1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciMethodData.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "gc/shared/barrierSet.hpp" 28 #include "gc/shared/c2/barrierSetC2.hpp" 29 #include "libadt/vectset.hpp" 30 #include "memory/allocation.inline.hpp" 31 #include "memory/resourceArea.hpp" 32 #include "opto/addnode.hpp" 33 #include "opto/arraycopynode.hpp" 34 #include "opto/callnode.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/connode.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/divnode.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/loopnode.hpp" 41 #include "opto/movenode.hpp" 42 #include "opto/mulnode.hpp" 43 #include "opto/opaquenode.hpp" 44 #include "opto/predicates.hpp" 45 #include "opto/rootnode.hpp" 46 #include "opto/runtime.hpp" 47 #include "opto/vectorization.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "utilities/checkedCast.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 //============================================================================= 53 //--------------------------is_cloop_ind_var----------------------------------- 54 // Determine if a node is a counted loop induction variable. 55 // NOTE: The method is declared in "node.hpp". 56 bool Node::is_cloop_ind_var() const { 57 return (is_Phi() && 58 as_Phi()->region()->is_CountedLoop() && 59 as_Phi()->region()->as_CountedLoop()->phi() == this); 60 } 61 62 //============================================================================= 63 //------------------------------dump_spec-------------------------------------- 64 // Dump special per-node info 65 #ifndef PRODUCT 66 void LoopNode::dump_spec(outputStream *st) const { 67 RegionNode::dump_spec(st); 68 if (is_inner_loop()) st->print( "inner " ); 69 if (is_partial_peel_loop()) st->print( "partial_peel " ); 70 if (partial_peel_has_failed()) st->print( "partial_peel_failed " ); 71 } 72 #endif 73 74 //------------------------------is_valid_counted_loop------------------------- 75 bool LoopNode::is_valid_counted_loop(BasicType bt) const { 76 if (is_BaseCountedLoop() && as_BaseCountedLoop()->bt() == bt) { 77 BaseCountedLoopNode* l = as_BaseCountedLoop(); 78 BaseCountedLoopEndNode* le = l->loopexit_or_null(); 79 if (le != nullptr && 80 le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) { 81 Node* phi = l->phi(); 82 Node* exit = le->proj_out_or_null(0 /* false */); 83 if (exit != nullptr && exit->Opcode() == Op_IfFalse && 84 phi != nullptr && phi->is_Phi() && 85 phi->in(LoopNode::LoopBackControl) == l->incr() && 86 le->loopnode() == l && le->stride_is_con()) { 87 return true; 88 } 89 } 90 } 91 return false; 92 } 93 94 //------------------------------get_early_ctrl--------------------------------- 95 // Compute earliest legal control 96 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) { 97 assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" ); 98 uint i; 99 Node *early; 100 if (n->in(0) && !n->is_expensive()) { 101 early = n->in(0); 102 if (!early->is_CFG()) // Might be a non-CFG multi-def 103 early = get_ctrl(early); // So treat input as a straight data input 104 i = 1; 105 } else { 106 early = get_ctrl(n->in(1)); 107 i = 2; 108 } 109 uint e_d = dom_depth(early); 110 assert( early, "" ); 111 for (; i < n->req(); i++) { 112 Node *cin = get_ctrl(n->in(i)); 113 assert( cin, "" ); 114 // Keep deepest dominator depth 115 uint c_d = dom_depth(cin); 116 if (c_d > e_d) { // Deeper guy? 117 early = cin; // Keep deepest found so far 118 e_d = c_d; 119 } else if (c_d == e_d && // Same depth? 120 early != cin) { // If not equal, must use slower algorithm 121 // If same depth but not equal, one _must_ dominate the other 122 // and we want the deeper (i.e., dominated) guy. 123 Node *n1 = early; 124 Node *n2 = cin; 125 while (1) { 126 n1 = idom(n1); // Walk up until break cycle 127 n2 = idom(n2); 128 if (n1 == cin || // Walked early up to cin 129 dom_depth(n2) < c_d) 130 break; // early is deeper; keep him 131 if (n2 == early || // Walked cin up to early 132 dom_depth(n1) < c_d) { 133 early = cin; // cin is deeper; keep him 134 break; 135 } 136 } 137 e_d = dom_depth(early); // Reset depth register cache 138 } 139 } 140 141 // Return earliest legal location 142 assert(early == find_non_split_ctrl(early), "unexpected early control"); 143 144 if (n->is_expensive() && !_verify_only && !_verify_me) { 145 assert(n->in(0), "should have control input"); 146 early = get_early_ctrl_for_expensive(n, early); 147 } 148 149 return early; 150 } 151 152 //------------------------------get_early_ctrl_for_expensive--------------------------------- 153 // Move node up the dominator tree as high as legal while still beneficial 154 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) { 155 assert(n->in(0) && n->is_expensive(), "expensive node with control input here"); 156 assert(OptimizeExpensiveOps, "optimization off?"); 157 158 Node* ctl = n->in(0); 159 assert(ctl->is_CFG(), "expensive input 0 must be cfg"); 160 uint min_dom_depth = dom_depth(earliest); 161 #ifdef ASSERT 162 if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) { 163 dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl); 164 assert(false, "Bad graph detected in get_early_ctrl_for_expensive"); 165 } 166 #endif 167 if (dom_depth(ctl) < min_dom_depth) { 168 return earliest; 169 } 170 171 while (true) { 172 Node* next = ctl; 173 // Moving the node out of a loop on the projection of an If 174 // confuses Loop Predication. So, once we hit a loop in an If branch 175 // that doesn't branch to an UNC, we stop. The code that process 176 // expensive nodes will notice the loop and skip over it to try to 177 // move the node further up. 178 if (ctl->is_CountedLoop() && ctl->in(1) != nullptr && ctl->in(1)->in(0) != nullptr && ctl->in(1)->in(0)->is_If()) { 179 if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern()) { 180 break; 181 } 182 next = idom(ctl->in(1)->in(0)); 183 } else if (ctl->is_Proj()) { 184 // We only move it up along a projection if the projection is 185 // the single control projection for its parent: same code path, 186 // if it's a If with UNC or fallthrough of a call. 187 Node* parent_ctl = ctl->in(0); 188 if (parent_ctl == nullptr) { 189 break; 190 } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != nullptr) { 191 next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control(); 192 } else if (parent_ctl->is_If()) { 193 if (!ctl->as_Proj()->is_uncommon_trap_if_pattern()) { 194 break; 195 } 196 assert(idom(ctl) == parent_ctl, "strange"); 197 next = idom(parent_ctl); 198 } else if (ctl->is_CatchProj()) { 199 if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) { 200 break; 201 } 202 assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph"); 203 next = parent_ctl->in(0)->in(0)->in(0); 204 } else { 205 // Check if parent control has a single projection (this 206 // control is the only possible successor of the parent 207 // control). If so, we can try to move the node above the 208 // parent control. 209 int nb_ctl_proj = 0; 210 for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) { 211 Node *p = parent_ctl->fast_out(i); 212 if (p->is_Proj() && p->is_CFG()) { 213 nb_ctl_proj++; 214 if (nb_ctl_proj > 1) { 215 break; 216 } 217 } 218 } 219 220 if (nb_ctl_proj > 1) { 221 break; 222 } 223 assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() || 224 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node"); 225 assert(idom(ctl) == parent_ctl, "strange"); 226 next = idom(parent_ctl); 227 } 228 } else { 229 next = idom(ctl); 230 } 231 if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) { 232 break; 233 } 234 ctl = next; 235 } 236 237 if (ctl != n->in(0)) { 238 _igvn.replace_input_of(n, 0, ctl); 239 _igvn.hash_insert(n); 240 } 241 242 return ctl; 243 } 244 245 246 //------------------------------set_early_ctrl--------------------------------- 247 // Set earliest legal control 248 void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) { 249 Node *early = get_early_ctrl(n); 250 251 // Record earliest legal location 252 set_ctrl(n, early); 253 IdealLoopTree *loop = get_loop(early); 254 if (update_body && loop->_child == nullptr) { 255 loop->_body.push(n); 256 } 257 } 258 259 //------------------------------set_subtree_ctrl------------------------------- 260 // set missing _ctrl entries on new nodes 261 void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) { 262 // Already set? Get out. 263 if (_loop_or_ctrl[n->_idx]) return; 264 // Recursively set _loop_or_ctrl array to indicate where the Node goes 265 uint i; 266 for (i = 0; i < n->req(); ++i) { 267 Node *m = n->in(i); 268 if (m && m != C->root()) { 269 set_subtree_ctrl(m, update_body); 270 } 271 } 272 273 // Fixup self 274 set_early_ctrl(n, update_body); 275 } 276 277 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) { 278 IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift); 279 IdealLoopTree* parent = loop->_parent; 280 IdealLoopTree* sibling = parent->_child; 281 if (sibling == loop) { 282 parent->_child = outer_ilt; 283 } else { 284 while (sibling->_next != loop) { 285 sibling = sibling->_next; 286 } 287 sibling->_next = outer_ilt; 288 } 289 outer_ilt->_next = loop->_next; 290 outer_ilt->_parent = parent; 291 outer_ilt->_child = loop; 292 outer_ilt->_nest = loop->_nest; 293 loop->_parent = outer_ilt; 294 loop->_next = nullptr; 295 loop->_nest++; 296 assert(loop->_nest <= SHRT_MAX, "sanity"); 297 return outer_ilt; 298 } 299 300 // Create a skeleton strip mined outer loop: a Loop head before the 301 // inner strip mined loop, a safepoint and an exit condition guarded 302 // by an opaque node after the inner strip mined loop with a backedge 303 // to the loop head. The inner strip mined loop is left as it is. Only 304 // once loop optimizations are over, do we adjust the inner loop exit 305 // condition to limit its number of iterations, set the outer loop 306 // exit condition and add Phis to the outer loop head. Some loop 307 // optimizations that operate on the inner strip mined loop need to be 308 // aware of the outer strip mined loop: loop unswitching needs to 309 // clone the outer loop as well as the inner, unrolling needs to only 310 // clone the inner loop etc. No optimizations need to change the outer 311 // strip mined loop as it is only a skeleton. 312 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control, 313 IdealLoopTree* loop, float cl_prob, float le_fcnt, 314 Node*& entry_control, Node*& iffalse) { 315 Node* outer_test = intcon(0); 316 Node *orig = iffalse; 317 iffalse = iffalse->clone(); 318 _igvn.register_new_node_with_optimizer(iffalse); 319 set_idom(iffalse, idom(orig), dom_depth(orig)); 320 321 IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt); 322 Node *outer_ift = new IfTrueNode (outer_le); 323 Node* outer_iff = orig; 324 _igvn.replace_input_of(outer_iff, 0, outer_le); 325 326 LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift); 327 entry_control = outer_l; 328 329 IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift); 330 331 set_loop(iffalse, outer_ilt); 332 // When this code runs, loop bodies have not yet been populated. 333 const bool body_populated = false; 334 register_control(outer_le, outer_ilt, iffalse, body_populated); 335 register_control(outer_ift, outer_ilt, outer_le, body_populated); 336 set_idom(outer_iff, outer_le, dom_depth(outer_le)); 337 _igvn.register_new_node_with_optimizer(outer_l); 338 set_loop(outer_l, outer_ilt); 339 set_idom(outer_l, init_control, dom_depth(init_control)+1); 340 341 return outer_ilt; 342 } 343 344 void PhaseIdealLoop::insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, 345 Node* cmp_limit, Node* bol) { 346 assert(loop_limit_check_parse_proj->in(0)->is_ParsePredicate(), "must be parse predicate"); 347 Node* new_predicate_proj = create_new_if_for_predicate(loop_limit_check_parse_proj, nullptr, 348 Deoptimization::Reason_loop_limit_check, 349 Op_If); 350 Node* iff = new_predicate_proj->in(0); 351 cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit); 352 bol = _igvn.register_new_node_with_optimizer(bol); 353 set_subtree_ctrl(bol, false); 354 _igvn.replace_input_of(iff, 1, bol); 355 356 #ifndef PRODUCT 357 // report that the loop predication has been actually performed 358 // for this loop 359 if (TraceLoopLimitCheck) { 360 tty->print_cr("Counted Loop Limit Check generated:"); 361 debug_only( bol->dump(2); ) 362 } 363 #endif 364 } 365 366 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) { 367 // Counted loop head must be a good RegionNode with only 3 not null 368 // control input edges: Self, Entry, LoopBack. 369 if (x->in(LoopNode::Self) == nullptr || x->req() != 3 || loop->_irreducible) { 370 return nullptr; 371 } 372 Node *init_control = x->in(LoopNode::EntryControl); 373 Node *back_control = x->in(LoopNode::LoopBackControl); 374 if (init_control == nullptr || back_control == nullptr) { // Partially dead 375 return nullptr; 376 } 377 // Must also check for TOP when looking for a dead loop 378 if (init_control->is_top() || back_control->is_top()) { 379 return nullptr; 380 } 381 382 // Allow funny placement of Safepoint 383 if (back_control->Opcode() == Op_SafePoint) { 384 back_control = back_control->in(TypeFunc::Control); 385 } 386 387 // Controlling test for loop 388 Node *iftrue = back_control; 389 uint iftrue_op = iftrue->Opcode(); 390 if (iftrue_op != Op_IfTrue && 391 iftrue_op != Op_IfFalse) { 392 // I have a weird back-control. Probably the loop-exit test is in 393 // the middle of the loop and I am looking at some trailing control-flow 394 // merge point. To fix this I would have to partially peel the loop. 395 return nullptr; // Obscure back-control 396 } 397 398 // Get boolean guarding loop-back test 399 Node *iff = iftrue->in(0); 400 if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) { 401 return nullptr; 402 } 403 return iftrue; 404 } 405 406 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) { 407 Node* iftrue = back_control; 408 uint iftrue_op = iftrue->Opcode(); 409 Node* iff = iftrue->in(0); 410 BoolNode* test = iff->in(1)->as_Bool(); 411 bt = test->_test._test; 412 cl_prob = iff->as_If()->_prob; 413 if (iftrue_op == Op_IfFalse) { 414 bt = BoolTest(bt).negate(); 415 cl_prob = 1.0 - cl_prob; 416 } 417 // Get backedge compare 418 Node* cmp = test->in(1); 419 if (!cmp->is_Cmp()) { 420 return nullptr; 421 } 422 423 // Find the trip-counter increment & limit. Limit must be loop invariant. 424 incr = cmp->in(1); 425 limit = cmp->in(2); 426 427 // --------- 428 // need 'loop()' test to tell if limit is loop invariant 429 // --------- 430 431 if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit? 432 Node* tmp = incr; // Then reverse order into the CmpI 433 incr = limit; 434 limit = tmp; 435 bt = BoolTest(bt).commute(); // And commute the exit test 436 } 437 if (is_member(loop, get_ctrl(limit))) { // Limit must be loop-invariant 438 return nullptr; 439 } 440 if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant 441 return nullptr; 442 } 443 return cmp; 444 } 445 446 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) { 447 if (incr->is_Phi()) { 448 if (incr->as_Phi()->region() != x || incr->req() != 3) { 449 return nullptr; // Not simple trip counter expression 450 } 451 phi_incr = incr; 452 incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi 453 if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant 454 return nullptr; 455 } 456 } 457 return incr; 458 } 459 460 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi) { 461 assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp."); 462 // Get merge point 463 xphi = incr->in(1); 464 Node *stride = incr->in(2); 465 if (!stride->is_Con()) { // Oops, swap these 466 if (!xphi->is_Con()) { // Is the other guy a constant? 467 return nullptr; // Nope, unknown stride, bail out 468 } 469 Node *tmp = xphi; // 'incr' is commutative, so ok to swap 470 xphi = stride; 471 stride = tmp; 472 } 473 return stride; 474 } 475 476 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop) { 477 if (!xphi->is_Phi()) { 478 return nullptr; // Too much math on the trip counter 479 } 480 if (phi_incr != nullptr && phi_incr != xphi) { 481 return nullptr; 482 } 483 PhiNode *phi = xphi->as_Phi(); 484 485 // Phi must be of loop header; backedge must wrap to increment 486 if (phi->region() != x) { 487 return nullptr; 488 } 489 return phi; 490 } 491 492 static int check_stride_overflow(jlong final_correction, const TypeInteger* limit_t, BasicType bt) { 493 if (final_correction > 0) { 494 if (limit_t->lo_as_long() > (max_signed_integer(bt) - final_correction)) { 495 return -1; 496 } 497 if (limit_t->hi_as_long() > (max_signed_integer(bt) - final_correction)) { 498 return 1; 499 } 500 } else { 501 if (limit_t->hi_as_long() < (min_signed_integer(bt) - final_correction)) { 502 return -1; 503 } 504 if (limit_t->lo_as_long() < (min_signed_integer(bt) - final_correction)) { 505 return 1; 506 } 507 } 508 return 0; 509 } 510 511 static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) { 512 // If the condition is inverted and we will be rolling 513 // through MININT to MAXINT, then bail out. 514 if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice! 515 // Odd stride 516 (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) || 517 // Count down loop rolls through MAXINT 518 ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) || 519 // Count up loop rolls through MININT 520 ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) { 521 return false; // Bail out 522 } 523 return true; 524 } 525 526 Node* PhaseIdealLoop::loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, 527 BasicType bt) { 528 Node* iv_as_long; 529 if (bt == T_LONG) { 530 iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT); 531 register_new_node(iv_as_long, inner_head); 532 } else { 533 iv_as_long = inner_iv; 534 } 535 Node* iv_replacement = AddNode::make(outer_phi, iv_as_long, bt); 536 register_new_node(iv_replacement, inner_head); 537 for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) { 538 Node* u = iv_to_replace->last_out(i); 539 #ifdef ASSERT 540 if (!is_dominator(inner_head, ctrl_or_self(u))) { 541 assert(u->is_Phi(), "should be a Phi"); 542 for (uint j = 1; j < u->req(); j++) { 543 if (u->in(j) == iv_to_replace) { 544 assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?"); 545 } 546 } 547 } 548 #endif 549 _igvn.rehash_node_delayed(u); 550 int nb = u->replace_edge(iv_to_replace, iv_replacement, &_igvn); 551 i -= nb; 552 } 553 return iv_replacement; 554 } 555 556 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path. 557 void PhaseIdealLoop::add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, 558 SafePointNode* sfpt) { 559 if (!C->too_many_traps(reason)) { 560 ParsePredicateNode* parse_predicate = new ParsePredicateNode(inner_head->in(LoopNode::EntryControl), reason, &_igvn); 561 register_control(parse_predicate, loop, inner_head->in(LoopNode::EntryControl)); 562 Node* if_false = new IfFalseNode(parse_predicate); 563 register_control(if_false, _ltree_root, parse_predicate); 564 Node* if_true = new IfTrueNode(parse_predicate); 565 register_control(if_true, loop, parse_predicate); 566 567 int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile); 568 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point(); 569 const TypePtr* no_memory_effects = nullptr; 570 JVMState* jvms = sfpt->jvms(); 571 CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", 572 no_memory_effects); 573 574 Node* mem = nullptr; 575 Node* i_o = nullptr; 576 if (sfpt->is_Call()) { 577 mem = sfpt->proj_out(TypeFunc::Memory); 578 i_o = sfpt->proj_out(TypeFunc::I_O); 579 } else { 580 mem = sfpt->memory(); 581 i_o = sfpt->i_o(); 582 } 583 584 Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr); 585 register_new_node(frame, C->start()); 586 Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr); 587 register_new_node(ret, C->start()); 588 589 unc->init_req(TypeFunc::Control, if_false); 590 unc->init_req(TypeFunc::I_O, i_o); 591 unc->init_req(TypeFunc::Memory, mem); // may gc ptrs 592 unc->init_req(TypeFunc::FramePtr, frame); 593 unc->init_req(TypeFunc::ReturnAdr, ret); 594 unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request)); 595 unc->set_cnt(PROB_UNLIKELY_MAG(4)); 596 unc->copy_call_debug_info(&_igvn, sfpt); 597 598 for (uint i = TypeFunc::Parms; i < unc->req(); i++) { 599 set_subtree_ctrl(unc->in(i), false); 600 } 601 register_control(unc, _ltree_root, if_false); 602 603 Node* ctrl = new ProjNode(unc, TypeFunc::Control); 604 register_control(ctrl, _ltree_root, unc); 605 Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false)); 606 register_control(halt, _ltree_root, ctrl); 607 _igvn.add_input_to(C->root(), halt); 608 609 _igvn.replace_input_of(inner_head, LoopNode::EntryControl, if_true); 610 set_idom(inner_head, if_true, dom_depth(inner_head)); 611 } 612 } 613 614 // Find a safepoint node that dominates the back edge. We need a 615 // SafePointNode so we can use its jvm state to create empty 616 // predicates. 617 static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm, PhaseIdealLoop* phase) { 618 SafePointNode* safepoint = nullptr; 619 for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 620 Node* u = x->fast_out(i); 621 if (u->is_memory_phi()) { 622 Node* m = u->in(LoopNode::LoopBackControl); 623 if (u->adr_type() == TypePtr::BOTTOM) { 624 if (m->is_MergeMem() && mem->is_MergeMem()) { 625 if (m != mem DEBUG_ONLY(|| true)) { 626 // MergeMemStream can modify m, for example to adjust the length to mem. 627 // This is unfortunate, and probably unnecessary. But as it is, we need 628 // to add m to the igvn worklist, else we may have a modified node that 629 // is not on the igvn worklist. 630 phase->igvn()._worklist.push(m); 631 for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 632 if (!mms.is_empty()) { 633 if (mms.memory() != mms.memory2()) { 634 return false; 635 } 636 #ifdef ASSERT 637 if (mms.alias_idx() != Compile::AliasIdxBot) { 638 mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory()); 639 } 640 #endif 641 } 642 } 643 } 644 } else if (mem->is_MergeMem()) { 645 if (m != mem->as_MergeMem()->base_memory()) { 646 return false; 647 } 648 } else { 649 return false; 650 } 651 } else { 652 if (mem->is_MergeMem()) { 653 if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) { 654 return false; 655 } 656 #ifdef ASSERT 657 mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory()); 658 #endif 659 } else { 660 if (m != mem) { 661 return false; 662 } 663 } 664 } 665 } 666 } 667 return true; 668 } 669 670 SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) { 671 IfNode* exit_test = back_control->in(0)->as_If(); 672 SafePointNode* safepoint = nullptr; 673 if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) { 674 safepoint = exit_test->in(0)->as_SafePoint(); 675 } else { 676 Node* c = back_control; 677 while (c != x && c->Opcode() != Op_SafePoint) { 678 c = idom(c); 679 } 680 681 if (c->Opcode() == Op_SafePoint) { 682 safepoint = c->as_SafePoint(); 683 } 684 685 if (safepoint == nullptr) { 686 return nullptr; 687 } 688 689 Node* mem = safepoint->in(TypeFunc::Memory); 690 691 // We can only use that safepoint if there's no side effect between the backedge and the safepoint. 692 693 // mm is the memory state at the safepoint (when it's a MergeMem) 694 // no_side_effect_since_safepoint() goes over the memory state at the backedge. It resets the mm input for each 695 // component of the memory state it encounters so it points to the base memory. Once no_side_effect_since_safepoint() 696 // is done, if no side effect after the safepoint was found, mm should transform to the base memory: the states at 697 // the backedge and safepoint are the same so all components of the memory state at the safepoint should have been 698 // reset. 699 MergeMemNode* mm = nullptr; 700 #ifdef ASSERT 701 if (mem->is_MergeMem()) { 702 mm = mem->clone()->as_MergeMem(); 703 _igvn._worklist.push(mm); 704 for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) { 705 // Loop invariant memory state won't be reset by no_side_effect_since_safepoint(). Do it here. 706 // Escape Analysis can add state to mm that it doesn't add to the backedge memory Phis, breaking verification 707 // code that relies on mm. Clear that extra state here. 708 if (mms.alias_idx() != Compile::AliasIdxBot && 709 (loop != get_loop(ctrl_or_self(mms.memory())) || 710 (mms.adr_type()->isa_oop_ptr() && mms.adr_type()->is_known_instance()))) { 711 mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory()); 712 } 713 } 714 } 715 #endif 716 if (!no_side_effect_since_safepoint(C, x, mem, mm, this)) { 717 safepoint = nullptr; 718 } else { 719 assert(mm == nullptr|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed"); 720 } 721 #ifdef ASSERT 722 if (mm != nullptr) { 723 _igvn.remove_dead_node(mm); 724 } 725 #endif 726 } 727 return safepoint; 728 } 729 730 // If the loop has the shape of a counted loop but with a long 731 // induction variable, transform the loop in a loop nest: an inner 732 // loop that iterates for at most max int iterations with an integer 733 // induction variable and an outer loop that iterates over the full 734 // range of long values from the initial loop in (at most) max int 735 // steps. That is: 736 // 737 // x: for (long phi = init; phi < limit; phi += stride) { 738 // // phi := Phi(L, init, incr) 739 // // incr := AddL(phi, longcon(stride)) 740 // long incr = phi + stride; 741 // ... use phi and incr ... 742 // } 743 // 744 // OR: 745 // 746 // x: for (long phi = init; (phi += stride) < limit; ) { 747 // // phi := Phi(L, AddL(init, stride), incr) 748 // // incr := AddL(phi, longcon(stride)) 749 // long incr = phi + stride; 750 // ... use phi and (phi + stride) ... 751 // } 752 // 753 // ==transform=> 754 // 755 // const ulong inner_iters_limit = INT_MAX - stride - 1; //near 0x7FFFFFF0 756 // assert(stride <= inner_iters_limit); // else abort transform 757 // assert((extralong)limit + stride <= LONG_MAX); // else deopt 758 // outer_head: for (long outer_phi = init;;) { 759 // // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi))) 760 // ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi)); 761 // long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max); 762 // assert(inner_iters_actual == (int)inner_iters_actual); 763 // int inner_phi, inner_incr; 764 // x: for (inner_phi = 0;; inner_phi = inner_incr) { 765 // // inner_phi := Phi(x, intcon(0), inner_incr) 766 // // inner_incr := AddI(inner_phi, intcon(stride)) 767 // inner_incr = inner_phi + stride; 768 // if (inner_incr < inner_iters_actual) { 769 // ... use phi=>(outer_phi+inner_phi) ... 770 // continue; 771 // } 772 // else break; 773 // } 774 // if ((outer_phi+inner_phi) < limit) //OR (outer_phi+inner_incr) < limit 775 // continue; 776 // else break; 777 // } 778 // 779 // The same logic is used to transform an int counted loop that contains long range checks into a loop nest of 2 int 780 // loops with long range checks transformed to int range checks in the inner loop. 781 bool PhaseIdealLoop::create_loop_nest(IdealLoopTree* loop, Node_List &old_new) { 782 Node* x = loop->_head; 783 // Only for inner loops 784 if (loop->_child != nullptr || !x->is_BaseCountedLoop() || x->as_Loop()->is_loop_nest_outer_loop()) { 785 return false; 786 } 787 788 if (x->is_CountedLoop() && !x->as_CountedLoop()->is_main_loop() && !x->as_CountedLoop()->is_normal_loop()) { 789 return false; 790 } 791 792 BaseCountedLoopNode* head = x->as_BaseCountedLoop(); 793 BasicType bt = x->as_BaseCountedLoop()->bt(); 794 795 check_counted_loop_shape(loop, x, bt); 796 797 #ifndef PRODUCT 798 if (bt == T_LONG) { 799 Atomic::inc(&_long_loop_candidates); 800 } 801 #endif 802 803 jlong stride_con_long = head->stride_con(); 804 assert(stride_con_long != 0, "missed some peephole opt"); 805 // We can't iterate for more than max int at a time. 806 if (stride_con_long != (jint)stride_con_long || stride_con_long == min_jint) { 807 assert(bt == T_LONG, "only for long loops"); 808 return false; 809 } 810 jint stride_con = checked_cast<jint>(stride_con_long); 811 // The number of iterations for the integer count loop: guarantee no 812 // overflow: max_jint - stride_con max. -1 so there's no need for a 813 // loop limit check if the exit test is <= or >=. 814 int iters_limit = max_jint - ABS(stride_con) - 1; 815 #ifdef ASSERT 816 if (bt == T_LONG && StressLongCountedLoop > 0) { 817 iters_limit = iters_limit / StressLongCountedLoop; 818 } 819 #endif 820 // At least 2 iterations so counted loop construction doesn't fail 821 if (iters_limit/ABS(stride_con) < 2) { 822 return false; 823 } 824 825 PhiNode* phi = head->phi()->as_Phi(); 826 Node* incr = head->incr(); 827 828 Node* back_control = head->in(LoopNode::LoopBackControl); 829 830 // data nodes on back branch not supported 831 if (back_control->outcnt() > 1) { 832 return false; 833 } 834 835 Node* limit = head->limit(); 836 // We'll need to use the loop limit before the inner loop is entered 837 if (!is_dominator(get_ctrl(limit), x)) { 838 return false; 839 } 840 841 IfNode* exit_test = head->loopexit(); 842 843 assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge"); 844 845 Node_List range_checks; 846 iters_limit = extract_long_range_checks(loop, stride_con, iters_limit, phi, range_checks); 847 848 if (bt == T_INT) { 849 // The only purpose of creating a loop nest is to handle long range checks. If there are none, do not proceed further. 850 if (range_checks.size() == 0) { 851 return false; 852 } 853 } 854 855 // Take what we know about the number of iterations of the long counted loop into account when computing the limit of 856 // the inner loop. 857 const Node* init = head->init_trip(); 858 const TypeInteger* lo = _igvn.type(init)->is_integer(bt); 859 const TypeInteger* hi = _igvn.type(limit)->is_integer(bt); 860 if (stride_con < 0) { 861 swap(lo, hi); 862 } 863 if (hi->hi_as_long() <= lo->lo_as_long()) { 864 // not a loop after all 865 return false; 866 } 867 868 if (range_checks.size() > 0) { 869 // This transformation requires peeling one iteration. Also, if it has range checks and they are eliminated by Loop 870 // Predication, then 2 Hoisted Check Predicates are added for one range check. Finally, transforming a long range 871 // check requires extra logic to be executed before the loop is entered and for the outer loop. As a result, the 872 // transformations can't pay off for a small number of iterations: roughly, if the loop runs for 3 iterations, it's 873 // going to execute as many range checks once transformed with range checks eliminated (1 peeled iteration with 874 // range checks + 2 predicates per range checks) as it would have not transformed. It also has to pay for the extra 875 // logic on loop entry and for the outer loop. 876 loop->compute_trip_count(this); 877 if (head->is_CountedLoop() && head->as_CountedLoop()->has_exact_trip_count()) { 878 if (head->as_CountedLoop()->trip_count() <= 3) { 879 return false; 880 } 881 } else { 882 loop->compute_profile_trip_cnt(this); 883 if (!head->is_profile_trip_failed() && head->profile_trip_cnt() <= 3) { 884 return false; 885 } 886 } 887 } 888 889 julong orig_iters = (julong)hi->hi_as_long() - lo->lo_as_long(); 890 iters_limit = checked_cast<int>(MIN2((julong)iters_limit, orig_iters)); 891 892 // We need a safepoint to insert Parse Predicates for the inner loop. 893 SafePointNode* safepoint; 894 if (bt == T_INT && head->as_CountedLoop()->is_strip_mined()) { 895 // Loop is strip mined: use the safepoint of the outer strip mined loop 896 OuterStripMinedLoopNode* outer_loop = head->as_CountedLoop()->outer_loop(); 897 assert(outer_loop != nullptr, "no outer loop"); 898 safepoint = outer_loop->outer_safepoint(); 899 outer_loop->transform_to_counted_loop(&_igvn, this); 900 exit_test = head->loopexit(); 901 } else { 902 safepoint = find_safepoint(back_control, x, loop); 903 } 904 905 Node* exit_branch = exit_test->proj_out(false); 906 Node* entry_control = head->in(LoopNode::EntryControl); 907 908 // Clone the control flow of the loop to build an outer loop 909 Node* outer_back_branch = back_control->clone(); 910 Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt); 911 Node* inner_exit_branch = exit_branch->clone(); 912 913 LoopNode* outer_head = new LoopNode(entry_control, outer_back_branch); 914 IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head, outer_back_branch); 915 916 const bool body_populated = true; 917 register_control(outer_head, outer_ilt, entry_control, body_populated); 918 919 _igvn.register_new_node_with_optimizer(inner_exit_branch); 920 set_loop(inner_exit_branch, outer_ilt); 921 set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch)); 922 923 outer_exit_test->set_req(0, inner_exit_branch); 924 register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated); 925 926 _igvn.replace_input_of(exit_branch, 0, outer_exit_test); 927 set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch)); 928 929 outer_back_branch->set_req(0, outer_exit_test); 930 register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated); 931 932 _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head); 933 set_idom(x, outer_head, dom_depth(x)); 934 935 // add an iv phi to the outer loop and use it to compute the inner 936 // loop iteration limit 937 Node* outer_phi = phi->clone(); 938 outer_phi->set_req(0, outer_head); 939 register_new_node(outer_phi, outer_head); 940 941 Node* inner_iters_max = nullptr; 942 if (stride_con > 0) { 943 inner_iters_max = MaxNode::max_diff_with_zero(limit, outer_phi, TypeInteger::bottom(bt), _igvn); 944 } else { 945 inner_iters_max = MaxNode::max_diff_with_zero(outer_phi, limit, TypeInteger::bottom(bt), _igvn); 946 } 947 948 Node* inner_iters_limit = _igvn.integercon(iters_limit, bt); 949 // inner_iters_max may not fit in a signed integer (iterating from 950 // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned 951 // min. 952 const TypeInteger* inner_iters_actual_range = TypeInteger::make(0, iters_limit, Type::WidenMin, bt); 953 Node* inner_iters_actual = MaxNode::unsigned_min(inner_iters_max, inner_iters_limit, inner_iters_actual_range, _igvn); 954 955 Node* inner_iters_actual_int; 956 if (bt == T_LONG) { 957 inner_iters_actual_int = new ConvL2INode(inner_iters_actual); 958 _igvn.register_new_node_with_optimizer(inner_iters_actual_int); 959 // When the inner loop is transformed to a counted loop, a loop limit check is not expected to be needed because 960 // the loop limit is less or equal to max_jint - stride - 1 (if stride is positive but a similar argument exists for 961 // a negative stride). We add a CastII here to guarantee that, when the counted loop is created in a subsequent loop 962 // opts pass, an accurate range of values for the limits is found. 