1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/c2/barrierSetC2.hpp" 30 #include "libadt/vectset.hpp" 31 #include "memory/allocation.inline.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "opto/addnode.hpp" 34 #include "opto/arraycopynode.hpp" 35 #include "opto/callnode.hpp" 36 #include "opto/castnode.hpp" 37 #include "opto/connode.hpp" 38 #include "opto/convertnode.hpp" 39 #include "opto/divnode.hpp" 40 #include "opto/idealGraphPrinter.hpp" 41 #include "opto/loopnode.hpp" 42 #include "opto/movenode.hpp" 43 #include "opto/mulnode.hpp" 44 #include "opto/opaquenode.hpp" 45 #include "opto/predicates.hpp" 46 #include "opto/rootnode.hpp" 47 #include "opto/runtime.hpp" 48 #include "opto/vectorization.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "utilities/checkedCast.hpp" 51 #include "utilities/powerOfTwo.hpp" 52 53 //============================================================================= 54 //--------------------------is_cloop_ind_var----------------------------------- 55 // Determine if a node is a counted loop induction variable. 56 // NOTE: The method is declared in "node.hpp". 57 bool Node::is_cloop_ind_var() const { 58 return (is_Phi() && 59 as_Phi()->region()->is_CountedLoop() && 60 as_Phi()->region()->as_CountedLoop()->phi() == this); 61 } 62 63 //============================================================================= 64 //------------------------------dump_spec-------------------------------------- 65 // Dump special per-node info 66 #ifndef PRODUCT 67 void LoopNode::dump_spec(outputStream *st) const { 68 RegionNode::dump_spec(st); 69 if (is_inner_loop()) st->print( "inner " ); 70 if (is_partial_peel_loop()) st->print( "partial_peel " ); 71 if (partial_peel_has_failed()) st->print( "partial_peel_failed " ); 72 } 73 #endif 74 75 //------------------------------is_valid_counted_loop------------------------- 76 bool LoopNode::is_valid_counted_loop(BasicType bt) const { 77 if (is_BaseCountedLoop() && as_BaseCountedLoop()->bt() == bt) { 78 BaseCountedLoopNode* l = as_BaseCountedLoop(); 79 BaseCountedLoopEndNode* le = l->loopexit_or_null(); 80 if (le != nullptr && 81 le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) { 82 Node* phi = l->phi(); 83 Node* exit = le->proj_out_or_null(0 /* false */); 84 if (exit != nullptr && exit->Opcode() == Op_IfFalse && 85 phi != nullptr && phi->is_Phi() && 86 phi->in(LoopNode::LoopBackControl) == l->incr() && 87 le->loopnode() == l && le->stride_is_con()) { 88 return true; 89 } 90 } 91 } 92 return false; 93 } 94 95 //------------------------------get_early_ctrl--------------------------------- 96 // Compute earliest legal control 97 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) { 98 assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" ); 99 uint i; 100 Node *early; 101 if (n->in(0) && !n->is_expensive()) { 102 early = n->in(0); 103 if (!early->is_CFG()) // Might be a non-CFG multi-def 104 early = get_ctrl(early); // So treat input as a straight data input 105 i = 1; 106 } else { 107 early = get_ctrl(n->in(1)); 108 i = 2; 109 } 110 uint e_d = dom_depth(early); 111 assert( early, "" ); 112 for (; i < n->req(); i++) { 113 Node *cin = get_ctrl(n->in(i)); 114 assert( cin, "" ); 115 // Keep deepest dominator depth 116 uint c_d = dom_depth(cin); 117 if (c_d > e_d) { // Deeper guy? 118 early = cin; // Keep deepest found so far 119 e_d = c_d; 120 } else if (c_d == e_d && // Same depth? 121 early != cin) { // If not equal, must use slower algorithm 122 // If same depth but not equal, one _must_ dominate the other 123 // and we want the deeper (i.e., dominated) guy. 124 Node *n1 = early; 125 Node *n2 = cin; 126 while (1) { 127 n1 = idom(n1); // Walk up until break cycle 128 n2 = idom(n2); 129 if (n1 == cin || // Walked early up to cin 130 dom_depth(n2) < c_d) 131 break; // early is deeper; keep him 132 if (n2 == early || // Walked cin up to early 133 dom_depth(n1) < c_d) { 134 early = cin; // cin is deeper; keep him 135 break; 136 } 137 } 138 e_d = dom_depth(early); // Reset depth register cache 139 } 140 } 141 142 // Return earliest legal location 143 assert(early == find_non_split_ctrl(early), "unexpected early control"); 144 145 if (n->is_expensive() && !_verify_only && !_verify_me) { 146 assert(n->in(0), "should have control input"); 147 early = get_early_ctrl_for_expensive(n, early); 148 } 149 150 return early; 151 } 152 153 //------------------------------get_early_ctrl_for_expensive--------------------------------- 154 // Move node up the dominator tree as high as legal while still beneficial 155 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) { 156 assert(n->in(0) && n->is_expensive(), "expensive node with control input here"); 157 assert(OptimizeExpensiveOps, "optimization off?"); 158 159 Node* ctl = n->in(0); 160 assert(ctl->is_CFG(), "expensive input 0 must be cfg"); 161 uint min_dom_depth = dom_depth(earliest); 162 #ifdef ASSERT 163 if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) { 164 dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl); 165 assert(false, "Bad graph detected in get_early_ctrl_for_expensive"); 166 } 167 #endif 168 if (dom_depth(ctl) < min_dom_depth) { 169 return earliest; 170 } 171 172 while (true) { 173 Node* next = ctl; 174 // Moving the node out of a loop on the projection of an If 175 // confuses Loop Predication. So, once we hit a loop in an If branch 176 // that doesn't branch to an UNC, we stop. The code that process 177 // expensive nodes will notice the loop and skip over it to try to 178 // move the node further up. 179 if (ctl->is_CountedLoop() && ctl->in(1) != nullptr && ctl->in(1)->in(0) != nullptr && ctl->in(1)->in(0)->is_If()) { 180 if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern()) { 181 break; 182 } 183 next = idom(ctl->in(1)->in(0)); 184 } else if (ctl->is_Proj()) { 185 // We only move it up along a projection if the projection is 186 // the single control projection for its parent: same code path, 187 // if it's a If with UNC or fallthrough of a call. 188 Node* parent_ctl = ctl->in(0); 189 if (parent_ctl == nullptr) { 190 break; 191 } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != nullptr) { 192 next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control(); 193 } else if (parent_ctl->is_If()) { 194 if (!ctl->as_Proj()->is_uncommon_trap_if_pattern()) { 195 break; 196 } 197 assert(idom(ctl) == parent_ctl, "strange"); 198 next = idom(parent_ctl); 199 } else if (ctl->is_CatchProj()) { 200 if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) { 201 break; 202 } 203 assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph"); 204 next = parent_ctl->in(0)->in(0)->in(0); 205 } else { 206 // Check if parent control has a single projection (this 207 // control is the only possible successor of the parent 208 // control). If so, we can try to move the node above the 209 // parent control. 210 int nb_ctl_proj = 0; 211 for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) { 212 Node *p = parent_ctl->fast_out(i); 213 if (p->is_Proj() && p->is_CFG()) { 214 nb_ctl_proj++; 215 if (nb_ctl_proj > 1) { 216 break; 217 } 218 } 219 } 220 221 if (nb_ctl_proj > 1) { 222 break; 223 } 224 assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() || 225 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node"); 226 assert(idom(ctl) == parent_ctl, "strange"); 227 next = idom(parent_ctl); 228 } 229 } else { 230 next = idom(ctl); 231 } 232 if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) { 233 break; 234 } 235 ctl = next; 236 } 237 238 if (ctl != n->in(0)) { 239 _igvn.replace_input_of(n, 0, ctl); 240 _igvn.hash_insert(n); 241 } 242 243 return ctl; 244 } 245 246 247 //------------------------------set_early_ctrl--------------------------------- 248 // Set earliest legal control 249 void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) { 250 Node *early = get_early_ctrl(n); 251 252 // Record earliest legal location 253 set_ctrl(n, early); 254 IdealLoopTree *loop = get_loop(early); 255 if (update_body && loop->_child == nullptr) { 256 loop->_body.push(n); 257 } 258 } 259 260 //------------------------------set_subtree_ctrl------------------------------- 261 // set missing _ctrl entries on new nodes 262 void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) { 263 // Already set? Get out. 264 if (_loop_or_ctrl[n->_idx]) return; 265 // Recursively set _loop_or_ctrl array to indicate where the Node goes 266 uint i; 267 for (i = 0; i < n->req(); ++i) { 268 Node *m = n->in(i); 269 if (m && m != C->root()) { 270 set_subtree_ctrl(m, update_body); 271 } 272 } 273 274 // Fixup self 275 set_early_ctrl(n, update_body); 276 } 277 278 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) { 279 IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift); 280 IdealLoopTree* parent = loop->_parent; 281 IdealLoopTree* sibling = parent->_child; 282 if (sibling == loop) { 283 parent->_child = outer_ilt; 284 } else { 285 while (sibling->_next != loop) { 286 sibling = sibling->_next; 287 } 288 sibling->_next = outer_ilt; 289 } 290 outer_ilt->_next = loop->_next; 291 outer_ilt->_parent = parent; 292 outer_ilt->_child = loop; 293 outer_ilt->_nest = loop->_nest; 294 loop->_parent = outer_ilt; 295 loop->_next = nullptr; 296 loop->_nest++; 297 assert(loop->_nest <= SHRT_MAX, "sanity"); 298 return outer_ilt; 299 } 300 301 // Create a skeleton strip mined outer loop: a Loop head before the 302 // inner strip mined loop, a safepoint and an exit condition guarded 303 // by an opaque node after the inner strip mined loop with a backedge 304 // to the loop head. The inner strip mined loop is left as it is. Only 305 // once loop optimizations are over, do we adjust the inner loop exit 306 // condition to limit its number of iterations, set the outer loop 307 // exit condition and add Phis to the outer loop head. Some loop 308 // optimizations that operate on the inner strip mined loop need to be 309 // aware of the outer strip mined loop: loop unswitching needs to 310 // clone the outer loop as well as the inner, unrolling needs to only 311 // clone the inner loop etc. No optimizations need to change the outer 312 // strip mined loop as it is only a skeleton. 313 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control, 314 IdealLoopTree* loop, float cl_prob, float le_fcnt, 315 Node*& entry_control, Node*& iffalse) { 316 Node* outer_test = _igvn.intcon(0); 317 set_ctrl(outer_test, C->root()); 318 Node *orig = iffalse; 319 iffalse = iffalse->clone(); 320 _igvn.register_new_node_with_optimizer(iffalse); 321 set_idom(iffalse, idom(orig), dom_depth(orig)); 322 323 IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt); 324 Node *outer_ift = new IfTrueNode (outer_le); 325 Node* outer_iff = orig; 326 _igvn.replace_input_of(outer_iff, 0, outer_le); 327 328 LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift); 329 entry_control = outer_l; 330 331 IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift); 332 333 set_loop(iffalse, outer_ilt); 334 // When this code runs, loop bodies have not yet been populated. 335 const bool body_populated = false; 336 register_control(outer_le, outer_ilt, iffalse, body_populated); 337 register_control(outer_ift, outer_ilt, outer_le, body_populated); 338 set_idom(outer_iff, outer_le, dom_depth(outer_le)); 339 _igvn.register_new_node_with_optimizer(outer_l); 340 set_loop(outer_l, outer_ilt); 341 set_idom(outer_l, init_control, dom_depth(init_control)+1); 342 343 return outer_ilt; 344 } 345 346 void PhaseIdealLoop::insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, 347 Node* cmp_limit, Node* bol) { 348 assert(loop_limit_check_parse_proj->in(0)->is_ParsePredicate(), "must be parse predicate"); 349 Node* new_predicate_proj = create_new_if_for_predicate(loop_limit_check_parse_proj, nullptr, 350 Deoptimization::Reason_loop_limit_check, 351 Op_If); 352 Node* iff = new_predicate_proj->in(0); 353 cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit); 354 bol = _igvn.register_new_node_with_optimizer(bol); 355 set_subtree_ctrl(bol, false); 356 _igvn.replace_input_of(iff, 1, bol); 357 358 #ifndef PRODUCT 359 // report that the loop predication has been actually performed 360 // for this loop 361 if (TraceLoopLimitCheck) { 362 tty->print_cr("Counted Loop Limit Check generated:"); 363 debug_only( bol->dump(2); ) 364 } 365 #endif 366 } 367 368 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) { 369 // Counted loop head must be a good RegionNode with only 3 not null 370 // control input edges: Self, Entry, LoopBack. 371 if (x->in(LoopNode::Self) == nullptr || x->req() != 3 || loop->_irreducible) { 372 return nullptr; 373 } 374 Node *init_control = x->in(LoopNode::EntryControl); 375 Node *back_control = x->in(LoopNode::LoopBackControl); 376 if (init_control == nullptr || back_control == nullptr) { // Partially dead 377 return nullptr; 378 } 379 // Must also check for TOP when looking for a dead loop 380 if (init_control->is_top() || back_control->is_top()) { 381 return nullptr; 382 } 383 384 // Allow funny placement of Safepoint 385 if (back_control->Opcode() == Op_SafePoint) { 386 back_control = back_control->in(TypeFunc::Control); 387 } 388 389 // Controlling test for loop 390 Node *iftrue = back_control; 391 uint iftrue_op = iftrue->Opcode(); 392 if (iftrue_op != Op_IfTrue && 393 iftrue_op != Op_IfFalse) { 394 // I have a weird back-control. Probably the loop-exit test is in 395 // the middle of the loop and I am looking at some trailing control-flow 396 // merge point. To fix this I would have to partially peel the loop. 397 return nullptr; // Obscure back-control 398 } 399 400 // Get boolean guarding loop-back test 401 Node *iff = iftrue->in(0); 402 if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) { 403 return nullptr; 404 } 405 return iftrue; 406 } 407 408 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) { 409 Node* iftrue = back_control; 410 uint iftrue_op = iftrue->Opcode(); 411 Node* iff = iftrue->in(0); 412 BoolNode* test = iff->in(1)->as_Bool(); 413 bt = test->_test._test; 414 cl_prob = iff->as_If()->_prob; 415 if (iftrue_op == Op_IfFalse) { 416 bt = BoolTest(bt).negate(); 417 cl_prob = 1.0 - cl_prob; 418 } 419 // Get backedge compare 420 Node* cmp = test->in(1); 421 if (!cmp->is_Cmp()) { 422 return nullptr; 423 } 424 425 // Find the trip-counter increment & limit. Limit must be loop invariant. 426 incr = cmp->in(1); 427 limit = cmp->in(2); 428 429 // --------- 430 // need 'loop()' test to tell if limit is loop invariant 431 // --------- 432 433 if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit? 434 Node* tmp = incr; // Then reverse order into the CmpI 435 incr = limit; 436 limit = tmp; 437 bt = BoolTest(bt).commute(); // And commute the exit test 438 } 439 if (is_member(loop, get_ctrl(limit))) { // Limit must be loop-invariant 440 return nullptr; 441 } 442 if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant 443 return nullptr; 444 } 445 return cmp; 446 } 447 448 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) { 449 if (incr->is_Phi()) { 450 if (incr->as_Phi()->region() != x || incr->req() != 3) { 451 return nullptr; // Not simple trip counter expression 452 } 453 phi_incr = incr; 454 incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi 455 if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant 456 return nullptr; 457 } 458 } 459 return incr; 460 } 461 462 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi) { 463 assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp."); 464 // Get merge point 465 xphi = incr->in(1); 466 Node *stride = incr->in(2); 467 if (!stride->is_Con()) { // Oops, swap these 468 if (!xphi->is_Con()) { // Is the other guy a constant? 469 return nullptr; // Nope, unknown stride, bail out 470 } 471 Node *tmp = xphi; // 'incr' is commutative, so ok to swap 472 xphi = stride; 473 stride = tmp; 474 } 475 return stride; 476 } 477 478 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop) { 479 if (!xphi->is_Phi()) { 480 return nullptr; // Too much math on the trip counter 481 } 482 if (phi_incr != nullptr && phi_incr != xphi) { 483 return nullptr; 484 } 485 PhiNode *phi = xphi->as_Phi(); 486 487 // Phi must be of loop header; backedge must wrap to increment 488 if (phi->region() != x) { 489 return nullptr; 490 } 491 return phi; 492 } 493 494 static int check_stride_overflow(jlong final_correction, const TypeInteger* limit_t, BasicType bt) { 495 if (final_correction > 0) { 496 if (limit_t->lo_as_long() > (max_signed_integer(bt) - final_correction)) { 497 return -1; 498 } 499 if (limit_t->hi_as_long() > (max_signed_integer(bt) - final_correction)) { 500 return 1; 501 } 502 } else { 503 if (limit_t->hi_as_long() < (min_signed_integer(bt) - final_correction)) { 504 return -1; 505 } 506 if (limit_t->lo_as_long() < (min_signed_integer(bt) - final_correction)) { 507 return 1; 508 } 509 } 510 return 0; 511 } 512 513 static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) { 514 // If the condition is inverted and we will be rolling 515 // through MININT to MAXINT, then bail out. 516 if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice! 517 // Odd stride 518 (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) || 519 // Count down loop rolls through MAXINT 520 ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) || 521 // Count up loop rolls through MININT 522 ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) { 523 return false; // Bail out 524 } 525 return true; 526 } 527 528 Node* PhaseIdealLoop::loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, 529 BasicType bt) { 530 Node* iv_as_long; 531 if (bt == T_LONG) { 532 iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT); 533 register_new_node(iv_as_long, inner_head); 534 } else { 535 iv_as_long = inner_iv; 536 } 537 Node* iv_replacement = AddNode::make(outer_phi, iv_as_long, bt); 538 register_new_node(iv_replacement, inner_head); 539 for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) { 540 Node* u = iv_to_replace->last_out(i); 541 #ifdef ASSERT 542 if (!is_dominator(inner_head, ctrl_or_self(u))) { 543 assert(u->is_Phi(), "should be a Phi"); 544 for (uint j = 1; j < u->req(); j++) { 545 if (u->in(j) == iv_to_replace) { 546 assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?"); 547 } 548 } 549 } 550 #endif 551 _igvn.rehash_node_delayed(u); 552 int nb = u->replace_edge(iv_to_replace, iv_replacement, &_igvn); 553 i -= nb; 554 } 555 return iv_replacement; 556 } 557 558 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path. 559 void PhaseIdealLoop::add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, 560 SafePointNode* sfpt) { 561 if (!C->too_many_traps(reason)) { 562 ParsePredicateNode* parse_predicate = new ParsePredicateNode(inner_head->in(LoopNode::EntryControl), reason, &_igvn); 563 register_control(parse_predicate, loop, inner_head->in(LoopNode::EntryControl)); 564 Node* if_false = new IfFalseNode(parse_predicate); 565 register_control(if_false, _ltree_root, parse_predicate); 566 Node* if_true = new IfTrueNode(parse_predicate); 567 register_control(if_true, loop, parse_predicate); 568 569 int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile); 570 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point(); 571 const TypePtr* no_memory_effects = nullptr; 572 JVMState* jvms = sfpt->jvms(); 573 CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", 574 no_memory_effects); 575 576 Node* mem = nullptr; 577 Node* i_o = nullptr; 578 if (sfpt->is_Call()) { 579 mem = sfpt->proj_out(TypeFunc::Memory); 580 i_o = sfpt->proj_out(TypeFunc::I_O); 581 } else { 582 mem = sfpt->memory(); 583 i_o = sfpt->i_o(); 584 } 585 586 Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr); 587 register_new_node(frame, C->start()); 588 Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr); 589 register_new_node(ret, C->start()); 590 591 unc->init_req(TypeFunc::Control, if_false); 592 unc->init_req(TypeFunc::I_O, i_o); 593 unc->init_req(TypeFunc::Memory, mem); // may gc ptrs 594 unc->init_req(TypeFunc::FramePtr, frame); 595 unc->init_req(TypeFunc::ReturnAdr, ret); 596 unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request)); 597 unc->set_cnt(PROB_UNLIKELY_MAG(4)); 598 unc->copy_call_debug_info(&_igvn, sfpt); 599 600 for (uint i = TypeFunc::Parms; i < unc->req(); i++) { 601 set_subtree_ctrl(unc->in(i), false); 602 } 603 register_control(unc, _ltree_root, if_false); 604 605 Node* ctrl = new ProjNode(unc, TypeFunc::Control); 606 register_control(ctrl, _ltree_root, unc); 607 Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false)); 608 register_control(halt, _ltree_root, ctrl); 609 _igvn.add_input_to(C->root(), halt); 610 611 _igvn.replace_input_of(inner_head, LoopNode::EntryControl, if_true); 612 set_idom(inner_head, if_true, dom_depth(inner_head)); 613 } 614 } 615 616 // Find a safepoint node that dominates the back edge. We need a 617 // SafePointNode so we can use its jvm state to create empty 618 // predicates. 619 static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm, PhaseIdealLoop* phase) { 620 SafePointNode* safepoint = nullptr; 621 for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 622 Node* u = x->fast_out(i); 623 if (u->is_memory_phi()) { 624 Node* m = u->in(LoopNode::LoopBackControl); 625 if (u->adr_type() == TypePtr::BOTTOM) { 626 if (m->is_MergeMem() && mem->is_MergeMem()) { 627 if (m != mem DEBUG_ONLY(|| true)) { 628 // MergeMemStream can modify m, for example to adjust the length to mem. 629 // This is unfortunate, and probably unnecessary. But as it is, we need 630 // to add m to the igvn worklist, else we may have a modified node that 631 // is not on the igvn worklist. 632 phase->igvn()._worklist.push(m); 633 for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 634 if (!mms.is_empty()) { 635 if (mms.memory() != mms.memory2()) { 636 return false; 637 } 638 #ifdef ASSERT 639 if (mms.alias_idx() != Compile::AliasIdxBot) { 640 mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory()); 641 } 642 #endif 643 } 644 } 645 } 646 } else if (mem->is_MergeMem()) { 647 if (m != mem->as_MergeMem()->base_memory()) { 648 return false; 649 } 650 } else { 651 return false; 652 } 653 } else { 654 if (mem->is_MergeMem()) { 655 if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) { 656 return false; 657 } 658 #ifdef ASSERT 659 mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory()); 660 #endif 661 } else { 662 if (m != mem) { 663 return false; 664 } 665 } 666 } 667 } 668 } 669 return true; 670 } 671 672 SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) { 673 IfNode* exit_test = back_control->in(0)->as_If(); 674 SafePointNode* safepoint = nullptr; 675 if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) { 676 safepoint = exit_test->in(0)->as_SafePoint(); 677 } else { 678 Node* c = back_control; 679 while (c != x && c->Opcode() != Op_SafePoint) { 680 c = idom(c); 681 } 682 683 if (c->Opcode() == Op_SafePoint) { 684 safepoint = c->as_SafePoint(); 685 } 686 687 if (safepoint == nullptr) { 688 return nullptr; 689 } 690 691 Node* mem = safepoint->in(TypeFunc::Memory); 692 693 // We can only use that safepoint if there's no side effect between the backedge and the safepoint. 694 695 // mm is used for book keeping 696 MergeMemNode* mm = nullptr; 697 #ifdef ASSERT 698 if (mem->is_MergeMem()) { 699 mm = mem->clone()->as_MergeMem(); 700 _igvn._worklist.push(mm); 701 for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) { 702 if (mms.alias_idx() != Compile::AliasIdxBot && loop != get_loop(ctrl_or_self(mms.memory()))) { 703 mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory()); 704 } 705 } 706 } 707 #endif 708 if (!no_side_effect_since_safepoint(C, x, mem, mm, this)) { 709 safepoint = nullptr; 710 } else { 711 assert(mm == nullptr|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed"); 712 } 713 #ifdef ASSERT 714 if (mm != nullptr) { 715 _igvn.remove_dead_node(mm); 716 } 717 #endif 718 } 719 return safepoint; 720 } 721 722 // If the loop has the shape of a counted loop but with a long 723 // induction variable, transform the loop in a loop nest: an inner 724 // loop that iterates for at most max int iterations with an integer 725 // induction variable and an outer loop that iterates over the full 726 // range of long values from the initial loop in (at most) max int 727 // steps. That is: 728 // 729 // x: for (long phi = init; phi < limit; phi += stride) { 730 // // phi := Phi(L, init, incr) 731 // // incr := AddL(phi, longcon(stride)) 732 // long incr = phi + stride; 733 // ... use phi and incr ... 734 // } 735 // 736 // OR: 737 // 738 // x: for (long phi = init; (phi += stride) < limit; ) { 739 // // phi := Phi(L, AddL(init, stride), incr) 740 // // incr := AddL(phi, longcon(stride)) 741 // long incr = phi + stride; 742 // ... use phi and (phi + stride) ... 743 // } 744 // 745 // ==transform=> 746 // 747 // const ulong inner_iters_limit = INT_MAX - stride - 1; //near 0x7FFFFFF0 748 // assert(stride <= inner_iters_limit); // else abort transform 749 // assert((extralong)limit + stride <= LONG_MAX); // else deopt 750 // outer_head: for (long outer_phi = init;;) { 751 // // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi))) 752 // ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi)); 753 // long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max); 754 // assert(inner_iters_actual == (int)inner_iters_actual); 755 // int inner_phi, inner_incr; 756 // x: for (inner_phi = 0;; inner_phi = inner_incr) { 757 // // inner_phi := Phi(x, intcon(0), inner_incr) 758 // // inner_incr := AddI(inner_phi, intcon(stride)) 759 // inner_incr = inner_phi + stride; 760 // if (inner_incr < inner_iters_actual) { 761 // ... use phi=>(outer_phi+inner_phi) ... 762 // continue; 763 // } 764 // else break; 765 // } 766 // if ((outer_phi+inner_phi) < limit) //OR (outer_phi+inner_incr) < limit 767 // continue; 768 // else break; 769 // } 770 // 771 // The same logic is used to transform an int counted loop that contains long range checks into a loop nest of 2 int 772 // loops with long range checks transformed to int range checks in the inner loop. 773 bool PhaseIdealLoop::create_loop_nest(IdealLoopTree* loop, Node_List &old_new) { 774 Node* x = loop->_head; 775 // Only for inner loops 776 if (loop->_child != nullptr || !x->is_BaseCountedLoop() || x->as_Loop()->is_loop_nest_outer_loop()) { 777 return false; 778 } 779 780 if (x->is_CountedLoop() && !x->as_CountedLoop()->is_main_loop() && !x->as_CountedLoop()->is_normal_loop()) { 781 return false; 782 } 783 784 BaseCountedLoopNode* head = x->as_BaseCountedLoop(); 785 BasicType bt = x->as_BaseCountedLoop()->bt(); 786 787 check_counted_loop_shape(loop, x, bt); 788 789 #ifndef PRODUCT 790 if (bt == T_LONG) { 791 Atomic::inc(&_long_loop_candidates); 792 } 793 #endif 794 795 jlong stride_con_long = head->stride_con(); 796 assert(stride_con_long != 0, "missed some peephole opt"); 797 // We can't iterate for more than max int at a time. 798 if (stride_con_long != (jint)stride_con_long || stride_con_long == min_jint) { 799 assert(bt == T_LONG, "only for long loops"); 800 return false; 801 } 802 jint stride_con = checked_cast<jint>(stride_con_long); 803 // The number of iterations for the integer count loop: guarantee no 804 // overflow: max_jint - stride_con max. -1 so there's no need for a 805 // loop limit check if the exit test is <= or >=. 806 int iters_limit = max_jint - ABS(stride_con) - 1; 807 #ifdef ASSERT 808 if (bt == T_LONG && StressLongCountedLoop > 0) { 809 iters_limit = iters_limit / StressLongCountedLoop; 810 } 811 #endif 812 // At least 2 iterations so counted loop construction doesn't fail 813 if (iters_limit/ABS(stride_con) < 2) { 814 return false; 815 } 816 817 PhiNode* phi = head->phi()->as_Phi(); 818 Node* incr = head->incr(); 819 820 Node* back_control = head->in(LoopNode::LoopBackControl); 821 822 // data nodes on back branch not supported 823 if (back_control->outcnt() > 1) { 824 return false; 825 } 826 827 Node* limit = head->limit(); 828 // We'll need to use the loop limit before the inner loop is entered 829 if (!is_dominator(get_ctrl(limit), x)) { 830 return false; 831 } 832 833 IfNode* exit_test = head->loopexit(); 834 835 assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge"); 836 837 Node_List range_checks; 838 iters_limit = extract_long_range_checks(loop, stride_con, iters_limit, phi, range_checks); 839 840 if (bt == T_INT) { 841 // The only purpose of creating a loop nest is to handle long range checks. If there are none, do not proceed further. 842 if (range_checks.size() == 0) { 843 return false; 844 } 845 } 846 847 // Take what we know about the number of iterations of the long counted loop into account when computing the limit of 848 // the inner loop. 849 const Node* init = head->init_trip(); 850 const TypeInteger* lo = _igvn.type(init)->is_integer(bt); 851 const TypeInteger* hi = _igvn.type(limit)->is_integer(bt); 852 if (stride_con < 0) { 853 swap(lo, hi); 854 } 855 if (hi->hi_as_long() <= lo->lo_as_long()) { 856 // not a loop after all 857 return false; 858 } 859 860 if (range_checks.size() > 0) { 861 // This transformation requires peeling one iteration. Also, if it has range checks and they are eliminated by Loop 862 // Predication, then 2 Hoisted Check Predicates are added for one range check. Finally, transforming a long range 863 // check requires extra logic to be executed before the loop is entered and for the outer loop. As a result, the 864 // transformations can't pay off for a small number of iterations: roughly, if the loop runs for 3 iterations, it's 865 // going to execute as many range checks once transformed with range checks eliminated (1 peeled iteration with 866 // range checks + 2 predicates per range checks) as it would have not transformed. It also has to pay for the extra 867 // logic on loop entry and for the outer loop. 868 loop->compute_trip_count(this); 869 if (head->is_CountedLoop() && head->as_CountedLoop()->has_exact_trip_count()) { 870 if (head->as_CountedLoop()->trip_count() <= 3) { 871 return false; 872 } 873 } else { 874 loop->compute_profile_trip_cnt(this); 875 if (!head->is_profile_trip_failed() && head->profile_trip_cnt() <= 3) { 876 return false; 877 } 878 } 879 } 880 881 julong orig_iters = (julong)hi->hi_as_long() - lo->lo_as_long(); 882 iters_limit = checked_cast<int>(MIN2((julong)iters_limit, orig_iters)); 883 884 // We need a safepoint to insert Parse Predicates for the inner loop. 885 SafePointNode* safepoint; 886 if (bt == T_INT && head->as_CountedLoop()->is_strip_mined()) { 887 // Loop is strip mined: use the safepoint of the outer strip mined loop 888 OuterStripMinedLoopNode* outer_loop = head->as_CountedLoop()->outer_loop(); 889 assert(outer_loop != nullptr, "no outer loop"); 890 safepoint = outer_loop->outer_safepoint(); 891 outer_loop->transform_to_counted_loop(&_igvn, this); 892 exit_test = head->loopexit(); 893 } else { 894 safepoint = find_safepoint(back_control, x, loop); 895 } 896 897 Node* exit_branch = exit_test->proj_out(false); 898 Node* entry_control = head->in(LoopNode::EntryControl); 899 900 // Clone the control flow of the loop to build an outer loop 901 Node* outer_back_branch = back_control->clone(); 902 Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt); 903 Node* inner_exit_branch = exit_branch->clone(); 904 905 LoopNode* outer_head = new LoopNode(entry_control, outer_back_branch); 906 IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head, outer_back_branch); 907 908 const bool body_populated = true; 909 register_control(outer_head, outer_ilt, entry_control, body_populated); 910 911 _igvn.register_new_node_with_optimizer(inner_exit_branch); 912 set_loop(inner_exit_branch, outer_ilt); 913 set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch)); 914 915 outer_exit_test->set_req(0, inner_exit_branch); 916 register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated); 917 918 _igvn.replace_input_of(exit_branch, 0, outer_exit_test); 919 set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch)); 920 921 outer_back_branch->set_req(0, outer_exit_test); 922 register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated); 923 924 _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head); 925 set_idom(x, outer_head, dom_depth(x)); 926 927 // add an iv phi to the outer loop and use it to compute the inner 928 // loop iteration limit 929 Node* outer_phi = phi->clone(); 930 outer_phi->set_req(0, outer_head); 931 register_new_node(outer_phi, outer_head); 932 933 Node* inner_iters_max = nullptr; 934 if (stride_con > 0) { 935 inner_iters_max = MaxNode::max_diff_with_zero(limit, outer_phi, TypeInteger::bottom(bt), _igvn); 936 } else { 937 inner_iters_max = MaxNode::max_diff_with_zero(outer_phi, limit, TypeInteger::bottom(bt), _igvn); 938 } 939 940 Node* inner_iters_limit = _igvn.integercon(iters_limit, bt); 941 // inner_iters_max may not fit in a signed integer (iterating from 942 // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned 943 // min. 944 const TypeInteger* inner_iters_actual_range = TypeInteger::make(0, iters_limit, Type::WidenMin, bt); 945 Node* inner_iters_actual = MaxNode::unsigned_min(inner_iters_max, inner_iters_limit, inner_iters_actual_range, _igvn); 946 947 Node* inner_iters_actual_int; 948 if (bt == T_LONG) { 949 inner_iters_actual_int = new ConvL2INode(inner_iters_actual); 950 _igvn.register_new_node_with_optimizer(inner_iters_actual_int); 951 // When the inner loop is transformed to a counted loop, a loop limit check is not expected to be needed because 952 // the loop limit is less or equal to max_jint - stride - 1 (if stride is positive but a similar argument exists for 953 // a negative stride). We add a CastII here to guarantee that, when the counted loop is created in a subsequent loop 954 // opts pass, an accurate range of values for the limits is found. 