and the R.C. expression at -L_clamp and steps upward to Q_max-L_clamp.
1414     // If S*K<0, then Q_first != 0 and the R.C. expression starts high and steps downward to Q_min-L_clamp.
1415     Node* L_2 = new SubLNode(Q_first, L_clamp);
1416     register_new_node(L_2, entry_control);
1417     L_2 = new ConvL2INode(L_2, TypeInt::INT);
1418     register_new_node(L_2, entry_control);
1419 
1420     // Transform the range check using the computed values L_2/R_2
1421     // from:   i*K + L   <u64 R
1422     // to:     j*K + L_2 <u32 R_2
1423     // that is:
1424     //   (j*K + Q_first) - L_clamp <u32 clamp(R, L_clamp, H_clamp) - L_clamp
1425     K = intcon(checked_cast<int>(scale));
1426     Node* scaled_iv = new MulINode(inner_phi, K);
1427     register_new_node(scaled_iv, c);
1428     Node* scaled_iv_plus_offset = new AddINode(scaled_iv, L_2);
1429     register_new_node(scaled_iv_plus_offset, c);
1430 
1431     Node* new_rc_cmp = new CmpUNode(scaled_iv_plus_offset, R_2);
1432     register_new_node(new_rc_cmp, c);
1433 
1434     _igvn.replace_input_of(rc_bol, 1, new_rc_cmp);
1435   }
1436 }
1437 
1438 Node* PhaseIdealLoop::clamp(Node* R, Node* L, Node* H) {
1439   Node* min = MaxNode::signed_min(R, H, TypeLong::LONG, _igvn);
1440   set_subtree_ctrl(min, true);
1441   Node* max = MaxNode::signed_max(L, min, TypeLong::LONG, _igvn);
1442   set_subtree_ctrl(max, true);
1443   return max;
1444 }
1445 
1446 LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head,
1447                                             IfNode* exit_test) {
1448   LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2));
1449   IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
1450   _igvn.register_new_node_with_optimizer(new_inner_head);
1451   _igvn.register_new_node_with_optimizer(new_inner_exit);
1452   loop->_body.push(new_inner_head);
1453   loop->_body.push(new_inner_exit);
1454   loop->_body.yank(head);
1455   loop->_body.yank(exit_test);
1456   set_loop(new_inner_head, loop);
1457   set_loop(new_inner_exit, loop);
1458   set_idom(new_inner_head, idom(head), dom_depth(head));
1459   set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test));
1460   lazy_replace(head, new_inner_head);
1461   lazy_replace(exit_test, new_inner_exit);
1462   loop->_head = new_inner_head;
1463   return new_inner_head;
1464 }
1465 
1466 #ifdef ASSERT
1467 void PhaseIdealLoop::check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) {
1468   Node* back_control = loop_exit_control(x, loop);
1469   assert(back_control != nullptr, "no back control");
1470 
1471   BoolTest::mask mask = BoolTest::illegal;
1472   float cl_prob = 0;
1473   Node* incr = nullptr;
1474   Node* limit = nullptr;
1475 
1476   Node* cmp = loop_exit_test(back_control, loop, incr, limit, mask, cl_prob);
1477   assert(cmp != nullptr && cmp->Opcode() == Op_Cmp(bt), "no exit test");
1478 
1479   Node* phi_incr = nullptr;
1480   incr = loop_iv_incr(incr, x, loop, phi_incr);
1481   assert(incr != nullptr && incr->Opcode() == Op_Add(bt), "no incr");
1482 
1483   Node* xphi = nullptr;
1484   Node* stride = loop_iv_stride(incr, loop, xphi);
1485 
1486   assert(stride != nullptr, "no stride");
1487 
1488   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop);
1489 
1490   assert(phi != nullptr && phi->in(LoopNode::LoopBackControl) == incr, "No phi");
1491 
1492   jlong stride_con = stride->get_integer_as_long(bt);
1493 
1494   assert(condition_stride_ok(mask, stride_con), "illegal condition");
1495 
1496   assert(mask != BoolTest::ne, "unexpected condition");
1497   assert(phi_incr == nullptr, "bad loop shape");
1498   assert(cmp->in(1) == incr, "bad exit test shape");
1499 
1500   // Safepoint on backedge not supported
1501   assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge");
1502 }
1503 #endif
1504 
1505 #ifdef ASSERT
1506 // convert an int counted loop to a long counted to stress handling of
1507 // long counted loops
1508 bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) {
1509   Unique_Node_List iv_nodes;
1510   Node_List old_new;
1511   iv_nodes.push(cmp);
1512   bool failed = false;
1513 
1514   for (uint i = 0; i < iv_nodes.size() && !failed; i++) {
1515     Node* n = iv_nodes.at(i);
1516     switch(n->Opcode()) {
1517       case Op_Phi: {
1518         Node* clone = new PhiNode(n->in(0), TypeLong::LONG);
1519         old_new.map(n->_idx, clone);
1520         break;
1521       }
1522       case Op_CmpI: {
1523         Node* clone = new CmpLNode(nullptr, nullptr);
1524         old_new.map(n->_idx, clone);
1525         break;
1526       }
1527       case Op_AddI: {
1528         Node* clone = new AddLNode(nullptr, nullptr);
1529         old_new.map(n->_idx, clone);
1530         break;
1531       }
1532       case Op_CastII: {
1533         failed = true;
1534         break;
1535       }
1536       default:
1537         DEBUG_ONLY(n->dump());
1538         fatal("unexpected");
1539     }
1540 
1541     for (uint i = 1; i < n->req(); i++) {
1542       Node* in = n->in(i);
1543       if (in == nullptr) {
1544         continue;
1545       }
1546       if (loop->is_member(get_loop(get_ctrl(in)))) {
1547         iv_nodes.push(in);
1548       }
1549     }
1550   }
1551 
1552   if (failed) {
1553     for (uint i = 0; i < iv_nodes.size(); i++) {
1554       Node* n = iv_nodes.at(i);
1555       Node* clone = old_new[n->_idx];
1556       if (clone != nullptr) {
1557         _igvn.remove_dead_node(clone);
1558       }
1559     }
1560     return false;
1561   }
1562 
1563   for (uint i = 0; i < iv_nodes.size(); i++) {
1564     Node* n = iv_nodes.at(i);
1565     Node* clone = old_new[n->_idx];
1566     for (uint i = 1; i < n->req(); i++) {
1567       Node* in = n->in(i);
1568       if (in == nullptr) {
1569         continue;
1570       }
1571       Node* in_clone = old_new[in->_idx];
1572       if (in_clone == nullptr) {
1573         assert(_igvn.type(in)->isa_int(), "");
1574         in_clone = new ConvI2LNode(in);
1575         _igvn.register_new_node_with_optimizer(in_clone);
1576         set_subtree_ctrl(in_clone, false);
1577       }
1578       if (in_clone->in(0) == nullptr) {
1579         in_clone->set_req(0, C->top());
1580         clone->set_req(i, in_clone);
1581         in_clone->set_req(0, nullptr);
1582       } else {
1583         clone->set_req(i, in_clone);
1584       }
1585     }
1586     _igvn.register_new_node_with_optimizer(clone);
1587   }
1588   set_ctrl(old_new[phi->_idx], phi->in(0));
1589 
1590   for (uint i = 0; i < iv_nodes.size(); i++) {
1591     Node* n = iv_nodes.at(i);
1592     Node* clone = old_new[n->_idx];
1593     set_subtree_ctrl(clone, false);
1594     Node* m = n->Opcode() == Op_CmpI ? clone : nullptr;
1595     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1596       Node* u = n->fast_out(i);
1597       if (iv_nodes.member(u)) {
1598         continue;
1599       }
1600       if (m == nullptr) {
1601         m = new ConvL2INode(clone);
1602         _igvn.register_new_node_with_optimizer(m);
1603         set_subtree_ctrl(m, false);
1604       }
1605       _igvn.rehash_node_delayed(u);
1606       int nb = u->replace_edge(n, m, &_igvn);
1607       --i, imax -= nb;
1608     }
1609   }
1610   return true;
1611 }
1612 #endif
1613 
1614 //------------------------------is_counted_loop--------------------------------
1615 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt) {
1616   PhaseGVN *gvn = &_igvn;
1617 
1618   Node* back_control = loop_exit_control(x, loop);
1619   if (back_control == nullptr) {
1620     return false;
1621   }
1622 
1623   BoolTest::mask bt = BoolTest::illegal;
1624   float cl_prob = 0;
1625   Node* incr = nullptr;
1626   Node* limit = nullptr;
1627   Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
1628   if (cmp == nullptr || cmp->Opcode() != Op_Cmp(iv_bt)) {
1629     return false; // Avoid pointer & float & 64-bit compares
1630   }
1631 
1632   // Trip-counter increment must be commutative & associative.
1633   if (incr->Opcode() == Op_Cast(iv_bt)) {
1634     incr = incr->in(1);
1635   }
1636 
1637   Node* phi_incr = nullptr;
1638   incr = loop_iv_incr(incr, x, loop, phi_incr);
1639   if (incr == nullptr) {
1640     return false;
1641   }
1642 
1643   Node* trunc1 = nullptr;
1644   Node* trunc2 = nullptr;
1645   const TypeInteger* iv_trunc_t = nullptr;
1646   Node* orig_incr = incr;
1647   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) {
1648     return false; // Funny increment opcode
1649   }
1650   assert(incr->Opcode() == Op_Add(iv_bt), "wrong increment code");
1651 
1652   Node* xphi = nullptr;
1653   Node* stride = loop_iv_stride(incr, loop, xphi);
1654 
1655   if (stride == nullptr) {
1656     return false;
1657   }
1658 
1659   if (xphi->Opcode() == Op_Cast(iv_bt)) {
1660     xphi = xphi->in(1);
1661   }
1662 
1663   // Stride must be constant
1664   jlong stride_con = stride->get_integer_as_long(iv_bt);
1665   assert(stride_con != 0, "missed some peephole opt");
1666 
1667   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop);
1668 
1669   if (phi == nullptr ||
1670       (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) ||
1671       (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) {
1672     return false;
1673   }
1674 
1675   Node* iftrue = back_control;
1676   uint iftrue_op = iftrue->Opcode();
1677   Node* iff = iftrue->in(0);
1678   BoolNode* test = iff->in(1)->as_Bool();
1679 
1680   const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt);
1681   if (trunc1 != nullptr) {
1682     // When there is a truncation, we must be sure that after the truncation
1683     // the trip counter will end up higher than the limit, otherwise we are looking
1684     // at an endless loop. Can happen with range checks.
1685 
1686     // Example:
1687     // int i = 0;
1688     // while (true)
1689     //    sum + = array[i];
1690     //    i++;
1691     //    i = i && 0x7fff;
1692     //  }
1693     //
1694     // If the array is shorter than 0x8000 this exits through a AIOOB
1695     //  - Counted loop transformation is ok
1696     // If the array is longer then this is an endless loop
1697     //  - No transformation can be done.
1698 
1699     const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt);
1700     if (limit_t->hi_as_long() > incr_t->hi_as_long()) {
1701       // if the limit can have a higher value than the increment (before the phi)
1702       return false;
1703     }
1704   }
1705 
1706   Node *init_trip = phi->in(LoopNode::EntryControl);
1707 
1708   // If iv trunc type is smaller than int, check for possible wrap.
1709   if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) {
1710     assert(trunc1 != nullptr, "must have found some truncation");
1711 
1712     // Get a better type for the phi (filtered thru if's)
1713     const TypeInteger* phi_ft = filtered_type(phi);
1714 
1715     // Can iv take on a value that will wrap?
1716     //
1717     // Ensure iv's limit is not within "stride" of the wrap value.
1718     //
1719     // Example for "short" type
1720     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
1721     //    If the stride is +10, then the last value of the induction
1722     //    variable before the increment (phi_ft->_hi) must be
1723     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
1724     //    ensure no truncation occurs after the increment.
1725 
1726     if (stride_con > 0) {
1727       if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con ||
1728           iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) {
1729         return false;  // truncation may occur
1730       }
1731     } else if (stride_con < 0) {
1732       if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con ||
1733           iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) {
1734         return false;  // truncation may occur
1735       }
1736     }
1737     // No possibility of wrap so truncation can be discarded
1738     // Promote iv type to Int
1739   } else {
1740     assert(trunc1 == nullptr && trunc2 == nullptr, "no truncation for int");
1741   }
1742 
1743   if (!condition_stride_ok(bt, stride_con)) {
1744     return false;
1745   }
1746 
1747   const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt);
1748 
1749   if (stride_con > 0) {
1750     if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) {
1751       return false; // cyclic loop
1752     }
1753   } else {
1754     if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) {
1755       return false; // cyclic loop
1756     }
1757   }
1758 
1759   if (phi_incr != nullptr && bt != BoolTest::ne) {
1760     // check if there is a possibility of IV overflowing after the first increment
1761     if (stride_con > 0) {
1762       if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) {
1763         return false;
1764       }
1765     } else {
1766       if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) {
1767         return false;
1768       }
1769     }
1770   }
1771 
1772   // =================================================
1773   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
1774   //
1775 
1776   if (x->Opcode() == Op_Region) {
1777     // x has not yet been transformed to Loop or LongCountedLoop.
1778     // This should only happen if we are inside an infinite loop.
1779     // It happens like this:
1780     //   build_loop_tree -> do not attach infinite loop and nested loops
1781     //   beautify_loops  -> does not transform the infinite and nested loops to LoopNode, because not attached yet
1782     //   build_loop_tree -> find and attach infinite and nested loops
1783     //   counted_loop    -> nested Regions are not yet transformed to LoopNodes, we land here
1784     assert(x->as_Region()->is_in_infinite_subgraph(),
1785            "x can only be a Region and not Loop if inside infinite loop");
1786     // Come back later when Region is transformed to LoopNode
1787     return false;
1788   }
1789 
1790   assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only");
1791   C->print_method(PHASE_BEFORE_CLOOPS, 3, x);
1792 
1793   // ===================================================
1794   // We can only convert this loop to a counted loop if we can guarantee that the iv phi will never overflow at runtime.
1795   // This is an implicit assumption taken by some loop optimizations. We therefore must ensure this property at all cost.
1796   // At this point, we've already excluded some trivial cases where an overflow could have been proven statically.
1797   // But even though we cannot prove that an overflow will *not* happen, we still want to speculatively convert this loop
1798   // to a counted loop. This can be achieved by adding additional iv phi overflow checks before the loop. If they fail,
1799   // we trap and resume execution before the loop without having executed any iteration of the loop, yet.
1800   //
1801   // These additional iv phi overflow checks can be inserted as Loop Limit Check Predicates above the Loop Limit Check
1802   // Parse Predicate which captures a JVM state just before the entry of the loop. If there is no such Parse Predicate,
1803   // we cannot generate a Loop Limit Check Predicate and thus cannot speculatively convert the loop to a counted loop.
1804   //
1805   // In the following, we only focus on int loops with stride > 0 to keep things simple. The argumentation and proof
1806   // for stride < 0 is analogously. For long loops, we would replace max_int with max_long.
1807   //
1808   //
1809   // The loop to be converted does not always need to have the often used shape:
1810   //
1811   //                                                 i = init
1812   //     i = init                                loop:
1813   //     do {                                        ...
1814   //         // ...               equivalent         i+=stride
1815   //         i+=stride               <==>            if (i < limit)
1816   //     } while (i < limit);                          goto loop
1817   //                                             exit:
1818   //                                                 ...
1819   //
1820   // where the loop exit check uses the post-incremented iv phi and a '<'-operator.
1821   //
1822   // We could also have '<='-operator (or '>='-operator for negative strides) or use the pre-incremented iv phi value
1823   // in the loop exit check:
1824   //
1825   //         i = init
1826   //     loop:
1827   //         ...
1828   //         if (i <= limit)
1829   //             i+=stride
1830   //             goto loop
1831   //     exit:
1832   //         ...
1833   //
1834   // Let's define the following terms:
1835   // - iv_pre_i: The pre-incremented iv phi before the i-th iteration.
1836   // - iv_post_i: The post-incremented iv phi after the i-th iteration.
1837   //
1838   // The iv_pre_i and iv_post_i have the following relation:
1839   //      iv_pre_i + stride = iv_post_i
1840   //
1841   // When converting a loop to a counted loop, we want to have a canonicalized loop exit check of the form:
1842   //     iv_post_i < adjusted_limit
1843   //
1844   // If that is not the case, we need to canonicalize the loop exit check by using different values for adjusted_limit:
1845   // (LE1) iv_post_i < limit: Already canonicalized. We can directly use limit as adjusted_limit.
1846   //           -> adjusted_limit = limit.
1847   // (LE2) iv_post_i <= limit:
1848   //           iv_post_i < limit + 1
1849   //           -> adjusted limit = limit + 1
1850   // (LE3) iv_pre_i < limit:
1851   //           iv_pre_i + stride < limit + stride
1852   //           iv_post_i < limit + stride
1853   //           -> adjusted_limit = limit + stride
1854   // (LE4) iv_pre_i <= limit:
1855   //           iv_pre_i < limit + 1
1856   //           iv_pre_i + stride < limit + stride + 1
1857   //           iv_post_i < limit + stride + 1
1858   //           -> adjusted_limit = limit + stride + 1
1859   //
1860   // Note that:
1861   //     (AL) limit <= adjusted_limit.
1862   //
1863   // The following loop invariant has to hold for counted loops with n iterations (i.e. loop exit check true after n-th
1864   // loop iteration) and a canonicalized loop exit check to guarantee that no iv_post_i over- or underflows:
1865   // (INV) For i = 1..n, min_int <= iv_post_i <= max_int
1866   //
1867   // To prove (INV), we require the following two conditions/assumptions:
1868   // (i): adjusted_limit - 1 + stride <= max_int
1869   // (ii): init < limit
1870   //
1871   // If we can prove (INV), we know that there can be no over- or underflow of any iv phi value. We prove (INV) by
1872   // induction by assuming (i) and (ii).
1873   //
1874   // Proof by Induction
1875   // ------------------
1876   // > Base case (i = 1): We show that (INV) holds after the first iteration:
1877   //     min_int <= iv_post_1 = init + stride <= max_int
1878   // Proof:
1879   //     First, we note that (ii) implies
1880   //         (iii) init <= limit - 1
1881   //     max_int >= adjusted_limit - 1 + stride   [using (i)]
1882   //             >= limit - 1 + stride            [using (AL)]
1883   //             >= init + stride                 [using (iii)]
1884   //             >= min_int                       [using stride > 0, no underflow]
1885   // Thus, no overflow happens after the first iteration and (INV) holds for i = 1.
1886   //
1887   // Note that to prove the base case we need (i) and (ii).
1888   //
1889   // > Induction Hypothesis (i = j, j > 1): Assume that (INV) holds after the j-th iteration:
1890   //     min_int <= iv_post_j <= max_int
1891   // > Step case (i = j + 1): We show that (INV) also holds after the j+1-th iteration:
1892   //     min_int <= iv_post_{j+1} = iv_post_j + stride <= max_int
1893   // Proof:
1894   // If iv_post_j >= adjusted_limit:
1895   //     We exit the loop after the j-th iteration, and we don't execute the j+1-th iteration anymore. Thus, there is
1896   //     also no iv_{j+1}. Since (INV) holds for iv_j, there is nothing left to prove.
1897   // If iv_post_j < adjusted_limit:
1898   //     First, we note that:
1899   //         (iv) iv_post_j <= adjusted_limit - 1
1900   //     max_int >= adjusted_limit - 1 + stride    [using (i)]
1901   //             >= iv_post_j + stride             [using (iv)]
1902   //             >= min_int                        [using stride > 0, no underflow]
1903   //
1904   // Note that to prove the step case we only need (i).
1905   //
1906   // Thus, by assuming (i) and (ii), we proved (INV).
1907   //
1908   //
1909   // It is therefore enough to add the following two Loop Limit Check Predicates to check assumptions (i) and (ii):
1910   //
1911   // (1) Loop Limit Check Predicate for (i):
1912   //     Using (i): adjusted_limit - 1 + stride <= max_int
1913   //
1914   //     This condition is now restated to use limit instead of adjusted_limit:
1915   //
1916   //     To prevent an overflow of adjusted_limit -1 + stride itself, we rewrite this check to
1917   //         max_int - stride + 1 >= adjusted_limit
1918   //     We can merge the two constants into
1919   //         canonicalized_correction = stride - 1
1920   //     which gives us
1921   //        max_int - canonicalized_correction >= adjusted_limit
1922   //
1923   //     To directly use limit instead of adjusted_limit in the predicate condition, we split adjusted_limit into:
1924   //         adjusted_limit = limit + limit_correction
1925   //     Since stride > 0 and limit_correction <= stride + 1, we can restate this with no over- or underflow into:
1926   //         max_int - canonicalized_correction - limit_correction >= limit
1927   //     Since canonicalized_correction and limit_correction are both constants, we can replace them with a new constant:
1928   //         (v) final_correction = canonicalized_correction + limit_correction
1929   //
1930   //     which gives us:
1931   //
1932   //     Final predicate condition:
1933   //         max_int - final_correction >= limit
1934   //
1935   //     However, we need to be careful that (v) does not over- or underflow.
1936   //     We know that:
1937   //         canonicalized_correction = stride - 1
1938   //     and
1939   //         limit_correction <= stride + 1
1940   //     and thus
1941   //         canonicalized_correction + limit_correction <= 2 * stride
1942   //     To prevent an over- or underflow of (v), we must ensure that
1943   //         2 * stride <= max_int
1944   //     which can safely be checked without over- or underflow with
1945   //         (vi) stride != min_int AND abs(stride) <= max_int / 2
1946   //
1947   //     We could try to further optimize the cases where (vi) does not hold but given that such large strides are
1948   //     very uncommon and the loop would only run for a very few iterations anyway, we simply bail out if (vi) fails.
1949   //
1950   // (2) Loop Limit Check Predicate for (ii):
1951   //     Using (ii): init < limit
1952   //
1953   //     This Loop Limit Check Predicate is not required if we can prove at compile time that either:
1954   //        (2.1) type(init) < type(limit)
1955   //             In this case, we know:
1956   //                 all possible values of init < all possible values of limit
1957   //             and we can skip the predicate.
1958   //
1959   //        (2.2) init < limit is already checked before (i.e. found as a dominating check)
1960   //            In this case, we do not need to re-check the condition and can skip the predicate.
1961   //            This is often found for while- and for-loops which have the following shape:
1962   //
1963   //                if (init < limit) { // Dominating test. Do not need the Loop Limit Check Predicate below.
1964   //                    i = init;
1965   //                    if (init >= limit) { trap(); } // Here we would insert the Loop Limit Check Predicate
1966   //                    do {
1967   //                        i += stride;
1968   //                    } while (i < limit);
1969   //                }
1970   //
1971   //        (2.3) init + stride <= max_int
1972   //            In this case, there is no overflow of the iv phi after the first loop iteration.
1973   //            In the proof of the base case above we showed that init + stride <= max_int by using assumption (ii):
1974   //                init < limit
1975   //            In the proof of the step case above, we did not need (ii) anymore. Therefore, if we already know at
1976   //            compile time that init + stride <= max_int then we have trivially proven the base case and that
1977   //            there is no overflow of the iv phi after the first iteration. In this case, we don't need to check (ii)
1978   //            again and can skip the predicate.
1979 
1980   // Check (vi) and bail out if the stride is too big.
1981   if (stride_con == min_signed_integer(iv_bt) || (ABS(stride_con) > max_signed_integer(iv_bt) / 2)) {
1982     return false;
1983   }
1984 
1985   // Accounting for (LE3) and (LE4) where we use pre-incremented phis in the loop exit check.
1986   const jlong limit_correction_for_pre_iv_exit_check = (phi_incr != nullptr) ? stride_con : 0;
1987 
1988   // Accounting for (LE2) and (LE4) where we use <= or >= in the loop exit check.
1989   const bool includes_limit = (bt == BoolTest::le || bt == BoolTest::ge);
1990   const jlong limit_correction_for_le_ge_exit_check = (includes_limit ? (stride_con > 0 ? 1 : -1) : 0);
1991 
1992   const jlong limit_correction = limit_correction_for_pre_iv_exit_check + limit_correction_for_le_ge_exit_check;
1993   const jlong canonicalized_correction = stride_con + (stride_con > 0 ? -1 : 1);
1994   const jlong final_correction = canonicalized_correction + limit_correction;
1995 
1996   int sov = check_stride_overflow(final_correction, limit_t, iv_bt);
1997   Node* init_control = x->in(LoopNode::EntryControl);
1998 
1999   // If sov==0, limit's type always satisfies the condition, for
2000   // example, when it is an array length.
2001   if (sov != 0) {
2002     if (sov < 0) {
2003       return false;  // Bailout: integer overflow is certain.
2004     }
2005     // (1) Loop Limit Check Predicate is required because we could not statically prove that
2006     //     limit + final_correction = adjusted_limit - 1 + stride <= max_int
2007     assert(!x->as_Loop()->is_loop_nest_inner_loop(), "loop was transformed");
2008     const Predicates predicates(init_control);
2009     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2010     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2011       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2012 #ifdef ASSERT
2013       if (TraceLoopLimitCheck) {
2014         tty->print("Missing Loop Limit Check Parse Predicate:");
2015         loop->dump_head();
2016         x->dump(1);
2017       }
2018 #endif
2019       return false;
2020     }
2021 
2022     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2023     if (!is_dominator(get_ctrl(limit), loop_limit_check_parse_predicate->in(0))) {
2024       return false;
2025     }
2026 
2027     Node* cmp_limit;
2028     Node* bol;
2029 
2030     if (stride_con > 0) {
2031       cmp_limit = CmpNode::make(limit, _igvn.integercon(max_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2032       bol = new BoolNode(cmp_limit, BoolTest::le);
2033     } else {
2034       cmp_limit = CmpNode::make(limit, _igvn.integercon(min_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2035       bol = new BoolNode(cmp_limit, BoolTest::ge);
2036     }
2037 
2038     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2039   }
2040 
2041   // (2.3)
2042   const bool init_plus_stride_could_overflow =
2043           (stride_con > 0 && init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) ||
2044           (stride_con < 0 && init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con);
2045   // (2.1)
2046   const bool init_gte_limit = (stride_con > 0 && init_t->hi_as_long() >= limit_t->lo_as_long()) ||
2047                               (stride_con < 0 && init_t->lo_as_long() <= limit_t->hi_as_long());
2048 
2049   if (init_gte_limit && // (2.1)
2050      ((bt == BoolTest::ne || init_plus_stride_could_overflow) && // (2.3)
2051       !has_dominating_loop_limit_check(init_trip, limit, stride_con, iv_bt, init_control))) { // (2.2)
2052     // (2) Iteration Loop Limit Check Predicate is required because neither (2.1), (2.2), nor (2.3) holds.
2053     // We use the following condition:
2054     // - stride > 0: init < limit
2055     // - stride < 0: init > limit
2056     //
2057     // This predicate is always required if we have a non-equal-operator in the loop exit check (where stride = 1 is
2058     // a requirement). We transform the loop exit check by using a less-than-operator. By doing so, we must always
2059     // check that init < limit. Otherwise, we could have a different number of iterations at runtime.