963 const TypeInt* inner_iters_actual_int_range = TypeInt::make(0, iters_limit, Type::WidenMin); 964 inner_iters_actual_int = new CastIINode(outer_head, inner_iters_actual_int, inner_iters_actual_int_range, ConstraintCastNode::UnconditionalDependency); 965 _igvn.register_new_node_with_optimizer(inner_iters_actual_int); 966 } else { 967 inner_iters_actual_int = inner_iters_actual; 968 } 969 970 Node* int_zero = intcon(0); 971 if (stride_con < 0) { 972 inner_iters_actual_int = new SubINode(int_zero, inner_iters_actual_int); 973 _igvn.register_new_node_with_optimizer(inner_iters_actual_int); 974 } 975 976 // Clone the iv data nodes as an integer iv 977 Node* int_stride = intcon(stride_con); 978 Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT); 979 Node* inner_incr = new AddINode(inner_phi, int_stride); 980 Node* inner_cmp = nullptr; 981 inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int); 982 Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test); 983 inner_phi->set_req(LoopNode::EntryControl, int_zero); 984 inner_phi->set_req(LoopNode::LoopBackControl, inner_incr); 985 register_new_node(inner_phi, x); 986 register_new_node(inner_incr, x); 987 register_new_node(inner_cmp, x); 988 register_new_node(inner_bol, x); 989 990 _igvn.replace_input_of(exit_test, 1, inner_bol); 991 992 // Clone inner loop phis to outer loop 993 for (uint i = 0; i < head->outcnt(); i++) { 994 Node* u = head->raw_out(i); 995 if (u->is_Phi() && u != inner_phi && u != phi) { 996 assert(u->in(0) == head, "inconsistent"); 997 Node* clone = u->clone(); 998 clone->set_req(0, outer_head); 999 register_new_node(clone, outer_head); 1000 _igvn.replace_input_of(u, LoopNode::EntryControl, clone); 1001 } 1002 } 1003 1004 // Replace inner loop long iv phi as inner loop int iv phi + outer 1005 // loop iv phi 1006 Node* iv_add = loop_nest_replace_iv(phi, inner_phi, outer_phi, head, bt); 1007 1008 set_subtree_ctrl(inner_iters_actual_int, body_populated); 1009 1010 LoopNode* inner_head = create_inner_head(loop, head, exit_test); 1011 1012 // Summary of steps from initial loop to loop nest: 1013 // 1014 // == old IR nodes => 1015 // 1016 // entry_control: {...} 1017 // x: 1018 // for (long phi = init;;) { 1019 // // phi := Phi(x, init, incr) 1020 // // incr := AddL(phi, longcon(stride)) 1021 // exit_test: 1022 // if (phi < limit) 1023 // back_control: fallthrough; 1024 // else 1025 // exit_branch: break; 1026 // long incr = phi + stride; 1027 // ... use phi and incr ... 1028 // phi = incr; 1029 // } 1030 // 1031 // == new IR nodes (just before final peel) => 1032 // 1033 // entry_control: {...} 1034 // long adjusted_limit = limit + stride; //because phi_incr != nullptr 1035 // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit); // else deopt 1036 // ulong inner_iters_limit = max_jint - ABS(stride) - 1; //near 0x7FFFFFF0 1037 // outer_head: 1038 // for (long outer_phi = init;;) { 1039 // // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr) 1040 // // REPLACE phi => AddL(outer_phi, I2L(inner_phi)) 1041 // // REPLACE incr => AddL(outer_phi, I2L(inner_incr)) 1042 // // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr))) 1043 // ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride)); 1044 // int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride); 1045 // inner_head: x: //in(1) := outer_head 1046 // int inner_phi; 1047 // for (inner_phi = 0;;) { 1048 // // inner_phi := Phi(x, intcon(0), inner_phi + stride) 1049 // int inner_incr = inner_phi + stride; 1050 // bool inner_bol = (inner_incr < inner_iters_actual_int); 1051 // exit_test: //exit_test->in(1) := inner_bol; 1052 // if (inner_bol) // WAS (phi < limit) 1053 // back_control: fallthrough; 1054 // else 1055 // inner_exit_branch: break; //exit_branch->clone() 1056 // ... use phi=>(outer_phi+inner_phi) ... 1057 // inner_phi = inner_phi + stride; // inner_incr 1058 // } 1059 // outer_exit_test: //exit_test->clone(), in(0):=inner_exit_branch 1060 // if ((outer_phi+inner_phi) < limit) // WAS (phi < limit) 1061 // outer_back_branch: fallthrough; //back_control->clone(), in(0):=outer_exit_test 1062 // else 1063 // exit_branch: break; //in(0) := outer_exit_test 1064 // } 1065 1066 if (bt == T_INT) { 1067 outer_phi = new ConvI2LNode(outer_phi); 1068 register_new_node(outer_phi, outer_head); 1069 } 1070 1071 transform_long_range_checks(stride_con, range_checks, outer_phi, inner_iters_actual_int, 1072 inner_phi, iv_add, inner_head); 1073 // Peel one iteration of the loop and use the safepoint at the end 1074 // of the peeled iteration to insert Parse Predicates. If no well 1075 // positioned safepoint peel to guarantee a safepoint in the outer 1076 // loop. 1077 if (safepoint != nullptr || !loop->_has_call) { 1078 old_new.clear(); 1079 do_peeling(loop, old_new); 1080 } else { 1081 C->set_major_progress(); 1082 } 1083 1084 if (safepoint != nullptr) { 1085 SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint(); 1086 1087 if (UseLoopPredicate) { 1088 add_parse_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt); 1089 } 1090 if (UseProfiledLoopPredicate) { 1091 add_parse_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt); 1092 } 1093 add_parse_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt); 1094 } 1095 1096 #ifndef PRODUCT 1097 if (bt == T_LONG) { 1098 Atomic::inc(&_long_loop_nests); 1099 } 1100 #endif 1101 1102 inner_head->mark_loop_nest_inner_loop(); 1103 outer_head->mark_loop_nest_outer_loop(); 1104 1105 return true; 1106 } 1107 1108 int PhaseIdealLoop::extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi, 1109 Node_List& range_checks) { 1110 const jlong min_iters = 2; 1111 jlong reduced_iters_limit = iters_limit; 1112 jlong original_iters_limit = iters_limit; 1113 for (uint i = 0; i < loop->_body.size(); i++) { 1114 Node* c = loop->_body.at(i); 1115 if (c->is_IfProj() && c->in(0)->is_RangeCheck()) { 1116 IfProjNode* if_proj = c->as_IfProj(); 1117 CallStaticJavaNode* call = if_proj->is_uncommon_trap_if_pattern(); 1118 if (call != nullptr) { 1119 Node* range = nullptr; 1120 Node* offset = nullptr; 1121 jlong scale = 0; 1122 if (loop->is_range_check_if(if_proj, this, T_LONG, phi, range, offset, scale) && 1123 loop->is_invariant(range) && loop->is_invariant(offset) && 1124 scale != min_jlong && 1125 original_iters_limit / ABS(scale) >= min_iters * ABS(stride_con)) { 1126 assert(scale == (jint)scale, "scale should be an int"); 1127 reduced_iters_limit = MIN2(reduced_iters_limit, original_iters_limit/ABS(scale)); 1128 range_checks.push(c); 1129 } 1130 } 1131 } 1132 } 1133 1134 return checked_cast<int>(reduced_iters_limit); 1135 } 1136 1137 // One execution of the inner loop covers a sub-range of the entire iteration range of the loop: [A,Z), aka [A=init, 1138 // Z=limit). If the loop has at least one trip (which is the case here), the iteration variable i always takes A as its 1139 // first value, followed by A+S (S is the stride), next A+2S, etc. The limit is exclusive, so that the final value B of 1140 // i is never Z. It will be B=Z-1 if S=1, or B=Z+1 if S=-1. 1141 1142 // If |S|>1 the formula for the last value B would require a floor operation, specifically B=floor((Z-sgn(S)-A)/S)*S+A, 1143 // which is B=Z-sgn(S)U for some U in [1,|S|]. So when S>0, i ranges as i:[A,Z) or i:[A,B=Z-U], or else (in reverse) 1144 // as i:(Z,A] or i:[B=Z+U,A]. It will become important to reason about this inclusive range [A,B] or [B,A]. 1145 1146 // Within the loop there may be many range checks. Each such range check (R.C.) is of the form 0 <= i*K+L < R, where K 1147 // is a scale factor applied to the loop iteration variable i, and L is some offset; K, L, and R are loop-invariant. 1148 // Because R is never negative (see below), this check can always be simplified to an unsigned check i*K+L <u R. 1149 1150 // When a long loop over a 64-bit variable i (outer_iv) is decomposed into a series of shorter sub-loops over a 32-bit 1151 // variable j (inner_iv), j ranges over a shorter interval j:[0,B_2] or [0,Z_2) (assuming S > 0), where the limit is 1152 // chosen to prevent various cases of 32-bit overflow (including multiplications j*K below). In the sub-loop the 1153 // logical value i is offset from j by a 64-bit constant C, so i ranges in i:C+[0,Z_2). 1154 1155 // For S<0, j ranges (in reverse!) through j:[-|B_2|,0] or (-|Z_2|,0]. For either sign of S, we can say i=j+C and j 1156 // ranges through 32-bit ranges [A_2,B_2] or [B_2,A_2] (A_2=0 of course). 1157 1158 // The disjoint union of all the C+[A_2,B_2] ranges from the sub-loops must be identical to the whole range [A,B]. 1159 // Assuming S>0, the first C must be A itself, and the next C value is the previous C+B_2, plus S. If |S|=1, the next 1160 // C value is also the previous C+Z_2. In each sub-loop, j counts from j=A_2=0 and i counts from C+0 and exits at 1161 // j=B_2 (i=C+B_2), just before it gets to i=C+Z_2. Both i and j count up (from C and 0) if S>0; otherwise they count 1162 // down (from C and 0 again). 1163 1164 // Returning to range checks, we see that each i*K+L <u R expands to (C+j)*K+L <u R, or j*K+Q <u R, where Q=(C*K+L). 1165 // (Recall that K and L and R are loop-invariant scale, offset and range values for a particular R.C.) This is still a 1166 // 64-bit comparison, so the range check elimination logic will not apply to it. (The R.C.E. transforms operate only on 1167 // 32-bit indexes and comparisons, because they use 64-bit temporary values to avoid overflow; see 1168 // PhaseIdealLoop::add_constraint.) 1169 1170 // We must transform this comparison so that it gets the same answer, but by means of a 32-bit R.C. (using j not i) of 1171 // the form j*K+L_2 <u32 R_2. Note that L_2 and R_2 must be loop-invariant, but only with respect to the sub-loop. Thus, the 1172 // problem reduces to computing values for L_2 and R_2 (for each R.C. in the loop) in the loop header for the sub-loop. 1173 // Then the standard R.C.E. transforms can take those as inputs and further compute the necessary minimum and maximum 1174 // values for the 32-bit counter j within which the range checks can be eliminated. 1175 1176 // So, given j*K+Q <u R, we need to find some j*K+L_2 <u32 R_2, where L_2 and R_2 fit in 32 bits, and the 32-bit operations do 1177 // not overflow. We also need to cover the cases where i*K+L (= j*K+Q) overflows to a 64-bit negative, since that is 1178 // allowed as an input to the R.C., as long as the R.C. as a whole fails. 1179 1180 // If 32-bit multiplication j*K might overflow, we adjust the sub-loop limit Z_2 closer to zero to reduce j's range. 1181 1182 // For each R.C. j*K+Q <u32 R, the range of mathematical values of j*K+Q in the sub-loop is [Q_min, Q_max], where 1183 // Q_min=Q and Q_max=B_2*K+Q (if S>0 and K>0), Q_min=A_2*K+Q and Q_max=Q (if S<0 and K>0), 1184 // Q_min=B_2*K+Q and Q_max=Q if (S>0 and K<0), Q_min=Q and Q_max=A_2*K+Q (if S<0 and K<0) 1185 1186 // Note that the first R.C. value is always Q=(S*K>0 ? Q_min : Q_max). Also Q_{min,max} = Q + {min,max}(A_2*K,B_2*K). 1187 // If S*K>0 then, as the loop iterations progress, each R.C. value i*K+L = j*K+Q goes up from Q=Q_min towards Q_max. 1188 // If S*K<0 then j*K+Q starts at Q=Q_max and goes down towards Q_min. 1189 1190 // Case A: Some Negatives (but no overflow). 1191 // Number line: 1192 // |s64_min . . . 0 . . . s64_max| 1193 // | . Q_min..Q_max . 0 . . . . | s64 negative 1194 // | . . . . R=0 R< R< R< R< | (against R values) 1195 // | . . . Q_min..0..Q_max . . . | small mixed 1196 // | . . . . R R R< R< R< | (against R values) 1197 // 1198 // R values which are out of range (>Q_max+1) are reduced to max(0,Q_max+1). They are marked on the number line as R<. 1199 // 1200 // So, if Q_min <s64 0, then use this test: 1201 // j*K + s32_trunc(Q_min) <u32 clamp(R, 0, Q_max+1) if S*K>0 (R.C.E. steps upward) 1202 // j*K + s32_trunc(Q_max) <u32 clamp(R, 0, Q_max+1) if S*K<0 (R.C.E. steps downward) 1203 // Both formulas reduce to adding j*K to the 32-bit truncated value of the first R.C. expression value, Q: 1204 // j*K + s32_trunc(Q) <u32 clamp(R, 0, Q_max+1) for all S,K 1205 1206 // If the 32-bit truncation loses information, no harm is done, since certainly the clamp also will return R_2=zero. 1207 1208 // Case B: No Negatives. 1209 // Number line: 1210 // |s64_min . . . 0 . . . s64_max| 1211 // | . . . . 0 Q_min..Q_max . . | small positive 1212 // | . . . . R> R R R< R< | (against R values) 1213 // | . . . . 0 . Q_min..Q_max . | s64 positive 1214 // | . . . . R> R> R R R< | (against R values) 1215 // 1216 // R values which are out of range (<Q_min or >Q_max+1) are reduced as marked: R> up to Q_min, R< down to Q_max+1. 1217 // Then the whole comparison is shifted left by Q_min, so it can take place at zero, which is a nice 32-bit value. 1218 // 1219 // So, if both Q_min, Q_max+1 >=s64 0, then use this test: 1220 // j*K + 0 <u32 clamp(R, Q_min, Q_max+1) - Q_min if S*K>0 1221 // More generally: 1222 // j*K + Q - Q_min <u32 clamp(R, Q_min, Q_max+1) - Q_min for all S,K 1223 1224 // Case C: Overflow in the 64-bit domain 1225 // Number line: 1226 // |..Q_max-2^64 . . 0 . . . Q_min..| s64 overflow 1227 // | . . . . R> R> R> R> R | (against R values) 1228 // 1229 // In this case, Q_min >s64 Q_max+1, even though the mathematical values of Q_min and Q_max+1 are correctly ordered. 1230 // The formulas from the previous case can be used, except that the bad upper bound Q_max is replaced by max_jlong. 1231 // (In fact, we could use any replacement bound from R to max_jlong inclusive, as the input to the clamp function.) 1232 // 1233 // So if Q_min >=s64 0 but Q_max+1 <s64 0, use this test: 1234 // j*K + 0 <u32 clamp(R, Q_min, max_jlong) - Q_min if S*K>0 1235 // More generally: 1236 // j*K + Q - Q_min <u32 clamp(R, Q_min, max_jlong) - Q_min for all S,K 1237 // 1238 // Dropping the bad bound means only Q_min is used to reduce the range of R: 1239 // j*K + Q - Q_min <u32 max(Q_min, R) - Q_min for all S,K 1240 // 1241 // Here the clamp function is a 64-bit min/max that reduces the dynamic range of its R operand to the required [L,H]: 1242 // clamp(X, L, H) := max(L, min(X, H)) 1243 // When degenerately L > H, it returns L not H. 1244 // 1245 // All of the formulas above can be merged into a single one: 1246 // L_clamp = Q_min < 0 ? 0 : Q_min --whether and how far to left-shift 1247 // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1 1248 // = Q_max+1 < 0 && Q_min >= 0 ? max_jlong : Q_max+1 1249 // Q_first = Q = (S*K>0 ? Q_min : Q_max) = (C*K+L) 1250 // R_clamp = clamp(R, L_clamp, H_clamp) --reduced dynamic range 1251 // replacement R.C.: 1252 // j*K + Q_first - L_clamp <u32 R_clamp - L_clamp 1253 // or equivalently: 1254 // j*K + L_2 <u32 R_2 1255 // where 1256 // L_2 = Q_first - L_clamp 1257 // R_2 = R_clamp - L_clamp 1258 // 1259 // Note on why R is never negative: 1260 // 1261 // Various details of this transformation would break badly if R could be negative, so this transformation only 1262 // operates after obtaining hard evidence that R<0 is impossible. For example, if R comes from a LoadRange node, we 1263 // know R cannot be negative. For explicit checks (of both int and long) a proof is constructed in 1264 // inline_preconditions_checkIndex, which triggers an uncommon trap if R<0, then wraps R in a ConstraintCastNode with a 1265 // non-negative type. Later on, when IdealLoopTree::is_range_check_if looks for an optimizable R.C., it checks that 1266 // the type of that R node is non-negative. Any "wild" R node that could be negative is not treated as an optimizable 1267 // R.C., but R values from a.length and inside checkIndex are good to go. 1268 // 1269 void PhaseIdealLoop::transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi, 1270 Node* inner_iters_actual_int, Node* inner_phi, 1271 Node* iv_add, LoopNode* inner_head) { 1272 Node* long_zero = longcon(0); 1273 Node* int_zero = intcon(0); 1274 Node* long_one = longcon(1); 1275 Node* int_stride = intcon(checked_cast<int>(stride_con)); 1276 1277 for (uint i = 0; i < range_checks.size(); i++) { 1278 ProjNode* proj = range_checks.at(i)->as_Proj(); 1279 ProjNode* unc_proj = proj->other_if_proj(); 1280 RangeCheckNode* rc = proj->in(0)->as_RangeCheck(); 1281 jlong scale = 0; 1282 Node* offset = nullptr; 1283 Node* rc_bol = rc->in(1); 1284 Node* rc_cmp = rc_bol->in(1); 1285 if (rc_cmp->Opcode() == Op_CmpU) { 1286 // could be shared and have already been taken care of 1287 continue; 1288 } 1289 bool short_scale = false; 1290 bool ok = is_scaled_iv_plus_offset(rc_cmp->in(1), iv_add, T_LONG, &scale, &offset, &short_scale); 1291 assert(ok, "inconsistent: was tested before"); 1292 Node* range = rc_cmp->in(2); 1293 Node* c = rc->in(0); 1294 Node* entry_control = inner_head->in(LoopNode::EntryControl); 1295 1296 Node* R = range; 1297 Node* K = longcon(scale); 1298 1299 Node* L = offset; 1300 1301 if (short_scale) { 1302 // This converts: 1303 // (int)i*K + L <u64 R 1304 // with K an int into: 1305 // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) 1306 // to protect against an overflow of (int)i*K 1307 // 1308 // Because if (int)i*K overflows, there are K,L where: 1309 // (int)i*K + L <u64 R is false because (int)i*K+L overflows to a negative which becomes a huge u64 value. 1310 // But if i*(long)K + L is >u64 (long)max_jint and still is <u64 R, then 1311 // i*(long)K + L <u64 R is true. 1312 // 1313 // As a consequence simply converting i*K + L <u64 R to i*(long)K + L <u64 R could cause incorrect execution. 1314 // 1315 // It's always true that: 1316 // (int)i*K <u64 (long)max_jint + 1 1317 // which implies (int)i*K + L <u64 (long)max_jint + 1 + L 1318 // As a consequence: 1319 // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) 1320 // is always false in case of overflow of i*K 1321 // 1322 // Note, there are also K,L where i*K overflows and 1323 // i*K + L <u64 R is true, but 1324 // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) is false 1325 // So this transformation could cause spurious deoptimizations and failed range check elimination 1326 // (but not incorrect execution) for unlikely corner cases with overflow. 1327 // If this causes problems in practice, we could maybe direct execution to a post-loop, instead of deoptimizing. 1328 Node* max_jint_plus_one_long = longcon((jlong)max_jint + 1); 1329 Node* max_range = new AddLNode(max_jint_plus_one_long, L); 1330 register_new_node(max_range, entry_control); 1331 R = MaxNode::unsigned_min(R, max_range, TypeLong::POS, _igvn); 1332 set_subtree_ctrl(R, true); 1333 } 1334 1335 Node* C = outer_phi; 1336 1337 // Start with 64-bit values: 1338 // i*K + L <u64 R 1339 // (C+j)*K + L <u64 R 1340 // j*K + Q <u64 R where Q = Q_first = C*K+L 1341 Node* Q_first = new MulLNode(C, K); 1342 register_new_node(Q_first, entry_control); 1343 Q_first = new AddLNode(Q_first, L); 1344 register_new_node(Q_first, entry_control); 1345 1346 // Compute endpoints of the range of values j*K + Q. 1347 // Q_min = (j=0)*K + Q; Q_max = (j=B_2)*K + Q 1348 Node* Q_min = Q_first; 1349 1350 // Compute the exact ending value B_2 (which is really A_2 if S < 0) 1351 Node* B_2 = new LoopLimitNode(this->C, int_zero, inner_iters_actual_int, int_stride); 1352 register_new_node(B_2, entry_control); 1353 B_2 = new SubINode(B_2, int_stride); 1354 register_new_node(B_2, entry_control); 1355 B_2 = new ConvI2LNode(B_2); 1356 register_new_node(B_2, entry_control); 1357 1358 Node* Q_max = new MulLNode(B_2, K); 1359 register_new_node(Q_max, entry_control); 1360 Q_max = new AddLNode(Q_max, Q_first); 1361 register_new_node(Q_max, entry_control); 1362 1363 if (scale * stride_con < 0) { 1364 swap(Q_min, Q_max); 1365 } 1366 // Now, mathematically, Q_max > Q_min, and they are close enough so that (Q_max-Q_min) fits in 32 bits. 1367 1368 // L_clamp = Q_min < 0 ? 0 : Q_min 1369 Node* Q_min_cmp = new CmpLNode(Q_min, long_zero); 1370 register_new_node(Q_min_cmp, entry_control); 1371 Node* Q_min_bool = new BoolNode(Q_min_cmp, BoolTest::lt); 1372 register_new_node(Q_min_bool, entry_control); 1373 Node* L_clamp = new CMoveLNode(Q_min_bool, Q_min, long_zero, TypeLong::LONG); 1374 register_new_node(L_clamp, entry_control); 1375 // (This could also be coded bitwise as L_clamp = Q_min & ~(Q_min>>63).) 1376 1377 Node* Q_max_plus_one = new AddLNode(Q_max, long_one); 1378 register_new_node(Q_max_plus_one, entry_control); 1379 1380 // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1 1381 // (Because Q_min and Q_max are close, the overflow check could also be encoded as Q_max+1 < 0 & Q_min >= 0.) 1382 Node* max_jlong_long = longcon(max_jlong); 1383 Node* Q_max_cmp = new CmpLNode(Q_max_plus_one, Q_min); 1384 register_new_node(Q_max_cmp, entry_control); 1385 Node* Q_max_bool = new BoolNode(Q_max_cmp, BoolTest::lt); 1386 register_new_node(Q_max_bool, entry_control); 1387 Node* H_clamp = new CMoveLNode(Q_max_bool, Q_max_plus_one, max_jlong_long, TypeLong::LONG); 1388 register_new_node(H_clamp, entry_control); 1389 // (This could also be coded bitwise as H_clamp = ((Q_max+1)<<1 | M)>>>1 where M = (Q_max+1)>>63 & ~Q_min>>63.) 1390 1391 // R_2 = clamp(R, L_clamp, H_clamp) - L_clamp 1392 // that is: R_2 = clamp(R, L_clamp=0, H_clamp=Q_max) if Q_min < 0 1393 // or else: R_2 = clamp(R, L_clamp, H_clamp) - Q_min if Q_min >= 0 1394 // and also: R_2 = clamp(R, L_clamp, Q_max+1) - L_clamp if Q_min < Q_max+1 (no overflow) 1395 // or else: R_2 = clamp(R, L_clamp, *no limit*)- L_clamp if Q_max+1 < Q_min (overflow) 1396 Node* R_2 = clamp(R, L_clamp, H_clamp); 1397 R_2 = new SubLNode(R_2, L_clamp); 1398 register_new_node(R_2, entry_control); 1399 R_2 = new ConvL2INode(R_2, TypeInt::POS); 1400 register_new_node(R_2, entry_control); 1401 1402 // L_2 = Q_first - L_clamp 1403 // We are subtracting L_clamp from both sides of the <u32 comparison. 1404 // If S*K>0, then Q_first == 0 and the R.C. expression at -L_clamp and steps upward to Q_max-L_clamp. 1405 // If S*K<0, then Q_first != 0 and the R.C. expression starts high and steps downward to Q_min-L_clamp. 1406 Node* L_2 = new SubLNode(Q_first, L_clamp); 1407 register_new_node(L_2, entry_control); 1408 L_2 = new ConvL2INode(L_2, TypeInt::INT); 1409 register_new_node(L_2, entry_control); 1410 1411 // Transform the range check using the computed values L_2/R_2 1412 // from: i*K + L <u64 R 1413 // to: j*K + L_2 <u32 R_2 1414 // that is: 1415 // (j*K + Q_first) - L_clamp <u32 clamp(R, L_clamp, H_clamp) - L_clamp 1416 K = intcon(checked_cast<int>(scale)); 1417 Node* scaled_iv = new MulINode(inner_phi, K); 1418 register_new_node(scaled_iv, c); 1419 Node* scaled_iv_plus_offset = new AddINode(scaled_iv, L_2); 1420 register_new_node(scaled_iv_plus_offset, c); 1421 1422 Node* new_rc_cmp = new CmpUNode(scaled_iv_plus_offset, R_2); 1423 register_new_node(new_rc_cmp, c); 1424 1425 _igvn.replace_input_of(rc_bol, 1, new_rc_cmp); 1426 } 1427 } 1428 1429 Node* PhaseIdealLoop::clamp(Node* R, Node* L, Node* H) { 1430 Node* min = MaxNode::signed_min(R, H, TypeLong::LONG, _igvn); 1431 set_subtree_ctrl(min, true); 1432 Node* max = MaxNode::signed_max(L, min, TypeLong::LONG, _igvn); 1433 set_subtree_ctrl(max, true); 1434 return max; 1435 } 1436 1437 LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, 1438 IfNode* exit_test) { 1439 LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2)); 1440 IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt); 1441 _igvn.register_new_node_with_optimizer(new_inner_head); 1442 _igvn.register_new_node_with_optimizer(new_inner_exit); 1443 loop->_body.push(new_inner_head); 1444 loop->_body.push(new_inner_exit); 1445 loop->_body.yank(head); 1446 loop->_body.yank(exit_test); 1447 set_loop(new_inner_head, loop); 1448 set_loop(new_inner_exit, loop); 1449 set_idom(new_inner_head, idom(head), dom_depth(head)); 1450 set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test)); 1451 lazy_replace(head, new_inner_head); 1452 lazy_replace(exit_test, new_inner_exit); 1453 loop->_head = new_inner_head; 1454 return new_inner_head; 1455 } 1456 1457 #ifdef ASSERT 1458 void PhaseIdealLoop::check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) { 1459 Node* back_control = loop_exit_control(x, loop); 1460 assert(back_control != nullptr, "no back control"); 1461 1462 BoolTest::mask mask = BoolTest::illegal; 1463 float cl_prob = 0; 1464 Node* incr = nullptr; 1465 Node* limit = nullptr; 1466 1467 Node* cmp = loop_exit_test(back_control, loop, incr, limit, mask, cl_prob); 1468 assert(cmp != nullptr && cmp->Opcode() == Op_Cmp(bt), "no exit test"); 1469 1470 Node* phi_incr = nullptr; 1471 incr = loop_iv_incr(incr, x, loop, phi_incr); 1472 assert(incr != nullptr && incr->Opcode() == Op_Add(bt), "no incr"); 1473 1474 Node* xphi = nullptr; 1475 Node* stride = loop_iv_stride(incr, loop, xphi); 1476 1477 assert(stride != nullptr, "no stride"); 1478 1479 PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop); 1480 1481 assert(phi != nullptr && phi->in(LoopNode::LoopBackControl) == incr, "No phi"); 1482 1483 jlong stride_con = stride->get_integer_as_long(bt); 1484 1485 assert(condition_stride_ok(mask, stride_con), "illegal condition"); 1486 1487 assert(mask != BoolTest::ne, "unexpected condition"); 1488 assert(phi_incr == nullptr, "bad loop shape"); 1489 assert(cmp->in(1) == incr, "bad exit test shape"); 1490 1491 // Safepoint on backedge not supported 1492 assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge"); 1493 } 1494 #endif 1495 1496 #ifdef ASSERT 1497 // convert an int counted loop to a long counted to stress handling of 1498 // long counted loops 1499 bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) { 1500 Unique_Node_List iv_nodes; 1501 Node_List old_new; 1502 iv_nodes.push(cmp); 1503 bool failed = false; 1504 1505 for (uint i = 0; i < iv_nodes.size() && !failed; i++) { 1506 Node* n = iv_nodes.at(i); 1507 switch(n->Opcode()) { 1508 case Op_Phi: { 1509 Node* clone = new PhiNode(n->in(0), TypeLong::LONG); 1510 old_new.map(n->_idx, clone); 1511 break; 1512 } 1513 case Op_CmpI: { 1514 Node* clone = new CmpLNode(nullptr, nullptr); 1515 old_new.map(n->_idx, clone); 1516 break; 1517 } 1518 case Op_AddI: { 1519 Node* clone = new AddLNode(nullptr, nullptr); 1520 old_new.map(n->_idx, clone); 1521 break; 1522 } 1523 case Op_CastII: { 1524 failed = true; 1525 break; 1526 } 1527 default: 1528 DEBUG_ONLY(n->dump()); 1529 fatal("unexpected"); 1530 } 1531 1532 for (uint i = 1; i < n->req(); i++) { 1533 Node* in = n->in(i); 1534 if (in == nullptr) { 1535 continue; 1536 } 1537 if (loop->is_member(get_loop(get_ctrl(in)))) { 1538 iv_nodes.push(in); 1539 } 1540 } 1541 } 1542 1543 if (failed) { 1544 for (uint i = 0; i < iv_nodes.size(); i++) { 1545 Node* n = iv_nodes.at(i); 1546 Node* clone = old_new[n->_idx]; 1547 if (clone != nullptr) { 1548 _igvn.remove_dead_node(clone); 1549 } 1550 } 1551 return false; 1552 } 1553 1554 for (uint i = 0; i < iv_nodes.size(); i++) { 1555 Node* n = iv_nodes.at(i); 1556 Node* clone = old_new[n->_idx]; 1557 for (uint i = 1; i < n->req(); i++) { 1558 Node* in = n->in(i); 1559 if (in == nullptr) { 1560 continue; 1561 } 1562 Node* in_clone = old_new[in->_idx]; 1563 if (in_clone == nullptr) { 1564 assert(_igvn.type(in)->isa_int(), ""); 1565 in_clone = new ConvI2LNode(in); 1566 _igvn.register_new_node_with_optimizer(in_clone); 1567 set_subtree_ctrl(in_clone, false); 1568 } 1569 if (in_clone->in(0) == nullptr) { 1570 in_clone->set_req(0, C->top()); 1571 clone->set_req(i, in_clone); 1572 in_clone->set_req(0, nullptr); 1573 } else { 1574 clone->set_req(i, in_clone); 1575 } 1576 } 1577 _igvn.register_new_node_with_optimizer(clone); 1578 } 1579 set_ctrl(old_new[phi->_idx], phi->in(0)); 1580 1581 for (uint i = 0; i < iv_nodes.size(); i++) { 1582 Node* n = iv_nodes.at(i); 1583 Node* clone = old_new[n->_idx]; 1584 set_subtree_ctrl(clone, false); 1585 Node* m = n->Opcode() == Op_CmpI ? clone : nullptr; 1586 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1587 Node* u = n->fast_out(i); 1588 if (iv_nodes.member(u)) { 1589 continue; 1590 } 1591 if (m == nullptr) { 1592 m = new ConvL2INode(clone); 1593 _igvn.register_new_node_with_optimizer(m); 1594 set_subtree_ctrl(m, false); 1595 } 1596 _igvn.rehash_node_delayed(u); 1597 int nb = u->replace_edge(n, m, &_igvn); 1598 --i, imax -= nb; 1599 } 1600 } 1601 return true; 1602 } 1603 #endif 1604 1605 //------------------------------is_counted_loop-------------------------------- 1606 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt) { 1607 PhaseGVN *gvn = &_igvn; 1608 1609 Node* back_control = loop_exit_control(x, loop); 1610 if (back_control == nullptr) { 1611 return false; 1612 } 1613 1614 BoolTest::mask bt = BoolTest::illegal; 1615 float cl_prob = 0; 1616 Node* incr = nullptr; 1617 Node* limit = nullptr; 1618 Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob); 1619 if (cmp == nullptr || cmp->Opcode() != Op_Cmp(iv_bt)) { 1620 return false; // Avoid pointer & float & 64-bit compares 1621 } 1622 1623 // Trip-counter increment must be commutative & associative. 1624 if (incr->Opcode() == Op_Cast(iv_bt)) { 1625 incr = incr->in(1); 1626 } 1627 1628 Node* phi_incr = nullptr; 1629 incr = loop_iv_incr(incr, x, loop, phi_incr); 1630 if (incr == nullptr) { 1631 return false; 1632 } 1633 1634 Node* trunc1 = nullptr; 1635 Node* trunc2 = nullptr; 1636 const TypeInteger* iv_trunc_t = nullptr; 1637 Node* orig_incr = incr; 1638 if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) { 1639 return false; // Funny increment opcode 1640 } 1641 assert(incr->Opcode() == Op_Add(iv_bt), "wrong increment code"); 1642 1643 Node* xphi = nullptr; 1644 Node* stride = loop_iv_stride(incr, loop, xphi); 1645 1646 if (stride == nullptr) { 1647 return false; 1648 } 1649 1650 if (xphi->Opcode() == Op_Cast(iv_bt)) { 1651 xphi = xphi->in(1); 1652 } 1653 1654 // Stride must be constant 1655 jlong stride_con = stride->get_integer_as_long(iv_bt); 1656 assert(stride_con != 0, "missed some peephole opt"); 1657 1658 PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop); 1659 1660 if (phi == nullptr || 1661 (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) || 1662 (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) { 1663 return false; 1664 } 1665 1666 Node* iftrue = back_control; 1667 uint iftrue_op = iftrue->Opcode(); 1668 Node* iff = iftrue->in(0); 1669 BoolNode* test = iff->in(1)->as_Bool(); 1670 1671 const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt); 1672 if (trunc1 != nullptr) { 1673 // When there is a truncation, we must be sure that after the truncation 1674 // the trip counter will end up higher than the limit, otherwise we are looking 1675 // at an endless loop. Can happen with range checks. 