955 const TypeInt* inner_iters_actual_int_range = TypeInt::make(0, iters_limit, Type::WidenMin); 956 inner_iters_actual_int = new CastIINode(outer_head, inner_iters_actual_int, inner_iters_actual_int_range, ConstraintCastNode::UnconditionalDependency); 957 _igvn.register_new_node_with_optimizer(inner_iters_actual_int); 958 } else { 959 inner_iters_actual_int = inner_iters_actual; 960 } 961 962 Node* int_zero = _igvn.intcon(0); 963 set_ctrl(int_zero, C->root()); 964 if (stride_con < 0) { 965 inner_iters_actual_int = new SubINode(int_zero, inner_iters_actual_int); 966 _igvn.register_new_node_with_optimizer(inner_iters_actual_int); 967 } 968 969 // Clone the iv data nodes as an integer iv 970 Node* int_stride = _igvn.intcon(stride_con); 971 set_ctrl(int_stride, C->root()); 972 Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT); 973 Node* inner_incr = new AddINode(inner_phi, int_stride); 974 Node* inner_cmp = nullptr; 975 inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int); 976 Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test); 977 inner_phi->set_req(LoopNode::EntryControl, int_zero); 978 inner_phi->set_req(LoopNode::LoopBackControl, inner_incr); 979 register_new_node(inner_phi, x); 980 register_new_node(inner_incr, x); 981 register_new_node(inner_cmp, x); 982 register_new_node(inner_bol, x); 983 984 _igvn.replace_input_of(exit_test, 1, inner_bol); 985 986 // Clone inner loop phis to outer loop 987 for (uint i = 0; i < head->outcnt(); i++) { 988 Node* u = head->raw_out(i); 989 if (u->is_Phi() && u != inner_phi && u != phi) { 990 assert(u->in(0) == head, "inconsistent"); 991 Node* clone = u->clone(); 992 clone->set_req(0, outer_head); 993 register_new_node(clone, outer_head); 994 _igvn.replace_input_of(u, LoopNode::EntryControl, clone); 995 } 996 } 997 998 // Replace inner loop long iv phi as inner loop int iv phi + outer 999 // loop iv phi 1000 Node* iv_add = loop_nest_replace_iv(phi, inner_phi, outer_phi, head, bt); 1001 1002 set_subtree_ctrl(inner_iters_actual_int, body_populated); 1003 1004 LoopNode* inner_head = create_inner_head(loop, head, exit_test); 1005 1006 // Summary of steps from initial loop to loop nest: 1007 // 1008 // == old IR nodes => 1009 // 1010 // entry_control: {...} 1011 // x: 1012 // for (long phi = init;;) { 1013 // // phi := Phi(x, init, incr) 1014 // // incr := AddL(phi, longcon(stride)) 1015 // exit_test: 1016 // if (phi < limit) 1017 // back_control: fallthrough; 1018 // else 1019 // exit_branch: break; 1020 // long incr = phi + stride; 1021 // ... use phi and incr ... 1022 // phi = incr; 1023 // } 1024 // 1025 // == new IR nodes (just before final peel) => 1026 // 1027 // entry_control: {...} 1028 // long adjusted_limit = limit + stride; //because phi_incr != nullptr 1029 // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit); // else deopt 1030 // ulong inner_iters_limit = max_jint - ABS(stride) - 1; //near 0x7FFFFFF0 1031 // outer_head: 1032 // for (long outer_phi = init;;) { 1033 // // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr) 1034 // // REPLACE phi => AddL(outer_phi, I2L(inner_phi)) 1035 // // REPLACE incr => AddL(outer_phi, I2L(inner_incr)) 1036 // // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr))) 1037 // ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride)); 1038 // int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride); 1039 // inner_head: x: //in(1) := outer_head 1040 // int inner_phi; 1041 // for (inner_phi = 0;;) { 1042 // // inner_phi := Phi(x, intcon(0), inner_phi + stride) 1043 // int inner_incr = inner_phi + stride; 1044 // bool inner_bol = (inner_incr < inner_iters_actual_int); 1045 // exit_test: //exit_test->in(1) := inner_bol; 1046 // if (inner_bol) // WAS (phi < limit) 1047 // back_control: fallthrough; 1048 // else 1049 // inner_exit_branch: break; //exit_branch->clone() 1050 // ... use phi=>(outer_phi+inner_phi) ... 1051 // inner_phi = inner_phi + stride; // inner_incr 1052 // } 1053 // outer_exit_test: //exit_test->clone(), in(0):=inner_exit_branch 1054 // if ((outer_phi+inner_phi) < limit) // WAS (phi < limit) 1055 // outer_back_branch: fallthrough; //back_control->clone(), in(0):=outer_exit_test 1056 // else 1057 // exit_branch: break; //in(0) := outer_exit_test 1058 // } 1059 1060 if (bt == T_INT) { 1061 outer_phi = new ConvI2LNode(outer_phi); 1062 register_new_node(outer_phi, outer_head); 1063 } 1064 1065 transform_long_range_checks(stride_con, range_checks, outer_phi, inner_iters_actual_int, 1066 inner_phi, iv_add, inner_head); 1067 // Peel one iteration of the loop and use the safepoint at the end 1068 // of the peeled iteration to insert Parse Predicates. If no well 1069 // positioned safepoint peel to guarantee a safepoint in the outer 1070 // loop. 1071 if (safepoint != nullptr || !loop->_has_call) { 1072 old_new.clear(); 1073 do_peeling(loop, old_new); 1074 } else { 1075 C->set_major_progress(); 1076 } 1077 1078 if (safepoint != nullptr) { 1079 SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint(); 1080 1081 if (UseLoopPredicate) { 1082 add_parse_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt); 1083 } 1084 if (UseProfiledLoopPredicate) { 1085 add_parse_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt); 1086 } 1087 add_parse_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt); 1088 } 1089 1090 #ifndef PRODUCT 1091 if (bt == T_LONG) { 1092 Atomic::inc(&_long_loop_nests); 1093 } 1094 #endif 1095 1096 inner_head->mark_loop_nest_inner_loop(); 1097 outer_head->mark_loop_nest_outer_loop(); 1098 1099 return true; 1100 } 1101 1102 int PhaseIdealLoop::extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi, 1103 Node_List& range_checks) { 1104 const jlong min_iters = 2; 1105 jlong reduced_iters_limit = iters_limit; 1106 jlong original_iters_limit = iters_limit; 1107 for (uint i = 0; i < loop->_body.size(); i++) { 1108 Node* c = loop->_body.at(i); 1109 if (c->is_IfProj() && c->in(0)->is_RangeCheck()) { 1110 IfProjNode* if_proj = c->as_IfProj(); 1111 CallStaticJavaNode* call = if_proj->is_uncommon_trap_if_pattern(); 1112 if (call != nullptr) { 1113 Node* range = nullptr; 1114 Node* offset = nullptr; 1115 jlong scale = 0; 1116 if (loop->is_range_check_if(if_proj, this, T_LONG, phi, range, offset, scale) && 1117 loop->is_invariant(range) && loop->is_invariant(offset) && 1118 scale != min_jlong && 1119 original_iters_limit / ABS(scale) >= min_iters * ABS(stride_con)) { 1120 assert(scale == (jint)scale, "scale should be an int"); 1121 reduced_iters_limit = MIN2(reduced_iters_limit, original_iters_limit/ABS(scale)); 1122 range_checks.push(c); 1123 } 1124 } 1125 } 1126 } 1127 1128 return checked_cast<int>(reduced_iters_limit); 1129 } 1130 1131 // One execution of the inner loop covers a sub-range of the entire iteration range of the loop: [A,Z), aka [A=init, 1132 // Z=limit). If the loop has at least one trip (which is the case here), the iteration variable i always takes A as its 1133 // first value, followed by A+S (S is the stride), next A+2S, etc. The limit is exclusive, so that the final value B of 1134 // i is never Z. It will be B=Z-1 if S=1, or B=Z+1 if S=-1. 1135 1136 // If |S|>1 the formula for the last value B would require a floor operation, specifically B=floor((Z-sgn(S)-A)/S)*S+A, 1137 // which is B=Z-sgn(S)U for some U in [1,|S|]. So when S>0, i ranges as i:[A,Z) or i:[A,B=Z-U], or else (in reverse) 1138 // as i:(Z,A] or i:[B=Z+U,A]. It will become important to reason about this inclusive range [A,B] or [B,A]. 1139 1140 // Within the loop there may be many range checks. Each such range check (R.C.) is of the form 0 <= i*K+L < R, where K 1141 // is a scale factor applied to the loop iteration variable i, and L is some offset; K, L, and R are loop-invariant. 1142 // Because R is never negative (see below), this check can always be simplified to an unsigned check i*K+L <u R. 1143 1144 // When a long loop over a 64-bit variable i (outer_iv) is decomposed into a series of shorter sub-loops over a 32-bit 1145 // variable j (inner_iv), j ranges over a shorter interval j:[0,B_2] or [0,Z_2) (assuming S > 0), where the limit is 1146 // chosen to prevent various cases of 32-bit overflow (including multiplications j*K below). In the sub-loop the 1147 // logical value i is offset from j by a 64-bit constant C, so i ranges in i:C+[0,Z_2). 1148 1149 // For S<0, j ranges (in reverse!) through j:[-|B_2|,0] or (-|Z_2|,0]. For either sign of S, we can say i=j+C and j 1150 // ranges through 32-bit ranges [A_2,B_2] or [B_2,A_2] (A_2=0 of course). 1151 1152 // The disjoint union of all the C+[A_2,B_2] ranges from the sub-loops must be identical to the whole range [A,B]. 1153 // Assuming S>0, the first C must be A itself, and the next C value is the previous C+B_2, plus S. If |S|=1, the next 1154 // C value is also the previous C+Z_2. In each sub-loop, j counts from j=A_2=0 and i counts from C+0 and exits at 1155 // j=B_2 (i=C+B_2), just before it gets to i=C+Z_2. Both i and j count up (from C and 0) if S>0; otherwise they count 1156 // down (from C and 0 again). 1157 1158 // Returning to range checks, we see that each i*K+L <u R expands to (C+j)*K+L <u R, or j*K+Q <u R, where Q=(C*K+L). 1159 // (Recall that K and L and R are loop-invariant scale, offset and range values for a particular R.C.) This is still a 1160 // 64-bit comparison, so the range check elimination logic will not apply to it. (The R.C.E. transforms operate only on 1161 // 32-bit indexes and comparisons, because they use 64-bit temporary values to avoid overflow; see 1162 // PhaseIdealLoop::add_constraint.) 1163 1164 // We must transform this comparison so that it gets the same answer, but by means of a 32-bit R.C. (using j not i) of 1165 // the form j*K+L_2 <u32 R_2. Note that L_2 and R_2 must be loop-invariant, but only with respect to the sub-loop. Thus, the 1166 // problem reduces to computing values for L_2 and R_2 (for each R.C. in the loop) in the loop header for the sub-loop. 1167 // Then the standard R.C.E. transforms can take those as inputs and further compute the necessary minimum and maximum 1168 // values for the 32-bit counter j within which the range checks can be eliminated. 1169 1170 // So, given j*K+Q <u R, we need to find some j*K+L_2 <u32 R_2, where L_2 and R_2 fit in 32 bits, and the 32-bit operations do 1171 // not overflow. We also need to cover the cases where i*K+L (= j*K+Q) overflows to a 64-bit negative, since that is 1172 // allowed as an input to the R.C., as long as the R.C. as a whole fails. 1173 1174 // If 32-bit multiplication j*K might overflow, we adjust the sub-loop limit Z_2 closer to zero to reduce j's range. 1175 1176 // For each R.C. j*K+Q <u32 R, the range of mathematical values of j*K+Q in the sub-loop is [Q_min, Q_max], where 1177 // Q_min=Q and Q_max=B_2*K+Q (if S>0 and K>0), Q_min=A_2*K+Q and Q_max=Q (if S<0 and K>0), 1178 // Q_min=B_2*K+Q and Q_max=Q if (S>0 and K<0), Q_min=Q and Q_max=A_2*K+Q (if S<0 and K<0) 1179 1180 // Note that the first R.C. value is always Q=(S*K>0 ? Q_min : Q_max). Also Q_{min,max} = Q + {min,max}(A_2*K,B_2*K). 1181 // If S*K>0 then, as the loop iterations progress, each R.C. value i*K+L = j*K+Q goes up from Q=Q_min towards Q_max. 1182 // If S*K<0 then j*K+Q starts at Q=Q_max and goes down towards Q_min. 1183 1184 // Case A: Some Negatives (but no overflow). 1185 // Number line: 1186 // |s64_min . . . 0 . . . s64_max| 1187 // | . Q_min..Q_max . 0 . . . . | s64 negative 1188 // | . . . . R=0 R< R< R< R< | (against R values) 1189 // | . . . Q_min..0..Q_max . . . | small mixed 1190 // | . . . . R R R< R< R< | (against R values) 1191 // 1192 // R values which are out of range (>Q_max+1) are reduced to max(0,Q_max+1). They are marked on the number line as R<. 1193 // 1194 // So, if Q_min <s64 0, then use this test: 1195 // j*K + s32_trunc(Q_min) <u32 clamp(R, 0, Q_max+1) if S*K>0 (R.C.E. steps upward) 1196 // j*K + s32_trunc(Q_max) <u32 clamp(R, 0, Q_max+1) if S*K<0 (R.C.E. steps downward) 1197 // Both formulas reduce to adding j*K to the 32-bit truncated value of the first R.C. expression value, Q: 1198 // j*K + s32_trunc(Q) <u32 clamp(R, 0, Q_max+1) for all S,K 1199 1200 // If the 32-bit truncation loses information, no harm is done, since certainly the clamp also will return R_2=zero. 1201 1202 // Case B: No Negatives. 1203 // Number line: 1204 // |s64_min . . . 0 . . . s64_max| 1205 // | . . . . 0 Q_min..Q_max . . | small positive 1206 // | . . . . R> R R R< R< | (against R values) 1207 // | . . . . 0 . Q_min..Q_max . | s64 positive 1208 // | . . . . R> R> R R R< | (against R values) 1209 // 1210 // R values which are out of range (<Q_min or >Q_max+1) are reduced as marked: R> up to Q_min, R< down to Q_max+1. 1211 // Then the whole comparison is shifted left by Q_min, so it can take place at zero, which is a nice 32-bit value. 1212 // 1213 // So, if both Q_min, Q_max+1 >=s64 0, then use this test: 1214 // j*K + 0 <u32 clamp(R, Q_min, Q_max+1) - Q_min if S*K>0 1215 // More generally: 1216 // j*K + Q - Q_min <u32 clamp(R, Q_min, Q_max+1) - Q_min for all S,K 1217 1218 // Case C: Overflow in the 64-bit domain 1219 // Number line: 1220 // |..Q_max-2^64 . . 0 . . . Q_min..| s64 overflow 1221 // | . . . . R> R> R> R> R | (against R values) 1222 // 1223 // In this case, Q_min >s64 Q_max+1, even though the mathematical values of Q_min and Q_max+1 are correctly ordered. 1224 // The formulas from the previous case can be used, except that the bad upper bound Q_max is replaced by max_jlong. 1225 // (In fact, we could use any replacement bound from R to max_jlong inclusive, as the input to the clamp function.) 1226 // 1227 // So if Q_min >=s64 0 but Q_max+1 <s64 0, use this test: 1228 // j*K + 0 <u32 clamp(R, Q_min, max_jlong) - Q_min if S*K>0 1229 // More generally: 1230 // j*K + Q - Q_min <u32 clamp(R, Q_min, max_jlong) - Q_min for all S,K 1231 // 1232 // Dropping the bad bound means only Q_min is used to reduce the range of R: 1233 // j*K + Q - Q_min <u32 max(Q_min, R) - Q_min for all S,K 1234 // 1235 // Here the clamp function is a 64-bit min/max that reduces the dynamic range of its R operand to the required [L,H]: 1236 // clamp(X, L, H) := max(L, min(X, H)) 1237 // When degenerately L > H, it returns L not H. 1238 // 1239 // All of the formulas above can be merged into a single one: 1240 // L_clamp = Q_min < 0 ? 0 : Q_min --whether and how far to left-shift 1241 // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1 1242 // = Q_max+1 < 0 && Q_min >= 0 ? max_jlong : Q_max+1 1243 // Q_first = Q = (S*K>0 ? Q_min : Q_max) = (C*K+L) 1244 // R_clamp = clamp(R, L_clamp, H_clamp) --reduced dynamic range 1245 // replacement R.C.: 1246 // j*K + Q_first - L_clamp <u32 R_clamp - L_clamp 1247 // or equivalently: 1248 // j*K + L_2 <u32 R_2 1249 // where 1250 // L_2 = Q_first - L_clamp 1251 // R_2 = R_clamp - L_clamp 1252 // 1253 // Note on why R is never negative: 1254 // 1255 // Various details of this transformation would break badly if R could be negative, so this transformation only 1256 // operates after obtaining hard evidence that R<0 is impossible. For example, if R comes from a LoadRange node, we 1257 // know R cannot be negative. For explicit checks (of both int and long) a proof is constructed in 1258 // inline_preconditions_checkIndex, which triggers an uncommon trap if R<0, then wraps R in a ConstraintCastNode with a 1259 // non-negative type. Later on, when IdealLoopTree::is_range_check_if looks for an optimizable R.C., it checks that 1260 // the type of that R node is non-negative. Any "wild" R node that could be negative is not treated as an optimizable 1261 // R.C., but R values from a.length and inside checkIndex are good to go. 1262 // 1263 void PhaseIdealLoop::transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi, 1264 Node* inner_iters_actual_int, Node* inner_phi, 1265 Node* iv_add, LoopNode* inner_head) { 1266 Node* long_zero = _igvn.longcon(0); 1267 set_ctrl(long_zero, C->root()); 1268 Node* int_zero = _igvn.intcon(0); 1269 set_ctrl(int_zero, this->C->root()); 1270 Node* long_one = _igvn.longcon(1); 1271 set_ctrl(long_one, this->C->root()); 1272 Node* int_stride = _igvn.intcon(checked_cast<int>(stride_con)); 1273 set_ctrl(int_stride, this->C->root()); 1274 1275 for (uint i = 0; i < range_checks.size(); i++) { 1276 ProjNode* proj = range_checks.at(i)->as_Proj(); 1277 ProjNode* unc_proj = proj->other_if_proj(); 1278 RangeCheckNode* rc = proj->in(0)->as_RangeCheck(); 1279 jlong scale = 0; 1280 Node* offset = nullptr; 1281 Node* rc_bol = rc->in(1); 1282 Node* rc_cmp = rc_bol->in(1); 1283 if (rc_cmp->Opcode() == Op_CmpU) { 1284 // could be shared and have already been taken care of 1285 continue; 1286 } 1287 bool short_scale = false; 1288 bool ok = is_scaled_iv_plus_offset(rc_cmp->in(1), iv_add, T_LONG, &scale, &offset, &short_scale); 1289 assert(ok, "inconsistent: was tested before"); 1290 Node* range = rc_cmp->in(2); 1291 Node* c = rc->in(0); 1292 Node* entry_control = inner_head->in(LoopNode::EntryControl); 1293 1294 Node* R = range; 1295 Node* K = _igvn.longcon(scale); 1296 set_ctrl(K, this->C->root()); 1297 1298 Node* L = offset; 1299 1300 if (short_scale) { 1301 // This converts: 1302 // (int)i*K + L <u64 R 1303 // with K an int into: 1304 // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) 1305 // to protect against an overflow of (int)i*K 1306 // 1307 // Because if (int)i*K overflows, there are K,L where: 1308 // (int)i*K + L <u64 R is false because (int)i*K+L overflows to a negative which becomes a huge u64 value. 1309 // But if i*(long)K + L is >u64 (long)max_jint and still is <u64 R, then 1310 // i*(long)K + L <u64 R is true. 1311 // 1312 // As a consequence simply converting i*K + L <u64 R to i*(long)K + L <u64 R could cause incorrect execution. 1313 // 1314 // It's always true that: 1315 // (int)i*K <u64 (long)max_jint + 1 1316 // which implies (int)i*K + L <u64 (long)max_jint + 1 + L 1317 // As a consequence: 1318 // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) 1319 // is always false in case of overflow of i*K 1320 // 1321 // Note, there are also K,L where i*K overflows and 1322 // i*K + L <u64 R is true, but 1323 // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) is false 1324 // So this transformation could cause spurious deoptimizations and failed range check elimination 1325 // (but not incorrect execution) for unlikely corner cases with overflow. 1326 // If this causes problems in practice, we could maybe direct execution to a post-loop, instead of deoptimizing. 1327 Node* max_jint_plus_one_long = _igvn.longcon((jlong)max_jint + 1); 1328 set_ctrl(max_jint_plus_one_long, C->root()); 1329 Node* max_range = new AddLNode(max_jint_plus_one_long, L); 1330 register_new_node(max_range, entry_control); 1331 R = MaxNode::unsigned_min(R, max_range, TypeLong::POS, _igvn); 1332 set_subtree_ctrl(R, true); 1333 } 1334 1335 Node* C = outer_phi; 1336 1337 // Start with 64-bit values: 1338 // i*K + L <u64 R 1339 // (C+j)*K + L <u64 R 1340 // j*K + Q <u64 R where Q = Q_first = C*K+L 1341 Node* Q_first = new MulLNode(C, K); 1342 register_new_node(Q_first, entry_control); 1343 Q_first = new AddLNode(Q_first, L); 1344 register_new_node(Q_first, entry_control); 1345 1346 // Compute endpoints of the range of values j*K + Q. 1347 // Q_min = (j=0)*K + Q; Q_max = (j=B_2)*K + Q 1348 Node* Q_min = Q_first; 1349 1350 // Compute the exact ending value B_2 (which is really A_2 if S < 0) 1351 Node* B_2 = new LoopLimitNode(this->C, int_zero, inner_iters_actual_int, int_stride); 1352 register_new_node(B_2, entry_control); 1353 B_2 = new SubINode(B_2, int_stride); 1354 register_new_node(B_2, entry_control); 1355 B_2 = new ConvI2LNode(B_2); 1356 register_new_node(B_2, entry_control); 1357 1358 Node* Q_max = new MulLNode(B_2, K); 1359 register_new_node(Q_max, entry_control); 1360 Q_max = new AddLNode(Q_max, Q_first); 1361 register_new_node(Q_max, entry_control); 1362 1363 if (scale * stride_con < 0) { 1364 swap(Q_min, Q_max); 1365 } 1366 // Now, mathematically, Q_max > Q_min, and they are close enough so that (Q_max-Q_min) fits in 32 bits. 1367 1368 // L_clamp = Q_min < 0 ? 0 : Q_min 1369 Node* Q_min_cmp = new CmpLNode(Q_min, long_zero); 1370 register_new_node(Q_min_cmp, entry_control); 1371 Node* Q_min_bool = new BoolNode(Q_min_cmp, BoolTest::lt); 1372 register_new_node(Q_min_bool, entry_control); 1373 Node* L_clamp = new CMoveLNode(Q_min_bool, Q_min, long_zero, TypeLong::LONG); 1374 register_new_node(L_clamp, entry_control); 1375 // (This could also be coded bitwise as L_clamp = Q_min & ~(Q_min>>63).) 1376 1377 Node* Q_max_plus_one = new AddLNode(Q_max, long_one); 1378 register_new_node(Q_max_plus_one, entry_control); 1379 1380 // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1 1381 // (Because Q_min and Q_max are close, the overflow check could also be encoded as Q_max+1 < 0 & Q_min >= 0.) 1382 Node* max_jlong_long = _igvn.longcon(max_jlong); 1383 set_ctrl(max_jlong_long, this->C->root()); 1384 Node* Q_max_cmp = new CmpLNode(Q_max_plus_one, Q_min); 1385 register_new_node(Q_max_cmp, entry_control); 1386 Node* Q_max_bool = new BoolNode(Q_max_cmp, BoolTest::lt); 1387 register_new_node(Q_max_bool, entry_control); 1388 Node* H_clamp = new CMoveLNode(Q_max_bool, Q_max_plus_one, max_jlong_long, TypeLong::LONG); 1389 register_new_node(H_clamp, entry_control); 1390 // (This could also be coded bitwise as H_clamp = ((Q_max+1)<<1 | M)>>>1 where M = (Q_max+1)>>63 & ~Q_min>>63.) 1391 1392 // R_2 = clamp(R, L_clamp, H_clamp) - L_clamp 1393 // that is: R_2 = clamp(R, L_clamp=0, H_clamp=Q_max) if Q_min < 0 1394 // or else: R_2 = clamp(R, L_clamp, H_clamp) - Q_min if Q_min >= 0 1395 // and also: R_2 = clamp(R, L_clamp, Q_max+1) - L_clamp if Q_min < Q_max+1 (no overflow) 1396 // or else: R_2 = clamp(R, L_clamp, *no limit*)- L_clamp if Q_max+1 < Q_min (overflow) 1397 Node* R_2 = clamp(R, L_clamp, H_clamp); 1398 R_2 = new SubLNode(R_2, L_clamp); 1399 register_new_node(R_2, entry_control); 1400 R_2 = new ConvL2INode(R_2, TypeInt::POS); 1401 register_new_node(R_2, entry_control); 1402 1403 // L_2 = Q_first - L_clamp 1404 // We are subtracting L_clamp from both sides of the <u32 comparison. 1405 // If S*K>0, then Q_first == 0 and the R.C. expression at -L_clamp and steps upward to Q_max-L_clamp. 1406 // If S*K<0, then Q_first != 0 and the R.C. expression starts high and steps downward to Q_min-L_clamp. 1407 Node* L_2 = new SubLNode(Q_first, L_clamp); 1408 register_new_node(L_2, entry_control); 1409 L_2 = new ConvL2INode(L_2, TypeInt::INT); 1410 register_new_node(L_2, entry_control); 1411 1412 // Transform the range check using the computed values L_2/R_2 1413 // from: i*K + L <u64 R 1414 // to: j*K + L_2 <u32 R_2 1415 // that is: 1416 // (j*K + Q_first) - L_clamp <u32 clamp(R, L_clamp, H_clamp) - L_clamp 1417 K = _igvn.intcon(checked_cast<int>(scale)); 1418 set_ctrl(K, this->C->root()); 1419 Node* scaled_iv = new MulINode(inner_phi, K); 1420 register_new_node(scaled_iv, c); 1421 Node* scaled_iv_plus_offset = new AddINode(scaled_iv, L_2); 1422 register_new_node(scaled_iv_plus_offset, c); 1423 1424 Node* new_rc_cmp = new CmpUNode(scaled_iv_plus_offset, R_2); 1425 register_new_node(new_rc_cmp, c); 1426 1427 _igvn.replace_input_of(rc_bol, 1, new_rc_cmp); 1428 } 1429 } 1430 1431 Node* PhaseIdealLoop::clamp(Node* R, Node* L, Node* H) { 1432 Node* min = MaxNode::signed_min(R, H, TypeLong::LONG, _igvn); 1433 set_subtree_ctrl(min, true); 1434 Node* max = MaxNode::signed_max(L, min, TypeLong::LONG, _igvn); 1435 set_subtree_ctrl(max, true); 1436 return max; 1437 } 1438 1439 LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, 1440 IfNode* exit_test) { 1441 LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2)); 1442 IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt); 1443 _igvn.register_new_node_with_optimizer(new_inner_head); 1444 _igvn.register_new_node_with_optimizer(new_inner_exit); 1445 loop->_body.push(new_inner_head); 1446 loop->_body.push(new_inner_exit); 1447 loop->_body.yank(head); 1448 loop->_body.yank(exit_test); 1449 set_loop(new_inner_head, loop); 1450 set_loop(new_inner_exit, loop); 1451 set_idom(new_inner_head, idom(head), dom_depth(head)); 1452 set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test)); 1453 lazy_replace(head, new_inner_head); 1454 lazy_replace(exit_test, new_inner_exit); 1455 loop->_head = new_inner_head; 1456 return new_inner_head; 1457 } 1458 1459 #ifdef ASSERT 1460 void PhaseIdealLoop::check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) { 1461 Node* back_control = loop_exit_control(x, loop); 1462 assert(back_control != nullptr, "no back control"); 1463 1464 BoolTest::mask mask = BoolTest::illegal; 1465 float cl_prob = 0; 1466 Node* incr = nullptr; 1467 Node* limit = nullptr; 1468 1469 Node* cmp = loop_exit_test(back_control, loop, incr, limit, mask, cl_prob); 1470 assert(cmp != nullptr && cmp->Opcode() == Op_Cmp(bt), "no exit test"); 1471 1472 Node* phi_incr = nullptr; 1473 incr = loop_iv_incr(incr, x, loop, phi_incr); 1474 assert(incr != nullptr && incr->Opcode() == Op_Add(bt), "no incr"); 1475 1476 Node* xphi = nullptr; 1477 Node* stride = loop_iv_stride(incr, loop, xphi); 1478 1479 assert(stride != nullptr, "no stride"); 1480 1481 PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop); 1482 1483 assert(phi != nullptr && phi->in(LoopNode::LoopBackControl) == incr, "No phi"); 1484 1485 jlong stride_con = stride->get_integer_as_long(bt); 1486 1487 assert(condition_stride_ok(mask, stride_con), "illegal condition"); 1488 1489 assert(mask != BoolTest::ne, "unexpected condition"); 1490 assert(phi_incr == nullptr, "bad loop shape"); 1491 assert(cmp->in(1) == incr, "bad exit test shape"); 1492 1493 // Safepoint on backedge not supported 1494 assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge"); 1495 } 1496 #endif 1497 1498 #ifdef ASSERT 1499 // convert an int counted loop to a long counted to stress handling of 1500 // long counted loops 1501 bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) { 1502 Unique_Node_List iv_nodes; 1503 Node_List old_new; 1504 iv_nodes.push(cmp); 1505 bool failed = false; 1506 1507 for (uint i = 0; i < iv_nodes.size() && !failed; i++) { 1508 Node* n = iv_nodes.at(i); 1509 switch(n->Opcode()) { 1510 case Op_Phi: { 1511 Node* clone = new PhiNode(n->in(0), TypeLong::LONG); 1512 old_new.map(n->_idx, clone); 1513 break; 1514 } 1515 case Op_CmpI: { 1516 Node* clone = new CmpLNode(nullptr, nullptr); 1517 old_new.map(n->_idx, clone); 1518 break; 1519 } 1520 case Op_AddI: { 1521 Node* clone = new AddLNode(nullptr, nullptr); 1522 old_new.map(n->_idx, clone); 1523 break; 1524 } 1525 case Op_CastII: { 1526 failed = true; 1527 break; 1528 } 1529 default: 1530 DEBUG_ONLY(n->dump()); 1531 fatal("unexpected"); 1532 } 1533 1534 for (uint i = 1; i < n->req(); i++) { 1535 Node* in = n->in(i); 1536 if (in == nullptr) { 1537 continue; 1538 } 1539 if (loop->is_member(get_loop(get_ctrl(in)))) { 1540 iv_nodes.push(in); 1541 } 1542 } 1543 } 1544 1545 if (failed) { 1546 for (uint i = 0; i < iv_nodes.size(); i++) { 1547 Node* n = iv_nodes.at(i); 1548 Node* clone = old_new[n->_idx]; 1549 if (clone != nullptr) { 1550 _igvn.remove_dead_node(clone); 1551 } 1552 } 1553 return false; 1554 } 1555 1556 for (uint i = 0; i < iv_nodes.size(); i++) { 1557 Node* n = iv_nodes.at(i); 1558 Node* clone = old_new[n->_idx]; 1559 for (uint i = 1; i < n->req(); i++) { 1560 Node* in = n->in(i); 1561 if (in == nullptr) { 1562 continue; 1563 } 1564 Node* in_clone = old_new[in->_idx]; 1565 if (in_clone == nullptr) { 1566 assert(_igvn.type(in)->isa_int(), ""); 1567 in_clone = new ConvI2LNode(in); 1568 _igvn.register_new_node_with_optimizer(in_clone); 1569 set_subtree_ctrl(in_clone, false); 1570 } 1571 if (in_clone->in(0) == nullptr) { 1572 in_clone->set_req(0, C->top()); 1573 clone->set_req(i, in_clone); 1574 in_clone->set_req(0, nullptr); 1575 } else { 1576 clone->set_req(i, in_clone); 1577 } 1578 } 1579 _igvn.register_new_node_with_optimizer(clone); 1580 } 1581 set_ctrl(old_new[phi->_idx], phi->in(0)); 1582 1583 for (uint i = 0; i < iv_nodes.size(); i++) { 1584 Node* n = iv_nodes.at(i); 1585 Node* clone = old_new[n->_idx]; 1586 set_subtree_ctrl(clone, false); 1587 Node* m = n->Opcode() == Op_CmpI ? clone : nullptr; 1588 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1589 Node* u = n->fast_out(i); 1590 if (iv_nodes.member(u)) { 1591 continue; 1592 } 1593 if (m == nullptr) { 1594 m = new ConvL2INode(clone); 1595 _igvn.register_new_node_with_optimizer(m); 1596 set_subtree_ctrl(m, false); 1597 } 1598 _igvn.rehash_node_delayed(u); 1599 int nb = u->replace_edge(n, m, &_igvn); 1600 --i, imax -= nb; 1601 } 1602 } 1603 return true; 1604 } 1605 #endif 1606 1607 //------------------------------is_counted_loop-------------------------------- 1608 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt) { 1609 PhaseGVN *gvn = &_igvn; 1610 1611 Node* back_control = loop_exit_control(x, loop); 1612 if (back_control == nullptr) { 1613 return false; 1614 } 1615 1616 BoolTest::mask bt = BoolTest::illegal; 1617 float cl_prob = 0; 1618 Node* incr = nullptr; 1619 Node* limit = nullptr; 1620 Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob); 1621 if (cmp == nullptr || cmp->Opcode() != Op_Cmp(iv_bt)) { 1622 return false; // Avoid pointer & float & 64-bit compares 1623 } 1624 1625 // Trip-counter increment must be commutative & associative. 1626 if (incr->Opcode() == Op_Cast(iv_bt)) { 1627 incr = incr->in(1); 1628 } 1629 1630 Node* phi_incr = nullptr; 1631 incr = loop_iv_incr(incr, x, loop, phi_incr); 1632 if (incr == nullptr) { 1633 return false; 1634 } 1635 1636 Node* trunc1 = nullptr; 1637 Node* trunc2 = nullptr; 1638 const TypeInteger* iv_trunc_t = nullptr; 1639 Node* orig_incr = incr; 1640 if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) { 1641 return false; // Funny increment opcode 1642 } 1643 assert(incr->Opcode() == Op_Add(iv_bt), "wrong increment code"); 1644 1645 Node* xphi = nullptr; 1646 Node* stride = loop_iv_stride(incr, loop, xphi); 1647 1648 if (stride == nullptr) { 1649 return false; 1650 } 1651 1652 if (xphi->Opcode() == Op_Cast(iv_bt)) { 1653 xphi = xphi->in(1); 1654 } 1655 1656 // Stride must be constant 1657 jlong stride_con = stride->get_integer_as_long(iv_bt); 1658 assert(stride_con != 0, "missed some peephole opt"); 1659 1660 PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop); 1661 1662 if (phi == nullptr || 1663 (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) || 1664 (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) { 1665 return false; 1666 } 1667 1668 Node* iftrue = back_control; 1669 uint iftrue_op = iftrue->Opcode(); 1670 Node* iff = iftrue->in(0); 1671 BoolNode* test = iff->in(1)->as_Bool(); 1672 1673 const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt); 1674 if (trunc1 != nullptr) { 1675 // When there is a truncation, we must be sure that after the truncation 1676 // the trip counter will end up higher than the limit, otherwise we are looking 1677 // at an endless loop. Can happen with range checks. 