2060 
2061     const Predicates predicates(init_control);
2062     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2063     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2064       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2065 #ifdef ASSERT
2066       if (TraceLoopLimitCheck) {
2067         tty->print("Missing Loop Limit Check Parse Predicate:");
2068         loop->dump_head();
2069         x->dump(1);
2070       }
2071 #endif
2072       return false;
2073     }
2074 
2075     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2076     Node* parse_predicate_entry = loop_limit_check_parse_predicate->in(0);
2077     if (!is_dominator(get_ctrl(limit), parse_predicate_entry) ||
2078         !is_dominator(get_ctrl(init_trip), parse_predicate_entry)) {
2079       return false;
2080     }
2081 
2082     Node* cmp_limit;
2083     Node* bol;
2084 
2085     if (stride_con > 0) {
2086       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2087       bol = new BoolNode(cmp_limit, BoolTest::lt);
2088     } else {
2089       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2090       bol = new BoolNode(cmp_limit, BoolTest::gt);
2091     }
2092 
2093     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2094   }
2095 
2096   if (bt == BoolTest::ne) {
2097     // Now we need to canonicalize the loop condition if it is 'ne'.
2098     assert(stride_con == 1 || stride_con == -1, "simple increment only - checked before");
2099     if (stride_con > 0) {
2100       // 'ne' can be replaced with 'lt' only when init < limit. This is ensured by the inserted predicate above.
2101       bt = BoolTest::lt;
2102     } else {
2103       assert(stride_con < 0, "must be");
2104       // 'ne' can be replaced with 'gt' only when init > limit. This is ensured by the inserted predicate above.
2105       bt = BoolTest::gt;
2106     }
2107   }
2108 
2109   Node* sfpt = nullptr;
2110   if (loop->_child == nullptr) {
2111     sfpt = find_safepoint(back_control, x, loop);
2112   } else {
2113     sfpt = iff->in(0);
2114     if (sfpt->Opcode() != Op_SafePoint) {
2115       sfpt = nullptr;
2116     }
2117   }
2118 
2119   if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint) {
2120     Node* backedge_sfpt = x->in(LoopNode::LoopBackControl);
2121     if (((iv_bt == T_INT && LoopStripMiningIter != 0) ||
2122          iv_bt == T_LONG) &&
2123         sfpt == nullptr) {
2124       // Leaving the safepoint on the backedge and creating a
2125       // CountedLoop will confuse optimizations. We can't move the
2126       // safepoint around because its jvm state wouldn't match a new
2127       // location. Give up on that loop.
2128       return false;
2129     }
2130     if (is_deleteable_safept(backedge_sfpt)) {
2131       lazy_replace(backedge_sfpt, iftrue);
2132       if (loop->_safepts != nullptr) {
2133         loop->_safepts->yank(backedge_sfpt);
2134       }
2135       loop->_tail = iftrue;
2136     }
2137   }
2138 
2139 
2140 #ifdef ASSERT
2141   if (iv_bt == T_INT &&
2142       !x->as_Loop()->is_loop_nest_inner_loop() &&
2143       StressLongCountedLoop > 0 &&
2144       trunc1 == nullptr &&
2145       convert_to_long_loop(cmp, phi, loop)) {
2146     return false;
2147   }
2148 #endif
2149 
2150   Node* adjusted_limit = limit;
2151   if (phi_incr != nullptr) {
2152     // If compare points directly to the phi we need to adjust
2153     // the compare so that it points to the incr. Limit have
2154     // to be adjusted to keep trip count the same and we
2155     // should avoid int overflow.
2156     //
2157     //   i = init; do {} while(i++ < limit);
2158     // is converted to
2159     //   i = init; do {} while(++i < limit+1);
2160     //
2161     adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt));
2162   }
2163 
2164   if (includes_limit) {
2165     // The limit check guaranties that 'limit <= (max_jint - stride)' so
2166     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
2167     //
2168     Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt);
2169     adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt));
2170     if (bt == BoolTest::le)
2171       bt = BoolTest::lt;
2172     else if (bt == BoolTest::ge)
2173       bt = BoolTest::gt;
2174     else
2175       ShouldNotReachHere();
2176   }
2177   set_subtree_ctrl(adjusted_limit, false);
2178 
2179   // Build a canonical trip test.
2180   // Clone code, as old values may be in use.
2181   incr = incr->clone();
2182   incr->set_req(1,phi);
2183   incr->set_req(2,stride);
2184   incr = _igvn.register_new_node_with_optimizer(incr);
2185   set_early_ctrl(incr, false);
2186   _igvn.rehash_node_delayed(phi);
2187   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
2188 
2189   // If phi type is more restrictive than Int, raise to
2190   // Int to prevent (almost) infinite recursion in igvn
2191   // which can only handle integer types for constants or minint..maxint.
2192   if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) {
2193     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt));
2194     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
2195     nphi = _igvn.register_new_node_with_optimizer(nphi);
2196     set_ctrl(nphi, get_ctrl(phi));
2197     _igvn.replace_node(phi, nphi);
2198     phi = nphi->as_Phi();
2199   }
2200   cmp = cmp->clone();
2201   cmp->set_req(1,incr);
2202   cmp->set_req(2, adjusted_limit);
2203   cmp = _igvn.register_new_node_with_optimizer(cmp);
2204   set_ctrl(cmp, iff->in(0));
2205 
2206   test = test->clone()->as_Bool();
2207   (*(BoolTest*)&test->_test)._test = bt;
2208   test->set_req(1,cmp);
2209   _igvn.register_new_node_with_optimizer(test);
2210   set_ctrl(test, iff->in(0));
2211 
2212   // Replace the old IfNode with a new LoopEndNode
2213   Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt));
2214   IfNode *le = lex->as_If();
2215   uint dd = dom_depth(iff);
2216   set_idom(le, le->in(0), dd); // Update dominance for loop exit
2217   set_loop(le, loop);
2218 
2219   // Get the loop-exit control
2220   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
2221 
2222   // Need to swap loop-exit and loop-back control?
2223   if (iftrue_op == Op_IfFalse) {
2224     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
2225     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
2226 
2227     loop->_tail = back_control = ift2;
2228     set_loop(ift2, loop);
2229     set_loop(iff2, get_loop(iffalse));
2230 
2231     // Lazy update of 'get_ctrl' mechanism.
2232     lazy_replace(iffalse, iff2);
2233     lazy_replace(iftrue,  ift2);
2234 
2235     // Swap names
2236     iffalse = iff2;
2237     iftrue  = ift2;
2238   } else {
2239     _igvn.rehash_node_delayed(iffalse);
2240     _igvn.rehash_node_delayed(iftrue);
2241     iffalse->set_req_X( 0, le, &_igvn );
2242     iftrue ->set_req_X( 0, le, &_igvn );
2243   }
2244 
2245   set_idom(iftrue,  le, dd+1);
2246   set_idom(iffalse, le, dd+1);
2247   assert(iff->outcnt() == 0, "should be dead now");
2248   lazy_replace( iff, le ); // fix 'get_ctrl'
2249 
2250   Node* entry_control = init_control;
2251   bool strip_mine_loop = iv_bt == T_INT &&
2252                          loop->_child == nullptr &&
2253                          sfpt != nullptr &&
2254                          !loop->_has_call &&
2255                          is_deleteable_safept(sfpt);
2256   IdealLoopTree* outer_ilt = nullptr;
2257   if (strip_mine_loop) {
2258     outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop,
2259                                               cl_prob, le->_fcnt, entry_control,
2260                                               iffalse);
2261   }
2262 
2263   // Now setup a new CountedLoopNode to replace the existing LoopNode
2264   BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt);
2265   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
2266   // The following assert is approximately true, and defines the intention
2267   // of can_be_counted_loop.  It fails, however, because phase->type
2268   // is not yet initialized for this loop and its parts.
2269   //assert(l->can_be_counted_loop(this), "sanity");
2270   _igvn.register_new_node_with_optimizer(l);
2271   set_loop(l, loop);
2272   loop->_head = l;
2273   // Fix all data nodes placed at the old loop head.
2274   // Uses the lazy-update mechanism of 'get_ctrl'.
2275   lazy_replace( x, l );
2276   set_idom(l, entry_control, dom_depth(entry_control) + 1);
2277 
2278   if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) {
2279     // Check for immediately preceding SafePoint and remove
2280     if (sfpt != nullptr && (strip_mine_loop || is_deleteable_safept(sfpt))) {
2281       if (strip_mine_loop) {
2282         Node* outer_le = outer_ilt->_tail->in(0);
2283         Node* sfpt_clone = sfpt->clone();
2284         sfpt_clone->set_req(0, iffalse);
2285         outer_le->set_req(0, sfpt_clone);
2286 
2287         Node* polladdr = sfpt_clone->in(TypeFunc::Parms);
2288         if (polladdr != nullptr && polladdr->is_Load()) {
2289           // Polling load should be pinned outside inner loop.
2290           Node* new_polladdr = polladdr->clone();
2291           new_polladdr->set_req(0, iffalse);
2292           _igvn.register_new_node_with_optimizer(new_polladdr, polladdr);
2293           set_ctrl(new_polladdr, iffalse);
2294           sfpt_clone->set_req(TypeFunc::Parms, new_polladdr);
2295         }
2296         // When this code runs, loop bodies have not yet been populated.
2297         const bool body_populated = false;
2298         register_control(sfpt_clone, outer_ilt, iffalse, body_populated);
2299         set_idom(outer_le, sfpt_clone, dom_depth(sfpt_clone));
2300       }
2301       lazy_replace(sfpt, sfpt->in(TypeFunc::Control));
2302       if (loop->_safepts != nullptr) {
2303         loop->_safepts->yank(sfpt);
2304       }
2305     }
2306   }
2307 
2308 #ifdef ASSERT
2309   assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up");
2310   assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" );
2311 #endif
2312 #ifndef PRODUCT
2313   if (TraceLoopOpts) {
2314     tty->print("Counted      ");
2315     loop->dump_head();
2316   }
2317 #endif
2318 
2319   C->print_method(PHASE_AFTER_CLOOPS, 3, l);
2320 
2321   // Capture bounds of the loop in the induction variable Phi before
2322   // subsequent transformation (iteration splitting) obscures the
2323   // bounds
2324   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
2325 
2326   if (strip_mine_loop) {
2327     l->mark_strip_mined();
2328     l->verify_strip_mined(1);
2329     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
2330     loop = outer_ilt;
2331   }
2332 
2333 #ifndef PRODUCT
2334   if (x->as_Loop()->is_loop_nest_inner_loop() && iv_bt == T_LONG) {
2335     Atomic::inc(&_long_loop_counted_loops);
2336   }
2337 #endif
2338   if (iv_bt == T_LONG && x->as_Loop()->is_loop_nest_outer_loop()) {
2339     l->mark_loop_nest_outer_loop();
2340   }
2341 
2342   return true;
2343 }
2344 
2345 // Check if there is a dominating loop limit check of the form 'init < limit' starting at the loop entry.
2346 // If there is one, then we do not need to create an additional Loop Limit Check Predicate.
2347 bool PhaseIdealLoop::has_dominating_loop_limit_check(Node* init_trip, Node* limit, const jlong stride_con,
2348                                                      const BasicType iv_bt, Node* loop_entry) {
2349   // Eagerly call transform() on the Cmp and Bool node to common them up if possible. This is required in order to
2350   // successfully find a dominated test with the If node below.
2351   Node* cmp_limit;
2352   Node* bol;
2353   if (stride_con > 0) {
2354     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2355     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::lt));
2356   } else {
2357     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2358     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::gt));
2359   }
2360 
2361   // Check if there is already a dominating init < limit check. If so, we do not need a Loop Limit Check Predicate.
2362   IfNode* iff = new IfNode(loop_entry, bol, PROB_MIN, COUNT_UNKNOWN);
2363   // Also add fake IfProj nodes in order to call transform() on the newly created IfNode.
2364   IfFalseNode* if_false = new IfFalseNode(iff);
2365   IfTrueNode* if_true = new IfTrueNode(iff);
2366   Node* dominated_iff = _igvn.transform(iff);
2367   // ConI node? Found dominating test (IfNode::dominated_by() returns a ConI node).
2368   const bool found_dominating_test = dominated_iff != nullptr && dominated_iff->is_ConI();
2369 
2370   // Kill the If with its projections again in the next IGVN round by cutting it off from the graph.
2371   _igvn.replace_input_of(iff, 0, C->top());
2372   _igvn.replace_input_of(iff, 1, C->top());
2373   return found_dominating_test;
2374 }
2375 
2376 //----------------------exact_limit-------------------------------------------
2377 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
2378   assert(loop->_head->is_CountedLoop(), "");
2379   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2380   assert(cl->is_valid_counted_loop(T_INT), "");
2381 
2382   if (cl->stride_con() == 1 ||
2383       cl->stride_con() == -1 ||
2384       cl->limit()->Opcode() == Op_LoopLimit) {
2385     // Old code has exact limit (it could be incorrect in case of int overflow).
2386     // Loop limit is exact with stride == 1. And loop may already have exact limit.
2387     return cl->limit();
2388   }
2389   Node *limit = nullptr;
2390 #ifdef ASSERT
2391   BoolTest::mask bt = cl->loopexit()->test_trip();
2392   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
2393 #endif
2394   if (cl->has_exact_trip_count()) {
2395     // Simple case: loop has constant boundaries.
2396     // Use jlongs to avoid integer overflow.
2397     int stride_con = cl->stride_con();
2398     jlong  init_con = cl->init_trip()->get_int();
2399     jlong limit_con = cl->limit()->get_int();
2400     julong trip_cnt = cl->trip_count();
2401     jlong final_con = init_con + trip_cnt*stride_con;
2402     int final_int = (int)final_con;
2403     // The final value should be in integer range since the loop
2404     // is counted and the limit was checked for overflow.
2405     assert(final_con == (jlong)final_int, "final value should be integer");
2406     limit = _igvn.intcon(final_int);
2407   } else {
2408     // Create new LoopLimit node to get exact limit (final iv value).
2409     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
2410     register_new_node(limit, cl->in(LoopNode::EntryControl));
2411   }
2412   assert(limit != nullptr, "sanity");
2413   return limit;
2414 }
2415 
2416 //------------------------------Ideal------------------------------------------
2417 // Return a node which is more "ideal" than the current node.
2418 // Attempt to convert into a counted-loop.
2419 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2420   if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) {
2421     phase->C->set_major_progress();
2422   }
2423   return RegionNode::Ideal(phase, can_reshape);
2424 }
2425 
2426 #ifdef ASSERT
2427 void LoopNode::verify_strip_mined(int expect_skeleton) const {
2428   const OuterStripMinedLoopNode* outer = nullptr;
2429   const CountedLoopNode* inner = nullptr;
2430   if (is_strip_mined()) {
2431     if (!is_valid_counted_loop(T_INT)) {
2432       return; // Skip malformed counted loop
2433     }
2434     assert(is_CountedLoop(), "no Loop should be marked strip mined");
2435     inner = as_CountedLoop();
2436     outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop();
2437   } else if (is_OuterStripMinedLoop()) {
2438     outer = this->as_OuterStripMinedLoop();
2439     inner = outer->unique_ctrl_out()->as_CountedLoop();
2440     assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed");
2441     assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined");
2442   }
2443   if (inner != nullptr || outer != nullptr) {
2444     assert(inner != nullptr && outer != nullptr, "missing loop in strip mined nest");
2445     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
2446     Node* outer_le = outer_tail->in(0);
2447     assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If");
2448     Node* sfpt = outer_le->in(0);
2449     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
2450     Node* inner_out = sfpt->in(0);
2451     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
2452     assert(cle == inner->loopexit_or_null(), "mismatch");
2453     bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0;
2454     if (has_skeleton) {
2455       assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node");
2456       assert(outer->outcnt() == 2, "only control nodes");
2457     } else {
2458       assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?");
2459       uint phis = 0;
2460       uint be_loads = 0;
2461       Node* be = inner->in(LoopNode::LoopBackControl);
2462       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
2463         Node* u = inner->fast_out(i);
2464         if (u->is_Phi()) {
2465           phis++;
2466           for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) {
2467             Node* n = be->fast_out(j);
2468             if (n->is_Load()) {
2469               assert(n->in(0) == be || n->find_prec_edge(be) > 0, "should be on the backedge");
2470               do {
2471                 n = n->raw_out(0);
2472               } while (!n->is_Phi());
2473               if (n == u) {
2474                 be_loads++;
2475                 break;
2476               }
2477             }
2478           }
2479         }
2480       }
2481       assert(be_loads <= phis, "wrong number phis that depends on a pinned load");
2482       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
2483         Node* u = outer->fast_out(i);
2484         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
2485       }
2486       uint stores = 0;
2487       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
2488         Node* u = inner_out->fast_out(i);
2489         if (u->is_Store()) {
2490           stores++;
2491         }
2492       }
2493       // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is
2494       // not guaranteed to be optimized out.
2495       assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
2496     }
2497     assert(sfpt->outcnt() == 1, "no data node");
2498     assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node");
2499   }
2500 }
2501 #endif
2502 
2503 //=============================================================================
2504 //------------------------------Ideal------------------------------------------
2505 // Return a node which is more "ideal" than the current node.
2506 // Attempt to convert into a counted-loop.
2507 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2508   return RegionNode::Ideal(phase, can_reshape);
2509 }
2510 
2511 //------------------------------dump_spec--------------------------------------
2512 // Dump special per-node info
2513 #ifndef PRODUCT
2514 void CountedLoopNode::dump_spec(outputStream *st) const {
2515   LoopNode::dump_spec(st);
2516   if (stride_is_con()) {
2517     st->print("stride: %d ",stride_con());
2518   }
2519   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
2520   if (is_main_loop()) st->print("main of N%d", _idx);
2521   if (is_post_loop()) st->print("post of N%d", _main_idx);
2522   if (is_strip_mined()) st->print(" strip mined");
2523   if (is_multiversion_fast_loop())         { st->print(" multiversion_fast"); }
2524   if (is_multiversion_slow_loop())         { st->print(" multiversion_slow"); }
2525   if (is_multiversion_delayed_slow_loop()) { st->print(" multiversion_delayed_slow"); }
2526 }
2527 #endif
2528 
2529 //=============================================================================
2530 jlong BaseCountedLoopEndNode::stride_con() const {
2531   return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt());
2532 }
2533 
2534 
2535 BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) {
2536   if (bt == T_INT) {
2537     return new CountedLoopEndNode(control, test, prob, cnt);
2538   }
2539   assert(bt == T_LONG, "unsupported");
2540   return new LongCountedLoopEndNode(control, test, prob, cnt);
2541 }
2542 
2543 //=============================================================================
2544 //------------------------------Value-----------------------------------------
2545 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
2546   const Type* init_t   = phase->type(in(Init));
2547   const Type* limit_t  = phase->type(in(Limit));
2548   const Type* stride_t = phase->type(in(Stride));
2549   // Either input is TOP ==> the result is TOP
2550   if (init_t   == Type::TOP) return Type::TOP;
2551   if (limit_t  == Type::TOP) return Type::TOP;
2552   if (stride_t == Type::TOP) return Type::TOP;
2553 
2554   int stride_con = stride_t->is_int()->get_con();
2555   if (stride_con == 1)
2556     return bottom_type();  // Identity
2557 
2558   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
2559     // Use jlongs to avoid integer overflow.
2560     jlong init_con   =  init_t->is_int()->get_con();
2561     jlong limit_con  = limit_t->is_int()->get_con();
2562     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
2563     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
2564     jlong final_con  = init_con + stride_con*trip_count;
2565     int final_int = (int)final_con;
2566     // The final value should be in integer range in almost all cases,
2567     // since the loop is counted and the limit was checked for overflow.
2568     // There some exceptions, for example:
2569     // - During CCP, there might be a temporary overflow from PhiNodes, see JDK-8309266.
2570     // - During PhaseIdealLoop::split_thru_phi, the LoopLimitNode floats possibly far above
2571     //   the loop and its predicates, and we might get constants on one side of the phi that
2572     //   would lead to overflows. Such a code path would never lead us to enter the loop
2573     //   because of the loop limit overflow check that happens after the LoopLimitNode
2574     //   computation with overflow, but before we enter the loop, see JDK-8335747.
2575     if (final_con == (jlong)final_int) {
2576       return TypeInt::make(final_int);
2577     } else {
2578       return bottom_type();
2579     }
2580   }
2581 
2582   return bottom_type(); // TypeInt::INT
2583 }
2584 
2585 //------------------------------Ideal------------------------------------------
2586 // Return a node which is more "ideal" than the current node.
2587 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2588   if (phase->type(in(Init))   == Type::TOP ||
2589       phase->type(in(Limit))  == Type::TOP ||
2590       phase->type(in(Stride)) == Type::TOP)
2591     return nullptr;  // Dead
2592 
2593   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2594   if (stride_con == 1)
2595     return nullptr;  // Identity
2596 
2597   // Delay following optimizations until all loop optimizations
2598   // done to keep Ideal graph simple.
2599   if (!can_reshape || !phase->C->post_loop_opts_phase()) {
2600     phase->C->record_for_post_loop_opts_igvn(this);
2601     return nullptr;
2602   }
2603 
2604   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
2605   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
2606   jlong stride_p;
2607   jlong lim, ini;
2608   julong max;
2609   if (stride_con > 0) {
2610     stride_p = stride_con;
2611     lim = limit_t->_hi;
2612     ini = init_t->_lo;
2613     max = (julong)max_jint;
2614   } else {
2615     stride_p = -(jlong)stride_con;
2616     lim = init_t->_hi;
2617     ini = limit_t->_lo;
2618     max = (julong)(juint)min_jint; // double cast to get 0x0000000080000000, not 0xffffffff80000000
2619   }
2620   julong range = lim - ini + stride_p;
2621   if (range <= max) {
2622     // Convert to integer expression if it is not overflow.
2623     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
2624     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
2625     Node *bias  = phase->transform(new AddINode(range, stride_m));
2626     Node *trip  = phase->transform(new DivINode(nullptr, bias, in(Stride)));
2627     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
2628     return new AddINode(span, in(Init)); // exact limit
2629   }
2630 
2631   if (is_power_of_2(stride_p) ||                // divisor is 2^n
2632       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
2633     // Convert to long expression to avoid integer overflow
2634     // and let igvn optimizer convert this division.
2635     //
2636     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
2637     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
2638     Node* stride   = phase->longcon(stride_con);
2639     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
2640 
2641     Node *range = phase->transform(new SubLNode(limit, init));
2642     Node *bias  = phase->transform(new AddLNode(range, stride_m));
2643     Node *span;
2644     if (stride_con > 0 && is_power_of_2(stride_p)) {
2645       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
2646       // and avoid generating rounding for division. Zero trip guard should
2647       // guarantee that init < limit but sometimes the guard is missing and
2648       // we can get situation when init > limit. Note, for the empty loop
2649       // optimization zero trip guard is generated explicitly which leaves
2650       // only RCE predicate where exact limit is used and the predicate
2651       // will simply fail forcing recompilation.
2652       Node* neg_stride   = phase->longcon(-stride_con);
2653       span = phase->transform(new AndLNode(bias, neg_stride));
2654     } else {
2655       Node *trip  = phase->transform(new DivLNode(nullptr, bias, stride));
2656       span = phase->transform(new MulLNode(trip, stride));
2657     }
2658     // Convert back to int
2659     Node *span_int = phase->transform(new ConvL2INode(span));
2660     return new AddINode(span_int, in(Init)); // exact limit
2661   }
2662 
2663   return nullptr;    // No progress
2664 }
2665 
2666 //------------------------------Identity---------------------------------------
2667 // If stride == 1 return limit node.
2668 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
2669   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2670   if (stride_con == 1 || stride_con == -1)
2671     return in(Limit);
2672   return this;
2673 }
2674 
2675 //=============================================================================
2676 //----------------------match_incr_with_optional_truncation--------------------
2677 // Match increment with optional truncation:
2678 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
2679 // Return null for failure. Success returns the increment node.
2680 Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2,
2681                                                            const TypeInteger** trunc_type,
2682                                                            BasicType bt) {
2683   // Quick cutouts:
2684   if (expr == nullptr || expr->req() != 3)  return nullptr;
2685 
2686   Node *t1 = nullptr;
2687   Node *t2 = nullptr;
2688   Node* n1 = expr;
2689   int   n1op = n1->Opcode();
2690   const TypeInteger* trunc_t = TypeInteger::bottom(bt);
2691 
2692   if (bt == T_INT) {
2693     // Try to strip (n1 & M) or (n1 << N >> N) from n1.
2694     if (n1op == Op_AndI &&
2695         n1->in(2)->is_Con() &&
2696         n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
2697       // %%% This check should match any mask of 2**K-1.
2698       t1 = n1;
2699       n1 = t1->in(1);
2700       n1op = n1->Opcode();
2701       trunc_t = TypeInt::CHAR;
2702     } else if (n1op == Op_RShiftI &&
2703                n1->in(1) != nullptr &&
2704                n1->in(1)->Opcode() == Op_LShiftI &&
2705                n1->in(2) == n1->in(1)->in(2) &&
2706                n1->in(2)->is_Con()) {
2707       jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
2708       // %%% This check should match any shift in [1..31].