1676 1677 // Example: 1678 // int i = 0; 1679 // while (true) 1680 // sum + = array[i]; 1681 // i++; 1682 // i = i && 0x7fff; 1683 // } 1684 // 1685 // If the array is shorter than 0x8000 this exits through a AIOOB 1686 // - Counted loop transformation is ok 1687 // If the array is longer then this is an endless loop 1688 // - No transformation can be done. 1689 1690 const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt); 1691 if (limit_t->hi_as_long() > incr_t->hi_as_long()) { 1692 // if the limit can have a higher value than the increment (before the phi) 1693 return false; 1694 } 1695 } 1696 1697 Node *init_trip = phi->in(LoopNode::EntryControl); 1698 1699 // If iv trunc type is smaller than int, check for possible wrap. 1700 if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) { 1701 assert(trunc1 != nullptr, "must have found some truncation"); 1702 1703 // Get a better type for the phi (filtered thru if's) 1704 const TypeInteger* phi_ft = filtered_type(phi); 1705 1706 // Can iv take on a value that will wrap? 1707 // 1708 // Ensure iv's limit is not within "stride" of the wrap value. 1709 // 1710 // Example for "short" type 1711 // Truncation ensures value is in the range -32768..32767 (iv_trunc_t) 1712 // If the stride is +10, then the last value of the induction 1713 // variable before the increment (phi_ft->_hi) must be 1714 // <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to 1715 // ensure no truncation occurs after the increment. 1716 1717 if (stride_con > 0) { 1718 if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con || 1719 iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) { 1720 return false; // truncation may occur 1721 } 1722 } else if (stride_con < 0) { 1723 if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con || 1724 iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) { 1725 return false; // truncation may occur 1726 } 1727 } 1728 // No possibility of wrap so truncation can be discarded 1729 // Promote iv type to Int 1730 } else { 1731 assert(trunc1 == nullptr && trunc2 == nullptr, "no truncation for int"); 1732 } 1733 1734 if (!condition_stride_ok(bt, stride_con)) { 1735 return false; 1736 } 1737 1738 const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt); 1739 1740 if (stride_con > 0) { 1741 if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) { 1742 return false; // cyclic loop 1743 } 1744 } else { 1745 if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) { 1746 return false; // cyclic loop 1747 } 1748 } 1749 1750 if (phi_incr != nullptr && bt != BoolTest::ne) { 1751 // check if there is a possibility of IV overflowing after the first increment 1752 if (stride_con > 0) { 1753 if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) { 1754 return false; 1755 } 1756 } else { 1757 if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) { 1758 return false; 1759 } 1760 } 1761 } 1762 1763 // ================================================= 1764 // ---- SUCCESS! Found A Trip-Counted Loop! ----- 1765 // 1766 1767 if (x->Opcode() == Op_Region) { 1768 // x has not yet been transformed to Loop or LongCountedLoop. 1769 // This should only happen if we are inside an infinite loop. 1770 // It happens like this: 1771 // build_loop_tree -> do not attach infinite loop and nested loops 1772 // beautify_loops -> does not transform the infinite and nested loops to LoopNode, because not attached yet 1773 // build_loop_tree -> find and attach infinite and nested loops 1774 // counted_loop -> nested Regions are not yet transformed to LoopNodes, we land here 1775 assert(x->as_Region()->is_in_infinite_subgraph(), 1776 "x can only be a Region and not Loop if inside infinite loop"); 1777 // Come back later when Region is transformed to LoopNode 1778 return false; 1779 } 1780 1781 assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only"); 1782 C->print_method(PHASE_BEFORE_CLOOPS, 3, x); 1783 1784 // =================================================== 1785 // We can only convert this loop to a counted loop if we can guarantee that the iv phi will never overflow at runtime. 1786 // This is an implicit assumption taken by some loop optimizations. We therefore must ensure this property at all cost. 1787 // At this point, we've already excluded some trivial cases where an overflow could have been proven statically. 1788 // But even though we cannot prove that an overflow will *not* happen, we still want to speculatively convert this loop 1789 // to a counted loop. This can be achieved by adding additional iv phi overflow checks before the loop. If they fail, 1790 // we trap and resume execution before the loop without having executed any iteration of the loop, yet. 1791 // 1792 // These additional iv phi overflow checks can be inserted as Loop Limit Check Predicates above the Loop Limit Check 1793 // Parse Predicate which captures a JVM state just before the entry of the loop. If there is no such Parse Predicate, 1794 // we cannot generate a Loop Limit Check Predicate and thus cannot speculatively convert the loop to a counted loop. 1795 // 1796 // In the following, we only focus on int loops with stride > 0 to keep things simple. The argumentation and proof 1797 // for stride < 0 is analogously. For long loops, we would replace max_int with max_long. 1798 // 1799 // 1800 // The loop to be converted does not always need to have the often used shape: 1801 // 1802 // i = init 1803 // i = init loop: 1804 // do { ... 1805 // // ... equivalent i+=stride 1806 // i+=stride <==> if (i < limit) 1807 // } while (i < limit); goto loop 1808 // exit: 1809 // ... 1810 // 1811 // where the loop exit check uses the post-incremented iv phi and a '<'-operator. 1812 // 1813 // We could also have '<='-operator (or '>='-operator for negative strides) or use the pre-incremented iv phi value 1814 // in the loop exit check: 1815 // 1816 // i = init 1817 // loop: 1818 // ... 1819 // if (i <= limit) 1820 // i+=stride 1821 // goto loop 1822 // exit: 1823 // ... 1824 // 1825 // Let's define the following terms: 1826 // - iv_pre_i: The pre-incremented iv phi before the i-th iteration. 1827 // - iv_post_i: The post-incremented iv phi after the i-th iteration. 1828 // 1829 // The iv_pre_i and iv_post_i have the following relation: 1830 // iv_pre_i + stride = iv_post_i 1831 // 1832 // When converting a loop to a counted loop, we want to have a canonicalized loop exit check of the form: 1833 // iv_post_i < adjusted_limit 1834 // 1835 // If that is not the case, we need to canonicalize the loop exit check by using different values for adjusted_limit: 1836 // (LE1) iv_post_i < limit: Already canonicalized. We can directly use limit as adjusted_limit. 1837 // -> adjusted_limit = limit. 1838 // (LE2) iv_post_i <= limit: 1839 // iv_post_i < limit + 1 1840 // -> adjusted limit = limit + 1 1841 // (LE3) iv_pre_i < limit: 1842 // iv_pre_i + stride < limit + stride 1843 // iv_post_i < limit + stride 1844 // -> adjusted_limit = limit + stride 1845 // (LE4) iv_pre_i <= limit: 1846 // iv_pre_i < limit + 1 1847 // iv_pre_i + stride < limit + stride + 1 1848 // iv_post_i < limit + stride + 1 1849 // -> adjusted_limit = limit + stride + 1 1850 // 1851 // Note that: 1852 // (AL) limit <= adjusted_limit. 1853 // 1854 // The following loop invariant has to hold for counted loops with n iterations (i.e. loop exit check true after n-th 1855 // loop iteration) and a canonicalized loop exit check to guarantee that no iv_post_i over- or underflows: 1856 // (INV) For i = 1..n, min_int <= iv_post_i <= max_int 1857 // 1858 // To prove (INV), we require the following two conditions/assumptions: 1859 // (i): adjusted_limit - 1 + stride <= max_int 1860 // (ii): init < limit 1861 // 1862 // If we can prove (INV), we know that there can be no over- or underflow of any iv phi value. We prove (INV) by 1863 // induction by assuming (i) and (ii). 1864 // 1865 // Proof by Induction 1866 // ------------------ 1867 // > Base case (i = 1): We show that (INV) holds after the first iteration: 1868 // min_int <= iv_post_1 = init + stride <= max_int 1869 // Proof: 1870 // First, we note that (ii) implies 1871 // (iii) init <= limit - 1 1872 // max_int >= adjusted_limit - 1 + stride [using (i)] 1873 // >= limit - 1 + stride [using (AL)] 1874 // >= init + stride [using (iii)] 1875 // >= min_int [using stride > 0, no underflow] 1876 // Thus, no overflow happens after the first iteration and (INV) holds for i = 1. 1877 // 1878 // Note that to prove the base case we need (i) and (ii). 1879 // 1880 // > Induction Hypothesis (i = j, j > 1): Assume that (INV) holds after the j-th iteration: 1881 // min_int <= iv_post_j <= max_int 1882 // > Step case (i = j + 1): We show that (INV) also holds after the j+1-th iteration: 1883 // min_int <= iv_post_{j+1} = iv_post_j + stride <= max_int 1884 // Proof: 1885 // If iv_post_j >= adjusted_limit: 1886 // We exit the loop after the j-th iteration, and we don't execute the j+1-th iteration anymore. Thus, there is 1887 // also no iv_{j+1}. Since (INV) holds for iv_j, there is nothing left to prove. 1888 // If iv_post_j < adjusted_limit: 1889 // First, we note that: 1890 // (iv) iv_post_j <= adjusted_limit - 1 1891 // max_int >= adjusted_limit - 1 + stride [using (i)] 1892 // >= iv_post_j + stride [using (iv)] 1893 // >= min_int [using stride > 0, no underflow] 1894 // 1895 // Note that to prove the step case we only need (i). 1896 // 1897 // Thus, by assuming (i) and (ii), we proved (INV). 1898 // 1899 // 1900 // It is therefore enough to add the following two Loop Limit Check Predicates to check assumptions (i) and (ii): 1901 // 1902 // (1) Loop Limit Check Predicate for (i): 1903 // Using (i): adjusted_limit - 1 + stride <= max_int 1904 // 1905 // This condition is now restated to use limit instead of adjusted_limit: 1906 // 1907 // To prevent an overflow of adjusted_limit -1 + stride itself, we rewrite this check to 1908 // max_int - stride + 1 >= adjusted_limit 1909 // We can merge the two constants into 1910 // canonicalized_correction = stride - 1 1911 // which gives us 1912 // max_int - canonicalized_correction >= adjusted_limit 1913 // 1914 // To directly use limit instead of adjusted_limit in the predicate condition, we split adjusted_limit into: 1915 // adjusted_limit = limit + limit_correction 1916 // Since stride > 0 and limit_correction <= stride + 1, we can restate this with no over- or underflow into: 1917 // max_int - canonicalized_correction - limit_correction >= limit 1918 // Since canonicalized_correction and limit_correction are both constants, we can replace them with a new constant: 1919 // (v) final_correction = canonicalized_correction + limit_correction 1920 // 1921 // which gives us: 1922 // 1923 // Final predicate condition: 1924 // max_int - final_correction >= limit 1925 // 1926 // However, we need to be careful that (v) does not over- or underflow. 1927 // We know that: 1928 // canonicalized_correction = stride - 1 1929 // and 1930 // limit_correction <= stride + 1 1931 // and thus 1932 // canonicalized_correction + limit_correction <= 2 * stride 1933 // To prevent an over- or underflow of (v), we must ensure that 1934 // 2 * stride <= max_int 1935 // which can safely be checked without over- or underflow with 1936 // (vi) stride != min_int AND abs(stride) <= max_int / 2 1937 // 1938 // We could try to further optimize the cases where (vi) does not hold but given that such large strides are 1939 // very uncommon and the loop would only run for a very few iterations anyway, we simply bail out if (vi) fails. 1940 // 1941 // (2) Loop Limit Check Predicate for (ii): 1942 // Using (ii): init < limit 1943 // 1944 // This Loop Limit Check Predicate is not required if we can prove at compile time that either: 1945 // (2.1) type(init) < type(limit) 1946 // In this case, we know: 1947 // all possible values of init < all possible values of limit 1948 // and we can skip the predicate. 1949 // 1950 // (2.2) init < limit is already checked before (i.e. found as a dominating check) 1951 // In this case, we do not need to re-check the condition and can skip the predicate. 1952 // This is often found for while- and for-loops which have the following shape: 1953 // 1954 // if (init < limit) { // Dominating test. Do not need the Loop Limit Check Predicate below. 1955 // i = init; 1956 // if (init >= limit) { trap(); } // Here we would insert the Loop Limit Check Predicate 1957 // do { 1958 // i += stride; 1959 // } while (i < limit); 1960 // } 1961 // 1962 // (2.3) init + stride <= max_int 1963 // In this case, there is no overflow of the iv phi after the first loop iteration. 1964 // In the proof of the base case above we showed that init + stride <= max_int by using assumption (ii): 1965 // init < limit 1966 // In the proof of the step case above, we did not need (ii) anymore. Therefore, if we already know at 1967 // compile time that init + stride <= max_int then we have trivially proven the base case and that 1968 // there is no overflow of the iv phi after the first iteration. In this case, we don't need to check (ii) 1969 // again and can skip the predicate. 1970 1971 // Check (vi) and bail out if the stride is too big. 1972 if (stride_con == min_signed_integer(iv_bt) || (ABS(stride_con) > max_signed_integer(iv_bt) / 2)) { 1973 return false; 1974 } 1975 1976 // Accounting for (LE3) and (LE4) where we use pre-incremented phis in the loop exit check. 1977 const jlong limit_correction_for_pre_iv_exit_check = (phi_incr != nullptr) ? stride_con : 0; 1978 1979 // Accounting for (LE2) and (LE4) where we use <= or >= in the loop exit check. 1980 const bool includes_limit = (bt == BoolTest::le || bt == BoolTest::ge); 1981 const jlong limit_correction_for_le_ge_exit_check = (includes_limit ? (stride_con > 0 ? 1 : -1) : 0); 1982 1983 const jlong limit_correction = limit_correction_for_pre_iv_exit_check + limit_correction_for_le_ge_exit_check; 1984 const jlong canonicalized_correction = stride_con + (stride_con > 0 ? -1 : 1); 1985 const jlong final_correction = canonicalized_correction + limit_correction; 1986 1987 int sov = check_stride_overflow(final_correction, limit_t, iv_bt); 1988 Node* init_control = x->in(LoopNode::EntryControl); 1989 1990 // If sov==0, limit's type always satisfies the condition, for 1991 // example, when it is an array length. 1992 if (sov != 0) { 1993 if (sov < 0) { 1994 return false; // Bailout: integer overflow is certain. 1995 } 1996 // (1) Loop Limit Check Predicate is required because we could not statically prove that 1997 // limit + final_correction = adjusted_limit - 1 + stride <= max_int 1998 assert(!x->as_Loop()->is_loop_nest_inner_loop(), "loop was transformed"); 1999 const Predicates predicates(init_control); 2000 const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block(); 2001 if (!loop_limit_check_predicate_block->has_parse_predicate()) { 2002 // The Loop Limit Check Parse Predicate is not generated if this method trapped here before. 2003 #ifdef ASSERT 2004 if (TraceLoopLimitCheck) { 2005 tty->print("Missing Loop Limit Check Parse Predicate:"); 2006 loop->dump_head(); 2007 x->dump(1); 2008 } 2009 #endif 2010 return false; 2011 } 2012 2013 ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate(); 2014 if (!is_dominator(get_ctrl(limit), loop_limit_check_parse_predicate->in(0))) { 2015 return false; 2016 } 2017 2018 Node* cmp_limit; 2019 Node* bol; 2020 2021 if (stride_con > 0) { 2022 cmp_limit = CmpNode::make(limit, _igvn.integercon(max_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt); 2023 bol = new BoolNode(cmp_limit, BoolTest::le); 2024 } else { 2025 cmp_limit = CmpNode::make(limit, _igvn.integercon(min_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt); 2026 bol = new BoolNode(cmp_limit, BoolTest::ge); 2027 } 2028 2029 insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol); 2030 } 2031 2032 // (2.3) 2033 const bool init_plus_stride_could_overflow = 2034 (stride_con > 0 && init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) || 2035 (stride_con < 0 && init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con); 2036 // (2.1) 2037 const bool init_gte_limit = (stride_con > 0 && init_t->hi_as_long() >= limit_t->lo_as_long()) || 2038 (stride_con < 0 && init_t->lo_as_long() <= limit_t->hi_as_long()); 2039 2040 if (init_gte_limit && // (2.1) 2041 ((bt == BoolTest::ne || init_plus_stride_could_overflow) && // (2.3) 2042 !has_dominating_loop_limit_check(init_trip, limit, stride_con, iv_bt, init_control))) { // (2.2) 2043 // (2) Iteration Loop Limit Check Predicate is required because neither (2.1), (2.2), nor (2.3) holds. 2044 // We use the following condition: 2045 // - stride > 0: init < limit 2046 // - stride < 0: init > limit 2047 // 2048 // This predicate is always required if we have a non-equal-operator in the loop exit check (where stride = 1 is 2049 // a requirement). We transform the loop exit check by using a less-than-operator. By doing so, we must always 2050 // check that init < limit. Otherwise, we could have a different number of iterations at runtime. 2051 2052 const Predicates predicates(init_control); 2053 const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block(); 2054 if (!loop_limit_check_predicate_block->has_parse_predicate()) { 2055 // The Loop Limit Check Parse Predicate is not generated if this method trapped here before. 2056 #ifdef ASSERT 2057 if (TraceLoopLimitCheck) { 2058 tty->print("Missing Loop Limit Check Parse Predicate:"); 2059 loop->dump_head(); 2060 x->dump(1); 2061 } 2062 #endif 2063 return false; 2064 } 2065 2066 ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate(); 2067 Node* parse_predicate_entry = loop_limit_check_parse_predicate->in(0); 2068 if (!is_dominator(get_ctrl(limit), parse_predicate_entry) || 2069 !is_dominator(get_ctrl(init_trip), parse_predicate_entry)) { 2070 return false; 2071 } 2072 2073 Node* cmp_limit; 2074 Node* bol; 2075 2076 if (stride_con > 0) { 2077 cmp_limit = CmpNode::make(init_trip, limit, iv_bt); 2078 bol = new BoolNode(cmp_limit, BoolTest::lt); 2079 } else { 2080 cmp_limit = CmpNode::make(init_trip, limit, iv_bt); 2081 bol = new BoolNode(cmp_limit, BoolTest::gt); 2082 } 2083 2084 insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol); 2085 } 2086 2087 if (bt == BoolTest::ne) { 2088 // Now we need to canonicalize the loop condition if it is 'ne'. 2089 assert(stride_con == 1 || stride_con == -1, "simple increment only - checked before"); 2090 if (stride_con > 0) { 2091 // 'ne' can be replaced with 'lt' only when init < limit. This is ensured by the inserted predicate above. 2092 bt = BoolTest::lt; 2093 } else { 2094 assert(stride_con < 0, "must be"); 2095 // 'ne' can be replaced with 'gt' only when init > limit. This is ensured by the inserted predicate above. 2096 bt = BoolTest::gt; 2097 } 2098 } 2099 2100 Node* sfpt = nullptr; 2101 if (loop->_child == nullptr) { 2102 sfpt = find_safepoint(back_control, x, loop); 2103 } else { 2104 sfpt = iff->in(0); 2105 if (sfpt->Opcode() != Op_SafePoint) { 2106 sfpt = nullptr; 2107 } 2108 } 2109 2110 if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint) { 2111 Node* backedge_sfpt = x->in(LoopNode::LoopBackControl); 2112 if (((iv_bt == T_INT && LoopStripMiningIter != 0) || 2113 iv_bt == T_LONG) && 2114 sfpt == nullptr) { 2115 // Leaving the safepoint on the backedge and creating a 2116 // CountedLoop will confuse optimizations. We can't move the 2117 // safepoint around because its jvm state wouldn't match a new 2118 // location. Give up on that loop. 2119 return false; 2120 } 2121 if (is_deleteable_safept(backedge_sfpt)) { 2122 lazy_replace(backedge_sfpt, iftrue); 2123 if (loop->_safepts != nullptr) { 2124 loop->_safepts->yank(backedge_sfpt); 2125 } 2126 loop->_tail = iftrue; 2127 } 2128 } 2129 2130 2131 #ifdef ASSERT 2132 if (iv_bt == T_INT && 2133 !x->as_Loop()->is_loop_nest_inner_loop() && 2134 StressLongCountedLoop > 0 && 2135 trunc1 == nullptr && 2136 convert_to_long_loop(cmp, phi, loop)) { 2137 return false; 2138 } 2139 #endif 2140 2141 Node* adjusted_limit = limit; 2142 if (phi_incr != nullptr) { 2143 // If compare points directly to the phi we need to adjust 2144 // the compare so that it points to the incr. Limit have 2145 // to be adjusted to keep trip count the same and we 2146 // should avoid int overflow. 2147 // 2148 // i = init; do {} while(i++ < limit); 2149 // is converted to 2150 // i = init; do {} while(++i < limit+1); 2151 // 2152 adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt)); 2153 } 2154 2155 if (includes_limit) { 2156 // The limit check guaranties that 'limit <= (max_jint - stride)' so 2157 // we can convert 'i <= limit' to 'i < limit+1' since stride != 0. 2158 // 2159 Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt); 2160 adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt)); 2161 if (bt == BoolTest::le) 2162 bt = BoolTest::lt; 2163 else if (bt == BoolTest::ge) 2164 bt = BoolTest::gt; 2165 else 2166 ShouldNotReachHere(); 2167 } 2168 set_subtree_ctrl(adjusted_limit, false); 2169 2170 // Build a canonical trip test. 2171 // Clone code, as old values may be in use. 2172 incr = incr->clone(); 2173 incr->set_req(1,phi); 2174 incr->set_req(2,stride); 2175 incr = _igvn.register_new_node_with_optimizer(incr); 2176 set_early_ctrl(incr, false); 2177 _igvn.rehash_node_delayed(phi); 2178 phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn ); 2179 2180 // If phi type is more restrictive than Int, raise to 2181 // Int to prevent (almost) infinite recursion in igvn 2182 // which can only handle integer types for constants or minint..maxint. 2183 if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) { 2184 Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt)); 2185 nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl)); 2186 nphi = _igvn.register_new_node_with_optimizer(nphi); 2187 set_ctrl(nphi, get_ctrl(phi)); 2188 _igvn.replace_node(phi, nphi); 2189 phi = nphi->as_Phi(); 2190 } 2191 cmp = cmp->clone(); 2192 cmp->set_req(1,incr); 2193 cmp->set_req(2, adjusted_limit); 2194 cmp = _igvn.register_new_node_with_optimizer(cmp); 2195 set_ctrl(cmp, iff->in(0)); 2196 2197 test = test->clone()->as_Bool(); 2198 (*(BoolTest*)&test->_test)._test = bt; 2199 test->set_req(1,cmp); 2200 _igvn.register_new_node_with_optimizer(test); 2201 set_ctrl(test, iff->in(0)); 2202 2203 // Replace the old IfNode with a new LoopEndNode 2204 Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt)); 2205 IfNode *le = lex->as_If(); 2206 uint dd = dom_depth(iff); 2207 set_idom(le, le->in(0), dd); // Update dominance for loop exit 2208 set_loop(le, loop); 2209 2210 // Get the loop-exit control 2211 Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue)); 2212 2213 // Need to swap loop-exit and loop-back control? 2214 if (iftrue_op == Op_IfFalse) { 2215 Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le)); 2216 Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le)); 2217 2218 loop->_tail = back_control = ift2; 2219 set_loop(ift2, loop); 2220 set_loop(iff2, get_loop(iffalse)); 2221 2222 // Lazy update of 'get_ctrl' mechanism. 2223 lazy_replace(iffalse, iff2); 2224 lazy_replace(iftrue, ift2); 2225 2226 // Swap names 2227 iffalse = iff2; 2228 iftrue = ift2; 2229 } else { 2230 _igvn.rehash_node_delayed(iffalse); 2231 _igvn.rehash_node_delayed(iftrue); 2232 iffalse->set_req_X( 0, le, &_igvn ); 2233 iftrue ->set_req_X( 0, le, &_igvn ); 2234 } 2235 2236 set_idom(iftrue, le, dd+1); 2237 set_idom(iffalse, le, dd+1); 2238 assert(iff->outcnt() == 0, "should be dead now"); 2239 lazy_replace( iff, le ); // fix 'get_ctrl' 2240 2241 Node* entry_control = init_control; 2242 bool strip_mine_loop = iv_bt == T_INT && 2243 loop->_child == nullptr && 2244 sfpt != nullptr && 2245 !loop->_has_call && 2246 is_deleteable_safept(sfpt); 2247 IdealLoopTree* outer_ilt = nullptr; 2248 if (strip_mine_loop) { 2249 outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop, 2250 cl_prob, le->_fcnt, entry_control, 2251 iffalse); 2252 } 2253 2254 // Now setup a new CountedLoopNode to replace the existing LoopNode 2255 BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt); 2256 l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve 2257 // The following assert is approximately true, and defines the intention 2258 // of can_be_counted_loop. It fails, however, because phase->type 2259 // is not yet initialized for this loop and its parts. 2260 //assert(l->can_be_counted_loop(this), "sanity"); 2261 _igvn.register_new_node_with_optimizer(l); 2262 set_loop(l, loop); 2263 loop->_head = l; 2264 // Fix all data nodes placed at the old loop head. 2265 // Uses the lazy-update mechanism of 'get_ctrl'. 2266 lazy_replace( x, l ); 2267 set_idom(l, entry_control, dom_depth(entry_control) + 1); 2268 2269 if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) { 2270 // Check for immediately preceding SafePoint and remove 2271 if (sfpt != nullptr && (strip_mine_loop || is_deleteable_safept(sfpt))) { 2272 if (strip_mine_loop) { 2273 Node* outer_le = outer_ilt->_tail->in(0); 2274 Node* sfpt_clone = sfpt->clone(); 2275 sfpt_clone->set_req(0, iffalse); 2276 outer_le->set_req(0, sfpt_clone); 2277 2278 Node* polladdr = sfpt_clone->in(TypeFunc::Parms); 2279 if (polladdr != nullptr && polladdr->is_Load()) { 2280 // Polling load should be pinned outside inner loop. 2281 Node* new_polladdr = polladdr->clone(); 2282 new_polladdr->set_req(0, iffalse); 2283 _igvn.register_new_node_with_optimizer(new_polladdr, polladdr); 2284 set_ctrl(new_polladdr, iffalse); 2285 sfpt_clone->set_req(TypeFunc::Parms, new_polladdr); 2286 } 2287 // When this code runs, loop bodies have not yet been populated. 2288 const bool body_populated = false; 2289 register_control(sfpt_clone, outer_ilt, iffalse, body_populated); 2290 set_idom(outer_le, sfpt_clone, dom_depth(sfpt_clone)); 2291 } 2292 lazy_replace(sfpt, sfpt->in(TypeFunc::Control)); 2293 if (loop->_safepts != nullptr) { 2294 loop->_safepts->yank(sfpt); 2295 } 2296 } 2297 } 2298 2299 #ifdef ASSERT 2300 assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up"); 2301 assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" ); 2302 #endif 2303 #ifndef PRODUCT 2304 if (TraceLoopOpts) { 2305 tty->print("Counted "); 2306 loop->dump_head(); 2307 } 2308 #endif 2309 2310 C->print_method(PHASE_AFTER_CLOOPS, 3, l); 2311 2312 // Capture bounds of the loop in the induction variable Phi before 2313 // subsequent transformation (iteration splitting) obscures the 2314 // bounds 2315 l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn)); 2316 2317 if (strip_mine_loop) { 2318 l->mark_strip_mined(); 2319 l->verify_strip_mined(1); 2320 outer_ilt->_head->as_Loop()->verify_strip_mined(1); 2321 loop = outer_ilt; 2322 } 2323 2324 #ifndef PRODUCT 2325 if (x->as_Loop()->is_loop_nest_inner_loop() && iv_bt == T_LONG) { 2326 Atomic::inc(&_long_loop_counted_loops); 2327 } 2328 #endif 2329 if (iv_bt == T_LONG && x->as_Loop()->is_loop_nest_outer_loop()) { 2330 l->mark_loop_nest_outer_loop(); 2331 } 2332 2333 return true; 2334 } 2335 2336 // Check if there is a dominating loop limit check of the form 'init < limit' starting at the loop entry. 2337 // If there is one, then we do not need to create an additional Loop Limit Check Predicate. 2338 bool PhaseIdealLoop::has_dominating_loop_limit_check(Node* init_trip, Node* limit, const jlong stride_con, 2339 const BasicType iv_bt, Node* loop_entry) { 2340 // Eagerly call transform() on the Cmp and Bool node to common them up if possible. This is required in order to 2341 // successfully find a dominated test with the If node below. 2342 Node* cmp_limit; 2343 Node* bol; 2344 if (stride_con > 0) { 2345 cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt)); 2346 bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::lt)); 2347 } else { 2348 cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt)); 2349 bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::gt)); 2350 } 2351 2352 // Check if there is already a dominating init < limit check. If so, we do not need a Loop Limit Check Predicate. 2353 IfNode* iff = new IfNode(loop_entry, bol, PROB_MIN, COUNT_UNKNOWN); 2354 // Also add fake IfProj nodes in order to call transform() on the newly created IfNode. 2355 IfFalseNode* if_false = new IfFalseNode(iff); 2356 IfTrueNode* if_true = new IfTrueNode(iff); 2357 Node* dominated_iff = _igvn.transform(iff); 2358 // ConI node? Found dominating test (IfNode::dominated_by() returns a ConI node). 2359 const bool found_dominating_test = dominated_iff != nullptr && dominated_iff->is_ConI(); 2360 2361 // Kill the If with its projections again in the next IGVN round by cutting it off from the graph. 2362 _igvn.replace_input_of(iff, 0, C->top()); 2363 _igvn.replace_input_of(iff, 1, C->top()); 2364 return found_dominating_test; 2365 } 2366 2367 //----------------------exact_limit------------------------------------------- 2368 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) { 2369 assert(loop->_head->is_CountedLoop(), ""); 2370 CountedLoopNode *cl = loop->_head->as_CountedLoop(); 2371 assert(cl->is_valid_counted_loop(T_INT), ""); 2372 2373 if (cl->stride_con() == 1 || 2374 cl->stride_con() == -1 || 2375 cl->limit()->Opcode() == Op_LoopLimit) { 2376 // Old code has exact limit (it could be incorrect in case of int overflow). 2377 // Loop limit is exact with stride == 1. And loop may already have exact limit. 2378 return cl->limit(); 2379 } 2380 Node *limit = nullptr; 2381 #ifdef ASSERT 2382 BoolTest::mask bt = cl->loopexit()->test_trip(); 2383 assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected"); 2384 #endif 2385 if (cl->has_exact_trip_count()) { 2386 // Simple case: loop has constant boundaries. 2387 // Use jlongs to avoid integer overflow. 2388 int stride_con = cl->stride_con(); 2389 jlong init_con = cl->init_trip()->get_int(); 2390 jlong limit_con = cl->limit()->get_int(); 2391 julong trip_cnt = cl->trip_count(); 2392 jlong final_con = init_con + trip_cnt*stride_con; 2393 int final_int = (int)final_con; 2394 // The final value should be in integer range since the loop 2395 // is counted and the limit was checked for overflow. 2396 assert(final_con == (jlong)final_int, "final value should be integer"); 2397 limit = _igvn.intcon(final_int); 2398 } else { 2399 // Create new LoopLimit node to get exact limit (final iv value). 