1678 1679 // Example: 1680 // int i = 0; 1681 // while (true) 1682 // sum + = array[i]; 1683 // i++; 1684 // i = i && 0x7fff; 1685 // } 1686 // 1687 // If the array is shorter than 0x8000 this exits through a AIOOB 1688 // - Counted loop transformation is ok 1689 // If the array is longer then this is an endless loop 1690 // - No transformation can be done. 1691 1692 const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt); 1693 if (limit_t->hi_as_long() > incr_t->hi_as_long()) { 1694 // if the limit can have a higher value than the increment (before the phi) 1695 return false; 1696 } 1697 } 1698 1699 Node *init_trip = phi->in(LoopNode::EntryControl); 1700 1701 // If iv trunc type is smaller than int, check for possible wrap. 1702 if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) { 1703 assert(trunc1 != nullptr, "must have found some truncation"); 1704 1705 // Get a better type for the phi (filtered thru if's) 1706 const TypeInteger* phi_ft = filtered_type(phi); 1707 1708 // Can iv take on a value that will wrap? 1709 // 1710 // Ensure iv's limit is not within "stride" of the wrap value. 1711 // 1712 // Example for "short" type 1713 // Truncation ensures value is in the range -32768..32767 (iv_trunc_t) 1714 // If the stride is +10, then the last value of the induction 1715 // variable before the increment (phi_ft->_hi) must be 1716 // <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to 1717 // ensure no truncation occurs after the increment. 1718 1719 if (stride_con > 0) { 1720 if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con || 1721 iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) { 1722 return false; // truncation may occur 1723 } 1724 } else if (stride_con < 0) { 1725 if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con || 1726 iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) { 1727 return false; // truncation may occur 1728 } 1729 } 1730 // No possibility of wrap so truncation can be discarded 1731 // Promote iv type to Int 1732 } else { 1733 assert(trunc1 == nullptr && trunc2 == nullptr, "no truncation for int"); 1734 } 1735 1736 if (!condition_stride_ok(bt, stride_con)) { 1737 return false; 1738 } 1739 1740 const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt); 1741 1742 if (stride_con > 0) { 1743 if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) { 1744 return false; // cyclic loop 1745 } 1746 } else { 1747 if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) { 1748 return false; // cyclic loop 1749 } 1750 } 1751 1752 if (phi_incr != nullptr && bt != BoolTest::ne) { 1753 // check if there is a possibility of IV overflowing after the first increment 1754 if (stride_con > 0) { 1755 if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) { 1756 return false; 1757 } 1758 } else { 1759 if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) { 1760 return false; 1761 } 1762 } 1763 } 1764 1765 // ================================================= 1766 // ---- SUCCESS! Found A Trip-Counted Loop! ----- 1767 // 1768 1769 if (x->Opcode() == Op_Region) { 1770 // x has not yet been transformed to Loop or LongCountedLoop. 1771 // This should only happen if we are inside an infinite loop. 1772 // It happens like this: 1773 // build_loop_tree -> do not attach infinite loop and nested loops 1774 // beautify_loops -> does not transform the infinite and nested loops to LoopNode, because not attached yet 1775 // build_loop_tree -> find and attach infinite and nested loops 1776 // counted_loop -> nested Regions are not yet transformed to LoopNodes, we land here 1777 assert(x->as_Region()->is_in_infinite_subgraph(), 1778 "x can only be a Region and not Loop if inside infinite loop"); 1779 // Come back later when Region is transformed to LoopNode 1780 return false; 1781 } 1782 1783 assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only"); 1784 C->print_method(PHASE_BEFORE_CLOOPS, 3, x); 1785 1786 // =================================================== 1787 // We can only convert this loop to a counted loop if we can guarantee that the iv phi will never overflow at runtime. 1788 // This is an implicit assumption taken by some loop optimizations. We therefore must ensure this property at all cost. 1789 // At this point, we've already excluded some trivial cases where an overflow could have been proven statically. 1790 // But even though we cannot prove that an overflow will *not* happen, we still want to speculatively convert this loop 1791 // to a counted loop. This can be achieved by adding additional iv phi overflow checks before the loop. If they fail, 1792 // we trap and resume execution before the loop without having executed any iteration of the loop, yet. 1793 // 1794 // These additional iv phi overflow checks can be inserted as Loop Limit Check Predicates above the Loop Limit Check 1795 // Parse Predicate which captures a JVM state just before the entry of the loop. If there is no such Parse Predicate, 1796 // we cannot generate a Loop Limit Check Predicate and thus cannot speculatively convert the loop to a counted loop. 1797 // 1798 // In the following, we only focus on int loops with stride > 0 to keep things simple. The argumentation and proof 1799 // for stride < 0 is analogously. For long loops, we would replace max_int with max_long. 1800 // 1801 // 1802 // The loop to be converted does not always need to have the often used shape: 1803 // 1804 // i = init 1805 // i = init loop: 1806 // do { ... 1807 // // ... equivalent i+=stride 1808 // i+=stride <==> if (i < limit) 1809 // } while (i < limit); goto loop 1810 // exit: 1811 // ... 1812 // 1813 // where the loop exit check uses the post-incremented iv phi and a '<'-operator. 1814 // 1815 // We could also have '<='-operator (or '>='-operator for negative strides) or use the pre-incremented iv phi value 1816 // in the loop exit check: 1817 // 1818 // i = init 1819 // loop: 1820 // ... 1821 // if (i <= limit) 1822 // i+=stride 1823 // goto loop 1824 // exit: 1825 // ... 1826 // 1827 // Let's define the following terms: 1828 // - iv_pre_i: The pre-incremented iv phi before the i-th iteration. 1829 // - iv_post_i: The post-incremented iv phi after the i-th iteration. 1830 // 1831 // The iv_pre_i and iv_post_i have the following relation: 1832 // iv_pre_i + stride = iv_post_i 1833 // 1834 // When converting a loop to a counted loop, we want to have a canonicalized loop exit check of the form: 1835 // iv_post_i < adjusted_limit 1836 // 1837 // If that is not the case, we need to canonicalize the loop exit check by using different values for adjusted_limit: 1838 // (LE1) iv_post_i < limit: Already canonicalized. We can directly use limit as adjusted_limit. 1839 // -> adjusted_limit = limit. 1840 // (LE2) iv_post_i <= limit: 1841 // iv_post_i < limit + 1 1842 // -> adjusted limit = limit + 1 1843 // (LE3) iv_pre_i < limit: 1844 // iv_pre_i + stride < limit + stride 1845 // iv_post_i < limit + stride 1846 // -> adjusted_limit = limit + stride 1847 // (LE4) iv_pre_i <= limit: 1848 // iv_pre_i < limit + 1 1849 // iv_pre_i + stride < limit + stride + 1 1850 // iv_post_i < limit + stride + 1 1851 // -> adjusted_limit = limit + stride + 1 1852 // 1853 // Note that: 1854 // (AL) limit <= adjusted_limit. 1855 // 1856 // The following loop invariant has to hold for counted loops with n iterations (i.e. loop exit check true after n-th 1857 // loop iteration) and a canonicalized loop exit check to guarantee that no iv_post_i over- or underflows: 1858 // (INV) For i = 1..n, min_int <= iv_post_i <= max_int 1859 // 1860 // To prove (INV), we require the following two conditions/assumptions: 1861 // (i): adjusted_limit - 1 + stride <= max_int 1862 // (ii): init < limit 1863 // 1864 // If we can prove (INV), we know that there can be no over- or underflow of any iv phi value. We prove (INV) by 1865 // induction by assuming (i) and (ii). 1866 // 1867 // Proof by Induction 1868 // ------------------ 1869 // > Base case (i = 1): We show that (INV) holds after the first iteration: 1870 // min_int <= iv_post_1 = init + stride <= max_int 1871 // Proof: 1872 // First, we note that (ii) implies 1873 // (iii) init <= limit - 1 1874 // max_int >= adjusted_limit - 1 + stride [using (i)] 1875 // >= limit - 1 + stride [using (AL)] 1876 // >= init + stride [using (iii)] 1877 // >= min_int [using stride > 0, no underflow] 1878 // Thus, no overflow happens after the first iteration and (INV) holds for i = 1. 1879 // 1880 // Note that to prove the base case we need (i) and (ii). 1881 // 1882 // > Induction Hypothesis (i = j, j > 1): Assume that (INV) holds after the j-th iteration: 1883 // min_int <= iv_post_j <= max_int 1884 // > Step case (i = j + 1): We show that (INV) also holds after the j+1-th iteration: 1885 // min_int <= iv_post_{j+1} = iv_post_j + stride <= max_int 1886 // Proof: 1887 // If iv_post_j >= adjusted_limit: 1888 // We exit the loop after the j-th iteration, and we don't execute the j+1-th iteration anymore. Thus, there is 1889 // also no iv_{j+1}. Since (INV) holds for iv_j, there is nothing left to prove. 1890 // If iv_post_j < adjusted_limit: 1891 // First, we note that: 1892 // (iv) iv_post_j <= adjusted_limit - 1 1893 // max_int >= adjusted_limit - 1 + stride [using (i)] 1894 // >= iv_post_j + stride [using (iv)] 1895 // >= min_int [using stride > 0, no underflow] 1896 // 1897 // Note that to prove the step case we only need (i). 1898 // 1899 // Thus, by assuming (i) and (ii), we proved (INV). 1900 // 1901 // 1902 // It is therefore enough to add the following two Loop Limit Check Predicates to check assumptions (i) and (ii): 1903 // 1904 // (1) Loop Limit Check Predicate for (i): 1905 // Using (i): adjusted_limit - 1 + stride <= max_int 1906 // 1907 // This condition is now restated to use limit instead of adjusted_limit: 1908 // 1909 // To prevent an overflow of adjusted_limit -1 + stride itself, we rewrite this check to 1910 // max_int - stride + 1 >= adjusted_limit 1911 // We can merge the two constants into 1912 // canonicalized_correction = stride - 1 1913 // which gives us 1914 // max_int - canonicalized_correction >= adjusted_limit 1915 // 1916 // To directly use limit instead of adjusted_limit in the predicate condition, we split adjusted_limit into: 1917 // adjusted_limit = limit + limit_correction 1918 // Since stride > 0 and limit_correction <= stride + 1, we can restate this with no over- or underflow into: 1919 // max_int - canonicalized_correction - limit_correction >= limit 1920 // Since canonicalized_correction and limit_correction are both constants, we can replace them with a new constant: 1921 // (v) final_correction = canonicalized_correction + limit_correction 1922 // 1923 // which gives us: 1924 // 1925 // Final predicate condition: 1926 // max_int - final_correction >= limit 1927 // 1928 // However, we need to be careful that (v) does not over- or underflow. 1929 // We know that: 1930 // canonicalized_correction = stride - 1 1931 // and 1932 // limit_correction <= stride + 1 1933 // and thus 1934 // canonicalized_correction + limit_correction <= 2 * stride 1935 // To prevent an over- or underflow of (v), we must ensure that 1936 // 2 * stride <= max_int 1937 // which can safely be checked without over- or underflow with 1938 // (vi) stride != min_int AND abs(stride) <= max_int / 2 1939 // 1940 // We could try to further optimize the cases where (vi) does not hold but given that such large strides are 1941 // very uncommon and the loop would only run for a very few iterations anyway, we simply bail out if (vi) fails. 1942 // 1943 // (2) Loop Limit Check Predicate for (ii): 1944 // Using (ii): init < limit 1945 // 1946 // This Loop Limit Check Predicate is not required if we can prove at compile time that either: 1947 // (2.1) type(init) < type(limit) 1948 // In this case, we know: 1949 // all possible values of init < all possible values of limit 1950 // and we can skip the predicate. 1951 // 1952 // (2.2) init < limit is already checked before (i.e. found as a dominating check) 1953 // In this case, we do not need to re-check the condition and can skip the predicate. 1954 // This is often found for while- and for-loops which have the following shape: 1955 // 1956 // if (init < limit) { // Dominating test. Do not need the Loop Limit Check Predicate below. 1957 // i = init; 1958 // if (init >= limit) { trap(); } // Here we would insert the Loop Limit Check Predicate 1959 // do { 1960 // i += stride; 1961 // } while (i < limit); 1962 // } 1963 // 1964 // (2.3) init + stride <= max_int 1965 // In this case, there is no overflow of the iv phi after the first loop iteration. 1966 // In the proof of the base case above we showed that init + stride <= max_int by using assumption (ii): 1967 // init < limit 1968 // In the proof of the step case above, we did not need (ii) anymore. Therefore, if we already know at 1969 // compile time that init + stride <= max_int then we have trivially proven the base case and that 1970 // there is no overflow of the iv phi after the first iteration. In this case, we don't need to check (ii) 1971 // again and can skip the predicate. 1972 1973 // Check (vi) and bail out if the stride is too big. 1974 if (stride_con == min_signed_integer(iv_bt) || (ABS(stride_con) > max_signed_integer(iv_bt) / 2)) { 1975 return false; 1976 } 1977 1978 // Accounting for (LE3) and (LE4) where we use pre-incremented phis in the loop exit check. 1979 const jlong limit_correction_for_pre_iv_exit_check = (phi_incr != nullptr) ? stride_con : 0; 1980 1981 // Accounting for (LE2) and (LE4) where we use <= or >= in the loop exit check. 1982 const bool includes_limit = (bt == BoolTest::le || bt == BoolTest::ge); 1983 const jlong limit_correction_for_le_ge_exit_check = (includes_limit ? (stride_con > 0 ? 1 : -1) : 0); 1984 1985 const jlong limit_correction = limit_correction_for_pre_iv_exit_check + limit_correction_for_le_ge_exit_check; 1986 const jlong canonicalized_correction = stride_con + (stride_con > 0 ? -1 : 1); 1987 const jlong final_correction = canonicalized_correction + limit_correction; 1988 1989 int sov = check_stride_overflow(final_correction, limit_t, iv_bt); 1990 Node* init_control = x->in(LoopNode::EntryControl); 1991 1992 // If sov==0, limit's type always satisfies the condition, for 1993 // example, when it is an array length. 1994 if (sov != 0) { 1995 if (sov < 0) { 1996 return false; // Bailout: integer overflow is certain. 1997 } 1998 // (1) Loop Limit Check Predicate is required because we could not statically prove that 1999 // limit + final_correction = adjusted_limit - 1 + stride <= max_int 2000 assert(!x->as_Loop()->is_loop_nest_inner_loop(), "loop was transformed"); 2001 const Predicates predicates(init_control); 2002 const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block(); 2003 if (!loop_limit_check_predicate_block->has_parse_predicate()) { 2004 // The Loop Limit Check Parse Predicate is not generated if this method trapped here before. 2005 #ifdef ASSERT 2006 if (TraceLoopLimitCheck) { 2007 tty->print("Missing Loop Limit Check Parse Predicate:"); 2008 loop->dump_head(); 2009 x->dump(1); 2010 } 2011 #endif 2012 return false; 2013 } 2014 2015 ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate(); 2016 if (!is_dominator(get_ctrl(limit), loop_limit_check_parse_predicate->in(0))) { 2017 return false; 2018 } 2019 2020 Node* cmp_limit; 2021 Node* bol; 2022 2023 if (stride_con > 0) { 2024 cmp_limit = CmpNode::make(limit, _igvn.integercon(max_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt); 2025 bol = new BoolNode(cmp_limit, BoolTest::le); 2026 } else { 2027 cmp_limit = CmpNode::make(limit, _igvn.integercon(min_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt); 2028 bol = new BoolNode(cmp_limit, BoolTest::ge); 2029 } 2030 2031 insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol); 2032 } 2033 2034 // (2.3) 2035 const bool init_plus_stride_could_overflow = 2036 (stride_con > 0 && init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) || 2037 (stride_con < 0 && init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con); 2038 // (2.1) 2039 const bool init_gte_limit = (stride_con > 0 && init_t->hi_as_long() >= limit_t->lo_as_long()) || 2040 (stride_con < 0 && init_t->lo_as_long() <= limit_t->hi_as_long()); 2041 2042 if (init_gte_limit && // (2.1) 2043 ((bt == BoolTest::ne || init_plus_stride_could_overflow) && // (2.3) 2044 !has_dominating_loop_limit_check(init_trip, limit, stride_con, iv_bt, init_control))) { // (2.2) 2045 // (2) Iteration Loop Limit Check Predicate is required because neither (2.1), (2.2), nor (2.3) holds. 2046 // We use the following condition: 2047 // - stride > 0: init < limit 2048 // - stride < 0: init > limit 2049 // 2050 // This predicate is always required if we have a non-equal-operator in the loop exit check (where stride = 1 is 2051 // a requirement). We transform the loop exit check by using a less-than-operator. By doing so, we must always 2052 // check that init < limit. Otherwise, we could have a different number of iterations at runtime. 2053 2054 const Predicates predicates(init_control); 2055 const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block(); 2056 if (!loop_limit_check_predicate_block->has_parse_predicate()) { 2057 // The Loop Limit Check Parse Predicate is not generated if this method trapped here before. 2058 #ifdef ASSERT 2059 if (TraceLoopLimitCheck) { 2060 tty->print("Missing Loop Limit Check Parse Predicate:"); 2061 loop->dump_head(); 2062 x->dump(1); 2063 } 2064 #endif 2065 return false; 2066 } 2067 2068 ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate(); 2069 Node* parse_predicate_entry = loop_limit_check_parse_predicate->in(0); 2070 if (!is_dominator(get_ctrl(limit), parse_predicate_entry) || 2071 !is_dominator(get_ctrl(init_trip), parse_predicate_entry)) { 2072 return false; 2073 } 2074 2075 Node* cmp_limit; 2076 Node* bol; 2077 2078 if (stride_con > 0) { 2079 cmp_limit = CmpNode::make(init_trip, limit, iv_bt); 2080 bol = new BoolNode(cmp_limit, BoolTest::lt); 2081 } else { 2082 cmp_limit = CmpNode::make(init_trip, limit, iv_bt); 2083 bol = new BoolNode(cmp_limit, BoolTest::gt); 2084 } 2085 2086 insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol); 2087 } 2088 2089 if (bt == BoolTest::ne) { 2090 // Now we need to canonicalize the loop condition if it is 'ne'. 2091 assert(stride_con == 1 || stride_con == -1, "simple increment only - checked before"); 2092 if (stride_con > 0) { 2093 // 'ne' can be replaced with 'lt' only when init < limit. This is ensured by the inserted predicate above. 2094 bt = BoolTest::lt; 2095 } else { 2096 assert(stride_con < 0, "must be"); 2097 // 'ne' can be replaced with 'gt' only when init > limit. This is ensured by the inserted predicate above. 2098 bt = BoolTest::gt; 2099 } 2100 } 2101 2102 Node* sfpt = nullptr; 2103 if (loop->_child == nullptr) { 2104 sfpt = find_safepoint(back_control, x, loop); 2105 } else { 2106 sfpt = iff->in(0); 2107 if (sfpt->Opcode() != Op_SafePoint) { 2108 sfpt = nullptr; 2109 } 2110 } 2111 2112 if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint) { 2113 Node* backedge_sfpt = x->in(LoopNode::LoopBackControl); 2114 if (((iv_bt == T_INT && LoopStripMiningIter != 0) || 2115 iv_bt == T_LONG) && 2116 sfpt == nullptr) { 2117 // Leaving the safepoint on the backedge and creating a 2118 // CountedLoop will confuse optimizations. We can't move the 2119 // safepoint around because its jvm state wouldn't match a new 2120 // location. Give up on that loop. 2121 return false; 2122 } 2123 if (is_deleteable_safept(backedge_sfpt)) { 2124 lazy_replace(backedge_sfpt, iftrue); 2125 if (loop->_safepts != nullptr) { 2126 loop->_safepts->yank(backedge_sfpt); 2127 } 2128 loop->_tail = iftrue; 2129 } 2130 } 2131 2132 2133 #ifdef ASSERT 2134 if (iv_bt == T_INT && 2135 !x->as_Loop()->is_loop_nest_inner_loop() && 2136 StressLongCountedLoop > 0 && 2137 trunc1 == nullptr && 2138 convert_to_long_loop(cmp, phi, loop)) { 2139 return false; 2140 } 2141 #endif 2142 2143 Node* adjusted_limit = limit; 2144 if (phi_incr != nullptr) { 2145 // If compare points directly to the phi we need to adjust 2146 // the compare so that it points to the incr. Limit have 2147 // to be adjusted to keep trip count the same and we 2148 // should avoid int overflow. 2149 // 2150 // i = init; do {} while(i++ < limit); 2151 // is converted to 2152 // i = init; do {} while(++i < limit+1); 2153 // 2154 adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt)); 2155 } 2156 2157 if (includes_limit) { 2158 // The limit check guaranties that 'limit <= (max_jint - stride)' so 2159 // we can convert 'i <= limit' to 'i < limit+1' since stride != 0. 2160 // 2161 Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt); 2162 adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt)); 2163 if (bt == BoolTest::le) 2164 bt = BoolTest::lt; 2165 else if (bt == BoolTest::ge) 2166 bt = BoolTest::gt; 2167 else 2168 ShouldNotReachHere(); 2169 } 2170 set_subtree_ctrl(adjusted_limit, false); 2171 2172 // Build a canonical trip test. 2173 // Clone code, as old values may be in use. 2174 incr = incr->clone(); 2175 incr->set_req(1,phi); 2176 incr->set_req(2,stride); 2177 incr = _igvn.register_new_node_with_optimizer(incr); 2178 set_early_ctrl(incr, false); 2179 _igvn.rehash_node_delayed(phi); 2180 phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn ); 2181 2182 // If phi type is more restrictive than Int, raise to 2183 // Int to prevent (almost) infinite recursion in igvn 2184 // which can only handle integer types for constants or minint..maxint. 2185 if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) { 2186 Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt)); 2187 nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl)); 2188 nphi = _igvn.register_new_node_with_optimizer(nphi); 2189 set_ctrl(nphi, get_ctrl(phi)); 2190 _igvn.replace_node(phi, nphi); 2191 phi = nphi->as_Phi(); 2192 } 2193 cmp = cmp->clone(); 2194 cmp->set_req(1,incr); 2195 cmp->set_req(2, adjusted_limit); 2196 cmp = _igvn.register_new_node_with_optimizer(cmp); 2197 set_ctrl(cmp, iff->in(0)); 2198 2199 test = test->clone()->as_Bool(); 2200 (*(BoolTest*)&test->_test)._test = bt; 2201 test->set_req(1,cmp); 2202 _igvn.register_new_node_with_optimizer(test); 2203 set_ctrl(test, iff->in(0)); 2204 2205 // Replace the old IfNode with a new LoopEndNode 2206 Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt)); 2207 IfNode *le = lex->as_If(); 2208 uint dd = dom_depth(iff); 2209 set_idom(le, le->in(0), dd); // Update dominance for loop exit 2210 set_loop(le, loop); 2211 2212 // Get the loop-exit control 2213 Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue)); 2214 2215 // Need to swap loop-exit and loop-back control? 2216 if (iftrue_op == Op_IfFalse) { 2217 Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le)); 2218 Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le)); 2219 2220 loop->_tail = back_control = ift2; 2221 set_loop(ift2, loop); 2222 set_loop(iff2, get_loop(iffalse)); 2223 2224 // Lazy update of 'get_ctrl' mechanism. 2225 lazy_replace(iffalse, iff2); 2226 lazy_replace(iftrue, ift2); 2227 2228 // Swap names 2229 iffalse = iff2; 2230 iftrue = ift2; 2231 } else { 2232 _igvn.rehash_node_delayed(iffalse); 2233 _igvn.rehash_node_delayed(iftrue); 2234 iffalse->set_req_X( 0, le, &_igvn ); 2235 iftrue ->set_req_X( 0, le, &_igvn ); 2236 } 2237 2238 set_idom(iftrue, le, dd+1); 2239 set_idom(iffalse, le, dd+1); 2240 assert(iff->outcnt() == 0, "should be dead now"); 2241 lazy_replace( iff, le ); // fix 'get_ctrl' 2242 2243 Node* entry_control = init_control; 2244 bool strip_mine_loop = iv_bt == T_INT && 2245 loop->_child == nullptr && 2246 sfpt != nullptr && 2247 !loop->_has_call && 2248 is_deleteable_safept(sfpt); 2249 IdealLoopTree* outer_ilt = nullptr; 2250 if (strip_mine_loop) { 2251 outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop, 2252 cl_prob, le->_fcnt, entry_control, 2253 iffalse); 2254 } 2255 2256 // Now setup a new CountedLoopNode to replace the existing LoopNode 2257 BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt); 2258 l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve 2259 // The following assert is approximately true, and defines the intention 2260 // of can_be_counted_loop. It fails, however, because phase->type 2261 // is not yet initialized for this loop and its parts. 2262 //assert(l->can_be_counted_loop(this), "sanity"); 2263 _igvn.register_new_node_with_optimizer(l); 2264 set_loop(l, loop); 2265 loop->_head = l; 2266 // Fix all data nodes placed at the old loop head. 2267 // Uses the lazy-update mechanism of 'get_ctrl'. 2268 lazy_replace( x, l ); 2269 set_idom(l, entry_control, dom_depth(entry_control) + 1); 2270 2271 if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) { 2272 // Check for immediately preceding SafePoint and remove 2273 if (sfpt != nullptr && (strip_mine_loop || is_deleteable_safept(sfpt))) { 2274 if (strip_mine_loop) { 2275 Node* outer_le = outer_ilt->_tail->in(0); 2276 Node* sfpt_clone = sfpt->clone(); 2277 sfpt_clone->set_req(0, iffalse); 2278 outer_le->set_req(0, sfpt_clone); 2279 2280 Node* polladdr = sfpt_clone->in(TypeFunc::Parms); 2281 if (polladdr != nullptr && polladdr->is_Load()) { 2282 // Polling load should be pinned outside inner loop. 2283 Node* new_polladdr = polladdr->clone(); 2284 new_polladdr->set_req(0, iffalse); 2285 _igvn.register_new_node_with_optimizer(new_polladdr, polladdr); 2286 set_ctrl(new_polladdr, iffalse); 2287 sfpt_clone->set_req(TypeFunc::Parms, new_polladdr); 2288 } 2289 // When this code runs, loop bodies have not yet been populated. 2290 const bool body_populated = false; 2291 register_control(sfpt_clone, outer_ilt, iffalse, body_populated); 2292 set_idom(outer_le, sfpt_clone, dom_depth(sfpt_clone)); 2293 } 2294 lazy_replace(sfpt, sfpt->in(TypeFunc::Control)); 2295 if (loop->_safepts != nullptr) { 2296 loop->_safepts->yank(sfpt); 2297 } 2298 } 2299 } 2300 2301 #ifdef ASSERT 2302 assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up"); 2303 assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" ); 2304 #endif 2305 #ifndef PRODUCT 2306 if (TraceLoopOpts) { 2307 tty->print("Counted "); 2308 loop->dump_head(); 2309 } 2310 #endif 2311 2312 C->print_method(PHASE_AFTER_CLOOPS, 3, l); 2313 2314 // Capture bounds of the loop in the induction variable Phi before 2315 // subsequent transformation (iteration splitting) obscures the 2316 // bounds 2317 l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn)); 2318 2319 if (strip_mine_loop) { 2320 l->mark_strip_mined(); 2321 l->verify_strip_mined(1); 2322 outer_ilt->_head->as_Loop()->verify_strip_mined(1); 2323 loop = outer_ilt; 2324 } 2325 2326 #ifndef PRODUCT 2327 if (x->as_Loop()->is_loop_nest_inner_loop() && iv_bt == T_LONG) { 2328 Atomic::inc(&_long_loop_counted_loops); 2329 } 2330 #endif 2331 if (iv_bt == T_LONG && x->as_Loop()->is_loop_nest_outer_loop()) { 2332 l->mark_loop_nest_outer_loop(); 2333 } 2334 2335 return true; 2336 } 2337 2338 // Check if there is a dominating loop limit check of the form 'init < limit' starting at the loop entry. 2339 // If there is one, then we do not need to create an additional Loop Limit Check Predicate. 2340 bool PhaseIdealLoop::has_dominating_loop_limit_check(Node* init_trip, Node* limit, const jlong stride_con, 2341 const BasicType iv_bt, Node* loop_entry) { 2342 // Eagerly call transform() on the Cmp and Bool node to common them up if possible. This is required in order to 2343 // successfully find a dominated test with the If node below. 2344 Node* cmp_limit; 2345 Node* bol; 2346 if (stride_con > 0) { 2347 cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt)); 2348 bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::lt)); 2349 } else { 2350 cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt)); 2351 bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::gt)); 2352 } 2353 2354 // Check if there is already a dominating init < limit check. If so, we do not need a Loop Limit Check Predicate. 2355 IfNode* iff = new IfNode(loop_entry, bol, PROB_MIN, COUNT_UNKNOWN); 2356 // Also add fake IfProj nodes in order to call transform() on the newly created IfNode. 2357 IfFalseNode* if_false = new IfFalseNode(iff); 2358 IfTrueNode* if_true = new IfTrueNode(iff); 2359 Node* dominated_iff = _igvn.transform(iff); 2360 // ConI node? Found dominating test (IfNode::dominated_by() returns a ConI node). 2361 const bool found_dominating_test = dominated_iff != nullptr && dominated_iff->is_ConI(); 2362 2363 // Kill the If with its projections again in the next IGVN round by cutting it off from the graph. 2364 _igvn.replace_input_of(iff, 0, C->top()); 2365 _igvn.replace_input_of(iff, 1, C->top()); 2366 return found_dominating_test; 2367 } 2368 2369 //----------------------exact_limit------------------------------------------- 2370 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) { 2371 assert(loop->_head->is_CountedLoop(), ""); 2372 CountedLoopNode *cl = loop->_head->as_CountedLoop(); 2373 assert(cl->is_valid_counted_loop(T_INT), ""); 2374 2375 if (cl->stride_con() == 1 || 2376 cl->stride_con() == -1 || 2377 cl->limit()->Opcode() == Op_LoopLimit) { 2378 // Old code has exact limit (it could be incorrect in case of int overflow). 2379 // Loop limit is exact with stride == 1. And loop may already have exact limit. 2380 return cl->limit(); 2381 } 2382 Node *limit = nullptr; 2383 #ifdef ASSERT 2384 BoolTest::mask bt = cl->loopexit()->test_trip(); 2385 assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected"); 2386 #endif 2387 if (cl->has_exact_trip_count()) { 2388 // Simple case: loop has constant boundaries. 2389 // Use jlongs to avoid integer overflow. 2390 int stride_con = cl->stride_con(); 2391 jlong init_con = cl->init_trip()->get_int(); 2392 jlong limit_con = cl->limit()->get_int(); 2393 julong trip_cnt = cl->trip_count(); 2394 jlong final_con = init_con + trip_cnt*stride_con; 2395 int final_int = (int)final_con; 2396 // The final value should be in integer range since the loop 2397 // is counted and the limit was checked for overflow. 2398 assert(final_con == (jlong)final_int, "final value should be integer"); 2399 limit = _igvn.intcon(final_int); 2400 } else { 2401 // Create new LoopLimit node to get exact limit (final iv value). 