2709       if (shift == 16 || shift == 8) {
2710         t1 = n1;
2711         t2 = t1->in(1);
2712         n1 = t2->in(1);
2713         n1op = n1->Opcode();
2714         if (shift == 16) {
2715           trunc_t = TypeInt::SHORT;
2716         } else if (shift == 8) {
2717           trunc_t = TypeInt::BYTE;
2718         }
2719       }
2720     }
2721   }
2722 
2723   // If (maybe after stripping) it is an AddI, we won:
2724   if (n1op == Op_Add(bt)) {
2725     *trunc1 = t1;
2726     *trunc2 = t2;
2727     *trunc_type = trunc_t;
2728     return n1;
2729   }
2730 
2731   // failed
2732   return nullptr;
2733 }
2734 
2735 IfNode* CountedLoopNode::find_multiversion_if_from_multiversion_fast_main_loop() {
2736   assert(is_main_loop() && is_multiversion_fast_loop(), "must be multiversion fast main loop");
2737   CountedLoopEndNode* pre_end = find_pre_loop_end();
2738   if (pre_end == nullptr) { return nullptr; }
2739   Node* pre_entry = pre_end->loopnode()->in(LoopNode::EntryControl);
2740   const Predicates predicates(pre_entry);
2741   IfTrueNode* before_predicates = predicates.entry()->isa_IfTrue();
2742   if (before_predicates != nullptr &&
2743       before_predicates->in(0)->in(1)->is_OpaqueMultiversioning()) {
2744     return before_predicates->in(0)->as_If();
2745   }
2746   return nullptr;
2747 }
2748 
2749 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) {
2750   if (is_strip_mined() && in(EntryControl) != nullptr && in(EntryControl)->is_OuterStripMinedLoop()) {
2751     verify_strip_mined(expect_skeleton);
2752     return in(EntryControl)->as_Loop();
2753   }
2754   return this;
2755 }
2756 
2757 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const {
2758   assert(is_strip_mined(), "not a strip mined loop");
2759   Node* c = in(EntryControl);
2760   if (c == nullptr || c->is_top() || !c->is_OuterStripMinedLoop()) {
2761     return nullptr;
2762   }
2763   return c->as_OuterStripMinedLoop();
2764 }
2765 
2766 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const {
2767   Node* c = in(LoopBackControl);
2768   if (c == nullptr || c->is_top()) {
2769     return nullptr;
2770   }
2771   return c->as_IfTrue();
2772 }
2773 
2774 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
2775   LoopNode* l = outer_loop();
2776   if (l == nullptr) {
2777     return nullptr;
2778   }
2779   return l->outer_loop_tail();
2780 }
2781 
2782 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const {
2783   IfTrueNode* proj = outer_loop_tail();
2784   if (proj == nullptr) {
2785     return nullptr;
2786   }
2787   Node* c = proj->in(0);
2788   if (c == nullptr || c->is_top() || c->outcnt() != 2) {
2789     return nullptr;
2790   }
2791   return c->as_OuterStripMinedLoopEnd();
2792 }
2793 
2794 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const {
2795   LoopNode* l = outer_loop();
2796   if (l == nullptr) {
2797     return nullptr;
2798   }
2799   return l->outer_loop_end();
2800 }
2801 
2802 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const {
2803   IfNode* le = outer_loop_end();
2804   if (le == nullptr) {
2805     return nullptr;
2806   }
2807   Node* c = le->proj_out_or_null(false);
2808   if (c == nullptr) {
2809     return nullptr;
2810   }
2811   return c->as_IfFalse();
2812 }
2813 
2814 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
2815   LoopNode* l = outer_loop();
2816   if (l == nullptr) {
2817     return nullptr;
2818   }
2819   return l->outer_loop_exit();
2820 }
2821 
2822 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const {
2823   IfNode* le = outer_loop_end();
2824   if (le == nullptr) {
2825     return nullptr;
2826   }
2827   Node* c = le->in(0);
2828   if (c == nullptr || c->is_top()) {
2829     return nullptr;
2830   }
2831   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
2832   return c->as_SafePoint();
2833 }
2834 
2835 SafePointNode* CountedLoopNode::outer_safepoint() const {
2836   LoopNode* l = outer_loop();
2837   if (l == nullptr) {
2838     return nullptr;
2839   }
2840   return l->outer_safepoint();
2841 }
2842 
2843 Node* CountedLoopNode::skip_assertion_predicates_with_halt() {
2844   Node* ctrl = in(LoopNode::EntryControl);
2845   if (ctrl == nullptr) {
2846     // Dying loop.
2847     return nullptr;
2848   }
2849   if (is_main_loop()) {
2850     ctrl = skip_strip_mined()->in(LoopNode::EntryControl);
2851   }
2852   if (is_main_loop() || is_post_loop()) {
2853     AssertionPredicates assertion_predicates(ctrl);
2854     return assertion_predicates.entry();
2855   }
2856   return ctrl;
2857 }
2858 
2859 
2860 int CountedLoopNode::stride_con() const {
2861   CountedLoopEndNode* cle = loopexit_or_null();
2862   return cle != nullptr ? cle->stride_con() : 0;
2863 }
2864 
2865 BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) {
2866   if (bt == T_INT) {
2867     return new CountedLoopNode(entry, backedge);
2868   }
2869   assert(bt == T_LONG, "unsupported");
2870   return new LongCountedLoopNode(entry, backedge);
2871 }
2872 
2873 void OuterStripMinedLoopNode::fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn,
2874                                               PhaseIdealLoop* iloop) {
2875   Node* cle_out = inner_cle->proj_out(false);
2876   Node* cle_tail = inner_cle->proj_out(true);
2877   if (cle_out->outcnt() > 1) {
2878     // Look for chains of stores that were sunk
2879     // out of the inner loop and are in the outer loop
2880     for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) {
2881       Node* u = cle_out->fast_out(i);
2882       if (u->is_Store()) {
2883         int alias_idx = igvn->C->get_alias_index(u->adr_type());
2884         Node* first = u;
2885         for (;;) {
2886           Node* next = first->in(MemNode::Memory);
2887           if (!next->is_Store() || next->in(0) != cle_out) {
2888             break;
2889           }
2890           assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
2891           first = next;
2892         }
2893         Node* last = u;
2894         for (;;) {
2895           Node* next = nullptr;
2896           for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) {
2897             Node* uu = last->fast_out(j);
2898             if (uu->is_Store() && uu->in(0) == cle_out) {
2899               assert(next == nullptr, "only one in the outer loop");
2900               next = uu;
2901               assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
2902             }
2903           }
2904           if (next == nullptr) {
2905             break;
2906           }
2907           last = next;
2908         }
2909         Node* phi = nullptr;
2910         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
2911           Node* uu = inner_cl->fast_out(j);
2912           if (uu->is_Phi()) {
2913             Node* be = uu->in(LoopNode::LoopBackControl);
2914             if (be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)) {
2915               assert(igvn->C->get_alias_index(uu->adr_type()) != alias_idx && igvn->C->get_alias_index(uu->adr_type()) != Compile::AliasIdxBot, "unexpected store");
2916             }
2917             if (be == last || be == first->in(MemNode::Memory)) {
2918               assert(igvn->C->get_alias_index(uu->adr_type()) == alias_idx || igvn->C->get_alias_index(uu->adr_type()) == Compile::AliasIdxBot, "unexpected alias");
2919               assert(phi == nullptr, "only one phi");
2920               phi = uu;
2921             }
2922           }
2923         }
2924 #ifdef ASSERT
2925         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
2926           Node* uu = inner_cl->fast_out(j);
2927           if (uu->is_memory_phi()) {
2928             if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) {
2929               assert(phi == uu, "what's that phi?");
2930             } else if (uu->adr_type() == TypePtr::BOTTOM) {
2931               Node* n = uu->in(LoopNode::LoopBackControl);
2932               uint limit = igvn->C->live_nodes();
2933               uint i = 0;
2934               while (n != uu) {
2935                 i++;
2936                 assert(i < limit, "infinite loop");
2937                 if (n->is_Proj()) {
2938                   n = n->in(0);
2939                 } else if (n->is_SafePoint() || n->is_MemBar()) {
2940                   n = n->in(TypeFunc::Memory);
2941                 } else if (n->is_Phi()) {
2942                   n = n->in(1);
2943                 } else if (n->is_MergeMem()) {
2944                   n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type()));
2945                 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) {
2946                   n = n->in(MemNode::Memory);
2947                 } else {
2948                   n->dump();
2949                   ShouldNotReachHere();
2950                 }
2951               }
2952             }
2953           }
2954         }
2955 #endif
2956         if (phi == nullptr) {
2957           // If an entire chains was sunk, the
2958           // inner loop has no phi for that memory
2959           // slice, create one for the outer loop
2960           phi = PhiNode::make(inner_cl, first->in(MemNode::Memory), Type::MEMORY,
2961                               igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type())));
2962           phi->set_req(LoopNode::LoopBackControl, last);
2963           phi = register_new_node(phi, inner_cl, igvn, iloop);
2964           igvn->replace_input_of(first, MemNode::Memory, phi);
2965         } else {
2966           // Or fix the outer loop fix to include
2967           // that chain of stores.
2968           Node* be = phi->in(LoopNode::LoopBackControl);
2969           assert(!(be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)), "store on the backedge + sunk stores: unsupported");
2970           if (be == first->in(MemNode::Memory)) {
2971             if (be == phi->in(LoopNode::LoopBackControl)) {
2972               igvn->replace_input_of(phi, LoopNode::LoopBackControl, last);
2973             } else {
2974               igvn->replace_input_of(be, MemNode::Memory, last);
2975             }
2976           } else {
2977 #ifdef ASSERT
2978             if (be == phi->in(LoopNode::LoopBackControl)) {
2979               assert(phi->in(LoopNode::LoopBackControl) == last, "");
2980             } else {
2981               assert(be->in(MemNode::Memory) == last, "");
2982             }
2983 #endif
2984           }
2985         }
2986       }
2987     }
2988   }
2989 }
2990 
2991 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) {
2992   // Look for the outer & inner strip mined loop, reduce number of
2993   // iterations of the inner loop, set exit condition of outer loop,
2994   // construct required phi nodes for outer loop.
2995   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
2996   assert(inner_cl->is_strip_mined(), "inner loop should be strip mined");
2997   if (LoopStripMiningIter == 0) {
2998     remove_outer_loop_and_safepoint(igvn);
2999     return;
3000   }
3001   if (LoopStripMiningIter == 1) {
3002     transform_to_counted_loop(igvn, nullptr);
3003     return;
3004   }
3005   Node* inner_iv_phi = inner_cl->phi();
3006   if (inner_iv_phi == nullptr) {
3007     IfNode* outer_le = outer_loop_end();
3008     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3009     igvn->replace_node(outer_le, iff);
3010     inner_cl->clear_strip_mined();
3011     return;
3012   }
3013   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
3014 
3015   int stride = inner_cl->stride_con();
3016   // For a min int stride, LoopStripMiningIter * stride overflows the int range for all values of LoopStripMiningIter
3017   // except 0 or 1. Those values are handled early on in this method and causes the method to return. So for a min int
3018   // stride, the method is guaranteed to return at the next check below.
3019   jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS((jlong)stride);
3020   int scaled_iters = (int)scaled_iters_long;
3021   if ((jlong)scaled_iters != scaled_iters_long) {
3022     // Remove outer loop and safepoint (too few iterations)
3023     remove_outer_loop_and_safepoint(igvn);
3024     return;
3025   }
3026   jlong short_scaled_iters = LoopStripMiningIterShortLoop * ABS(stride);
3027   const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int();
3028   jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo;
3029   assert(iter_estimate > 0, "broken");
3030   if (iter_estimate <= short_scaled_iters) {
3031     // Remove outer loop and safepoint: loop executes less than LoopStripMiningIterShortLoop
3032     remove_outer_loop_and_safepoint(igvn);
3033     return;
3034   }
3035   if (iter_estimate <= scaled_iters_long) {
3036     // We would only go through one iteration of
3037     // the outer loop: drop the outer loop but
3038     // keep the safepoint so we don't run for
3039     // too long without a safepoint
3040     IfNode* outer_le = outer_loop_end();
3041     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3042     igvn->replace_node(outer_le, iff);
3043     inner_cl->clear_strip_mined();
3044     return;
3045   }
3046 
3047   Node* cle_tail = inner_cle->proj_out(true);
3048   ResourceMark rm;
3049   Node_List old_new;
3050   if (cle_tail->outcnt() > 1) {
3051     // Look for nodes on backedge of inner loop and clone them
3052     Unique_Node_List backedge_nodes;
3053     for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) {
3054       Node* u = cle_tail->fast_out(i);
3055       if (u != inner_cl) {
3056         assert(!u->is_CFG(), "control flow on the backedge?");
3057         backedge_nodes.push(u);
3058       }
3059     }
3060     uint last = igvn->C->unique();
3061     for (uint next = 0; next < backedge_nodes.size(); next++) {
3062       Node* n = backedge_nodes.at(next);
3063       old_new.map(n->_idx, n->clone());
3064       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3065         Node* u = n->fast_out(i);
3066         assert(!u->is_CFG(), "broken");
3067         if (u->_idx >= last) {
3068           continue;
3069         }
3070         if (!u->is_Phi()) {
3071           backedge_nodes.push(u);
3072         } else {
3073           assert(u->in(0) == inner_cl, "strange phi on the backedge");
3074         }
3075       }
3076     }
3077     // Put the clones on the outer loop backedge
3078     Node* le_tail = outer_loop_tail();
3079     for (uint next = 0; next < backedge_nodes.size(); next++) {
3080       Node *n = old_new[backedge_nodes.at(next)->_idx];
3081       for (uint i = 1; i < n->req(); i++) {
3082         if (n->in(i) != nullptr && old_new[n->in(i)->_idx] != nullptr) {
3083           n->set_req(i, old_new[n->in(i)->_idx]);
3084         }
3085       }
3086       if (n->in(0) != nullptr && n->in(0) == cle_tail) {
3087         n->set_req(0, le_tail);
3088       }
3089       igvn->register_new_node_with_optimizer(n);
3090     }
3091   }
3092 
3093   Node* iv_phi = nullptr;
3094   // Make a clone of each phi in the inner loop
3095   // for the outer loop
3096   for (uint i = 0; i < inner_cl->outcnt(); i++) {
3097     Node* u = inner_cl->raw_out(i);
3098     if (u->is_Phi()) {
3099       assert(u->in(0) == inner_cl, "inconsistent");
3100       Node* phi = u->clone();
3101       phi->set_req(0, this);
3102       Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx];
3103       if (be != nullptr) {
3104         phi->set_req(LoopNode::LoopBackControl, be);
3105       }
3106       phi = igvn->transform(phi);
3107       igvn->replace_input_of(u, LoopNode::EntryControl, phi);
3108       if (u == inner_iv_phi) {
3109         iv_phi = phi;
3110       }
3111     }
3112   }
3113 
3114   if (iv_phi != nullptr) {
3115     // Now adjust the inner loop's exit condition
3116     Node* limit = inner_cl->limit();
3117     // If limit < init for stride > 0 (or limit > init for stride < 0),
3118     // the loop body is run only once. Given limit - init (init - limit resp.)
3119     // would be negative, the unsigned comparison below would cause
3120     // the loop body to be run for LoopStripMiningIter.
3121     Node* max = nullptr;
3122     if (stride > 0) {
3123       max = MaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn);
3124     } else {
3125       max = MaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn);
3126     }
3127     // sub is positive and can be larger than the max signed int
3128     // value. Use an unsigned min.
3129     Node* const_iters = igvn->intcon(scaled_iters);
3130     Node* min = MaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn);
3131     // min is the number of iterations for the next inner loop execution:
3132     // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0
3133     // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0
3134 
3135     Node* new_limit = nullptr;
3136     if (stride > 0) {
3137       new_limit = igvn->transform(new AddINode(min, iv_phi));
3138     } else {
3139       new_limit = igvn->transform(new SubINode(iv_phi, min));
3140     }
3141     Node* inner_cmp = inner_cle->cmp_node();
3142     Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue);
3143     Node* outer_bol = inner_bol;
3144     // cmp node for inner loop may be shared
3145     inner_cmp = inner_cmp->clone();
3146     inner_cmp->set_req(2, new_limit);
3147     inner_bol = inner_bol->clone();
3148     inner_bol->set_req(1, igvn->transform(inner_cmp));
3149     igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol));
3150     // Set the outer loop's exit condition too
3151     igvn->replace_input_of(outer_loop_end(), 1, outer_bol);
3152   } else {
3153     assert(false, "should be able to adjust outer loop");
3154     IfNode* outer_le = outer_loop_end();
3155     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3156     igvn->replace_node(outer_le, iff);
3157     inner_cl->clear_strip_mined();
3158   }
3159 }
3160 
3161 void OuterStripMinedLoopNode::transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3162   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3163   CountedLoopEndNode* cle = inner_cl->loopexit();
3164   Node* inner_test = cle->in(1);
3165   IfNode* outer_le = outer_loop_end();
3166   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
3167   Node* safepoint = outer_safepoint();
3168 
3169   fix_sunk_stores(inner_cle, inner_cl, igvn, iloop);
3170 
3171   // make counted loop exit test always fail
3172   ConINode* zero = igvn->intcon(0);
3173   if (iloop != nullptr) {
3174     iloop->set_root_as_ctrl(zero);
3175   }
3176   igvn->replace_input_of(cle, 1, zero);
3177   // replace outer loop end with CountedLoopEndNode with formers' CLE's exit test
3178   Node* new_end = new CountedLoopEndNode(outer_le->in(0), inner_test, cle->_prob, cle->_fcnt);
3179   register_control(new_end, inner_cl, outer_le->in(0), igvn, iloop);
3180   if (iloop == nullptr) {
3181     igvn->replace_node(outer_le, new_end);
3182   } else {
3183     iloop->lazy_replace(outer_le, new_end);
3184   }
3185   // the backedge of the inner loop must be rewired to the new loop end
3186   Node* backedge = cle->proj_out(true);
3187   igvn->replace_input_of(backedge, 0, new_end);
3188   if (iloop != nullptr) {
3189     iloop->set_idom(backedge, new_end, iloop->dom_depth(new_end) + 1);
3190   }
3191   // make the outer loop go away
3192   igvn->replace_input_of(in(LoopBackControl), 0, igvn->C->top());
3193   igvn->replace_input_of(this, LoopBackControl, igvn->C->top());
3194   inner_cl->clear_strip_mined();
3195   if (iloop != nullptr) {
3196     Unique_Node_List wq;
3197     wq.push(safepoint);
3198 
3199     IdealLoopTree* outer_loop_ilt = iloop->get_loop(this);
3200     IdealLoopTree* loop = iloop->get_loop(inner_cl);
3201 
3202     for (uint i = 0; i < wq.size(); i++) {
3203       Node* n = wq.at(i);
3204       for (uint j = 0; j < n->req(); ++j) {
3205         Node* in = n->in(j);
3206         if (in == nullptr || in->is_CFG()) {
3207           continue;
3208         }
3209         if (iloop->get_loop(iloop->get_ctrl(in)) != outer_loop_ilt) {
3210           continue;
3211         }
3212         wq.push(in);
3213       }
3214       assert(!loop->_body.contains(n), "Shouldn't append node to body twice");
3215       loop->_body.push(n);
3216     }
3217     iloop->set_loop(safepoint, loop);
3218     loop->_body.push(safepoint);
3219     iloop->set_loop(safepoint->in(0), loop);
3220     loop->_body.push(safepoint->in(0));
3221     outer_loop_ilt->_tail = igvn->C->top();
3222   }
3223 }
3224 
3225 void OuterStripMinedLoopNode::remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const {
3226   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3227   Node* outer_sfpt = outer_safepoint();
3228   Node* outer_out = outer_loop_exit();
3229   igvn->replace_node(outer_out, outer_sfpt->in(0));
3230   igvn->replace_input_of(outer_sfpt, 0, igvn->C->top());
3231   inner_cl->clear_strip_mined();
3232 }
3233 
3234 Node* OuterStripMinedLoopNode::register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3235   if (iloop == nullptr) {
3236     return igvn->transform(node);
3237   }
3238   iloop->register_new_node(node, ctrl);
3239   return node;
3240 }
3241 
3242 Node* OuterStripMinedLoopNode::register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
3243                                                 PhaseIdealLoop* iloop) {
3244   if (iloop == nullptr) {
3245     return igvn->transform(node);
3246   }
3247   iloop->register_control(node, iloop->get_loop(loop), idom);
3248   return node;
3249 }
3250 
3251 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const {
3252   if (!in(0)) return Type::TOP;
3253   if (phase->type(in(0)) == Type::TOP)
3254     return Type::TOP;
3255 
3256   // Until expansion, the loop end condition is not set so this should not constant fold.
3257   if (is_expanded(phase)) {
3258     return IfNode::Value(phase);
3259   }
3260 
3261   return TypeTuple::IFBOTH;
3262 }
3263 
3264 bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const {
3265   // The outer strip mined loop head only has Phi uses after expansion
3266   if (phase->is_IterGVN()) {
3267     Node* backedge = proj_out_or_null(true);
3268     if (backedge != nullptr) {
3269       Node* head = backedge->unique_ctrl_out_or_null();
3270       if (head != nullptr && head->is_OuterStripMinedLoop()) {
3271         if (head->find_out_with(Op_Phi) != nullptr) {
3272           return true;
3273         }
3274       }
3275     }
3276   }
3277   return false;
3278 }
3279 
3280 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3281   if (remove_dead_region(phase, can_reshape))  return this;
3282 
3283   return nullptr;
3284 }
3285 
3286 //------------------------------filtered_type--------------------------------
3287 // Return a type based on condition control flow
3288 // A successful return will be a type that is restricted due
3289 // to a series of dominating if-tests, such as:
3290 //    if (i < 10) {
3291 //       if (i > 0) {
3292 //          here: "i" type is [1..10)
3293 //       }
3294 //    }
3295 // or a control flow merge
3296 //    if (i < 10) {
3297 //       do {
3298 //          phi( , ) -- at top of loop type is [min_int..10)
3299 //         i = ?
3300 //       } while ( i < 10)
3301 //
3302 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
3303   assert(n && n->bottom_type()->is_int(), "must be int");
3304   const TypeInt* filtered_t = nullptr;
3305   if (!n->is_Phi()) {
3306     assert(n_ctrl != nullptr || n_ctrl == C->top(), "valid control");
3307     filtered_t = filtered_type_from_dominators(n, n_ctrl);
3308 
3309   } else {
3310     Node* phi    = n->as_Phi();
3311     Node* region = phi->in(0);
3312     assert(n_ctrl == nullptr || n_ctrl == region, "ctrl parameter must be region");
3313     if (region && region != C->top()) {
3314       for (uint i = 1; i < phi->req(); i++) {
3315         Node* val   = phi->in(i);
3316         Node* use_c = region->in(i);
3317         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
3318         if (val_t != nullptr) {
3319           if (filtered_t == nullptr) {
3320             filtered_t = val_t;
3321           } else {
3322             filtered_t = filtered_t->meet(val_t)->is_int();
3323           }
3324         }
3325       }
3326     }
3327   }
3328   const TypeInt* n_t = _igvn.type(n)->is_int();
3329   if (filtered_t != nullptr) {
3330     n_t = n_t->join(filtered_t)->is_int();
3331   }
3332   return n_t;
3333 }
3334 
3335 
3336 //------------------------------filtered_type_from_dominators--------------------------------
3337 // Return a possibly more restrictive type for val based on condition control flow of dominators
3338 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
3339   if (val->is_Con()) {
3340      return val->bottom_type()->is_int();
3341   }
3342   uint if_limit = 10; // Max number of dominating if's visited
3343   const TypeInt* rtn_t = nullptr;
3344 
3345   if (use_ctrl && use_ctrl != C->top()) {
3346     Node* val_ctrl = get_ctrl(val);
3347     uint val_dom_depth = dom_depth(val_ctrl);
3348     Node* pred = use_ctrl;
3349     uint if_cnt = 0;
3350     while (if_cnt < if_limit) {
3351       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
3352         if_cnt++;
3353         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
3354         if (if_t != nullptr) {
3355           if (rtn_t == nullptr) {
3356             rtn_t = if_t;
3357           } else {
3358             rtn_t = rtn_t->join(if_t)->is_int();
3359           }
3360         }
3361       }
3362       pred = idom(pred);
3363       if (pred == nullptr || pred == C->top()) {
3364         break;
3365       }
3366       // Stop if going beyond definition block of val
3367       if (dom_depth(pred) < val_dom_depth) {
3368         break;
3369       }
3370     }
3371   }
3372   return rtn_t;
3373 }
3374 
3375 
3376 //------------------------------dump_spec--------------------------------------
3377 // Dump special per-node info
3378 #ifndef PRODUCT
3379 void CountedLoopEndNode::dump_spec(outputStream *st) const {
3380   if( in(TestValue) != nullptr && in(TestValue)->is_Bool() ) {
3381     BoolTest bt( test_trip()); // Added this for g++.
3382 
3383     st->print("[");
3384     bt.dump_on(st);
3385     st->print("]");
3386   }
3387   st->print(" ");
3388   IfNode::dump_spec(st);
3389 }
3390 #endif
3391 
3392 //=============================================================================
3393 //------------------------------is_member--------------------------------------
3394 // Is 'l' a member of 'this'?
3395 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
3396   while( l->_nest > _nest ) l = l->_parent;
3397   return l == this;
3398 }
3399 
3400 //------------------------------set_nest---------------------------------------
3401 // Set loop tree nesting depth.  Accumulate _has_call bits.
3402 int IdealLoopTree::set_nest( uint depth ) {
3403   assert(depth <= SHRT_MAX, "sanity");
3404   _nest = depth;
3405   int bits = _has_call;
3406   if( _child ) bits |= _child->set_nest(depth+1);
3407   if( bits ) _has_call = 1;
3408   if( _next  ) bits |= _next ->set_nest(depth  );
3409   return bits;
3410 }
3411 
3412 //------------------------------split_fall_in----------------------------------
3413 // Split out multiple fall-in edges from the loop header.  Move them to a
3414 // private RegionNode before the loop.  This becomes the loop landing pad.
3415 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
3416   PhaseIterGVN &igvn = phase->_igvn;
3417   uint i;
3418 
3419   // Make a new RegionNode to be the landing pad.
3420   RegionNode* landing_pad = new RegionNode(fall_in_cnt + 1);
3421   phase->set_loop(landing_pad,_parent);
3422   // If _head was irreducible loop entry, landing_pad may now be too
3423   landing_pad->set_loop_status(_head->as_Region()->loop_status());
3424   // Gather all the fall-in control paths into the landing pad
3425   uint icnt = fall_in_cnt;
3426   uint oreq = _head->req();
3427   for( i = oreq-1; i>0; i-- )
3428     if( !phase->is_member( this, _head->in(i) ) )
3429       landing_pad->set_req(icnt--,_head->in(i));
3430 
3431   // Peel off PhiNode edges as well
3432   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3433     Node *oj = _head->fast_out(j);
3434     if( oj->is_Phi() ) {
3435       PhiNode* old_phi = oj->as_Phi();
3436       assert( old_phi->region() == _head, "" );
3437       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
3438       Node *p = PhiNode::make_blank(landing_pad, old_phi);
3439       uint icnt = fall_in_cnt;
3440       for( i = oreq-1; i>0; i-- ) {
3441         if( !phase->is_member( this, _head->in(i) ) ) {
3442           p->init_req(icnt--, old_phi->in(i));
3443           // Go ahead and clean out old edges from old phi
3444           old_phi->del_req(i);
3445         }
3446       }
3447       // Search for CSE's here, because ZKM.jar does a lot of
3448       // loop hackery and we need to be a little incremental
3449       // with the CSE to avoid O(N^2) node blow-up.
3450       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
3451       if( p2 ) {                // Found CSE
3452         p->destruct(&igvn);     // Recover useless new node
3453         p = p2;                 // Use old node
3454       } else {
3455         igvn.register_new_node_with_optimizer(p, old_phi);
3456       }
3457       // Make old Phi refer to new Phi.
3458       old_phi->add_req(p);
3459       // Check for the special case of making the old phi useless and
3460       // disappear it.  In JavaGrande I have a case where this useless
3461       // Phi is the loop limit and prevents recognizing a CountedLoop
3462       // which in turn prevents removing an empty loop.
3463       Node *id_old_phi = old_phi->Identity(&igvn);
3464       if( id_old_phi != old_phi ) { // Found a simple identity?
3465         // Note that I cannot call 'replace_node' here, because
3466         // that will yank the edge from old_phi to the Region and
3467         // I'm mid-iteration over the Region's uses.