2400 limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride()); 2401 register_new_node(limit, cl->in(LoopNode::EntryControl)); 2402 } 2403 assert(limit != nullptr, "sanity"); 2404 return limit; 2405 } 2406 2407 //------------------------------Ideal------------------------------------------ 2408 // Return a node which is more "ideal" than the current node. 2409 // Attempt to convert into a counted-loop. 2410 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2411 if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) { 2412 phase->C->set_major_progress(); 2413 } 2414 return RegionNode::Ideal(phase, can_reshape); 2415 } 2416 2417 #ifdef ASSERT 2418 void LoopNode::verify_strip_mined(int expect_skeleton) const { 2419 const OuterStripMinedLoopNode* outer = nullptr; 2420 const CountedLoopNode* inner = nullptr; 2421 if (is_strip_mined()) { 2422 if (!is_valid_counted_loop(T_INT)) { 2423 return; // Skip malformed counted loop 2424 } 2425 assert(is_CountedLoop(), "no Loop should be marked strip mined"); 2426 inner = as_CountedLoop(); 2427 outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop(); 2428 } else if (is_OuterStripMinedLoop()) { 2429 outer = this->as_OuterStripMinedLoop(); 2430 inner = outer->unique_ctrl_out()->as_CountedLoop(); 2431 assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed"); 2432 assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined"); 2433 } 2434 if (inner != nullptr || outer != nullptr) { 2435 assert(inner != nullptr && outer != nullptr, "missing loop in strip mined nest"); 2436 Node* outer_tail = outer->in(LoopNode::LoopBackControl); 2437 Node* outer_le = outer_tail->in(0); 2438 assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If"); 2439 Node* sfpt = outer_le->in(0); 2440 assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?"); 2441 Node* inner_out = sfpt->in(0); 2442 CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd(); 2443 assert(cle == inner->loopexit_or_null(), "mismatch"); 2444 bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0; 2445 if (has_skeleton) { 2446 assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node"); 2447 assert(outer->outcnt() == 2, "only control nodes"); 2448 } else { 2449 assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?"); 2450 uint phis = 0; 2451 uint be_loads = 0; 2452 Node* be = inner->in(LoopNode::LoopBackControl); 2453 for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) { 2454 Node* u = inner->fast_out(i); 2455 if (u->is_Phi()) { 2456 phis++; 2457 for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) { 2458 Node* n = be->fast_out(j); 2459 if (n->is_Load()) { 2460 assert(n->in(0) == be || n->find_prec_edge(be) > 0, "should be on the backedge"); 2461 do { 2462 n = n->raw_out(0); 2463 } while (!n->is_Phi()); 2464 if (n == u) { 2465 be_loads++; 2466 break; 2467 } 2468 } 2469 } 2470 } 2471 } 2472 assert(be_loads <= phis, "wrong number phis that depends on a pinned load"); 2473 for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) { 2474 Node* u = outer->fast_out(i); 2475 assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop"); 2476 } 2477 uint stores = 0; 2478 for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) { 2479 Node* u = inner_out->fast_out(i); 2480 if (u->is_Store()) { 2481 stores++; 2482 } 2483 } 2484 // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is 2485 // not guaranteed to be optimized out. 2486 assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis"); 2487 } 2488 assert(sfpt->outcnt() == 1, "no data node"); 2489 assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node"); 2490 } 2491 } 2492 #endif 2493 2494 //============================================================================= 2495 //------------------------------Ideal------------------------------------------ 2496 // Return a node which is more "ideal" than the current node. 2497 // Attempt to convert into a counted-loop. 2498 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2499 return RegionNode::Ideal(phase, can_reshape); 2500 } 2501 2502 //------------------------------dump_spec-------------------------------------- 2503 // Dump special per-node info 2504 #ifndef PRODUCT 2505 void CountedLoopNode::dump_spec(outputStream *st) const { 2506 LoopNode::dump_spec(st); 2507 if (stride_is_con()) { 2508 st->print("stride: %d ",stride_con()); 2509 } 2510 if (is_pre_loop ()) st->print("pre of N%d" , _main_idx); 2511 if (is_main_loop()) st->print("main of N%d", _idx); 2512 if (is_post_loop()) st->print("post of N%d", _main_idx); 2513 if (is_strip_mined()) st->print(" strip mined"); 2514 } 2515 #endif 2516 2517 //============================================================================= 2518 jlong BaseCountedLoopEndNode::stride_con() const { 2519 return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt()); 2520 } 2521 2522 2523 BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) { 2524 if (bt == T_INT) { 2525 return new CountedLoopEndNode(control, test, prob, cnt); 2526 } 2527 assert(bt == T_LONG, "unsupported"); 2528 return new LongCountedLoopEndNode(control, test, prob, cnt); 2529 } 2530 2531 //============================================================================= 2532 //------------------------------Value----------------------------------------- 2533 const Type* LoopLimitNode::Value(PhaseGVN* phase) const { 2534 const Type* init_t = phase->type(in(Init)); 2535 const Type* limit_t = phase->type(in(Limit)); 2536 const Type* stride_t = phase->type(in(Stride)); 2537 // Either input is TOP ==> the result is TOP 2538 if (init_t == Type::TOP) return Type::TOP; 2539 if (limit_t == Type::TOP) return Type::TOP; 2540 if (stride_t == Type::TOP) return Type::TOP; 2541 2542 int stride_con = stride_t->is_int()->get_con(); 2543 if (stride_con == 1) 2544 return bottom_type(); // Identity 2545 2546 if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) { 2547 // Use jlongs to avoid integer overflow. 2548 jlong init_con = init_t->is_int()->get_con(); 2549 jlong limit_con = limit_t->is_int()->get_con(); 2550 int stride_m = stride_con - (stride_con > 0 ? 1 : -1); 2551 jlong trip_count = (limit_con - init_con + stride_m)/stride_con; 2552 jlong final_con = init_con + stride_con*trip_count; 2553 int final_int = (int)final_con; 2554 // The final value should be in integer range in almost all cases, 2555 // since the loop is counted and the limit was checked for overflow. 2556 // There some exceptions, for example: 2557 // - During CCP, there might be a temporary overflow from PhiNodes, see JDK-8309266. 2558 // - During PhaseIdealLoop::split_thru_phi, the LoopLimitNode floats possibly far above 2559 // the loop and its predicates, and we might get constants on one side of the phi that 2560 // would lead to overflows. Such a code path would never lead us to enter the loop 2561 // because of the loop limit overflow check that happens after the LoopLimitNode 2562 // computation with overflow, but before we enter the loop, see JDK-8335747. 2563 if (final_con == (jlong)final_int) { 2564 return TypeInt::make(final_int); 2565 } else { 2566 return bottom_type(); 2567 } 2568 } 2569 2570 return bottom_type(); // TypeInt::INT 2571 } 2572 2573 //------------------------------Ideal------------------------------------------ 2574 // Return a node which is more "ideal" than the current node. 2575 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2576 if (phase->type(in(Init)) == Type::TOP || 2577 phase->type(in(Limit)) == Type::TOP || 2578 phase->type(in(Stride)) == Type::TOP) 2579 return nullptr; // Dead 2580 2581 int stride_con = phase->type(in(Stride))->is_int()->get_con(); 2582 if (stride_con == 1) 2583 return nullptr; // Identity 2584 2585 // Delay following optimizations until all loop optimizations 2586 // done to keep Ideal graph simple. 2587 if (!can_reshape || !phase->C->post_loop_opts_phase()) { 2588 phase->C->record_for_post_loop_opts_igvn(this); 2589 return nullptr; 2590 } 2591 2592 const TypeInt* init_t = phase->type(in(Init) )->is_int(); 2593 const TypeInt* limit_t = phase->type(in(Limit))->is_int(); 2594 jlong stride_p; 2595 jlong lim, ini; 2596 julong max; 2597 if (stride_con > 0) { 2598 stride_p = stride_con; 2599 lim = limit_t->_hi; 2600 ini = init_t->_lo; 2601 max = (julong)max_jint; 2602 } else { 2603 stride_p = -(jlong)stride_con; 2604 lim = init_t->_hi; 2605 ini = limit_t->_lo; 2606 max = (julong)(juint)min_jint; // double cast to get 0x0000000080000000, not 0xffffffff80000000 2607 } 2608 julong range = lim - ini + stride_p; 2609 if (range <= max) { 2610 // Convert to integer expression if it is not overflow. 2611 Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1)); 2612 Node *range = phase->transform(new SubINode(in(Limit), in(Init))); 2613 Node *bias = phase->transform(new AddINode(range, stride_m)); 2614 Node *trip = phase->transform(new DivINode(nullptr, bias, in(Stride))); 2615 Node *span = phase->transform(new MulINode(trip, in(Stride))); 2616 return new AddINode(span, in(Init)); // exact limit 2617 } 2618 2619 if (is_power_of_2(stride_p) || // divisor is 2^n 2620 !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node? 2621 // Convert to long expression to avoid integer overflow 2622 // and let igvn optimizer convert this division. 2623 // 2624 Node* init = phase->transform( new ConvI2LNode(in(Init))); 2625 Node* limit = phase->transform( new ConvI2LNode(in(Limit))); 2626 Node* stride = phase->longcon(stride_con); 2627 Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1)); 2628 2629 Node *range = phase->transform(new SubLNode(limit, init)); 2630 Node *bias = phase->transform(new AddLNode(range, stride_m)); 2631 Node *span; 2632 if (stride_con > 0 && is_power_of_2(stride_p)) { 2633 // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride) 2634 // and avoid generating rounding for division. Zero trip guard should 2635 // guarantee that init < limit but sometimes the guard is missing and 2636 // we can get situation when init > limit. Note, for the empty loop 2637 // optimization zero trip guard is generated explicitly which leaves 2638 // only RCE predicate where exact limit is used and the predicate 2639 // will simply fail forcing recompilation. 2640 Node* neg_stride = phase->longcon(-stride_con); 2641 span = phase->transform(new AndLNode(bias, neg_stride)); 2642 } else { 2643 Node *trip = phase->transform(new DivLNode(nullptr, bias, stride)); 2644 span = phase->transform(new MulLNode(trip, stride)); 2645 } 2646 // Convert back to int 2647 Node *span_int = phase->transform(new ConvL2INode(span)); 2648 return new AddINode(span_int, in(Init)); // exact limit 2649 } 2650 2651 return nullptr; // No progress 2652 } 2653 2654 //------------------------------Identity--------------------------------------- 2655 // If stride == 1 return limit node. 2656 Node* LoopLimitNode::Identity(PhaseGVN* phase) { 2657 int stride_con = phase->type(in(Stride))->is_int()->get_con(); 2658 if (stride_con == 1 || stride_con == -1) 2659 return in(Limit); 2660 return this; 2661 } 2662 2663 //============================================================================= 2664 //----------------------match_incr_with_optional_truncation-------------------- 2665 // Match increment with optional truncation: 2666 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16 2667 // Return null for failure. Success returns the increment node. 2668 Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, 2669 const TypeInteger** trunc_type, 2670 BasicType bt) { 2671 // Quick cutouts: 2672 if (expr == nullptr || expr->req() != 3) return nullptr; 2673 2674 Node *t1 = nullptr; 2675 Node *t2 = nullptr; 2676 Node* n1 = expr; 2677 int n1op = n1->Opcode(); 2678 const TypeInteger* trunc_t = TypeInteger::bottom(bt); 2679 2680 if (bt == T_INT) { 2681 // Try to strip (n1 & M) or (n1 << N >> N) from n1. 2682 if (n1op == Op_AndI && 2683 n1->in(2)->is_Con() && 2684 n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) { 2685 // %%% This check should match any mask of 2**K-1. 2686 t1 = n1; 2687 n1 = t1->in(1); 2688 n1op = n1->Opcode(); 2689 trunc_t = TypeInt::CHAR; 2690 } else if (n1op == Op_RShiftI && 2691 n1->in(1) != nullptr && 2692 n1->in(1)->Opcode() == Op_LShiftI && 2693 n1->in(2) == n1->in(1)->in(2) && 2694 n1->in(2)->is_Con()) { 2695 jint shift = n1->in(2)->bottom_type()->is_int()->get_con(); 2696 // %%% This check should match any shift in [1..31]. 2697 if (shift == 16 || shift == 8) { 2698 t1 = n1; 2699 t2 = t1->in(1); 2700 n1 = t2->in(1); 2701 n1op = n1->Opcode(); 2702 if (shift == 16) { 2703 trunc_t = TypeInt::SHORT; 2704 } else if (shift == 8) { 2705 trunc_t = TypeInt::BYTE; 2706 } 2707 } 2708 } 2709 } 2710 2711 // If (maybe after stripping) it is an AddI, we won: 2712 if (n1op == Op_Add(bt)) { 2713 *trunc1 = t1; 2714 *trunc2 = t2; 2715 *trunc_type = trunc_t; 2716 return n1; 2717 } 2718 2719 // failed 2720 return nullptr; 2721 } 2722 2723 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) { 2724 if (is_strip_mined() && in(EntryControl) != nullptr && in(EntryControl)->is_OuterStripMinedLoop()) { 2725 verify_strip_mined(expect_skeleton); 2726 return in(EntryControl)->as_Loop(); 2727 } 2728 return this; 2729 } 2730 2731 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const { 2732 assert(is_strip_mined(), "not a strip mined loop"); 2733 Node* c = in(EntryControl); 2734 if (c == nullptr || c->is_top() || !c->is_OuterStripMinedLoop()) { 2735 return nullptr; 2736 } 2737 return c->as_OuterStripMinedLoop(); 2738 } 2739 2740 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const { 2741 Node* c = in(LoopBackControl); 2742 if (c == nullptr || c->is_top()) { 2743 return nullptr; 2744 } 2745 return c->as_IfTrue(); 2746 } 2747 2748 IfTrueNode* CountedLoopNode::outer_loop_tail() const { 2749 LoopNode* l = outer_loop(); 2750 if (l == nullptr) { 2751 return nullptr; 2752 } 2753 return l->outer_loop_tail(); 2754 } 2755 2756 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const { 2757 IfTrueNode* proj = outer_loop_tail(); 2758 if (proj == nullptr) { 2759 return nullptr; 2760 } 2761 Node* c = proj->in(0); 2762 if (c == nullptr || c->is_top() || c->outcnt() != 2) { 2763 return nullptr; 2764 } 2765 return c->as_OuterStripMinedLoopEnd(); 2766 } 2767 2768 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const { 2769 LoopNode* l = outer_loop(); 2770 if (l == nullptr) { 2771 return nullptr; 2772 } 2773 return l->outer_loop_end(); 2774 } 2775 2776 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const { 2777 IfNode* le = outer_loop_end(); 2778 if (le == nullptr) { 2779 return nullptr; 2780 } 2781 Node* c = le->proj_out_or_null(false); 2782 if (c == nullptr) { 2783 return nullptr; 2784 } 2785 return c->as_IfFalse(); 2786 } 2787 2788 IfFalseNode* CountedLoopNode::outer_loop_exit() const { 2789 LoopNode* l = outer_loop(); 2790 if (l == nullptr) { 2791 return nullptr; 2792 } 2793 return l->outer_loop_exit(); 2794 } 2795 2796 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const { 2797 IfNode* le = outer_loop_end(); 2798 if (le == nullptr) { 2799 return nullptr; 2800 } 2801 Node* c = le->in(0); 2802 if (c == nullptr || c->is_top()) { 2803 return nullptr; 2804 } 2805 assert(c->Opcode() == Op_SafePoint, "broken outer loop"); 2806 return c->as_SafePoint(); 2807 } 2808 2809 SafePointNode* CountedLoopNode::outer_safepoint() const { 2810 LoopNode* l = outer_loop(); 2811 if (l == nullptr) { 2812 return nullptr; 2813 } 2814 return l->outer_safepoint(); 2815 } 2816 2817 Node* CountedLoopNode::skip_assertion_predicates_with_halt() { 2818 Node* ctrl = in(LoopNode::EntryControl); 2819 if (ctrl == nullptr) { 2820 // Dying loop. 2821 return nullptr; 2822 } 2823 if (is_main_loop()) { 2824 ctrl = skip_strip_mined()->in(LoopNode::EntryControl); 2825 } 2826 if (is_main_loop() || is_post_loop()) { 2827 AssertionPredicates assertion_predicates(ctrl); 2828 return assertion_predicates.entry(); 2829 } 2830 return ctrl; 2831 } 2832 2833 2834 int CountedLoopNode::stride_con() const { 2835 CountedLoopEndNode* cle = loopexit_or_null(); 2836 return cle != nullptr ? cle->stride_con() : 0; 2837 } 2838 2839 BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) { 2840 if (bt == T_INT) { 2841 return new CountedLoopNode(entry, backedge); 2842 } 2843 assert(bt == T_LONG, "unsupported"); 2844 return new LongCountedLoopNode(entry, backedge); 2845 } 2846 2847 void OuterStripMinedLoopNode::fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn, 2848 PhaseIdealLoop* iloop) { 2849 Node* cle_out = inner_cle->proj_out(false); 2850 Node* cle_tail = inner_cle->proj_out(true); 2851 if (cle_out->outcnt() > 1) { 2852 // Look for chains of stores that were sunk 2853 // out of the inner loop and are in the outer loop 2854 for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) { 2855 Node* u = cle_out->fast_out(i); 2856 if (u->is_Store()) { 2857 int alias_idx = igvn->C->get_alias_index(u->adr_type()); 2858 Node* first = u; 2859 for (;;) { 2860 Node* next = first->in(MemNode::Memory); 2861 if (!next->is_Store() || next->in(0) != cle_out) { 2862 break; 2863 } 2864 assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, ""); 2865 first = next; 2866 } 2867 Node* last = u; 2868 for (;;) { 2869 Node* next = nullptr; 2870 for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) { 2871 Node* uu = last->fast_out(j); 2872 if (uu->is_Store() && uu->in(0) == cle_out) { 2873 assert(next == nullptr, "only one in the outer loop"); 2874 next = uu; 2875 assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, ""); 2876 } 2877 } 2878 if (next == nullptr) { 2879 break; 2880 } 2881 last = next; 2882 } 2883 Node* phi = nullptr; 2884 for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) { 2885 Node* uu = inner_cl->fast_out(j); 2886 if (uu->is_Phi()) { 2887 Node* be = uu->in(LoopNode::LoopBackControl); 2888 if (be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)) { 2889 assert(igvn->C->get_alias_index(uu->adr_type()) != alias_idx && igvn->C->get_alias_index(uu->adr_type()) != Compile::AliasIdxBot, "unexpected store"); 2890 } 2891 if (be == last || be == first->in(MemNode::Memory)) { 2892 assert(igvn->C->get_alias_index(uu->adr_type()) == alias_idx || igvn->C->get_alias_index(uu->adr_type()) == Compile::AliasIdxBot, "unexpected alias"); 2893 assert(phi == nullptr, "only one phi"); 2894 phi = uu; 2895 } 2896 } 2897 } 2898 #ifdef ASSERT 2899 for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) { 2900 Node* uu = inner_cl->fast_out(j); 2901 if (uu->is_memory_phi()) { 2902 if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) { 2903 assert(phi == uu, "what's that phi?"); 2904 } else if (uu->adr_type() == TypePtr::BOTTOM) { 2905 Node* n = uu->in(LoopNode::LoopBackControl); 2906 uint limit = igvn->C->live_nodes(); 2907 uint i = 0; 2908 while (n != uu) { 2909 i++; 2910 assert(i < limit, "infinite loop"); 2911 if (n->is_Proj()) { 2912 n = n->in(0); 2913 } else if (n->is_SafePoint() || n->is_MemBar()) { 2914 n = n->in(TypeFunc::Memory); 2915 } else if (n->is_Phi()) { 2916 n = n->in(1); 2917 } else if (n->is_MergeMem()) { 2918 n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type())); 2919 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) { 2920 n = n->in(MemNode::Memory); 2921 } else { 2922 n->dump(); 2923 ShouldNotReachHere(); 2924 } 2925 } 2926 } 2927 } 2928 } 2929 #endif 2930 if (phi == nullptr) { 2931 // If an entire chains was sunk, the 2932 // inner loop has no phi for that memory 2933 // slice, create one for the outer loop 2934 phi = PhiNode::make(inner_cl, first->in(MemNode::Memory), Type::MEMORY, 2935 igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))); 2936 phi->set_req(LoopNode::LoopBackControl, last); 2937 phi = register_new_node(phi, inner_cl, igvn, iloop); 2938 igvn->replace_input_of(first, MemNode::Memory, phi); 2939 } else { 2940 // Or fix the outer loop fix to include 2941 // that chain of stores. 2942 Node* be = phi->in(LoopNode::LoopBackControl); 2943 assert(!(be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)), "store on the backedge + sunk stores: unsupported"); 2944 if (be == first->in(MemNode::Memory)) { 2945 if (be == phi->in(LoopNode::LoopBackControl)) { 2946 igvn->replace_input_of(phi, LoopNode::LoopBackControl, last); 2947 } else { 2948 igvn->replace_input_of(be, MemNode::Memory, last); 2949 } 2950 } else { 2951 #ifdef ASSERT 2952 if (be == phi->in(LoopNode::LoopBackControl)) { 2953 assert(phi->in(LoopNode::LoopBackControl) == last, ""); 2954 } else { 2955 assert(be->in(MemNode::Memory) == last, ""); 2956 } 2957 #endif 2958 } 2959 } 2960 } 2961 } 2962 } 2963 } 2964 2965 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) { 2966 // Look for the outer & inner strip mined loop, reduce number of 2967 // iterations of the inner loop, set exit condition of outer loop, 2968 // construct required phi nodes for outer loop. 2969 CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); 2970 assert(inner_cl->is_strip_mined(), "inner loop should be strip mined"); 2971 if (LoopStripMiningIter == 0) { 2972 remove_outer_loop_and_safepoint(igvn); 2973 return; 2974 } 2975 if (LoopStripMiningIter == 1) { 2976 transform_to_counted_loop(igvn, nullptr); 2977 return; 2978 } 2979 Node* inner_iv_phi = inner_cl->phi(); 2980 if (inner_iv_phi == nullptr) { 2981 IfNode* outer_le = outer_loop_end(); 2982 Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); 2983 igvn->replace_node(outer_le, iff); 2984 inner_cl->clear_strip_mined(); 2985 return; 2986 } 2987 CountedLoopEndNode* inner_cle = inner_cl->loopexit(); 2988 2989 int stride = inner_cl->stride_con(); 2990 // For a min int stride, LoopStripMiningIter * stride overflows the int range for all values of LoopStripMiningIter 2991 // except 0 or 1. Those values are handled early on in this method and causes the method to return. So for a min int 2992 // stride, the method is guaranteed to return at the next check below. 2993 jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS((jlong)stride); 2994 int scaled_iters = (int)scaled_iters_long; 2995 if ((jlong)scaled_iters != scaled_iters_long) { 2996 // Remove outer loop and safepoint (too few iterations) 2997 remove_outer_loop_and_safepoint(igvn); 2998 return; 2999 } 3000 jlong short_scaled_iters = LoopStripMiningIterShortLoop * ABS(stride); 3001 const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int(); 3002 jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo; 3003 assert(iter_estimate > 0, "broken"); 3004 if (iter_estimate <= short_scaled_iters) { 3005 // Remove outer loop and safepoint: loop executes less than LoopStripMiningIterShortLoop 3006 remove_outer_loop_and_safepoint(igvn); 3007 return; 3008 } 3009 if (iter_estimate <= scaled_iters_long) { 3010 // We would only go through one iteration of 3011 // the outer loop: drop the outer loop but 3012 // keep the safepoint so we don't run for 3013 // too long without a safepoint 3014 IfNode* outer_le = outer_loop_end(); 3015 Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); 3016 igvn->replace_node(outer_le, iff); 3017 inner_cl->clear_strip_mined(); 3018 return; 3019 } 3020 3021 Node* cle_tail = inner_cle->proj_out(true); 3022 ResourceMark rm; 3023 Node_List old_new; 3024 if (cle_tail->outcnt() > 1) { 3025 // Look for nodes on backedge of inner loop and clone them 3026 Unique_Node_List backedge_nodes; 3027 for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) { 3028 Node* u = cle_tail->fast_out(i); 3029 if (u != inner_cl) { 3030 assert(!u->is_CFG(), "control flow on the backedge?"); 3031 backedge_nodes.push(u); 3032 } 3033 } 3034 uint last = igvn->C->unique(); 3035 for (uint next = 0; next < backedge_nodes.size(); next++) { 3036 Node* n = backedge_nodes.at(next); 3037 old_new.map(n->_idx, n->clone()); 3038 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3039 Node* u = n->fast_out(i); 3040 assert(!u->is_CFG(), "broken"); 3041 if (u->_idx >= last) { 3042 continue; 3043 } 3044 if (!u->is_Phi()) { 3045 backedge_nodes.push(u); 3046 } else { 3047 assert(u->in(0) == inner_cl, "strange phi on the backedge"); 3048 } 3049 } 3050 } 3051 // Put the clones on the outer loop backedge 3052 Node* le_tail = outer_loop_tail(); 3053 for (uint next = 0; next < backedge_nodes.size(); next++) { 3054 Node *n = old_new[backedge_nodes.at(next)->_idx]; 3055 for (uint i = 1; i < n->req(); i++) { 3056 if (n->in(i) != nullptr && old_new[n->in(i)->_idx] != nullptr) { 3057 n->set_req(i, old_new[n->in(i)->_idx]); 3058 } 3059 } 3060 if (n->in(0) != nullptr && n->in(0) == cle_tail) { 3061 n->set_req(0, le_tail); 3062 } 3063 igvn->register_new_node_with_optimizer(n); 3064 } 3065 } 3066 3067 Node* iv_phi = nullptr; 3068 // Make a clone of each phi in the inner loop 3069 // for the outer loop 3070 for (uint i = 0; i < inner_cl->outcnt(); i++) { 3071 Node* u = inner_cl->raw_out(i); 3072 if (u->is_Phi()) { 3073 assert(u->in(0) == inner_cl, "inconsistent"); 3074 Node* phi = u->clone(); 3075 phi->set_req(0, this); 3076 Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx]; 3077 if (be != nullptr) { 3078 phi->set_req(LoopNode::LoopBackControl, be); 3079 } 3080 phi = igvn->transform(phi); 3081 igvn->replace_input_of(u, LoopNode::EntryControl, phi); 3082 if (u == inner_iv_phi) { 3083 iv_phi = phi; 3084 } 3085 } 3086 } 3087 3088 if (iv_phi != nullptr) { 3089 // Now adjust the inner loop's exit condition 3090 Node* limit = inner_cl->limit(); 3091 // If limit < init for stride > 0 (or limit > init for stride < 0), 3092 // the loop body is run only once. Given limit - init (init - limit resp.) 3093 // would be negative, the unsigned comparison below would cause 3094 // the loop body to be run for LoopStripMiningIter. 3095 Node* max = nullptr; 3096 if (stride > 0) { 3097 max = MaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn); 3098 } else { 3099 max = MaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn); 3100 } 3101 // sub is positive and can be larger than the max signed int 3102 // value. Use an unsigned min. 3103 Node* const_iters = igvn->intcon(scaled_iters); 3104 Node* min = MaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn); 3105 // min is the number of iterations for the next inner loop execution: 3106 // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0 3107 // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0 3108 3109 Node* new_limit = nullptr; 3110 if (stride > 0) { 3111 new_limit = igvn->transform(new AddINode(min, iv_phi)); 3112 } else { 3113 new_limit = igvn->transform(new SubINode(iv_phi, min)); 3114 } 3115 Node* inner_cmp = inner_cle->cmp_node(); 3116 Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue); 3117 Node* outer_bol = inner_bol; 3118 // cmp node for inner loop may be shared 3119 inner_cmp = inner_cmp->clone(); 3120 inner_cmp->set_req(2, new_limit); 3121 inner_bol = inner_bol->clone(); 3122 inner_bol->set_req(1, igvn->transform(inner_cmp)); 3123 igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol)); 3124 // Set the outer loop's exit condition too 3125 igvn->replace_input_of(outer_loop_end(), 1, outer_bol); 3126 } else { 3127 assert(false, "should be able to adjust outer loop"); 3128 IfNode* outer_le = outer_loop_end(); 3129 Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); 3130 igvn->replace_node(outer_le, iff); 3131 inner_cl->clear_strip_mined(); 3132 } 3133 } 3134 3135 void OuterStripMinedLoopNode::transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) { 3136 CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); 3137 CountedLoopEndNode* cle = inner_cl->loopexit(); 3138 Node* inner_test = cle->in(1); 3139 IfNode* outer_le = outer_loop_end(); 3140 CountedLoopEndNode* inner_cle = inner_cl->loopexit(); 3141 Node* safepoint = outer_safepoint(); 3142 3143 fix_sunk_stores(inner_cle, inner_cl, igvn, iloop); 3144 3145 // make counted loop exit test always fail 3146 ConINode* zero = igvn->intcon(0); 3147 if (iloop != nullptr) { 3148 iloop->set_root_as_ctrl(zero); 3149 } 3150 igvn->replace_input_of(cle, 1, zero); 3151 // replace outer loop end with CountedLoopEndNode with formers' CLE's exit test 3152 Node* new_end = new CountedLoopEndNode(outer_le->in(0), inner_test, cle->_prob, cle->_fcnt); 3153 register_control(new_end, inner_cl, outer_le->in(0), igvn, iloop); 3154 if (iloop == nullptr) { 3155 igvn->replace_node(outer_le, new_end); 3156 } else { 3157 iloop->lazy_replace(outer_le, new_end); 3158 } 3159 // the backedge of the inner loop must be rewired to the new loop end 3160 Node* backedge = cle->proj_out(true); 3161 igvn->replace_input_of(backedge, 0, new_end); 3162 if (iloop != nullptr) { 3163 iloop->set_idom(backedge, new_end, iloop->dom_depth(new_end) + 1); 3164 } 3165 // make the outer loop go away 3166 igvn->replace_input_of(in(LoopBackControl), 0, igvn->C->top()); 3167 igvn->replace_input_of(this, LoopBackControl, igvn->C->top()); 3168 inner_cl->clear_strip_mined(); 3169 if (iloop != nullptr) { 3170 Unique_Node_List wq; 3171 wq.push(safepoint); 3172 3173 IdealLoopTree* outer_loop_ilt = iloop->get_loop(this); 3174 IdealLoopTree* loop = iloop->get_loop(inner_cl); 3175 3176 for (uint i = 0; i < wq.size(); i++) { 3177 Node* n = wq.at(i); 3178 for (uint j = 0; j < n->req(); ++j) { 3179 Node* in = n->in(j); 3180 if (in == nullptr || in->is_CFG()) { 3181 continue; 3182 } 3183 if (iloop->get_loop(iloop->get_ctrl(in)) != outer_loop_ilt) { 3184 continue; 3185 } 3186 assert(!loop->_body.contains(in), ""); 3187 loop->_body.push(in); 3188 wq.push(in); 3189 } 3190 } 3191 iloop->set_loop(safepoint, loop); 3192 loop->_body.push(safepoint); 3193 iloop->set_loop(safepoint->in(0), loop); 3194 loop->_body.push(safepoint->in(0)); 3195 outer_loop_ilt->_tail = igvn->C->top(); 3196 } 3197 } 3198 3199 void OuterStripMinedLoopNode::remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const { 3200 CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); 3201 Node* outer_sfpt = outer_safepoint(); 3202 Node* outer_out = outer_loop_exit(); 3203 igvn->replace_node(outer_out, outer_sfpt->in(0)); 3204 igvn->replace_input_of(outer_sfpt, 0, igvn->C->top()); 3205 inner_cl->clear_strip_mined(); 3206 } 3207 3208 Node* OuterStripMinedLoopNode::register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop) { 3209 if (iloop == nullptr) { 3210 return igvn->transform(node); 3211 } 3212 iloop->register_new_node(node, ctrl); 3213 return node; 3214 } 3215 3216 Node* OuterStripMinedLoopNode::register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn, 3217 PhaseIdealLoop* iloop) { 3218 if (iloop == nullptr) { 3219 return igvn->transform(node); 3220 } 3221 iloop->register_control(node, iloop->get_loop(loop), idom); 3222 return node; 3223 } 3224 3225 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const { 3226 if (!in(0)) return Type::TOP; 3227 if (phase->type(in(0)) == Type::TOP) 3228 return Type::TOP; 3229 3230 // Until expansion, the loop end condition is not set so this should not constant fold. 3231 if (is_expanded(phase)) { 3232 return IfNode::Value(phase); 3233 } 3234 3235 return TypeTuple::IFBOTH; 3236 } 3237 3238 bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const { 3239 // The outer strip mined loop head only has Phi uses after expansion 3240 if (phase->is_IterGVN()) { 3241 Node* backedge = proj_out_or_null(true); 3242 if (backedge != nullptr) { 3243 Node* head = backedge->unique_ctrl_out_or_null(); 3244 if (head != nullptr && head->is_OuterStripMinedLoop()) { 3245 if (head->find_out_with(Op_Phi) != nullptr) { 3246 return true; 3247 } 3248 } 3249 } 3250 } 3251 return false; 3252 } 3253 3254 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3255 if (remove_dead_region(phase, can_reshape)) return this; 3256 3257 return nullptr; 3258 } 3259 3260 //------------------------------filtered_type-------------------------------- 3261 // Return a type based on condition control flow 3262 // A successful return will be a type that is restricted due 3263 // to a series of dominating if-tests, such as: 3264 // if (i < 10) { 3265 // if (i > 0) { 3266 // here: "i" type is [1..10) 3267 // } 3268 // } 3269 // or a control flow merge 3270 // if (i < 10) { 3271 // do { 3272 // phi( , ) -- at top of loop type is [min_int..10) 3273 // i = ? 3274 // } while ( i < 10) 3275 // 3276 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) { 3277 assert(n && n->bottom_type()->is_int(), "must be int"); 3278 const TypeInt* filtered_t = nullptr; 3279 if (!n->is_Phi()) { 3280 assert(n_ctrl != nullptr || n_ctrl == C->top(), "valid control"); 3281 filtered_t = filtered_type_from_dominators(n, n_ctrl); 3282 3283 } else { 3284 Node* phi = n->as_Phi(); 3285 Node* region = phi->in(0); 3286 assert(n_ctrl == nullptr || n_ctrl == region, "ctrl parameter must be region"); 3287 if (region && region != C->top()) { 3288 for (uint i = 1; i < phi->req(); i++) { 3289 Node* val = phi->in(i); 3290 Node* use_c = region->in(i); 3291 const TypeInt* val_t = filtered_type_from_dominators(val, use_c); 3292 if (val_t != nullptr) { 3293 if (filtered_t == nullptr) { 3294 filtered_t = val_t; 3295 } else { 3296 filtered_t = filtered_t->meet(val_t)->is_int(); 3297 } 3298 } 3299 } 3300 } 3301 } 3302 const TypeInt* n_t = _igvn.type(n)->is_int(); 3303 if (filtered_t != nullptr) { 3304 n_t = n_t->join(filtered_t)->is_int(); 3305 } 3306 return n_t; 3307 } 3308 3309 3310 //------------------------------filtered_type_from_dominators-------------------------------- 3311 // Return a possibly more restrictive type for val based on condition control flow of dominators 3312 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) { 3313 if (val->is_Con()) { 3314 return val->bottom_type()->is_int(); 3315 } 3316 uint if_limit = 10; // Max number of dominating if's visited 3317 const TypeInt* rtn_t = nullptr; 3318 3319 if (use_ctrl && use_ctrl != C->top()) { 3320 Node* val_ctrl = get_ctrl(val); 3321 uint val_dom_depth = dom_depth(val_ctrl); 3322 Node* pred = use_ctrl; 3323 uint if_cnt = 0; 3324 while (if_cnt < if_limit) { 3325 if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) { 3326 if_cnt++; 3327 const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred); 3328 if (if_t != nullptr) { 3329 if (rtn_t == nullptr) { 3330 rtn_t = if_t; 3331 } else { 3332 rtn_t = rtn_t->join(if_t)->is_int(); 3333 } 3334 } 3335 } 3336 pred = idom(pred); 3337 if (pred == nullptr || pred == C->top()) { 3338 break; 3339 } 3340 // Stop if going beyond definition block of val 3341 if (dom_depth(pred) < val_dom_depth) { 3342 break; 3343 } 3344 } 3345 } 3346 return rtn_t; 3347 } 3348 3349 3350 //------------------------------dump_spec-------------------------------------- 3351 // Dump special per-node info 3352 #ifndef PRODUCT 3353 void CountedLoopEndNode::dump_spec(outputStream *st) const { 3354 if( in(TestValue) != nullptr && in(TestValue)->is_Bool() ) { 3355 BoolTest bt( test_trip()); // Added this for g++. 