2402 limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride()); 2403 register_new_node(limit, cl->in(LoopNode::EntryControl)); 2404 } 2405 assert(limit != nullptr, "sanity"); 2406 return limit; 2407 } 2408 2409 //------------------------------Ideal------------------------------------------ 2410 // Return a node which is more "ideal" than the current node. 2411 // Attempt to convert into a counted-loop. 2412 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2413 if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) { 2414 phase->C->set_major_progress(); 2415 } 2416 return RegionNode::Ideal(phase, can_reshape); 2417 } 2418 2419 #ifdef ASSERT 2420 void LoopNode::verify_strip_mined(int expect_skeleton) const { 2421 const OuterStripMinedLoopNode* outer = nullptr; 2422 const CountedLoopNode* inner = nullptr; 2423 if (is_strip_mined()) { 2424 if (!is_valid_counted_loop(T_INT)) { 2425 return; // Skip malformed counted loop 2426 } 2427 assert(is_CountedLoop(), "no Loop should be marked strip mined"); 2428 inner = as_CountedLoop(); 2429 outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop(); 2430 } else if (is_OuterStripMinedLoop()) { 2431 outer = this->as_OuterStripMinedLoop(); 2432 inner = outer->unique_ctrl_out()->as_CountedLoop(); 2433 assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed"); 2434 assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined"); 2435 } 2436 if (inner != nullptr || outer != nullptr) { 2437 assert(inner != nullptr && outer != nullptr, "missing loop in strip mined nest"); 2438 Node* outer_tail = outer->in(LoopNode::LoopBackControl); 2439 Node* outer_le = outer_tail->in(0); 2440 assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If"); 2441 Node* sfpt = outer_le->in(0); 2442 assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?"); 2443 Node* inner_out = sfpt->in(0); 2444 CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd(); 2445 assert(cle == inner->loopexit_or_null(), "mismatch"); 2446 bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0; 2447 if (has_skeleton) { 2448 assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node"); 2449 assert(outer->outcnt() == 2, "only control nodes"); 2450 } else { 2451 assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?"); 2452 uint phis = 0; 2453 uint be_loads = 0; 2454 Node* be = inner->in(LoopNode::LoopBackControl); 2455 for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) { 2456 Node* u = inner->fast_out(i); 2457 if (u->is_Phi()) { 2458 phis++; 2459 for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) { 2460 Node* n = be->fast_out(j); 2461 if (n->is_Load()) { 2462 assert(n->in(0) == be || n->find_prec_edge(be) > 0, "should be on the backedge"); 2463 do { 2464 n = n->raw_out(0); 2465 } while (!n->is_Phi()); 2466 if (n == u) { 2467 be_loads++; 2468 break; 2469 } 2470 } 2471 } 2472 } 2473 } 2474 assert(be_loads <= phis, "wrong number phis that depends on a pinned load"); 2475 for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) { 2476 Node* u = outer->fast_out(i); 2477 assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop"); 2478 } 2479 uint stores = 0; 2480 for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) { 2481 Node* u = inner_out->fast_out(i); 2482 if (u->is_Store()) { 2483 stores++; 2484 } 2485 } 2486 // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is 2487 // not guaranteed to be optimized out. 2488 assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis"); 2489 } 2490 assert(sfpt->outcnt() == 1, "no data node"); 2491 assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node"); 2492 } 2493 } 2494 #endif 2495 2496 //============================================================================= 2497 //------------------------------Ideal------------------------------------------ 2498 // Return a node which is more "ideal" than the current node. 2499 // Attempt to convert into a counted-loop. 2500 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2501 return RegionNode::Ideal(phase, can_reshape); 2502 } 2503 2504 //------------------------------dump_spec-------------------------------------- 2505 // Dump special per-node info 2506 #ifndef PRODUCT 2507 void CountedLoopNode::dump_spec(outputStream *st) const { 2508 LoopNode::dump_spec(st); 2509 if (stride_is_con()) { 2510 st->print("stride: %d ",stride_con()); 2511 } 2512 if (is_pre_loop ()) st->print("pre of N%d" , _main_idx); 2513 if (is_main_loop()) st->print("main of N%d", _idx); 2514 if (is_post_loop()) st->print("post of N%d", _main_idx); 2515 if (is_strip_mined()) st->print(" strip mined"); 2516 } 2517 #endif 2518 2519 //============================================================================= 2520 jlong BaseCountedLoopEndNode::stride_con() const { 2521 return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt()); 2522 } 2523 2524 2525 BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) { 2526 if (bt == T_INT) { 2527 return new CountedLoopEndNode(control, test, prob, cnt); 2528 } 2529 assert(bt == T_LONG, "unsupported"); 2530 return new LongCountedLoopEndNode(control, test, prob, cnt); 2531 } 2532 2533 //============================================================================= 2534 //------------------------------Value----------------------------------------- 2535 const Type* LoopLimitNode::Value(PhaseGVN* phase) const { 2536 const Type* init_t = phase->type(in(Init)); 2537 const Type* limit_t = phase->type(in(Limit)); 2538 const Type* stride_t = phase->type(in(Stride)); 2539 // Either input is TOP ==> the result is TOP 2540 if (init_t == Type::TOP) return Type::TOP; 2541 if (limit_t == Type::TOP) return Type::TOP; 2542 if (stride_t == Type::TOP) return Type::TOP; 2543 2544 int stride_con = stride_t->is_int()->get_con(); 2545 if (stride_con == 1) 2546 return bottom_type(); // Identity 2547 2548 if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) { 2549 // Use jlongs to avoid integer overflow. 2550 jlong init_con = init_t->is_int()->get_con(); 2551 jlong limit_con = limit_t->is_int()->get_con(); 2552 int stride_m = stride_con - (stride_con > 0 ? 1 : -1); 2553 jlong trip_count = (limit_con - init_con + stride_m)/stride_con; 2554 jlong final_con = init_con + stride_con*trip_count; 2555 int final_int = (int)final_con; 2556 // The final value should be in integer range since the loop 2557 // is counted and the limit was checked for overflow. 2558 // Assert checks for overflow only if all input nodes are ConINodes, as during CCP 2559 // there might be a temporary overflow from PhiNodes see JDK-8309266 2560 assert((in(Init)->is_ConI() && in(Limit)->is_ConI() && in(Stride)->is_ConI()) ? final_con == (jlong)final_int : true, "final value should be integer"); 2561 if (final_con == (jlong)final_int) { 2562 return TypeInt::make(final_int); 2563 } else { 2564 return bottom_type(); 2565 } 2566 } 2567 2568 return bottom_type(); // TypeInt::INT 2569 } 2570 2571 //------------------------------Ideal------------------------------------------ 2572 // Return a node which is more "ideal" than the current node. 2573 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2574 if (phase->type(in(Init)) == Type::TOP || 2575 phase->type(in(Limit)) == Type::TOP || 2576 phase->type(in(Stride)) == Type::TOP) 2577 return nullptr; // Dead 2578 2579 int stride_con = phase->type(in(Stride))->is_int()->get_con(); 2580 if (stride_con == 1) 2581 return nullptr; // Identity 2582 2583 if (in(Init)->is_Con() && in(Limit)->is_Con()) 2584 return nullptr; // Value 2585 2586 // Delay following optimizations until all loop optimizations 2587 // done to keep Ideal graph simple. 2588 if (!can_reshape || !phase->C->post_loop_opts_phase()) { 2589 return nullptr; 2590 } 2591 2592 const TypeInt* init_t = phase->type(in(Init) )->is_int(); 2593 const TypeInt* limit_t = phase->type(in(Limit))->is_int(); 2594 int stride_p; 2595 jlong lim, ini; 2596 julong max; 2597 if (stride_con > 0) { 2598 stride_p = stride_con; 2599 lim = limit_t->_hi; 2600 ini = init_t->_lo; 2601 max = (julong)max_jint; 2602 } else { 2603 stride_p = -stride_con; 2604 lim = init_t->_hi; 2605 ini = limit_t->_lo; 2606 max = (julong)min_jint; 2607 } 2608 julong range = lim - ini + stride_p; 2609 if (range <= max) { 2610 // Convert to integer expression if it is not overflow. 2611 Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1)); 2612 Node *range = phase->transform(new SubINode(in(Limit), in(Init))); 2613 Node *bias = phase->transform(new AddINode(range, stride_m)); 2614 Node *trip = phase->transform(new DivINode(nullptr, bias, in(Stride))); 2615 Node *span = phase->transform(new MulINode(trip, in(Stride))); 2616 return new AddINode(span, in(Init)); // exact limit 2617 } 2618 2619 if (is_power_of_2(stride_p) || // divisor is 2^n 2620 !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node? 2621 // Convert to long expression to avoid integer overflow 2622 // and let igvn optimizer convert this division. 2623 // 2624 Node* init = phase->transform( new ConvI2LNode(in(Init))); 2625 Node* limit = phase->transform( new ConvI2LNode(in(Limit))); 2626 Node* stride = phase->longcon(stride_con); 2627 Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1)); 2628 2629 Node *range = phase->transform(new SubLNode(limit, init)); 2630 Node *bias = phase->transform(new AddLNode(range, stride_m)); 2631 Node *span; 2632 if (stride_con > 0 && is_power_of_2(stride_p)) { 2633 // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride) 2634 // and avoid generating rounding for division. Zero trip guard should 2635 // guarantee that init < limit but sometimes the guard is missing and 2636 // we can get situation when init > limit. Note, for the empty loop 2637 // optimization zero trip guard is generated explicitly which leaves 2638 // only RCE predicate where exact limit is used and the predicate 2639 // will simply fail forcing recompilation. 2640 Node* neg_stride = phase->longcon(-stride_con); 2641 span = phase->transform(new AndLNode(bias, neg_stride)); 2642 } else { 2643 Node *trip = phase->transform(new DivLNode(nullptr, bias, stride)); 2644 span = phase->transform(new MulLNode(trip, stride)); 2645 } 2646 // Convert back to int 2647 Node *span_int = phase->transform(new ConvL2INode(span)); 2648 return new AddINode(span_int, in(Init)); // exact limit 2649 } 2650 2651 return nullptr; // No progress 2652 } 2653 2654 //------------------------------Identity--------------------------------------- 2655 // If stride == 1 return limit node. 2656 Node* LoopLimitNode::Identity(PhaseGVN* phase) { 2657 int stride_con = phase->type(in(Stride))->is_int()->get_con(); 2658 if (stride_con == 1 || stride_con == -1) 2659 return in(Limit); 2660 return this; 2661 } 2662 2663 //============================================================================= 2664 //----------------------match_incr_with_optional_truncation-------------------- 2665 // Match increment with optional truncation: 2666 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16 2667 // Return null for failure. Success returns the increment node. 2668 Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, 2669 const TypeInteger** trunc_type, 2670 BasicType bt) { 2671 // Quick cutouts: 2672 if (expr == nullptr || expr->req() != 3) return nullptr; 2673 2674 Node *t1 = nullptr; 2675 Node *t2 = nullptr; 2676 Node* n1 = expr; 2677 int n1op = n1->Opcode(); 2678 const TypeInteger* trunc_t = TypeInteger::bottom(bt); 2679 2680 if (bt == T_INT) { 2681 // Try to strip (n1 & M) or (n1 << N >> N) from n1. 2682 if (n1op == Op_AndI && 2683 n1->in(2)->is_Con() && 2684 n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) { 2685 // %%% This check should match any mask of 2**K-1. 2686 t1 = n1; 2687 n1 = t1->in(1); 2688 n1op = n1->Opcode(); 2689 trunc_t = TypeInt::CHAR; 2690 } else if (n1op == Op_RShiftI && 2691 n1->in(1) != nullptr && 2692 n1->in(1)->Opcode() == Op_LShiftI && 2693 n1->in(2) == n1->in(1)->in(2) && 2694 n1->in(2)->is_Con()) { 2695 jint shift = n1->in(2)->bottom_type()->is_int()->get_con(); 2696 // %%% This check should match any shift in [1..31]. 2697 if (shift == 16 || shift == 8) { 2698 t1 = n1; 2699 t2 = t1->in(1); 2700 n1 = t2->in(1); 2701 n1op = n1->Opcode(); 2702 if (shift == 16) { 2703 trunc_t = TypeInt::SHORT; 2704 } else if (shift == 8) { 2705 trunc_t = TypeInt::BYTE; 2706 } 2707 } 2708 } 2709 } 2710 2711 // If (maybe after stripping) it is an AddI, we won: 2712 if (n1op == Op_Add(bt)) { 2713 *trunc1 = t1; 2714 *trunc2 = t2; 2715 *trunc_type = trunc_t; 2716 return n1; 2717 } 2718 2719 // failed 2720 return nullptr; 2721 } 2722 2723 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) { 2724 if (is_strip_mined() && in(EntryControl) != nullptr && in(EntryControl)->is_OuterStripMinedLoop()) { 2725 verify_strip_mined(expect_skeleton); 2726 return in(EntryControl)->as_Loop(); 2727 } 2728 return this; 2729 } 2730 2731 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const { 2732 assert(is_strip_mined(), "not a strip mined loop"); 2733 Node* c = in(EntryControl); 2734 if (c == nullptr || c->is_top() || !c->is_OuterStripMinedLoop()) { 2735 return nullptr; 2736 } 2737 return c->as_OuterStripMinedLoop(); 2738 } 2739 2740 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const { 2741 Node* c = in(LoopBackControl); 2742 if (c == nullptr || c->is_top()) { 2743 return nullptr; 2744 } 2745 return c->as_IfTrue(); 2746 } 2747 2748 IfTrueNode* CountedLoopNode::outer_loop_tail() const { 2749 LoopNode* l = outer_loop(); 2750 if (l == nullptr) { 2751 return nullptr; 2752 } 2753 return l->outer_loop_tail(); 2754 } 2755 2756 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const { 2757 IfTrueNode* proj = outer_loop_tail(); 2758 if (proj == nullptr) { 2759 return nullptr; 2760 } 2761 Node* c = proj->in(0); 2762 if (c == nullptr || c->is_top() || c->outcnt() != 2) { 2763 return nullptr; 2764 } 2765 return c->as_OuterStripMinedLoopEnd(); 2766 } 2767 2768 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const { 2769 LoopNode* l = outer_loop(); 2770 if (l == nullptr) { 2771 return nullptr; 2772 } 2773 return l->outer_loop_end(); 2774 } 2775 2776 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const { 2777 IfNode* le = outer_loop_end(); 2778 if (le == nullptr) { 2779 return nullptr; 2780 } 2781 Node* c = le->proj_out_or_null(false); 2782 if (c == nullptr) { 2783 return nullptr; 2784 } 2785 return c->as_IfFalse(); 2786 } 2787 2788 IfFalseNode* CountedLoopNode::outer_loop_exit() const { 2789 LoopNode* l = outer_loop(); 2790 if (l == nullptr) { 2791 return nullptr; 2792 } 2793 return l->outer_loop_exit(); 2794 } 2795 2796 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const { 2797 IfNode* le = outer_loop_end(); 2798 if (le == nullptr) { 2799 return nullptr; 2800 } 2801 Node* c = le->in(0); 2802 if (c == nullptr || c->is_top()) { 2803 return nullptr; 2804 } 2805 assert(c->Opcode() == Op_SafePoint, "broken outer loop"); 2806 return c->as_SafePoint(); 2807 } 2808 2809 SafePointNode* CountedLoopNode::outer_safepoint() const { 2810 LoopNode* l = outer_loop(); 2811 if (l == nullptr) { 2812 return nullptr; 2813 } 2814 return l->outer_safepoint(); 2815 } 2816 2817 Node* CountedLoopNode::skip_assertion_predicates_with_halt() { 2818 Node* ctrl = in(LoopNode::EntryControl); 2819 if (is_main_loop()) { 2820 ctrl = skip_strip_mined()->in(LoopNode::EntryControl); 2821 } 2822 if (is_main_loop() || is_post_loop()) { 2823 AssertionPredicatesWithHalt assertion_predicates(ctrl); 2824 return assertion_predicates.entry(); 2825 } 2826 return ctrl; 2827 } 2828 2829 2830 int CountedLoopNode::stride_con() const { 2831 CountedLoopEndNode* cle = loopexit_or_null(); 2832 return cle != nullptr ? cle->stride_con() : 0; 2833 } 2834 2835 BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) { 2836 if (bt == T_INT) { 2837 return new CountedLoopNode(entry, backedge); 2838 } 2839 assert(bt == T_LONG, "unsupported"); 2840 return new LongCountedLoopNode(entry, backedge); 2841 } 2842 2843 void OuterStripMinedLoopNode::fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn, 2844 PhaseIdealLoop* iloop) { 2845 Node* cle_out = inner_cle->proj_out(false); 2846 Node* cle_tail = inner_cle->proj_out(true); 2847 if (cle_out->outcnt() > 1) { 2848 // Look for chains of stores that were sunk 2849 // out of the inner loop and are in the outer loop 2850 for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) { 2851 Node* u = cle_out->fast_out(i); 2852 if (u->is_Store()) { 2853 int alias_idx = igvn->C->get_alias_index(u->adr_type()); 2854 Node* first = u; 2855 for (;;) { 2856 Node* next = first->in(MemNode::Memory); 2857 if (!next->is_Store() || next->in(0) != cle_out) { 2858 break; 2859 } 2860 assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, ""); 2861 first = next; 2862 } 2863 Node* last = u; 2864 for (;;) { 2865 Node* next = nullptr; 2866 for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) { 2867 Node* uu = last->fast_out(j); 2868 if (uu->is_Store() && uu->in(0) == cle_out) { 2869 assert(next == nullptr, "only one in the outer loop"); 2870 next = uu; 2871 assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, ""); 2872 } 2873 } 2874 if (next == nullptr) { 2875 break; 2876 } 2877 last = next; 2878 } 2879 Node* phi = nullptr; 2880 for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) { 2881 Node* uu = inner_cl->fast_out(j); 2882 if (uu->is_Phi()) { 2883 Node* be = uu->in(LoopNode::LoopBackControl); 2884 if (be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)) { 2885 assert(igvn->C->get_alias_index(uu->adr_type()) != alias_idx && igvn->C->get_alias_index(uu->adr_type()) != Compile::AliasIdxBot, "unexpected store"); 2886 } 2887 if (be == last || be == first->in(MemNode::Memory)) { 2888 assert(igvn->C->get_alias_index(uu->adr_type()) == alias_idx || igvn->C->get_alias_index(uu->adr_type()) == Compile::AliasIdxBot, "unexpected alias"); 2889 assert(phi == nullptr, "only one phi"); 2890 phi = uu; 2891 } 2892 } 2893 } 2894 #ifdef ASSERT 2895 for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) { 2896 Node* uu = inner_cl->fast_out(j); 2897 if (uu->is_memory_phi()) { 2898 if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) { 2899 assert(phi == uu, "what's that phi?"); 2900 } else if (uu->adr_type() == TypePtr::BOTTOM) { 2901 Node* n = uu->in(LoopNode::LoopBackControl); 2902 uint limit = igvn->C->live_nodes(); 2903 uint i = 0; 2904 while (n != uu) { 2905 i++; 2906 assert(i < limit, "infinite loop"); 2907 if (n->is_Proj()) { 2908 n = n->in(0); 2909 } else if (n->is_SafePoint() || n->is_MemBar()) { 2910 n = n->in(TypeFunc::Memory); 2911 } else if (n->is_Phi()) { 2912 n = n->in(1); 2913 } else if (n->is_MergeMem()) { 2914 n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type())); 2915 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) { 2916 n = n->in(MemNode::Memory); 2917 } else { 2918 n->dump(); 2919 ShouldNotReachHere(); 2920 } 2921 } 2922 } 2923 } 2924 } 2925 #endif 2926 if (phi == nullptr) { 2927 // If an entire chains was sunk, the 2928 // inner loop has no phi for that memory 2929 // slice, create one for the outer loop 2930 phi = PhiNode::make(inner_cl, first->in(MemNode::Memory), Type::MEMORY, 2931 igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))); 2932 phi->set_req(LoopNode::LoopBackControl, last); 2933 phi = register_new_node(phi, inner_cl, igvn, iloop); 2934 igvn->replace_input_of(first, MemNode::Memory, phi); 2935 } else { 2936 // Or fix the outer loop fix to include 2937 // that chain of stores. 2938 Node* be = phi->in(LoopNode::LoopBackControl); 2939 assert(!(be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)), "store on the backedge + sunk stores: unsupported"); 2940 if (be == first->in(MemNode::Memory)) { 2941 if (be == phi->in(LoopNode::LoopBackControl)) { 2942 igvn->replace_input_of(phi, LoopNode::LoopBackControl, last); 2943 } else { 2944 igvn->replace_input_of(be, MemNode::Memory, last); 2945 } 2946 } else { 2947 #ifdef ASSERT 2948 if (be == phi->in(LoopNode::LoopBackControl)) { 2949 assert(phi->in(LoopNode::LoopBackControl) == last, ""); 2950 } else { 2951 assert(be->in(MemNode::Memory) == last, ""); 2952 } 2953 #endif 2954 } 2955 } 2956 } 2957 } 2958 } 2959 } 2960 2961 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) { 2962 // Look for the outer & inner strip mined loop, reduce number of 2963 // iterations of the inner loop, set exit condition of outer loop, 2964 // construct required phi nodes for outer loop. 2965 CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); 2966 assert(inner_cl->is_strip_mined(), "inner loop should be strip mined"); 2967 if (LoopStripMiningIter == 0) { 2968 remove_outer_loop_and_safepoint(igvn); 2969 return; 2970 } 2971 if (LoopStripMiningIter == 1) { 2972 transform_to_counted_loop(igvn, nullptr); 2973 return; 2974 } 2975 Node* inner_iv_phi = inner_cl->phi(); 2976 if (inner_iv_phi == nullptr) { 2977 IfNode* outer_le = outer_loop_end(); 2978 Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); 2979 igvn->replace_node(outer_le, iff); 2980 inner_cl->clear_strip_mined(); 2981 return; 2982 } 2983 CountedLoopEndNode* inner_cle = inner_cl->loopexit(); 2984 2985 int stride = inner_cl->stride_con(); 2986 // For a min int stride, LoopStripMiningIter * stride overflows the int range for all values of LoopStripMiningIter 2987 // except 0 or 1. Those values are handled early on in this method and causes the method to return. So for a min int 2988 // stride, the method is guaranteed to return at the next check below. 2989 jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS((jlong)stride); 2990 int scaled_iters = (int)scaled_iters_long; 2991 if ((jlong)scaled_iters != scaled_iters_long) { 2992 // Remove outer loop and safepoint (too few iterations) 2993 remove_outer_loop_and_safepoint(igvn); 2994 return; 2995 } 2996 jlong short_scaled_iters = LoopStripMiningIterShortLoop * ABS(stride); 2997 const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int(); 2998 jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo; 2999 assert(iter_estimate > 0, "broken"); 3000 if (iter_estimate <= short_scaled_iters) { 3001 // Remove outer loop and safepoint: loop executes less than LoopStripMiningIterShortLoop 3002 remove_outer_loop_and_safepoint(igvn); 3003 return; 3004 } 3005 if (iter_estimate <= scaled_iters_long) { 3006 // We would only go through one iteration of 3007 // the outer loop: drop the outer loop but 3008 // keep the safepoint so we don't run for 3009 // too long without a safepoint 3010 IfNode* outer_le = outer_loop_end(); 3011 Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); 3012 igvn->replace_node(outer_le, iff); 3013 inner_cl->clear_strip_mined(); 3014 return; 3015 } 3016 3017 Node* cle_tail = inner_cle->proj_out(true); 3018 ResourceMark rm; 3019 Node_List old_new; 3020 if (cle_tail->outcnt() > 1) { 3021 // Look for nodes on backedge of inner loop and clone them 3022 Unique_Node_List backedge_nodes; 3023 for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) { 3024 Node* u = cle_tail->fast_out(i); 3025 if (u != inner_cl) { 3026 assert(!u->is_CFG(), "control flow on the backedge?"); 3027 backedge_nodes.push(u); 3028 } 3029 } 3030 uint last = igvn->C->unique(); 3031 for (uint next = 0; next < backedge_nodes.size(); next++) { 3032 Node* n = backedge_nodes.at(next); 3033 old_new.map(n->_idx, n->clone()); 3034 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3035 Node* u = n->fast_out(i); 3036 assert(!u->is_CFG(), "broken"); 3037 if (u->_idx >= last) { 3038 continue; 3039 } 3040 if (!u->is_Phi()) { 3041 backedge_nodes.push(u); 3042 } else { 3043 assert(u->in(0) == inner_cl, "strange phi on the backedge"); 3044 } 3045 } 3046 } 3047 // Put the clones on the outer loop backedge 3048 Node* le_tail = outer_loop_tail(); 3049 for (uint next = 0; next < backedge_nodes.size(); next++) { 3050 Node *n = old_new[backedge_nodes.at(next)->_idx]; 3051 for (uint i = 1; i < n->req(); i++) { 3052 if (n->in(i) != nullptr && old_new[n->in(i)->_idx] != nullptr) { 3053 n->set_req(i, old_new[n->in(i)->_idx]); 3054 } 3055 } 3056 if (n->in(0) != nullptr && n->in(0) == cle_tail) { 3057 n->set_req(0, le_tail); 3058 } 3059 igvn->register_new_node_with_optimizer(n); 3060 } 3061 } 3062 3063 Node* iv_phi = nullptr; 3064 // Make a clone of each phi in the inner loop 3065 // for the outer loop 3066 for (uint i = 0; i < inner_cl->outcnt(); i++) { 3067 Node* u = inner_cl->raw_out(i); 3068 if (u->is_Phi()) { 3069 assert(u->in(0) == inner_cl, "inconsistent"); 3070 Node* phi = u->clone(); 3071 phi->set_req(0, this); 3072 Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx]; 3073 if (be != nullptr) { 3074 phi->set_req(LoopNode::LoopBackControl, be); 3075 } 3076 phi = igvn->transform(phi); 3077 igvn->replace_input_of(u, LoopNode::EntryControl, phi); 3078 if (u == inner_iv_phi) { 3079 iv_phi = phi; 3080 } 3081 } 3082 } 3083 3084 if (iv_phi != nullptr) { 3085 // Now adjust the inner loop's exit condition 3086 Node* limit = inner_cl->limit(); 3087 // If limit < init for stride > 0 (or limit > init for stride < 0), 3088 // the loop body is run only once. Given limit - init (init - limit resp.) 3089 // would be negative, the unsigned comparison below would cause 3090 // the loop body to be run for LoopStripMiningIter. 3091 Node* max = nullptr; 3092 if (stride > 0) { 3093 max = MaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn); 3094 } else { 3095 max = MaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn); 3096 } 3097 // sub is positive and can be larger than the max signed int 3098 // value. Use an unsigned min. 3099 Node* const_iters = igvn->intcon(scaled_iters); 3100 Node* min = MaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn); 3101 // min is the number of iterations for the next inner loop execution: 3102 // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0 3103 // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0 3104 3105 Node* new_limit = nullptr; 3106 if (stride > 0) { 3107 new_limit = igvn->transform(new AddINode(min, iv_phi)); 3108 } else { 3109 new_limit = igvn->transform(new SubINode(iv_phi, min)); 3110 } 3111 Node* inner_cmp = inner_cle->cmp_node(); 3112 Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue); 3113 Node* outer_bol = inner_bol; 3114 // cmp node for inner loop may be shared 3115 inner_cmp = inner_cmp->clone(); 3116 inner_cmp->set_req(2, new_limit); 3117 inner_bol = inner_bol->clone(); 3118 inner_bol->set_req(1, igvn->transform(inner_cmp)); 3119 igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol)); 3120 // Set the outer loop's exit condition too 3121 igvn->replace_input_of(outer_loop_end(), 1, outer_bol); 3122 } else { 3123 assert(false, "should be able to adjust outer loop"); 3124 IfNode* outer_le = outer_loop_end(); 3125 Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); 3126 igvn->replace_node(outer_le, iff); 3127 inner_cl->clear_strip_mined(); 3128 } 3129 } 3130 3131 void OuterStripMinedLoopNode::transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) { 3132 CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); 3133 CountedLoopEndNode* cle = inner_cl->loopexit(); 3134 Node* inner_test = cle->in(1); 3135 IfNode* outer_le = outer_loop_end(); 3136 CountedLoopEndNode* inner_cle = inner_cl->loopexit(); 3137 Node* safepoint = outer_safepoint(); 3138 3139 fix_sunk_stores(inner_cle, inner_cl, igvn, iloop); 3140 3141 // make counted loop exit test always fail 3142 ConINode* zero = igvn->intcon(0); 3143 if (iloop != nullptr) { 3144 iloop->set_ctrl(zero, igvn->C->root()); 3145 } 3146 igvn->replace_input_of(cle, 1, zero); 3147 // replace outer loop end with CountedLoopEndNode with formers' CLE's exit test 3148 Node* new_end = new CountedLoopEndNode(outer_le->in(0), inner_test, cle->_prob, cle->_fcnt); 3149 register_control(new_end, inner_cl, outer_le->in(0), igvn, iloop); 3150 if (iloop == nullptr) { 3151 igvn->replace_node(outer_le, new_end); 3152 } else { 3153 iloop->lazy_replace(outer_le, new_end); 3154 } 3155 // the backedge of the inner loop must be rewired to the new loop end 3156 Node* backedge = cle->proj_out(true); 3157 igvn->replace_input_of(backedge, 0, new_end); 3158 if (iloop != nullptr) { 3159 iloop->set_idom(backedge, new_end, iloop->dom_depth(new_end) + 1); 3160 } 3161 // make the outer loop go away 3162 igvn->replace_input_of(in(LoopBackControl), 0, igvn->C->top()); 3163 igvn->replace_input_of(this, LoopBackControl, igvn->C->top()); 3164 inner_cl->clear_strip_mined(); 3165 if (iloop != nullptr) { 3166 Unique_Node_List wq; 3167 wq.push(safepoint); 3168 3169 IdealLoopTree* outer_loop_ilt = iloop->get_loop(this); 3170 IdealLoopTree* loop = iloop->get_loop(inner_cl); 3171 3172 for (uint i = 0; i < wq.size(); i++) { 3173 Node* n = wq.at(i); 3174 for (uint j = 0; j < n->req(); ++j) { 3175 Node* in = n->in(j); 3176 if (in == nullptr || in->is_CFG()) { 3177 continue; 3178 } 3179 if (iloop->get_loop(iloop->get_ctrl(in)) != outer_loop_ilt) { 3180 continue; 3181 } 3182 assert(!loop->_body.contains(in), ""); 3183 loop->_body.push(in); 3184 wq.push(in); 3185 } 3186 } 3187 iloop->set_loop(safepoint, loop); 3188 loop->_body.push(safepoint); 3189 iloop->set_loop(safepoint->in(0), loop); 3190 loop->_body.push(safepoint->in(0)); 3191 outer_loop_ilt->_tail = igvn->C->top(); 3192 } 3193 } 3194 3195 void OuterStripMinedLoopNode::remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const { 3196 CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); 3197 Node* outer_sfpt = outer_safepoint(); 3198 Node* outer_out = outer_loop_exit(); 3199 igvn->replace_node(outer_out, outer_sfpt->in(0)); 3200 igvn->replace_input_of(outer_sfpt, 0, igvn->C->top()); 3201 inner_cl->clear_strip_mined(); 3202 } 3203 3204 Node* OuterStripMinedLoopNode::register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop) { 3205 if (iloop == nullptr) { 3206 return igvn->transform(node); 3207 } 3208 iloop->register_new_node(node, ctrl); 3209 return node; 3210 } 3211 3212 Node* OuterStripMinedLoopNode::register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn, 3213 PhaseIdealLoop* iloop) { 3214 if (iloop == nullptr) { 3215 return igvn->transform(node); 3216 } 3217 iloop->register_control(node, iloop->get_loop(loop), idom); 3218 return node; 3219 } 3220 3221 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const { 3222 if (!in(0)) return Type::TOP; 3223 if (phase->type(in(0)) == Type::TOP) 3224 return Type::TOP; 3225 3226 // Until expansion, the loop end condition is not set so this should not constant fold. 3227 if (is_expanded(phase)) { 3228 return IfNode::Value(phase); 3229 } 3230 3231 return TypeTuple::IFBOTH; 3232 } 3233 3234 bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const { 3235 // The outer strip mined loop head only has Phi uses after expansion 3236 if (phase->is_IterGVN()) { 3237 Node* backedge = proj_out_or_null(true); 3238 if (backedge != nullptr) { 3239 Node* head = backedge->unique_ctrl_out_or_null(); 3240 if (head != nullptr && head->is_OuterStripMinedLoop()) { 3241 if (head->find_out_with(Op_Phi) != nullptr) { 3242 return true; 3243 } 3244 } 3245 } 3246 } 3247 return false; 3248 } 3249 3250 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3251 if (remove_dead_region(phase, can_reshape)) return this; 3252 3253 return nullptr; 3254 } 3255 3256 //------------------------------filtered_type-------------------------------- 3257 // Return a type based on condition control flow 3258 // A successful return will be a type that is restricted due 3259 // to a series of dominating if-tests, such as: 3260 // if (i < 10) { 3261 // if (i > 0) { 3262 // here: "i" type is [1..10) 3263 // } 3264 // } 3265 // or a control flow merge 3266 // if (i < 10) { 3267 // do { 3268 // phi( , ) -- at top of loop type is [min_int..10) 3269 // i = ? 3270 // } while ( i < 10) 3271 // 3272 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) { 3273 assert(n && n->bottom_type()->is_int(), "must be int"); 3274 const TypeInt* filtered_t = nullptr; 3275 if (!n->is_Phi()) { 3276 assert(n_ctrl != nullptr || n_ctrl == C->top(), "valid control"); 3277 filtered_t = filtered_type_from_dominators(n, n_ctrl); 3278 3279 } else { 3280 Node* phi = n->as_Phi(); 3281 Node* region = phi->in(0); 3282 assert(n_ctrl == nullptr || n_ctrl == region, "ctrl parameter must be region"); 3283 if (region && region != C->top()) { 3284 for (uint i = 1; i < phi->req(); i++) { 3285 Node* val = phi->in(i); 3286 Node* use_c = region->in(i); 3287 const TypeInt* val_t = filtered_type_from_dominators(val, use_c); 3288 if (val_t != nullptr) { 3289 if (filtered_t == nullptr) { 3290 filtered_t = val_t; 3291 } else { 3292 filtered_t = filtered_t->meet(val_t)->is_int(); 3293 } 3294 } 3295 } 3296 } 3297 } 3298 const TypeInt* n_t = _igvn.type(n)->is_int(); 3299 if (filtered_t != nullptr) { 3300 n_t = n_t->join(filtered_t)->is_int(); 3301 } 3302 return n_t; 3303 } 3304 3305 3306 //------------------------------filtered_type_from_dominators-------------------------------- 3307 // Return a possibly more restrictive type for val based on condition control flow of dominators 3308 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) { 3309 if (val->is_Con()) { 3310 return val->bottom_type()->is_int(); 3311 } 3312 uint if_limit = 10; // Max number of dominating if's visited 3313 const TypeInt* rtn_t = nullptr; 3314 3315 if (use_ctrl && use_ctrl != C->top()) { 3316 Node* val_ctrl = get_ctrl(val); 3317 uint val_dom_depth = dom_depth(val_ctrl); 3318 Node* pred = use_ctrl; 3319 uint if_cnt = 0; 3320 while (if_cnt < if_limit) { 3321 if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) { 3322 if_cnt++; 3323 const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred); 3324 if (if_t != nullptr) { 3325 if (rtn_t == nullptr) { 3326 rtn_t = if_t; 3327 } else { 3328 rtn_t = rtn_t->join(if_t)->is_int(); 3329 } 3330 } 3331 } 3332 pred = idom(pred); 3333 if (pred == nullptr || pred == C->top()) { 3334 break; 3335 } 3336 // Stop if going beyond definition block of val 3337 if (dom_depth(pred) < val_dom_depth) { 3338 break; 3339 } 3340 } 3341 } 3342 return rtn_t; 3343 } 3344 3345 3346 //------------------------------dump_spec-------------------------------------- 3347 // Dump special per-node info 3348 #ifndef PRODUCT 3349 void CountedLoopEndNode::dump_spec(outputStream *st) const { 3350 if( in(TestValue) != nullptr && in(TestValue)->is_Bool() ) { 3351 BoolTest bt( test_trip()); // Added this for g++. 3352 3353 st->print("["); 3354 bt.dump_on(st); 3355 st->print("]"); 3356 } 3357 st->print(" "); 3358 IfNode::dump_spec(st); 3359 } 3360 #endif 3361 3362 //============================================================================= 3363 //------------------------------is_member-------------------------------------- 3364 // Is 'l' a member of 'this'? 