3468         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
3469           Node* use = old_phi->last_out(i);
3470           igvn.rehash_node_delayed(use);
3471           uint uses_found = 0;
3472           for (uint j = 0; j < use->len(); j++) {
3473             if (use->in(j) == old_phi) {
3474               if (j < use->req()) use->set_req (j, id_old_phi);
3475               else                use->set_prec(j, id_old_phi);
3476               uses_found++;
3477             }
3478           }
3479           i -= uses_found;    // we deleted 1 or more copies of this edge
3480         }
3481       }
3482       igvn._worklist.push(old_phi);
3483     }
3484   }
3485   // Finally clean out the fall-in edges from the RegionNode
3486   for( i = oreq-1; i>0; i-- ) {
3487     if( !phase->is_member( this, _head->in(i) ) ) {
3488       _head->del_req(i);
3489     }
3490   }
3491   igvn.rehash_node_delayed(_head);
3492   // Transform landing pad
3493   igvn.register_new_node_with_optimizer(landing_pad, _head);
3494   // Insert landing pad into the header
3495   _head->add_req(landing_pad);
3496 }
3497 
3498 //------------------------------split_outer_loop-------------------------------
3499 // Split out the outermost loop from this shared header.
3500 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
3501   PhaseIterGVN &igvn = phase->_igvn;
3502 
3503   // Find index of outermost loop; it should also be my tail.
3504   uint outer_idx = 1;
3505   while( _head->in(outer_idx) != _tail ) outer_idx++;
3506 
3507   // Make a LoopNode for the outermost loop.
3508   Node *ctl = _head->in(LoopNode::EntryControl);
3509   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
3510   outer = igvn.register_new_node_with_optimizer(outer, _head);
3511   phase->set_created_loop_node();
3512 
3513   // Outermost loop falls into '_head' loop
3514   _head->set_req(LoopNode::EntryControl, outer);
3515   _head->del_req(outer_idx);
3516   // Split all the Phis up between '_head' loop and 'outer' loop.
3517   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3518     Node *out = _head->fast_out(j);
3519     if( out->is_Phi() ) {
3520       PhiNode *old_phi = out->as_Phi();
3521       assert( old_phi->region() == _head, "" );
3522       Node *phi = PhiNode::make_blank(outer, old_phi);
3523       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
3524       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
3525       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
3526       // Make old Phi point to new Phi on the fall-in path
3527       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
3528       old_phi->del_req(outer_idx);
3529     }
3530   }
3531 
3532   // Use the new loop head instead of the old shared one
3533   _head = outer;
3534   phase->set_loop(_head, this);
3535 }
3536 
3537 //------------------------------fix_parent-------------------------------------
3538 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
3539   loop->_parent = parent;
3540   if( loop->_child ) fix_parent( loop->_child, loop   );
3541   if( loop->_next  ) fix_parent( loop->_next , parent );
3542 }
3543 
3544 //------------------------------estimate_path_freq-----------------------------
3545 static float estimate_path_freq( Node *n ) {
3546   // Try to extract some path frequency info
3547   IfNode *iff;
3548   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
3549     uint nop = n->Opcode();
3550     if( nop == Op_SafePoint ) {   // Skip any safepoint
3551       n = n->in(0);
3552       continue;
3553     }
3554     if( nop == Op_CatchProj ) {   // Get count from a prior call
3555       // Assume call does not always throw exceptions: means the call-site
3556       // count is also the frequency of the fall-through path.
3557       assert( n->is_CatchProj(), "" );
3558       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
3559         return 0.0f;            // Assume call exception path is rare
3560       Node *call = n->in(0)->in(0)->in(0);
3561       assert( call->is_Call(), "expect a call here" );
3562       const JVMState *jvms = ((CallNode*)call)->jvms();
3563       ciMethodData* methodData = jvms->method()->method_data();
3564       if (!methodData->is_mature())  return 0.0f; // No call-site data
3565       ciProfileData* data = methodData->bci_to_data(jvms->bci());
3566       if ((data == nullptr) || !data->is_CounterData()) {
3567         // no call profile available, try call's control input
3568         n = n->in(0);
3569         continue;
3570       }
3571       return data->as_CounterData()->count()/FreqCountInvocations;
3572     }
3573     // See if there's a gating IF test
3574     Node *n_c = n->in(0);
3575     if( !n_c->is_If() ) break;       // No estimate available
3576     iff = n_c->as_If();
3577     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
3578       // Compute how much count comes on this path
3579       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
3580     // Have no count info.  Skip dull uncommon-trap like branches.
3581     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
3582         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
3583       break;
3584     // Skip through never-taken branch; look for a real loop exit.
3585     n = iff->in(0);
3586   }
3587   return 0.0f;                  // No estimate available
3588 }
3589 
3590 //------------------------------merge_many_backedges---------------------------
3591 // Merge all the backedges from the shared header into a private Region.
3592 // Feed that region as the one backedge to this loop.
3593 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
3594   uint i;
3595 
3596   // Scan for the top 2 hottest backedges
3597   float hotcnt = 0.0f;
3598   float warmcnt = 0.0f;
3599   uint hot_idx = 0;
3600   // Loop starts at 2 because slot 1 is the fall-in path
3601   for( i = 2; i < _head->req(); i++ ) {
3602     float cnt = estimate_path_freq(_head->in(i));
3603     if( cnt > hotcnt ) {       // Grab hottest path
3604       warmcnt = hotcnt;
3605       hotcnt = cnt;
3606       hot_idx = i;
3607     } else if( cnt > warmcnt ) { // And 2nd hottest path
3608       warmcnt = cnt;
3609     }
3610   }
3611 
3612   // See if the hottest backedge is worthy of being an inner loop
3613   // by being much hotter than the next hottest backedge.
3614   if( hotcnt <= 0.0001 ||
3615       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
3616 
3617   // Peel out the backedges into a private merge point; peel
3618   // them all except optionally hot_idx.
3619   PhaseIterGVN &igvn = phase->_igvn;
3620 
3621   Node *hot_tail = nullptr;
3622   // Make a Region for the merge point
3623   Node *r = new RegionNode(1);
3624   for( i = 2; i < _head->req(); i++ ) {
3625     if( i != hot_idx )
3626       r->add_req( _head->in(i) );
3627     else hot_tail = _head->in(i);
3628   }
3629   igvn.register_new_node_with_optimizer(r, _head);
3630   // Plug region into end of loop _head, followed by hot_tail
3631   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
3632   igvn.replace_input_of(_head, 2, r);
3633   if( hot_idx ) _head->add_req(hot_tail);
3634 
3635   // Split all the Phis up between '_head' loop and the Region 'r'
3636   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3637     Node *out = _head->fast_out(j);
3638     if( out->is_Phi() ) {
3639       PhiNode* n = out->as_Phi();
3640       igvn.hash_delete(n);      // Delete from hash before hacking edges
3641       Node *hot_phi = nullptr;
3642       Node *phi = new PhiNode(r, n->type(), n->adr_type());
3643       // Check all inputs for the ones to peel out
3644       uint j = 1;
3645       for( uint i = 2; i < n->req(); i++ ) {
3646         if( i != hot_idx )
3647           phi->set_req( j++, n->in(i) );
3648         else hot_phi = n->in(i);
3649       }
3650       // Register the phi but do not transform until whole place transforms
3651       igvn.register_new_node_with_optimizer(phi, n);
3652       // Add the merge phi to the old Phi
3653       while( n->req() > 3 ) n->del_req( n->req()-1 );
3654       igvn.replace_input_of(n, 2, phi);
3655       if( hot_idx ) n->add_req(hot_phi);
3656     }
3657   }
3658 
3659 
3660   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
3661   // of self loop tree.  Turn self into a loop headed by _head and with
3662   // tail being the new merge point.
3663   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
3664   phase->set_loop(_tail,ilt);   // Adjust tail
3665   _tail = r;                    // Self's tail is new merge point
3666   phase->set_loop(r,this);
3667   ilt->_child = _child;         // New guy has my children
3668   _child = ilt;                 // Self has new guy as only child
3669   ilt->_parent = this;          // new guy has self for parent
3670   ilt->_nest = _nest;           // Same nesting depth (for now)
3671 
3672   // Starting with 'ilt', look for child loop trees using the same shared
3673   // header.  Flatten these out; they will no longer be loops in the end.
3674   IdealLoopTree **pilt = &_child;
3675   while( ilt ) {
3676     if( ilt->_head == _head ) {
3677       uint i;
3678       for( i = 2; i < _head->req(); i++ )
3679         if( _head->in(i) == ilt->_tail )
3680           break;                // Still a loop
3681       if( i == _head->req() ) { // No longer a loop
3682         // Flatten ilt.  Hang ilt's "_next" list from the end of
3683         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
3684         IdealLoopTree **cp = &ilt->_child;
3685         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
3686         *cp = ilt->_next;       // Hang next list at end of child list
3687         *pilt = ilt->_child;    // Move child up to replace ilt
3688         ilt->_head = nullptr;   // Flag as a loop UNIONED into parent
3689         ilt = ilt->_child;      // Repeat using new ilt
3690         continue;               // do not advance over ilt->_child
3691       }
3692       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
3693       phase->set_loop(_head,ilt);
3694     }
3695     pilt = &ilt->_child;        // Advance to next
3696     ilt = *pilt;
3697   }
3698 
3699   if( _child ) fix_parent( _child, this );
3700 }
3701 
3702 //------------------------------beautify_loops---------------------------------
3703 // Split shared headers and insert loop landing pads.
3704 // Insert a LoopNode to replace the RegionNode.
3705 // Return TRUE if loop tree is structurally changed.
3706 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
3707   bool result = false;
3708   // Cache parts in locals for easy
3709   PhaseIterGVN &igvn = phase->_igvn;
3710 
3711   igvn.hash_delete(_head);      // Yank from hash before hacking edges
3712 
3713   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
3714   int fall_in_cnt = 0;
3715   for( uint i = 1; i < _head->req(); i++ )
3716     if( !phase->is_member( this, _head->in(i) ) )
3717       fall_in_cnt++;
3718   assert( fall_in_cnt, "at least 1 fall-in path" );
3719   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
3720     split_fall_in( phase, fall_in_cnt );
3721 
3722   // Swap inputs to the _head and all Phis to move the fall-in edge to
3723   // the left.
3724   fall_in_cnt = 1;
3725   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
3726     fall_in_cnt++;
3727   if( fall_in_cnt > 1 ) {
3728     // Since I am just swapping inputs I do not need to update def-use info
3729     Node *tmp = _head->in(1);
3730     igvn.rehash_node_delayed(_head);
3731     _head->set_req( 1, _head->in(fall_in_cnt) );
3732     _head->set_req( fall_in_cnt, tmp );
3733     // Swap also all Phis
3734     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
3735       Node* phi = _head->fast_out(i);
3736       if( phi->is_Phi() ) {
3737         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
3738         tmp = phi->in(1);
3739         phi->set_req( 1, phi->in(fall_in_cnt) );
3740         phi->set_req( fall_in_cnt, tmp );
3741       }
3742     }
3743   }
3744   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
3745   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
3746 
3747   // If I am a shared header (multiple backedges), peel off the many
3748   // backedges into a private merge point and use the merge point as
3749   // the one true backedge.
3750   if (_head->req() > 3) {
3751     // Merge the many backedges into a single backedge but leave
3752     // the hottest backedge as separate edge for the following peel.
3753     if (!_irreducible) {
3754       merge_many_backedges( phase );
3755     }
3756 
3757     // When recursively beautify my children, split_fall_in can change
3758     // loop tree structure when I am an irreducible loop. Then the head
3759     // of my children has a req() not bigger than 3. Here we need to set
3760     // result to true to catch that case in order to tell the caller to
3761     // rebuild loop tree. See issue JDK-8244407 for details.
3762     result = true;
3763   }
3764 
3765   // If I have one hot backedge, peel off myself loop.
3766   // I better be the outermost loop.
3767   if (_head->req() > 3 && !_irreducible) {
3768     split_outer_loop( phase );
3769     result = true;
3770 
3771   } else if (!_head->is_Loop() && !_irreducible) {
3772     // Make a new LoopNode to replace the old loop head
3773     Node *l = new LoopNode( _head->in(1), _head->in(2) );
3774     l = igvn.register_new_node_with_optimizer(l, _head);
3775     phase->set_created_loop_node();
3776     // Go ahead and replace _head
3777     phase->_igvn.replace_node( _head, l );
3778     _head = l;
3779     phase->set_loop(_head, this);
3780   }
3781 
3782   // Now recursively beautify nested loops
3783   if( _child ) result |= _child->beautify_loops( phase );
3784   if( _next  ) result |= _next ->beautify_loops( phase );
3785   return result;
3786 }
3787 
3788 //------------------------------allpaths_check_safepts----------------------------
3789 // Allpaths backwards scan. Starting at the head, traversing all backedges, and the body. Terminating each path at first
3790 // safepoint encountered.  Helper for check_safepts.
3791 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
3792   assert(stack.size() == 0, "empty stack");
3793   stack.push(_head);
3794   visited.clear();
3795   visited.set(_head->_idx);
3796   while (stack.size() > 0) {
3797     Node* n = stack.pop();
3798     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
3799       // Terminate this path
3800     } else if (n->Opcode() == Op_SafePoint) {
3801       if (_phase->get_loop(n) != this) {
3802         if (_required_safept == nullptr) _required_safept = new Node_List();
3803         // save the first we run into on that path: closest to the tail if the head has a single backedge
3804         _required_safept->push(n);
3805       }
3806       // Terminate this path
3807     } else {
3808       uint start = n->is_Region() ? 1 : 0;
3809       uint end   = n->is_Region() && (!n->is_Loop() || n == _head) ? n->req() : start + 1;
3810       for (uint i = start; i < end; i++) {
3811         Node* in = n->in(i);
3812         assert(in->is_CFG(), "must be");
3813         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
3814           stack.push(in);
3815         }
3816       }
3817     }
3818   }
3819 }
3820 
3821 //------------------------------check_safepts----------------------------
3822 // Given dominators, try to find loops with calls that must always be
3823 // executed (call dominates loop tail).  These loops do not need non-call
3824 // safepoints (ncsfpt).
3825 //
3826 // A complication is that a safepoint in a inner loop may be needed
3827 // by an outer loop. In the following, the inner loop sees it has a
3828 // call (block 3) on every path from the head (block 2) to the
3829 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
3830 // in block 2, _but_ this leaves the outer loop without a safepoint.
3831 //
3832 //          entry  0
3833 //                 |
3834 //                 v
3835 // outer 1,2    +->1
3836 //              |  |
3837 //              |  v
3838 //              |  2<---+  ncsfpt in 2
3839 //              |_/|\   |
3840 //                 | v  |
3841 // inner 2,3      /  3  |  call in 3
3842 //               /   |  |
3843 //              v    +--+
3844 //        exit  4
3845 //
3846 //
3847 // This method creates a list (_required_safept) of ncsfpt nodes that must
3848 // be protected is created for each loop. When a ncsfpt maybe deleted, it
3849 // is first looked for in the lists for the outer loops of the current loop.
3850 //
3851 // The insights into the problem:
3852 //  A) counted loops are okay
3853 //  B) innermost loops are okay (only an inner loop can delete
3854 //     a ncsfpt needed by an outer loop)
3855 //  C) a loop is immune from an inner loop deleting a safepoint
3856 //     if the loop has a call on the idom-path
3857 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
3858 //     idom-path that is not in a nested loop
3859 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
3860 //     loop needs to be prevented from deletion by an inner loop
3861 //
3862 // There are two analyses:
3863 //  1) The first, and cheaper one, scans the loop body from
3864 //     tail to head following the idom (immediate dominator)
3865 //     chain, looking for the cases (C,D,E) above.
3866 //     Since inner loops are scanned before outer loops, there is summary
3867 //     information about inner loops.  Inner loops can be skipped over
3868 //     when the tail of an inner loop is encountered.
3869 //
3870 //  2) The second, invoked if the first fails to find a call or ncsfpt on
3871 //     the idom path (which is rare), scans all predecessor control paths
3872 //     from the tail to the head, terminating a path when a call or sfpt
3873 //     is encountered, to find the ncsfpt's that are closest to the tail.
3874 //
3875 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
3876   // Bottom up traversal
3877   IdealLoopTree* ch = _child;
3878   if (_child) _child->check_safepts(visited, stack);
3879   if (_next)  _next ->check_safepts(visited, stack);
3880 
3881   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != nullptr) {
3882     bool  has_call         = false;    // call on dom-path
3883     bool  has_local_ncsfpt = false;    // ncsfpt on dom-path at this loop depth
3884     Node* nonlocal_ncsfpt  = nullptr;  // ncsfpt on dom-path at a deeper depth
3885     if (!_irreducible) {
3886       // Scan the dom-path nodes from tail to head
3887       for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
3888         if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
3889           has_call = true;
3890           _has_sfpt = 1;          // Then no need for a safept!
3891           break;
3892         } else if (n->Opcode() == Op_SafePoint) {
3893           if (_phase->get_loop(n) == this) {
3894             has_local_ncsfpt = true;
3895             break;
3896           }
3897           if (nonlocal_ncsfpt == nullptr) {
3898             nonlocal_ncsfpt = n; // save the one closest to the tail
3899           }
3900         } else {
3901           IdealLoopTree* nlpt = _phase->get_loop(n);
3902           if (this != nlpt) {
3903             // If at an inner loop tail, see if the inner loop has already
3904             // recorded seeing a call on the dom-path (and stop.)  If not,
3905             // jump to the head of the inner loop.
3906             assert(is_member(nlpt), "nested loop");
3907             Node* tail = nlpt->_tail;
3908             if (tail->in(0)->is_If()) tail = tail->in(0);
3909             if (n == tail) {
3910               // If inner loop has call on dom-path, so does outer loop
3911               if (nlpt->_has_sfpt) {
3912                 has_call = true;
3913                 _has_sfpt = 1;
3914                 break;
3915               }
3916               // Skip to head of inner loop
3917               assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
3918               n = nlpt->_head;
3919               if (_head == n) {
3920                 // this and nlpt (inner loop) have the same loop head. This should not happen because
3921                 // during beautify_loops we call merge_many_backedges. However, infinite loops may not
3922                 // have been attached to the loop-tree during build_loop_tree before beautify_loops,
3923                 // but then attached in the build_loop_tree afterwards, and so still have unmerged
3924                 // backedges. Check if we are indeed in an infinite subgraph, and terminate the scan,
3925                 // since we have reached the loop head of this.
3926                 assert(_head->as_Region()->is_in_infinite_subgraph(),
3927                        "only expect unmerged backedges in infinite loops");
3928                 break;
3929               }
3930             }
3931           }
3932         }
3933       }
3934     }
3935     // Record safept's that this loop needs preserved when an
3936     // inner loop attempts to delete it's safepoints.
3937     if (_child != nullptr && !has_call && !has_local_ncsfpt) {
3938       if (nonlocal_ncsfpt != nullptr) {
3939         if (_required_safept == nullptr) _required_safept = new Node_List();
3940         _required_safept->push(nonlocal_ncsfpt);
3941       } else {
3942         // Failed to find a suitable safept on the dom-path.  Now use
3943         // an all paths walk from tail to head, looking for safepoints to preserve.
3944         allpaths_check_safepts(visited, stack);
3945       }
3946     }
3947   }
3948 }
3949 
3950 //---------------------------is_deleteable_safept----------------------------
3951 // Is safept not required by an outer loop?
3952 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
3953   assert(sfpt->Opcode() == Op_SafePoint, "");
3954   IdealLoopTree* lp = get_loop(sfpt)->_parent;
3955   while (lp != nullptr) {
3956     Node_List* sfpts = lp->_required_safept;
3957     if (sfpts != nullptr) {
3958       for (uint i = 0; i < sfpts->size(); i++) {
3959         if (sfpt == sfpts->at(i))
3960           return false;
3961       }
3962     }
3963     lp = lp->_parent;
3964   }
3965   return true;
3966 }
3967 
3968 //---------------------------replace_parallel_iv-------------------------------
3969 // Replace parallel induction variable (parallel to trip counter)
3970 // This optimization looks for patterns similar to:
3971 //
3972 //    int a = init2;
3973 //    for (int iv = init; iv < limit; iv += stride_con) {
3974 //      a += stride_con2;
3975 //    }
3976 //
3977 // and transforms it to:
3978 //
3979 //    int iv2 = init2
3980 //    int iv = init
3981 //    loop:
3982 //      if (iv >= limit) goto exit
3983 //      iv += stride_con
3984 //      iv2 = init2 + (iv - init) * (stride_con2 / stride_con)
3985 //      goto loop
3986 //    exit:
3987 //    ...
3988 //
3989 // Such transformation introduces more optimization opportunities. In this
3990 // particular example, the loop can be eliminated entirely given that
3991 // `stride_con2 / stride_con` is exact  (i.e., no remainder). Checks are in
3992 // place to only perform this optimization if such a division is exact. This
3993 // example will be transformed into its semantic equivalence:
3994 //
3995 //     int iv2 = (iv * stride_con2 / stride_con) + (init2 - (init * stride_con2 / stride_con))
3996 //
3997 // which corresponds to the structure of transformed subgraph.
3998 //
3999 // However, if there is a mismatch between types of the loop and the parallel
4000 // induction variable (e.g., a long-typed IV in an int-typed loop), type
4001 // conversions are required:
4002 //
4003 //     long iv2 = ((long) iv * stride_con2 / stride_con) + (init2 - ((long) init * stride_con2 / stride_con))
4004 //
4005 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
4006   assert(loop->_head->is_CountedLoop(), "");
4007   CountedLoopNode *cl = loop->_head->as_CountedLoop();
4008   if (!cl->is_valid_counted_loop(T_INT)) {
4009     return;         // skip malformed counted loop
4010   }
4011   Node *incr = cl->incr();
4012   if (incr == nullptr) {
4013     return;         // Dead loop?
4014   }
4015   Node *init = cl->init_trip();
4016   Node *phi  = cl->phi();
4017   jlong stride_con = cl->stride_con();
4018 
4019   // Visit all children, looking for Phis
4020   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
4021     Node *out = cl->out(i);
4022     // Look for other phis (secondary IVs). Skip dead ones
4023     if (!out->is_Phi() || out == phi || !has_node(out)) {
4024       continue;
4025     }
4026 
4027     PhiNode* phi2 = out->as_Phi();
4028     Node* incr2 = phi2->in(LoopNode::LoopBackControl);
4029     // Look for induction variables of the form:  X += constant
4030     if (phi2->region() != loop->_head ||
4031         incr2->req() != 3 ||
4032         incr2->in(1)->uncast() != phi2 ||
4033         incr2 == incr ||
4034         (incr2->Opcode() != Op_AddI && incr2->Opcode() != Op_AddL) ||
4035         !incr2->in(2)->is_Con()) {
4036       continue;
4037     }
4038 
4039     if (incr2->in(1)->is_ConstraintCast() &&
4040         !(incr2->in(1)->in(0)->is_IfProj() && incr2->in(1)->in(0)->in(0)->is_RangeCheck())) {
4041       // Skip AddI->CastII->Phi case if CastII is not controlled by local RangeCheck
4042       continue;
4043     }
4044     // Check for parallel induction variable (parallel to trip counter)
4045     // via an affine function.  In particular, count-down loops with
4046     // count-up array indices are common. We only RCE references off
4047     // the trip-counter, so we need to convert all these to trip-counter
4048     // expressions.
4049     Node* init2 = phi2->in(LoopNode::EntryControl);
4050 
4051     // Determine the basic type of the stride constant (and the iv being incremented).
4052     BasicType stride_con2_bt = incr2->Opcode() == Op_AddI ? T_INT : T_LONG;
4053     jlong stride_con2 = incr2->in(2)->get_integer_as_long(stride_con2_bt);
4054 
4055     // The ratio of the two strides cannot be represented as an int
4056     // if stride_con2 is min_jint (or min_jlong, respectively) and
4057     // stride_con is -1.
4058     if (stride_con2 == min_signed_integer(stride_con2_bt) && stride_con == -1) {
4059       continue;
4060     }
4061 
4062     // The general case here gets a little tricky.  We want to find the
4063     // GCD of all possible parallel IV's and make a new IV using this
4064     // GCD for the loop.  Then all possible IVs are simple multiples of
4065     // the GCD.  In practice, this will cover very few extra loops.
4066     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
4067     // where +/-1 is the common case, but other integer multiples are
4068     // also easy to handle.
4069     jlong ratio_con = stride_con2 / stride_con;
4070 
4071     if ((ratio_con * stride_con) != stride_con2) { // Check for exact (no remainder)
4072         continue;
4073     }
4074 
4075 #ifndef PRODUCT
4076     if (TraceLoopOpts) {
4077       tty->print("Parallel IV: %d ", phi2->_idx);
4078       loop->dump_head();
4079     }
4080 #endif
4081 
4082     // Convert to using the trip counter.  The parallel induction
4083     // variable differs from the trip counter by a loop-invariant
4084     // amount, the difference between their respective initial values.
4085     // It is scaled by the 'ratio_con'.
4086     Node* ratio = integercon(ratio_con, stride_con2_bt);
4087 
4088     Node* init_converted = insert_convert_node_if_needed(stride_con2_bt, init);
4089     Node* phi_converted = insert_convert_node_if_needed(stride_con2_bt, phi);
4090 
4091     Node* ratio_init = MulNode::make(init_converted, ratio, stride_con2_bt);
4092     _igvn.register_new_node_with_optimizer(ratio_init, init_converted);
4093     set_early_ctrl(ratio_init, false);
4094 
4095     Node* diff = SubNode::make(init2, ratio_init, stride_con2_bt);
4096     _igvn.register_new_node_with_optimizer(diff, init2);
4097     set_early_ctrl(diff, false);
4098 
4099     Node* ratio_idx = MulNode::make(phi_converted, ratio, stride_con2_bt);
4100     _igvn.register_new_node_with_optimizer(ratio_idx, phi_converted);
4101     set_ctrl(ratio_idx, cl);
4102 
4103     Node* add = AddNode::make(ratio_idx, diff, stride_con2_bt);
4104     _igvn.register_new_node_with_optimizer(add);
4105     set_ctrl(add, cl);
4106 
4107     _igvn.replace_node( phi2, add );
4108     // Sometimes an induction variable is unused
4109     if (add->outcnt() == 0) {
4110       _igvn.remove_dead_node(add);
4111     }
4112     --i; // deleted this phi; rescan starting with next position
4113   }
4114 }
4115 
4116 Node* PhaseIdealLoop::insert_convert_node_if_needed(BasicType target, Node* input) {
4117   BasicType source = _igvn.type(input)->basic_type();
4118   if (source == target) {
4119     return input;
4120   }
4121 
4122   Node* converted = ConvertNode::create_convert(source, target, input);
4123   _igvn.register_new_node_with_optimizer(converted, input);
4124   set_early_ctrl(converted, false);
4125 
4126   return converted;
4127 }
4128 
4129 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
4130   Node* keep = nullptr;
4131   if (keep_one) {
4132     // Look for a safepoint on the idom-path.
4133     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
4134       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
4135         keep = i;
4136         break; // Found one
4137       }
4138     }
4139   }
4140 
4141   // Don't remove any safepoints if it is requested to keep a single safepoint and
4142   // no safepoint was found on idom-path. It is not safe to remove any safepoint
4143   // in this case since there's no safepoint dominating all paths in the loop body.
4144   bool prune = !keep_one || keep != nullptr;
4145 
4146   // Delete other safepoints in this loop.