3356 3357 st->print("["); 3358 bt.dump_on(st); 3359 st->print("]"); 3360 } 3361 st->print(" "); 3362 IfNode::dump_spec(st); 3363 } 3364 #endif 3365 3366 //============================================================================= 3367 //------------------------------is_member-------------------------------------- 3368 // Is 'l' a member of 'this'? 3369 bool IdealLoopTree::is_member(const IdealLoopTree *l) const { 3370 while( l->_nest > _nest ) l = l->_parent; 3371 return l == this; 3372 } 3373 3374 //------------------------------set_nest--------------------------------------- 3375 // Set loop tree nesting depth. Accumulate _has_call bits. 3376 int IdealLoopTree::set_nest( uint depth ) { 3377 assert(depth <= SHRT_MAX, "sanity"); 3378 _nest = depth; 3379 int bits = _has_call; 3380 if( _child ) bits |= _child->set_nest(depth+1); 3381 if( bits ) _has_call = 1; 3382 if( _next ) bits |= _next ->set_nest(depth ); 3383 return bits; 3384 } 3385 3386 //------------------------------split_fall_in---------------------------------- 3387 // Split out multiple fall-in edges from the loop header. Move them to a 3388 // private RegionNode before the loop. This becomes the loop landing pad. 3389 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) { 3390 PhaseIterGVN &igvn = phase->_igvn; 3391 uint i; 3392 3393 // Make a new RegionNode to be the landing pad. 3394 RegionNode* landing_pad = new RegionNode(fall_in_cnt + 1); 3395 phase->set_loop(landing_pad,_parent); 3396 // If _head was irreducible loop entry, landing_pad may now be too 3397 landing_pad->set_loop_status(_head->as_Region()->loop_status()); 3398 // Gather all the fall-in control paths into the landing pad 3399 uint icnt = fall_in_cnt; 3400 uint oreq = _head->req(); 3401 for( i = oreq-1; i>0; i-- ) 3402 if( !phase->is_member( this, _head->in(i) ) ) 3403 landing_pad->set_req(icnt--,_head->in(i)); 3404 3405 // Peel off PhiNode edges as well 3406 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { 3407 Node *oj = _head->fast_out(j); 3408 if( oj->is_Phi() ) { 3409 PhiNode* old_phi = oj->as_Phi(); 3410 assert( old_phi->region() == _head, "" ); 3411 igvn.hash_delete(old_phi); // Yank from hash before hacking edges 3412 Node *p = PhiNode::make_blank(landing_pad, old_phi); 3413 uint icnt = fall_in_cnt; 3414 for( i = oreq-1; i>0; i-- ) { 3415 if( !phase->is_member( this, _head->in(i) ) ) { 3416 p->init_req(icnt--, old_phi->in(i)); 3417 // Go ahead and clean out old edges from old phi 3418 old_phi->del_req(i); 3419 } 3420 } 3421 // Search for CSE's here, because ZKM.jar does a lot of 3422 // loop hackery and we need to be a little incremental 3423 // with the CSE to avoid O(N^2) node blow-up. 3424 Node *p2 = igvn.hash_find_insert(p); // Look for a CSE 3425 if( p2 ) { // Found CSE 3426 p->destruct(&igvn); // Recover useless new node 3427 p = p2; // Use old node 3428 } else { 3429 igvn.register_new_node_with_optimizer(p, old_phi); 3430 } 3431 // Make old Phi refer to new Phi. 3432 old_phi->add_req(p); 3433 // Check for the special case of making the old phi useless and 3434 // disappear it. In JavaGrande I have a case where this useless 3435 // Phi is the loop limit and prevents recognizing a CountedLoop 3436 // which in turn prevents removing an empty loop. 3437 Node *id_old_phi = old_phi->Identity(&igvn); 3438 if( id_old_phi != old_phi ) { // Found a simple identity? 3439 // Note that I cannot call 'replace_node' here, because 3440 // that will yank the edge from old_phi to the Region and 3441 // I'm mid-iteration over the Region's uses. 3442 for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) { 3443 Node* use = old_phi->last_out(i); 3444 igvn.rehash_node_delayed(use); 3445 uint uses_found = 0; 3446 for (uint j = 0; j < use->len(); j++) { 3447 if (use->in(j) == old_phi) { 3448 if (j < use->req()) use->set_req (j, id_old_phi); 3449 else use->set_prec(j, id_old_phi); 3450 uses_found++; 3451 } 3452 } 3453 i -= uses_found; // we deleted 1 or more copies of this edge 3454 } 3455 } 3456 igvn._worklist.push(old_phi); 3457 } 3458 } 3459 // Finally clean out the fall-in edges from the RegionNode 3460 for( i = oreq-1; i>0; i-- ) { 3461 if( !phase->is_member( this, _head->in(i) ) ) { 3462 _head->del_req(i); 3463 } 3464 } 3465 igvn.rehash_node_delayed(_head); 3466 // Transform landing pad 3467 igvn.register_new_node_with_optimizer(landing_pad, _head); 3468 // Insert landing pad into the header 3469 _head->add_req(landing_pad); 3470 } 3471 3472 //------------------------------split_outer_loop------------------------------- 3473 // Split out the outermost loop from this shared header. 3474 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) { 3475 PhaseIterGVN &igvn = phase->_igvn; 3476 3477 // Find index of outermost loop; it should also be my tail. 3478 uint outer_idx = 1; 3479 while( _head->in(outer_idx) != _tail ) outer_idx++; 3480 3481 // Make a LoopNode for the outermost loop. 3482 Node *ctl = _head->in(LoopNode::EntryControl); 3483 Node *outer = new LoopNode( ctl, _head->in(outer_idx) ); 3484 outer = igvn.register_new_node_with_optimizer(outer, _head); 3485 phase->set_created_loop_node(); 3486 3487 // Outermost loop falls into '_head' loop 3488 _head->set_req(LoopNode::EntryControl, outer); 3489 _head->del_req(outer_idx); 3490 // Split all the Phis up between '_head' loop and 'outer' loop. 3491 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { 3492 Node *out = _head->fast_out(j); 3493 if( out->is_Phi() ) { 3494 PhiNode *old_phi = out->as_Phi(); 3495 assert( old_phi->region() == _head, "" ); 3496 Node *phi = PhiNode::make_blank(outer, old_phi); 3497 phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl)); 3498 phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx)); 3499 phi = igvn.register_new_node_with_optimizer(phi, old_phi); 3500 // Make old Phi point to new Phi on the fall-in path 3501 igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi); 3502 old_phi->del_req(outer_idx); 3503 } 3504 } 3505 3506 // Use the new loop head instead of the old shared one 3507 _head = outer; 3508 phase->set_loop(_head, this); 3509 } 3510 3511 //------------------------------fix_parent------------------------------------- 3512 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) { 3513 loop->_parent = parent; 3514 if( loop->_child ) fix_parent( loop->_child, loop ); 3515 if( loop->_next ) fix_parent( loop->_next , parent ); 3516 } 3517 3518 //------------------------------estimate_path_freq----------------------------- 3519 static float estimate_path_freq( Node *n ) { 3520 // Try to extract some path frequency info 3521 IfNode *iff; 3522 for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests 3523 uint nop = n->Opcode(); 3524 if( nop == Op_SafePoint ) { // Skip any safepoint 3525 n = n->in(0); 3526 continue; 3527 } 3528 if( nop == Op_CatchProj ) { // Get count from a prior call 3529 // Assume call does not always throw exceptions: means the call-site 3530 // count is also the frequency of the fall-through path. 3531 assert( n->is_CatchProj(), "" ); 3532 if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index ) 3533 return 0.0f; // Assume call exception path is rare 3534 Node *call = n->in(0)->in(0)->in(0); 3535 assert( call->is_Call(), "expect a call here" ); 3536 const JVMState *jvms = ((CallNode*)call)->jvms(); 3537 ciMethodData* methodData = jvms->method()->method_data(); 3538 if (!methodData->is_mature()) return 0.0f; // No call-site data 3539 ciProfileData* data = methodData->bci_to_data(jvms->bci()); 3540 if ((data == nullptr) || !data->is_CounterData()) { 3541 // no call profile available, try call's control input 3542 n = n->in(0); 3543 continue; 3544 } 3545 return data->as_CounterData()->count()/FreqCountInvocations; 3546 } 3547 // See if there's a gating IF test 3548 Node *n_c = n->in(0); 3549 if( !n_c->is_If() ) break; // No estimate available 3550 iff = n_c->as_If(); 3551 if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count? 3552 // Compute how much count comes on this path 3553 return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt; 3554 // Have no count info. Skip dull uncommon-trap like branches. 3555 if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) || 3556 (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) ) 3557 break; 3558 // Skip through never-taken branch; look for a real loop exit. 3559 n = iff->in(0); 3560 } 3561 return 0.0f; // No estimate available 3562 } 3563 3564 //------------------------------merge_many_backedges--------------------------- 3565 // Merge all the backedges from the shared header into a private Region. 3566 // Feed that region as the one backedge to this loop. 3567 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) { 3568 uint i; 3569 3570 // Scan for the top 2 hottest backedges 3571 float hotcnt = 0.0f; 3572 float warmcnt = 0.0f; 3573 uint hot_idx = 0; 3574 // Loop starts at 2 because slot 1 is the fall-in path 3575 for( i = 2; i < _head->req(); i++ ) { 3576 float cnt = estimate_path_freq(_head->in(i)); 3577 if( cnt > hotcnt ) { // Grab hottest path 3578 warmcnt = hotcnt; 3579 hotcnt = cnt; 3580 hot_idx = i; 3581 } else if( cnt > warmcnt ) { // And 2nd hottest path 3582 warmcnt = cnt; 3583 } 3584 } 3585 3586 // See if the hottest backedge is worthy of being an inner loop 3587 // by being much hotter than the next hottest backedge. 3588 if( hotcnt <= 0.0001 || 3589 hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge 3590 3591 // Peel out the backedges into a private merge point; peel 3592 // them all except optionally hot_idx. 3593 PhaseIterGVN &igvn = phase->_igvn; 3594 3595 Node *hot_tail = nullptr; 3596 // Make a Region for the merge point 3597 Node *r = new RegionNode(1); 3598 for( i = 2; i < _head->req(); i++ ) { 3599 if( i != hot_idx ) 3600 r->add_req( _head->in(i) ); 3601 else hot_tail = _head->in(i); 3602 } 3603 igvn.register_new_node_with_optimizer(r, _head); 3604 // Plug region into end of loop _head, followed by hot_tail 3605 while( _head->req() > 3 ) _head->del_req( _head->req()-1 ); 3606 igvn.replace_input_of(_head, 2, r); 3607 if( hot_idx ) _head->add_req(hot_tail); 3608 3609 // Split all the Phis up between '_head' loop and the Region 'r' 3610 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { 3611 Node *out = _head->fast_out(j); 3612 if( out->is_Phi() ) { 3613 PhiNode* n = out->as_Phi(); 3614 igvn.hash_delete(n); // Delete from hash before hacking edges 3615 Node *hot_phi = nullptr; 3616 Node *phi = new PhiNode(r, n->type(), n->adr_type()); 3617 // Check all inputs for the ones to peel out 3618 uint j = 1; 3619 for( uint i = 2; i < n->req(); i++ ) { 3620 if( i != hot_idx ) 3621 phi->set_req( j++, n->in(i) ); 3622 else hot_phi = n->in(i); 3623 } 3624 // Register the phi but do not transform until whole place transforms 3625 igvn.register_new_node_with_optimizer(phi, n); 3626 // Add the merge phi to the old Phi 3627 while( n->req() > 3 ) n->del_req( n->req()-1 ); 3628 igvn.replace_input_of(n, 2, phi); 3629 if( hot_idx ) n->add_req(hot_phi); 3630 } 3631 } 3632 3633 3634 // Insert a new IdealLoopTree inserted below me. Turn it into a clone 3635 // of self loop tree. Turn self into a loop headed by _head and with 3636 // tail being the new merge point. 3637 IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail ); 3638 phase->set_loop(_tail,ilt); // Adjust tail 3639 _tail = r; // Self's tail is new merge point 3640 phase->set_loop(r,this); 3641 ilt->_child = _child; // New guy has my children 3642 _child = ilt; // Self has new guy as only child 3643 ilt->_parent = this; // new guy has self for parent 3644 ilt->_nest = _nest; // Same nesting depth (for now) 3645 3646 // Starting with 'ilt', look for child loop trees using the same shared 3647 // header. Flatten these out; they will no longer be loops in the end. 3648 IdealLoopTree **pilt = &_child; 3649 while( ilt ) { 3650 if( ilt->_head == _head ) { 3651 uint i; 3652 for( i = 2; i < _head->req(); i++ ) 3653 if( _head->in(i) == ilt->_tail ) 3654 break; // Still a loop 3655 if( i == _head->req() ) { // No longer a loop 3656 // Flatten ilt. Hang ilt's "_next" list from the end of 3657 // ilt's '_child' list. Move the ilt's _child up to replace ilt. 3658 IdealLoopTree **cp = &ilt->_child; 3659 while( *cp ) cp = &(*cp)->_next; // Find end of child list 3660 *cp = ilt->_next; // Hang next list at end of child list 3661 *pilt = ilt->_child; // Move child up to replace ilt 3662 ilt->_head = nullptr; // Flag as a loop UNIONED into parent 3663 ilt = ilt->_child; // Repeat using new ilt 3664 continue; // do not advance over ilt->_child 3665 } 3666 assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" ); 3667 phase->set_loop(_head,ilt); 3668 } 3669 pilt = &ilt->_child; // Advance to next 3670 ilt = *pilt; 3671 } 3672 3673 if( _child ) fix_parent( _child, this ); 3674 } 3675 3676 //------------------------------beautify_loops--------------------------------- 3677 // Split shared headers and insert loop landing pads. 3678 // Insert a LoopNode to replace the RegionNode. 3679 // Return TRUE if loop tree is structurally changed. 3680 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) { 3681 bool result = false; 3682 // Cache parts in locals for easy 3683 PhaseIterGVN &igvn = phase->_igvn; 3684 3685 igvn.hash_delete(_head); // Yank from hash before hacking edges 3686 3687 // Check for multiple fall-in paths. Peel off a landing pad if need be. 3688 int fall_in_cnt = 0; 3689 for( uint i = 1; i < _head->req(); i++ ) 3690 if( !phase->is_member( this, _head->in(i) ) ) 3691 fall_in_cnt++; 3692 assert( fall_in_cnt, "at least 1 fall-in path" ); 3693 if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins 3694 split_fall_in( phase, fall_in_cnt ); 3695 3696 // Swap inputs to the _head and all Phis to move the fall-in edge to 3697 // the left. 3698 fall_in_cnt = 1; 3699 while( phase->is_member( this, _head->in(fall_in_cnt) ) ) 3700 fall_in_cnt++; 3701 if( fall_in_cnt > 1 ) { 3702 // Since I am just swapping inputs I do not need to update def-use info 3703 Node *tmp = _head->in(1); 3704 igvn.rehash_node_delayed(_head); 3705 _head->set_req( 1, _head->in(fall_in_cnt) ); 3706 _head->set_req( fall_in_cnt, tmp ); 3707 // Swap also all Phis 3708 for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) { 3709 Node* phi = _head->fast_out(i); 3710 if( phi->is_Phi() ) { 3711 igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges 3712 tmp = phi->in(1); 3713 phi->set_req( 1, phi->in(fall_in_cnt) ); 3714 phi->set_req( fall_in_cnt, tmp ); 3715 } 3716 } 3717 } 3718 assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" ); 3719 assert( phase->is_member( this, _head->in(2) ), "right edge is loop" ); 3720 3721 // If I am a shared header (multiple backedges), peel off the many 3722 // backedges into a private merge point and use the merge point as 3723 // the one true backedge. 3724 if (_head->req() > 3) { 3725 // Merge the many backedges into a single backedge but leave 3726 // the hottest backedge as separate edge for the following peel. 3727 if (!_irreducible) { 3728 merge_many_backedges( phase ); 3729 } 3730 3731 // When recursively beautify my children, split_fall_in can change 3732 // loop tree structure when I am an irreducible loop. Then the head 3733 // of my children has a req() not bigger than 3. Here we need to set 3734 // result to true to catch that case in order to tell the caller to 3735 // rebuild loop tree. See issue JDK-8244407 for details. 3736 result = true; 3737 } 3738 3739 // If I have one hot backedge, peel off myself loop. 3740 // I better be the outermost loop. 3741 if (_head->req() > 3 && !_irreducible) { 3742 split_outer_loop( phase ); 3743 result = true; 3744 3745 } else if (!_head->is_Loop() && !_irreducible) { 3746 // Make a new LoopNode to replace the old loop head 3747 Node *l = new LoopNode( _head->in(1), _head->in(2) ); 3748 l = igvn.register_new_node_with_optimizer(l, _head); 3749 phase->set_created_loop_node(); 3750 // Go ahead and replace _head 3751 phase->_igvn.replace_node( _head, l ); 3752 _head = l; 3753 phase->set_loop(_head, this); 3754 } 3755 3756 // Now recursively beautify nested loops 3757 if( _child ) result |= _child->beautify_loops( phase ); 3758 if( _next ) result |= _next ->beautify_loops( phase ); 3759 return result; 3760 } 3761 3762 //------------------------------allpaths_check_safepts---------------------------- 3763 // Allpaths backwards scan. Starting at the head, traversing all backedges, and the body. Terminating each path at first 3764 // safepoint encountered. Helper for check_safepts. 3765 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) { 3766 assert(stack.size() == 0, "empty stack"); 3767 stack.push(_head); 3768 visited.clear(); 3769 visited.set(_head->_idx); 3770 while (stack.size() > 0) { 3771 Node* n = stack.pop(); 3772 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) { 3773 // Terminate this path 3774 } else if (n->Opcode() == Op_SafePoint) { 3775 if (_phase->get_loop(n) != this) { 3776 if (_required_safept == nullptr) _required_safept = new Node_List(); 3777 // save the first we run into on that path: closest to the tail if the head has a single backedge 3778 _required_safept->push(n); 3779 } 3780 // Terminate this path 3781 } else { 3782 uint start = n->is_Region() ? 1 : 0; 3783 uint end = n->is_Region() && (!n->is_Loop() || n == _head) ? n->req() : start + 1; 3784 for (uint i = start; i < end; i++) { 3785 Node* in = n->in(i); 3786 assert(in->is_CFG(), "must be"); 3787 if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) { 3788 stack.push(in); 3789 } 3790 } 3791 } 3792 } 3793 } 3794 3795 //------------------------------check_safepts---------------------------- 3796 // Given dominators, try to find loops with calls that must always be 3797 // executed (call dominates loop tail). These loops do not need non-call 3798 // safepoints (ncsfpt). 3799 // 3800 // A complication is that a safepoint in a inner loop may be needed 3801 // by an outer loop. In the following, the inner loop sees it has a 3802 // call (block 3) on every path from the head (block 2) to the 3803 // backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint) 3804 // in block 2, _but_ this leaves the outer loop without a safepoint. 3805 // 3806 // entry 0 3807 // | 3808 // v 3809 // outer 1,2 +->1 3810 // | | 3811 // | v 3812 // | 2<---+ ncsfpt in 2 3813 // |_/|\ | 3814 // | v | 3815 // inner 2,3 / 3 | call in 3 3816 // / | | 3817 // v +--+ 3818 // exit 4 3819 // 3820 // 3821 // This method creates a list (_required_safept) of ncsfpt nodes that must 3822 // be protected is created for each loop. When a ncsfpt maybe deleted, it 3823 // is first looked for in the lists for the outer loops of the current loop. 3824 // 3825 // The insights into the problem: 3826 // A) counted loops are okay 3827 // B) innermost loops are okay (only an inner loop can delete 3828 // a ncsfpt needed by an outer loop) 3829 // C) a loop is immune from an inner loop deleting a safepoint 3830 // if the loop has a call on the idom-path 3831 // D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the 3832 // idom-path that is not in a nested loop 3833 // E) otherwise, an ncsfpt on the idom-path that is nested in an inner 3834 // loop needs to be prevented from deletion by an inner loop 3835 // 3836 // There are two analyses: 3837 // 1) The first, and cheaper one, scans the loop body from 3838 // tail to head following the idom (immediate dominator) 3839 // chain, looking for the cases (C,D,E) above. 3840 // Since inner loops are scanned before outer loops, there is summary 3841 // information about inner loops. Inner loops can be skipped over 3842 // when the tail of an inner loop is encountered. 3843 // 3844 // 2) The second, invoked if the first fails to find a call or ncsfpt on 3845 // the idom path (which is rare), scans all predecessor control paths 3846 // from the tail to the head, terminating a path when a call or sfpt 3847 // is encountered, to find the ncsfpt's that are closest to the tail. 3848 // 3849 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) { 3850 // Bottom up traversal 3851 IdealLoopTree* ch = _child; 3852 if (_child) _child->check_safepts(visited, stack); 3853 if (_next) _next ->check_safepts(visited, stack); 3854 3855 if (!_head->is_CountedLoop() && !_has_sfpt && _parent != nullptr) { 3856 bool has_call = false; // call on dom-path 3857 bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth 3858 Node* nonlocal_ncsfpt = nullptr; // ncsfpt on dom-path at a deeper depth 3859 if (!_irreducible) { 3860 // Scan the dom-path nodes from tail to head 3861 for (Node* n = tail(); n != _head; n = _phase->idom(n)) { 3862 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) { 3863 has_call = true; 3864 _has_sfpt = 1; // Then no need for a safept! 3865 break; 3866 } else if (n->Opcode() == Op_SafePoint) { 3867 if (_phase->get_loop(n) == this) { 3868 has_local_ncsfpt = true; 3869 break; 3870 } 3871 if (nonlocal_ncsfpt == nullptr) { 3872 nonlocal_ncsfpt = n; // save the one closest to the tail 3873 } 3874 } else { 3875 IdealLoopTree* nlpt = _phase->get_loop(n); 3876 if (this != nlpt) { 3877 // If at an inner loop tail, see if the inner loop has already 3878 // recorded seeing a call on the dom-path (and stop.) If not, 3879 // jump to the head of the inner loop. 3880 assert(is_member(nlpt), "nested loop"); 3881 Node* tail = nlpt->_tail; 3882 if (tail->in(0)->is_If()) tail = tail->in(0); 3883 if (n == tail) { 3884 // If inner loop has call on dom-path, so does outer loop 3885 if (nlpt->_has_sfpt) { 3886 has_call = true; 3887 _has_sfpt = 1; 3888 break; 3889 } 3890 // Skip to head of inner loop 3891 assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head"); 3892 n = nlpt->_head; 3893 if (_head == n) { 3894 // this and nlpt (inner loop) have the same loop head. This should not happen because 3895 // during beautify_loops we call merge_many_backedges. However, infinite loops may not 3896 // have been attached to the loop-tree during build_loop_tree before beautify_loops, 3897 // but then attached in the build_loop_tree afterwards, and so still have unmerged 3898 // backedges. Check if we are indeed in an infinite subgraph, and terminate the scan, 3899 // since we have reached the loop head of this. 3900 assert(_head->as_Region()->is_in_infinite_subgraph(), 3901 "only expect unmerged backedges in infinite loops"); 3902 break; 3903 } 3904 } 3905 } 3906 } 3907 } 3908 } 3909 // Record safept's that this loop needs preserved when an 3910 // inner loop attempts to delete it's safepoints. 3911 if (_child != nullptr && !has_call && !has_local_ncsfpt) { 3912 if (nonlocal_ncsfpt != nullptr) { 3913 if (_required_safept == nullptr) _required_safept = new Node_List(); 3914 _required_safept->push(nonlocal_ncsfpt); 3915 } else { 3916 // Failed to find a suitable safept on the dom-path. Now use 3917 // an all paths walk from tail to head, looking for safepoints to preserve. 3918 allpaths_check_safepts(visited, stack); 3919 } 3920 } 3921 } 3922 } 3923 3924 //---------------------------is_deleteable_safept---------------------------- 3925 // Is safept not required by an outer loop? 3926 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) { 3927 assert(sfpt->Opcode() == Op_SafePoint, ""); 3928 IdealLoopTree* lp = get_loop(sfpt)->_parent; 3929 while (lp != nullptr) { 3930 Node_List* sfpts = lp->_required_safept; 3931 if (sfpts != nullptr) { 3932 for (uint i = 0; i < sfpts->size(); i++) { 3933 if (sfpt == sfpts->at(i)) 3934 return false; 3935 } 3936 } 3937 lp = lp->_parent; 3938 } 3939 return true; 3940 } 3941 3942 //---------------------------replace_parallel_iv------------------------------- 3943 // Replace parallel induction variable (parallel to trip counter) 3944 // This optimization looks for patterns similar to: 3945 // 3946 // int a = init2; 3947 // for (int iv = init; iv < limit; iv += stride_con) { 3948 // a += stride_con2; 3949 // } 3950 // 3951 // and transforms it to: 3952 // 3953 // int iv2 = init2 3954 // int iv = init 3955 // loop: 3956 // if (iv >= limit) goto exit 3957 // iv += stride_con 3958 // iv2 = init2 + (iv - init) * (stride_con2 / stride_con) 3959 // goto loop 3960 // exit: 3961 // ... 3962 // 3963 // Such transformation introduces more optimization opportunities. In this 3964 // particular example, the loop can be eliminated entirely given that 3965 // `stride_con2 / stride_con` is exact (i.e., no remainder). Checks are in 3966 // place to only perform this optimization if such a division is exact. This 3967 // example will be transformed into its semantic equivalence: 3968 // 3969 // int iv2 = (iv * stride_con2 / stride_con) + (init2 - (init * stride_con2 / stride_con)) 3970 // 3971 // which corresponds to the structure of transformed subgraph. 3972 // 3973 // However, if there is a mismatch between types of the loop and the parallel 3974 // induction variable (e.g., a long-typed IV in an int-typed loop), type 3975 // conversions are required: 3976 // 3977 // long iv2 = ((long) iv * stride_con2 / stride_con) + (init2 - ((long) init * stride_con2 / stride_con)) 3978 // 3979 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) { 3980 assert(loop->_head->is_CountedLoop(), ""); 3981 CountedLoopNode *cl = loop->_head->as_CountedLoop(); 3982 if (!cl->is_valid_counted_loop(T_INT)) { 3983 return; // skip malformed counted loop 3984 } 3985 Node *incr = cl->incr(); 3986 if (incr == nullptr) { 3987 return; // Dead loop? 3988 } 3989 Node *init = cl->init_trip(); 3990 Node *phi = cl->phi(); 3991 jlong stride_con = cl->stride_con(); 3992 3993 // Visit all children, looking for Phis 3994 for (DUIterator i = cl->outs(); cl->has_out(i); i++) { 3995 Node *out = cl->out(i); 3996 // Look for other phis (secondary IVs). Skip dead ones 3997 if (!out->is_Phi() || out == phi || !has_node(out)) { 3998 continue; 3999 } 4000 4001 PhiNode* phi2 = out->as_Phi(); 4002 Node* incr2 = phi2->in(LoopNode::LoopBackControl); 4003 // Look for induction variables of the form: X += constant 4004 if (phi2->region() != loop->_head || 4005 incr2->req() != 3 || 4006 incr2->in(1)->uncast() != phi2 || 4007 incr2 == incr || 4008 (incr2->Opcode() != Op_AddI && incr2->Opcode() != Op_AddL) || 4009 !incr2->in(2)->is_Con()) { 4010 continue; 4011 } 4012 4013 if (incr2->in(1)->is_ConstraintCast() && 4014 !(incr2->in(1)->in(0)->is_IfProj() && incr2->in(1)->in(0)->in(0)->is_RangeCheck())) { 4015 // Skip AddI->CastII->Phi case if CastII is not controlled by local RangeCheck 4016 continue; 4017 } 4018 // Check for parallel induction variable (parallel to trip counter) 4019 // via an affine function. In particular, count-down loops with 4020 // count-up array indices are common. We only RCE references off 4021 // the trip-counter, so we need to convert all these to trip-counter 4022 // expressions. 4023 Node* init2 = phi2->in(LoopNode::EntryControl); 4024 4025 // Determine the basic type of the stride constant (and the iv being incremented). 4026 BasicType stride_con2_bt = incr2->Opcode() == Op_AddI ? T_INT : T_LONG; 4027 jlong stride_con2 = incr2->in(2)->get_integer_as_long(stride_con2_bt); 4028 4029 // The ratio of the two strides cannot be represented as an int 4030 // if stride_con2 is min_jint (or min_jlong, respectively) and 4031 // stride_con is -1. 4032 if (stride_con2 == min_signed_integer(stride_con2_bt) && stride_con == -1) { 4033 continue; 4034 } 4035 4036 // The general case here gets a little tricky. We want to find the 4037 // GCD of all possible parallel IV's and make a new IV using this 4038 // GCD for the loop. Then all possible IVs are simple multiples of 4039 // the GCD. In practice, this will cover very few extra loops. 4040 // Instead we require 'stride_con2' to be a multiple of 'stride_con', 4041 // where +/-1 is the common case, but other integer multiples are 4042 // also easy to handle. 4043 jlong ratio_con = stride_con2 / stride_con; 4044 4045 if ((ratio_con * stride_con) != stride_con2) { // Check for exact (no remainder) 4046 continue; 4047 } 4048 4049 #ifndef PRODUCT 4050 if (TraceLoopOpts) { 4051 tty->print("Parallel IV: %d ", phi2->_idx); 4052 loop->dump_head(); 4053 } 4054 #endif 4055 4056 // Convert to using the trip counter. The parallel induction 4057 // variable differs from the trip counter by a loop-invariant 4058 // amount, the difference between their respective initial values. 4059 // It is scaled by the 'ratio_con'. 4060 Node* ratio = integercon(ratio_con, stride_con2_bt); 4061 4062 Node* init_converted = insert_convert_node_if_needed(stride_con2_bt, init); 4063 Node* phi_converted = insert_convert_node_if_needed(stride_con2_bt, phi); 4064 4065 Node* ratio_init = MulNode::make(init_converted, ratio, stride_con2_bt); 4066 _igvn.register_new_node_with_optimizer(ratio_init, init_converted); 4067 set_early_ctrl(ratio_init, false); 4068 4069 Node* diff = SubNode::make(init2, ratio_init, stride_con2_bt); 4070 _igvn.register_new_node_with_optimizer(diff, init2); 4071 set_early_ctrl(diff, false); 4072 4073 Node* ratio_idx = MulNode::make(phi_converted, ratio, stride_con2_bt); 4074 _igvn.register_new_node_with_optimizer(ratio_idx, phi_converted); 4075 set_ctrl(ratio_idx, cl); 4076 4077 Node* add = AddNode::make(ratio_idx, diff, stride_con2_bt); 4078 _igvn.register_new_node_with_optimizer(add); 4079 set_ctrl(add, cl); 4080 4081 _igvn.replace_node( phi2, add ); 4082 // Sometimes an induction variable is unused 4083 if (add->outcnt() == 0) { 4084 _igvn.remove_dead_node(add); 4085 } 4086 --i; // deleted this phi; rescan starting with next position 4087 } 4088 } 4089 4090 Node* PhaseIdealLoop::insert_convert_node_if_needed(BasicType target, Node* input) { 4091 BasicType source = _igvn.type(input)->basic_type(); 4092 if (source == target) { 4093 return input; 4094 } 4095 4096 Node* converted = ConvertNode::create_convert(source, target, input); 4097 _igvn.register_new_node_with_optimizer(converted, input); 4098 set_early_ctrl(converted, false); 4099 4100 return converted; 4101 } 4102 4103 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) { 4104 Node* keep = nullptr; 4105 if (keep_one) { 4106 // Look for a safepoint on the idom-path. 4107 for (Node* i = tail(); i != _head; i = phase->idom(i)) { 4108 if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) { 4109 keep = i; 4110 break; // Found one 4111 } 4112 } 4113 } 4114 4115 // Don't remove any safepoints if it is requested to keep a single safepoint and 4116 // no safepoint was found on idom-path. It is not safe to remove any safepoint 4117 // in this case since there's no safepoint dominating all paths in the loop body. 4118 bool prune = !keep_one || keep != nullptr; 4119 4120 // Delete other safepoints in this loop. 4121 Node_List* sfpts = _safepts; 4122 if (prune && sfpts != nullptr) { 4123 assert(keep == nullptr || keep->Opcode() == Op_SafePoint, "not safepoint"); 4124 for (uint i = 0; i < sfpts->size(); i++) { 4125 Node* n = sfpts->at(i); 4126 assert(phase->get_loop(n) == this, ""); 4127 if (n != keep && phase->is_deleteable_safept(n)) { 4128 phase->lazy_replace(n, n->in(TypeFunc::Control)); 4129 } 4130 } 4131 } 4132 } 4133 4134 //------------------------------counted_loop----------------------------------- 4135 // Convert to counted loops where possible 4136 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) { 4137 4138 // For grins, set the inner-loop flag here 4139 if (!_child) { 4140 if (_head->is_Loop()) _head->as_Loop()->set_inner_loop(); 4141 } 4142 4143 IdealLoopTree* loop = this; 4144 if (_head->is_CountedLoop() || 4145 phase->is_counted_loop(_head, loop, T_INT)) { 4146 4147 if (LoopStripMiningIter == 0 || _head->as_CountedLoop()->is_strip_mined()) { 4148 // Indicate we do not need a safepoint here 4149 _has_sfpt = 1; 4150 } 4151 4152 // Remove safepoints 4153 bool keep_one_sfpt = !