3365 bool IdealLoopTree::is_member(const IdealLoopTree *l) const { 3366 while( l->_nest > _nest ) l = l->_parent; 3367 return l == this; 3368 } 3369 3370 //------------------------------set_nest--------------------------------------- 3371 // Set loop tree nesting depth. Accumulate _has_call bits. 3372 int IdealLoopTree::set_nest( uint depth ) { 3373 assert(depth <= SHRT_MAX, "sanity"); 3374 _nest = depth; 3375 int bits = _has_call; 3376 if( _child ) bits |= _child->set_nest(depth+1); 3377 if( bits ) _has_call = 1; 3378 if( _next ) bits |= _next ->set_nest(depth ); 3379 return bits; 3380 } 3381 3382 //------------------------------split_fall_in---------------------------------- 3383 // Split out multiple fall-in edges from the loop header. Move them to a 3384 // private RegionNode before the loop. This becomes the loop landing pad. 3385 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) { 3386 PhaseIterGVN &igvn = phase->_igvn; 3387 uint i; 3388 3389 // Make a new RegionNode to be the landing pad. 3390 RegionNode* landing_pad = new RegionNode(fall_in_cnt + 1); 3391 phase->set_loop(landing_pad,_parent); 3392 // If _head was irreducible loop entry, landing_pad may now be too 3393 landing_pad->set_loop_status(_head->as_Region()->loop_status()); 3394 // Gather all the fall-in control paths into the landing pad 3395 uint icnt = fall_in_cnt; 3396 uint oreq = _head->req(); 3397 for( i = oreq-1; i>0; i-- ) 3398 if( !phase->is_member( this, _head->in(i) ) ) 3399 landing_pad->set_req(icnt--,_head->in(i)); 3400 3401 // Peel off PhiNode edges as well 3402 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { 3403 Node *oj = _head->fast_out(j); 3404 if( oj->is_Phi() ) { 3405 PhiNode* old_phi = oj->as_Phi(); 3406 assert( old_phi->region() == _head, "" ); 3407 igvn.hash_delete(old_phi); // Yank from hash before hacking edges 3408 Node *p = PhiNode::make_blank(landing_pad, old_phi); 3409 uint icnt = fall_in_cnt; 3410 for( i = oreq-1; i>0; i-- ) { 3411 if( !phase->is_member( this, _head->in(i) ) ) { 3412 p->init_req(icnt--, old_phi->in(i)); 3413 // Go ahead and clean out old edges from old phi 3414 old_phi->del_req(i); 3415 } 3416 } 3417 // Search for CSE's here, because ZKM.jar does a lot of 3418 // loop hackery and we need to be a little incremental 3419 // with the CSE to avoid O(N^2) node blow-up. 3420 Node *p2 = igvn.hash_find_insert(p); // Look for a CSE 3421 if( p2 ) { // Found CSE 3422 p->destruct(&igvn); // Recover useless new node 3423 p = p2; // Use old node 3424 } else { 3425 igvn.register_new_node_with_optimizer(p, old_phi); 3426 } 3427 // Make old Phi refer to new Phi. 3428 old_phi->add_req(p); 3429 // Check for the special case of making the old phi useless and 3430 // disappear it. In JavaGrande I have a case where this useless 3431 // Phi is the loop limit and prevents recognizing a CountedLoop 3432 // which in turn prevents removing an empty loop. 3433 Node *id_old_phi = old_phi->Identity(&igvn); 3434 if( id_old_phi != old_phi ) { // Found a simple identity? 3435 // Note that I cannot call 'replace_node' here, because 3436 // that will yank the edge from old_phi to the Region and 3437 // I'm mid-iteration over the Region's uses. 3438 for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) { 3439 Node* use = old_phi->last_out(i); 3440 igvn.rehash_node_delayed(use); 3441 uint uses_found = 0; 3442 for (uint j = 0; j < use->len(); j++) { 3443 if (use->in(j) == old_phi) { 3444 if (j < use->req()) use->set_req (j, id_old_phi); 3445 else use->set_prec(j, id_old_phi); 3446 uses_found++; 3447 } 3448 } 3449 i -= uses_found; // we deleted 1 or more copies of this edge 3450 } 3451 } 3452 igvn._worklist.push(old_phi); 3453 } 3454 } 3455 // Finally clean out the fall-in edges from the RegionNode 3456 for( i = oreq-1; i>0; i-- ) { 3457 if( !phase->is_member( this, _head->in(i) ) ) { 3458 _head->del_req(i); 3459 } 3460 } 3461 igvn.rehash_node_delayed(_head); 3462 // Transform landing pad 3463 igvn.register_new_node_with_optimizer(landing_pad, _head); 3464 // Insert landing pad into the header 3465 _head->add_req(landing_pad); 3466 } 3467 3468 //------------------------------split_outer_loop------------------------------- 3469 // Split out the outermost loop from this shared header. 3470 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) { 3471 PhaseIterGVN &igvn = phase->_igvn; 3472 3473 // Find index of outermost loop; it should also be my tail. 3474 uint outer_idx = 1; 3475 while( _head->in(outer_idx) != _tail ) outer_idx++; 3476 3477 // Make a LoopNode for the outermost loop. 3478 Node *ctl = _head->in(LoopNode::EntryControl); 3479 Node *outer = new LoopNode( ctl, _head->in(outer_idx) ); 3480 outer = igvn.register_new_node_with_optimizer(outer, _head); 3481 phase->set_created_loop_node(); 3482 3483 // Outermost loop falls into '_head' loop 3484 _head->set_req(LoopNode::EntryControl, outer); 3485 _head->del_req(outer_idx); 3486 // Split all the Phis up between '_head' loop and 'outer' loop. 3487 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { 3488 Node *out = _head->fast_out(j); 3489 if( out->is_Phi() ) { 3490 PhiNode *old_phi = out->as_Phi(); 3491 assert( old_phi->region() == _head, "" ); 3492 Node *phi = PhiNode::make_blank(outer, old_phi); 3493 phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl)); 3494 phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx)); 3495 phi = igvn.register_new_node_with_optimizer(phi, old_phi); 3496 // Make old Phi point to new Phi on the fall-in path 3497 igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi); 3498 old_phi->del_req(outer_idx); 3499 } 3500 } 3501 3502 // Use the new loop head instead of the old shared one 3503 _head = outer; 3504 phase->set_loop(_head, this); 3505 } 3506 3507 //------------------------------fix_parent------------------------------------- 3508 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) { 3509 loop->_parent = parent; 3510 if( loop->_child ) fix_parent( loop->_child, loop ); 3511 if( loop->_next ) fix_parent( loop->_next , parent ); 3512 } 3513 3514 //------------------------------estimate_path_freq----------------------------- 3515 static float estimate_path_freq( Node *n ) { 3516 // Try to extract some path frequency info 3517 IfNode *iff; 3518 for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests 3519 uint nop = n->Opcode(); 3520 if( nop == Op_SafePoint ) { // Skip any safepoint 3521 n = n->in(0); 3522 continue; 3523 } 3524 if( nop == Op_CatchProj ) { // Get count from a prior call 3525 // Assume call does not always throw exceptions: means the call-site 3526 // count is also the frequency of the fall-through path. 3527 assert( n->is_CatchProj(), "" ); 3528 if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index ) 3529 return 0.0f; // Assume call exception path is rare 3530 Node *call = n->in(0)->in(0)->in(0); 3531 assert( call->is_Call(), "expect a call here" ); 3532 const JVMState *jvms = ((CallNode*)call)->jvms(); 3533 ciMethodData* methodData = jvms->method()->method_data(); 3534 if (!methodData->is_mature()) return 0.0f; // No call-site data 3535 ciProfileData* data = methodData->bci_to_data(jvms->bci()); 3536 if ((data == nullptr) || !data->is_CounterData()) { 3537 // no call profile available, try call's control input 3538 n = n->in(0); 3539 continue; 3540 } 3541 return data->as_CounterData()->count()/FreqCountInvocations; 3542 } 3543 // See if there's a gating IF test 3544 Node *n_c = n->in(0); 3545 if( !n_c->is_If() ) break; // No estimate available 3546 iff = n_c->as_If(); 3547 if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count? 3548 // Compute how much count comes on this path 3549 return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt; 3550 // Have no count info. Skip dull uncommon-trap like branches. 3551 if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) || 3552 (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) ) 3553 break; 3554 // Skip through never-taken branch; look for a real loop exit. 3555 n = iff->in(0); 3556 } 3557 return 0.0f; // No estimate available 3558 } 3559 3560 //------------------------------merge_many_backedges--------------------------- 3561 // Merge all the backedges from the shared header into a private Region. 3562 // Feed that region as the one backedge to this loop. 3563 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) { 3564 uint i; 3565 3566 // Scan for the top 2 hottest backedges 3567 float hotcnt = 0.0f; 3568 float warmcnt = 0.0f; 3569 uint hot_idx = 0; 3570 // Loop starts at 2 because slot 1 is the fall-in path 3571 for( i = 2; i < _head->req(); i++ ) { 3572 float cnt = estimate_path_freq(_head->in(i)); 3573 if( cnt > hotcnt ) { // Grab hottest path 3574 warmcnt = hotcnt; 3575 hotcnt = cnt; 3576 hot_idx = i; 3577 } else if( cnt > warmcnt ) { // And 2nd hottest path 3578 warmcnt = cnt; 3579 } 3580 } 3581 3582 // See if the hottest backedge is worthy of being an inner loop 3583 // by being much hotter than the next hottest backedge. 3584 if( hotcnt <= 0.0001 || 3585 hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge 3586 3587 // Peel out the backedges into a private merge point; peel 3588 // them all except optionally hot_idx. 3589 PhaseIterGVN &igvn = phase->_igvn; 3590 3591 Node *hot_tail = nullptr; 3592 // Make a Region for the merge point 3593 Node *r = new RegionNode(1); 3594 for( i = 2; i < _head->req(); i++ ) { 3595 if( i != hot_idx ) 3596 r->add_req( _head->in(i) ); 3597 else hot_tail = _head->in(i); 3598 } 3599 igvn.register_new_node_with_optimizer(r, _head); 3600 // Plug region into end of loop _head, followed by hot_tail 3601 while( _head->req() > 3 ) _head->del_req( _head->req()-1 ); 3602 igvn.replace_input_of(_head, 2, r); 3603 if( hot_idx ) _head->add_req(hot_tail); 3604 3605 // Split all the Phis up between '_head' loop and the Region 'r' 3606 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { 3607 Node *out = _head->fast_out(j); 3608 if( out->is_Phi() ) { 3609 PhiNode* n = out->as_Phi(); 3610 igvn.hash_delete(n); // Delete from hash before hacking edges 3611 Node *hot_phi = nullptr; 3612 Node *phi = new PhiNode(r, n->type(), n->adr_type()); 3613 // Check all inputs for the ones to peel out 3614 uint j = 1; 3615 for( uint i = 2; i < n->req(); i++ ) { 3616 if( i != hot_idx ) 3617 phi->set_req( j++, n->in(i) ); 3618 else hot_phi = n->in(i); 3619 } 3620 // Register the phi but do not transform until whole place transforms 3621 igvn.register_new_node_with_optimizer(phi, n); 3622 // Add the merge phi to the old Phi 3623 while( n->req() > 3 ) n->del_req( n->req()-1 ); 3624 igvn.replace_input_of(n, 2, phi); 3625 if( hot_idx ) n->add_req(hot_phi); 3626 } 3627 } 3628 3629 3630 // Insert a new IdealLoopTree inserted below me. Turn it into a clone 3631 // of self loop tree. Turn self into a loop headed by _head and with 3632 // tail being the new merge point. 3633 IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail ); 3634 phase->set_loop(_tail,ilt); // Adjust tail 3635 _tail = r; // Self's tail is new merge point 3636 phase->set_loop(r,this); 3637 ilt->_child = _child; // New guy has my children 3638 _child = ilt; // Self has new guy as only child 3639 ilt->_parent = this; // new guy has self for parent 3640 ilt->_nest = _nest; // Same nesting depth (for now) 3641 3642 // Starting with 'ilt', look for child loop trees using the same shared 3643 // header. Flatten these out; they will no longer be loops in the end. 3644 IdealLoopTree **pilt = &_child; 3645 while( ilt ) { 3646 if( ilt->_head == _head ) { 3647 uint i; 3648 for( i = 2; i < _head->req(); i++ ) 3649 if( _head->in(i) == ilt->_tail ) 3650 break; // Still a loop 3651 if( i == _head->req() ) { // No longer a loop 3652 // Flatten ilt. Hang ilt's "_next" list from the end of 3653 // ilt's '_child' list. Move the ilt's _child up to replace ilt. 3654 IdealLoopTree **cp = &ilt->_child; 3655 while( *cp ) cp = &(*cp)->_next; // Find end of child list 3656 *cp = ilt->_next; // Hang next list at end of child list 3657 *pilt = ilt->_child; // Move child up to replace ilt 3658 ilt->_head = nullptr; // Flag as a loop UNIONED into parent 3659 ilt = ilt->_child; // Repeat using new ilt 3660 continue; // do not advance over ilt->_child 3661 } 3662 assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" ); 3663 phase->set_loop(_head,ilt); 3664 } 3665 pilt = &ilt->_child; // Advance to next 3666 ilt = *pilt; 3667 } 3668 3669 if( _child ) fix_parent( _child, this ); 3670 } 3671 3672 //------------------------------beautify_loops--------------------------------- 3673 // Split shared headers and insert loop landing pads. 3674 // Insert a LoopNode to replace the RegionNode. 3675 // Return TRUE if loop tree is structurally changed. 3676 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) { 3677 bool result = false; 3678 // Cache parts in locals for easy 3679 PhaseIterGVN &igvn = phase->_igvn; 3680 3681 igvn.hash_delete(_head); // Yank from hash before hacking edges 3682 3683 // Check for multiple fall-in paths. Peel off a landing pad if need be. 3684 int fall_in_cnt = 0; 3685 for( uint i = 1; i < _head->req(); i++ ) 3686 if( !phase->is_member( this, _head->in(i) ) ) 3687 fall_in_cnt++; 3688 assert( fall_in_cnt, "at least 1 fall-in path" ); 3689 if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins 3690 split_fall_in( phase, fall_in_cnt ); 3691 3692 // Swap inputs to the _head and all Phis to move the fall-in edge to 3693 // the left. 3694 fall_in_cnt = 1; 3695 while( phase->is_member( this, _head->in(fall_in_cnt) ) ) 3696 fall_in_cnt++; 3697 if( fall_in_cnt > 1 ) { 3698 // Since I am just swapping inputs I do not need to update def-use info 3699 Node *tmp = _head->in(1); 3700 igvn.rehash_node_delayed(_head); 3701 _head->set_req( 1, _head->in(fall_in_cnt) ); 3702 _head->set_req( fall_in_cnt, tmp ); 3703 // Swap also all Phis 3704 for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) { 3705 Node* phi = _head->fast_out(i); 3706 if( phi->is_Phi() ) { 3707 igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges 3708 tmp = phi->in(1); 3709 phi->set_req( 1, phi->in(fall_in_cnt) ); 3710 phi->set_req( fall_in_cnt, tmp ); 3711 } 3712 } 3713 } 3714 assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" ); 3715 assert( phase->is_member( this, _head->in(2) ), "right edge is loop" ); 3716 3717 // If I am a shared header (multiple backedges), peel off the many 3718 // backedges into a private merge point and use the merge point as 3719 // the one true backedge. 3720 if (_head->req() > 3) { 3721 // Merge the many backedges into a single backedge but leave 3722 // the hottest backedge as separate edge for the following peel. 3723 if (!_irreducible) { 3724 merge_many_backedges( phase ); 3725 } 3726 3727 // When recursively beautify my children, split_fall_in can change 3728 // loop tree structure when I am an irreducible loop. Then the head 3729 // of my children has a req() not bigger than 3. Here we need to set 3730 // result to true to catch that case in order to tell the caller to 3731 // rebuild loop tree. See issue JDK-8244407 for details. 3732 result = true; 3733 } 3734 3735 // If I have one hot backedge, peel off myself loop. 3736 // I better be the outermost loop. 3737 if (_head->req() > 3 && !_irreducible) { 3738 split_outer_loop( phase ); 3739 result = true; 3740 3741 } else if (!_head->is_Loop() && !_irreducible) { 3742 // Make a new LoopNode to replace the old loop head 3743 Node *l = new LoopNode( _head->in(1), _head->in(2) ); 3744 l = igvn.register_new_node_with_optimizer(l, _head); 3745 phase->set_created_loop_node(); 3746 // Go ahead and replace _head 3747 phase->_igvn.replace_node( _head, l ); 3748 _head = l; 3749 phase->set_loop(_head, this); 3750 } 3751 3752 // Now recursively beautify nested loops 3753 if( _child ) result |= _child->beautify_loops( phase ); 3754 if( _next ) result |= _next ->beautify_loops( phase ); 3755 return result; 3756 } 3757 3758 //------------------------------allpaths_check_safepts---------------------------- 3759 // Allpaths backwards scan. Starting at the head, traversing all backedges, and the body. Terminating each path at first 3760 // safepoint encountered. Helper for check_safepts. 3761 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) { 3762 assert(stack.size() == 0, "empty stack"); 3763 stack.push(_head); 3764 visited.clear(); 3765 visited.set(_head->_idx); 3766 while (stack.size() > 0) { 3767 Node* n = stack.pop(); 3768 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) { 3769 // Terminate this path 3770 } else if (n->Opcode() == Op_SafePoint) { 3771 if (_phase->get_loop(n) != this) { 3772 if (_required_safept == nullptr) _required_safept = new Node_List(); 3773 // save the first we run into on that path: closest to the tail if the head has a single backedge 3774 _required_safept->push(n); 3775 } 3776 // Terminate this path 3777 } else { 3778 uint start = n->is_Region() ? 1 : 0; 3779 uint end = n->is_Region() && (!n->is_Loop() || n == _head) ? n->req() : start + 1; 3780 for (uint i = start; i < end; i++) { 3781 Node* in = n->in(i); 3782 assert(in->is_CFG(), "must be"); 3783 if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) { 3784 stack.push(in); 3785 } 3786 } 3787 } 3788 } 3789 } 3790 3791 //------------------------------check_safepts---------------------------- 3792 // Given dominators, try to find loops with calls that must always be 3793 // executed (call dominates loop tail). These loops do not need non-call 3794 // safepoints (ncsfpt). 3795 // 3796 // A complication is that a safepoint in a inner loop may be needed 3797 // by an outer loop. In the following, the inner loop sees it has a 3798 // call (block 3) on every path from the head (block 2) to the 3799 // backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint) 3800 // in block 2, _but_ this leaves the outer loop without a safepoint. 3801 // 3802 // entry 0 3803 // | 3804 // v 3805 // outer 1,2 +->1 3806 // | | 3807 // | v 3808 // | 2<---+ ncsfpt in 2 3809 // |_/|\ | 3810 // | v | 3811 // inner 2,3 / 3 | call in 3 3812 // / | | 3813 // v +--+ 3814 // exit 4 3815 // 3816 // 3817 // This method creates a list (_required_safept) of ncsfpt nodes that must 3818 // be protected is created for each loop. When a ncsfpt maybe deleted, it 3819 // is first looked for in the lists for the outer loops of the current loop. 3820 // 3821 // The insights into the problem: 3822 // A) counted loops are okay 3823 // B) innermost loops are okay (only an inner loop can delete 3824 // a ncsfpt needed by an outer loop) 3825 // C) a loop is immune from an inner loop deleting a safepoint 3826 // if the loop has a call on the idom-path 3827 // D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the 3828 // idom-path that is not in a nested loop 3829 // E) otherwise, an ncsfpt on the idom-path that is nested in an inner 3830 // loop needs to be prevented from deletion by an inner loop 3831 // 3832 // There are two analyses: 3833 // 1) The first, and cheaper one, scans the loop body from 3834 // tail to head following the idom (immediate dominator) 3835 // chain, looking for the cases (C,D,E) above. 3836 // Since inner loops are scanned before outer loops, there is summary 3837 // information about inner loops. Inner loops can be skipped over 3838 // when the tail of an inner loop is encountered. 3839 // 3840 // 2) The second, invoked if the first fails to find a call or ncsfpt on 3841 // the idom path (which is rare), scans all predecessor control paths 3842 // from the tail to the head, terminating a path when a call or sfpt 3843 // is encountered, to find the ncsfpt's that are closest to the tail. 3844 // 3845 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) { 3846 // Bottom up traversal 3847 IdealLoopTree* ch = _child; 3848 if (_child) _child->check_safepts(visited, stack); 3849 if (_next) _next ->check_safepts(visited, stack); 3850 3851 if (!_head->is_CountedLoop() && !_has_sfpt && _parent != nullptr) { 3852 bool has_call = false; // call on dom-path 3853 bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth 3854 Node* nonlocal_ncsfpt = nullptr; // ncsfpt on dom-path at a deeper depth 3855 if (!_irreducible) { 3856 // Scan the dom-path nodes from tail to head 3857 for (Node* n = tail(); n != _head; n = _phase->idom(n)) { 3858 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) { 3859 has_call = true; 3860 _has_sfpt = 1; // Then no need for a safept! 3861 break; 3862 } else if (n->Opcode() == Op_SafePoint) { 3863 if (_phase->get_loop(n) == this) { 3864 has_local_ncsfpt = true; 3865 break; 3866 } 3867 if (nonlocal_ncsfpt == nullptr) { 3868 nonlocal_ncsfpt = n; // save the one closest to the tail 3869 } 3870 } else { 3871 IdealLoopTree* nlpt = _phase->get_loop(n); 3872 if (this != nlpt) { 3873 // If at an inner loop tail, see if the inner loop has already 3874 // recorded seeing a call on the dom-path (and stop.) If not, 3875 // jump to the head of the inner loop. 3876 assert(is_member(nlpt), "nested loop"); 3877 Node* tail = nlpt->_tail; 3878 if (tail->in(0)->is_If()) tail = tail->in(0); 3879 if (n == tail) { 3880 // If inner loop has call on dom-path, so does outer loop 3881 if (nlpt->_has_sfpt) { 3882 has_call = true; 3883 _has_sfpt = 1; 3884 break; 3885 } 3886 // Skip to head of inner loop 3887 assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head"); 3888 n = nlpt->_head; 3889 if (_head == n) { 3890 // this and nlpt (inner loop) have the same loop head. This should not happen because 3891 // during beautify_loops we call merge_many_backedges. However, infinite loops may not 3892 // have been attached to the loop-tree during build_loop_tree before beautify_loops, 3893 // but then attached in the build_loop_tree afterwards, and so still have unmerged 3894 // backedges. Check if we are indeed in an infinite subgraph, and terminate the scan, 3895 // since we have reached the loop head of this. 3896 assert(_head->as_Region()->is_in_infinite_subgraph(), 3897 "only expect unmerged backedges in infinite loops"); 3898 break; 3899 } 3900 } 3901 } 3902 } 3903 } 3904 } 3905 // Record safept's that this loop needs preserved when an 3906 // inner loop attempts to delete it's safepoints. 3907 if (_child != nullptr && !has_call && !has_local_ncsfpt) { 3908 if (nonlocal_ncsfpt != nullptr) { 3909 if (_required_safept == nullptr) _required_safept = new Node_List(); 3910 _required_safept->push(nonlocal_ncsfpt); 3911 } else { 3912 // Failed to find a suitable safept on the dom-path. Now use 3913 // an all paths walk from tail to head, looking for safepoints to preserve. 3914 allpaths_check_safepts(visited, stack); 3915 } 3916 } 3917 } 3918 } 3919 3920 //---------------------------is_deleteable_safept---------------------------- 3921 // Is safept not required by an outer loop? 3922 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) { 3923 assert(sfpt->Opcode() == Op_SafePoint, ""); 3924 IdealLoopTree* lp = get_loop(sfpt)->_parent; 3925 while (lp != nullptr) { 3926 Node_List* sfpts = lp->_required_safept; 3927 if (sfpts != nullptr) { 3928 for (uint i = 0; i < sfpts->size(); i++) { 3929 if (sfpt == sfpts->at(i)) 3930 return false; 3931 } 3932 } 3933 lp = lp->_parent; 3934 } 3935 return true; 3936 } 3937 3938 //---------------------------replace_parallel_iv------------------------------- 3939 // Replace parallel induction variable (parallel to trip counter) 3940 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) { 3941 assert(loop->_head->is_CountedLoop(), ""); 3942 CountedLoopNode *cl = loop->_head->as_CountedLoop(); 3943 if (!cl->is_valid_counted_loop(T_INT)) { 3944 return; // skip malformed counted loop 3945 } 3946 Node *incr = cl->incr(); 3947 if (incr == nullptr) { 3948 return; // Dead loop? 3949 } 3950 Node *init = cl->init_trip(); 3951 Node *phi = cl->phi(); 3952 int stride_con = cl->stride_con(); 3953 3954 // Visit all children, looking for Phis 3955 for (DUIterator i = cl->outs(); cl->has_out(i); i++) { 3956 Node *out = cl->out(i); 3957 // Look for other phis (secondary IVs). Skip dead ones 3958 if (!out->is_Phi() || out == phi || !has_node(out)) { 3959 continue; 3960 } 3961 3962 PhiNode* phi2 = out->as_Phi(); 3963 Node* incr2 = phi2->in(LoopNode::LoopBackControl); 3964 // Look for induction variables of the form: X += constant 3965 if (phi2->region() != loop->_head || 3966 incr2->req() != 3 || 3967 incr2->in(1)->uncast() != phi2 || 3968 incr2 == incr || 3969 incr2->Opcode() != Op_AddI || 3970 !incr2->in(2)->is_Con()) { 3971 continue; 3972 } 3973 3974 if (incr2->in(1)->is_ConstraintCast() && 3975 !(incr2->in(1)->in(0)->is_IfProj() && incr2->in(1)->in(0)->in(0)->is_RangeCheck())) { 3976 // Skip AddI->CastII->Phi case if CastII is not controlled by local RangeCheck 3977 continue; 3978 } 3979 // Check for parallel induction variable (parallel to trip counter) 3980 // via an affine function. In particular, count-down loops with 3981 // count-up array indices are common. We only RCE references off 3982 // the trip-counter, so we need to convert all these to trip-counter 3983 // expressions. 3984 Node* init2 = phi2->in(LoopNode::EntryControl); 3985 int stride_con2 = incr2->in(2)->get_int(); 3986 3987 // The ratio of the two strides cannot be represented as an int 3988 // if stride_con2 is min_int and stride_con is -1. 3989 if (stride_con2 == min_jint && stride_con == -1) { 3990 continue; 3991 } 3992 3993 // The general case here gets a little tricky. We want to find the 3994 // GCD of all possible parallel IV's and make a new IV using this 3995 // GCD for the loop. Then all possible IVs are simple multiples of 3996 // the GCD. In practice, this will cover very few extra loops. 3997 // Instead we require 'stride_con2' to be a multiple of 'stride_con', 3998 // where +/-1 is the common case, but other integer multiples are 3999 // also easy to handle. 4000 int ratio_con = stride_con2/stride_con; 4001 4002 if ((ratio_con * stride_con) == stride_con2) { // Check for exact 4003 #ifndef PRODUCT 4004 if (TraceLoopOpts) { 4005 tty->print("Parallel IV: %d ", phi2->_idx); 4006 loop->dump_head(); 4007 } 4008 #endif 4009 // Convert to using the trip counter. The parallel induction 4010 // variable differs from the trip counter by a loop-invariant 4011 // amount, the difference between their respective initial values. 4012 // It is scaled by the 'ratio_con'. 4013 Node* ratio = _igvn.intcon(ratio_con); 4014 set_ctrl(ratio, C->root()); 4015 Node* ratio_init = new MulINode(init, ratio); 4016 _igvn.register_new_node_with_optimizer(ratio_init, init); 4017 set_early_ctrl(ratio_init, false); 4018 Node* diff = new SubINode(init2, ratio_init); 4019 _igvn.register_new_node_with_optimizer(diff, init2); 4020 set_early_ctrl(diff, false); 4021 Node* ratio_idx = new MulINode(phi, ratio); 4022 _igvn.register_new_node_with_optimizer(ratio_idx, phi); 4023 set_ctrl(ratio_idx, cl); 4024 Node* add = new AddINode(ratio_idx, diff); 4025 _igvn.register_new_node_with_optimizer(add); 4026 set_ctrl(add, cl); 4027 _igvn.replace_node( phi2, add ); 4028 // Sometimes an induction variable is unused 4029 if (add->outcnt() == 0) { 4030 _igvn.remove_dead_node(add); 4031 } 4032 --i; // deleted this phi; rescan starting with next position 4033 continue; 4034 } 4035 } 4036 } 4037 4038 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) { 4039 Node* keep = nullptr; 4040 if (keep_one) { 4041 // Look for a safepoint on the idom-path. 4042 for (Node* i = tail(); i != _head; i = phase->idom(i)) { 4043 if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) { 4044 keep = i; 4045 break; // Found one 4046 } 4047 } 4048 } 4049 4050 // Don't remove any safepoints if it is requested to keep a single safepoint and 4051 // no safepoint was found on idom-path. It is not safe to remove any safepoint 4052 // in this case since there's no safepoint dominating all paths in the loop body. 4053 bool prune = !keep_one || keep != nullptr; 4054 4055 // Delete other safepoints in this loop. 4056 Node_List* sfpts = _safepts; 4057 if (prune && sfpts != nullptr) { 4058 assert(keep == nullptr || keep->Opcode() == Op_SafePoint, "not safepoint"); 4059 for (uint i = 0; i < sfpts->size(); i++) { 4060 Node* n = sfpts->at(i); 4061 assert(phase->get_loop(n) == this, ""); 4062 if (n != keep && phase->is_deleteable_safept(n)) { 4063 phase->lazy_replace(n, n->in(TypeFunc::Control)); 4064 } 4065 } 4066 } 4067 } 4068 4069 //------------------------------counted_loop----------------------------------- 4070 // Convert to counted loops where possible 4071 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) { 4072 4073 // For grins, set the inner-loop flag here 4074 if (!_child) { 4075 if (_head->is_Loop()) _head->as_Loop()->set_inner_loop(); 4076 } 4077 4078 IdealLoopTree* loop = this; 4079 if (_head->is_CountedLoop() || 4080 phase->is_counted_loop(_head, loop, T_INT)) { 4081 4082 if (LoopStripMiningIter == 0 || _head->as_CountedLoop()->is_strip_mined()) { 4083 // Indicate we do not need a safepoint here 4084 _has_sfpt = 1; 4085 } 4086 4087 // Remove safepoints 4088 bool keep_one_sfpt = !(_has_call || _has_sfpt); 4089 remove_safepoints(phase, keep_one_sfpt); 4090 4091 // Look for induction variables 4092 phase->replace_parallel_iv(this); 4093 } else if (_head->is_LongCountedLoop() || 4094 phase->is_counted_loop(_head, loop, T_LONG)) { 4095 remove_safepoints(phase, true); 4096 } else { 4097 assert(!_head->is_Loop() || !_head->as_Loop()->is_loop_nest_inner_loop(), "transformation to counted loop should not fail"); 4098 if (_parent != nullptr && !_irreducible) { 4099 // Not a counted loop. Keep one safepoint. 4100 bool keep_one_sfpt = true; 4101 remove_safepoints(phase, keep_one_sfpt); 4102 } 4103 } 4104 4105 // Recursively 4106 assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?"); 4107 assert(loop->_child != this || (loop->_child->_child == nullptr && loop->_child->_next == nullptr), "would miss some loops"); 4108 if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase); 4109 if (loop->_next) loop->_next ->counted_loop(phase); 4110 } 4111 4112 4113 // The Estimated Loop Clone Size: 4114 // CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm, 4115 // where BC and CC are totally ad-hoc/magic "body" and "clone" constants, 4116 // respectively, used to ensure that the node usage estimates made are on the 4117 // safe side, for the most part. The FanOutTerm is an attempt to estimate the 4118 // possible additional/excessive nodes generated due to data and control flow 4119 // merging, for edges reaching outside the loop. 4120 uint IdealLoopTree::est_loop_clone_sz(uint factor) const { 4121 4122 precond(0 < factor && factor < 16); 4123 4124 uint const bc = 13; 4125 uint const cc = 17; 4126 uint const sz = _body.size() + (_body.size() + 7) / 2; 4127 uint estimate = factor * (sz + bc) + cc; 4128 4129 assert((estimate - cc) / factor == sz + bc, "overflow"); 4130 4131 return estimate + est_loop_flow_merge_sz(); 4132 } 4133 4134 // The Estimated Loop (full-) Unroll Size: 4135 // UnrollFactor * (~106% * BodySize) + CC + FanOutTerm, 4136 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that 4137 // node usage estimates made are on the safe side, for the most part. This is 4138 // a "light" version of the loop clone size calculation (above), based on the 4139 // assumption that most of the loop-construct overhead will be unraveled when 4140 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1), 4141 // including an overflow check and returning UINT_MAX in case of an overflow. 4142 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const { 4143 4144 precond(factor > 0); 4145 4146 // Take into account that after unroll conjoined heads and tails will fold. 4147 uint const b0 = _body.size() - EMPTY_LOOP_SIZE; 4148 uint const cc = 7; 4149 uint const sz = b0 + (b0 + 15) / 16; 4150 uint estimate = factor * sz + cc; 4151 4152 if ((estimate - cc) / factor != sz) { 4153 return UINT_MAX; 4154 } 4155 4156 return estimate + est_loop_flow_merge_sz(); 4157 } 4158 4159 // Estimate the growth effect (in nodes) of merging control and data flow when 4160 // cloning a loop body, based on the amount of control and data flow reaching 4161 // outside of the (current) loop body. 4162 uint IdealLoopTree::est_loop_flow_merge_sz() const { 4163 4164 uint ctrl_edge_out_cnt = 0; 4165 uint data_edge_out_cnt = 0; 4166 4167 for (uint i = 0; i < _body.size(); i++) { 4168 Node* node = _body.at(i); 4169 uint outcnt = node->outcnt(); 4170 4171 for (uint k = 0; k < outcnt; k++) { 4172 Node* out = node->raw_out(k); 4173 if (out == nullptr) continue; 4174 if (out->is_CFG()) { 4175 if (!is_member(_phase->get_loop(out))) { 4176 ctrl_edge_out_cnt++; 4177 } 4178 } else if (_phase->has_ctrl(out)) { 4179 Node* ctrl = _phase->get_ctrl(out); 4180 assert(ctrl != nullptr, "must be"); 4181 assert(ctrl->is_CFG(), "must be"); 4182 if (!is_member(_phase->get_loop(ctrl))) { 4183 data_edge_out_cnt++; 4184 } 4185 } 4186 } 4187 } 4188 // Use data and control count (x2.0) in estimate iff both are > 0. This is 4189 // a rather pessimistic estimate for the most part, in particular for some 4190 // complex loops, but still not enough to capture all loops. 