4147   Node_List* sfpts = _safepts;
4148   if (prune && sfpts != nullptr) {
4149     assert(keep == nullptr || keep->Opcode() == Op_SafePoint, "not safepoint");
4150     for (uint i = 0; i < sfpts->size(); i++) {
4151       Node* n = sfpts->at(i);
4152       assert(phase->get_loop(n) == this, "");
4153       if (n != keep && phase->is_deleteable_safept(n)) {
4154         phase->lazy_replace(n, n->in(TypeFunc::Control));
4155       }
4156     }
4157   }
4158 }
4159 
4160 //------------------------------counted_loop-----------------------------------
4161 // Convert to counted loops where possible
4162 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
4163 
4164   // For grins, set the inner-loop flag here
4165   if (!_child) {
4166     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
4167   }
4168 
4169   IdealLoopTree* loop = this;
4170   if (_head->is_CountedLoop() ||
4171       phase->is_counted_loop(_head, loop, T_INT)) {
4172 
4173     if (LoopStripMiningIter == 0 || _head->as_CountedLoop()->is_strip_mined()) {
4174       // Indicate we do not need a safepoint here
4175       _has_sfpt = 1;
4176     }
4177 
4178     // Remove safepoints
4179     bool keep_one_sfpt = !(_has_call || _has_sfpt);
4180     remove_safepoints(phase, keep_one_sfpt);
4181 
4182     // Look for induction variables
4183     phase->replace_parallel_iv(this);
4184   } else if (_head->is_LongCountedLoop() ||
4185              phase->is_counted_loop(_head, loop, T_LONG)) {
4186     remove_safepoints(phase, true);
4187   } else {
4188     assert(!_head->is_Loop() || !_head->as_Loop()->is_loop_nest_inner_loop(), "transformation to counted loop should not fail");
4189     if (_parent != nullptr && !_irreducible) {
4190       // Not a counted loop. Keep one safepoint.
4191       bool keep_one_sfpt = true;
4192       remove_safepoints(phase, keep_one_sfpt);
4193     }
4194   }
4195 
4196   // Recursively
4197   assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
4198   assert(loop->_child != this || (loop->_child->_child == nullptr && loop->_child->_next == nullptr), "would miss some loops");
4199   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
4200   if (loop->_next)  loop->_next ->counted_loop(phase);
4201 }
4202 
4203 
4204 // The Estimated Loop Clone Size:
4205 //   CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm,
4206 // where  BC and  CC are  totally ad-hoc/magic  "body" and "clone" constants,
4207 // respectively, used to ensure that the node usage estimates made are on the
4208 // safe side, for the most part. The FanOutTerm is an attempt to estimate the
4209 // possible additional/excessive nodes generated due to data and control flow
4210 // merging, for edges reaching outside the loop.
4211 uint IdealLoopTree::est_loop_clone_sz(uint factor) const {
4212 
4213   precond(0 < factor && factor < 16);
4214 
4215   uint const bc = 13;
4216   uint const cc = 17;
4217   uint const sz = _body.size() + (_body.size() + 7) / 2;
4218   uint estimate = factor * (sz + bc) + cc;
4219 
4220   assert((estimate - cc) / factor == sz + bc, "overflow");
4221 
4222   return estimate + est_loop_flow_merge_sz();
4223 }
4224 
4225 // The Estimated Loop (full-) Unroll Size:
4226 //   UnrollFactor * (~106% * BodySize) + CC + FanOutTerm,
4227 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that
4228 // node usage estimates made are on the safe side, for the most part. This is
4229 // a "light" version of the loop clone size calculation (above), based on the
4230 // assumption that most of the loop-construct overhead will be unraveled when
4231 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1),
4232 // including an overflow check and returning UINT_MAX in case of an overflow.
4233 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const {
4234 
4235   precond(factor > 0);
4236 
4237   // Take into account that after unroll conjoined heads and tails will fold.
4238   uint const b0 = _body.size() - EMPTY_LOOP_SIZE;
4239   uint const cc = 7;
4240   uint const sz = b0 + (b0 + 15) / 16;
4241   uint estimate = factor * sz + cc;
4242 
4243   if ((estimate - cc) / factor != sz) {
4244     return UINT_MAX;
4245   }
4246 
4247   return estimate + est_loop_flow_merge_sz();
4248 }
4249 
4250 // Estimate the growth effect (in nodes) of merging control and data flow when
4251 // cloning a loop body, based on the amount of  control and data flow reaching
4252 // outside of the (current) loop body.
4253 uint IdealLoopTree::est_loop_flow_merge_sz() const {
4254 
4255   uint ctrl_edge_out_cnt = 0;
4256   uint data_edge_out_cnt = 0;
4257 
4258   for (uint i = 0; i < _body.size(); i++) {
4259     Node* node = _body.at(i);
4260     uint outcnt = node->outcnt();
4261 
4262     for (uint k = 0; k < outcnt; k++) {
4263       Node* out = node->raw_out(k);
4264       if (out == nullptr) continue;
4265       if (out->is_CFG()) {
4266         if (!is_member(_phase->get_loop(out))) {
4267           ctrl_edge_out_cnt++;
4268         }
4269       } else if (_phase->has_ctrl(out)) {
4270         Node* ctrl = _phase->get_ctrl(out);
4271         assert(ctrl != nullptr, "must be");
4272         assert(ctrl->is_CFG(), "must be");
4273         if (!is_member(_phase->get_loop(ctrl))) {
4274           data_edge_out_cnt++;
4275         }
4276       }
4277     }
4278   }
4279   // Use data and control count (x2.0) in estimate iff both are > 0. This is
4280   // a rather pessimistic estimate for the most part, in particular for some
4281   // complex loops, but still not enough to capture all loops.
4282   if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) {
4283     return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt);
4284   }
4285   return 0;
4286 }
4287 
4288 #ifndef PRODUCT
4289 //------------------------------dump_head--------------------------------------
4290 // Dump 1 liner for loop header info
4291 void IdealLoopTree::dump_head() {
4292   tty->sp(2 * _nest);
4293   tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx);
4294   if (_irreducible) tty->print(" IRREDUCIBLE");
4295   Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl)
4296                                  : _head->in(LoopNode::EntryControl);
4297   const Predicates predicates(entry);
4298   if (predicates.loop_limit_check_predicate_block()->is_non_empty()) {
4299     tty->print(" limit_check");
4300   }
4301   if (UseLoopPredicate) {
4302     if (UseProfiledLoopPredicate && predicates.profiled_loop_predicate_block()->is_non_empty()) {
4303       tty->print(" profile_predicated");
4304     }
4305     if (predicates.loop_predicate_block()->is_non_empty()) {
4306       tty->print(" predicated");
4307     }
4308   }
4309   if (_head->is_CountedLoop()) {
4310     CountedLoopNode *cl = _head->as_CountedLoop();
4311     tty->print(" counted");
4312 
4313     Node* init_n = cl->init_trip();
4314     if (init_n  != nullptr &&  init_n->is_Con())
4315       tty->print(" [%d,", cl->init_trip()->get_int());
4316     else
4317       tty->print(" [int,");
4318     Node* limit_n = cl->limit();
4319     if (limit_n  != nullptr &&  limit_n->is_Con())
4320       tty->print("%d),", cl->limit()->get_int());
4321     else
4322       tty->print("int),");
4323     int stride_con  = cl->stride_con();
4324     if (stride_con > 0) tty->print("+");
4325     tty->print("%d", stride_con);
4326 
4327     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
4328 
4329     if (cl->is_pre_loop ()) tty->print(" pre" );
4330     if (cl->is_main_loop()) tty->print(" main");
4331     if (cl->is_post_loop()) tty->print(" post");
4332     if (cl->is_vectorized_loop()) tty->print(" vector");
4333     if (range_checks_present()) tty->print(" rc ");
4334     if (cl->is_multiversion_fast_loop())         { tty->print(" multiversion_fast"); }
4335     if (cl->is_multiversion_slow_loop())         { tty->print(" multiversion_slow"); }
4336     if (cl->is_multiversion_delayed_slow_loop()) { tty->print(" multiversion_delayed_slow"); }
4337   }
4338   if (_has_call) tty->print(" has_call");
4339   if (_has_sfpt) tty->print(" has_sfpt");
4340   if (_rce_candidate) tty->print(" rce");
4341   if (_safepts != nullptr && _safepts->size() > 0) {
4342     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
4343   }
4344   if (_required_safept != nullptr && _required_safept->size() > 0) {
4345     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
4346   }
4347   if (Verbose) {
4348     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
4349   }
4350   if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) {
4351     tty->print(" strip_mined");
4352   }
4353   tty->cr();
4354 }
4355 
4356 //------------------------------dump-------------------------------------------
4357 // Dump loops by loop tree
4358 void IdealLoopTree::dump() {
4359   dump_head();
4360   if (_child) _child->dump();
4361   if (_next)  _next ->dump();
4362 }
4363 
4364 #endif
4365 
4366 static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
4367   if (loop == root) {
4368     if (loop->_child != nullptr) {
4369       log->begin_head("loop_tree");
4370       log->end_head();
4371       log_loop_tree_helper(root, loop->_child, log);
4372       log->tail("loop_tree");
4373       assert(loop->_next == nullptr, "what?");
4374     }
4375   } else if (loop != nullptr) {
4376     Node* head = loop->_head;
4377     log->begin_head("loop idx='%d'", head->_idx);
4378     if (loop->_irreducible) log->print(" irreducible='1'");
4379     if (head->is_Loop()) {
4380       if (head->as_Loop()->is_inner_loop())        log->print(" inner_loop='1'");
4381       if (head->as_Loop()->is_partial_peel_loop()) log->print(" partial_peel_loop='1'");
4382     } else if (head->is_CountedLoop()) {
4383       CountedLoopNode* cl = head->as_CountedLoop();
4384       if (cl->is_pre_loop())  log->print(" pre_loop='%d'",  cl->main_idx());
4385       if (cl->is_main_loop()) log->print(" main_loop='%d'", cl->_idx);
4386       if (cl->is_post_loop()) log->print(" post_loop='%d'", cl->main_idx());
4387     }
4388     log->end_head();
4389     log_loop_tree_helper(root, loop->_child, log);
4390     log->tail("loop");
4391     log_loop_tree_helper(root, loop->_next, log);
4392   }
4393 }
4394 
4395 void PhaseIdealLoop::log_loop_tree() {
4396   if (C->log() != nullptr) {
4397     log_loop_tree_helper(_ltree_root, _ltree_root, C->log());
4398   }
4399 }
4400 
4401 // Eliminate all Parse and Template Assertion Predicates that are not associated with a loop anymore. The eliminated
4402 // predicates will be removed during the next round of IGVN.
4403 void PhaseIdealLoop::eliminate_useless_predicates() const {
4404   if (C->parse_predicate_count() == 0 && C->template_assertion_predicate_count() == 0) {
4405     return; // No predicates left.
4406   }
4407 
4408   EliminateUselessPredicates eliminate_useless_predicates(_igvn, _ltree_root);
4409   eliminate_useless_predicates.eliminate();
4410 }
4411 
4412 // If a post or main loop is removed due to an assert predicate, the opaque that guards the loop is not needed anymore
4413 void PhaseIdealLoop::eliminate_useless_zero_trip_guard() {
4414   if (_zero_trip_guard_opaque_nodes.size() == 0) {
4415     return;
4416   }
4417   Unique_Node_List useful_zero_trip_guard_opaques_nodes;
4418   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4419     IdealLoopTree* lpt = iter.current();
4420     if (lpt->_child == nullptr && lpt->is_counted()) {
4421       CountedLoopNode* head = lpt->_head->as_CountedLoop();
4422       Node* opaque = head->is_canonical_loop_entry();
4423       if (opaque != nullptr) {
4424         useful_zero_trip_guard_opaques_nodes.push(opaque);
4425       }
4426     }
4427   }
4428   for (uint i = 0; i < _zero_trip_guard_opaque_nodes.size(); ++i) {
4429     OpaqueZeroTripGuardNode* opaque = ((OpaqueZeroTripGuardNode*)_zero_trip_guard_opaque_nodes.at(i));
4430     DEBUG_ONLY(CountedLoopNode* guarded_loop = opaque->guarded_loop());
4431     if (!useful_zero_trip_guard_opaques_nodes.member(opaque)) {
4432       IfNode* iff = opaque->if_node();
4433       IdealLoopTree* loop = get_loop(iff);
4434       while (loop != _ltree_root && loop != nullptr) {
4435         loop = loop->_parent;
4436       }
4437       if (loop == nullptr) {
4438         // unreachable from _ltree_root: zero trip guard is in a newly discovered infinite loop.
4439         // We can't tell if the opaque node is useful or not
4440         assert(guarded_loop == nullptr || guarded_loop->is_in_infinite_subgraph(), "");
4441       } else {
4442         assert(guarded_loop == nullptr, "");
4443         this->_igvn.replace_node(opaque, opaque->in(1));
4444       }
4445     } else {
4446       assert(guarded_loop != nullptr, "");
4447     }
4448   }
4449 }
4450 
4451 void PhaseIdealLoop::eliminate_useless_multiversion_if() {
4452   if (_multiversion_opaque_nodes.size() == 0) {
4453     return;
4454   }
4455 
4456   ResourceMark rm;
4457   Unique_Node_List useful_multiversioning_opaque_nodes;
4458 
4459   // The OpaqueMultiversioning is only used from the fast main loop in AutoVectorization, to add
4460   // speculative runtime-checks to the multiversion_if. Thus, a OpaqueMultiversioning is only
4461   // useful if it can be found from a fast main loop. If it can not be found from a fast main loop,
4462   // then we cannot ever use that multiversion_if to add more speculative runtime-checks, and hence
4463   // it is useless. If it is still in delayed mode, i.e. has not yet had any runtime-checks added,
4464   // then we can let it constant fold towards the fast loop.
4465   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4466     IdealLoopTree* lpt = iter.current();
4467     if (lpt->_child == nullptr && lpt->is_counted()) {
4468       CountedLoopNode* head = lpt->_head->as_CountedLoop();
4469       if (head->is_main_loop() && head->is_multiversion_fast_loop()) {
4470         // There are fast_loop pre/main/post loops, but the finding traversal starts at the main
4471         // loop, and traverses via the fast pre loop to the multiversion_if.
4472         IfNode* multiversion_if = head->find_multiversion_if_from_multiversion_fast_main_loop();
4473         if (multiversion_if != nullptr) {
4474             useful_multiversioning_opaque_nodes.push(multiversion_if->in(1)->as_OpaqueMultiversioning());
4475         } else {
4476           // We could not find the multiversion_if, and would never find it again. Remove the
4477           // multiversion marking for consistency.
4478           head->set_no_multiversion();
4479         }
4480       }
4481     }
4482   }
4483 
4484   for (uint i = 0; i < _multiversion_opaque_nodes.size(); i++) {
4485     OpaqueMultiversioningNode* opaque = _multiversion_opaque_nodes.at(i)->as_OpaqueMultiversioning();
4486     if (!useful_multiversioning_opaque_nodes.member(opaque)) {
4487       if (opaque->is_delayed_slow_loop()) {
4488         // We cannot hack the node directly, otherwise the slow_loop will complain that it cannot
4489         // find the multiversioning opaque node. Instead, we mark the opaque node as useless, and
4490         // it can be constant folded during IGVN.
4491         opaque->mark_useless(_igvn);
4492       }
4493     }
4494   }
4495 }
4496 
4497 //------------------------process_expensive_nodes-----------------------------
4498 // Expensive nodes have their control input set to prevent the GVN
4499 // from commoning them and as a result forcing the resulting node to
4500 // be in a more frequent path. Use CFG information here, to change the
4501 // control inputs so that some expensive nodes can be commoned while
4502 // not executed more frequently.
4503 bool PhaseIdealLoop::process_expensive_nodes() {
4504   assert(OptimizeExpensiveOps, "optimization off?");
4505 
4506   // Sort nodes to bring similar nodes together
4507   C->sort_expensive_nodes();
4508 
4509   bool progress = false;
4510 
4511   for (int i = 0; i < C->expensive_count(); ) {
4512     Node* n = C->expensive_node(i);
4513     int start = i;
4514     // Find nodes similar to n
4515     i++;
4516     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
4517     int end = i;
4518     // And compare them two by two
4519     for (int j = start; j < end; j++) {
4520       Node* n1 = C->expensive_node(j);
4521       if (is_node_unreachable(n1)) {
4522         continue;
4523       }
4524       for (int k = j+1; k < end; k++) {
4525         Node* n2 = C->expensive_node(k);
4526         if (is_node_unreachable(n2)) {
4527           continue;
4528         }
4529 
4530         assert(n1 != n2, "should be pair of nodes");
4531 
4532         Node* c1 = n1->in(0);
4533         Node* c2 = n2->in(0);
4534 
4535         Node* parent_c1 = c1;
4536         Node* parent_c2 = c2;
4537 
4538         // The call to get_early_ctrl_for_expensive() moves the
4539         // expensive nodes up but stops at loops that are in a if
4540         // branch. See whether we can exit the loop and move above the
4541         // If.
4542         if (c1->is_Loop()) {
4543           parent_c1 = c1->in(1);
4544         }
4545         if (c2->is_Loop()) {
4546           parent_c2 = c2->in(1);
4547         }
4548 
4549         if (parent_c1 == parent_c2) {
4550           _igvn._worklist.push(n1);
4551           _igvn._worklist.push(n2);
4552           continue;
4553         }
4554 
4555         // Look for identical expensive node up the dominator chain.
4556         if (is_dominator(c1, c2)) {
4557           c2 = c1;
4558         } else if (is_dominator(c2, c1)) {
4559           c1 = c2;
4560         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
4561                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
4562           // Both branches have the same expensive node so move it up
4563           // before the if.
4564           c1 = c2 = idom(parent_c1->in(0));
4565         }
4566         // Do the actual moves
4567         if (n1->in(0) != c1) {
4568           _igvn.replace_input_of(n1, 0, c1);
4569           progress = true;
4570         }
4571         if (n2->in(0) != c2) {
4572           _igvn.replace_input_of(n2, 0, c2);
4573           progress = true;
4574         }
4575       }
4576     }
4577   }
4578 
4579   return progress;
4580 }
4581 
4582 //=============================================================================
4583 //----------------------------build_and_optimize-------------------------------
4584 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
4585 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
4586 void PhaseIdealLoop::build_and_optimize() {
4587   assert(!C->post_loop_opts_phase(), "no loop opts allowed");
4588 
4589   bool do_split_ifs = (_mode == LoopOptsDefault);
4590   bool skip_loop_opts = (_mode == LoopOptsNone);
4591   bool do_max_unroll = (_mode == LoopOptsMaxUnroll);
4592 
4593 
4594   int old_progress = C->major_progress();
4595   uint orig_worklist_size = _igvn._worklist.size();
4596 
4597   // Reset major-progress flag for the driver's heuristics
4598   C->clear_major_progress();
4599 
4600 #ifndef PRODUCT
4601   // Capture for later assert
4602   uint unique = C->unique();
4603   _loop_invokes++;
4604   _loop_work += unique;
4605 #endif
4606 
4607   // True if the method has at least 1 irreducible loop
4608   _has_irreducible_loops = false;
4609 
4610   _created_loop_node = false;
4611 
4612   VectorSet visited;
4613   // Pre-grow the mapping from Nodes to IdealLoopTrees.
4614   _loop_or_ctrl.map(C->unique(), nullptr);
4615   memset(_loop_or_ctrl.adr(), 0, wordSize * C->unique());
4616 
4617   // Pre-build the top-level outermost loop tree entry
4618   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
4619   // Do not need a safepoint at the top level
4620   _ltree_root->_has_sfpt = 1;
4621 
4622   // Initialize Dominators.
4623   // Checked in clone_loop_predicate() during beautify_loops().
4624   _idom_size = 0;
4625   _idom      = nullptr;
4626   _dom_depth = nullptr;
4627   _dom_stk   = nullptr;
4628 
4629   // Empty pre-order array
4630   allocate_preorders();
4631 
4632   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
4633   // IdealLoopTree entries.  Data nodes are NOT walked.
4634   build_loop_tree();
4635   // Check for bailout, and return
4636   if (C->failing()) {
4637     return;
4638   }
4639 
4640   // Verify that the has_loops() flag set at parse time is consistent with the just built loop tree. When the back edge
4641   // is an exception edge, parsing doesn't set has_loops().
4642   assert(_ltree_root->_child == nullptr || C->has_loops() || C->has_exception_backedge(), "parsing found no loops but there are some");
4643   // No loops after all
4644   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
4645 
4646   // There should always be an outer loop containing the Root and Return nodes.
4647   // If not, we have a degenerate empty program.  Bail out in this case.
4648   if (!has_node(C->root())) {
4649     if (!_verify_only) {
4650       C->clear_major_progress();
4651       assert(false, "empty program detected during loop optimization");
4652       C->record_method_not_compilable("empty program detected during loop optimization");
4653     }
4654     return;
4655   }
4656 
4657   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4658   // Nothing to do, so get out
4659   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !do_max_unroll && !_verify_me &&
4660           !_verify_only && !bs->is_gc_specific_loop_opts_pass(_mode);
4661   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
4662   bool strip_mined_loops_expanded = bs->strip_mined_loops_expanded(_mode);
4663   if (stop_early && !do_expensive_nodes) {
4664     return;
4665   }
4666 
4667   // Set loop nesting depth
4668   _ltree_root->set_nest( 0 );
4669 
4670   // Split shared headers and insert loop landing pads.
4671   // Do not bother doing this on the Root loop of course.
4672   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
4673     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
4674     if( _ltree_root->_child->beautify_loops( this ) ) {
4675       // Re-build loop tree!
4676       _ltree_root->_child = nullptr;
4677       _loop_or_ctrl.clear();
4678       reallocate_preorders();
4679       build_loop_tree();
4680       // Check for bailout, and return
4681       if (C->failing()) {
4682         return;
4683       }
4684       // Reset loop nesting depth
4685       _ltree_root->set_nest( 0 );
4686 
4687       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
4688     }
4689   }
4690 
4691   // Build Dominators for elision of null checks & loop finding.
4692   // Since nodes do not have a slot for immediate dominator, make
4693   // a persistent side array for that info indexed on node->_idx.
4694   _idom_size = C->unique();
4695   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
4696   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
4697   _dom_stk   = nullptr; // Allocated on demand in recompute_dom_depth
4698   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
4699 
4700   Dominators();
4701 
4702   if (!_verify_only) {
4703     // As a side effect, Dominators removed any unreachable CFG paths
4704     // into RegionNodes.  It doesn't do this test against Root, so
4705     // we do it here.
4706     for( uint i = 1; i < C->root()->req(); i++ ) {
4707       if (!_loop_or_ctrl[C->root()->in(i)->_idx]) { // Dead path into Root?
4708         _igvn.delete_input_of(C->root(), i);
4709         i--;                      // Rerun same iteration on compressed edges
4710       }
4711     }
4712 
4713     // Given dominators, try to find inner loops with calls that must
4714     // always be executed (call dominates loop tail).  These loops do
4715     // not need a separate safepoint.
4716     Node_List cisstack;
4717     _ltree_root->check_safepts(visited, cisstack);
4718   }
4719 
4720   // Walk the DATA nodes and place into loops.  Find earliest control
4721   // node.  For CFG nodes, the _loop_or_ctrl array starts out and remains
4722   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
4723   // _loop_or_ctrl array holds the earliest legal controlling CFG node.
4724 
4725   // Allocate stack with enough space to avoid frequent realloc
4726   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
4727   Node_Stack nstack(stack_size);
4728 
4729   visited.clear();
4730   Node_List worklist;
4731   // Don't need C->root() on worklist since
4732   // it will be processed among C->top() inputs
4733   worklist.push(C->top());
4734   visited.set(C->top()->_idx); // Set C->top() as visited now
4735   build_loop_early( visited, worklist, nstack );
4736 
4737   // Given early legal placement, try finding counted loops.  This placement
4738   // is good enough to discover most loop invariants.
4739   if (!_verify_me && !_verify_only && !strip_mined_loops_expanded) {
4740     _ltree_root->counted_loop( this );
4741   }
4742 
4743   // Find latest loop placement.  Find ideal loop placement.
4744   visited.clear();
4745   init_dom_lca_tags();
4746   // Need C->root() on worklist when processing outs
4747   worklist.push(C->root());
4748   NOT_PRODUCT( C->verify_graph_edges(); )
4749   worklist.push(C->top());
4750   build_loop_late( visited, worklist, nstack );
4751   if (C->failing()) { return; }
4752 
4753   if (_verify_only) {
4754     C->restore_major_progress(old_progress);
4755     assert(C->unique() == unique, "verification _mode made Nodes? ? ?");
4756     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
4757     return;
4758   }
4759 
4760   // clear out the dead code after build_loop_late
4761   while (_deadlist.size()) {
4762     _igvn.remove_globally_dead_node(_deadlist.pop());
4763   }
4764 
4765   eliminate_useless_zero_trip_guard();
4766   eliminate_useless_multiversion_if();
4767 
4768   if (stop_early) {
4769     assert(do_expensive_nodes, "why are we here?");
4770     if (process_expensive_nodes()) {
4771       // If we made some progress when processing expensive nodes then
4772       // the IGVN may modify the graph in a way that will allow us to
4773       // make some more progress: we need to try processing expensive
4774       // nodes again.
4775       C->set_major_progress();
4776     }
4777     return;
4778   }
4779 
4780   // Some parser-inserted loop predicates could never be used by loop
4781   // predication or they were moved away from loop during some optimizations.
4782   // For example, peeling. Eliminate them before next loop optimizations.
4783   eliminate_useless_predicates();
4784 
4785 #ifndef PRODUCT
4786   C->verify_graph_edges();
4787   if (_verify_me) {             // Nested verify pass?