(_has_call || _has_sfpt); 4154 remove_safepoints(phase, keep_one_sfpt); 4155 4156 // Look for induction variables 4157 phase->replace_parallel_iv(this); 4158 } else if (_head->is_LongCountedLoop() || 4159 phase->is_counted_loop(_head, loop, T_LONG)) { 4160 remove_safepoints(phase, true); 4161 } else { 4162 assert(!_head->is_Loop() || !_head->as_Loop()->is_loop_nest_inner_loop(), "transformation to counted loop should not fail"); 4163 if (_parent != nullptr && !_irreducible) { 4164 // Not a counted loop. Keep one safepoint. 4165 bool keep_one_sfpt = true; 4166 remove_safepoints(phase, keep_one_sfpt); 4167 } 4168 } 4169 4170 // Recursively 4171 assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?"); 4172 assert(loop->_child != this || (loop->_child->_child == nullptr && loop->_child->_next == nullptr), "would miss some loops"); 4173 if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase); 4174 if (loop->_next) loop->_next ->counted_loop(phase); 4175 } 4176 4177 4178 // The Estimated Loop Clone Size: 4179 // CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm, 4180 // where BC and CC are totally ad-hoc/magic "body" and "clone" constants, 4181 // respectively, used to ensure that the node usage estimates made are on the 4182 // safe side, for the most part. The FanOutTerm is an attempt to estimate the 4183 // possible additional/excessive nodes generated due to data and control flow 4184 // merging, for edges reaching outside the loop. 4185 uint IdealLoopTree::est_loop_clone_sz(uint factor) const { 4186 4187 precond(0 < factor && factor < 16); 4188 4189 uint const bc = 13; 4190 uint const cc = 17; 4191 uint const sz = _body.size() + (_body.size() + 7) / 2; 4192 uint estimate = factor * (sz + bc) + cc; 4193 4194 assert((estimate - cc) / factor == sz + bc, "overflow"); 4195 4196 return estimate + est_loop_flow_merge_sz(); 4197 } 4198 4199 // The Estimated Loop (full-) Unroll Size: 4200 // UnrollFactor * (~106% * BodySize) + CC + FanOutTerm, 4201 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that 4202 // node usage estimates made are on the safe side, for the most part. This is 4203 // a "light" version of the loop clone size calculation (above), based on the 4204 // assumption that most of the loop-construct overhead will be unraveled when 4205 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1), 4206 // including an overflow check and returning UINT_MAX in case of an overflow. 4207 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const { 4208 4209 precond(factor > 0); 4210 4211 // Take into account that after unroll conjoined heads and tails will fold. 4212 uint const b0 = _body.size() - EMPTY_LOOP_SIZE; 4213 uint const cc = 7; 4214 uint const sz = b0 + (b0 + 15) / 16; 4215 uint estimate = factor * sz + cc; 4216 4217 if ((estimate - cc) / factor != sz) { 4218 return UINT_MAX; 4219 } 4220 4221 return estimate + est_loop_flow_merge_sz(); 4222 } 4223 4224 // Estimate the growth effect (in nodes) of merging control and data flow when 4225 // cloning a loop body, based on the amount of control and data flow reaching 4226 // outside of the (current) loop body. 4227 uint IdealLoopTree::est_loop_flow_merge_sz() const { 4228 4229 uint ctrl_edge_out_cnt = 0; 4230 uint data_edge_out_cnt = 0; 4231 4232 for (uint i = 0; i < _body.size(); i++) { 4233 Node* node = _body.at(i); 4234 uint outcnt = node->outcnt(); 4235 4236 for (uint k = 0; k < outcnt; k++) { 4237 Node* out = node->raw_out(k); 4238 if (out == nullptr) continue; 4239 if (out->is_CFG()) { 4240 if (!is_member(_phase->get_loop(out))) { 4241 ctrl_edge_out_cnt++; 4242 } 4243 } else if (_phase->has_ctrl(out)) { 4244 Node* ctrl = _phase->get_ctrl(out); 4245 assert(ctrl != nullptr, "must be"); 4246 assert(ctrl->is_CFG(), "must be"); 4247 if (!is_member(_phase->get_loop(ctrl))) { 4248 data_edge_out_cnt++; 4249 } 4250 } 4251 } 4252 } 4253 // Use data and control count (x2.0) in estimate iff both are > 0. This is 4254 // a rather pessimistic estimate for the most part, in particular for some 4255 // complex loops, but still not enough to capture all loops. 4256 if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) { 4257 return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt); 4258 } 4259 return 0; 4260 } 4261 4262 #ifndef PRODUCT 4263 //------------------------------dump_head-------------------------------------- 4264 // Dump 1 liner for loop header info 4265 void IdealLoopTree::dump_head() { 4266 tty->sp(2 * _nest); 4267 tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx); 4268 if (_irreducible) tty->print(" IRREDUCIBLE"); 4269 Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl) 4270 : _head->in(LoopNode::EntryControl); 4271 const Predicates predicates(entry); 4272 if (predicates.loop_limit_check_predicate_block()->is_non_empty()) { 4273 tty->print(" limit_check"); 4274 } 4275 if (UseProfiledLoopPredicate && predicates.profiled_loop_predicate_block()->is_non_empty()) { 4276 tty->print(" profile_predicated"); 4277 } 4278 if (UseLoopPredicate && predicates.loop_predicate_block()->is_non_empty()) { 4279 tty->print(" predicated"); 4280 } 4281 if (_head->is_CountedLoop()) { 4282 CountedLoopNode *cl = _head->as_CountedLoop(); 4283 tty->print(" counted"); 4284 4285 Node* init_n = cl->init_trip(); 4286 if (init_n != nullptr && init_n->is_Con()) 4287 tty->print(" [%d,", cl->init_trip()->get_int()); 4288 else 4289 tty->print(" [int,"); 4290 Node* limit_n = cl->limit(); 4291 if (limit_n != nullptr && limit_n->is_Con()) 4292 tty->print("%d),", cl->limit()->get_int()); 4293 else 4294 tty->print("int),"); 4295 int stride_con = cl->stride_con(); 4296 if (stride_con > 0) tty->print("+"); 4297 tty->print("%d", stride_con); 4298 4299 tty->print(" (%0.f iters) ", cl->profile_trip_cnt()); 4300 4301 if (cl->is_pre_loop ()) tty->print(" pre" ); 4302 if (cl->is_main_loop()) tty->print(" main"); 4303 if (cl->is_post_loop()) tty->print(" post"); 4304 if (cl->is_vectorized_loop()) tty->print(" vector"); 4305 if (range_checks_present()) tty->print(" rc "); 4306 } 4307 if (_has_call) tty->print(" has_call"); 4308 if (_has_sfpt) tty->print(" has_sfpt"); 4309 if (_rce_candidate) tty->print(" rce"); 4310 if (_safepts != nullptr && _safepts->size() > 0) { 4311 tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }"); 4312 } 4313 if (_required_safept != nullptr && _required_safept->size() > 0) { 4314 tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }"); 4315 } 4316 if (Verbose) { 4317 tty->print(" body={"); _body.dump_simple(); tty->print(" }"); 4318 } 4319 if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) { 4320 tty->print(" strip_mined"); 4321 } 4322 tty->cr(); 4323 } 4324 4325 //------------------------------dump------------------------------------------- 4326 // Dump loops by loop tree 4327 void IdealLoopTree::dump() { 4328 dump_head(); 4329 if (_child) _child->dump(); 4330 if (_next) _next ->dump(); 4331 } 4332 4333 #endif 4334 4335 static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) { 4336 if (loop == root) { 4337 if (loop->_child != nullptr) { 4338 log->begin_head("loop_tree"); 4339 log->end_head(); 4340 log_loop_tree_helper(root, loop->_child, log); 4341 log->tail("loop_tree"); 4342 assert(loop->_next == nullptr, "what?"); 4343 } 4344 } else if (loop != nullptr) { 4345 Node* head = loop->_head; 4346 log->begin_head("loop idx='%d'", head->_idx); 4347 if (loop->_irreducible) log->print(" irreducible='1'"); 4348 if (head->is_Loop()) { 4349 if (head->as_Loop()->is_inner_loop()) log->print(" inner_loop='1'"); 4350 if (head->as_Loop()->is_partial_peel_loop()) log->print(" partial_peel_loop='1'"); 4351 } else if (head->is_CountedLoop()) { 4352 CountedLoopNode* cl = head->as_CountedLoop(); 4353 if (cl->is_pre_loop()) log->print(" pre_loop='%d'", cl->main_idx()); 4354 if (cl->is_main_loop()) log->print(" main_loop='%d'", cl->_idx); 4355 if (cl->is_post_loop()) log->print(" post_loop='%d'", cl->main_idx()); 4356 } 4357 log->end_head(); 4358 log_loop_tree_helper(root, loop->_child, log); 4359 log->tail("loop"); 4360 log_loop_tree_helper(root, loop->_next, log); 4361 } 4362 } 4363 4364 void PhaseIdealLoop::log_loop_tree() { 4365 if (C->log() != nullptr) { 4366 log_loop_tree_helper(_ltree_root, _ltree_root, C->log()); 4367 } 4368 } 4369 4370 // Eliminate all Parse and Template Assertion Predicates that are not associated with a loop anymore. The eliminated 4371 // predicates will be removed during the next round of IGVN. 4372 void PhaseIdealLoop::eliminate_useless_predicates() { 4373 if (C->parse_predicate_count() == 0 && C->template_assertion_predicate_count() == 0) { 4374 return; // No predicates left. 4375 } 4376 4377 eliminate_useless_parse_predicates(); 4378 eliminate_useless_template_assertion_predicates(); 4379 } 4380 4381 // Eliminate all Parse Predicates that do not belong to a loop anymore by marking them useless. These will be removed 4382 // during the next round of IGVN. 4383 void PhaseIdealLoop::eliminate_useless_parse_predicates() { 4384 mark_all_parse_predicates_useless(); 4385 if (C->has_loops()) { 4386 mark_loop_associated_parse_predicates_useful(); 4387 } 4388 add_useless_parse_predicates_to_igvn_worklist(); 4389 } 4390 4391 void PhaseIdealLoop::mark_all_parse_predicates_useless() const { 4392 for (int i = 0; i < C->parse_predicate_count(); i++) { 4393 C->parse_predicate(i)->mark_useless(); 4394 } 4395 } 4396 4397 void PhaseIdealLoop::mark_loop_associated_parse_predicates_useful() { 4398 for (LoopTreeIterator iterator(_ltree_root); !iterator.done(); iterator.next()) { 4399 IdealLoopTree* loop = iterator.current(); 4400 if (loop->can_apply_loop_predication()) { 4401 mark_useful_parse_predicates_for_loop(loop); 4402 } 4403 } 4404 } 4405 4406 // This visitor marks all visited Parse Predicates useful. 4407 class ParsePredicateUsefulMarker : public PredicateVisitor { 4408 public: 4409 using PredicateVisitor::visit; 4410 4411 void visit(const ParsePredicate& parse_predicate) override { 4412 parse_predicate.head()->mark_useful(); 4413 } 4414 }; 4415 4416 void PhaseIdealLoop::mark_useful_parse_predicates_for_loop(IdealLoopTree* loop) { 4417 Node* entry = loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl); 4418 const PredicateIterator predicate_iterator(entry); 4419 ParsePredicateUsefulMarker useful_marker; 4420 predicate_iterator.for_each(useful_marker); 4421 } 4422 4423 void PhaseIdealLoop::add_useless_parse_predicates_to_igvn_worklist() { 4424 for (int i = 0; i < C->parse_predicate_count(); i++) { 4425 ParsePredicateNode* parse_predicate_node = C->parse_predicate(i); 4426 if (parse_predicate_node->is_useless()) { 4427 _igvn._worklist.push(parse_predicate_node); 4428 } 4429 } 4430 } 4431 4432 4433 // Eliminate all Template Assertion Predicates that do not belong to their originally associated loop anymore by 4434 // replacing the OpaqueTemplateAssertionPredicate node of the If node with true. These nodes will be removed during the 4435 // next round of IGVN. 4436 void PhaseIdealLoop::eliminate_useless_template_assertion_predicates() { 4437 Unique_Node_List useful_predicates; 4438 if (C->has_loops()) { 4439 collect_useful_template_assertion_predicates(useful_predicates); 4440 } 4441 eliminate_useless_template_assertion_predicates(useful_predicates); 4442 } 4443 4444 void PhaseIdealLoop::collect_useful_template_assertion_predicates(Unique_Node_List& useful_predicates) { 4445 for (LoopTreeIterator iterator(_ltree_root); !iterator.done(); iterator.next()) { 4446 IdealLoopTree* loop = iterator.current(); 4447 if (loop->can_apply_loop_predication()) { 4448 collect_useful_template_assertion_predicates_for_loop(loop, useful_predicates); 4449 } 4450 } 4451 } 4452 4453 void PhaseIdealLoop::collect_useful_template_assertion_predicates_for_loop(IdealLoopTree* loop, 4454 Unique_Node_List &useful_predicates) { 4455 Node* entry = loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl); 4456 const Predicates predicates(entry); 4457 if (UseProfiledLoopPredicate) { 4458 const PredicateBlock* profiled_loop_predicate_block = predicates.profiled_loop_predicate_block(); 4459 if (profiled_loop_predicate_block->has_parse_predicate()) { 4460 ParsePredicateSuccessProj* parse_predicate_proj = profiled_loop_predicate_block->parse_predicate_success_proj(); 4461 get_opaque_template_assertion_predicate_nodes(parse_predicate_proj, useful_predicates); 4462 } 4463 } 4464 4465 if (UseLoopPredicate) { 4466 const PredicateBlock* loop_predicate_block = predicates.loop_predicate_block(); 4467 if (loop_predicate_block->has_parse_predicate()) { 4468 ParsePredicateSuccessProj* parse_predicate_proj = loop_predicate_block->parse_predicate_success_proj(); 4469 get_opaque_template_assertion_predicate_nodes(parse_predicate_proj, useful_predicates); 4470 } 4471 } 4472 } 4473 4474 void PhaseIdealLoop::eliminate_useless_template_assertion_predicates(Unique_Node_List& useful_predicates) { 4475 for (int i = C->template_assertion_predicate_count(); i > 0; i--) { 4476 OpaqueTemplateAssertionPredicateNode* opaque_node = 4477 C->template_assertion_predicate_opaq_node(i - 1)->as_OpaqueTemplateAssertionPredicate(); 4478 if (!useful_predicates.member(opaque_node)) { // not in the useful list 4479 ConINode* one = intcon(1); 4480 _igvn.replace_node(opaque_node, one); 4481 } 4482 } 4483 } 4484 4485 // If a post or main loop is removed due to an assert predicate, the opaque that guards the loop is not needed anymore 4486 void PhaseIdealLoop::eliminate_useless_zero_trip_guard() { 4487 if (_zero_trip_guard_opaque_nodes.size() == 0) { 4488 return; 4489 } 4490 Unique_Node_List useful_zero_trip_guard_opaques_nodes; 4491 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4492 IdealLoopTree* lpt = iter.current(); 4493 if (lpt->_child == nullptr && lpt->is_counted()) { 4494 CountedLoopNode* head = lpt->_head->as_CountedLoop(); 4495 Node* opaque = head->is_canonical_loop_entry(); 4496 if (opaque != nullptr) { 4497 useful_zero_trip_guard_opaques_nodes.push(opaque); 4498 } 4499 } 4500 } 4501 for (uint i = 0; i < _zero_trip_guard_opaque_nodes.size(); ++i) { 4502 OpaqueZeroTripGuardNode* opaque = ((OpaqueZeroTripGuardNode*)_zero_trip_guard_opaque_nodes.at(i)); 4503 DEBUG_ONLY(CountedLoopNode* guarded_loop = opaque->guarded_loop()); 4504 if (!useful_zero_trip_guard_opaques_nodes.member(opaque)) { 4505 IfNode* iff = opaque->if_node(); 4506 IdealLoopTree* loop = get_loop(iff); 4507 while (loop != _ltree_root && loop != nullptr) { 4508 loop = loop->_parent; 4509 } 4510 if (loop == nullptr) { 4511 // unreachable from _ltree_root: zero trip guard is in a newly discovered infinite loop. 4512 // We can't tell if the opaque node is useful or not 4513 assert(guarded_loop == nullptr || guarded_loop->is_in_infinite_subgraph(), ""); 4514 } else { 4515 assert(guarded_loop == nullptr, ""); 4516 this->_igvn.replace_node(opaque, opaque->in(1)); 4517 } 4518 } else { 4519 assert(guarded_loop != nullptr, ""); 4520 } 4521 } 4522 } 4523 4524 //------------------------process_expensive_nodes----------------------------- 4525 // Expensive nodes have their control input set to prevent the GVN 4526 // from commoning them and as a result forcing the resulting node to 4527 // be in a more frequent path. Use CFG information here, to change the 4528 // control inputs so that some expensive nodes can be commoned while 4529 // not executed more frequently. 4530 bool PhaseIdealLoop::process_expensive_nodes() { 4531 assert(OptimizeExpensiveOps, "optimization off?"); 4532 4533 // Sort nodes to bring similar nodes together 4534 C->sort_expensive_nodes(); 4535 4536 bool progress = false; 4537 4538 for (int i = 0; i < C->expensive_count(); ) { 4539 Node* n = C->expensive_node(i); 4540 int start = i; 4541 // Find nodes similar to n 4542 i++; 4543 for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++); 4544 int end = i; 4545 // And compare them two by two 4546 for (int j = start; j < end; j++) { 4547 Node* n1 = C->expensive_node(j); 4548 if (is_node_unreachable(n1)) { 4549 continue; 4550 } 4551 for (int k = j+1; k < end; k++) { 4552 Node* n2 = C->expensive_node(k); 4553 if (is_node_unreachable(n2)) { 4554 continue; 4555 } 4556 4557 assert(n1 != n2, "should be pair of nodes"); 4558 4559 Node* c1 = n1->in(0); 4560 Node* c2 = n2->in(0); 4561 4562 Node* parent_c1 = c1; 4563 Node* parent_c2 = c2; 4564 4565 // The call to get_early_ctrl_for_expensive() moves the 4566 // expensive nodes up but stops at loops that are in a if 4567 // branch. See whether we can exit the loop and move above the 4568 // If. 4569 if (c1->is_Loop()) { 4570 parent_c1 = c1->in(1); 4571 } 4572 if (c2->is_Loop()) { 4573 parent_c2 = c2->in(1); 4574 } 4575 4576 if (parent_c1 == parent_c2) { 4577 _igvn._worklist.push(n1); 4578 _igvn._worklist.push(n2); 4579 continue; 4580 } 4581 4582 // Look for identical expensive node up the dominator chain. 4583 if (is_dominator(c1, c2)) { 4584 c2 = c1; 4585 } else if (is_dominator(c2, c1)) { 4586 c1 = c2; 4587 } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() && 4588 parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) { 4589 // Both branches have the same expensive node so move it up 4590 // before the if. 4591 c1 = c2 = idom(parent_c1->in(0)); 4592 } 4593 // Do the actual moves 4594 if (n1->in(0) != c1) { 4595 _igvn.replace_input_of(n1, 0, c1); 4596 progress = true; 4597 } 4598 if (n2->in(0) != c2) { 4599 _igvn.replace_input_of(n2, 0, c2); 4600 progress = true; 4601 } 4602 } 4603 } 4604 } 4605 4606 return progress; 4607 } 4608 4609 //============================================================================= 4610 //----------------------------build_and_optimize------------------------------- 4611 // Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to 4612 // its corresponding LoopNode. If 'optimize' is true, do some loop cleanups. 4613 void PhaseIdealLoop::build_and_optimize() { 4614 assert(!C->post_loop_opts_phase(), "no loop opts allowed"); 4615 4616 bool do_split_ifs = (_mode == LoopOptsDefault); 4617 bool skip_loop_opts = (_mode == LoopOptsNone); 4618 bool do_max_unroll = (_mode == LoopOptsMaxUnroll); 4619 4620 4621 int old_progress = C->major_progress(); 4622 uint orig_worklist_size = _igvn._worklist.size(); 4623 4624 // Reset major-progress flag for the driver's heuristics 4625 C->clear_major_progress(); 4626 4627 #ifndef PRODUCT 4628 // Capture for later assert 4629 uint unique = C->unique(); 4630 _loop_invokes++; 4631 _loop_work += unique; 4632 #endif 4633 4634 // True if the method has at least 1 irreducible loop 4635 _has_irreducible_loops = false; 4636 4637 _created_loop_node = false; 4638 4639 VectorSet visited; 4640 // Pre-grow the mapping from Nodes to IdealLoopTrees. 4641 _loop_or_ctrl.map(C->unique(), nullptr); 4642 memset(_loop_or_ctrl.adr(), 0, wordSize * C->unique()); 4643 4644 // Pre-build the top-level outermost loop tree entry 4645 _ltree_root = new IdealLoopTree( this, C->root(), C->root() ); 4646 // Do not need a safepoint at the top level 4647 _ltree_root->_has_sfpt = 1; 4648 4649 // Initialize Dominators. 4650 // Checked in clone_loop_predicate() during beautify_loops(). 4651 _idom_size = 0; 4652 _idom = nullptr; 4653 _dom_depth = nullptr; 4654 _dom_stk = nullptr; 4655 4656 // Empty pre-order array 4657 allocate_preorders(); 4658 4659 // Build a loop tree on the fly. Build a mapping from CFG nodes to 4660 // IdealLoopTree entries. Data nodes are NOT walked. 4661 build_loop_tree(); 4662 // Check for bailout, and return 4663 if (C->failing()) { 4664 return; 4665 } 4666 4667 // Verify that the has_loops() flag set at parse time is consistent with the just built loop tree. When the back edge 4668 // is an exception edge, parsing doesn't set has_loops(). 4669 assert(_ltree_root->_child == nullptr || C->has_loops() || C->has_exception_backedge(), "parsing found no loops but there are some"); 4670 // No loops after all 4671 if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false); 4672 4673 // There should always be an outer loop containing the Root and Return nodes. 4674 // If not, we have a degenerate empty program. Bail out in this case. 4675 if (!has_node(C->root())) { 4676 if (!_verify_only) { 4677 C->clear_major_progress(); 4678 assert(false, "empty program detected during loop optimization"); 4679 C->record_method_not_compilable("empty program detected during loop optimization"); 4680 } 4681 return; 4682 } 4683 4684 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4685 // Nothing to do, so get out 4686 bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !do_max_unroll && !_verify_me && 4687 !_verify_only && !bs->is_gc_specific_loop_opts_pass(_mode); 4688 bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn); 4689 bool strip_mined_loops_expanded = bs->strip_mined_loops_expanded(_mode); 4690 if (stop_early && !do_expensive_nodes) { 4691 return; 4692 } 4693 4694 // Set loop nesting depth 4695 _ltree_root->set_nest( 0 ); 4696 4697 // Split shared headers and insert loop landing pads. 4698 // Do not bother doing this on the Root loop of course. 4699 if( !_verify_me && !_verify_only && _ltree_root->_child ) { 4700 C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3); 4701 if( _ltree_root->_child->beautify_loops( this ) ) { 4702 // Re-build loop tree! 4703 _ltree_root->_child = nullptr; 4704 _loop_or_ctrl.clear(); 4705 reallocate_preorders(); 4706 build_loop_tree(); 4707 // Check for bailout, and return 4708 if (C->failing()) { 4709 return; 4710 } 4711 // Reset loop nesting depth 4712 _ltree_root->set_nest( 0 ); 4713 4714 C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3); 4715 } 4716 } 4717 4718 // Build Dominators for elision of null checks & loop finding. 4719 // Since nodes do not have a slot for immediate dominator, make 4720 // a persistent side array for that info indexed on node->_idx. 4721 _idom_size = C->unique(); 4722 _idom = NEW_RESOURCE_ARRAY( Node*, _idom_size ); 4723 _dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size ); 4724 _dom_stk = nullptr; // Allocated on demand in recompute_dom_depth 4725 memset( _dom_depth, 0, _idom_size * sizeof(uint) ); 4726 4727 Dominators(); 4728 4729 if (!_verify_only) { 4730 // As a side effect, Dominators removed any unreachable CFG paths 4731 // into RegionNodes. It doesn't do this test against Root, so 4732 // we do it here. 4733 for( uint i = 1; i < C->root()->req(); i++ ) { 4734 if (!_loop_or_ctrl[C->root()->in(i)->_idx]) { // Dead path into Root? 4735 _igvn.delete_input_of(C->root(), i); 4736 i--; // Rerun same iteration on compressed edges 4737 } 4738 } 4739 4740 // Given dominators, try to find inner loops with calls that must 4741 // always be executed (call dominates loop tail). These loops do 4742 // not need a separate safepoint. 4743 Node_List cisstack; 4744 _ltree_root->check_safepts(visited, cisstack); 4745 } 4746 4747 // Walk the DATA nodes and place into loops. Find earliest control 4748 // node. For CFG nodes, the _loop_or_ctrl array starts out and remains 4749 // holding the associated IdealLoopTree pointer. For DATA nodes, the 4750 // _loop_or_ctrl array holds the earliest legal controlling CFG node. 4751 4752 // Allocate stack with enough space to avoid frequent realloc 4753 int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats 4754 Node_Stack nstack(stack_size); 4755 4756 visited.clear(); 4757 Node_List worklist; 4758 // Don't need C->root() on worklist since 4759 // it will be processed among C->top() inputs 4760 worklist.push(C->top()); 4761 visited.set(C->top()->_idx); // Set C->top() as visited now 4762 build_loop_early( visited, worklist, nstack ); 4763 4764 // Given early legal placement, try finding counted loops. This placement 4765 // is good enough to discover most loop invariants. 4766 if (!_verify_me && !_verify_only && !strip_mined_loops_expanded) { 4767 _ltree_root->counted_loop( this ); 4768 } 4769 4770 // Find latest loop placement. Find ideal loop placement. 4771 visited.clear(); 4772 init_dom_lca_tags(); 4773 // Need C->root() on worklist when processing outs 4774 worklist.push(C->root()); 4775 NOT_PRODUCT( C->verify_graph_edges(); ) 4776 worklist.push(C->top()); 4777 build_loop_late( visited, worklist, nstack ); 4778 if (C->failing()) { return; } 4779 4780 if (_verify_only) { 4781 C->restore_major_progress(old_progress); 4782 assert(C->unique() == unique, "verification _mode made Nodes? ? ?"); 4783 assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything"); 4784 return; 4785 } 4786 4787 // clear out the dead code after build_loop_late 4788 while (_deadlist.size()) { 4789 _igvn.remove_globally_dead_node(_deadlist.pop()); 4790 } 4791 4792 eliminate_useless_zero_trip_guard(); 4793 4794 if (stop_early) { 4795 assert(do_expensive_nodes, "why are we here?"); 4796 if (process_expensive_nodes()) { 4797 // If we made some progress when processing expensive nodes then 4798 // the IGVN may modify the graph in a way that will allow us to 4799 // make some more progress: we need to try processing expensive 4800 // nodes again. 4801 C->set_major_progress(); 4802 } 4803 return; 4804 } 4805 4806 // Some parser-inserted loop predicates could never be used by loop 4807 // predication or they were moved away from loop during some optimizations. 4808 // For example, peeling. Eliminate them before next loop optimizations. 4809 eliminate_useless_predicates(); 4810 4811 #ifndef PRODUCT 4812 C->verify_graph_edges(); 4813 if (_verify_me) { // Nested verify pass? 4814 // Check to see if the verify _mode is broken 4815 assert(C->unique() == unique, "non-optimize _mode made Nodes? ? ?"); 4816 return; 4817 } 4818 DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); 4819 if (TraceLoopOpts && C->has_loops()) { 4820 _ltree_root->dump(); 4821 } 4822 #endif 4823 4824 if (skip_loop_opts) { 4825 C->restore_major_progress(old_progress); 4826 return; 4827 } 4828 4829 if (do_max_unroll) { 4830 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4831 IdealLoopTree* lpt = iter.current(); 4832 if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) { 4833 lpt->compute_trip_count(this); 4834 if (!lpt->do_one_iteration_loop(this) && 4835 !lpt->do_remove_empty_loop(this)) { 4836 AutoNodeBudget node_budget(this); 4837 if (lpt->_head->as_CountedLoop()->is_normal_loop() && 4838 lpt->policy_maximally_unroll(this)) { 4839 memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) ); 4840 do_maximally_unroll(lpt, worklist); 4841 } 4842 } 4843 } 4844 } 4845 4846 C->restore_major_progress(old_progress); 4847 return; 4848 } 4849 4850 if (bs->optimize_loops(this, _mode, visited, nstack, worklist)) { 4851 return; 4852 } 4853 4854 if (ReassociateInvariants && !C->major_progress()) { 4855 // Reassociate invariants and prep for split_thru_phi 4856 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4857 IdealLoopTree* lpt = iter.current(); 4858 if (!lpt->is_loop()) { 4859 continue; 4860 } 4861 Node* head = lpt->_head; 4862 if (!head->is_BaseCountedLoop() || !lpt->is_innermost()) continue; 4863 4864 // check for vectorized loops, any reassociation of invariants was already done 4865 if (head->is_CountedLoop()) { 4866 if (head->as_CountedLoop()->is_unroll_only()) { 4867 continue; 4868 } else { 4869 AutoNodeBudget node_budget(this); 4870 lpt->reassociate_invariants(this); 4871 } 4872 } 4873 // Because RCE opportunities can be masked by split_thru_phi, 4874 // look for RCE candidates and inhibit split_thru_phi 4875 // on just their loop-phi's for this pass of loop opts 4876 if (SplitIfBlocks && do_split_ifs && 4877 head->as_BaseCountedLoop()->is_valid_counted_loop(head->as_BaseCountedLoop()->bt()) && 4878 (lpt->policy_range_check(this, true, T_LONG) || 4879 (head->is_CountedLoop() && lpt->policy_range_check(this, true, T_INT)))) { 4880 lpt->_rce_candidate = 1; // = true 4881 } 4882 } 4883 } 4884 4885 // Check for aggressive application of split-if and other transforms 4886 // that require basic-block info (like cloning through Phi's) 4887 if (!C->major_progress() && SplitIfBlocks && do_split_ifs) { 4888 visited.clear(); 4889 split_if_with_blocks(visited, nstack); 4890 if (C->failing()) { 4891 return; 4892 } 4893 DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); 4894 } 4895 4896 if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) { 4897 C->set_major_progress(); 4898 } 4899 4900 // Perform loop predication before iteration splitting 4901 if (UseLoopPredicate && C->has_loops() && !C->major_progress() && (C->parse_predicate_count() > 0)) { 4902 _ltree_root->_child->loop_predication(this); 4903 } 4904 4905 if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) { 4906 if (do_intrinsify_fill()) { 4907 C->set_major_progress(); 4908 } 4909 } 4910 4911 // Perform iteration-splitting on inner loops. Split iterations to avoid 4912 // range checks or one-shot null checks. 4913 4914 // If split-if's didn't hack the graph too bad (no CFG changes) 4915 // then do loop opts. 4916 if (C->has_loops() && !C->major_progress()) { 4917 memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) ); 4918 _ltree_root->_child->iteration_split( this, worklist ); 4919 // No verify after peeling! GCM has hoisted code out of the loop. 4920 // After peeling, the hoisted code could sink inside the peeled area. 4921 // The peeling code does not try to recompute the best location for 4922 // all the code before the peeled area, so the verify pass will always 4923 // complain about it. 4924 } 4925 4926 // Check for bailout, and return 4927 if (C->failing()) { 4928 return; 4929 } 4930 4931 // Do verify graph edges in any case 4932 NOT_PRODUCT( C->verify_graph_edges(); ); 4933 4934 if (!do_split_ifs) { 4935 // We saw major progress in Split-If to get here. We forced a 4936 // pass with unrolling and not split-if, however more split-if's 4937 // might make progress. If the unrolling didn't make progress 4938 // then the major-progress flag got cleared and we won't try 4939 // another round of Split-If. In particular the ever-common 4940 // instance-of/check-cast pattern requires at least 2 rounds of 4941 // Split-If to clear out. 4942 C->set_major_progress(); 4943 } 4944 4945 // Repeat loop optimizations if new loops were seen 4946 if (created_loop_node()) { 4947 C->set_major_progress(); 4948 } 4949 4950 // Keep loop predicates and perform optimizations with them 4951 // until no more loop optimizations could be done. 4952 // After that switch predicates off and do more loop optimizations. 4953 if (!C->major_progress() && (C->parse_predicate_count() > 0)) { 4954 C->mark_parse_predicate_nodes_useless(_igvn); 4955 assert(C->parse_predicate_count() == 0, "should be zero now"); 4956 if (TraceLoopOpts) { 4957 tty->print_cr("PredicatesOff"); 4958 } 4959 C->set_major_progress(); 4960 } 4961 4962 // Auto-vectorize main-loop 4963 if (C->do_superword() && C->has_loops() && !C->major_progress()) { 4964 Compile::TracePhase tp(_t_autoVectorize); 4965 4966 // Shared data structures for all AutoVectorizations, to reduce allocations 4967 // of large arrays. 4968 VSharedData vshared; 4969 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4970 IdealLoopTree* lpt = iter.current(); 4971 AutoVectorizeStatus status = auto_vectorize(lpt, vshared); 4972 4973 if (status == AutoVectorizeStatus::TriedAndFailed) { 4974 // We tried vectorization, but failed. From now on only unroll the loop. 4975 CountedLoopNode* cl = lpt->_head->as_CountedLoop(); 4976 if (cl->has_passed_slp()) { 4977 C->set_major_progress(); 4978 cl->set_notpassed_slp(); 4979 cl->mark_do_unroll_only(); 4980 } 4981 } 4982 } 4983 } 4984 4985 // Move UnorderedReduction out of counted loop. Can be introduced by AutoVectorization. 4986 if (C->has_loops() && !C->major_progress()) { 4987 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 4988 IdealLoopTree* lpt = iter.current(); 4989 if (lpt->is_counted() && lpt->is_innermost()) { 4990 move_unordered_reduction_out_of_loop(lpt); 4991 } 4992 } 4993 } 4994 } 4995 4996 #ifndef PRODUCT 4997 //------------------------------print_statistics------------------------------- 4998 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes 4999 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique 5000 volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen 5001 volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest 5002 volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop 5003 void PhaseIdealLoop::print_statistics() { 5004 tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates); 5005 } 5006 #endif 5007 5008 #ifdef ASSERT 5009 // Build a verify-only PhaseIdealLoop, and see that it agrees with "this". 