4191 if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) { 4192 return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt); 4193 } 4194 return 0; 4195 } 4196 4197 #ifndef PRODUCT 4198 //------------------------------dump_head-------------------------------------- 4199 // Dump 1 liner for loop header info 4200 void IdealLoopTree::dump_head() { 4201 tty->sp(2 * _nest); 4202 tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx); 4203 if (_irreducible) tty->print(" IRREDUCIBLE"); 4204 Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl) 4205 : _head->in(LoopNode::EntryControl); 4206 const Predicates predicates(entry); 4207 if (predicates.loop_limit_check_predicate_block()->is_non_empty()) { 4208 tty->print(" limit_check"); 4209 } 4210 if (UseProfiledLoopPredicate && predicates.profiled_loop_predicate_block()->is_non_empty()) { 4211 tty->print(" profile_predicated"); 4212 } 4213 if (UseLoopPredicate && predicates.loop_predicate_block()->is_non_empty()) { 4214 tty->print(" predicated"); 4215 } 4216 if (_head->is_CountedLoop()) { 4217 CountedLoopNode *cl = _head->as_CountedLoop(); 4218 tty->print(" counted"); 4219 4220 Node* init_n = cl->init_trip(); 4221 if (init_n != nullptr && init_n->is_Con()) 4222 tty->print(" [%d,", cl->init_trip()->get_int()); 4223 else 4224 tty->print(" [int,"); 4225 Node* limit_n = cl->limit(); 4226 if (limit_n != nullptr && limit_n->is_Con()) 4227 tty->print("%d),", cl->limit()->get_int()); 4228 else 4229 tty->print("int),"); 4230 int stride_con = cl->stride_con(); 4231 if (stride_con > 0) tty->print("+"); 4232 tty->print("%d", stride_con); 4233 4234 tty->print(" (%0.f iters) ", cl->profile_trip_cnt()); 4235 4236 if (cl->is_pre_loop ()) tty->print(" pre" ); 4237 if (cl->is_main_loop()) tty->print(" main"); 4238 if (cl->is_post_loop()) tty->print(" post"); 4239 if (cl->is_vectorized_loop()) tty->print(" vector"); 4240 if (range_checks_present()) tty->print(" rc "); 4241 } 4242 if (_has_call) tty->print(" has_call"); 4243 if (_has_sfpt) tty->print(" has_sfpt"); 4244 if (_rce_candidate) tty->print(" rce"); 4245 if (_safepts != nullptr && _safepts->size() > 0) { 4246 tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }"); 4247 } 4248 if (_required_safept != nullptr && _required_safept->size() > 0) { 4249 tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }"); 4250 } 4251 if (Verbose) { 4252 tty->print(" body={"); _body.dump_simple(); tty->print(" }"); 4253 } 4254 if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) { 4255 tty->print(" strip_mined"); 4256 } 4257 tty->cr(); 4258 } 4259 4260 //------------------------------dump------------------------------------------- 4261 // Dump loops by loop tree 4262 void IdealLoopTree::dump() { 4263 dump_head(); 4264 if (_child) _child->dump(); 4265 if (_next) _next ->dump(); 4266 } 4267 4268 #endif 4269 4270 static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) { 4271 if (loop == root) { 4272 if (loop->_child != nullptr) { 4273 log->begin_head("loop_tree"); 4274 log->end_head(); 4275 log_loop_tree_helper(root, loop->_child, log); 4276 log->tail("loop_tree"); 4277 assert(loop->_next == nullptr, "what?"); 4278 } 4279 } else if (loop != nullptr) { 4280 Node* head = loop->_head; 4281 log->begin_head("loop idx='%d'", head->_idx); 4282 if (loop->_irreducible) log->print(" irreducible='1'"); 4283 if (head->is_Loop()) { 4284 if (head->as_Loop()->is_inner_loop()) log->print(" inner_loop='1'"); 4285 if (head->as_Loop()->is_partial_peel_loop()) log->print(" partial_peel_loop='1'"); 4286 } else if (head->is_CountedLoop()) { 4287 CountedLoopNode* cl = head->as_CountedLoop(); 4288 if (cl->is_pre_loop()) log->print(" pre_loop='%d'", cl->main_idx()); 4289 if (cl->is_main_loop()) log->print(" main_loop='%d'", cl->_idx); 4290 if (cl->is_post_loop()) log->print(" post_loop='%d'", cl->main_idx()); 4291 } 4292 log->end_head(); 4293 log_loop_tree_helper(root, loop->_child, log); 4294 log->tail("loop"); 4295 log_loop_tree_helper(root, loop->_next, log); 4296 } 4297 } 4298 4299 void PhaseIdealLoop::log_loop_tree() { 4300 if (C->log() != nullptr) { 4301 log_loop_tree_helper(_ltree_root, _ltree_root, C->log()); 4302 } 4303 } 4304 4305 // Eliminate all Parse and Template Assertion Predicates that are not associated with a loop anymore. The eliminated 4306 // predicates will be removed during the next round of IGVN. 4307 void PhaseIdealLoop::eliminate_useless_predicates() { 4308 if (C->parse_predicate_count() == 0 && C->template_assertion_predicate_count() == 0) { 4309 return; // No predicates left. 4310 } 4311 4312 eliminate_useless_parse_predicates(); 4313 eliminate_useless_template_assertion_predicates(); 4314 } 4315 4316 // Eliminate all Parse Predicates that do not belong to a loop anymore by marking them useless. These will be removed 4317 // during the next round of IGVN. 4318 void PhaseIdealLoop::eliminate_useless_parse_predicates() { 4319 mark_all_parse_predicates_useless(); 4320 if (C->has_loops()) { 4321 mark_loop_associated_parse_predicates_useful(); 4322 } 4323 add_useless_parse_predicates_to_igvn_worklist(); 4324 } 4325 4326 void PhaseIdealLoop::mark_all_parse_predicates_useless() const { 4327 for (int i = 0; i < C->parse_predicate_count(); i++) { 4328 C->parse_predicate(i)->mark_useless(); 4329 } 4330 } 4331 4332 void PhaseIdealLoop::mark_loop_associated_parse_predicates_useful() { 4333 for (LoopTreeIterator iterator(_ltree_root); !iterator.done(); iterator.next()) { 4334 IdealLoopTree* loop = iterator.current(); 4335 if (loop->can_apply_loop_predication()) { 4336 mark_useful_parse_predicates_for_loop(loop); 4337 } 4338 } 4339 } 4340 4341 void PhaseIdealLoop::mark_useful_parse_predicates_for_loop(IdealLoopTree* loop) { 4342 Node* entry = loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl); 4343 const Predicates predicates(entry); 4344 ParsePredicateIterator iterator(predicates); 4345 while (iterator.has_next()) { 4346 iterator.next()->mark_useful(); 4347 } 4348 } 4349 4350 void PhaseIdealLoop::add_useless_parse_predicates_to_igvn_worklist() { 4351 for (int i = 0; i < C->parse_predicate_count(); i++) { 4352 ParsePredicateNode* parse_predicate_node = C->parse_predicate(i); 4353 if (parse_predicate_node->is_useless()) { 4354 _igvn._worklist.push(parse_predicate_node); 4355 } 4356 } 4357 } 4358 4359 4360 // Eliminate all Template Assertion Predicates that do not belong to their originally associated loop anymore by 4361 // replacing the Opaque4 node of the If node with true. These nodes will be removed during the next round of IGVN. 4362 void PhaseIdealLoop::eliminate_useless_template_assertion_predicates() { 4363 Unique_Node_List useful_predicates; 4364 if (C->has_loops()) { 4365 collect_useful_template_assertion_predicates(useful_predicates); 4366 } 4367 eliminate_useless_template_assertion_predicates(useful_predicates); 4368 } 4369 4370 void PhaseIdealLoop::collect_useful_template_assertion_predicates(Unique_Node_List& useful_predicates) { 4371 for (LoopTreeIterator iterator(_ltree_root); !iterator.done(); iterator.next()) { 4372 IdealLoopTree* loop = iterator.current(); 4373 if (loop->can_apply_loop_predication()) { 4374 collect_useful_template_assertion_predicates_for_loop(loop, useful_predicates); 4375 } 4376 } 4377 } 4378 4379 void PhaseIdealLoop::collect_useful_template_assertion_predicates_for_loop(IdealLoopTree* loop, 4380 Unique_Node_List &useful_predicates) { 4381 Node* entry = loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl); 4382 const Predicates predicates(entry); 4383 if (UseProfiledLoopPredicate) { 4384 const PredicateBlock* profiled_loop_predicate_block = predicates.profiled_loop_predicate_block(); 4385 if (profiled_loop_predicate_block->has_parse_predicate()) { 4386 IfProjNode* parse_predicate_proj = profiled_loop_predicate_block->parse_predicate_success_proj(); 4387 get_assertion_predicates(parse_predicate_proj, useful_predicates, true); 4388 } 4389 } 4390 4391 if (UseLoopPredicate) { 4392 const PredicateBlock* loop_predicate_block = predicates.loop_predicate_block(); 4393 if (loop_predicate_block->has_parse_predicate()) { 4394 IfProjNode* parse_predicate_proj = loop_predicate_block->parse_predicate_success_proj(); 4395 get_assertion_predicates(parse_predicate_proj, useful_predicates, true); 4396 } 4397 } 4398 } 4399 4400 void PhaseIdealLoop::eliminate_useless_template_assertion_predicates(Unique_Node_List& useful_predicates) { 4401 for (int i = C->template_assertion_predicate_count(); i > 0; i--) { 4402 Opaque4Node* opaque4_node = C->template_assertion_predicate_opaq_node(i - 1)->as_Opaque4(); 4403 if (!useful_predicates.member(opaque4_node)) { // not in the useful list 4404 _igvn.replace_node(opaque4_node, opaque4_node->in(2)); 4405 } 4406 } 4407 } 4408 4409 // If a post or main loop is removed due to an assert predicate, the opaque that guards the loop is not needed anymore 4410 void PhaseIdealLoop::eliminate_useless_zero_trip_guard() { 4411 if (_zero_trip_guard_opaque_nodes.size() == 0) { 4412 return; 4413 } 4414 Unique_Node_List useful_zero_trip_guard_opaques_nodes; 4415 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4416 IdealLoopTree* lpt = iter.current(); 4417 if (lpt->_child == nullptr && lpt->is_counted()) { 4418 CountedLoopNode* head = lpt->_head->as_CountedLoop(); 4419 Node* opaque = head->is_canonical_loop_entry(); 4420 if (opaque != nullptr) { 4421 useful_zero_trip_guard_opaques_nodes.push(opaque); 4422 } 4423 } 4424 } 4425 for (uint i = 0; i < _zero_trip_guard_opaque_nodes.size(); ++i) { 4426 OpaqueZeroTripGuardNode* opaque = ((OpaqueZeroTripGuardNode*)_zero_trip_guard_opaque_nodes.at(i)); 4427 DEBUG_ONLY(CountedLoopNode* guarded_loop = opaque->guarded_loop()); 4428 if (!useful_zero_trip_guard_opaques_nodes.member(opaque)) { 4429 IfNode* iff = opaque->if_node(); 4430 IdealLoopTree* loop = get_loop(iff); 4431 while (loop != _ltree_root && loop != nullptr) { 4432 loop = loop->_parent; 4433 } 4434 if (loop == nullptr) { 4435 // unreachable from _ltree_root: zero trip guard is in a newly discovered infinite loop. 4436 // We can't tell if the opaque node is useful or not 4437 assert(guarded_loop == nullptr || guarded_loop->is_in_infinite_subgraph(), ""); 4438 } else { 4439 assert(guarded_loop == nullptr, ""); 4440 this->_igvn.replace_node(opaque, opaque->in(1)); 4441 } 4442 } else { 4443 assert(guarded_loop != nullptr, ""); 4444 } 4445 } 4446 } 4447 4448 //------------------------process_expensive_nodes----------------------------- 4449 // Expensive nodes have their control input set to prevent the GVN 4450 // from commoning them and as a result forcing the resulting node to 4451 // be in a more frequent path. Use CFG information here, to change the 4452 // control inputs so that some expensive nodes can be commoned while 4453 // not executed more frequently. 4454 bool PhaseIdealLoop::process_expensive_nodes() { 4455 assert(OptimizeExpensiveOps, "optimization off?"); 4456 4457 // Sort nodes to bring similar nodes together 4458 C->sort_expensive_nodes(); 4459 4460 bool progress = false; 4461 4462 for (int i = 0; i < C->expensive_count(); ) { 4463 Node* n = C->expensive_node(i); 4464 int start = i; 4465 // Find nodes similar to n 4466 i++; 4467 for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++); 4468 int end = i; 4469 // And compare them two by two 4470 for (int j = start; j < end; j++) { 4471 Node* n1 = C->expensive_node(j); 4472 if (is_node_unreachable(n1)) { 4473 continue; 4474 } 4475 for (int k = j+1; k < end; k++) { 4476 Node* n2 = C->expensive_node(k); 4477 if (is_node_unreachable(n2)) { 4478 continue; 4479 } 4480 4481 assert(n1 != n2, "should be pair of nodes"); 4482 4483 Node* c1 = n1->in(0); 4484 Node* c2 = n2->in(0); 4485 4486 Node* parent_c1 = c1; 4487 Node* parent_c2 = c2; 4488 4489 // The call to get_early_ctrl_for_expensive() moves the 4490 // expensive nodes up but stops at loops that are in a if 4491 // branch. See whether we can exit the loop and move above the 4492 // If. 4493 if (c1->is_Loop()) { 4494 parent_c1 = c1->in(1); 4495 } 4496 if (c2->is_Loop()) { 4497 parent_c2 = c2->in(1); 4498 } 4499 4500 if (parent_c1 == parent_c2) { 4501 _igvn._worklist.push(n1); 4502 _igvn._worklist.push(n2); 4503 continue; 4504 } 4505 4506 // Look for identical expensive node up the dominator chain. 4507 if (is_dominator(c1, c2)) { 4508 c2 = c1; 4509 } else if (is_dominator(c2, c1)) { 4510 c1 = c2; 4511 } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() && 4512 parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) { 4513 // Both branches have the same expensive node so move it up 4514 // before the if. 4515 c1 = c2 = idom(parent_c1->in(0)); 4516 } 4517 // Do the actual moves 4518 if (n1->in(0) != c1) { 4519 _igvn.replace_input_of(n1, 0, c1); 4520 progress = true; 4521 } 4522 if (n2->in(0) != c2) { 4523 _igvn.replace_input_of(n2, 0, c2); 4524 progress = true; 4525 } 4526 } 4527 } 4528 } 4529 4530 return progress; 4531 } 4532 4533 //============================================================================= 4534 //----------------------------build_and_optimize------------------------------- 4535 // Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to 4536 // its corresponding LoopNode. If 'optimize' is true, do some loop cleanups. 4537 void PhaseIdealLoop::build_and_optimize() { 4538 assert(!C->post_loop_opts_phase(), "no loop opts allowed"); 4539 4540 bool do_split_ifs = (_mode == LoopOptsDefault); 4541 bool skip_loop_opts = (_mode == LoopOptsNone); 4542 bool do_max_unroll = (_mode == LoopOptsMaxUnroll); 4543 4544 4545 int old_progress = C->major_progress(); 4546 uint orig_worklist_size = _igvn._worklist.size(); 4547 4548 // Reset major-progress flag for the driver's heuristics 4549 C->clear_major_progress(); 4550 4551 #ifndef PRODUCT 4552 // Capture for later assert 4553 uint unique = C->unique(); 4554 _loop_invokes++; 4555 _loop_work += unique; 4556 #endif 4557 4558 // True if the method has at least 1 irreducible loop 4559 _has_irreducible_loops = false; 4560 4561 _created_loop_node = false; 4562 4563 VectorSet visited; 4564 // Pre-grow the mapping from Nodes to IdealLoopTrees. 4565 _loop_or_ctrl.map(C->unique(), nullptr); 4566 memset(_loop_or_ctrl.adr(), 0, wordSize * C->unique()); 4567 4568 // Pre-build the top-level outermost loop tree entry 4569 _ltree_root = new IdealLoopTree( this, C->root(), C->root() ); 4570 // Do not need a safepoint at the top level 4571 _ltree_root->_has_sfpt = 1; 4572 4573 // Initialize Dominators. 4574 // Checked in clone_loop_predicate() during beautify_loops(). 4575 _idom_size = 0; 4576 _idom = nullptr; 4577 _dom_depth = nullptr; 4578 _dom_stk = nullptr; 4579 4580 // Empty pre-order array 4581 allocate_preorders(); 4582 4583 // Build a loop tree on the fly. Build a mapping from CFG nodes to 4584 // IdealLoopTree entries. Data nodes are NOT walked. 4585 build_loop_tree(); 4586 // Check for bailout, and return 4587 if (C->failing()) { 4588 return; 4589 } 4590 4591 // Verify that the has_loops() flag set at parse time is consistent with the just built loop tree. When the back edge 4592 // is an exception edge, parsing doesn't set has_loops(). 4593 assert(_ltree_root->_child == nullptr || C->has_loops() || C->has_exception_backedge(), "parsing found no loops but there are some"); 4594 // No loops after all 4595 if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false); 4596 4597 // There should always be an outer loop containing the Root and Return nodes. 4598 // If not, we have a degenerate empty program. Bail out in this case. 4599 if (!has_node(C->root())) { 4600 if (!_verify_only) { 4601 C->clear_major_progress(); 4602 assert(false, "empty program detected during loop optimization"); 4603 C->record_method_not_compilable("empty program detected during loop optimization"); 4604 } 4605 return; 4606 } 4607 4608 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4609 // Nothing to do, so get out 4610 bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !do_max_unroll && !_verify_me && 4611 !_verify_only && !bs->is_gc_specific_loop_opts_pass(_mode); 4612 bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn); 4613 bool strip_mined_loops_expanded = bs->strip_mined_loops_expanded(_mode); 4614 if (stop_early && !do_expensive_nodes) { 4615 return; 4616 } 4617 4618 // Set loop nesting depth 4619 _ltree_root->set_nest( 0 ); 4620 4621 // Split shared headers and insert loop landing pads. 4622 // Do not bother doing this on the Root loop of course. 4623 if( !_verify_me && !_verify_only && _ltree_root->_child ) { 4624 C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3); 4625 if( _ltree_root->_child->beautify_loops( this ) ) { 4626 // Re-build loop tree! 4627 _ltree_root->_child = nullptr; 4628 _loop_or_ctrl.clear(); 4629 reallocate_preorders(); 4630 build_loop_tree(); 4631 // Check for bailout, and return 4632 if (C->failing()) { 4633 return; 4634 } 4635 // Reset loop nesting depth 4636 _ltree_root->set_nest( 0 ); 4637 4638 C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3); 4639 } 4640 } 4641 4642 // Build Dominators for elision of null checks & loop finding. 4643 // Since nodes do not have a slot for immediate dominator, make 4644 // a persistent side array for that info indexed on node->_idx. 4645 _idom_size = C->unique(); 4646 _idom = NEW_RESOURCE_ARRAY( Node*, _idom_size ); 4647 _dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size ); 4648 _dom_stk = nullptr; // Allocated on demand in recompute_dom_depth 4649 memset( _dom_depth, 0, _idom_size * sizeof(uint) ); 4650 4651 Dominators(); 4652 4653 if (!_verify_only) { 4654 // As a side effect, Dominators removed any unreachable CFG paths 4655 // into RegionNodes. It doesn't do this test against Root, so 4656 // we do it here. 4657 for( uint i = 1; i < C->root()->req(); i++ ) { 4658 if (!_loop_or_ctrl[C->root()->in(i)->_idx]) { // Dead path into Root? 4659 _igvn.delete_input_of(C->root(), i); 4660 i--; // Rerun same iteration on compressed edges 4661 } 4662 } 4663 4664 // Given dominators, try to find inner loops with calls that must 4665 // always be executed (call dominates loop tail). These loops do 4666 // not need a separate safepoint. 4667 Node_List cisstack; 4668 _ltree_root->check_safepts(visited, cisstack); 4669 } 4670 4671 // Walk the DATA nodes and place into loops. Find earliest control 4672 // node. For CFG nodes, the _loop_or_ctrl array starts out and remains 4673 // holding the associated IdealLoopTree pointer. For DATA nodes, the 4674 // _loop_or_ctrl array holds the earliest legal controlling CFG node. 4675 4676 // Allocate stack with enough space to avoid frequent realloc 4677 int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats 4678 Node_Stack nstack(stack_size); 4679 4680 visited.clear(); 4681 Node_List worklist; 4682 // Don't need C->root() on worklist since 4683 // it will be processed among C->top() inputs 4684 worklist.push(C->top()); 4685 visited.set(C->top()->_idx); // Set C->top() as visited now 4686 build_loop_early( visited, worklist, nstack ); 4687 4688 // Given early legal placement, try finding counted loops. This placement 4689 // is good enough to discover most loop invariants. 4690 if (!_verify_me && !_verify_only && !strip_mined_loops_expanded) { 4691 _ltree_root->counted_loop( this ); 4692 } 4693 4694 // Find latest loop placement. Find ideal loop placement. 4695 visited.clear(); 4696 init_dom_lca_tags(); 4697 // Need C->root() on worklist when processing outs 4698 worklist.push(C->root()); 4699 NOT_PRODUCT( C->verify_graph_edges(); ) 4700 worklist.push(C->top()); 4701 build_loop_late( visited, worklist, nstack ); 4702 if (C->failing()) { return; } 4703 4704 if (_verify_only) { 4705 C->restore_major_progress(old_progress); 4706 assert(C->unique() == unique, "verification _mode made Nodes? ? ?"); 4707 assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything"); 4708 return; 4709 } 4710 4711 // clear out the dead code after build_loop_late 4712 while (_deadlist.size()) { 4713 _igvn.remove_globally_dead_node(_deadlist.pop()); 4714 } 4715 4716 eliminate_useless_zero_trip_guard(); 4717 4718 if (stop_early) { 4719 assert(do_expensive_nodes, "why are we here?"); 4720 if (process_expensive_nodes()) { 4721 // If we made some progress when processing expensive nodes then 4722 // the IGVN may modify the graph in a way that will allow us to 4723 // make some more progress: we need to try processing expensive 4724 // nodes again. 4725 C->set_major_progress(); 4726 } 4727 return; 4728 } 4729 4730 // Some parser-inserted loop predicates could never be used by loop 4731 // predication or they were moved away from loop during some optimizations. 4732 // For example, peeling. Eliminate them before next loop optimizations. 4733 eliminate_useless_predicates(); 4734 4735 #ifndef PRODUCT 4736 C->verify_graph_edges(); 4737 if (_verify_me) { // Nested verify pass? 4738 // Check to see if the verify _mode is broken 4739 assert(C->unique() == unique, "non-optimize _mode made Nodes? ? ?"); 4740 return; 4741 } 4742 DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); 4743 if (TraceLoopOpts && C->has_loops()) { 4744 _ltree_root->dump(); 4745 } 4746 #endif 4747 4748 if (skip_loop_opts) { 4749 C->restore_major_progress(old_progress); 4750 return; 4751 } 4752 4753 if (do_max_unroll) { 4754 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4755 IdealLoopTree* lpt = iter.current(); 4756 if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) { 4757 lpt->compute_trip_count(this); 4758 if (!lpt->do_one_iteration_loop(this) && 4759 !lpt->do_remove_empty_loop(this)) { 4760 AutoNodeBudget node_budget(this); 4761 if (lpt->_head->as_CountedLoop()->is_normal_loop() && 4762 lpt->policy_maximally_unroll(this)) { 4763 memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) ); 4764 do_maximally_unroll(lpt, worklist); 4765 } 4766 } 4767 } 4768 } 4769 4770 C->restore_major_progress(old_progress); 4771 return; 4772 } 4773 4774 if (bs->optimize_loops(this, _mode, visited, nstack, worklist)) { 4775 return; 4776 } 4777 4778 if (ReassociateInvariants && !C->major_progress()) { 4779 // Reassociate invariants and prep for split_thru_phi 4780 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4781 IdealLoopTree* lpt = iter.current(); 4782 if (!lpt->is_loop()) { 4783 continue; 4784 } 4785 Node* head = lpt->_head; 4786 if (!head->is_BaseCountedLoop() || !lpt->is_innermost()) continue; 4787 4788 // check for vectorized loops, any reassociation of invariants was already done 4789 if (head->is_CountedLoop()) { 4790 if (head->as_CountedLoop()->is_unroll_only()) { 4791 continue; 4792 } else { 4793 AutoNodeBudget node_budget(this); 4794 lpt->reassociate_invariants(this); 4795 } 4796 } 4797 // Because RCE opportunities can be masked by split_thru_phi, 4798 // look for RCE candidates and inhibit split_thru_phi 4799 // on just their loop-phi's for this pass of loop opts 4800 if (SplitIfBlocks && do_split_ifs && 4801 head->as_BaseCountedLoop()->is_valid_counted_loop(head->as_BaseCountedLoop()->bt()) && 4802 (lpt->policy_range_check(this, true, T_LONG) || 4803 (head->is_CountedLoop() && lpt->policy_range_check(this, true, T_INT)))) { 4804 lpt->_rce_candidate = 1; // = true 4805 } 4806 } 4807 } 4808 4809 // Check for aggressive application of split-if and other transforms 4810 // that require basic-block info (like cloning through Phi's) 4811 if (!C->major_progress() && SplitIfBlocks && do_split_ifs) { 4812 visited.clear(); 4813 split_if_with_blocks( visited, nstack); 4814 DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); 4815 } 4816 4817 if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) { 4818 C->set_major_progress(); 4819 } 4820 4821 // Perform loop predication before iteration splitting 4822 if (UseLoopPredicate && C->has_loops() && !C->major_progress() && (C->parse_predicate_count() > 0)) { 4823 _ltree_root->_child->loop_predication(this); 4824 } 4825 4826 if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) { 4827 if (do_intrinsify_fill()) { 4828 C->set_major_progress(); 4829 } 4830 } 4831 4832 // Perform iteration-splitting on inner loops. Split iterations to avoid 4833 // range checks or one-shot null checks. 4834 4835 // If split-if's didn't hack the graph too bad (no CFG changes) 4836 // then do loop opts. 4837 if (C->has_loops() && !C->major_progress()) { 4838 memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) ); 4839 _ltree_root->_child->iteration_split( this, worklist ); 4840 // No verify after peeling! GCM has hoisted code out of the loop. 4841 // After peeling, the hoisted code could sink inside the peeled area. 4842 // The peeling code does not try to recompute the best location for 4843 // all the code before the peeled area, so the verify pass will always 4844 // complain about it. 4845 } 4846 4847 // Check for bailout, and return 4848 if (C->failing()) { 4849 return; 4850 } 4851 4852 // Do verify graph edges in any case 4853 NOT_PRODUCT( C->verify_graph_edges(); ); 4854 4855 if (!do_split_ifs) { 4856 // We saw major progress in Split-If to get here. We forced a 4857 // pass with unrolling and not split-if, however more split-if's 4858 // might make progress. If the unrolling didn't make progress 4859 // then the major-progress flag got cleared and we won't try 4860 // another round of Split-If. In particular the ever-common 4861 // instance-of/check-cast pattern requires at least 2 rounds of 4862 // Split-If to clear out. 4863 C->set_major_progress(); 4864 } 4865 4866 // Repeat loop optimizations if new loops were seen 4867 if (created_loop_node()) { 4868 C->set_major_progress(); 4869 } 4870 4871 // Keep loop predicates and perform optimizations with them 4872 // until no more loop optimizations could be done. 4873 // After that switch predicates off and do more loop optimizations. 4874 if (!C->major_progress() && (C->parse_predicate_count() > 0)) { 4875 C->mark_parse_predicate_nodes_useless(_igvn); 4876 assert(C->parse_predicate_count() == 0, "should be zero now"); 4877 if (TraceLoopOpts) { 4878 tty->print_cr("PredicatesOff"); 4879 } 4880 C->set_major_progress(); 4881 } 4882 4883 // Auto-vectorize main-loop 4884 if (C->do_superword() && C->has_loops() && !C->major_progress()) { 4885 Compile::TracePhase tp("autoVectorize", &timers[_t_autoVectorize]); 4886 4887 // Shared data structures for all AutoVectorizations, to reduce allocations 4888 // of large arrays. 4889 VSharedData vshared; 4890 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4891 IdealLoopTree* lpt = iter.current(); 4892 AutoVectorizeStatus status = auto_vectorize(lpt, vshared); 4893 4894 if (status == AutoVectorizeStatus::TriedAndFailed) { 4895 // We tried vectorization, but failed. From now on only unroll the loop. 4896 CountedLoopNode* cl = lpt->_head->as_CountedLoop(); 4897 if (cl->has_passed_slp()) { 4898 C->set_major_progress(); 4899 cl->set_notpassed_slp(); 4900 cl->mark_do_unroll_only(); 4901 } 4902 } 4903 } 4904 } 4905 4906 // Move UnorderedReduction out of counted loop. Can be introduced by AutoVectorization. 4907 if (C->has_loops() && !C->major_progress()) { 4908 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4909 IdealLoopTree* lpt = iter.current(); 4910 if (lpt->is_counted() && lpt->is_innermost()) { 4911 move_unordered_reduction_out_of_loop(lpt); 4912 } 4913 } 4914 } 4915 } 4916 4917 #ifndef PRODUCT 4918 //------------------------------print_statistics------------------------------- 4919 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes 4920 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique 4921 volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen 4922 volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest 4923 volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop 4924 void PhaseIdealLoop::print_statistics() { 4925 tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates); 4926 } 4927 #endif 4928 4929 #ifdef ASSERT 4930 // Build a verify-only PhaseIdealLoop, and see that it agrees with "this". 4931 void PhaseIdealLoop::verify() const { 4932 ResourceMark rm; 4933 int old_progress = C->major_progress(); 4934 bool success = true; 4935 4936 PhaseIdealLoop phase_verify(_igvn, this); 4937 if (C->failing_internal()) { 4938 return; 4939 } 4940 4941 // Verify ctrl and idom of every node. 4942 success &= verify_idom_and_nodes(C->root(), &phase_verify); 4943 4944 // Verify loop-tree. 4945 success &= _ltree_root->verify_tree(phase_verify._ltree_root); 4946 4947 assert(success, "VerifyLoopOptimizations failed"); 4948 4949 // Major progress was cleared by creating a verify version of PhaseIdealLoop. 4950 C->restore_major_progress(old_progress); 4951 } 4952 4953 // Perform a BFS starting at n, through all inputs. 4954 // Call verify_idom and verify_node on all nodes of BFS traversal. 4955 bool PhaseIdealLoop::verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const { 4956 Unique_Node_List worklist; 4957 worklist.push(root); 4958 bool success = true; 4959 for (uint i = 0; i < worklist.size(); i++) { 4960 Node* n = worklist.at(i); 4961 // process node 4962 success &= verify_idom(n, phase_verify); 4963 success &= verify_loop_ctrl(n, phase_verify); 4964 // visit inputs 4965 for (uint j = 0; j < n->req(); j++) { 4966 if (n->in(j) != nullptr) { 4967 worklist.push(n->in(j)); 4968 } 4969 } 4970 } 4971 return success; 4972 } 4973 4974 // Verify dominator structure (IDOM). 4975 bool PhaseIdealLoop::verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const { 4976 // Verify IDOM for all CFG nodes (except root). 4977 if (!n->is_CFG() || n->is_Root()) { 4978 return true; // pass 4979 } 4980 4981 if (n->_idx >= _idom_size) { 4982 tty->print("CFG Node with no idom: "); 4983 n->dump(); 4984 return false; // fail 4985 } 4986 4987 Node* id = idom_no_update(n); 4988 Node* id_verify = phase_verify->idom_no_update(n); 4989 if (id != id_verify) { 4990 tty->print("Mismatching idom for node: "); 4991 n->dump(); 4992 tty->print(" We have idom: "); 4993 id->dump(); 4994 tty->print(" Verify has idom: "); 4995 id_verify->dump(); 4996 tty->cr(); 4997 return false; // fail 4998 } 4999 return true; // pass 5000 } 5001 5002 // Verify "_loop_or_ctrl": control and loop membership. 5003 // (0) _loop_or_ctrl[i] == nullptr -> node not reachable. 5004 // (1) has_ctrl -> check lowest bit. 1 -> data node. 0 -> ctrl node. 5005 // (2) has_ctrl true: get_ctrl_no_update returns ctrl of data node. 5006 // (3) has_ctrl false: get_loop_idx returns IdealLoopTree for ctrl node. 5007 bool PhaseIdealLoop::verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const { 5008 const uint i = n->_idx; 5009 // The loop-tree was built from def to use (top-down). 5010 // The verification happens from use to def (bottom-up). 5011 // We may thus find nodes during verification that are not in the loop-tree. 5012 if (_loop_or_ctrl[i] == nullptr || phase_verify->_loop_or_ctrl[i] == nullptr) { 5013 if (_loop_or_ctrl[i] != nullptr || phase_verify->_loop_or_ctrl[i] != nullptr) { 5014 tty->print_cr("Was reachable in only one. this %d, verify %d.", 5015 _loop_or_ctrl[i] != nullptr, phase_verify->_loop_or_ctrl[i] != nullptr); 5016 n->dump(); 5017 return false; // fail 5018 } 5019 // Not reachable for both. 5020 return true; // pass 5021 } 5022 5023 if (n->is_CFG() == has_ctrl(n)) { 5024 tty->print_cr("Exactly one should be true: %d for is_CFG, %d for has_ctrl.", n->is_CFG(), has_ctrl(n)); 5025 n->dump(); 5026 return false; // fail 5027 } 5028 5029 if (has_ctrl(n) != phase_verify->has_ctrl(n)) { 5030 tty->print_cr("Mismatch has_ctrl: %d for this, %d for verify.", has_ctrl(n), phase_verify->has_ctrl(n)); 5031 n->dump(); 5032 return false; // fail 5033 } else if (has_ctrl(n)) { 5034 assert(phase_verify->has_ctrl(n), "sanity"); 5035 // n is a data node. 5036 // Verify that its ctrl is the same. 5037 5038 // Broken part of VerifyLoopOptimizations (A) 5039 // Reason: 5040 // BUG, wrong control set for example in 5041 // PhaseIdealLoop::split_if_with_blocks 5042 // at "set_ctrl(x, new_ctrl);" 5043 /* 5044 if( _loop_or_ctrl[i] != loop_verify->_loop_or_ctrl[i] && 5045 get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) { 5046 tty->print("Mismatched control setting for: "); 5047 n->dump(); 5048 if( fail++ > 10 ) return; 5049 Node *c = get_ctrl_no_update(n); 5050 tty->print("We have it as: "); 5051 if( c->in(0) ) c->dump(); 5052 else tty->print_cr("N%d",c->_idx); 5053 tty->print("Verify thinks: "); 5054 if( loop_verify->has_ctrl(n) ) 5055 loop_verify->get_ctrl_no_update(n)->dump(); 5056 else 5057 loop_verify->get_loop_idx(n)->dump(); 5058 tty->cr(); 5059 } 5060 */ 5061 return true; // pass 5062 } else { 5063 assert(!phase_verify->has_ctrl(n), "sanity"); 5064 // n is a ctrl node. 5065 // Verify that not has_ctrl, and that get_loop_idx is the same. 5066 5067 // Broken part of VerifyLoopOptimizations (B) 5068 // Reason: 5069 // NeverBranch node for example is added to loop outside its scope. 