4788     // Check to see if the verify _mode is broken
4789     assert(C->unique() == unique, "non-optimize _mode made Nodes? ? ?");
4790     return;
4791   }
4792   DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
4793   if (TraceLoopOpts && C->has_loops()) {
4794     _ltree_root->dump();
4795   }
4796 #endif
4797 
4798   if (skip_loop_opts) {
4799     C->restore_major_progress(old_progress);
4800     return;
4801   }
4802 
4803   if (do_max_unroll) {
4804     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4805       IdealLoopTree* lpt = iter.current();
4806       if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) {
4807         lpt->compute_trip_count(this);
4808         if (!lpt->do_one_iteration_loop(this) &&
4809             !lpt->do_remove_empty_loop(this)) {
4810           AutoNodeBudget node_budget(this);
4811           if (lpt->_head->as_CountedLoop()->is_normal_loop() &&
4812               lpt->policy_maximally_unroll(this)) {
4813             memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
4814             do_maximally_unroll(lpt, worklist);
4815           }
4816         }
4817       }
4818     }
4819 
4820     C->restore_major_progress(old_progress);
4821     return;
4822   }
4823 
4824   if (bs->optimize_loops(this, _mode, visited, nstack, worklist)) {
4825     return;
4826   }
4827 
4828   if (ReassociateInvariants && !C->major_progress()) {
4829     // Reassociate invariants and prep for split_thru_phi
4830     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4831       IdealLoopTree* lpt = iter.current();
4832       if (!lpt->is_loop()) {
4833         continue;
4834       }
4835       Node* head = lpt->_head;
4836       if (!head->is_BaseCountedLoop() || !lpt->is_innermost()) continue;
4837 
4838       // check for vectorized loops, any reassociation of invariants was already done
4839       if (head->is_CountedLoop()) {
4840         if (head->as_CountedLoop()->is_unroll_only()) {
4841           continue;
4842         } else {
4843           AutoNodeBudget node_budget(this);
4844           lpt->reassociate_invariants(this);
4845         }
4846       }
4847       // Because RCE opportunities can be masked by split_thru_phi,
4848       // look for RCE candidates and inhibit split_thru_phi
4849       // on just their loop-phi's for this pass of loop opts
4850       if (SplitIfBlocks && do_split_ifs &&
4851           head->as_BaseCountedLoop()->is_valid_counted_loop(head->as_BaseCountedLoop()->bt()) &&
4852           (lpt->policy_range_check(this, true, T_LONG) ||
4853            (head->is_CountedLoop() && lpt->policy_range_check(this, true, T_INT)))) {
4854         lpt->_rce_candidate = 1; // = true
4855       }
4856     }
4857   }
4858 
4859   // Check for aggressive application of split-if and other transforms
4860   // that require basic-block info (like cloning through Phi's)
4861   if (!C->major_progress() && SplitIfBlocks && do_split_ifs) {
4862     visited.clear();
4863     split_if_with_blocks(visited, nstack);
4864     if (C->failing()) {
4865       return;
4866     }
4867     DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
4868   }
4869 
4870   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
4871     C->set_major_progress();
4872   }
4873 
4874   // Perform loop predication before iteration splitting
4875   if (UseLoopPredicate && C->has_loops() && !C->major_progress() && (C->parse_predicate_count() > 0)) {
4876     _ltree_root->_child->loop_predication(this);
4877   }
4878 
4879   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
4880     if (do_intrinsify_fill()) {
4881       C->set_major_progress();
4882     }
4883   }
4884 
4885   // Perform iteration-splitting on inner loops.  Split iterations to avoid
4886   // range checks or one-shot null checks.
4887 
4888   // If split-if's didn't hack the graph too bad (no CFG changes)
4889   // then do loop opts.
4890   if (C->has_loops() && !C->major_progress()) {
4891     memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
4892     _ltree_root->_child->iteration_split( this, worklist );
4893     // No verify after peeling!  GCM has hoisted code out of the loop.
4894     // After peeling, the hoisted code could sink inside the peeled area.
4895     // The peeling code does not try to recompute the best location for
4896     // all the code before the peeled area, so the verify pass will always
4897     // complain about it.
4898   }
4899 
4900   // Check for bailout, and return
4901   if (C->failing()) {
4902     return;
4903   }
4904 
4905   // Do verify graph edges in any case
4906   NOT_PRODUCT( C->verify_graph_edges(); );
4907 
4908   if (!do_split_ifs) {
4909     // We saw major progress in Split-If to get here.  We forced a
4910     // pass with unrolling and not split-if, however more split-if's
4911     // might make progress.  If the unrolling didn't make progress
4912     // then the major-progress flag got cleared and we won't try
4913     // another round of Split-If.  In particular the ever-common
4914     // instance-of/check-cast pattern requires at least 2 rounds of
4915     // Split-If to clear out.
4916     C->set_major_progress();
4917   }
4918 
4919   // Repeat loop optimizations if new loops were seen
4920   if (created_loop_node()) {
4921     C->set_major_progress();
4922   }
4923 
4924   // Auto-vectorize main-loop
4925   if (C->do_superword() && C->has_loops() && !C->major_progress()) {
4926     Compile::TracePhase tp(_t_autoVectorize);
4927 
4928     // Shared data structures for all AutoVectorizations, to reduce allocations
4929     // of large arrays.
4930     VSharedData vshared;
4931     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4932       IdealLoopTree* lpt = iter.current();
4933       AutoVectorizeStatus status = auto_vectorize(lpt, vshared);
4934 
4935       if (status == AutoVectorizeStatus::TriedAndFailed) {
4936         // We tried vectorization, but failed. From now on only unroll the loop.
4937         CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4938         if (cl->has_passed_slp()) {
4939           C->set_major_progress();
4940           cl->set_notpassed_slp();
4941           cl->mark_do_unroll_only();
4942         }
4943       }
4944     }
4945   }
4946 
4947   // Move UnorderedReduction out of counted loop. Can be introduced by AutoVectorization.
4948   if (C->has_loops() && !C->major_progress()) {
4949     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4950       IdealLoopTree* lpt = iter.current();
4951       if (lpt->is_counted() && lpt->is_innermost()) {
4952         move_unordered_reduction_out_of_loop(lpt);
4953       }
4954     }
4955   }
4956 
4957   // Keep loop predicates and perform optimizations with them
4958   // until no more loop optimizations could be done.
4959   // After that switch predicates off and do more loop optimizations.
4960   if (!C->major_progress() && (C->parse_predicate_count() > 0)) {
4961     C->mark_parse_predicate_nodes_useless(_igvn);
4962     assert(C->parse_predicate_count() == 0, "should be zero now");
4963     if (TraceLoopOpts) {
4964       tty->print_cr("PredicatesOff");
4965     }
4966     C->set_major_progress();
4967   }
4968 }
4969 
4970 #ifndef PRODUCT
4971 //------------------------------print_statistics-------------------------------
4972 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
4973 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
4974 volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen
4975 volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest
4976 volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop
4977 void PhaseIdealLoop::print_statistics() {
4978   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates);
4979 }
4980 #endif
4981 
4982 #ifdef ASSERT
4983 // Build a verify-only PhaseIdealLoop, and see that it agrees with "this".
4984 void PhaseIdealLoop::verify() const {
4985   ResourceMark rm;
4986   int old_progress = C->major_progress();
4987   bool success = true;
4988 
4989   PhaseIdealLoop phase_verify(_igvn, this);
4990   if (C->failing_internal()) {
4991     return;
4992   }
4993 
4994   // Verify ctrl and idom of every node.
4995   success &= verify_idom_and_nodes(C->root(), &phase_verify);
4996 
4997   // Verify loop-tree.
4998   success &= _ltree_root->verify_tree(phase_verify._ltree_root);
4999 
5000   assert(success, "VerifyLoopOptimizations failed");
5001 
5002   // Major progress was cleared by creating a verify version of PhaseIdealLoop.
5003   C->restore_major_progress(old_progress);
5004 }
5005 
5006 // Perform a BFS starting at n, through all inputs.
5007 // Call verify_idom and verify_node on all nodes of BFS traversal.
5008 bool PhaseIdealLoop::verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const {
5009   Unique_Node_List worklist;
5010   worklist.push(root);
5011   bool success = true;
5012   for (uint i = 0; i < worklist.size(); i++) {
5013     Node* n = worklist.at(i);
5014     // process node
5015     success &= verify_idom(n, phase_verify);
5016     success &= verify_loop_ctrl(n, phase_verify);
5017     // visit inputs
5018     for (uint j = 0; j < n->req(); j++) {
5019       if (n->in(j) != nullptr) {
5020         worklist.push(n->in(j));
5021       }
5022     }
5023   }
5024   return success;
5025 }
5026 
5027 // Verify dominator structure (IDOM).
5028 bool PhaseIdealLoop::verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const {
5029   // Verify IDOM for all CFG nodes (except root).
5030   if (!n->is_CFG() || n->is_Root()) {
5031     return true; // pass
5032   }
5033 
5034   if (n->_idx >= _idom_size) {
5035     tty->print("CFG Node with no idom: ");
5036     n->dump();
5037     return false; // fail
5038   }
5039 
5040   Node* id = idom_no_update(n);
5041   Node* id_verify = phase_verify->idom_no_update(n);
5042   if (id != id_verify) {
5043     tty->print("Mismatching idom for node: ");
5044     n->dump();
5045     tty->print("  We have idom: ");
5046     id->dump();
5047     tty->print("  Verify has idom: ");
5048     id_verify->dump();
5049     tty->cr();
5050     return false; // fail
5051   }
5052   return true; // pass
5053 }
5054 
5055 // Verify "_loop_or_ctrl": control and loop membership.
5056 //  (0) _loop_or_ctrl[i] == nullptr -> node not reachable.
5057 //  (1) has_ctrl -> check lowest bit. 1 -> data node. 0 -> ctrl node.
5058 //  (2) has_ctrl true: get_ctrl_no_update returns ctrl of data node.
5059 //  (3) has_ctrl false: get_loop_idx returns IdealLoopTree for ctrl node.
5060 bool PhaseIdealLoop::verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const {
5061   const uint i = n->_idx;
5062   // The loop-tree was built from def to use (top-down).
5063   // The verification happens from use to def (bottom-up).
5064   // We may thus find nodes during verification that are not in the loop-tree.
5065   if (_loop_or_ctrl[i] == nullptr || phase_verify->_loop_or_ctrl[i] == nullptr) {
5066     if (_loop_or_ctrl[i] != nullptr || phase_verify->_loop_or_ctrl[i] != nullptr) {
5067       tty->print_cr("Was reachable in only one. this %d, verify %d.",
5068                  _loop_or_ctrl[i] != nullptr, phase_verify->_loop_or_ctrl[i] != nullptr);
5069       n->dump();
5070       return false; // fail
5071     }
5072     // Not reachable for both.
5073     return true; // pass
5074   }
5075 
5076   if (n->is_CFG() == has_ctrl(n)) {
5077     tty->print_cr("Exactly one should be true: %d for is_CFG, %d for has_ctrl.", n->is_CFG(), has_ctrl(n));
5078     n->dump();
5079     return false; // fail
5080   }
5081 
5082   if (has_ctrl(n) != phase_verify->has_ctrl(n)) {
5083     tty->print_cr("Mismatch has_ctrl: %d for this, %d for verify.", has_ctrl(n), phase_verify->has_ctrl(n));
5084     n->dump();
5085     return false; // fail
5086   } else if (has_ctrl(n)) {
5087     assert(phase_verify->has_ctrl(n), "sanity");
5088     // n is a data node.
5089     // Verify that its ctrl is the same.
5090 
5091     // Broken part of VerifyLoopOptimizations (A)
5092     // Reason:
5093     //   BUG, wrong control set for example in
5094     //   PhaseIdealLoop::split_if_with_blocks
5095     //   at "set_ctrl(x, new_ctrl);"
5096     /*
5097     if( _loop_or_ctrl[i] != loop_verify->_loop_or_ctrl[i] &&
5098         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
5099       tty->print("Mismatched control setting for: ");
5100       n->dump();
5101       if( fail++ > 10 ) return;
5102       Node *c = get_ctrl_no_update(n);
5103       tty->print("We have it as: ");
5104       if( c->in(0) ) c->dump();
5105         else tty->print_cr("N%d",c->_idx);
5106       tty->print("Verify thinks: ");
5107       if( loop_verify->has_ctrl(n) )
5108         loop_verify->get_ctrl_no_update(n)->dump();
5109       else
5110         loop_verify->get_loop_idx(n)->dump();
5111       tty->cr();
5112     }
5113     */
5114     return true; // pass
5115   } else {
5116     assert(!phase_verify->has_ctrl(n), "sanity");
5117     // n is a ctrl node.
5118     // Verify that not has_ctrl, and that get_loop_idx is the same.
5119 
5120     // Broken part of VerifyLoopOptimizations (B)
5121     // Reason:
5122     //   NeverBranch node for example is added to loop outside its scope.
5123     //   Once we run build_loop_tree again, it is added to the correct loop.
5124     /*
5125     if (!C->major_progress()) {
5126       // Loop selection can be messed up if we did a major progress
5127       // operation, like split-if.  Do not verify in that case.
5128       IdealLoopTree *us = get_loop_idx(n);
5129       IdealLoopTree *them = loop_verify->get_loop_idx(n);
5130       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
5131         tty->print("Unequals loops for: ");
5132         n->dump();
5133         if( fail++ > 10 ) return;
5134         tty->print("We have it as: ");
5135         us->dump();
5136         tty->print("Verify thinks: ");
5137         them->dump();
5138         tty->cr();
5139       }
5140     }
5141     */
5142     return true; // pass
5143   }
5144 }
5145 
5146 static int compare_tree(IdealLoopTree* const& a, IdealLoopTree* const& b) {
5147   assert(a != nullptr && b != nullptr, "must be");
5148   return a->_head->_idx - b->_head->_idx;
5149 }
5150 
5151 GrowableArray<IdealLoopTree*> IdealLoopTree::collect_sorted_children() const {
5152   GrowableArray<IdealLoopTree*> children;
5153   IdealLoopTree* child = _child;
5154   while (child != nullptr) {
5155     assert(child->_parent == this, "all must be children of this");
5156     children.insert_sorted<compare_tree>(child);
5157     child = child->_next;
5158   }
5159   return children;
5160 }
5161 
5162 // Verify that tree structures match. Because the CFG can change, siblings
5163 // within the loop tree can be reordered. We attempt to deal with that by
5164 // reordering the verify's loop tree if possible.
5165 bool IdealLoopTree::verify_tree(IdealLoopTree* loop_verify) const {
5166   assert(_head == loop_verify->_head, "mismatched loop head");
5167   assert(this->_parent != nullptr || this->_next == nullptr, "is_root_loop implies has_no_sibling");
5168 
5169   // Collect the children
5170   GrowableArray<IdealLoopTree*> children = collect_sorted_children();
5171   GrowableArray<IdealLoopTree*> children_verify = loop_verify->collect_sorted_children();
5172 
5173   bool success = true;
5174 
5175   // Compare the two children lists
5176   for (int i = 0, j = 0; i < children.length() || j < children_verify.length(); ) {
5177     IdealLoopTree* child        = nullptr;
5178     IdealLoopTree* child_verify = nullptr;
5179     // Read from both lists, if possible.
5180     if (i < children.length()) {
5181       child = children.at(i);
5182     }
5183     if (j < children_verify.length()) {
5184       child_verify = children_verify.at(j);
5185     }
5186     assert(child != nullptr || child_verify != nullptr, "must find at least one");
5187     if (child != nullptr && child_verify != nullptr && child->_head != child_verify->_head) {
5188       // We found two non-equal children. Select the smaller one.
5189       if (child->_head->_idx < child_verify->_head->_idx) {
5190         child_verify = nullptr;
5191       } else {
5192         child = nullptr;
5193       }
5194     }
5195     // Process the two children, or potentially log the failure if we only found one.
5196     if (child_verify == nullptr) {
5197       if (child->_irreducible && Compile::current()->major_progress()) {
5198         // Irreducible loops can pick a different header (one of its entries).
5199       } else {
5200         tty->print_cr("We have a loop that verify does not have");
5201         child->dump();
5202         success = false;
5203       }
5204       i++; // step for this
5205     } else if (child == nullptr) {
5206       if (child_verify->_irreducible && Compile::current()->major_progress()) {
5207         // Irreducible loops can pick a different header (one of its entries).
5208       } else if (child_verify->_head->as_Region()->is_in_infinite_subgraph()) {
5209         // Infinite loops do not get attached to the loop-tree on their first visit.
5210         // "this" runs before "loop_verify". It is thus possible that we find the
5211         // infinite loop only for "child_verify". Only finding it with "child" would
5212         // mean that we lost it, which is not ok.
5213       } else {
5214         tty->print_cr("Verify has a loop that we do not have");
5215         child_verify->dump();
5216         success = false;
5217       }
5218       j++; // step for verify
5219     } else {
5220       assert(child->_head == child_verify->_head, "We have both and they are equal");
5221       success &= child->verify_tree(child_verify); // Recursion
5222       i++; // step for this
5223       j++; // step for verify
5224     }
5225   }
5226 
5227   // Broken part of VerifyLoopOptimizations (D)
5228   // Reason:
5229   //   split_if has to update the _tail, if it is modified. But that is done by
5230   //   checking to what loop the iff belongs to. That info can be wrong, and then
5231   //   we do not update the _tail correctly.
5232   /*
5233   Node *tail = _tail;           // Inline a non-updating version of
5234   while( !tail->in(0) )         // the 'tail()' call.
5235     tail = tail->in(1);
5236   assert( tail == loop->_tail, "mismatched loop tail" );
5237   */
5238 
5239   if (_head->is_CountedLoop()) {
5240     CountedLoopNode *cl = _head->as_CountedLoop();
5241 
5242     Node* ctrl     = cl->init_control();
5243     Node* back     = cl->back_control();
5244     assert(ctrl != nullptr && ctrl->is_CFG(), "sane loop in-ctrl");
5245     assert(back != nullptr && back->is_CFG(), "sane loop backedge");
5246     cl->loopexit(); // assert implied
5247   }
5248 
5249   // Broken part of VerifyLoopOptimizations (E)
5250   // Reason:
5251   //   PhaseIdealLoop::split_thru_region creates new nodes for loop that are not added
5252   //   to the loop body. Or maybe they are not added to the correct loop.
5253   //   at "Node* x = n->clone();"
5254   /*
5255   // Innermost loops need to verify loop bodies,
5256   // but only if no 'major_progress'
5257   int fail = 0;
5258   if (!Compile::current()->major_progress() && _child == nullptr) {
5259     for( uint i = 0; i < _body.size(); i++ ) {
5260       Node *n = _body.at(i);
5261       if (n->outcnt() == 0)  continue; // Ignore dead
5262       uint j;
5263       for( j = 0; j < loop->_body.size(); j++ )
5264         if( loop->_body.at(j) == n )
5265           break;
5266       if( j == loop->_body.size() ) { // Not found in loop body
5267         // Last ditch effort to avoid assertion: Its possible that we
5268         // have some users (so outcnt not zero) but are still dead.
5269         // Try to find from root.
5270         if (Compile::current()->root()->find(n->_idx)) {
5271           fail++;
5272           tty->print("We have that verify does not: ");
5273           n->dump();
5274         }
5275       }
5276     }
5277     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
5278       Node *n = loop->_body.at(i2);
5279       if (n->outcnt() == 0)  continue; // Ignore dead
5280       uint j;
5281       for( j = 0; j < _body.size(); j++ )
5282         if( _body.at(j) == n )
5283           break;
5284       if( j == _body.size() ) { // Not found in loop body
5285         // Last ditch effort to avoid assertion: Its possible that we
5286         // have some users (so outcnt not zero) but are still dead.
5287         // Try to find from root.
5288         if (Compile::current()->root()->find(n->_idx)) {
5289           fail++;
5290           tty->print("Verify has that we do not: ");
5291           n->dump();
5292         }
5293       }
5294     }
5295     assert( !fail, "loop body mismatch" );
5296   }
5297   */
5298   return success;
5299 }
5300 #endif
5301 
5302 //------------------------------set_idom---------------------------------------
5303 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
5304   _nesting.check(); // Check if a potential reallocation in the resource arena is safe
5305   uint idx = d->_idx;
5306   if (idx >= _idom_size) {
5307     uint newsize = next_power_of_2(idx);
5308     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
5309     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
5310     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
5311     _idom_size = newsize;
5312   }
5313   _idom[idx] = n;
5314   _dom_depth[idx] = dom_depth;
5315 }
5316 
5317 //------------------------------recompute_dom_depth---------------------------------------
5318 // The dominator tree is constructed with only parent pointers.
5319 // This recomputes the depth in the tree by first tagging all
5320 // nodes as "no depth yet" marker.  The next pass then runs up
5321 // the dom tree from each node marked "no depth yet", and computes
5322 // the depth on the way back down.
5323 void PhaseIdealLoop::recompute_dom_depth() {
5324   uint no_depth_marker = C->unique();
5325   uint i;
5326   // Initialize depth to "no depth yet" and realize all lazy updates
5327   for (i = 0; i < _idom_size; i++) {
5328     // Only indices with a _dom_depth has a Node* or null (otherwise uninitialized).
5329     if (_dom_depth[i] > 0 && _idom[i] != nullptr) {
5330       _dom_depth[i] = no_depth_marker;
5331 
5332       // heal _idom if it has a fwd mapping in _loop_or_ctrl
5333       if (_idom[i]->in(0) == nullptr) {
5334         idom(i);
5335       }
5336     }
5337   }
5338   if (_dom_stk == nullptr) {
5339     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
5340     if (init_size < 10) init_size = 10;
5341     _dom_stk = new GrowableArray<uint>(init_size);
5342   }
5343   // Compute new depth for each node.
5344   for (i = 0; i < _idom_size; i++) {
5345     uint j = i;
5346     // Run up the dom tree to find a node with a depth
5347     while (_dom_depth[j] == no_depth_marker) {
5348       _dom_stk->push(j);
5349       j = _idom[j]->_idx;
5350     }
5351     // Compute the depth on the way back down this tree branch
5352     uint dd = _dom_depth[j] + 1;
5353     while (_dom_stk->length() > 0) {
5354       uint j = _dom_stk->pop();
5355       _dom_depth[j] = dd;
5356       dd++;
5357     }
5358   }
5359 }
5360 
5361 //------------------------------sort-------------------------------------------
5362 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
5363 // loop tree, not the root.
5364 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
5365   if( !innermost ) return loop; // New innermost loop
5366 
5367   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
5368   assert( loop_preorder, "not yet post-walked loop" );
5369   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
5370   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
5371 
5372   // Insert at start of list
5373   while( l ) {                  // Insertion sort based on pre-order
5374     if( l == loop ) return innermost; // Already on list!
5375     int l_preorder = get_preorder(l->_head); // Cache pre-order number
5376     assert( l_preorder, "not yet post-walked l" );
5377     // Check header pre-order number to figure proper nesting
5378     if( loop_preorder > l_preorder )
5379       break;                    // End of insertion
5380     // If headers tie (e.g., shared headers) check tail pre-order numbers.
5381     // Since I split shared headers, you'd think this could not happen.
5382     // BUT: I must first do the preorder numbering before I can discover I
5383     // have shared headers, so the split headers all get the same preorder
5384     // number as the RegionNode they split from.
5385     if( loop_preorder == l_preorder &&
5386         get_preorder(loop->_tail) < get_preorder(l->_tail) )
5387       break;                    // Also check for shared headers (same pre#)
5388     pp = &l->_parent;           // Chain up list
5389     l = *pp;
5390   }
5391   // Link into list
5392   // Point predecessor to me
5393   *pp = loop;
5394   // Point me to successor
5395   IdealLoopTree *p = loop->_parent;
5396   loop->_parent = l;            // Point me to successor
5397   if( p ) sort( p, innermost ); // Insert my parents into list as well
5398   return innermost;
5399 }
5400 
5401 //------------------------------build_loop_tree--------------------------------
5402 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
5403 // bits.  The _loop_or_ctrl[] array is mapped by Node index and holds a null for
5404 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
5405 // tightest enclosing IdealLoopTree for post-walked.
5406 //
5407 // During my forward walk I do a short 1-layer lookahead to see if I can find
5408 // a loop backedge with that doesn't have any work on the backedge.  This
5409 // helps me construct nested loops with shared headers better.
5410 //
5411 // Once I've done the forward recursion, I do the post-work.  For each child
5412 // I check to see if there is a backedge.  Backedges define a loop!  I
5413 // insert an IdealLoopTree at the target of the backedge.
5414 //
5415 // During the post-work I also check to see if I have several children
5416 // belonging to different loops.  If so, then this Node is a decision point
5417 // where control flow can choose to change loop nests.  It is at this
5418 // decision point where I can figure out how loops are nested.  At this
5419 // time I can properly order the different loop nests from my children.
5420 // Note that there may not be any backedges at the decision point!
5421 //
5422 // Since the decision point can be far removed from the backedges, I can't
5423 // order my loops at the time I discover them.  Thus at the decision point
5424 // I need to inspect loop header pre-order numbers to properly nest my
5425 // loops.  This means I need to sort my childrens' loops by pre-order.
5426 // The sort is of size number-of-control-children, which generally limits
5427 // it to size 2 (i.e., I just choose between my 2 target loops).
5428 void PhaseIdealLoop::build_loop_tree() {
5429   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
5430   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
5431   Node *n = C->root();
5432   bltstack.push(n);
5433   int pre_order = 1;
5434   int stack_size;
5435 
5436   while ( ( stack_size = bltstack.length() ) != 0 ) {
5437     n = bltstack.top(); // Leave node on stack
5438     if ( !is_visited(n) ) {
5439       // ---- Pre-pass Work ----
5440       // Pre-walked but not post-walked nodes need a pre_order number.
5441 
5442       set_preorder_visited( n, pre_order ); // set as visited
5443 
5444       // ---- Scan over children ----
5445       // Scan first over control projections that lead to loop headers.
5446       // This helps us find inner-to-outer loops with shared headers better.
5447 
5448       // Scan children's children for loop headers.
5449       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
5450         Node* m = n->raw_out(i);       // Child
5451         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
5452           // Scan over children's children to find loop
5453           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5454             Node* l = m->fast_out(j);
5455             if( is_visited(l) &&       // Been visited?
5456                 !is_postvisited(l) &&  // But not post-visited
5457                 get_preorder(l) < pre_order ) { // And smaller pre-order
5458               // Found!  Scan the DFS down this path before doing other paths
5459               bltstack.push(m);
5460               break;
5461             }
5462           }
5463         }
5464       }
5465       pre_order++;
5466     }
5467     else if ( !is_postvisited(n) ) {
5468       // Note: build_loop_tree_impl() adds out edges on rare occasions,
5469       // such as com.sun.rsasign.am::a.
5470       // For non-recursive version, first, process current children.
5471       // On next iteration, check if additional children were added.
5472       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
5473         Node* u = n->raw_out(k);
5474         if ( u->is_CFG() && !is_visited(u) ) {
5475           bltstack.push(u);
5476         }
5477       }
5478       if ( bltstack.length() == stack_size ) {
5479         // There were no additional children, post visit node now
5480         (void)bltstack.pop(); // Remove node from stack
5481         pre_order = build_loop_tree_impl(n, pre_order);
5482         // Check for bailout
5483         if (C->failing()) {
5484           return;
5485         }
5486         // Check to grow _preorders[] array for the case when
5487         // build_loop_tree_impl() adds new nodes.
5488         check_grow_preorders();
5489       }
5490     }
5491     else {
5492       (void)bltstack.pop(); // Remove post-visited node from stack
5493     }
5494   }
5495   DEBUG_ONLY(verify_regions_in_irreducible_loops();)
5496 }
5497 
5498 //------------------------------build_loop_tree_impl---------------------------
5499 int PhaseIdealLoop::build_loop_tree_impl(Node* n, int pre_order) {
5500   // ---- Post-pass Work ----
5501   // Pre-walked but not post-walked nodes need a pre_order number.
5502 
5503   // Tightest enclosing loop for this Node
5504   IdealLoopTree *innermost = nullptr;
5505 
5506   // For all children, see if any edge is a backedge.  If so, make a loop
5507   // for it.  Then find the tightest enclosing loop for the self Node.
5508   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5509     Node* m = n->fast_out(i);   // Child
5510     if (n == m) continue;      // Ignore control self-cycles
5511     if (!m->is_CFG()) continue;// Ignore non-CFG edges
5512 
5513     IdealLoopTree *l;           // Child's loop
5514     if (!is_postvisited(m)) {  // Child visited but not post-visited?