5010 void PhaseIdealLoop::verify() const { 5011 ResourceMark rm; 5012 int old_progress = C->major_progress(); 5013 bool success = true; 5014 5015 PhaseIdealLoop phase_verify(_igvn, this); 5016 if (C->failing_internal()) { 5017 return; 5018 } 5019 5020 // Verify ctrl and idom of every node. 5021 success &= verify_idom_and_nodes(C->root(), &phase_verify); 5022 5023 // Verify loop-tree. 5024 success &= _ltree_root->verify_tree(phase_verify._ltree_root); 5025 5026 assert(success, "VerifyLoopOptimizations failed"); 5027 5028 // Major progress was cleared by creating a verify version of PhaseIdealLoop. 5029 C->restore_major_progress(old_progress); 5030 } 5031 5032 // Perform a BFS starting at n, through all inputs. 5033 // Call verify_idom and verify_node on all nodes of BFS traversal. 5034 bool PhaseIdealLoop::verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const { 5035 Unique_Node_List worklist; 5036 worklist.push(root); 5037 bool success = true; 5038 for (uint i = 0; i < worklist.size(); i++) { 5039 Node* n = worklist.at(i); 5040 // process node 5041 success &= verify_idom(n, phase_verify); 5042 success &= verify_loop_ctrl(n, phase_verify); 5043 // visit inputs 5044 for (uint j = 0; j < n->req(); j++) { 5045 if (n->in(j) != nullptr) { 5046 worklist.push(n->in(j)); 5047 } 5048 } 5049 } 5050 return success; 5051 } 5052 5053 // Verify dominator structure (IDOM). 5054 bool PhaseIdealLoop::verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const { 5055 // Verify IDOM for all CFG nodes (except root). 5056 if (!n->is_CFG() || n->is_Root()) { 5057 return true; // pass 5058 } 5059 5060 if (n->_idx >= _idom_size) { 5061 tty->print("CFG Node with no idom: "); 5062 n->dump(); 5063 return false; // fail 5064 } 5065 5066 Node* id = idom_no_update(n); 5067 Node* id_verify = phase_verify->idom_no_update(n); 5068 if (id != id_verify) { 5069 tty->print("Mismatching idom for node: "); 5070 n->dump(); 5071 tty->print(" We have idom: "); 5072 id->dump(); 5073 tty->print(" Verify has idom: "); 5074 id_verify->dump(); 5075 tty->cr(); 5076 return false; // fail 5077 } 5078 return true; // pass 5079 } 5080 5081 // Verify "_loop_or_ctrl": control and loop membership. 5082 // (0) _loop_or_ctrl[i] == nullptr -> node not reachable. 5083 // (1) has_ctrl -> check lowest bit. 1 -> data node. 0 -> ctrl node. 5084 // (2) has_ctrl true: get_ctrl_no_update returns ctrl of data node. 5085 // (3) has_ctrl false: get_loop_idx returns IdealLoopTree for ctrl node. 5086 bool PhaseIdealLoop::verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const { 5087 const uint i = n->_idx; 5088 // The loop-tree was built from def to use (top-down). 5089 // The verification happens from use to def (bottom-up). 5090 // We may thus find nodes during verification that are not in the loop-tree. 5091 if (_loop_or_ctrl[i] == nullptr || phase_verify->_loop_or_ctrl[i] == nullptr) { 5092 if (_loop_or_ctrl[i] != nullptr || phase_verify->_loop_or_ctrl[i] != nullptr) { 5093 tty->print_cr("Was reachable in only one. this %d, verify %d.", 5094 _loop_or_ctrl[i] != nullptr, phase_verify->_loop_or_ctrl[i] != nullptr); 5095 n->dump(); 5096 return false; // fail 5097 } 5098 // Not reachable for both. 5099 return true; // pass 5100 } 5101 5102 if (n->is_CFG() == has_ctrl(n)) { 5103 tty->print_cr("Exactly one should be true: %d for is_CFG, %d for has_ctrl.", n->is_CFG(), has_ctrl(n)); 5104 n->dump(); 5105 return false; // fail 5106 } 5107 5108 if (has_ctrl(n) != phase_verify->has_ctrl(n)) { 5109 tty->print_cr("Mismatch has_ctrl: %d for this, %d for verify.", has_ctrl(n), phase_verify->has_ctrl(n)); 5110 n->dump(); 5111 return false; // fail 5112 } else if (has_ctrl(n)) { 5113 assert(phase_verify->has_ctrl(n), "sanity"); 5114 // n is a data node. 5115 // Verify that its ctrl is the same. 5116 5117 // Broken part of VerifyLoopOptimizations (A) 5118 // Reason: 5119 // BUG, wrong control set for example in 5120 // PhaseIdealLoop::split_if_with_blocks 5121 // at "set_ctrl(x, new_ctrl);" 5122 /* 5123 if( _loop_or_ctrl[i] != loop_verify->_loop_or_ctrl[i] && 5124 get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) { 5125 tty->print("Mismatched control setting for: "); 5126 n->dump(); 5127 if( fail++ > 10 ) return; 5128 Node *c = get_ctrl_no_update(n); 5129 tty->print("We have it as: "); 5130 if( c->in(0) ) c->dump(); 5131 else tty->print_cr("N%d",c->_idx); 5132 tty->print("Verify thinks: "); 5133 if( loop_verify->has_ctrl(n) ) 5134 loop_verify->get_ctrl_no_update(n)->dump(); 5135 else 5136 loop_verify->get_loop_idx(n)->dump(); 5137 tty->cr(); 5138 } 5139 */ 5140 return true; // pass 5141 } else { 5142 assert(!phase_verify->has_ctrl(n), "sanity"); 5143 // n is a ctrl node. 5144 // Verify that not has_ctrl, and that get_loop_idx is the same. 5145 5146 // Broken part of VerifyLoopOptimizations (B) 5147 // Reason: 5148 // NeverBranch node for example is added to loop outside its scope. 5149 // Once we run build_loop_tree again, it is added to the correct loop. 5150 /* 5151 if (!C->major_progress()) { 5152 // Loop selection can be messed up if we did a major progress 5153 // operation, like split-if. Do not verify in that case. 5154 IdealLoopTree *us = get_loop_idx(n); 5155 IdealLoopTree *them = loop_verify->get_loop_idx(n); 5156 if( us->_head != them->_head || us->_tail != them->_tail ) { 5157 tty->print("Unequals loops for: "); 5158 n->dump(); 5159 if( fail++ > 10 ) return; 5160 tty->print("We have it as: "); 5161 us->dump(); 5162 tty->print("Verify thinks: "); 5163 them->dump(); 5164 tty->cr(); 5165 } 5166 } 5167 */ 5168 return true; // pass 5169 } 5170 } 5171 5172 static int compare_tree(IdealLoopTree* const& a, IdealLoopTree* const& b) { 5173 assert(a != nullptr && b != nullptr, "must be"); 5174 return a->_head->_idx - b->_head->_idx; 5175 } 5176 5177 GrowableArray<IdealLoopTree*> IdealLoopTree::collect_sorted_children() const { 5178 GrowableArray<IdealLoopTree*> children; 5179 IdealLoopTree* child = _child; 5180 while (child != nullptr) { 5181 assert(child->_parent == this, "all must be children of this"); 5182 children.insert_sorted<compare_tree>(child); 5183 child = child->_next; 5184 } 5185 return children; 5186 } 5187 5188 // Verify that tree structures match. Because the CFG can change, siblings 5189 // within the loop tree can be reordered. We attempt to deal with that by 5190 // reordering the verify's loop tree if possible. 5191 bool IdealLoopTree::verify_tree(IdealLoopTree* loop_verify) const { 5192 assert(_head == loop_verify->_head, "mismatched loop head"); 5193 assert(this->_parent != nullptr || this->_next == nullptr, "is_root_loop implies has_no_sibling"); 5194 5195 // Collect the children 5196 GrowableArray<IdealLoopTree*> children = collect_sorted_children(); 5197 GrowableArray<IdealLoopTree*> children_verify = loop_verify->collect_sorted_children(); 5198 5199 bool success = true; 5200 5201 // Compare the two children lists 5202 for (int i = 0, j = 0; i < children.length() || j < children_verify.length(); ) { 5203 IdealLoopTree* child = nullptr; 5204 IdealLoopTree* child_verify = nullptr; 5205 // Read from both lists, if possible. 5206 if (i < children.length()) { 5207 child = children.at(i); 5208 } 5209 if (j < children_verify.length()) { 5210 child_verify = children_verify.at(j); 5211 } 5212 assert(child != nullptr || child_verify != nullptr, "must find at least one"); 5213 if (child != nullptr && child_verify != nullptr && child->_head != child_verify->_head) { 5214 // We found two non-equal children. Select the smaller one. 5215 if (child->_head->_idx < child_verify->_head->_idx) { 5216 child_verify = nullptr; 5217 } else { 5218 child = nullptr; 5219 } 5220 } 5221 // Process the two children, or potentially log the failure if we only found one. 5222 if (child_verify == nullptr) { 5223 if (child->_irreducible && Compile::current()->major_progress()) { 5224 // Irreducible loops can pick a different header (one of its entries). 5225 } else { 5226 tty->print_cr("We have a loop that verify does not have"); 5227 child->dump(); 5228 success = false; 5229 } 5230 i++; // step for this 5231 } else if (child == nullptr) { 5232 if (child_verify->_irreducible && Compile::current()->major_progress()) { 5233 // Irreducible loops can pick a different header (one of its entries). 5234 } else if (child_verify->_head->as_Region()->is_in_infinite_subgraph()) { 5235 // Infinite loops do not get attached to the loop-tree on their first visit. 5236 // "this" runs before "loop_verify". It is thus possible that we find the 5237 // infinite loop only for "child_verify". Only finding it with "child" would 5238 // mean that we lost it, which is not ok. 5239 } else { 5240 tty->print_cr("Verify has a loop that we do not have"); 5241 child_verify->dump(); 5242 success = false; 5243 } 5244 j++; // step for verify 5245 } else { 5246 assert(child->_head == child_verify->_head, "We have both and they are equal"); 5247 success &= child->verify_tree(child_verify); // Recursion 5248 i++; // step for this 5249 j++; // step for verify 5250 } 5251 } 5252 5253 // Broken part of VerifyLoopOptimizations (D) 5254 // Reason: 5255 // split_if has to update the _tail, if it is modified. But that is done by 5256 // checking to what loop the iff belongs to. That info can be wrong, and then 5257 // we do not update the _tail correctly. 5258 /* 5259 Node *tail = _tail; // Inline a non-updating version of 5260 while( !tail->in(0) ) // the 'tail()' call. 5261 tail = tail->in(1); 5262 assert( tail == loop->_tail, "mismatched loop tail" ); 5263 */ 5264 5265 if (_head->is_CountedLoop()) { 5266 CountedLoopNode *cl = _head->as_CountedLoop(); 5267 5268 Node* ctrl = cl->init_control(); 5269 Node* back = cl->back_control(); 5270 assert(ctrl != nullptr && ctrl->is_CFG(), "sane loop in-ctrl"); 5271 assert(back != nullptr && back->is_CFG(), "sane loop backedge"); 5272 cl->loopexit(); // assert implied 5273 } 5274 5275 // Broken part of VerifyLoopOptimizations (E) 5276 // Reason: 5277 // PhaseIdealLoop::split_thru_region creates new nodes for loop that are not added 5278 // to the loop body. Or maybe they are not added to the correct loop. 5279 // at "Node* x = n->clone();" 5280 /* 5281 // Innermost loops need to verify loop bodies, 5282 // but only if no 'major_progress' 5283 int fail = 0; 5284 if (!Compile::current()->major_progress() && _child == nullptr) { 5285 for( uint i = 0; i < _body.size(); i++ ) { 5286 Node *n = _body.at(i); 5287 if (n->outcnt() == 0) continue; // Ignore dead 5288 uint j; 5289 for( j = 0; j < loop->_body.size(); j++ ) 5290 if( loop->_body.at(j) == n ) 5291 break; 5292 if( j == loop->_body.size() ) { // Not found in loop body 5293 // Last ditch effort to avoid assertion: Its possible that we 5294 // have some users (so outcnt not zero) but are still dead. 5295 // Try to find from root. 5296 if (Compile::current()->root()->find(n->_idx)) { 5297 fail++; 5298 tty->print("We have that verify does not: "); 5299 n->dump(); 5300 } 5301 } 5302 } 5303 for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) { 5304 Node *n = loop->_body.at(i2); 5305 if (n->outcnt() == 0) continue; // Ignore dead 5306 uint j; 5307 for( j = 0; j < _body.size(); j++ ) 5308 if( _body.at(j) == n ) 5309 break; 5310 if( j == _body.size() ) { // Not found in loop body 5311 // Last ditch effort to avoid assertion: Its possible that we 5312 // have some users (so outcnt not zero) but are still dead. 5313 // Try to find from root. 5314 if (Compile::current()->root()->find(n->_idx)) { 5315 fail++; 5316 tty->print("Verify has that we do not: "); 5317 n->dump(); 5318 } 5319 } 5320 } 5321 assert( !fail, "loop body mismatch" ); 5322 } 5323 */ 5324 return success; 5325 } 5326 #endif 5327 5328 //------------------------------set_idom--------------------------------------- 5329 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) { 5330 _nesting.check(); // Check if a potential reallocation in the resource arena is safe 5331 uint idx = d->_idx; 5332 if (idx >= _idom_size) { 5333 uint newsize = next_power_of_2(idx); 5334 _idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize); 5335 _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize); 5336 memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) ); 5337 _idom_size = newsize; 5338 } 5339 _idom[idx] = n; 5340 _dom_depth[idx] = dom_depth; 5341 } 5342 5343 //------------------------------recompute_dom_depth--------------------------------------- 5344 // The dominator tree is constructed with only parent pointers. 5345 // This recomputes the depth in the tree by first tagging all 5346 // nodes as "no depth yet" marker. The next pass then runs up 5347 // the dom tree from each node marked "no depth yet", and computes 5348 // the depth on the way back down. 5349 void PhaseIdealLoop::recompute_dom_depth() { 5350 uint no_depth_marker = C->unique(); 5351 uint i; 5352 // Initialize depth to "no depth yet" and realize all lazy updates 5353 for (i = 0; i < _idom_size; i++) { 5354 // Only indices with a _dom_depth has a Node* or null (otherwise uninitialized). 5355 if (_dom_depth[i] > 0 && _idom[i] != nullptr) { 5356 _dom_depth[i] = no_depth_marker; 5357 5358 // heal _idom if it has a fwd mapping in _loop_or_ctrl 5359 if (_idom[i]->in(0) == nullptr) { 5360 idom(i); 5361 } 5362 } 5363 } 5364 if (_dom_stk == nullptr) { 5365 uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size. 5366 if (init_size < 10) init_size = 10; 5367 _dom_stk = new GrowableArray<uint>(init_size); 5368 } 5369 // Compute new depth for each node. 5370 for (i = 0; i < _idom_size; i++) { 5371 uint j = i; 5372 // Run up the dom tree to find a node with a depth 5373 while (_dom_depth[j] == no_depth_marker) { 5374 _dom_stk->push(j); 5375 j = _idom[j]->_idx; 5376 } 5377 // Compute the depth on the way back down this tree branch 5378 uint dd = _dom_depth[j] + 1; 5379 while (_dom_stk->length() > 0) { 5380 uint j = _dom_stk->pop(); 5381 _dom_depth[j] = dd; 5382 dd++; 5383 } 5384 } 5385 } 5386 5387 //------------------------------sort------------------------------------------- 5388 // Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the 5389 // loop tree, not the root. 5390 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) { 5391 if( !innermost ) return loop; // New innermost loop 5392 5393 int loop_preorder = get_preorder(loop->_head); // Cache pre-order number 5394 assert( loop_preorder, "not yet post-walked loop" ); 5395 IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer 5396 IdealLoopTree *l = *pp; // Do I go before or after 'l'? 5397 5398 // Insert at start of list 5399 while( l ) { // Insertion sort based on pre-order 5400 if( l == loop ) return innermost; // Already on list! 5401 int l_preorder = get_preorder(l->_head); // Cache pre-order number 5402 assert( l_preorder, "not yet post-walked l" ); 5403 // Check header pre-order number to figure proper nesting 5404 if( loop_preorder > l_preorder ) 5405 break; // End of insertion 5406 // If headers tie (e.g., shared headers) check tail pre-order numbers. 5407 // Since I split shared headers, you'd think this could not happen. 5408 // BUT: I must first do the preorder numbering before I can discover I 5409 // have shared headers, so the split headers all get the same preorder 5410 // number as the RegionNode they split from. 5411 if( loop_preorder == l_preorder && 5412 get_preorder(loop->_tail) < get_preorder(l->_tail) ) 5413 break; // Also check for shared headers (same pre#) 5414 pp = &l->_parent; // Chain up list 5415 l = *pp; 5416 } 5417 // Link into list 5418 // Point predecessor to me 5419 *pp = loop; 5420 // Point me to successor 5421 IdealLoopTree *p = loop->_parent; 5422 loop->_parent = l; // Point me to successor 5423 if( p ) sort( p, innermost ); // Insert my parents into list as well 5424 return innermost; 5425 } 5426 5427 //------------------------------build_loop_tree-------------------------------- 5428 // I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit 5429 // bits. The _loop_or_ctrl[] array is mapped by Node index and holds a null for 5430 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the 5431 // tightest enclosing IdealLoopTree for post-walked. 5432 // 5433 // During my forward walk I do a short 1-layer lookahead to see if I can find 5434 // a loop backedge with that doesn't have any work on the backedge. This 5435 // helps me construct nested loops with shared headers better. 5436 // 5437 // Once I've done the forward recursion, I do the post-work. For each child 5438 // I check to see if there is a backedge. Backedges define a loop! I 5439 // insert an IdealLoopTree at the target of the backedge. 5440 // 5441 // During the post-work I also check to see if I have several children 5442 // belonging to different loops. If so, then this Node is a decision point 5443 // where control flow can choose to change loop nests. It is at this 5444 // decision point where I can figure out how loops are nested. At this 5445 // time I can properly order the different loop nests from my children. 5446 // Note that there may not be any backedges at the decision point! 5447 // 5448 // Since the decision point can be far removed from the backedges, I can't 5449 // order my loops at the time I discover them. Thus at the decision point 5450 // I need to inspect loop header pre-order numbers to properly nest my 5451 // loops. This means I need to sort my childrens' loops by pre-order. 5452 // The sort is of size number-of-control-children, which generally limits 5453 // it to size 2 (i.e., I just choose between my 2 target loops). 5454 void PhaseIdealLoop::build_loop_tree() { 5455 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 5456 GrowableArray <Node *> bltstack(C->live_nodes() >> 1); 5457 Node *n = C->root(); 5458 bltstack.push(n); 5459 int pre_order = 1; 5460 int stack_size; 5461 5462 while ( ( stack_size = bltstack.length() ) != 0 ) { 5463 n = bltstack.top(); // Leave node on stack 5464 if ( !is_visited(n) ) { 5465 // ---- Pre-pass Work ---- 5466 // Pre-walked but not post-walked nodes need a pre_order number. 5467 5468 set_preorder_visited( n, pre_order ); // set as visited 5469 5470 // ---- Scan over children ---- 5471 // Scan first over control projections that lead to loop headers. 5472 // This helps us find inner-to-outer loops with shared headers better. 5473 5474 // Scan children's children for loop headers. 5475 for ( int i = n->outcnt() - 1; i >= 0; --i ) { 5476 Node* m = n->raw_out(i); // Child 5477 if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children 5478 // Scan over children's children to find loop 5479 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 5480 Node* l = m->fast_out(j); 5481 if( is_visited(l) && // Been visited? 5482 !is_postvisited(l) && // But not post-visited 5483 get_preorder(l) < pre_order ) { // And smaller pre-order 5484 // Found! Scan the DFS down this path before doing other paths 5485 bltstack.push(m); 5486 break; 5487 } 5488 } 5489 } 5490 } 5491 pre_order++; 5492 } 5493 else if ( !is_postvisited(n) ) { 5494 // Note: build_loop_tree_impl() adds out edges on rare occasions, 5495 // such as com.sun.rsasign.am::a. 5496 // For non-recursive version, first, process current children. 5497 // On next iteration, check if additional children were added. 5498 for ( int k = n->outcnt() - 1; k >= 0; --k ) { 5499 Node* u = n->raw_out(k); 5500 if ( u->is_CFG() && !is_visited(u) ) { 5501 bltstack.push(u); 5502 } 5503 } 5504 if ( bltstack.length() == stack_size ) { 5505 // There were no additional children, post visit node now 5506 (void)bltstack.pop(); // Remove node from stack 5507 pre_order = build_loop_tree_impl(n, pre_order); 5508 // Check for bailout 5509 if (C->failing()) { 5510 return; 5511 } 5512 // Check to grow _preorders[] array for the case when 5513 // build_loop_tree_impl() adds new nodes. 5514 check_grow_preorders(); 5515 } 5516 } 5517 else { 5518 (void)bltstack.pop(); // Remove post-visited node from stack 5519 } 5520 } 5521 DEBUG_ONLY(verify_regions_in_irreducible_loops();) 5522 } 5523 5524 //------------------------------build_loop_tree_impl--------------------------- 5525 int PhaseIdealLoop::build_loop_tree_impl(Node* n, int pre_order) { 5526 // ---- Post-pass Work ---- 5527 // Pre-walked but not post-walked nodes need a pre_order number. 5528 5529 // Tightest enclosing loop for this Node 5530 IdealLoopTree *innermost = nullptr; 5531 5532 // For all children, see if any edge is a backedge. If so, make a loop 5533 // for it. Then find the tightest enclosing loop for the self Node. 5534 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5535 Node* m = n->fast_out(i); // Child 5536 if (n == m) continue; // Ignore control self-cycles 5537 if (!m->is_CFG()) continue;// Ignore non-CFG edges 5538 5539 IdealLoopTree *l; // Child's loop 5540 if (!is_postvisited(m)) { // Child visited but not post-visited? 5541 // Found a backedge 5542 assert(get_preorder(m) < pre_order, "should be backedge"); 5543 // Check for the RootNode, which is already a LoopNode and is allowed 5544 // to have multiple "backedges". 5545 if (m == C->root()) { // Found the root? 5546 l = _ltree_root; // Root is the outermost LoopNode 5547 } else { // Else found a nested loop 5548 // Insert a LoopNode to mark this loop. 5549 l = new IdealLoopTree(this, m, n); 5550 } // End of Else found a nested loop 5551 if (!has_loop(m)) { // If 'm' does not already have a loop set 5552 set_loop(m, l); // Set loop header to loop now 5553 } 5554 } else { // Else not a nested loop 5555 if (!_loop_or_ctrl[m->_idx]) continue; // Dead code has no loop 5556 IdealLoopTree* m_loop = get_loop(m); 5557 l = m_loop; // Get previously determined loop 5558 // If successor is header of a loop (nest), move up-loop till it 5559 // is a member of some outer enclosing loop. Since there are no 5560 // shared headers (I've split them already) I only need to go up 5561 // at most 1 level. 5562 while (l && l->_head == m) { // Successor heads loop? 5563 l = l->_parent; // Move up 1 for me 5564 } 5565 // If this loop is not properly parented, then this loop 5566 // has no exit path out, i.e. its an infinite loop. 5567 if (!l) { 5568 // Make loop "reachable" from root so the CFG is reachable. Basically 5569 // insert a bogus loop exit that is never taken. 'm', the loop head, 5570 // points to 'n', one (of possibly many) fall-in paths. There may be 5571 // many backedges as well. 5572 5573 if (!_verify_only) { 5574 // Insert the NeverBranch between 'm' and it's control user. 5575 NeverBranchNode *iff = new NeverBranchNode( m ); 5576 _igvn.register_new_node_with_optimizer(iff); 5577 set_loop(iff, m_loop); 5578 Node *if_t = new CProjNode( iff, 0 ); 5579 _igvn.register_new_node_with_optimizer(if_t); 5580 set_loop(if_t, m_loop); 5581 5582 Node* cfg = nullptr; // Find the One True Control User of m 5583 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 5584 Node* x = m->fast_out(j); 5585 if (x->is_CFG() && x != m && x != iff) 5586 { cfg = x; break; } 5587 } 5588 assert(cfg != nullptr, "must find the control user of m"); 5589 uint k = 0; // Probably cfg->in(0) 5590 while( cfg->in(k) != m ) k++; // But check in case cfg is a Region 5591 _igvn.replace_input_of(cfg, k, if_t); // Now point to NeverBranch 5592 5593 // Now create the never-taken loop exit 5594 Node *if_f = new CProjNode( iff, 1 ); 5595 _igvn.register_new_node_with_optimizer(if_f); 5596 set_loop(if_f, _ltree_root); 5597 // Find frame ptr for Halt. Relies on the optimizer 5598 // V-N'ing. Easier and quicker than searching through 5599 // the program structure. 5600 Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr ); 5601 _igvn.register_new_node_with_optimizer(frame); 5602 // Halt & Catch Fire 5603 Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached"); 5604 _igvn.register_new_node_with_optimizer(halt); 5605 set_loop(halt, _ltree_root); 5606 _igvn.add_input_to(C->root(), halt); 5607 } 5608 set_loop(C->root(), _ltree_root); 5609 // move to outer most loop with same header 5610 l = m_loop; 5611 while (true) { 5612 IdealLoopTree* next = l->_parent; 5613 if (next == nullptr || next->_head != m) { 5614 break; 5615 } 5616 l = next; 5617 } 5618 // properly insert infinite loop in loop tree 5619 sort(_ltree_root, l); 5620 // fix child link from parent 5621 IdealLoopTree* p = l->_parent; 5622 l->_next = p->_child; 5623 p->_child = l; 5624 // code below needs enclosing loop 5625 l = l->_parent; 5626 } 5627 } 5628 if (is_postvisited(l->_head)) { 5629 // We are currently visiting l, but its head has already been post-visited. 5630 // l is irreducible: we just found a second entry m. 5631 _has_irreducible_loops = true; 5632 RegionNode* secondary_entry = m->as_Region(); 5633 5634 if (!secondary_entry->can_be_irreducible_entry()) { 5635 assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing."); 5636 C->record_method_not_compilable("A new irreducible loop was created after parsing."); 5637 return pre_order; 5638 } 5639 5640 // Walk up the loop-tree, mark all loops that are already post-visited as irreducible 5641 // Since m is a secondary entry to them all. 5642 while( is_postvisited(l->_head) ) { 5643 l->_irreducible = 1; // = true 5644 RegionNode* head = l->_head->as_Region(); 5645 if (!head->can_be_irreducible_entry()) { 5646 assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing."); 5647 C->record_method_not_compilable("A new irreducible loop was created after parsing."); 5648 return pre_order; 5649 } 5650 l = l->_parent; 5651 // Check for bad CFG here to prevent crash, and bailout of compile 5652 if (l == nullptr) { 5653 #ifndef PRODUCT 5654 if (TraceLoopOpts) { 5655 tty->print_cr("bailout: unhandled CFG: infinite irreducible loop"); 5656 m->dump(); 5657 } 5658 #endif 5659 // This is a rare case that we do not want to handle in C2. 5660 C->record_method_not_compilable("unhandled CFG detected during loop optimization"); 5661 return pre_order; 5662 } 5663 } 5664 } 5665 if (!_verify_only) { 5666 C->set_has_irreducible_loop(_has_irreducible_loops); 5667 } 5668 5669 // This Node might be a decision point for loops. It is only if 5670 // it's children belong to several different loops. The sort call 5671 // does a trivial amount of work if there is only 1 child or all 5672 // children belong to the same loop. If however, the children 5673 // belong to different loops, the sort call will properly set the 5674 // _parent pointers to show how the loops nest. 5675 // 5676 // In any case, it returns the tightest enclosing loop. 5677 innermost = sort( l, innermost ); 5678 } 5679 5680 // Def-use info will have some dead stuff; dead stuff will have no 5681 // loop decided on. 5682 5683 // Am I a loop header? If so fix up my parent's child and next ptrs. 5684 if( innermost && innermost->_head == n ) { 5685 assert( get_loop(n) == innermost, "" ); 5686 IdealLoopTree *p = innermost->_parent; 5687 IdealLoopTree *l = innermost; 5688 while (p && l->_head == n) { 5689 l->_next = p->_child; // Put self on parents 'next child' 5690 p->_child = l; // Make self as first child of parent 5691 l = p; // Now walk up the parent chain 5692 p = l->_parent; 5693 } 5694 } else { 5695 // Note that it is possible for a LoopNode to reach here, if the 5696 // backedge has been made unreachable (hence the LoopNode no longer 5697 // denotes a Loop, and will eventually be removed). 5698 5699 // Record tightest enclosing loop for self. Mark as post-visited. 5700 set_loop(n, innermost); 5701 // Also record has_call flag early on 5702 if (innermost) { 5703 if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) { 5704 // Do not count uncommon calls 5705 if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) { 5706 Node *iff = n->in(0)->in(0); 5707 // No any calls for vectorized loops. 5708 if (C->do_superword() || 5709 !iff->is_If() || 5710 (n->in(0)->Opcode() == Op_IfFalse && (1.0 - iff->as_If()->_prob) >= 0.01) || 5711 iff->as_If()->_prob >= 0.01) { 5712 innermost->_has_call = 1; 5713 } 5714 } 5715 } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) { 5716 // Disable loop optimizations if the loop has a scalar replaceable 5717 // allocation. This disabling may cause a potential performance lost 5718 // if the allocation is not eliminated for some reason. 5719 innermost->_allow_optimizations = false; 5720 innermost->_has_call = 1; // = true 5721 } else if (n->Opcode() == Op_SafePoint) { 5722 // Record all safepoints in this loop. 5723 if (innermost->_safepts == nullptr) innermost->_safepts = new Node_List(); 5724 innermost->_safepts->push(n); 5725 } 5726 } 5727 } 5728 5729 // Flag as post-visited now 5730 set_postvisited(n); 5731 return pre_order; 5732 } 5733 5734 #ifdef ASSERT 5735 //--------------------------verify_regions_in_irreducible_loops---------------- 5736 // Iterate down from Root through CFG, verify for every region: 5737 // if it is in an irreducible loop it must be marked as such 5738 void PhaseIdealLoop::verify_regions_in_irreducible_loops() { 5739 ResourceMark rm; 5740 if (!_has_irreducible_loops) { 5741 // last build_loop_tree has not found any irreducible loops 5742 // hence no region has to be marked is_in_irreduible_loop 5743 return; 5744 } 5745 5746 RootNode* root = C->root(); 5747 Unique_Node_List worklist; // visit all nodes once 5748 worklist.push(root); 5749 bool failure = false; 5750 for (uint i = 0; i < worklist.size(); i++) { 5751 Node* n = worklist.at(i); 5752 if (n->is_Region()) { 5753 RegionNode* region = n->as_Region(); 5754 if (is_in_irreducible_loop(region) && 5755 region->loop_status() == RegionNode::LoopStatus::Reducible) { 5756 failure = true; 5757 tty->print("irreducible! "); 5758 region->dump(); 5759 } 5760 } 5761 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 5762 Node* use = n->fast_out(j); 5763 if (use->is_CFG()) { 5764 worklist.push(use); // push if was not pushed before 5765 } 5766 } 5767 } 5768 assert(!failure, "region in irreducible loop was marked as reducible"); 5769 } 5770 5771 //---------------------------is_in_irreducible_loop------------------------- 5772 // Analogous to ciTypeFlow::Block::is_in_irreducible_loop 5773 bool PhaseIdealLoop::is_in_irreducible_loop(RegionNode* region) { 5774 if (!_has_irreducible_loops) { 5775 return false; // no irreducible loop in graph 5776 } 5777 IdealLoopTree* l = get_loop(region); // l: innermost loop that contains region 5778 do { 5779 if (l->_irreducible) { 5780 return true; // found it 5781 } 5782 if (l == _ltree_root) { 5783 return false; // reached root, terimnate 5784 } 5785 l = l->_parent; 5786 } while (l != nullptr); 5787 assert(region->is_in_infinite_subgraph(), "must be in infinite subgraph"); 5788 // We have "l->_parent == nullptr", which happens only for infinite loops, 5789 // where no parent is attached to the loop. We did not find any irreducible 5790 // loop from this block out to lp. Thus lp only has one entry, and no exit 5791 // (it is infinite and reducible). We can always rewrite an infinite loop 5792 // that is nested inside other loops: 5793 // while(condition) { infinite_loop; } 5794 // with an equivalent program where the infinite loop is an outermost loop 5795 // that is not nested in any loop: 5796 // while(condition) { break; } infinite_loop; 5797 // Thus, we can understand lp as an outermost loop, and can terminate and 5798 // conclude: this block is in no irreducible loop. 5799 return false; 5800 } 5801 #endif 5802 5803 //------------------------------build_loop_early------------------------------- 5804 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. 5805 // First pass computes the earliest controlling node possible. This is the 5806 // controlling input with the deepest dominating depth. 5807 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) { 5808 while (worklist.size() != 0) { 5809 // Use local variables nstack_top_n & nstack_top_i to cache values 5810 // on nstack's top. 5811 Node *nstack_top_n = worklist.pop(); 5812 uint nstack_top_i = 0; 5813 //while_nstack_nonempty: 5814 while (true) { 5815 // Get parent node and next input's index from stack's top. 5816 Node *n = nstack_top_n; 5817 uint i = nstack_top_i; 5818 uint cnt = n->req(); // Count of inputs 5819 if (i == 0) { // Pre-process the node. 5820 if( has_node(n) && // Have either loop or control already? 5821 !has_ctrl(n) ) { // Have loop picked out already? 