5070 // Once we run build_loop_tree again, it is added to the correct loop. 5071 /* 5072 if (!C->major_progress()) { 5073 // Loop selection can be messed up if we did a major progress 5074 // operation, like split-if. Do not verify in that case. 5075 IdealLoopTree *us = get_loop_idx(n); 5076 IdealLoopTree *them = loop_verify->get_loop_idx(n); 5077 if( us->_head != them->_head || us->_tail != them->_tail ) { 5078 tty->print("Unequals loops for: "); 5079 n->dump(); 5080 if( fail++ > 10 ) return; 5081 tty->print("We have it as: "); 5082 us->dump(); 5083 tty->print("Verify thinks: "); 5084 them->dump(); 5085 tty->cr(); 5086 } 5087 } 5088 */ 5089 return true; // pass 5090 } 5091 } 5092 5093 static int compare_tree(IdealLoopTree* const& a, IdealLoopTree* const& b) { 5094 assert(a != nullptr && b != nullptr, "must be"); 5095 return a->_head->_idx - b->_head->_idx; 5096 } 5097 5098 GrowableArray<IdealLoopTree*> IdealLoopTree::collect_sorted_children() const { 5099 GrowableArray<IdealLoopTree*> children; 5100 IdealLoopTree* child = _child; 5101 while (child != nullptr) { 5102 assert(child->_parent == this, "all must be children of this"); 5103 children.insert_sorted<compare_tree>(child); 5104 child = child->_next; 5105 } 5106 return children; 5107 } 5108 5109 // Verify that tree structures match. Because the CFG can change, siblings 5110 // within the loop tree can be reordered. We attempt to deal with that by 5111 // reordering the verify's loop tree if possible. 5112 bool IdealLoopTree::verify_tree(IdealLoopTree* loop_verify) const { 5113 assert(_head == loop_verify->_head, "mismatched loop head"); 5114 assert(this->_parent != nullptr || this->_next == nullptr, "is_root_loop implies has_no_sibling"); 5115 5116 // Collect the children 5117 GrowableArray<IdealLoopTree*> children = collect_sorted_children(); 5118 GrowableArray<IdealLoopTree*> children_verify = loop_verify->collect_sorted_children(); 5119 5120 bool success = true; 5121 5122 // Compare the two children lists 5123 for (int i = 0, j = 0; i < children.length() || j < children_verify.length(); ) { 5124 IdealLoopTree* child = nullptr; 5125 IdealLoopTree* child_verify = nullptr; 5126 // Read from both lists, if possible. 5127 if (i < children.length()) { 5128 child = children.at(i); 5129 } 5130 if (j < children_verify.length()) { 5131 child_verify = children_verify.at(j); 5132 } 5133 assert(child != nullptr || child_verify != nullptr, "must find at least one"); 5134 if (child != nullptr && child_verify != nullptr && child->_head != child_verify->_head) { 5135 // We found two non-equal children. Select the smaller one. 5136 if (child->_head->_idx < child_verify->_head->_idx) { 5137 child_verify = nullptr; 5138 } else { 5139 child = nullptr; 5140 } 5141 } 5142 // Process the two children, or potentially log the failure if we only found one. 5143 if (child_verify == nullptr) { 5144 if (child->_irreducible && Compile::current()->major_progress()) { 5145 // Irreducible loops can pick a different header (one of its entries). 5146 } else { 5147 tty->print_cr("We have a loop that verify does not have"); 5148 child->dump(); 5149 success = false; 5150 } 5151 i++; // step for this 5152 } else if (child == nullptr) { 5153 if (child_verify->_irreducible && Compile::current()->major_progress()) { 5154 // Irreducible loops can pick a different header (one of its entries). 5155 } else if (child_verify->_head->as_Region()->is_in_infinite_subgraph()) { 5156 // Infinite loops do not get attached to the loop-tree on their first visit. 5157 // "this" runs before "loop_verify". It is thus possible that we find the 5158 // infinite loop only for "child_verify". Only finding it with "child" would 5159 // mean that we lost it, which is not ok. 5160 } else { 5161 tty->print_cr("Verify has a loop that we do not have"); 5162 child_verify->dump(); 5163 success = false; 5164 } 5165 j++; // step for verify 5166 } else { 5167 assert(child->_head == child_verify->_head, "We have both and they are equal"); 5168 success &= child->verify_tree(child_verify); // Recursion 5169 i++; // step for this 5170 j++; // step for verify 5171 } 5172 } 5173 5174 // Broken part of VerifyLoopOptimizations (D) 5175 // Reason: 5176 // split_if has to update the _tail, if it is modified. But that is done by 5177 // checking to what loop the iff belongs to. That info can be wrong, and then 5178 // we do not update the _tail correctly. 5179 /* 5180 Node *tail = _tail; // Inline a non-updating version of 5181 while( !tail->in(0) ) // the 'tail()' call. 5182 tail = tail->in(1); 5183 assert( tail == loop->_tail, "mismatched loop tail" ); 5184 */ 5185 5186 if (_head->is_CountedLoop()) { 5187 CountedLoopNode *cl = _head->as_CountedLoop(); 5188 5189 Node* ctrl = cl->init_control(); 5190 Node* back = cl->back_control(); 5191 assert(ctrl != nullptr && ctrl->is_CFG(), "sane loop in-ctrl"); 5192 assert(back != nullptr && back->is_CFG(), "sane loop backedge"); 5193 cl->loopexit(); // assert implied 5194 } 5195 5196 // Broken part of VerifyLoopOptimizations (E) 5197 // Reason: 5198 // PhaseIdealLoop::split_thru_region creates new nodes for loop that are not added 5199 // to the loop body. Or maybe they are not added to the correct loop. 5200 // at "Node* x = n->clone();" 5201 /* 5202 // Innermost loops need to verify loop bodies, 5203 // but only if no 'major_progress' 5204 int fail = 0; 5205 if (!Compile::current()->major_progress() && _child == nullptr) { 5206 for( uint i = 0; i < _body.size(); i++ ) { 5207 Node *n = _body.at(i); 5208 if (n->outcnt() == 0) continue; // Ignore dead 5209 uint j; 5210 for( j = 0; j < loop->_body.size(); j++ ) 5211 if( loop->_body.at(j) == n ) 5212 break; 5213 if( j == loop->_body.size() ) { // Not found in loop body 5214 // Last ditch effort to avoid assertion: Its possible that we 5215 // have some users (so outcnt not zero) but are still dead. 5216 // Try to find from root. 5217 if (Compile::current()->root()->find(n->_idx)) { 5218 fail++; 5219 tty->print("We have that verify does not: "); 5220 n->dump(); 5221 } 5222 } 5223 } 5224 for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) { 5225 Node *n = loop->_body.at(i2); 5226 if (n->outcnt() == 0) continue; // Ignore dead 5227 uint j; 5228 for( j = 0; j < _body.size(); j++ ) 5229 if( _body.at(j) == n ) 5230 break; 5231 if( j == _body.size() ) { // Not found in loop body 5232 // Last ditch effort to avoid assertion: Its possible that we 5233 // have some users (so outcnt not zero) but are still dead. 5234 // Try to find from root. 5235 if (Compile::current()->root()->find(n->_idx)) { 5236 fail++; 5237 tty->print("Verify has that we do not: "); 5238 n->dump(); 5239 } 5240 } 5241 } 5242 assert( !fail, "loop body mismatch" ); 5243 } 5244 */ 5245 return success; 5246 } 5247 #endif 5248 5249 //------------------------------set_idom--------------------------------------- 5250 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) { 5251 _nesting.check(); // Check if a potential reallocation in the resource arena is safe 5252 uint idx = d->_idx; 5253 if (idx >= _idom_size) { 5254 uint newsize = next_power_of_2(idx); 5255 _idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize); 5256 _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize); 5257 memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) ); 5258 _idom_size = newsize; 5259 } 5260 _idom[idx] = n; 5261 _dom_depth[idx] = dom_depth; 5262 } 5263 5264 //------------------------------recompute_dom_depth--------------------------------------- 5265 // The dominator tree is constructed with only parent pointers. 5266 // This recomputes the depth in the tree by first tagging all 5267 // nodes as "no depth yet" marker. The next pass then runs up 5268 // the dom tree from each node marked "no depth yet", and computes 5269 // the depth on the way back down. 5270 void PhaseIdealLoop::recompute_dom_depth() { 5271 uint no_depth_marker = C->unique(); 5272 uint i; 5273 // Initialize depth to "no depth yet" and realize all lazy updates 5274 for (i = 0; i < _idom_size; i++) { 5275 // Only indices with a _dom_depth has a Node* or null (otherwise uninitialized). 5276 if (_dom_depth[i] > 0 && _idom[i] != nullptr) { 5277 _dom_depth[i] = no_depth_marker; 5278 5279 // heal _idom if it has a fwd mapping in _loop_or_ctrl 5280 if (_idom[i]->in(0) == nullptr) { 5281 idom(i); 5282 } 5283 } 5284 } 5285 if (_dom_stk == nullptr) { 5286 uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size. 5287 if (init_size < 10) init_size = 10; 5288 _dom_stk = new GrowableArray<uint>(init_size); 5289 } 5290 // Compute new depth for each node. 5291 for (i = 0; i < _idom_size; i++) { 5292 uint j = i; 5293 // Run up the dom tree to find a node with a depth 5294 while (_dom_depth[j] == no_depth_marker) { 5295 _dom_stk->push(j); 5296 j = _idom[j]->_idx; 5297 } 5298 // Compute the depth on the way back down this tree branch 5299 uint dd = _dom_depth[j] + 1; 5300 while (_dom_stk->length() > 0) { 5301 uint j = _dom_stk->pop(); 5302 _dom_depth[j] = dd; 5303 dd++; 5304 } 5305 } 5306 } 5307 5308 //------------------------------sort------------------------------------------- 5309 // Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the 5310 // loop tree, not the root. 5311 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) { 5312 if( !innermost ) return loop; // New innermost loop 5313 5314 int loop_preorder = get_preorder(loop->_head); // Cache pre-order number 5315 assert( loop_preorder, "not yet post-walked loop" ); 5316 IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer 5317 IdealLoopTree *l = *pp; // Do I go before or after 'l'? 5318 5319 // Insert at start of list 5320 while( l ) { // Insertion sort based on pre-order 5321 if( l == loop ) return innermost; // Already on list! 5322 int l_preorder = get_preorder(l->_head); // Cache pre-order number 5323 assert( l_preorder, "not yet post-walked l" ); 5324 // Check header pre-order number to figure proper nesting 5325 if( loop_preorder > l_preorder ) 5326 break; // End of insertion 5327 // If headers tie (e.g., shared headers) check tail pre-order numbers. 5328 // Since I split shared headers, you'd think this could not happen. 5329 // BUT: I must first do the preorder numbering before I can discover I 5330 // have shared headers, so the split headers all get the same preorder 5331 // number as the RegionNode they split from. 5332 if( loop_preorder == l_preorder && 5333 get_preorder(loop->_tail) < get_preorder(l->_tail) ) 5334 break; // Also check for shared headers (same pre#) 5335 pp = &l->_parent; // Chain up list 5336 l = *pp; 5337 } 5338 // Link into list 5339 // Point predecessor to me 5340 *pp = loop; 5341 // Point me to successor 5342 IdealLoopTree *p = loop->_parent; 5343 loop->_parent = l; // Point me to successor 5344 if( p ) sort( p, innermost ); // Insert my parents into list as well 5345 return innermost; 5346 } 5347 5348 //------------------------------build_loop_tree-------------------------------- 5349 // I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit 5350 // bits. The _loop_or_ctrl[] array is mapped by Node index and holds a null for 5351 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the 5352 // tightest enclosing IdealLoopTree for post-walked. 5353 // 5354 // During my forward walk I do a short 1-layer lookahead to see if I can find 5355 // a loop backedge with that doesn't have any work on the backedge. This 5356 // helps me construct nested loops with shared headers better. 5357 // 5358 // Once I've done the forward recursion, I do the post-work. For each child 5359 // I check to see if there is a backedge. Backedges define a loop! I 5360 // insert an IdealLoopTree at the target of the backedge. 5361 // 5362 // During the post-work I also check to see if I have several children 5363 // belonging to different loops. If so, then this Node is a decision point 5364 // where control flow can choose to change loop nests. It is at this 5365 // decision point where I can figure out how loops are nested. At this 5366 // time I can properly order the different loop nests from my children. 5367 // Note that there may not be any backedges at the decision point! 5368 // 5369 // Since the decision point can be far removed from the backedges, I can't 5370 // order my loops at the time I discover them. Thus at the decision point 5371 // I need to inspect loop header pre-order numbers to properly nest my 5372 // loops. This means I need to sort my childrens' loops by pre-order. 5373 // The sort is of size number-of-control-children, which generally limits 5374 // it to size 2 (i.e., I just choose between my 2 target loops). 5375 void PhaseIdealLoop::build_loop_tree() { 5376 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 5377 GrowableArray <Node *> bltstack(C->live_nodes() >> 1); 5378 Node *n = C->root(); 5379 bltstack.push(n); 5380 int pre_order = 1; 5381 int stack_size; 5382 5383 while ( ( stack_size = bltstack.length() ) != 0 ) { 5384 n = bltstack.top(); // Leave node on stack 5385 if ( !is_visited(n) ) { 5386 // ---- Pre-pass Work ---- 5387 // Pre-walked but not post-walked nodes need a pre_order number. 5388 5389 set_preorder_visited( n, pre_order ); // set as visited 5390 5391 // ---- Scan over children ---- 5392 // Scan first over control projections that lead to loop headers. 5393 // This helps us find inner-to-outer loops with shared headers better. 5394 5395 // Scan children's children for loop headers. 5396 for ( int i = n->outcnt() - 1; i >= 0; --i ) { 5397 Node* m = n->raw_out(i); // Child 5398 if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children 5399 // Scan over children's children to find loop 5400 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 5401 Node* l = m->fast_out(j); 5402 if( is_visited(l) && // Been visited? 5403 !is_postvisited(l) && // But not post-visited 5404 get_preorder(l) < pre_order ) { // And smaller pre-order 5405 // Found! Scan the DFS down this path before doing other paths 5406 bltstack.push(m); 5407 break; 5408 } 5409 } 5410 } 5411 } 5412 pre_order++; 5413 } 5414 else if ( !is_postvisited(n) ) { 5415 // Note: build_loop_tree_impl() adds out edges on rare occasions, 5416 // such as com.sun.rsasign.am::a. 5417 // For non-recursive version, first, process current children. 5418 // On next iteration, check if additional children were added. 5419 for ( int k = n->outcnt() - 1; k >= 0; --k ) { 5420 Node* u = n->raw_out(k); 5421 if ( u->is_CFG() && !is_visited(u) ) { 5422 bltstack.push(u); 5423 } 5424 } 5425 if ( bltstack.length() == stack_size ) { 5426 // There were no additional children, post visit node now 5427 (void)bltstack.pop(); // Remove node from stack 5428 pre_order = build_loop_tree_impl(n, pre_order); 5429 // Check for bailout 5430 if (C->failing()) { 5431 return; 5432 } 5433 // Check to grow _preorders[] array for the case when 5434 // build_loop_tree_impl() adds new nodes. 5435 check_grow_preorders(); 5436 } 5437 } 5438 else { 5439 (void)bltstack.pop(); // Remove post-visited node from stack 5440 } 5441 } 5442 DEBUG_ONLY(verify_regions_in_irreducible_loops();) 5443 } 5444 5445 //------------------------------build_loop_tree_impl--------------------------- 5446 int PhaseIdealLoop::build_loop_tree_impl(Node* n, int pre_order) { 5447 // ---- Post-pass Work ---- 5448 // Pre-walked but not post-walked nodes need a pre_order number. 5449 5450 // Tightest enclosing loop for this Node 5451 IdealLoopTree *innermost = nullptr; 5452 5453 // For all children, see if any edge is a backedge. If so, make a loop 5454 // for it. Then find the tightest enclosing loop for the self Node. 5455 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5456 Node* m = n->fast_out(i); // Child 5457 if (n == m) continue; // Ignore control self-cycles 5458 if (!m->is_CFG()) continue;// Ignore non-CFG edges 5459 5460 IdealLoopTree *l; // Child's loop 5461 if (!is_postvisited(m)) { // Child visited but not post-visited? 5462 // Found a backedge 5463 assert(get_preorder(m) < pre_order, "should be backedge"); 5464 // Check for the RootNode, which is already a LoopNode and is allowed 5465 // to have multiple "backedges". 5466 if (m == C->root()) { // Found the root? 5467 l = _ltree_root; // Root is the outermost LoopNode 5468 } else { // Else found a nested loop 5469 // Insert a LoopNode to mark this loop. 5470 l = new IdealLoopTree(this, m, n); 5471 } // End of Else found a nested loop 5472 if (!has_loop(m)) { // If 'm' does not already have a loop set 5473 set_loop(m, l); // Set loop header to loop now 5474 } 5475 } else { // Else not a nested loop 5476 if (!_loop_or_ctrl[m->_idx]) continue; // Dead code has no loop 5477 IdealLoopTree* m_loop = get_loop(m); 5478 l = m_loop; // Get previously determined loop 5479 // If successor is header of a loop (nest), move up-loop till it 5480 // is a member of some outer enclosing loop. Since there are no 5481 // shared headers (I've split them already) I only need to go up 5482 // at most 1 level. 5483 while (l && l->_head == m) { // Successor heads loop? 5484 l = l->_parent; // Move up 1 for me 5485 } 5486 // If this loop is not properly parented, then this loop 5487 // has no exit path out, i.e. its an infinite loop. 5488 if (!l) { 5489 // Make loop "reachable" from root so the CFG is reachable. Basically 5490 // insert a bogus loop exit that is never taken. 'm', the loop head, 5491 // points to 'n', one (of possibly many) fall-in paths. There may be 5492 // many backedges as well. 5493 5494 if (!_verify_only) { 5495 // Insert the NeverBranch between 'm' and it's control user. 5496 NeverBranchNode *iff = new NeverBranchNode( m ); 5497 _igvn.register_new_node_with_optimizer(iff); 5498 set_loop(iff, m_loop); 5499 Node *if_t = new CProjNode( iff, 0 ); 5500 _igvn.register_new_node_with_optimizer(if_t); 5501 set_loop(if_t, m_loop); 5502 5503 Node* cfg = nullptr; // Find the One True Control User of m 5504 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 5505 Node* x = m->fast_out(j); 5506 if (x->is_CFG() && x != m && x != iff) 5507 { cfg = x; break; } 5508 } 5509 assert(cfg != nullptr, "must find the control user of m"); 5510 uint k = 0; // Probably cfg->in(0) 5511 while( cfg->in(k) != m ) k++; // But check in case cfg is a Region 5512 _igvn.replace_input_of(cfg, k, if_t); // Now point to NeverBranch 5513 5514 // Now create the never-taken loop exit 5515 Node *if_f = new CProjNode( iff, 1 ); 5516 _igvn.register_new_node_with_optimizer(if_f); 5517 set_loop(if_f, _ltree_root); 5518 // Find frame ptr for Halt. Relies on the optimizer 5519 // V-N'ing. Easier and quicker than searching through 5520 // the program structure. 5521 Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr ); 5522 _igvn.register_new_node_with_optimizer(frame); 5523 // Halt & Catch Fire 5524 Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached"); 5525 _igvn.register_new_node_with_optimizer(halt); 5526 set_loop(halt, _ltree_root); 5527 _igvn.add_input_to(C->root(), halt); 5528 } 5529 set_loop(C->root(), _ltree_root); 5530 // move to outer most loop with same header 5531 l = m_loop; 5532 while (true) { 5533 IdealLoopTree* next = l->_parent; 5534 if (next == nullptr || next->_head != m) { 5535 break; 5536 } 5537 l = next; 5538 } 5539 // properly insert infinite loop in loop tree 5540 sort(_ltree_root, l); 5541 // fix child link from parent 5542 IdealLoopTree* p = l->_parent; 5543 l->_next = p->_child; 5544 p->_child = l; 5545 // code below needs enclosing loop 5546 l = l->_parent; 5547 } 5548 } 5549 if (is_postvisited(l->_head)) { 5550 // We are currently visiting l, but its head has already been post-visited. 5551 // l is irreducible: we just found a second entry m. 5552 _has_irreducible_loops = true; 5553 RegionNode* secondary_entry = m->as_Region(); 5554 DEBUG_ONLY(secondary_entry->verify_can_be_irreducible_entry();) 5555 5556 // Walk up the loop-tree, mark all loops that are already post-visited as irreducible 5557 // Since m is a secondary entry to them all. 5558 while( is_postvisited(l->_head) ) { 5559 l->_irreducible = 1; // = true 5560 RegionNode* head = l->_head->as_Region(); 5561 DEBUG_ONLY(head->verify_can_be_irreducible_entry();) 5562 l = l->_parent; 5563 // Check for bad CFG here to prevent crash, and bailout of compile 5564 if (l == nullptr) { 5565 #ifndef PRODUCT 5566 if (TraceLoopOpts) { 5567 tty->print_cr("bailout: unhandled CFG: infinite irreducible loop"); 5568 m->dump(); 5569 } 5570 #endif 5571 // This is a rare case that we do not want to handle in C2. 5572 C->record_method_not_compilable("unhandled CFG detected during loop optimization"); 5573 return pre_order; 5574 } 5575 } 5576 } 5577 if (!_verify_only) { 5578 C->set_has_irreducible_loop(_has_irreducible_loops); 5579 } 5580 5581 // This Node might be a decision point for loops. It is only if 5582 // it's children belong to several different loops. The sort call 5583 // does a trivial amount of work if there is only 1 child or all 5584 // children belong to the same loop. If however, the children 5585 // belong to different loops, the sort call will properly set the 5586 // _parent pointers to show how the loops nest. 5587 // 5588 // In any case, it returns the tightest enclosing loop. 5589 innermost = sort( l, innermost ); 5590 } 5591 5592 // Def-use info will have some dead stuff; dead stuff will have no 5593 // loop decided on. 5594 5595 // Am I a loop header? If so fix up my parent's child and next ptrs. 5596 if( innermost && innermost->_head == n ) { 5597 assert( get_loop(n) == innermost, "" ); 5598 IdealLoopTree *p = innermost->_parent; 5599 IdealLoopTree *l = innermost; 5600 while (p && l->_head == n) { 5601 l->_next = p->_child; // Put self on parents 'next child' 5602 p->_child = l; // Make self as first child of parent 5603 l = p; // Now walk up the parent chain 5604 p = l->_parent; 5605 } 5606 } else { 5607 // Note that it is possible for a LoopNode to reach here, if the 5608 // backedge has been made unreachable (hence the LoopNode no longer 5609 // denotes a Loop, and will eventually be removed). 5610 5611 // Record tightest enclosing loop for self. Mark as post-visited. 5612 set_loop(n, innermost); 5613 // Also record has_call flag early on 5614 if (innermost) { 5615 if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) { 5616 // Do not count uncommon calls 5617 if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) { 5618 Node *iff = n->in(0)->in(0); 5619 // No any calls for vectorized loops. 5620 if (C->do_superword() || 5621 !iff->is_If() || 5622 (n->in(0)->Opcode() == Op_IfFalse && (1.0 - iff->as_If()->_prob) >= 0.01) || 5623 iff->as_If()->_prob >= 0.01) { 5624 innermost->_has_call = 1; 5625 } 5626 } 5627 } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) { 5628 // Disable loop optimizations if the loop has a scalar replaceable 5629 // allocation. This disabling may cause a potential performance lost 5630 // if the allocation is not eliminated for some reason. 5631 innermost->_allow_optimizations = false; 5632 innermost->_has_call = 1; // = true 5633 } else if (n->Opcode() == Op_SafePoint) { 5634 // Record all safepoints in this loop. 5635 if (innermost->_safepts == nullptr) innermost->_safepts = new Node_List(); 5636 innermost->_safepts->push(n); 5637 } 5638 } 5639 } 5640 5641 // Flag as post-visited now 5642 set_postvisited(n); 5643 return pre_order; 5644 } 5645 5646 #ifdef ASSERT 5647 //--------------------------verify_regions_in_irreducible_loops---------------- 5648 // Iterate down from Root through CFG, verify for every region: 5649 // if it is in an irreducible loop it must be marked as such 5650 void PhaseIdealLoop::verify_regions_in_irreducible_loops() { 5651 ResourceMark rm; 5652 if (!_has_irreducible_loops) { 5653 // last build_loop_tree has not found any irreducible loops 5654 // hence no region has to be marked is_in_irreduible_loop 5655 return; 5656 } 5657 5658 RootNode* root = C->root(); 5659 Unique_Node_List worklist; // visit all nodes once 5660 worklist.push(root); 5661 bool failure = false; 5662 for (uint i = 0; i < worklist.size(); i++) { 5663 Node* n = worklist.at(i); 5664 if (n->is_Region()) { 5665 RegionNode* region = n->as_Region(); 5666 if (is_in_irreducible_loop(region) && 5667 region->loop_status() == RegionNode::LoopStatus::Reducible) { 5668 failure = true; 5669 tty->print("irreducible! "); 5670 region->dump(); 5671 } 5672 } 5673 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 5674 Node* use = n->fast_out(j); 5675 if (use->is_CFG()) { 5676 worklist.push(use); // push if was not pushed before 5677 } 5678 } 5679 } 5680 assert(!failure, "region in irreducible loop was marked as reducible"); 5681 } 5682 5683 //---------------------------is_in_irreducible_loop------------------------- 5684 // Analogous to ciTypeFlow::Block::is_in_irreducible_loop 5685 bool PhaseIdealLoop::is_in_irreducible_loop(RegionNode* region) { 5686 if (!_has_irreducible_loops) { 5687 return false; // no irreducible loop in graph 5688 } 5689 IdealLoopTree* l = get_loop(region); // l: innermost loop that contains region 5690 do { 5691 if (l->_irreducible) { 5692 return true; // found it 5693 } 5694 if (l == _ltree_root) { 5695 return false; // reached root, terimnate 5696 } 5697 l = l->_parent; 5698 } while (l != nullptr); 5699 assert(region->is_in_infinite_subgraph(), "must be in infinite subgraph"); 5700 // We have "l->_parent == nullptr", which happens only for infinite loops, 5701 // where no parent is attached to the loop. We did not find any irreducible 5702 // loop from this block out to lp. Thus lp only has one entry, and no exit 5703 // (it is infinite and reducible). We can always rewrite an infinite loop 5704 // that is nested inside other loops: 5705 // while(condition) { infinite_loop; } 5706 // with an equivalent program where the infinite loop is an outermost loop 5707 // that is not nested in any loop: 5708 // while(condition) { break; } infinite_loop; 5709 // Thus, we can understand lp as an outermost loop, and can terminate and 5710 // conclude: this block is in no irreducible loop. 5711 return false; 5712 } 5713 #endif 5714 5715 //------------------------------build_loop_early------------------------------- 5716 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. 5717 // First pass computes the earliest controlling node possible. This is the 5718 // controlling input with the deepest dominating depth. 5719 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) { 5720 while (worklist.size() != 0) { 5721 // Use local variables nstack_top_n & nstack_top_i to cache values 5722 // on nstack's top. 5723 Node *nstack_top_n = worklist.pop(); 5724 uint nstack_top_i = 0; 5725 //while_nstack_nonempty: 5726 while (true) { 5727 // Get parent node and next input's index from stack's top. 5728 Node *n = nstack_top_n; 5729 uint i = nstack_top_i; 5730 uint cnt = n->req(); // Count of inputs 5731 if (i == 0) { // Pre-process the node. 5732 if( has_node(n) && // Have either loop or control already? 5733 !has_ctrl(n) ) { // Have loop picked out already? 5734 // During "merge_many_backedges" we fold up several nested loops 5735 // into a single loop. This makes the members of the original 5736 // loop bodies pointing to dead loops; they need to move up 5737 // to the new UNION'd larger loop. I set the _head field of these 5738 // dead loops to null and the _parent field points to the owning 5739 // loop. Shades of UNION-FIND algorithm. 5740 IdealLoopTree *ilt; 5741 while( !(ilt = get_loop(n))->_head ) { 5742 // Normally I would use a set_loop here. But in this one special 5743 // case, it is legal (and expected) to change what loop a Node 5744 // belongs to. 5745 _loop_or_ctrl.map(n->_idx, (Node*)(ilt->_parent)); 5746 } 5747 // Remove safepoints ONLY if I've already seen I don't need one. 5748 // (the old code here would yank a 2nd safepoint after seeing a 5749 // first one, even though the 1st did not dominate in the loop body 5750 // and thus could be avoided indefinitely) 5751 if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint && 5752 is_deleteable_safept(n)) { 5753 Node *in = n->in(TypeFunc::Control); 5754 lazy_replace(n,in); // Pull safepoint now 5755 if (ilt->_safepts != nullptr) { 5756 ilt->_safepts->yank(n); 5757 } 5758 // Carry on with the recursion "as if" we are walking 5759 // only the control input 5760 if( !visited.test_set( in->_idx ) ) { 5761 worklist.push(in); // Visit this guy later, using worklist 5762 } 5763 // Get next node from nstack: 5764 // - skip n's inputs processing by setting i > cnt; 5765 // - we also will not call set_early_ctrl(n) since 5766 // has_node(n) == true (see the condition above). 5767 i = cnt + 1; 5768 } 5769 } 5770 } // if (i == 0) 5771 5772 // Visit all inputs 5773 bool done = true; // Assume all n's inputs will be processed 5774 while (i < cnt) { 5775 Node *in = n->in(i); 5776 ++i; 5777 if (in == nullptr) continue; 5778 if (in->pinned() && !in->is_CFG()) 5779 set_ctrl(in, in->in(0)); 5780 int is_visited = visited.test_set( in->_idx ); 5781 if (!has_node(in)) { // No controlling input yet? 5782 assert( !in->is_CFG(), "CFG Node with no controlling input?" ); 5783 assert( !is_visited, "visit only once" ); 5784 nstack.push(n, i); // Save parent node and next input's index. 5785 nstack_top_n = in; // Process current input now. 5786 nstack_top_i = 0; 5787 done = false; // Not all n's inputs processed. 5788 break; // continue while_nstack_nonempty; 5789 } else if (!is_visited) { 5790 // This guy has a location picked out for him, but has not yet 5791 // been visited. Happens to all CFG nodes, for instance. 5792 // Visit him using the worklist instead of recursion, to break 5793 // cycles. Since he has a location already we do not need to 5794 // find his location before proceeding with the current Node. 5795 worklist.push(in); // Visit this guy later, using worklist 5796 } 5797 } 5798 if (done) { 5799 // All of n's inputs have been processed, complete post-processing. 5800 5801 // Compute earliest point this Node can go. 5802 // CFG, Phi, pinned nodes already know their controlling input. 5803 if (!has_node(n)) { 5804 // Record earliest legal location 5805 set_early_ctrl(n, false); 5806 } 5807 if (nstack.is_empty()) { 5808 // Finished all nodes on stack. 5809 // Process next node on the worklist. 5810 break; 5811 } 5812 // Get saved parent node and next input's index. 5813 nstack_top_n = nstack.node(); 5814 nstack_top_i = nstack.index(); 5815 nstack.pop(); 5816 } 5817 } // while (true) 5818 } 5819 } 5820 5821 //------------------------------dom_lca_internal-------------------------------- 5822 // Pair-wise LCA 5823 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const { 5824 if( !n1 ) return n2; // Handle null original LCA 5825 assert( n1->is_CFG(), "" ); 5826 assert( n2->is_CFG(), "" ); 5827 // find LCA of all uses 5828 uint d1 = dom_depth(n1); 5829 uint d2 = dom_depth(n2); 5830 while (n1 != n2) { 5831 if (d1 > d2) { 5832 n1 = idom(n1); 5833 d1 = dom_depth(n1); 5834 } else if (d1 < d2) { 5835 n2 = idom(n2); 5836 d2 = dom_depth(n2); 5837 } else { 5838 // Here d1 == d2. Due to edits of the dominator-tree, sections 5839 // of the tree might have the same depth. These sections have 5840 // to be searched more carefully. 5841 5842 // Scan up all the n1's with equal depth, looking for n2. 5843 Node *t1 = idom(n1); 5844 while (dom_depth(t1) == d1) { 5845 if (t1 == n2) return n2; 5846 t1 = idom(t1); 5847 } 5848 // Scan up all the n2's with equal depth, looking for n1. 