5515       // Found a backedge
5516       assert(get_preorder(m) < pre_order, "should be backedge");
5517       // Check for the RootNode, which is already a LoopNode and is allowed
5518       // to have multiple "backedges".
5519       if (m == C->root()) {     // Found the root?
5520         l = _ltree_root;        // Root is the outermost LoopNode
5521       } else {                  // Else found a nested loop
5522         // Insert a LoopNode to mark this loop.
5523         l = new IdealLoopTree(this, m, n);
5524       } // End of Else found a nested loop
5525       if (!has_loop(m)) {        // If 'm' does not already have a loop set
5526         set_loop(m, l);         // Set loop header to loop now
5527       }
5528     } else {                    // Else not a nested loop
5529       if (!_loop_or_ctrl[m->_idx]) continue; // Dead code has no loop
5530       IdealLoopTree* m_loop = get_loop(m);
5531       l = m_loop;          // Get previously determined loop
5532       // If successor is header of a loop (nest), move up-loop till it
5533       // is a member of some outer enclosing loop.  Since there are no
5534       // shared headers (I've split them already) I only need to go up
5535       // at most 1 level.
5536       while (l && l->_head == m) { // Successor heads loop?
5537         l = l->_parent;         // Move up 1 for me
5538       }
5539       // If this loop is not properly parented, then this loop
5540       // has no exit path out, i.e. its an infinite loop.
5541       if (!l) {
5542         // Make loop "reachable" from root so the CFG is reachable.  Basically
5543         // insert a bogus loop exit that is never taken.  'm', the loop head,
5544         // points to 'n', one (of possibly many) fall-in paths.  There may be
5545         // many backedges as well.
5546 
5547         if (!_verify_only) {
5548           // Insert the NeverBranch between 'm' and it's control user.
5549           NeverBranchNode *iff = new NeverBranchNode( m );
5550           _igvn.register_new_node_with_optimizer(iff);
5551           set_loop(iff, m_loop);
5552           Node *if_t = new CProjNode( iff, 0 );
5553           _igvn.register_new_node_with_optimizer(if_t);
5554           set_loop(if_t, m_loop);
5555 
5556           Node* cfg = nullptr;       // Find the One True Control User of m
5557           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5558             Node* x = m->fast_out(j);
5559             if (x->is_CFG() && x != m && x != iff)
5560               { cfg = x; break; }
5561           }
5562           assert(cfg != nullptr, "must find the control user of m");
5563           uint k = 0;             // Probably cfg->in(0)
5564           while( cfg->in(k) != m ) k++; // But check in case cfg is a Region
5565           _igvn.replace_input_of(cfg, k, if_t); // Now point to NeverBranch
5566 
5567           // Now create the never-taken loop exit
5568           Node *if_f = new CProjNode( iff, 1 );
5569           _igvn.register_new_node_with_optimizer(if_f);
5570           set_loop(if_f, _ltree_root);
5571           // Find frame ptr for Halt.  Relies on the optimizer
5572           // V-N'ing.  Easier and quicker than searching through
5573           // the program structure.
5574           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
5575           _igvn.register_new_node_with_optimizer(frame);
5576           // Halt & Catch Fire
5577           Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached");
5578           _igvn.register_new_node_with_optimizer(halt);
5579           set_loop(halt, _ltree_root);
5580           _igvn.add_input_to(C->root(), halt);
5581         }
5582         set_loop(C->root(), _ltree_root);
5583         // move to outer most loop with same header
5584         l = m_loop;
5585         while (true) {
5586           IdealLoopTree* next = l->_parent;
5587           if (next == nullptr || next->_head != m) {
5588             break;
5589           }
5590           l = next;
5591         }
5592         // properly insert infinite loop in loop tree
5593         sort(_ltree_root, l);
5594         // fix child link from parent
5595         IdealLoopTree* p = l->_parent;
5596         l->_next = p->_child;
5597         p->_child = l;
5598         // code below needs enclosing loop
5599         l = l->_parent;
5600       }
5601     }
5602     if (is_postvisited(l->_head)) {
5603       // We are currently visiting l, but its head has already been post-visited.
5604       // l is irreducible: we just found a second entry m.
5605       _has_irreducible_loops = true;
5606       RegionNode* secondary_entry = m->as_Region();
5607 
5608       if (!secondary_entry->can_be_irreducible_entry()) {
5609         assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing.");
5610         C->record_method_not_compilable("A new irreducible loop was created after parsing.");
5611         return pre_order;
5612       }
5613 
5614       // Walk up the loop-tree, mark all loops that are already post-visited as irreducible
5615       // Since m is a secondary entry to them all.
5616       while( is_postvisited(l->_head) ) {
5617         l->_irreducible = 1; // = true
5618         RegionNode* head = l->_head->as_Region();
5619         if (!head->can_be_irreducible_entry()) {
5620           assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing.");
5621           C->record_method_not_compilable("A new irreducible loop was created after parsing.");
5622           return pre_order;
5623         }
5624         l = l->_parent;
5625         // Check for bad CFG here to prevent crash, and bailout of compile
5626         if (l == nullptr) {
5627 #ifndef PRODUCT
5628           if (TraceLoopOpts) {
5629             tty->print_cr("bailout: unhandled CFG: infinite irreducible loop");
5630             m->dump();
5631           }
5632 #endif
5633           // This is a rare case that we do not want to handle in C2.
5634           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
5635           return pre_order;
5636         }
5637       }
5638     }
5639     if (!_verify_only) {
5640       C->set_has_irreducible_loop(_has_irreducible_loops);
5641     }
5642 
5643     // This Node might be a decision point for loops.  It is only if
5644     // it's children belong to several different loops.  The sort call
5645     // does a trivial amount of work if there is only 1 child or all
5646     // children belong to the same loop.  If however, the children
5647     // belong to different loops, the sort call will properly set the
5648     // _parent pointers to show how the loops nest.
5649     //
5650     // In any case, it returns the tightest enclosing loop.
5651     innermost = sort( l, innermost );
5652   }
5653 
5654   // Def-use info will have some dead stuff; dead stuff will have no
5655   // loop decided on.
5656 
5657   // Am I a loop header?  If so fix up my parent's child and next ptrs.
5658   if( innermost && innermost->_head == n ) {
5659     assert( get_loop(n) == innermost, "" );
5660     IdealLoopTree *p = innermost->_parent;
5661     IdealLoopTree *l = innermost;
5662     while (p && l->_head == n) {
5663       l->_next = p->_child;     // Put self on parents 'next child'
5664       p->_child = l;            // Make self as first child of parent
5665       l = p;                    // Now walk up the parent chain
5666       p = l->_parent;
5667     }
5668   } else {
5669     // Note that it is possible for a LoopNode to reach here, if the
5670     // backedge has been made unreachable (hence the LoopNode no longer
5671     // denotes a Loop, and will eventually be removed).
5672 
5673     // Record tightest enclosing loop for self.  Mark as post-visited.
5674     set_loop(n, innermost);
5675     // Also record has_call flag early on
5676     if (innermost) {
5677       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
5678         // Do not count uncommon calls
5679         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
5680           Node *iff = n->in(0)->in(0);
5681           // No any calls for vectorized loops.
5682           if (C->do_superword() ||
5683               !iff->is_If() ||
5684               (n->in(0)->Opcode() == Op_IfFalse && (1.0 - iff->as_If()->_prob) >= 0.01) ||
5685               iff->as_If()->_prob >= 0.01) {
5686             innermost->_has_call = 1;
5687           }
5688         }
5689       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
5690         // Disable loop optimizations if the loop has a scalar replaceable
5691         // allocation. This disabling may cause a potential performance lost
5692         // if the allocation is not eliminated for some reason.
5693         innermost->_allow_optimizations = false;
5694         innermost->_has_call = 1; // = true
5695       } else if (n->Opcode() == Op_SafePoint) {
5696         // Record all safepoints in this loop.
5697         if (innermost->_safepts == nullptr) innermost->_safepts = new Node_List();
5698         innermost->_safepts->push(n);
5699       }
5700     }
5701   }
5702 
5703   // Flag as post-visited now
5704   set_postvisited(n);
5705   return pre_order;
5706 }
5707 
5708 #ifdef ASSERT
5709 //--------------------------verify_regions_in_irreducible_loops----------------
5710 // Iterate down from Root through CFG, verify for every region:
5711 // if it is in an irreducible loop it must be marked as such
5712 void PhaseIdealLoop::verify_regions_in_irreducible_loops() {
5713   ResourceMark rm;
5714   if (!_has_irreducible_loops) {
5715     // last build_loop_tree has not found any irreducible loops
5716     // hence no region has to be marked is_in_irreduible_loop
5717     return;
5718   }
5719 
5720   RootNode* root = C->root();
5721   Unique_Node_List worklist; // visit all nodes once
5722   worklist.push(root);
5723   bool failure = false;
5724   for (uint i = 0; i < worklist.size(); i++) {
5725     Node* n = worklist.at(i);
5726     if (n->is_Region()) {
5727       RegionNode* region = n->as_Region();
5728       if (is_in_irreducible_loop(region) &&
5729           region->loop_status() == RegionNode::LoopStatus::Reducible) {
5730         failure = true;
5731         tty->print("irreducible! ");
5732         region->dump();
5733       }
5734     }
5735     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
5736       Node* use = n->fast_out(j);
5737       if (use->is_CFG()) {
5738         worklist.push(use); // push if was not pushed before
5739       }
5740     }
5741   }
5742   assert(!failure, "region in irreducible loop was marked as reducible");
5743 }
5744 
5745 //---------------------------is_in_irreducible_loop-------------------------
5746 // Analogous to ciTypeFlow::Block::is_in_irreducible_loop
5747 bool PhaseIdealLoop::is_in_irreducible_loop(RegionNode* region) {
5748   if (!_has_irreducible_loops) {
5749     return false; // no irreducible loop in graph
5750   }
5751   IdealLoopTree* l = get_loop(region); // l: innermost loop that contains region
5752   do {
5753     if (l->_irreducible) {
5754       return true; // found it
5755     }
5756     if (l == _ltree_root) {
5757       return false; // reached root, terimnate
5758     }
5759     l = l->_parent;
5760   } while (l != nullptr);
5761   assert(region->is_in_infinite_subgraph(), "must be in infinite subgraph");
5762   // We have "l->_parent == nullptr", which happens only for infinite loops,
5763   // where no parent is attached to the loop. We did not find any irreducible
5764   // loop from this block out to lp. Thus lp only has one entry, and no exit
5765   // (it is infinite and reducible). We can always rewrite an infinite loop
5766   // that is nested inside other loops:
5767   // while(condition) { infinite_loop; }
5768   // with an equivalent program where the infinite loop is an outermost loop
5769   // that is not nested in any loop:
5770   // while(condition) { break; } infinite_loop;
5771   // Thus, we can understand lp as an outermost loop, and can terminate and
5772   // conclude: this block is in no irreducible loop.
5773   return false;
5774 }
5775 #endif
5776 
5777 //------------------------------build_loop_early-------------------------------
5778 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
5779 // First pass computes the earliest controlling node possible.  This is the
5780 // controlling input with the deepest dominating depth.
5781 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
5782   while (worklist.size() != 0) {
5783     // Use local variables nstack_top_n & nstack_top_i to cache values
5784     // on nstack's top.
5785     Node *nstack_top_n = worklist.pop();
5786     uint  nstack_top_i = 0;
5787 //while_nstack_nonempty:
5788     while (true) {
5789       // Get parent node and next input's index from stack's top.
5790       Node  *n = nstack_top_n;
5791       uint   i = nstack_top_i;
5792       uint cnt = n->req(); // Count of inputs
5793       if (i == 0) {        // Pre-process the node.
5794         if( has_node(n) &&            // Have either loop or control already?
5795             !has_ctrl(n) ) {          // Have loop picked out already?
5796           // During "merge_many_backedges" we fold up several nested loops
5797           // into a single loop.  This makes the members of the original
5798           // loop bodies pointing to dead loops; they need to move up
5799           // to the new UNION'd larger loop.  I set the _head field of these
5800           // dead loops to null and the _parent field points to the owning
5801           // loop.  Shades of UNION-FIND algorithm.
5802           IdealLoopTree *ilt;
5803           while( !(ilt = get_loop(n))->_head ) {
5804             // Normally I would use a set_loop here.  But in this one special
5805             // case, it is legal (and expected) to change what loop a Node
5806             // belongs to.
5807             _loop_or_ctrl.map(n->_idx, (Node*)(ilt->_parent));
5808           }
5809           // Remove safepoints ONLY if I've already seen I don't need one.
5810           // (the old code here would yank a 2nd safepoint after seeing a
5811           // first one, even though the 1st did not dominate in the loop body
5812           // and thus could be avoided indefinitely)
5813           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
5814               is_deleteable_safept(n)) {
5815             Node *in = n->in(TypeFunc::Control);
5816             lazy_replace(n,in);       // Pull safepoint now
5817             if (ilt->_safepts != nullptr) {
5818               ilt->_safepts->yank(n);
5819             }
5820             // Carry on with the recursion "as if" we are walking
5821             // only the control input
5822             if( !visited.test_set( in->_idx ) ) {
5823               worklist.push(in);      // Visit this guy later, using worklist
5824             }
5825             // Get next node from nstack:
5826             // - skip n's inputs processing by setting i > cnt;
5827             // - we also will not call set_early_ctrl(n) since
5828             //   has_node(n) == true (see the condition above).
5829             i = cnt + 1;
5830           }
5831         }
5832       } // if (i == 0)
5833 
5834       // Visit all inputs
5835       bool done = true;       // Assume all n's inputs will be processed
5836       while (i < cnt) {
5837         Node *in = n->in(i);
5838         ++i;
5839         if (in == nullptr) continue;
5840         if (in->pinned() && !in->is_CFG())
5841           set_ctrl(in, in->in(0));
5842         int is_visited = visited.test_set( in->_idx );
5843         if (!has_node(in)) {  // No controlling input yet?
5844           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
5845           assert( !is_visited, "visit only once" );
5846           nstack.push(n, i);  // Save parent node and next input's index.
5847           nstack_top_n = in;  // Process current input now.
5848           nstack_top_i = 0;
5849           done = false;       // Not all n's inputs processed.
5850           break; // continue while_nstack_nonempty;
5851         } else if (!is_visited) {
5852           // This guy has a location picked out for him, but has not yet
5853           // been visited.  Happens to all CFG nodes, for instance.
5854           // Visit him using the worklist instead of recursion, to break
5855           // cycles.  Since he has a location already we do not need to
5856           // find his location before proceeding with the current Node.
5857           worklist.push(in);  // Visit this guy later, using worklist
5858         }
5859       }
5860       if (done) {
5861         // All of n's inputs have been processed, complete post-processing.
5862 
5863         // Compute earliest point this Node can go.
5864         // CFG, Phi, pinned nodes already know their controlling input.
5865         if (!has_node(n)) {
5866           // Record earliest legal location
5867           set_early_ctrl(n, false);
5868         }
5869         if (nstack.is_empty()) {
5870           // Finished all nodes on stack.
5871           // Process next node on the worklist.
5872           break;
5873         }
5874         // Get saved parent node and next input's index.
5875         nstack_top_n = nstack.node();
5876         nstack_top_i = nstack.index();
5877         nstack.pop();
5878       }
5879     } // while (true)
5880   }
5881 }
5882 
5883 //------------------------------dom_lca_internal--------------------------------
5884 // Pair-wise LCA
5885 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
5886   if( !n1 ) return n2;          // Handle null original LCA
5887   assert( n1->is_CFG(), "" );
5888   assert( n2->is_CFG(), "" );
5889   // find LCA of all uses
5890   uint d1 = dom_depth(n1);
5891   uint d2 = dom_depth(n2);
5892   while (n1 != n2) {
5893     if (d1 > d2) {
5894       n1 =      idom(n1);
5895       d1 = dom_depth(n1);
5896     } else if (d1 < d2) {
5897       n2 =      idom(n2);
5898       d2 = dom_depth(n2);
5899     } else {
5900       // Here d1 == d2.  Due to edits of the dominator-tree, sections
5901       // of the tree might have the same depth.  These sections have
5902       // to be searched more carefully.
5903 
5904       // Scan up all the n1's with equal depth, looking for n2.
5905       Node *t1 = idom(n1);
5906       while (dom_depth(t1) == d1) {
5907         if (t1 == n2)  return n2;
5908         t1 = idom(t1);
5909       }
5910       // Scan up all the n2's with equal depth, looking for n1.
5911       Node *t2 = idom(n2);
5912       while (dom_depth(t2) == d2) {
5913         if (t2 == n1)  return n1;
5914         t2 = idom(t2);
5915       }
5916       // Move up to a new dominator-depth value as well as up the dom-tree.
5917       n1 = t1;
5918       n2 = t2;
5919       d1 = dom_depth(n1);
5920       d2 = dom_depth(n2);
5921     }
5922   }
5923   return n1;
5924 }
5925 
5926 //------------------------------compute_idom-----------------------------------
5927 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
5928 // IDOMs are correct.
5929 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
5930   assert( region->is_Region(), "" );
5931   Node *LCA = nullptr;
5932   for( uint i = 1; i < region->req(); i++ ) {
5933     if( region->in(i) != C->top() )
5934       LCA = dom_lca( LCA, region->in(i) );
5935   }
5936   return LCA;
5937 }
5938 
5939 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
5940   bool had_error = false;
5941 #ifdef ASSERT
5942   if (early != C->root()) {
5943     // Make sure that there's a dominance path from LCA to early
5944     Node* d = LCA;
5945     while (d != early) {
5946       if (d == C->root()) {
5947         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
5948         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
5949         had_error = true;
5950         break;
5951       }
5952       d = idom(d);
5953     }
5954   }
5955 #endif
5956   return had_error;
5957 }
5958 
5959 
5960 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
5961   // Compute LCA over list of uses
5962   bool had_error = false;
5963   Node *LCA = nullptr;
5964   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
5965     Node* c = n->fast_out(i);
5966     if (_loop_or_ctrl[c->_idx] == nullptr)
5967       continue;                 // Skip the occasional dead node
5968     if( c->is_Phi() ) {         // For Phis, we must land above on the path
5969       for( uint j=1; j<c->req(); j++ ) {// For all inputs
5970         if( c->in(j) == n ) {   // Found matching input?
5971           Node *use = c->in(0)->in(j);
5972           if (_verify_only && use->is_top()) continue;
5973           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
5974           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
5975         }
5976       }
5977     } else {
5978       // For CFG data-users, use is in the block just prior
5979       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
5980       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
5981       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
5982     }
5983   }
5984   assert(!had_error, "bad dominance");
5985   return LCA;
5986 }
5987 
5988 // Check the shape of the graph at the loop entry. In some cases,
5989 // the shape of the graph does not match the shape outlined below.
5990 // That is caused by the Opaque1 node "protecting" the shape of
5991 // the graph being removed by, for example, the IGVN performed
5992 // in PhaseIdealLoop::build_and_optimize().
5993 //
5994 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
5995 // loop unswitching, and IGVN, or a combination of them) can freely change
5996 // the graph's shape. As a result, the graph shape outlined below cannot
5997 // be guaranteed anymore.
5998 Node* CountedLoopNode::is_canonical_loop_entry() {
5999   if (!is_main_loop() && !is_post_loop()) {
6000     return nullptr;
6001   }
6002   Node* ctrl = skip_assertion_predicates_with_halt();
6003 
6004   if (ctrl == nullptr || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
6005     return nullptr;
6006   }
6007   Node* iffm = ctrl->in(0);
6008   if (iffm == nullptr || iffm->Opcode() != Op_If) {
6009     return nullptr;
6010   }
6011   Node* bolzm = iffm->in(1);
6012   if (bolzm == nullptr || !bolzm->is_Bool()) {
6013     return nullptr;
6014   }
6015   Node* cmpzm = bolzm->in(1);
6016   if (cmpzm == nullptr || !cmpzm->is_Cmp()) {
6017     return nullptr;
6018   }
6019 
6020   uint input = is_main_loop() ? 2 : 1;
6021   if (input >= cmpzm->req() || cmpzm->in(input) == nullptr) {
6022     return nullptr;
6023   }
6024   bool res = cmpzm->in(input)->Opcode() == Op_OpaqueZeroTripGuard;
6025 #ifdef ASSERT
6026   bool found_opaque = false;
6027   for (uint i = 1; i < cmpzm->req(); i++) {
6028     Node* opnd = cmpzm->in(i);
6029     if (opnd && opnd->is_Opaque1()) {
6030       found_opaque = true;
6031       break;
6032     }
6033   }
6034   assert(found_opaque == res, "wrong pattern");
6035 #endif
6036   return res ? cmpzm->in(input) : nullptr;
6037 }
6038 
6039 // Find pre loop end from main loop. Returns nullptr if none.
6040 CountedLoopEndNode* CountedLoopNode::find_pre_loop_end() {
6041   assert(is_main_loop(), "Can only find pre-loop from main-loop");
6042   // The loop cannot be optimized if the graph shape at the loop entry is
6043   // inappropriate.
6044   if (is_canonical_loop_entry() == nullptr) {
6045     return nullptr;
6046   }
6047 
6048   Node* p_f = skip_assertion_predicates_with_halt()->in(0)->in(0);
6049   if (!p_f->is_IfFalse() || !p_f->in(0)->is_CountedLoopEnd()) {
6050     return nullptr;
6051   }
6052   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
6053   CountedLoopNode* loop_node = pre_end->loopnode();
6054   if (loop_node == nullptr || !loop_node->is_pre_loop()) {
6055     return nullptr;
6056   }
6057   return pre_end;
6058 }
6059 
6060 //------------------------------get_late_ctrl----------------------------------
6061 // Compute latest legal control.
6062 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
6063   assert(early != nullptr, "early control should not be null");
6064 
6065   Node* LCA = compute_lca_of_uses(n, early);
6066 #ifdef ASSERT
6067   if (LCA == C->root() && LCA != early) {
6068     // def doesn't dominate uses so print some useful debugging output
6069     compute_lca_of_uses(n, early, true);
6070   }
6071 #endif
6072 
6073   if (n->is_Load() && LCA != early) {
6074     LCA = get_late_ctrl_with_anti_dep(n->as_Load(), early, LCA);
6075   }
6076 
6077   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
6078   return LCA;
6079 }
6080 
6081 // if this is a load, check for anti-dependent stores
6082 // We use a conservative algorithm to identify potential interfering
6083 // instructions and for rescheduling the load.  The users of the memory
6084 // input of this load are examined.  Any use which is not a load and is
6085 // dominated by early is considered a potentially interfering store.
6086 // This can produce false positives.
6087 Node* PhaseIdealLoop::get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA) {
6088   int load_alias_idx = C->get_alias_index(n->adr_type());
6089   if (C->alias_type(load_alias_idx)->is_rewritable()) {
6090     Unique_Node_List worklist;
6091 
6092     Node* mem = n->in(MemNode::Memory);
6093     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
6094       Node* s = mem->fast_out(i);
6095       worklist.push(s);
6096     }
6097     for (uint i = 0; i < worklist.size() && LCA != early; i++) {
6098       Node* s = worklist.at(i);
6099       if (s->is_Load() || s->Opcode() == Op_SafePoint ||
6100           (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) ||
6101           s->is_Phi()) {
6102         continue;
6103       } else if (s->is_MergeMem()) {
6104         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6105           Node* s1 = s->fast_out(i);
6106           worklist.push(s1);
6107         }
6108       } else {
6109         Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
6110         assert(sctrl != nullptr || !s->is_reachable_from_root(), "must have control");
6111         if (sctrl != nullptr && !sctrl->is_top() && is_dominator(early, sctrl)) {
6112           const TypePtr* adr_type = s->adr_type();
6113           if (s->is_ArrayCopy()) {
6114             // Copy to known instance needs destination type to test for aliasing
6115             const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type;
6116             if (dest_type != TypeOopPtr::BOTTOM) {
6117               adr_type = dest_type;
6118             }
6119           }
6120           if (C->can_alias(adr_type, load_alias_idx)) {
6121             LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
6122           } else if (s->is_CFG() && s->is_Multi()) {
6123             // Look for the memory use of s (that is the use of its memory projection)
6124             for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6125               Node* s1 = s->fast_out(i);
6126               assert(s1->is_Proj(), "projection expected");
6127               if (_igvn.type(s1) == Type::MEMORY) {
6128                 for (DUIterator_Fast jmax, j = s1->fast_outs(jmax); j < jmax; j++) {
6129                   Node* s2 = s1->fast_out(j);
6130                   worklist.push(s2);
6131                 }
6132               }
6133             }
6134           }
6135         }
6136       }
6137     }
6138     // For Phis only consider Region's inputs that were reached by following the memory edges
6139     if (LCA != early) {
6140       for (uint i = 0; i < worklist.size(); i++) {
6141         Node* s = worklist.at(i);
6142         if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) {
6143           Node* r = s->in(0);
6144           for (uint j = 1; j < s->req(); j++) {
6145             Node* in = s->in(j);
6146             Node* r_in = r->in(j);
6147             // We can't reach any node from a Phi because we don't enqueue Phi's uses above
6148             if (((worklist.member(in) && !in->is_Phi()) || in == mem) && is_dominator(early, r_in)) {
6149               LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n);
6150             }
6151           }
6152         }
6153       }
6154     }
6155   }
6156   return LCA;
6157 }
6158 
6159 // Is CFG node 'dominator' dominating node 'n'?
6160 bool PhaseIdealLoop::is_dominator(Node* dominator, Node* n) {
6161   if (dominator == n) {
6162     return true;
6163   }
6164   assert(dominator->is_CFG() && n->is_CFG(), "must have CFG nodes");
6165   uint dd = dom_depth(dominator);
6166   while (dom_depth(n) >= dd) {
6167     if (n == dominator) {
6168       return true;
6169     }
6170     n = idom(n);
6171   }
6172   return false;
6173 }
6174 
6175 // Is CFG node 'dominator' strictly dominating node 'n'?
6176 bool PhaseIdealLoop::is_strict_dominator(Node* dominator, Node* n) {
6177   return dominator != n && is_dominator(dominator, n);
6178 }
6179 
6180 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
6181 // Pair-wise LCA with tags.
6182 // Tag each index with the node 'tag' currently being processed
6183 // before advancing up the dominator chain using idom().
6184 // Later calls that find a match to 'tag' know that this path has already
6185 // been considered in the current LCA (which is input 'n1' by convention).
6186 // Since get_late_ctrl() is only called once for each node, the tag array
6187 // does not need to be cleared between calls to get_late_ctrl().
6188 // Algorithm trades a larger constant factor for better asymptotic behavior
6189 //
6190 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal(Node *n1, Node *n2, Node *tag_node) {
6191   uint d1 = dom_depth(n1);
6192   uint d2 = dom_depth(n2);
6193   jlong tag = tag_node->_idx | (((jlong)_dom_lca_tags_round) << 32);
6194 
6195   do {
6196     if (d1 > d2) {
6197       // current lca is deeper than n2
6198       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6199       n1 =      idom(n1);
6200       d1 = dom_depth(n1);
6201     } else if (d1 < d2) {
6202       // n2 is deeper than current lca
6203       jlong memo = _dom_lca_tags.at_grow(n2->_idx, 0);
6204       if (memo == tag) {
6205         return n1;    // Return the current LCA
6206       }
6207       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6208       n2 =      idom(n2);
6209       d2 = dom_depth(n2);
6210     } else {
6211       // Here d1 == d2.  Due to edits of the dominator-tree, sections
6212       // of the tree might have the same depth.  These sections have
6213       // to be searched more carefully.