5849 Node *t2 = idom(n2); 5850 while (dom_depth(t2) == d2) { 5851 if (t2 == n1) return n1; 5852 t2 = idom(t2); 5853 } 5854 // Move up to a new dominator-depth value as well as up the dom-tree. 5855 n1 = t1; 5856 n2 = t2; 5857 d1 = dom_depth(n1); 5858 d2 = dom_depth(n2); 5859 } 5860 } 5861 return n1; 5862 } 5863 5864 //------------------------------compute_idom----------------------------------- 5865 // Locally compute IDOM using dom_lca call. Correct only if the incoming 5866 // IDOMs are correct. 5867 Node *PhaseIdealLoop::compute_idom( Node *region ) const { 5868 assert( region->is_Region(), "" ); 5869 Node *LCA = nullptr; 5870 for( uint i = 1; i < region->req(); i++ ) { 5871 if( region->in(i) != C->top() ) 5872 LCA = dom_lca( LCA, region->in(i) ); 5873 } 5874 return LCA; 5875 } 5876 5877 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) { 5878 bool had_error = false; 5879 #ifdef ASSERT 5880 if (early != C->root()) { 5881 // Make sure that there's a dominance path from LCA to early 5882 Node* d = LCA; 5883 while (d != early) { 5884 if (d == C->root()) { 5885 dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA); 5886 tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx); 5887 had_error = true; 5888 break; 5889 } 5890 d = idom(d); 5891 } 5892 } 5893 #endif 5894 return had_error; 5895 } 5896 5897 5898 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) { 5899 // Compute LCA over list of uses 5900 bool had_error = false; 5901 Node *LCA = nullptr; 5902 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) { 5903 Node* c = n->fast_out(i); 5904 if (_loop_or_ctrl[c->_idx] == nullptr) 5905 continue; // Skip the occasional dead node 5906 if( c->is_Phi() ) { // For Phis, we must land above on the path 5907 for( uint j=1; j<c->req(); j++ ) {// For all inputs 5908 if( c->in(j) == n ) { // Found matching input? 5909 Node *use = c->in(0)->in(j); 5910 if (_verify_only && use->is_top()) continue; 5911 LCA = dom_lca_for_get_late_ctrl( LCA, use, n ); 5912 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error; 5913 } 5914 } 5915 } else { 5916 // For CFG data-users, use is in the block just prior 5917 Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0); 5918 LCA = dom_lca_for_get_late_ctrl( LCA, use, n ); 5919 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error; 5920 } 5921 } 5922 assert(!had_error, "bad dominance"); 5923 return LCA; 5924 } 5925 5926 // Check the shape of the graph at the loop entry. In some cases, 5927 // the shape of the graph does not match the shape outlined below. 5928 // That is caused by the Opaque1 node "protecting" the shape of 5929 // the graph being removed by, for example, the IGVN performed 5930 // in PhaseIdealLoop::build_and_optimize(). 5931 // 5932 // After the Opaque1 node has been removed, optimizations (e.g., split-if, 5933 // loop unswitching, and IGVN, or a combination of them) can freely change 5934 // the graph's shape. As a result, the graph shape outlined below cannot 5935 // be guaranteed anymore. 5936 Node* CountedLoopNode::is_canonical_loop_entry() { 5937 if (!is_main_loop() && !is_post_loop()) { 5938 return nullptr; 5939 } 5940 Node* ctrl = skip_assertion_predicates_with_halt(); 5941 5942 if (ctrl == nullptr || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) { 5943 return nullptr; 5944 } 5945 Node* iffm = ctrl->in(0); 5946 if (iffm == nullptr || iffm->Opcode() != Op_If) { 5947 return nullptr; 5948 } 5949 Node* bolzm = iffm->in(1); 5950 if (bolzm == nullptr || !bolzm->is_Bool()) { 5951 return nullptr; 5952 } 5953 Node* cmpzm = bolzm->in(1); 5954 if (cmpzm == nullptr || !cmpzm->is_Cmp()) { 5955 return nullptr; 5956 } 5957 5958 uint input = is_main_loop() ? 2 : 1; 5959 if (input >= cmpzm->req() || cmpzm->in(input) == nullptr) { 5960 return nullptr; 5961 } 5962 bool res = cmpzm->in(input)->Opcode() == Op_OpaqueZeroTripGuard; 5963 #ifdef ASSERT 5964 bool found_opaque = false; 5965 for (uint i = 1; i < cmpzm->req(); i++) { 5966 Node* opnd = cmpzm->in(i); 5967 if (opnd && opnd->is_Opaque1()) { 5968 found_opaque = true; 5969 break; 5970 } 5971 } 5972 assert(found_opaque == res, "wrong pattern"); 5973 #endif 5974 return res ? cmpzm->in(input) : nullptr; 5975 } 5976 5977 // Find pre loop end from main loop. Returns nullptr if none. 5978 CountedLoopEndNode* CountedLoopNode::find_pre_loop_end() { 5979 assert(is_main_loop(), "Can only find pre-loop from main-loop"); 5980 // The loop cannot be optimized if the graph shape at the loop entry is 5981 // inappropriate. 5982 if (is_canonical_loop_entry() == nullptr) { 5983 return nullptr; 5984 } 5985 5986 Node* p_f = skip_assertion_predicates_with_halt()->in(0)->in(0); 5987 if (!p_f->is_IfFalse() || !p_f->in(0)->is_CountedLoopEnd()) { 5988 return nullptr; 5989 } 5990 CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd(); 5991 CountedLoopNode* loop_node = pre_end->loopnode(); 5992 if (loop_node == nullptr || !loop_node->is_pre_loop()) { 5993 return nullptr; 5994 } 5995 return pre_end; 5996 } 5997 5998 //------------------------------get_late_ctrl---------------------------------- 5999 // Compute latest legal control. 6000 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) { 6001 assert(early != nullptr, "early control should not be null"); 6002 6003 Node* LCA = compute_lca_of_uses(n, early); 6004 #ifdef ASSERT 6005 if (LCA == C->root() && LCA != early) { 6006 // def doesn't dominate uses so print some useful debugging output 6007 compute_lca_of_uses(n, early, true); 6008 } 6009 #endif 6010 6011 if (n->is_Load() && LCA != early) { 6012 LCA = get_late_ctrl_with_anti_dep(n->as_Load(), early, LCA); 6013 } 6014 6015 assert(LCA == find_non_split_ctrl(LCA), "unexpected late control"); 6016 return LCA; 6017 } 6018 6019 // if this is a load, check for anti-dependent stores 6020 // We use a conservative algorithm to identify potential interfering 6021 // instructions and for rescheduling the load. The users of the memory 6022 // input of this load are examined. Any use which is not a load and is 6023 // dominated by early is considered a potentially interfering store. 6024 // This can produce false positives. 6025 Node* PhaseIdealLoop::get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA) { 6026 int load_alias_idx = C->get_alias_index(n->adr_type()); 6027 if (C->alias_type(load_alias_idx)->is_rewritable()) { 6028 Unique_Node_List worklist; 6029 6030 Node* mem = n->in(MemNode::Memory); 6031 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { 6032 Node* s = mem->fast_out(i); 6033 worklist.push(s); 6034 } 6035 for (uint i = 0; i < worklist.size() && LCA != early; i++) { 6036 Node* s = worklist.at(i); 6037 if (s->is_Load() || s->Opcode() == Op_SafePoint || 6038 (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) || 6039 s->is_Phi()) { 6040 continue; 6041 } else if (s->is_MergeMem()) { 6042 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { 6043 Node* s1 = s->fast_out(i); 6044 worklist.push(s1); 6045 } 6046 } else { 6047 Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0); 6048 assert(sctrl != nullptr || !s->is_reachable_from_root(), "must have control"); 6049 if (sctrl != nullptr && !sctrl->is_top() && is_dominator(early, sctrl)) { 6050 const TypePtr* adr_type = s->adr_type(); 6051 if (s->is_ArrayCopy()) { 6052 // Copy to known instance needs destination type to test for aliasing 6053 const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type; 6054 if (dest_type != TypeOopPtr::BOTTOM) { 6055 adr_type = dest_type; 6056 } 6057 } 6058 if (C->can_alias(adr_type, load_alias_idx)) { 6059 LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n); 6060 } else if (s->is_CFG() && s->is_Multi()) { 6061 // Look for the memory use of s (that is the use of its memory projection) 6062 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { 6063 Node* s1 = s->fast_out(i); 6064 assert(s1->is_Proj(), "projection expected"); 6065 if (_igvn.type(s1) == Type::MEMORY) { 6066 for (DUIterator_Fast jmax, j = s1->fast_outs(jmax); j < jmax; j++) { 6067 Node* s2 = s1->fast_out(j); 6068 worklist.push(s2); 6069 } 6070 } 6071 } 6072 } 6073 } 6074 } 6075 } 6076 // For Phis only consider Region's inputs that were reached by following the memory edges 6077 if (LCA != early) { 6078 for (uint i = 0; i < worklist.size(); i++) { 6079 Node* s = worklist.at(i); 6080 if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) { 6081 Node* r = s->in(0); 6082 for (uint j = 1; j < s->req(); j++) { 6083 Node* in = s->in(j); 6084 Node* r_in = r->in(j); 6085 // We can't reach any node from a Phi because we don't enqueue Phi's uses above 6086 if (((worklist.member(in) && !in->is_Phi()) || in == mem) && is_dominator(early, r_in)) { 6087 LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n); 6088 } 6089 } 6090 } 6091 } 6092 } 6093 } 6094 return LCA; 6095 } 6096 6097 // Is CFG node 'dominator' dominating node 'n'? 6098 bool PhaseIdealLoop::is_dominator(Node* dominator, Node* n) { 6099 if (dominator == n) { 6100 return true; 6101 } 6102 assert(dominator->is_CFG() && n->is_CFG(), "must have CFG nodes"); 6103 uint dd = dom_depth(dominator); 6104 while (dom_depth(n) >= dd) { 6105 if (n == dominator) { 6106 return true; 6107 } 6108 n = idom(n); 6109 } 6110 return false; 6111 } 6112 6113 // Is CFG node 'dominator' strictly dominating node 'n'? 6114 bool PhaseIdealLoop::is_strict_dominator(Node* dominator, Node* n) { 6115 return dominator != n && is_dominator(dominator, n); 6116 } 6117 6118 //------------------------------dom_lca_for_get_late_ctrl_internal------------- 6119 // Pair-wise LCA with tags. 6120 // Tag each index with the node 'tag' currently being processed 6121 // before advancing up the dominator chain using idom(). 6122 // Later calls that find a match to 'tag' know that this path has already 6123 // been considered in the current LCA (which is input 'n1' by convention). 6124 // Since get_late_ctrl() is only called once for each node, the tag array 6125 // does not need to be cleared between calls to get_late_ctrl(). 6126 // Algorithm trades a larger constant factor for better asymptotic behavior 6127 // 6128 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal(Node *n1, Node *n2, Node *tag_node) { 6129 uint d1 = dom_depth(n1); 6130 uint d2 = dom_depth(n2); 6131 jlong tag = tag_node->_idx | (((jlong)_dom_lca_tags_round) << 32); 6132 6133 do { 6134 if (d1 > d2) { 6135 // current lca is deeper than n2 6136 _dom_lca_tags.at_put_grow(n1->_idx, tag); 6137 n1 = idom(n1); 6138 d1 = dom_depth(n1); 6139 } else if (d1 < d2) { 6140 // n2 is deeper than current lca 6141 jlong memo = _dom_lca_tags.at_grow(n2->_idx, 0); 6142 if (memo == tag) { 6143 return n1; // Return the current LCA 6144 } 6145 _dom_lca_tags.at_put_grow(n2->_idx, tag); 6146 n2 = idom(n2); 6147 d2 = dom_depth(n2); 6148 } else { 6149 // Here d1 == d2. Due to edits of the dominator-tree, sections 6150 // of the tree might have the same depth. These sections have 6151 // to be searched more carefully. 6152 6153 // Scan up all the n1's with equal depth, looking for n2. 6154 _dom_lca_tags.at_put_grow(n1->_idx, tag); 6155 Node *t1 = idom(n1); 6156 while (dom_depth(t1) == d1) { 6157 if (t1 == n2) return n2; 6158 _dom_lca_tags.at_put_grow(t1->_idx, tag); 6159 t1 = idom(t1); 6160 } 6161 // Scan up all the n2's with equal depth, looking for n1. 6162 _dom_lca_tags.at_put_grow(n2->_idx, tag); 6163 Node *t2 = idom(n2); 6164 while (dom_depth(t2) == d2) { 6165 if (t2 == n1) return n1; 6166 _dom_lca_tags.at_put_grow(t2->_idx, tag); 6167 t2 = idom(t2); 6168 } 6169 // Move up to a new dominator-depth value as well as up the dom-tree. 6170 n1 = t1; 6171 n2 = t2; 6172 d1 = dom_depth(n1); 6173 d2 = dom_depth(n2); 6174 } 6175 } while (n1 != n2); 6176 return n1; 6177 } 6178 6179 //------------------------------init_dom_lca_tags------------------------------ 6180 // Tag could be a node's integer index, 32bits instead of 64bits in some cases 6181 // Intended use does not involve any growth for the array, so it could 6182 // be of fixed size. 6183 void PhaseIdealLoop::init_dom_lca_tags() { 6184 uint limit = C->unique() + 1; 6185 _dom_lca_tags.at_grow(limit, 0); 6186 _dom_lca_tags_round = 0; 6187 #ifdef ASSERT 6188 for (uint i = 0; i < limit; ++i) { 6189 assert(_dom_lca_tags.at(i) == 0, "Must be distinct from each node pointer"); 6190 } 6191 #endif // ASSERT 6192 } 6193 6194 //------------------------------build_loop_late-------------------------------- 6195 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. 6196 // Second pass finds latest legal placement, and ideal loop placement. 6197 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) { 6198 while (worklist.size() != 0) { 6199 Node *n = worklist.pop(); 6200 // Only visit once 6201 if (visited.test_set(n->_idx)) continue; 6202 uint cnt = n->outcnt(); 6203 uint i = 0; 6204 while (true) { 6205 assert(_loop_or_ctrl[n->_idx], "no dead nodes"); 6206 // Visit all children 6207 if (i < cnt) { 6208 Node* use = n->raw_out(i); 6209 ++i; 6210 // Check for dead uses. Aggressively prune such junk. It might be 6211 // dead in the global sense, but still have local uses so I cannot 6212 // easily call 'remove_dead_node'. 6213 if (_loop_or_ctrl[use->_idx] != nullptr || use->is_top()) { // Not dead? 6214 // Due to cycles, we might not hit the same fixed point in the verify 6215 // pass as we do in the regular pass. Instead, visit such phis as 6216 // simple uses of the loop head. 6217 if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) { 6218 if( !visited.test(use->_idx) ) 6219 worklist.push(use); 6220 } else if( !visited.test_set(use->_idx) ) { 6221 nstack.push(n, i); // Save parent and next use's index. 6222 n = use; // Process all children of current use. 6223 cnt = use->outcnt(); 6224 i = 0; 6225 } 6226 } else { 6227 // Do not visit around the backedge of loops via data edges. 6228 // push dead code onto a worklist 6229 _deadlist.push(use); 6230 } 6231 } else { 6232 // All of n's children have been processed, complete post-processing. 6233 build_loop_late_post(n); 6234 if (C->failing()) { return; } 6235 if (nstack.is_empty()) { 6236 // Finished all nodes on stack. 6237 // Process next node on the worklist. 6238 break; 6239 } 6240 // Get saved parent node and next use's index. Visit the rest of uses. 6241 n = nstack.node(); 6242 cnt = n->outcnt(); 6243 i = nstack.index(); 6244 nstack.pop(); 6245 } 6246 } 6247 } 6248 } 6249 6250 // Verify that no data node is scheduled in the outer loop of a strip 6251 // mined loop. 6252 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) { 6253 #ifdef ASSERT 6254 if (get_loop(least)->_nest == 0) { 6255 return; 6256 } 6257 IdealLoopTree* loop = get_loop(least); 6258 Node* head = loop->_head; 6259 if (head->is_OuterStripMinedLoop() && 6260 // Verification can't be applied to fully built strip mined loops 6261 head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) { 6262 Node* sfpt = head->as_Loop()->outer_safepoint(); 6263 ResourceMark rm; 6264 Unique_Node_List wq; 6265 wq.push(sfpt); 6266 for (uint i = 0; i < wq.size(); i++) { 6267 Node *m = wq.at(i); 6268 for (uint i = 1; i < m->req(); i++) { 6269 Node* nn = m->in(i); 6270 if (nn == n) { 6271 return; 6272 } 6273 if (nn != nullptr && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) { 6274 wq.push(nn); 6275 } 6276 } 6277 } 6278 ShouldNotReachHere(); 6279 } 6280 #endif 6281 } 6282 6283 6284 //------------------------------build_loop_late_post--------------------------- 6285 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. 6286 // Second pass finds latest legal placement, and ideal loop placement. 6287 void PhaseIdealLoop::build_loop_late_post(Node *n) { 6288 build_loop_late_post_work(n, true); 6289 } 6290 6291 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) { 6292 6293 if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) { 6294 _igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops. 6295 } 6296 6297 #ifdef ASSERT 6298 if (_verify_only && !n->is_CFG()) { 6299 // Check def-use domination. 6300 compute_lca_of_uses(n, get_ctrl(n), true /* verify */); 6301 } 6302 #endif 6303 6304 // CFG and pinned nodes already handled 6305 if( n->in(0) ) { 6306 if( n->in(0)->is_top() ) return; // Dead? 6307 6308 // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads 6309 // _must_ be pinned (they have to observe their control edge of course). 6310 // Unlike Stores (which modify an unallocable resource, the memory 6311 // state), Mods/Loads can float around. So free them up. 6312 switch( n->Opcode() ) { 6313 case Op_DivI: 6314 case Op_DivF: 6315 case Op_DivD: 6316 case Op_ModI: 6317 case Op_ModF: 6318 case Op_ModD: 6319 case Op_LoadB: // Same with Loads; they can sink 6320 case Op_LoadUB: // during loop optimizations. 6321 case Op_LoadUS: 6322 case Op_LoadD: 6323 case Op_LoadF: 6324 case Op_LoadI: 6325 case Op_LoadKlass: 6326 case Op_LoadNKlass: 6327 case Op_LoadL: 6328 case Op_LoadS: 6329 case Op_LoadP: 6330 case Op_LoadN: 6331 case Op_LoadRange: 6332 case Op_LoadD_unaligned: 6333 case Op_LoadL_unaligned: 6334 case Op_StrComp: // Does a bunch of load-like effects 6335 case Op_StrEquals: 6336 case Op_StrIndexOf: 6337 case Op_StrIndexOfChar: 6338 case Op_AryEq: 6339 case Op_VectorizedHashCode: 6340 case Op_CountPositives: 6341 pinned = false; 6342 } 6343 if (n->is_CMove() || n->is_ConstraintCast()) { 6344 pinned = false; 6345 } 6346 if( pinned ) { 6347 IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n)); 6348 if( !chosen_loop->_child ) // Inner loop? 6349 chosen_loop->_body.push(n); // Collect inner loops 6350 return; 6351 } 6352 } else { // No slot zero 6353 if( n->is_CFG() ) { // CFG with no slot 0 is dead 6354 _loop_or_ctrl.map(n->_idx,nullptr); // No block setting, it's globally dead 6355 return; 6356 } 6357 assert(!n->is_CFG() || n->outcnt() == 0, ""); 6358 } 6359 6360 // Do I have a "safe range" I can select over? 6361 Node *early = get_ctrl(n);// Early location already computed 6362 6363 // Compute latest point this Node can go 6364 Node *LCA = get_late_ctrl( n, early ); 6365 // LCA is null due to uses being dead 6366 if( LCA == nullptr ) { 6367 #ifdef ASSERT 6368 for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) { 6369 assert(_loop_or_ctrl[n->out(i1)->_idx] == nullptr, "all uses must also be dead"); 6370 } 6371 #endif 6372 _loop_or_ctrl.map(n->_idx, nullptr); // This node is useless 6373 _deadlist.push(n); 6374 return; 6375 } 6376 assert(LCA != nullptr && !LCA->is_top(), "no dead nodes"); 6377 6378 Node *legal = LCA; // Walk 'legal' up the IDOM chain 6379 Node *least = legal; // Best legal position so far 6380 while( early != legal ) { // While not at earliest legal 6381 if (legal->is_Start() && !early->is_Root()) { 6382 #ifdef ASSERT 6383 // Bad graph. Print idom path and fail. 6384 dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA); 6385 assert(false, "Bad graph detected in build_loop_late"); 6386 #endif 6387 C->record_method_not_compilable("Bad graph detected in build_loop_late"); 6388 return; 6389 } 6390 // Find least loop nesting depth 6391 legal = idom(legal); // Bump up the IDOM tree 6392 // Check for lower nesting depth 6393 if( get_loop(legal)->_nest < get_loop(least)->_nest ) 6394 least = legal; 6395 } 6396 assert(early == legal || legal != C->root(), "bad dominance of inputs"); 6397 6398 if (least != early) { 6399 // Move the node above predicates as far up as possible so a 6400 // following pass of Loop Predication doesn't hoist a predicate 6401 // that depends on it above that node. 6402 PredicateEntryIterator predicate_iterator(least); 6403 while (predicate_iterator.has_next()) { 6404 Node* next_predicate_entry = predicate_iterator.next_entry(); 6405 if (is_strict_dominator(next_predicate_entry, early)) { 6406 break; 6407 } 6408 least = next_predicate_entry; 6409 } 6410 } 6411 // Try not to place code on a loop entry projection 6412 // which can inhibit range check elimination. 6413 if (least != early && !BarrierSet::barrier_set()->barrier_set_c2()->is_gc_specific_loop_opts_pass(_mode)) { 6414 Node* ctrl_out = least->unique_ctrl_out_or_null(); 6415 if (ctrl_out != nullptr && ctrl_out->is_Loop() && 6416 least == ctrl_out->in(LoopNode::EntryControl) && 6417 (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) { 6418 Node* least_dom = idom(least); 6419 if (get_loop(least_dom)->is_member(get_loop(least))) { 6420 least = least_dom; 6421 } 6422 } 6423 } 6424 // Don't extend live ranges of raw oops 6425 if (least != early && n->is_ConstraintCast() && n->in(1)->bottom_type()->isa_rawptr() && 6426 !n->bottom_type()->isa_rawptr()) { 6427 least = early; 6428 } 6429 6430 #ifdef ASSERT 6431 // Broken part of VerifyLoopOptimizations (F) 6432 // Reason: 6433 // _verify_me->get_ctrl_no_update(n) seems to return wrong result 6434 /* 6435 // If verifying, verify that 'verify_me' has a legal location 6436 // and choose it as our location. 6437 if( _verify_me ) { 6438 Node *v_ctrl = _verify_me->get_ctrl_no_update(n); 6439 Node *legal = LCA; 6440 while( early != legal ) { // While not at earliest legal 6441 if( legal == v_ctrl ) break; // Check for prior good location 6442 legal = idom(legal) ;// Bump up the IDOM tree 6443 } 6444 // Check for prior good location 6445 if( legal == v_ctrl ) least = legal; // Keep prior if found 6446 } 6447 */ 6448 #endif 6449 6450 // Assign discovered "here or above" point 6451 least = find_non_split_ctrl(least); 6452 verify_strip_mined_scheduling(n, least); 6453 set_ctrl(n, least); 6454 6455 // Collect inner loop bodies 6456 IdealLoopTree *chosen_loop = get_loop(least); 6457 if( !chosen_loop->_child ) // Inner loop? 6458 chosen_loop->_body.push(n);// Collect inner loops 6459 6460 if (!_verify_only && n->Opcode() == Op_OpaqueZeroTripGuard) { 6461 _zero_trip_guard_opaque_nodes.push(n); 6462 } 6463 6464 } 6465 6466 #ifdef ASSERT 6467 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) { 6468 tty->print_cr("%s", msg); 6469 tty->print("n: "); n->dump(); 6470 tty->print("early(n): "); early->dump(); 6471 if (n->in(0) != nullptr && !n->in(0)->is_top() && 6472 n->in(0) != early && !n->in(0)->is_Root()) { 6473 tty->print("n->in(0): "); n->in(0)->dump(); 6474 } 6475 for (uint i = 1; i < n->req(); i++) { 6476 Node* in1 = n->in(i); 6477 if (in1 != nullptr && in1 != n && !in1->is_top()) { 6478 tty->print("n->in(%d): ", i); in1->dump(); 6479 Node* in1_early = get_ctrl(in1); 6480 tty->print("early(n->in(%d)): ", i); in1_early->dump(); 6481 if (in1->in(0) != nullptr && !in1->in(0)->is_top() && 6482 in1->in(0) != in1_early && !in1->in(0)->is_Root()) { 6483 tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump(); 6484 } 6485 for (uint j = 1; j < in1->req(); j++) { 6486 Node* in2 = in1->in(j); 6487 if (in2 != nullptr && in2 != n && in2 != in1 && !in2->is_top()) { 6488 tty->print("n->in(%d)->in(%d): ", i, j); in2->dump(); 6489 Node* in2_early = get_ctrl(in2); 6490 tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump(); 6491 if (in2->in(0) != nullptr && !in2->in(0)->is_top() && 6492 in2->in(0) != in2_early && !in2->in(0)->is_Root()) { 6493 tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump(); 6494 } 6495 } 6496 } 6497 } 6498 } 6499 tty->cr(); 6500 tty->print("LCA(n): "); LCA->dump(); 6501 for (uint i = 0; i < n->outcnt(); i++) { 6502 Node* u1 = n->raw_out(i); 6503 if (u1 == n) 6504 continue; 6505 tty->print("n->out(%d): ", i); u1->dump(); 6506 if (u1->is_CFG()) { 6507 for (uint j = 0; j < u1->outcnt(); j++) { 6508 Node* u2 = u1->raw_out(j); 6509 if (u2 != u1 && u2 != n && u2->is_CFG()) { 6510 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump(); 6511 } 6512 } 6513 } else { 6514 Node* u1_later = get_ctrl(u1); 6515 tty->print("later(n->out(%d)): ", i); u1_later->dump(); 6516 if (u1->in(0) != nullptr && !u1->in(0)->is_top() && 6517 u1->in(0) != u1_later && !u1->in(0)->is_Root()) { 6518 tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump(); 6519 } 6520 for (uint j = 0; j < u1->outcnt(); j++) { 6521 Node* u2 = u1->raw_out(j); 6522 if (u2 == n || u2 == u1) 6523 continue; 6524 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump(); 6525 if (!u2->is_CFG()) { 6526 Node* u2_later = get_ctrl(u2); 6527 tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump(); 6528 if (u2->in(0) != nullptr && !u2->in(0)->is_top() && 6529 u2->in(0) != u2_later && !u2->in(0)->is_Root()) { 6530 tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump(); 6531 } 6532 } 6533 } 6534 } 6535 } 6536 dump_idoms(early, LCA); 6537 tty->cr(); 6538 } 6539 6540 // Class to compute the real LCA given an early node and a wrong LCA in a bad graph. 6541 class RealLCA { 6542 const PhaseIdealLoop* _phase; 6543 Node* _early; 6544 Node* _wrong_lca; 6545 uint _early_index; 6546 int _wrong_lca_index; 6547 6548 // Given idom chains of early and wrong LCA: Walk through idoms starting at StartNode and find the first node which 6549 // is different: Return the previously visited node which must be the real LCA. 6550 // The node lists also contain _early and _wrong_lca, respectively. 6551 Node* find_real_lca(Unique_Node_List& early_with_idoms, Unique_Node_List& wrong_lca_with_idoms) { 6552 int early_index = early_with_idoms.size() - 1; 6553 int wrong_lca_index = wrong_lca_with_idoms.size() - 1; 6554 bool found_difference = false; 6555 do { 6556 if (early_with_idoms[early_index] != wrong_lca_with_idoms[wrong_lca_index]) { 6557 // First time early and wrong LCA idoms differ. Real LCA must be at the previous index. 6558 found_difference = true; 6559 break; 6560 } 6561 early_index--; 6562 wrong_lca_index--; 6563 } while (wrong_lca_index >= 0); 6564 6565 assert(early_index >= 0, "must always find an LCA - cannot be early"); 6566 _early_index = early_index; 6567 _wrong_lca_index = wrong_lca_index; 6568 Node* real_lca = early_with_idoms[_early_index + 1]; // Plus one to skip _early. 6569 assert(found_difference || real_lca == _wrong_lca, "wrong LCA dominates early and is therefore the real LCA"); 6570 return real_lca; 6571 } 6572 6573 void dump(Node* real_lca) { 6574 tty->cr(); 6575 tty->print_cr("idoms of early \"%d %s\":", _early->_idx, _early->Name()); 6576 _phase->dump_idom(_early, _early_index + 1); 6577 6578 tty->cr(); 6579 tty->print_cr("idoms of (wrong) LCA \"%d %s\":", _wrong_lca->_idx, _wrong_lca->Name()); 6580 _phase->dump_idom(_wrong_lca, _wrong_lca_index + 1); 6581 6582 tty->cr(); 6583 tty->print("Real LCA of early \"%d %s\" (idom[%d]) and wrong LCA \"%d %s\"", 6584 _early->_idx, _early->Name(), _early_index, _wrong_lca->_idx, _wrong_lca->Name()); 6585 if (_wrong_lca_index >= 0) { 6586 tty->print(" (idom[%d])", _wrong_lca_index); 6587 } 6588 tty->print_cr(":"); 6589 real_lca->dump(); 6590 } 6591 6592 public: 6593 RealLCA(const PhaseIdealLoop* phase, Node* early, Node* wrong_lca) 6594 : _phase(phase), _early(early), _wrong_lca(wrong_lca), _early_index(0), _wrong_lca_index(0) { 6595 assert(!wrong_lca->is_Start(), "StartNode is always a common dominator"); 6596 } 6597 6598 void compute_and_dump() { 6599 ResourceMark rm; 6600 Unique_Node_List early_with_idoms; 6601 Unique_Node_List wrong_lca_with_idoms; 6602 early_with_idoms.push(_early); 6603 wrong_lca_with_idoms.push(_wrong_lca); 6604 _phase->get_idoms(_early, 10000, early_with_idoms); 6605 _phase->get_idoms(_wrong_lca, 10000, wrong_lca_with_idoms); 6606 Node* real_lca = find_real_lca(early_with_idoms, wrong_lca_with_idoms); 6607 dump(real_lca); 6608 } 6609 }; 6610 6611 // Dump the idom chain of early, of the wrong LCA and dump the real LCA of early and wrong LCA. 6612 void PhaseIdealLoop::dump_idoms(Node* early, Node* wrong_lca) { 6613 assert(!is_dominator(early, wrong_lca), "sanity check that early does not dominate wrong lca"); 6614 assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes"); 6615 6616 RealLCA real_lca(this, early, wrong_lca); 6617 real_lca.compute_and_dump(); 6618 } 6619 #endif // ASSERT 6620 6621 #ifndef PRODUCT 6622 //------------------------------dump------------------------------------------- 6623 void PhaseIdealLoop::dump() const { 6624 ResourceMark rm; 6625 Node_Stack stack(C->live_nodes() >> 2); 6626 Node_List rpo_list; 6627 VectorSet visited; 6628 visited.set(C->top()->_idx); 6629 rpo(C->root(), stack, visited, rpo_list); 6630 // Dump root loop indexed by last element in PO order 6631 dump(_ltree_root, rpo_list.size(), rpo_list); 6632 } 6633 6634 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const { 6635 loop->dump_head(); 6636 6637 // Now scan for CFG nodes in the same loop 6638 for (uint j = idx; j > 0; j--) { 6639 Node* n = rpo_list[j-1]; 6640 if (!_loop_or_ctrl[n->_idx]) // Skip dead nodes 6641 continue; 6642 6643 if (get_loop(n) != loop) { // Wrong loop nest 6644 if (get_loop(n)->_head == n && // Found nested loop? 6645 get_loop(n)->_parent == loop) 6646 dump(get_loop(n), rpo_list.size(), rpo_list); // Print it nested-ly 6647 continue; 6648 } 6649 6650 // Dump controlling node 6651 tty->sp(2 * loop->_nest); 6652 tty->print("C"); 6653 if (n == C->root()) { 6654 n->dump(); 6655 } else { 6656 Node* cached_idom = idom_no_update(n); 6657 Node* computed_idom = n->in(0); 6658 if (n->is_Region()) { 6659 computed_idom = compute_idom(n); 6660 // computed_idom() will return n->in(0) when idom(n) is an IfNode (or 6661 // any MultiBranch ctrl node), so apply a similar transform to 6662 // the cached idom returned from idom_no_update. 6663 cached_idom = find_non_split_ctrl(cached_idom); 6664 } 6665 tty->print(" ID:%d", computed_idom->_idx); 6666 n->dump(); 6667 if (cached_idom != computed_idom) { 6668 tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d", 6669 computed_idom->_idx, cached_idom->_idx); 6670 } 6671 } 6672 // Dump nodes it controls 6673 for (uint k = 0; k < _loop_or_ctrl.max(); k++) { 6674 // (k < C->unique() && get_ctrl(find(k)) == n) 6675 if (k < C->unique() && _loop_or_ctrl[k] == (Node*)((intptr_t)n + 1)) { 6676 Node* m = C->root()->find(k); 6677 if (m && m->outcnt() > 0) { 6678 if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) { 6679 tty->print_cr("*** BROKEN CTRL ACCESSOR! _loop_or_ctrl[k] is %p, ctrl is %p", 6680 _loop_or_ctrl[k], has_ctrl(m) ? get_ctrl_no_update(m) : nullptr); 6681 } 6682 tty->sp(2 * loop->_nest + 1); 6683 m->dump(); 6684 } 6685 } 6686 } 6687 } 6688 } 6689 6690 void PhaseIdealLoop::dump_idom(Node* n, const uint count) const { 6691 if (has_ctrl(n)) { 6692 tty->print_cr("No idom for data nodes"); 6693 } else { 6694 ResourceMark rm; 6695 Unique_Node_List idoms; 6696 get_idoms(n, count, idoms); 6697 dump_idoms_in_reverse(n, idoms); 6698 } 6699 } 6700 6701 void PhaseIdealLoop::get_idoms(Node* n, const uint count, Unique_Node_List& idoms) const { 6702 Node* next = n; 6703 for (uint i = 0; !next->is_Start() && i < count; i++) { 6704 next = idom(next); 6705 assert(!idoms.member(next), "duplicated idom is not possible"); 6706 idoms.push(next); 6707 } 6708 } 6709 6710 void PhaseIdealLoop::dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const { 6711 Node* next; 6712 uint padding = 3; 6713 uint node_index_padding_width = static_cast<int>(log10(static_cast<double>(C->unique()))) + 1; 6714 for (int i = idom_list.size() - 1; i >= 0; i--) { 6715 if (i == 9 || i == 99) { 6716 padding++; 6717 } 6718 next = idom_list[i]; 6719 tty->print_cr("idom[%d]:%*c%*d %s", i, padding, ' ', node_index_padding_width, next->_idx, next->Name()); 6720 } 6721 tty->print_cr("n: %*c%*d %s", padding, ' ', node_index_padding_width, n->_idx, n->Name()); 6722 } 6723 #endif // NOT PRODUCT 6724 6725 // Collect a R-P-O for the whole CFG. 6726 // Result list is in post-order (scan backwards for RPO) 6727 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const { 6728 stk.push(start, 0); 6729 visited.set(start->_idx); 6730 6731 while (stk.is_nonempty()) { 6732 Node* m = stk.node(); 6733 uint idx = stk.index(); 6734 if (idx < m->outcnt()) { 6735 stk.set_index(idx + 1); 6736 Node* n = m->raw_out(idx); 6737 if (n->is_CFG() && !visited.test_set(n->_idx)) { 6738 stk.push(n, 0); 6739 } 6740 } else { 6741 rpo_list.push(m); 6742 stk.pop(); 6743 } 6744 } 6745 } 6746 6747 6748 //============================================================================= 6749 //------------------------------LoopTreeIterator------------------------------- 6750 6751 // Advance to next loop tree using a preorder, left-to-right traversal. 6752 void LoopTreeIterator::next() { 6753 assert(!done(), "must not be done."); 6754 if (_curnt->_child != nullptr) { 6755 _curnt = _curnt->_child; 6756 } else if (_curnt->_next != nullptr) { 6757 _curnt = _curnt->_next; 6758 } else { 6759 while (_curnt != _root && _curnt->_next == nullptr) { 6760 _curnt = _curnt->_parent; 6761 } 6762 if (_curnt == _root) { 6763 _curnt = nullptr; 6764 assert(done(), "must be done."); 6765 } else { 6766 assert(_curnt->_next != nullptr, "must be more to do"); 6767 _curnt = _curnt->_next; 6768 } 6769 } 6770 }