6214 
6215       // Scan up all the n1's with equal depth, looking for n2.
6216       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6217       Node *t1 = idom(n1);
6218       while (dom_depth(t1) == d1) {
6219         if (t1 == n2)  return n2;
6220         _dom_lca_tags.at_put_grow(t1->_idx, tag);
6221         t1 = idom(t1);
6222       }
6223       // Scan up all the n2's with equal depth, looking for n1.
6224       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6225       Node *t2 = idom(n2);
6226       while (dom_depth(t2) == d2) {
6227         if (t2 == n1)  return n1;
6228         _dom_lca_tags.at_put_grow(t2->_idx, tag);
6229         t2 = idom(t2);
6230       }
6231       // Move up to a new dominator-depth value as well as up the dom-tree.
6232       n1 = t1;
6233       n2 = t2;
6234       d1 = dom_depth(n1);
6235       d2 = dom_depth(n2);
6236     }
6237   } while (n1 != n2);
6238   return n1;
6239 }
6240 
6241 //------------------------------init_dom_lca_tags------------------------------
6242 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
6243 // Intended use does not involve any growth for the array, so it could
6244 // be of fixed size.
6245 void PhaseIdealLoop::init_dom_lca_tags() {
6246   uint limit = C->unique() + 1;
6247   _dom_lca_tags.at_grow(limit, 0);
6248   _dom_lca_tags_round = 0;
6249 #ifdef ASSERT
6250   for (uint i = 0; i < limit; ++i) {
6251     assert(_dom_lca_tags.at(i) == 0, "Must be distinct from each node pointer");
6252   }
6253 #endif // ASSERT
6254 }
6255 
6256 //------------------------------build_loop_late--------------------------------
6257 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6258 // Second pass finds latest legal placement, and ideal loop placement.
6259 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
6260   while (worklist.size() != 0) {
6261     Node *n = worklist.pop();
6262     // Only visit once
6263     if (visited.test_set(n->_idx)) continue;
6264     uint cnt = n->outcnt();
6265     uint   i = 0;
6266     while (true) {
6267       assert(_loop_or_ctrl[n->_idx], "no dead nodes");
6268       // Visit all children
6269       if (i < cnt) {
6270         Node* use = n->raw_out(i);
6271         ++i;
6272         // Check for dead uses.  Aggressively prune such junk.  It might be
6273         // dead in the global sense, but still have local uses so I cannot
6274         // easily call 'remove_dead_node'.
6275         if (_loop_or_ctrl[use->_idx] != nullptr || use->is_top()) { // Not dead?
6276           // Due to cycles, we might not hit the same fixed point in the verify
6277           // pass as we do in the regular pass.  Instead, visit such phis as
6278           // simple uses of the loop head.
6279           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
6280             if( !visited.test(use->_idx) )
6281               worklist.push(use);
6282           } else if( !visited.test_set(use->_idx) ) {
6283             nstack.push(n, i); // Save parent and next use's index.
6284             n   = use;         // Process all children of current use.
6285             cnt = use->outcnt();
6286             i   = 0;
6287           }
6288         } else {
6289           // Do not visit around the backedge of loops via data edges.
6290           // push dead code onto a worklist
6291           _deadlist.push(use);
6292         }
6293       } else {
6294         // All of n's children have been processed, complete post-processing.
6295         build_loop_late_post(n);
6296         if (C->failing()) { return; }
6297         if (nstack.is_empty()) {
6298           // Finished all nodes on stack.
6299           // Process next node on the worklist.
6300           break;
6301         }
6302         // Get saved parent node and next use's index. Visit the rest of uses.
6303         n   = nstack.node();
6304         cnt = n->outcnt();
6305         i   = nstack.index();
6306         nstack.pop();
6307       }
6308     }
6309   }
6310 }
6311 
6312 // Verify that no data node is scheduled in the outer loop of a strip
6313 // mined loop.
6314 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
6315 #ifdef ASSERT
6316   if (get_loop(least)->_nest == 0) {
6317     return;
6318   }
6319   IdealLoopTree* loop = get_loop(least);
6320   Node* head = loop->_head;
6321   if (head->is_OuterStripMinedLoop() &&
6322       // Verification can't be applied to fully built strip mined loops
6323       head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) {
6324     Node* sfpt = head->as_Loop()->outer_safepoint();
6325     ResourceMark rm;
6326     Unique_Node_List wq;
6327     wq.push(sfpt);
6328     for (uint i = 0; i < wq.size(); i++) {
6329       Node *m = wq.at(i);
6330       for (uint i = 1; i < m->req(); i++) {
6331         Node* nn = m->in(i);
6332         if (nn == n) {
6333           return;
6334         }
6335         if (nn != nullptr && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
6336           wq.push(nn);
6337         }
6338       }
6339     }
6340     ShouldNotReachHere();
6341   }
6342 #endif
6343 }
6344 
6345 
6346 //------------------------------build_loop_late_post---------------------------
6347 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6348 // Second pass finds latest legal placement, and ideal loop placement.
6349 void PhaseIdealLoop::build_loop_late_post(Node *n) {
6350   build_loop_late_post_work(n, true);
6351 }
6352 
6353 // Class to visit all predicates in a predicate chain to find out which are dominated by a given node. Keeps track of
6354 // the entry to the earliest predicate that is still dominated by the given dominator. This class is used when trying to
6355 // legally skip all predicates when figuring out the latest placement such that a node does not interfere with Loop
6356 // Predication or creating a Loop Limit Check Predicate later.
6357 class DominatedPredicates : public UnifiedPredicateVisitor {
6358   Node* const _dominator;
6359   Node* _earliest_dominated_predicate_entry;
6360   bool _should_continue;
6361   PhaseIdealLoop* const _phase;
6362 
6363  public:
6364   DominatedPredicates(Node* dominator, Node* start_node, PhaseIdealLoop* phase)
6365       : _dominator(dominator),
6366         _earliest_dominated_predicate_entry(start_node),
6367         _should_continue(true),
6368         _phase(phase) {}
6369   NONCOPYABLE(DominatedPredicates);
6370 
6371   bool should_continue() const override {
6372     return _should_continue;
6373   }
6374 
6375   // Returns the entry to the earliest predicate that is still dominated by the given dominator (all could be dominated).
6376   Node* earliest_dominated_predicate_entry() const {
6377     return _earliest_dominated_predicate_entry;
6378   }
6379 
6380   void visit_predicate(const Predicate& predicate) override {
6381     Node* entry = predicate.entry();
6382     if (_phase->is_strict_dominator(entry, _dominator)) {
6383       _should_continue = false;
6384     } else {
6385       _earliest_dominated_predicate_entry = entry;
6386     }
6387   }
6388 };
6389 
6390 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) {
6391 
6392   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
6393     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
6394   }
6395 
6396 #ifdef ASSERT
6397   if (_verify_only && !n->is_CFG()) {
6398     // Check def-use domination.
6399     // We would like to expose this check in product but it appears to be expensive.
6400     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
6401   }
6402 #endif
6403 
6404   // CFG and pinned nodes already handled
6405   if( n->in(0) ) {
6406     if( n->in(0)->is_top() ) return; // Dead?
6407 
6408     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
6409     // _must_ be pinned (they have to observe their control edge of course).
6410     // Unlike Stores (which modify an unallocable resource, the memory
6411     // state), Mods/Loads can float around.  So free them up.
6412     switch( n->Opcode() ) {
6413     case Op_DivI:
6414     case Op_DivF:
6415     case Op_DivD:
6416     case Op_ModI:
6417     case Op_LoadB:              // Same with Loads; they can sink
6418     case Op_LoadUB:             // during loop optimizations.
6419     case Op_LoadUS:
6420     case Op_LoadD:
6421     case Op_LoadF:
6422     case Op_LoadI:
6423     case Op_LoadKlass:
6424     case Op_LoadNKlass:
6425     case Op_LoadL:
6426     case Op_LoadS:
6427     case Op_LoadP:
6428     case Op_LoadN:
6429     case Op_LoadRange:
6430     case Op_LoadD_unaligned:
6431     case Op_LoadL_unaligned:
6432     case Op_StrComp:            // Does a bunch of load-like effects
6433     case Op_StrEquals:
6434     case Op_StrIndexOf:
6435     case Op_StrIndexOfChar:
6436     case Op_AryEq:
6437     case Op_VectorizedHashCode:
6438     case Op_CountPositives:
6439       pinned = false;
6440     }
6441     if (n->is_CMove() || n->is_ConstraintCast()) {
6442       pinned = false;
6443     }
6444     if( pinned ) {
6445       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
6446       if( !chosen_loop->_child )       // Inner loop?
6447         chosen_loop->_body.push(n); // Collect inner loops
6448       return;
6449     }
6450   } else {                      // No slot zero
6451     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
6452       _loop_or_ctrl.map(n->_idx,nullptr); // No block setting, it's globally dead
6453       return;
6454     }
6455     assert(!n->is_CFG() || n->outcnt() == 0, "");
6456   }
6457 
6458   // Do I have a "safe range" I can select over?
6459   Node *early = get_ctrl(n);// Early location already computed
6460 
6461   // Compute latest point this Node can go
6462   Node *LCA = get_late_ctrl( n, early );
6463   // LCA is null due to uses being dead
6464   if( LCA == nullptr ) {
6465 #ifdef ASSERT
6466     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
6467       assert(_loop_or_ctrl[n->out(i1)->_idx] == nullptr, "all uses must also be dead");
6468     }
6469 #endif
6470     _loop_or_ctrl.map(n->_idx, nullptr); // This node is useless
6471     _deadlist.push(n);
6472     return;
6473   }
6474   assert(LCA != nullptr && !LCA->is_top(), "no dead nodes");
6475 
6476   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
6477   Node *least = legal;          // Best legal position so far
6478   while( early != legal ) {     // While not at earliest legal
6479     if (legal->is_Start() && !early->is_Root()) {
6480 #ifdef ASSERT
6481       // Bad graph. Print idom path and fail.
6482       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
6483       assert(false, "Bad graph detected in build_loop_late");
6484 #endif
6485       C->record_method_not_compilable("Bad graph detected in build_loop_late");
6486       return;
6487     }
6488     // Find least loop nesting depth
6489     legal = idom(legal);        // Bump up the IDOM tree
6490     // Check for lower nesting depth
6491     if( get_loop(legal)->_nest < get_loop(least)->_nest )
6492       least = legal;
6493   }
6494   assert(early == legal || legal != C->root(), "bad dominance of inputs");
6495 
6496   if (least != early) {
6497     // Move the node above predicates as far up as possible so a
6498     // following pass of Loop Predication doesn't hoist a predicate
6499     // that depends on it above that node.
6500     const PredicateIterator predicate_iterator(least);
6501     DominatedPredicates dominated_predicates(early, least, this);
6502     predicate_iterator.for_each(dominated_predicates);
6503     least = dominated_predicates.earliest_dominated_predicate_entry();
6504   }
6505   // Try not to place code on a loop entry projection
6506   // which can inhibit range check elimination.
6507   if (least != early && !BarrierSet::barrier_set()->barrier_set_c2()->is_gc_specific_loop_opts_pass(_mode)) {
6508     Node* ctrl_out = least->unique_ctrl_out_or_null();
6509     if (ctrl_out != nullptr && ctrl_out->is_Loop() &&
6510         least == ctrl_out->in(LoopNode::EntryControl) &&
6511         (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) {
6512       Node* least_dom = idom(least);
6513       if (get_loop(least_dom)->is_member(get_loop(least))) {
6514         least = least_dom;
6515       }
6516     }
6517   }
6518   // Don't extend live ranges of raw oops
6519   if (least != early && n->is_ConstraintCast() && n->in(1)->bottom_type()->isa_rawptr() &&
6520       !n->bottom_type()->isa_rawptr()) {
6521     least = early;
6522   }
6523 
6524 #ifdef ASSERT
6525   // Broken part of VerifyLoopOptimizations (F)
6526   // Reason:
6527   //   _verify_me->get_ctrl_no_update(n) seems to return wrong result
6528   /*
6529   // If verifying, verify that 'verify_me' has a legal location
6530   // and choose it as our location.
6531   if( _verify_me ) {
6532     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
6533     Node *legal = LCA;
6534     while( early != legal ) {   // While not at earliest legal
6535       if( legal == v_ctrl ) break;  // Check for prior good location
6536       legal = idom(legal)      ;// Bump up the IDOM tree
6537     }
6538     // Check for prior good location
6539     if( legal == v_ctrl ) least = legal; // Keep prior if found
6540   }
6541   */
6542 #endif
6543 
6544   // Assign discovered "here or above" point
6545   least = find_non_split_ctrl(least);
6546   verify_strip_mined_scheduling(n, least);
6547   set_ctrl(n, least);
6548 
6549   // Collect inner loop bodies
6550   IdealLoopTree *chosen_loop = get_loop(least);
6551   if( !chosen_loop->_child )   // Inner loop?
6552     chosen_loop->_body.push(n);// Collect inner loops
6553 
6554   if (!_verify_only && n->Opcode() == Op_OpaqueZeroTripGuard) {
6555     _zero_trip_guard_opaque_nodes.push(n);
6556   }
6557 
6558   if (!_verify_only && n->Opcode() == Op_OpaqueMultiversioning) {
6559     _multiversion_opaque_nodes.push(n);
6560   }
6561 }
6562 
6563 #ifdef ASSERT
6564 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
6565   tty->print_cr("%s", msg);
6566   tty->print("n: "); n->dump();
6567   tty->print("early(n): "); early->dump();
6568   if (n->in(0) != nullptr  && !n->in(0)->is_top() &&
6569       n->in(0) != early && !n->in(0)->is_Root()) {
6570     tty->print("n->in(0): "); n->in(0)->dump();
6571   }
6572   for (uint i = 1; i < n->req(); i++) {
6573     Node* in1 = n->in(i);
6574     if (in1 != nullptr && in1 != n && !in1->is_top()) {
6575       tty->print("n->in(%d): ", i); in1->dump();
6576       Node* in1_early = get_ctrl(in1);
6577       tty->print("early(n->in(%d)): ", i); in1_early->dump();
6578       if (in1->in(0) != nullptr     && !in1->in(0)->is_top() &&
6579           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
6580         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
6581       }
6582       for (uint j = 1; j < in1->req(); j++) {
6583         Node* in2 = in1->in(j);
6584         if (in2 != nullptr && in2 != n && in2 != in1 && !in2->is_top()) {
6585           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
6586           Node* in2_early = get_ctrl(in2);
6587           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
6588           if (in2->in(0) != nullptr     && !in2->in(0)->is_top() &&
6589               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
6590             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
6591           }
6592         }
6593       }
6594     }
6595   }
6596   tty->cr();
6597   tty->print("LCA(n): "); LCA->dump();
6598   for (uint i = 0; i < n->outcnt(); i++) {
6599     Node* u1 = n->raw_out(i);
6600     if (u1 == n)
6601       continue;
6602     tty->print("n->out(%d): ", i); u1->dump();
6603     if (u1->is_CFG()) {
6604       for (uint j = 0; j < u1->outcnt(); j++) {
6605         Node* u2 = u1->raw_out(j);
6606         if (u2 != u1 && u2 != n && u2->is_CFG()) {
6607           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
6608         }
6609       }
6610     } else {
6611       Node* u1_later = get_ctrl(u1);
6612       tty->print("later(n->out(%d)): ", i); u1_later->dump();
6613       if (u1->in(0) != nullptr     && !u1->in(0)->is_top() &&
6614           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
6615         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
6616       }
6617       for (uint j = 0; j < u1->outcnt(); j++) {
6618         Node* u2 = u1->raw_out(j);
6619         if (u2 == n || u2 == u1)
6620           continue;
6621         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
6622         if (!u2->is_CFG()) {
6623           Node* u2_later = get_ctrl(u2);
6624           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
6625           if (u2->in(0) != nullptr     && !u2->in(0)->is_top() &&
6626               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
6627             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
6628           }
6629         }
6630       }
6631     }
6632   }
6633   dump_idoms(early, LCA);
6634   tty->cr();
6635 }
6636 
6637 // Class to compute the real LCA given an early node and a wrong LCA in a bad graph.
6638 class RealLCA {
6639   const PhaseIdealLoop* _phase;
6640   Node* _early;
6641   Node* _wrong_lca;
6642   uint _early_index;
6643   int _wrong_lca_index;
6644 
6645   // Given idom chains of early and wrong LCA: Walk through idoms starting at StartNode and find the first node which
6646   // is different: Return the previously visited node which must be the real LCA.
6647   // The node lists also contain _early and _wrong_lca, respectively.
6648   Node* find_real_lca(Unique_Node_List& early_with_idoms, Unique_Node_List& wrong_lca_with_idoms) {
6649     int early_index = early_with_idoms.size() - 1;
6650     int wrong_lca_index = wrong_lca_with_idoms.size() - 1;
6651     bool found_difference = false;
6652     do {
6653       if (early_with_idoms[early_index] != wrong_lca_with_idoms[wrong_lca_index]) {
6654         // First time early and wrong LCA idoms differ. Real LCA must be at the previous index.
6655         found_difference = true;
6656         break;
6657       }
6658       early_index--;
6659       wrong_lca_index--;
6660     } while (wrong_lca_index >= 0);
6661 
6662     assert(early_index >= 0, "must always find an LCA - cannot be early");
6663     _early_index = early_index;
6664     _wrong_lca_index = wrong_lca_index;
6665     Node* real_lca = early_with_idoms[_early_index + 1]; // Plus one to skip _early.
6666     assert(found_difference || real_lca == _wrong_lca, "wrong LCA dominates early and is therefore the real LCA");
6667     return real_lca;
6668   }
6669 
6670   void dump(Node* real_lca) {
6671     tty->cr();
6672     tty->print_cr("idoms of early \"%d %s\":", _early->_idx, _early->Name());
6673     _phase->dump_idom(_early, _early_index + 1);
6674 
6675     tty->cr();
6676     tty->print_cr("idoms of (wrong) LCA \"%d %s\":", _wrong_lca->_idx, _wrong_lca->Name());
6677     _phase->dump_idom(_wrong_lca, _wrong_lca_index + 1);
6678 
6679     tty->cr();
6680     tty->print("Real LCA of early \"%d %s\" (idom[%d]) and wrong LCA \"%d %s\"",
6681                _early->_idx, _early->Name(), _early_index, _wrong_lca->_idx, _wrong_lca->Name());
6682     if (_wrong_lca_index >= 0) {
6683       tty->print(" (idom[%d])", _wrong_lca_index);
6684     }
6685     tty->print_cr(":");
6686     real_lca->dump();
6687   }
6688 
6689  public:
6690   RealLCA(const PhaseIdealLoop* phase, Node* early, Node* wrong_lca)
6691       : _phase(phase), _early(early), _wrong_lca(wrong_lca), _early_index(0), _wrong_lca_index(0) {
6692     assert(!wrong_lca->is_Start(), "StartNode is always a common dominator");
6693   }
6694 
6695   void compute_and_dump() {
6696     ResourceMark rm;
6697     Unique_Node_List early_with_idoms;
6698     Unique_Node_List wrong_lca_with_idoms;
6699     early_with_idoms.push(_early);
6700     wrong_lca_with_idoms.push(_wrong_lca);
6701     _phase->get_idoms(_early, 10000, early_with_idoms);
6702     _phase->get_idoms(_wrong_lca, 10000, wrong_lca_with_idoms);
6703     Node* real_lca = find_real_lca(early_with_idoms, wrong_lca_with_idoms);
6704     dump(real_lca);
6705   }
6706 };
6707 
6708 // Dump the idom chain of early, of the wrong LCA and dump the real LCA of early and wrong LCA.
6709 void PhaseIdealLoop::dump_idoms(Node* early, Node* wrong_lca) {
6710   assert(!is_dominator(early, wrong_lca), "sanity check that early does not dominate wrong lca");
6711   assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes");
6712 
6713   RealLCA real_lca(this, early, wrong_lca);
6714   real_lca.compute_and_dump();
6715 }
6716 #endif // ASSERT
6717 
6718 #ifndef PRODUCT
6719 //------------------------------dump-------------------------------------------
6720 void PhaseIdealLoop::dump() const {
6721   ResourceMark rm;
6722   Node_Stack stack(C->live_nodes() >> 2);
6723   Node_List rpo_list;
6724   VectorSet visited;
6725   visited.set(C->top()->_idx);
6726   rpo(C->root(), stack, visited, rpo_list);
6727   // Dump root loop indexed by last element in PO order
6728   dump(_ltree_root, rpo_list.size(), rpo_list);
6729 }
6730 
6731 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const {
6732   loop->dump_head();
6733 
6734   // Now scan for CFG nodes in the same loop
6735   for (uint j = idx; j > 0; j--) {
6736     Node* n = rpo_list[j-1];
6737     if (!_loop_or_ctrl[n->_idx])      // Skip dead nodes
6738       continue;
6739 
6740     if (get_loop(n) != loop) { // Wrong loop nest
6741       if (get_loop(n)->_head == n &&    // Found nested loop?
6742           get_loop(n)->_parent == loop)
6743         dump(get_loop(n), rpo_list.size(), rpo_list);     // Print it nested-ly
6744       continue;
6745     }
6746 
6747     // Dump controlling node
6748     tty->sp(2 * loop->_nest);
6749     tty->print("C");
6750     if (n == C->root()) {
6751       n->dump();
6752     } else {
6753       Node* cached_idom   = idom_no_update(n);
6754       Node* computed_idom = n->in(0);
6755       if (n->is_Region()) {
6756         computed_idom = compute_idom(n);
6757         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
6758         // any MultiBranch ctrl node), so apply a similar transform to
6759         // the cached idom returned from idom_no_update.
6760         cached_idom = find_non_split_ctrl(cached_idom);
6761       }
6762       tty->print(" ID:%d", computed_idom->_idx);
6763       n->dump();
6764       if (cached_idom != computed_idom) {
6765         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
6766                       computed_idom->_idx, cached_idom->_idx);
6767       }
6768     }
6769     // Dump nodes it controls
6770     for (uint k = 0; k < _loop_or_ctrl.max(); k++) {
6771       // (k < C->unique() && get_ctrl(find(k)) == n)
6772       if (k < C->unique() && _loop_or_ctrl[k] == (Node*)((intptr_t)n + 1)) {
6773         Node* m = C->root()->find(k);
6774         if (m && m->outcnt() > 0) {
6775           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
6776             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _loop_or_ctrl[k] is %p, ctrl is %p",
6777                           _loop_or_ctrl[k], has_ctrl(m) ? get_ctrl_no_update(m) : nullptr);
6778           }
6779           tty->sp(2 * loop->_nest + 1);
6780           m->dump();
6781         }
6782       }
6783     }
6784   }
6785 }
6786 
6787 void PhaseIdealLoop::dump_idom(Node* n, const uint count) const {
6788   if (has_ctrl(n)) {
6789     tty->print_cr("No idom for data nodes");
6790   } else {
6791     ResourceMark rm;
6792     Unique_Node_List idoms;
6793     get_idoms(n, count, idoms);
6794     dump_idoms_in_reverse(n, idoms);
6795   }
6796 }
6797 
6798 void PhaseIdealLoop::get_idoms(Node* n, const uint count, Unique_Node_List& idoms) const {
6799   Node* next = n;
6800   for (uint i = 0; !next->is_Start() && i < count; i++) {
6801     next = idom(next);
6802     assert(!idoms.member(next), "duplicated idom is not possible");
6803     idoms.push(next);
6804   }
6805 }
6806 
6807 void PhaseIdealLoop::dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const {
6808   Node* next;
6809   uint padding = 3;
6810   uint node_index_padding_width = (C->unique() == 0 ? 0 : static_cast<int>(log10(static_cast<double>(C->unique())))) + 1;
6811   for (int i = idom_list.size() - 1; i >= 0; i--) {
6812     if (i == 9 || i == 99) {
6813       padding++;
6814     }
6815     next = idom_list[i];
6816     tty->print_cr("idom[%d]:%*c%*d  %s", i, padding, ' ', node_index_padding_width, next->_idx, next->Name());
6817   }
6818   tty->print_cr("n:      %*c%*d  %s", padding, ' ', node_index_padding_width, n->_idx, n->Name());
6819 }
6820 #endif // NOT PRODUCT
6821 
6822 // Collect a R-P-O for the whole CFG.
6823 // Result list is in post-order (scan backwards for RPO)
6824 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const {
6825   stk.push(start, 0);
6826   visited.set(start->_idx);
6827 
6828   while (stk.is_nonempty()) {
6829     Node* m   = stk.node();
6830     uint  idx = stk.index();
6831     if (idx < m->outcnt()) {
6832       stk.set_index(idx + 1);
6833       Node* n = m->raw_out(idx);
6834       if (n->is_CFG() && !visited.test_set(n->_idx)) {
6835         stk.push(n, 0);
6836       }
6837     } else {
6838       rpo_list.push(m);
6839       stk.pop();
6840     }
6841   }
6842 }
6843 
6844 ConINode* PhaseIdealLoop::intcon(jint i) {
6845   ConINode* node = _igvn.intcon(i);
6846   set_root_as_ctrl(node);
6847   return node;
6848 }
6849 
6850 ConLNode* PhaseIdealLoop::longcon(jlong i) {
6851   ConLNode* node = _igvn.longcon(i);
6852   set_root_as_ctrl(node);
6853   return node;
6854 }
6855 
6856 ConNode* PhaseIdealLoop::makecon(const Type* t) {
6857   ConNode* node = _igvn.makecon(t);
6858   set_root_as_ctrl(node);
6859   return node;
6860 }
6861 
6862 ConNode* PhaseIdealLoop::integercon(jlong l, BasicType bt) {
6863   ConNode* node = _igvn.integercon(l, bt);
6864   set_root_as_ctrl(node);
6865   return node;
6866 }
6867 
6868 ConNode* PhaseIdealLoop::zerocon(BasicType bt) {
6869   ConNode* node = _igvn.zerocon(bt);
6870   set_root_as_ctrl(node);
6871   return node;
6872 }
6873 
6874 
6875 //=============================================================================
6876 //------------------------------LoopTreeIterator-------------------------------
6877 
6878 // Advance to next loop tree using a preorder, left-to-right traversal.
6879 void LoopTreeIterator::next() {
6880   assert(!done(), "must not be done.");
6881   if (_curnt->_child != nullptr) {
6882     _curnt = _curnt->_child;
6883   } else if (_curnt->_next != nullptr) {
6884     _curnt = _curnt->_next;
6885   } else {
6886     while (_curnt != _root && _curnt->_next == nullptr) {
6887       _curnt = _curnt->_parent;
6888     }
6889     if (_curnt == _root) {
6890       _curnt = nullptr;
6891       assert(done(), "must be done.");
6892     } else {
6893       assert(_curnt->_next != nullptr, "must be more to do");
6894       _curnt = _curnt->_next;
6895     }
6896   }
6897 }