5822 // During "merge_many_backedges" we fold up several nested loops 5823 // into a single loop. This makes the members of the original 5824 // loop bodies pointing to dead loops; they need to move up 5825 // to the new UNION'd larger loop. I set the _head field of these 5826 // dead loops to null and the _parent field points to the owning 5827 // loop. Shades of UNION-FIND algorithm. 5828 IdealLoopTree *ilt; 5829 while( !(ilt = get_loop(n))->_head ) { 5830 // Normally I would use a set_loop here. But in this one special 5831 // case, it is legal (and expected) to change what loop a Node 5832 // belongs to. 5833 _loop_or_ctrl.map(n->_idx, (Node*)(ilt->_parent)); 5834 } 5835 // Remove safepoints ONLY if I've already seen I don't need one. 5836 // (the old code here would yank a 2nd safepoint after seeing a 5837 // first one, even though the 1st did not dominate in the loop body 5838 // and thus could be avoided indefinitely) 5839 if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint && 5840 is_deleteable_safept(n)) { 5841 Node *in = n->in(TypeFunc::Control); 5842 lazy_replace(n,in); // Pull safepoint now 5843 if (ilt->_safepts != nullptr) { 5844 ilt->_safepts->yank(n); 5845 } 5846 // Carry on with the recursion "as if" we are walking 5847 // only the control input 5848 if( !visited.test_set( in->_idx ) ) { 5849 worklist.push(in); // Visit this guy later, using worklist 5850 } 5851 // Get next node from nstack: 5852 // - skip n's inputs processing by setting i > cnt; 5853 // - we also will not call set_early_ctrl(n) since 5854 // has_node(n) == true (see the condition above). 5855 i = cnt + 1; 5856 } 5857 } 5858 } // if (i == 0) 5859 5860 // Visit all inputs 5861 bool done = true; // Assume all n's inputs will be processed 5862 while (i < cnt) { 5863 Node *in = n->in(i); 5864 ++i; 5865 if (in == nullptr) continue; 5866 if (in->pinned() && !in->is_CFG()) 5867 set_ctrl(in, in->in(0)); 5868 int is_visited = visited.test_set( in->_idx ); 5869 if (!has_node(in)) { // No controlling input yet? 5870 assert( !in->is_CFG(), "CFG Node with no controlling input?" ); 5871 assert( !is_visited, "visit only once" ); 5872 nstack.push(n, i); // Save parent node and next input's index. 5873 nstack_top_n = in; // Process current input now. 5874 nstack_top_i = 0; 5875 done = false; // Not all n's inputs processed. 5876 break; // continue while_nstack_nonempty; 5877 } else if (!is_visited) { 5878 // This guy has a location picked out for him, but has not yet 5879 // been visited. Happens to all CFG nodes, for instance. 5880 // Visit him using the worklist instead of recursion, to break 5881 // cycles. Since he has a location already we do not need to 5882 // find his location before proceeding with the current Node. 5883 worklist.push(in); // Visit this guy later, using worklist 5884 } 5885 } 5886 if (done) { 5887 // All of n's inputs have been processed, complete post-processing. 5888 5889 // Compute earliest point this Node can go. 5890 // CFG, Phi, pinned nodes already know their controlling input. 5891 if (!has_node(n)) { 5892 // Record earliest legal location 5893 set_early_ctrl(n, false); 5894 } 5895 if (nstack.is_empty()) { 5896 // Finished all nodes on stack. 5897 // Process next node on the worklist. 5898 break; 5899 } 5900 // Get saved parent node and next input's index. 5901 nstack_top_n = nstack.node(); 5902 nstack_top_i = nstack.index(); 5903 nstack.pop(); 5904 } 5905 } // while (true) 5906 } 5907 } 5908 5909 //------------------------------dom_lca_internal-------------------------------- 5910 // Pair-wise LCA 5911 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const { 5912 if( !n1 ) return n2; // Handle null original LCA 5913 assert( n1->is_CFG(), "" ); 5914 assert( n2->is_CFG(), "" ); 5915 // find LCA of all uses 5916 uint d1 = dom_depth(n1); 5917 uint d2 = dom_depth(n2); 5918 while (n1 != n2) { 5919 if (d1 > d2) { 5920 n1 = idom(n1); 5921 d1 = dom_depth(n1); 5922 } else if (d1 < d2) { 5923 n2 = idom(n2); 5924 d2 = dom_depth(n2); 5925 } else { 5926 // Here d1 == d2. Due to edits of the dominator-tree, sections 5927 // of the tree might have the same depth. These sections have 5928 // to be searched more carefully. 5929 5930 // Scan up all the n1's with equal depth, looking for n2. 5931 Node *t1 = idom(n1); 5932 while (dom_depth(t1) == d1) { 5933 if (t1 == n2) return n2; 5934 t1 = idom(t1); 5935 } 5936 // Scan up all the n2's with equal depth, looking for n1. 5937 Node *t2 = idom(n2); 5938 while (dom_depth(t2) == d2) { 5939 if (t2 == n1) return n1; 5940 t2 = idom(t2); 5941 } 5942 // Move up to a new dominator-depth value as well as up the dom-tree. 5943 n1 = t1; 5944 n2 = t2; 5945 d1 = dom_depth(n1); 5946 d2 = dom_depth(n2); 5947 } 5948 } 5949 return n1; 5950 } 5951 5952 //------------------------------compute_idom----------------------------------- 5953 // Locally compute IDOM using dom_lca call. Correct only if the incoming 5954 // IDOMs are correct. 5955 Node *PhaseIdealLoop::compute_idom( Node *region ) const { 5956 assert( region->is_Region(), "" ); 5957 Node *LCA = nullptr; 5958 for( uint i = 1; i < region->req(); i++ ) { 5959 if( region->in(i) != C->top() ) 5960 LCA = dom_lca( LCA, region->in(i) ); 5961 } 5962 return LCA; 5963 } 5964 5965 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) { 5966 bool had_error = false; 5967 #ifdef ASSERT 5968 if (early != C->root()) { 5969 // Make sure that there's a dominance path from LCA to early 5970 Node* d = LCA; 5971 while (d != early) { 5972 if (d == C->root()) { 5973 dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA); 5974 tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx); 5975 had_error = true; 5976 break; 5977 } 5978 d = idom(d); 5979 } 5980 } 5981 #endif 5982 return had_error; 5983 } 5984 5985 5986 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) { 5987 // Compute LCA over list of uses 5988 bool had_error = false; 5989 Node *LCA = nullptr; 5990 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) { 5991 Node* c = n->fast_out(i); 5992 if (_loop_or_ctrl[c->_idx] == nullptr) 5993 continue; // Skip the occasional dead node 5994 if( c->is_Phi() ) { // For Phis, we must land above on the path 5995 for( uint j=1; j<c->req(); j++ ) {// For all inputs 5996 if( c->in(j) == n ) { // Found matching input? 5997 Node *use = c->in(0)->in(j); 5998 if (_verify_only && use->is_top()) continue; 5999 LCA = dom_lca_for_get_late_ctrl( LCA, use, n ); 6000 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error; 6001 } 6002 } 6003 } else { 6004 // For CFG data-users, use is in the block just prior 6005 Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0); 6006 LCA = dom_lca_for_get_late_ctrl( LCA, use, n ); 6007 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error; 6008 } 6009 } 6010 assert(!had_error, "bad dominance"); 6011 return LCA; 6012 } 6013 6014 // Check the shape of the graph at the loop entry. In some cases, 6015 // the shape of the graph does not match the shape outlined below. 6016 // That is caused by the Opaque1 node "protecting" the shape of 6017 // the graph being removed by, for example, the IGVN performed 6018 // in PhaseIdealLoop::build_and_optimize(). 6019 // 6020 // After the Opaque1 node has been removed, optimizations (e.g., split-if, 6021 // loop unswitching, and IGVN, or a combination of them) can freely change 6022 // the graph's shape. As a result, the graph shape outlined below cannot 6023 // be guaranteed anymore. 6024 Node* CountedLoopNode::is_canonical_loop_entry() { 6025 if (!is_main_loop() && !is_post_loop()) { 6026 return nullptr; 6027 } 6028 Node* ctrl = skip_assertion_predicates_with_halt(); 6029 6030 if (ctrl == nullptr || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) { 6031 return nullptr; 6032 } 6033 Node* iffm = ctrl->in(0); 6034 if (iffm == nullptr || iffm->Opcode() != Op_If) { 6035 return nullptr; 6036 } 6037 Node* bolzm = iffm->in(1); 6038 if (bolzm == nullptr || !bolzm->is_Bool()) { 6039 return nullptr; 6040 } 6041 Node* cmpzm = bolzm->in(1); 6042 if (cmpzm == nullptr || !cmpzm->is_Cmp()) { 6043 return nullptr; 6044 } 6045 6046 uint input = is_main_loop() ? 2 : 1; 6047 if (input >= cmpzm->req() || cmpzm->in(input) == nullptr) { 6048 return nullptr; 6049 } 6050 bool res = cmpzm->in(input)->Opcode() == Op_OpaqueZeroTripGuard; 6051 #ifdef ASSERT 6052 bool found_opaque = false; 6053 for (uint i = 1; i < cmpzm->req(); i++) { 6054 Node* opnd = cmpzm->in(i); 6055 if (opnd && opnd->is_Opaque1()) { 6056 found_opaque = true; 6057 break; 6058 } 6059 } 6060 assert(found_opaque == res, "wrong pattern"); 6061 #endif 6062 return res ? cmpzm->in(input) : nullptr; 6063 } 6064 6065 // Find pre loop end from main loop. Returns nullptr if none. 6066 CountedLoopEndNode* CountedLoopNode::find_pre_loop_end() { 6067 assert(is_main_loop(), "Can only find pre-loop from main-loop"); 6068 // The loop cannot be optimized if the graph shape at the loop entry is 6069 // inappropriate. 6070 if (is_canonical_loop_entry() == nullptr) { 6071 return nullptr; 6072 } 6073 6074 Node* p_f = skip_assertion_predicates_with_halt()->in(0)->in(0); 6075 if (!p_f->is_IfFalse() || !p_f->in(0)->is_CountedLoopEnd()) { 6076 return nullptr; 6077 } 6078 CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd(); 6079 CountedLoopNode* loop_node = pre_end->loopnode(); 6080 if (loop_node == nullptr || !loop_node->is_pre_loop()) { 6081 return nullptr; 6082 } 6083 return pre_end; 6084 } 6085 6086 //------------------------------get_late_ctrl---------------------------------- 6087 // Compute latest legal control. 6088 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) { 6089 assert(early != nullptr, "early control should not be null"); 6090 6091 Node* LCA = compute_lca_of_uses(n, early); 6092 #ifdef ASSERT 6093 if (LCA == C->root() && LCA != early) { 6094 // def doesn't dominate uses so print some useful debugging output 6095 compute_lca_of_uses(n, early, true); 6096 } 6097 #endif 6098 6099 if (n->is_Load() && LCA != early) { 6100 LCA = get_late_ctrl_with_anti_dep(n->as_Load(), early, LCA); 6101 } 6102 6103 assert(LCA == find_non_split_ctrl(LCA), "unexpected late control"); 6104 return LCA; 6105 } 6106 6107 // if this is a load, check for anti-dependent stores 6108 // We use a conservative algorithm to identify potential interfering 6109 // instructions and for rescheduling the load. The users of the memory 6110 // input of this load are examined. Any use which is not a load and is 6111 // dominated by early is considered a potentially interfering store. 6112 // This can produce false positives. 6113 Node* PhaseIdealLoop::get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA) { 6114 int load_alias_idx = C->get_alias_index(n->adr_type()); 6115 if (C->alias_type(load_alias_idx)->is_rewritable()) { 6116 Unique_Node_List worklist; 6117 6118 Node* mem = n->in(MemNode::Memory); 6119 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { 6120 Node* s = mem->fast_out(i); 6121 worklist.push(s); 6122 } 6123 for (uint i = 0; i < worklist.size() && LCA != early; i++) { 6124 Node* s = worklist.at(i); 6125 if (s->is_Load() || s->Opcode() == Op_SafePoint || 6126 (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) || 6127 s->is_Phi()) { 6128 continue; 6129 } else if (s->is_MergeMem()) { 6130 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { 6131 Node* s1 = s->fast_out(i); 6132 worklist.push(s1); 6133 } 6134 } else { 6135 Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0); 6136 assert(sctrl != nullptr || !s->is_reachable_from_root(), "must have control"); 6137 if (sctrl != nullptr && !sctrl->is_top() && is_dominator(early, sctrl)) { 6138 const TypePtr* adr_type = s->adr_type(); 6139 if (s->is_ArrayCopy()) { 6140 // Copy to known instance needs destination type to test for aliasing 6141 const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type; 6142 if (dest_type != TypeOopPtr::BOTTOM) { 6143 adr_type = dest_type; 6144 } 6145 } 6146 if (C->can_alias(adr_type, load_alias_idx)) { 6147 LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n); 6148 } else if (s->is_CFG() && s->is_Multi()) { 6149 // Look for the memory use of s (that is the use of its memory projection) 6150 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { 6151 Node* s1 = s->fast_out(i); 6152 assert(s1->is_Proj(), "projection expected"); 6153 if (_igvn.type(s1) == Type::MEMORY) { 6154 for (DUIterator_Fast jmax, j = s1->fast_outs(jmax); j < jmax; j++) { 6155 Node* s2 = s1->fast_out(j); 6156 worklist.push(s2); 6157 } 6158 } 6159 } 6160 } 6161 } 6162 } 6163 } 6164 // For Phis only consider Region's inputs that were reached by following the memory edges 6165 if (LCA != early) { 6166 for (uint i = 0; i < worklist.size(); i++) { 6167 Node* s = worklist.at(i); 6168 if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) { 6169 Node* r = s->in(0); 6170 for (uint j = 1; j < s->req(); j++) { 6171 Node* in = s->in(j); 6172 Node* r_in = r->in(j); 6173 // We can't reach any node from a Phi because we don't enqueue Phi's uses above 6174 if (((worklist.member(in) && !in->is_Phi()) || in == mem) && is_dominator(early, r_in)) { 6175 LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n); 6176 } 6177 } 6178 } 6179 } 6180 } 6181 } 6182 return LCA; 6183 } 6184 6185 // Is CFG node 'dominator' dominating node 'n'? 6186 bool PhaseIdealLoop::is_dominator(Node* dominator, Node* n) { 6187 if (dominator == n) { 6188 return true; 6189 } 6190 assert(dominator->is_CFG() && n->is_CFG(), "must have CFG nodes"); 6191 uint dd = dom_depth(dominator); 6192 while (dom_depth(n) >= dd) { 6193 if (n == dominator) { 6194 return true; 6195 } 6196 n = idom(n); 6197 } 6198 return false; 6199 } 6200 6201 // Is CFG node 'dominator' strictly dominating node 'n'? 6202 bool PhaseIdealLoop::is_strict_dominator(Node* dominator, Node* n) { 6203 return dominator != n && is_dominator(dominator, n); 6204 } 6205 6206 //------------------------------dom_lca_for_get_late_ctrl_internal------------- 6207 // Pair-wise LCA with tags. 6208 // Tag each index with the node 'tag' currently being processed 6209 // before advancing up the dominator chain using idom(). 6210 // Later calls that find a match to 'tag' know that this path has already 6211 // been considered in the current LCA (which is input 'n1' by convention). 6212 // Since get_late_ctrl() is only called once for each node, the tag array 6213 // does not need to be cleared between calls to get_late_ctrl(). 6214 // Algorithm trades a larger constant factor for better asymptotic behavior 6215 // 6216 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal(Node *n1, Node *n2, Node *tag_node) { 6217 uint d1 = dom_depth(n1); 6218 uint d2 = dom_depth(n2); 6219 jlong tag = tag_node->_idx | (((jlong)_dom_lca_tags_round) << 32); 6220 6221 do { 6222 if (d1 > d2) { 6223 // current lca is deeper than n2 6224 _dom_lca_tags.at_put_grow(n1->_idx, tag); 6225 n1 = idom(n1); 6226 d1 = dom_depth(n1); 6227 } else if (d1 < d2) { 6228 // n2 is deeper than current lca 6229 jlong memo = _dom_lca_tags.at_grow(n2->_idx, 0); 6230 if (memo == tag) { 6231 return n1; // Return the current LCA 6232 } 6233 _dom_lca_tags.at_put_grow(n2->_idx, tag); 6234 n2 = idom(n2); 6235 d2 = dom_depth(n2); 6236 } else { 6237 // Here d1 == d2. Due to edits of the dominator-tree, sections 6238 // of the tree might have the same depth. These sections have 6239 // to be searched more carefully. 6240 6241 // Scan up all the n1's with equal depth, looking for n2. 6242 _dom_lca_tags.at_put_grow(n1->_idx, tag); 6243 Node *t1 = idom(n1); 6244 while (dom_depth(t1) == d1) { 6245 if (t1 == n2) return n2; 6246 _dom_lca_tags.at_put_grow(t1->_idx, tag); 6247 t1 = idom(t1); 6248 } 6249 // Scan up all the n2's with equal depth, looking for n1. 6250 _dom_lca_tags.at_put_grow(n2->_idx, tag); 6251 Node *t2 = idom(n2); 6252 while (dom_depth(t2) == d2) { 6253 if (t2 == n1) return n1; 6254 _dom_lca_tags.at_put_grow(t2->_idx, tag); 6255 t2 = idom(t2); 6256 } 6257 // Move up to a new dominator-depth value as well as up the dom-tree. 6258 n1 = t1; 6259 n2 = t2; 6260 d1 = dom_depth(n1); 6261 d2 = dom_depth(n2); 6262 } 6263 } while (n1 != n2); 6264 return n1; 6265 } 6266 6267 //------------------------------init_dom_lca_tags------------------------------ 6268 // Tag could be a node's integer index, 32bits instead of 64bits in some cases 6269 // Intended use does not involve any growth for the array, so it could 6270 // be of fixed size. 6271 void PhaseIdealLoop::init_dom_lca_tags() { 6272 uint limit = C->unique() + 1; 6273 _dom_lca_tags.at_grow(limit, 0); 6274 _dom_lca_tags_round = 0; 6275 #ifdef ASSERT 6276 for (uint i = 0; i < limit; ++i) { 6277 assert(_dom_lca_tags.at(i) == 0, "Must be distinct from each node pointer"); 6278 } 6279 #endif // ASSERT 6280 } 6281 6282 //------------------------------build_loop_late-------------------------------- 6283 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. 6284 // Second pass finds latest legal placement, and ideal loop placement. 6285 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) { 6286 while (worklist.size() != 0) { 6287 Node *n = worklist.pop(); 6288 // Only visit once 6289 if (visited.test_set(n->_idx)) continue; 6290 uint cnt = n->outcnt(); 6291 uint i = 0; 6292 while (true) { 6293 assert(_loop_or_ctrl[n->_idx], "no dead nodes"); 6294 // Visit all children 6295 if (i < cnt) { 6296 Node* use = n->raw_out(i); 6297 ++i; 6298 // Check for dead uses. Aggressively prune such junk. It might be 6299 // dead in the global sense, but still have local uses so I cannot 6300 // easily call 'remove_dead_node'. 6301 if (_loop_or_ctrl[use->_idx] != nullptr || use->is_top()) { // Not dead? 6302 // Due to cycles, we might not hit the same fixed point in the verify 6303 // pass as we do in the regular pass. Instead, visit such phis as 6304 // simple uses of the loop head. 6305 if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) { 6306 if( !visited.test(use->_idx) ) 6307 worklist.push(use); 6308 } else if( !visited.test_set(use->_idx) ) { 6309 nstack.push(n, i); // Save parent and next use's index. 6310 n = use; // Process all children of current use. 6311 cnt = use->outcnt(); 6312 i = 0; 6313 } 6314 } else { 6315 // Do not visit around the backedge of loops via data edges. 6316 // push dead code onto a worklist 6317 _deadlist.push(use); 6318 } 6319 } else { 6320 // All of n's children have been processed, complete post-processing. 6321 build_loop_late_post(n); 6322 if (C->failing()) { return; } 6323 if (nstack.is_empty()) { 6324 // Finished all nodes on stack. 6325 // Process next node on the worklist. 6326 break; 6327 } 6328 // Get saved parent node and next use's index. Visit the rest of uses. 6329 n = nstack.node(); 6330 cnt = n->outcnt(); 6331 i = nstack.index(); 6332 nstack.pop(); 6333 } 6334 } 6335 } 6336 } 6337 6338 // Verify that no data node is scheduled in the outer loop of a strip 6339 // mined loop. 6340 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) { 6341 #ifdef ASSERT 6342 if (get_loop(least)->_nest == 0) { 6343 return; 6344 } 6345 IdealLoopTree* loop = get_loop(least); 6346 Node* head = loop->_head; 6347 if (head->is_OuterStripMinedLoop() && 6348 // Verification can't be applied to fully built strip mined loops 6349 head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) { 6350 Node* sfpt = head->as_Loop()->outer_safepoint(); 6351 ResourceMark rm; 6352 Unique_Node_List wq; 6353 wq.push(sfpt); 6354 for (uint i = 0; i < wq.size(); i++) { 6355 Node *m = wq.at(i); 6356 for (uint i = 1; i < m->req(); i++) { 6357 Node* nn = m->in(i); 6358 if (nn == n) { 6359 return; 6360 } 6361 if (nn != nullptr && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) { 6362 wq.push(nn); 6363 } 6364 } 6365 } 6366 ShouldNotReachHere(); 6367 } 6368 #endif 6369 } 6370 6371 6372 //------------------------------build_loop_late_post--------------------------- 6373 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. 6374 // Second pass finds latest legal placement, and ideal loop placement. 6375 void PhaseIdealLoop::build_loop_late_post(Node *n) { 6376 build_loop_late_post_work(n, true); 6377 } 6378 6379 // Class to visit all predicates in a predicate chain to find out which are dominated by a given node. Keeps track of 6380 // the entry to the earliest predicate that is still dominated by the given dominator. This class is used when trying to 6381 // legally skip all predicates when figuring out the latest placement such that a node does not interfere with Loop 6382 // Predication or creating a Loop Limit Check Predicate later. 6383 class DominatedPredicates : public UnifiedPredicateVisitor { 6384 Node* const _dominator; 6385 Node* _earliest_dominated_predicate_entry; 6386 bool _should_continue; 6387 PhaseIdealLoop* const _phase; 6388 6389 public: 6390 DominatedPredicates(Node* dominator, Node* start_node, PhaseIdealLoop* phase) 6391 : _dominator(dominator), 6392 _earliest_dominated_predicate_entry(start_node), 6393 _should_continue(true), 6394 _phase(phase) {} 6395 NONCOPYABLE(DominatedPredicates); 6396 6397 bool should_continue() const override { 6398 return _should_continue; 6399 } 6400 6401 // Returns the entry to the earliest predicate that is still dominated by the given dominator (all could be dominated). 6402 Node* earliest_dominated_predicate_entry() const { 6403 return _earliest_dominated_predicate_entry; 6404 } 6405 6406 void visit_predicate(const Predicate& predicate) override { 6407 Node* entry = predicate.entry(); 6408 if (_phase->is_strict_dominator(entry, _dominator)) { 6409 _should_continue = false; 6410 } else { 6411 _earliest_dominated_predicate_entry = entry; 6412 } 6413 } 6414 }; 6415 6416 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) { 6417 6418 if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) { 6419 _igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops. 6420 } 6421 6422 #ifdef ASSERT 6423 if (_verify_only && !n->is_CFG()) { 6424 // Check def-use domination. 6425 // We would like to expose this check in product but it appears to be expensive. 6426 compute_lca_of_uses(n, get_ctrl(n), true /* verify */); 6427 } 6428 #endif 6429 6430 // CFG and pinned nodes already handled 6431 if( n->in(0) ) { 6432 if( n->in(0)->is_top() ) return; // Dead? 6433 6434 // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads 6435 // _must_ be pinned (they have to observe their control edge of course). 6436 // Unlike Stores (which modify an unallocable resource, the memory 6437 // state), Mods/Loads can float around. So free them up. 6438 switch( n->Opcode() ) { 6439 case Op_DivI: 6440 case Op_DivF: 6441 case Op_DivD: 6442 case Op_ModI: 6443 case Op_LoadB: // Same with Loads; they can sink 6444 case Op_LoadUB: // during loop optimizations. 6445 case Op_LoadUS: 6446 case Op_LoadD: 6447 case Op_LoadF: 6448 case Op_LoadI: 6449 case Op_LoadKlass: 6450 case Op_LoadNKlass: 6451 case Op_LoadL: 6452 case Op_LoadS: 6453 case Op_LoadP: 6454 case Op_LoadN: 6455 case Op_LoadRange: 6456 case Op_LoadD_unaligned: 6457 case Op_LoadL_unaligned: 6458 case Op_StrComp: // Does a bunch of load-like effects 6459 case Op_StrEquals: 6460 case Op_StrIndexOf: 6461 case Op_StrIndexOfChar: 6462 case Op_AryEq: 6463 case Op_VectorizedHashCode: 6464 case Op_CountPositives: 6465 pinned = false; 6466 } 6467 if (n->is_CMove() || n->is_ConstraintCast()) { 6468 pinned = false; 6469 } 6470 if( pinned ) { 6471 IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n)); 6472 if( !chosen_loop->_child ) // Inner loop? 6473 chosen_loop->_body.push(n); // Collect inner loops 6474 return; 6475 } 6476 } else { // No slot zero 6477 if( n->is_CFG() ) { // CFG with no slot 0 is dead 6478 _loop_or_ctrl.map(n->_idx,nullptr); // No block setting, it's globally dead 6479 return; 6480 } 6481 assert(!n->is_CFG() || n->outcnt() == 0, ""); 6482 } 6483 6484 // Do I have a "safe range" I can select over? 6485 Node *early = get_ctrl(n);// Early location already computed 6486 6487 // Compute latest point this Node can go 6488 Node *LCA = get_late_ctrl( n, early ); 6489 // LCA is null due to uses being dead 6490 if( LCA == nullptr ) { 6491 #ifdef ASSERT 6492 for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) { 6493 assert(_loop_or_ctrl[n->out(i1)->_idx] == nullptr, "all uses must also be dead"); 6494 } 6495 #endif 6496 _loop_or_ctrl.map(n->_idx, nullptr); // This node is useless 6497 _deadlist.push(n); 6498 return; 6499 } 6500 assert(LCA != nullptr && !LCA->is_top(), "no dead nodes"); 6501 6502 Node *legal = LCA; // Walk 'legal' up the IDOM chain 6503 Node *least = legal; // Best legal position so far 6504 while( early != legal ) { // While not at earliest legal 6505 if (legal->is_Start() && !early->is_Root()) { 6506 #ifdef ASSERT 6507 // Bad graph. Print idom path and fail. 6508 dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA); 6509 assert(false, "Bad graph detected in build_loop_late"); 6510 #endif 6511 C->record_method_not_compilable("Bad graph detected in build_loop_late"); 6512 return; 6513 } 6514 // Find least loop nesting depth 6515 legal = idom(legal); // Bump up the IDOM tree 6516 // Check for lower nesting depth 6517 if( get_loop(legal)->_nest < get_loop(least)->_nest ) 6518 least = legal; 6519 } 6520 assert(early == legal || legal != C->root(), "bad dominance of inputs"); 6521 6522 if (least != early) { 6523 // Move the node above predicates as far up as possible so a 6524 // following pass of Loop Predication doesn't hoist a predicate 6525 // that depends on it above that node. 6526 const PredicateIterator predicate_iterator(least); 6527 DominatedPredicates dominated_predicates(early, least, this); 6528 predicate_iterator.for_each(dominated_predicates); 6529 least = dominated_predicates.earliest_dominated_predicate_entry(); 6530 } 6531 // Try not to place code on a loop entry projection 6532 // which can inhibit range check elimination. 6533 if (least != early && !BarrierSet::barrier_set()->barrier_set_c2()->is_gc_specific_loop_opts_pass(_mode)) { 6534 Node* ctrl_out = least->unique_ctrl_out_or_null(); 6535 if (ctrl_out != nullptr && ctrl_out->is_Loop() && 6536 least == ctrl_out->in(LoopNode::EntryControl) && 6537 (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) { 6538 Node* least_dom = idom(least); 6539 if (get_loop(least_dom)->is_member(get_loop(least))) { 6540 least = least_dom; 6541 } 6542 } 6543 } 6544 // Don't extend live ranges of raw oops 6545 if (least != early && n->is_ConstraintCast() && n->in(1)->bottom_type()->isa_rawptr() && 6546 !n->bottom_type()->isa_rawptr()) { 6547 least = early; 6548 } 6549 6550 #ifdef ASSERT 6551 // Broken part of VerifyLoopOptimizations (F) 6552 // Reason: 6553 // _verify_me->get_ctrl_no_update(n) seems to return wrong result 6554 /* 6555 // If verifying, verify that 'verify_me' has a legal location 6556 // and choose it as our location. 6557 if( _verify_me ) { 6558 Node *v_ctrl = _verify_me->get_ctrl_no_update(n); 6559 Node *legal = LCA; 6560 while( early != legal ) { // While not at earliest legal 6561 if( legal == v_ctrl ) break; // Check for prior good location 6562 legal = idom(legal) ;// Bump up the IDOM tree 6563 } 6564 // Check for prior good location 6565 if( legal == v_ctrl ) least = legal; // Keep prior if found 6566 } 6567 */ 6568 #endif 6569 6570 // Assign discovered "here or above" point 6571 least = find_non_split_ctrl(least); 6572 verify_strip_mined_scheduling(n, least); 6573 set_ctrl(n, least); 6574 6575 // Collect inner loop bodies 6576 IdealLoopTree *chosen_loop = get_loop(least); 6577 if( !chosen_loop->_child ) // Inner loop? 6578 chosen_loop->_body.push(n);// Collect inner loops 6579 6580 if (!_verify_only && n->Opcode() == Op_OpaqueZeroTripGuard) { 6581 _zero_trip_guard_opaque_nodes.push(n); 6582 } 6583 6584 } 6585 6586 #ifdef ASSERT 6587 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) { 6588 tty->print_cr("%s", msg); 6589 tty->print("n: "); n->dump(); 6590 tty->print("early(n): "); early->dump(); 6591 if (n->in(0) != nullptr && !n->in(0)->is_top() && 6592 n->in(0) != early && !n->in(0)->is_Root()) { 6593 tty->print("n->in(0): "); n->in(0)->dump(); 6594 } 6595 for (uint i = 1; i < n->req(); i++) { 6596 Node* in1 = n->in(i); 6597 if (in1 != nullptr && in1 != n && !in1->is_top()) { 6598 tty->print("n->in(%d): ", i); in1->dump(); 6599 Node* in1_early = get_ctrl(in1); 6600 tty->print("early(n->in(%d)): ", i); in1_early->dump(); 6601 if (in1->in(0) != nullptr && !in1->in(0)->is_top() && 6602 in1->in(0) != in1_early && !in1->in(0)->is_Root()) { 6603 tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump(); 6604 } 6605 for (uint j = 1; j < in1->req(); j++) { 6606 Node* in2 = in1->in(j); 6607 if (in2 != nullptr && in2 != n && in2 != in1 && !in2->is_top()) { 6608 tty->print("n->in(%d)->in(%d): ", i, j); in2->dump(); 6609 Node* in2_early = get_ctrl(in2); 6610 tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump(); 6611 if (in2->in(0) != nullptr && !in2->in(0)->is_top() && 6612 in2->in(0) != in2_early && !in2->in(0)->is_Root()) { 6613 tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump(); 6614 } 6615 } 6616 } 6617 } 6618 } 6619 tty->cr(); 6620 tty->print("LCA(n): "); LCA->dump(); 6621 for (uint i = 0; i < n->outcnt(); i++) { 6622 Node* u1 = n->raw_out(i); 6623 if (u1 == n) 6624 continue; 6625 tty->print("n->out(%d): ", i); u1->dump(); 6626 if (u1->is_CFG()) { 6627 for (uint j = 0; j < u1->outcnt(); j++) { 6628 Node* u2 = u1->raw_out(j); 6629 if (u2 != u1 && u2 != n && u2->is_CFG()) { 6630 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump(); 6631 } 6632 } 6633 } else { 6634 Node* u1_later = get_ctrl(u1); 6635 tty->print("later(n->out(%d)): ", i); u1_later->dump(); 6636 if (u1->in(0) != nullptr && !u1->in(0)->is_top() && 6637 u1->in(0) != u1_later && !u1->in(0)->is_Root()) { 6638 tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump(); 6639 } 6640 for (uint j = 0; j < u1->outcnt(); j++) { 6641 Node* u2 = u1->raw_out(j); 6642 if (u2 == n || u2 == u1) 6643 continue; 6644 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump(); 6645 if (!u2->is_CFG()) { 6646 Node* u2_later = get_ctrl(u2); 6647 tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump(); 6648 if (u2->in(0) != nullptr && !u2->in(0)->is_top() && 6649 u2->in(0) != u2_later && !u2->in(0)->is_Root()) { 6650 tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump(); 6651 } 6652 } 6653 } 6654 } 6655 } 6656 dump_idoms(early, LCA); 6657 tty->cr(); 6658 } 6659 6660 // Class to compute the real LCA given an early node and a wrong LCA in a bad graph. 6661 class RealLCA { 6662 const PhaseIdealLoop* _phase; 6663 Node* _early; 6664 Node* _wrong_lca; 6665 uint _early_index; 6666 int _wrong_lca_index; 6667 6668 // Given idom chains of early and wrong LCA: Walk through idoms starting at StartNode and find the first node which 6669 // is different: Return the previously visited node which must be the real LCA. 6670 // The node lists also contain _early and _wrong_lca, respectively. 6671 Node* find_real_lca(Unique_Node_List& early_with_idoms, Unique_Node_List& wrong_lca_with_idoms) { 6672 int early_index = early_with_idoms.size() - 1; 6673 int wrong_lca_index = wrong_lca_with_idoms.size() - 1; 6674 bool found_difference = false; 6675 do { 6676 if (early_with_idoms[early_index] != wrong_lca_with_idoms[wrong_lca_index]) { 6677 // First time early and wrong LCA idoms differ. Real LCA must be at the previous index. 6678 found_difference = true; 6679 break; 6680 } 6681 early_index--; 6682 wrong_lca_index--; 6683 } while (wrong_lca_index >= 0); 6684 6685 assert(early_index >= 0, "must always find an LCA - cannot be early"); 6686 _early_index = early_index; 6687 _wrong_lca_index = wrong_lca_index; 6688 Node* real_lca = early_with_idoms[_early_index + 1]; // Plus one to skip _early. 6689 assert(found_difference || real_lca == _wrong_lca, "wrong LCA dominates early and is therefore the real LCA"); 6690 return real_lca; 6691 } 6692 6693 void dump(Node* real_lca) { 6694 tty->cr(); 6695 tty->print_cr("idoms of early \"%d %s\":", _early->_idx, _early->Name()); 6696 _phase->dump_idom(_early, _early_index + 1); 6697 6698 tty->cr(); 6699 tty->print_cr("idoms of (wrong) LCA \"%d %s\":", _wrong_lca->_idx, _wrong_lca->Name()); 6700 _phase->dump_idom(_wrong_lca, _wrong_lca_index + 1); 6701 6702 tty->cr(); 6703 tty->print("Real LCA of early \"%d %s\" (idom[%d]) and wrong LCA \"%d %s\"", 6704 _early->_idx, _early->Name(), _early_index, _wrong_lca->_idx, _wrong_lca->Name()); 6705 if (_wrong_lca_index >= 0) { 6706 tty->print(" (idom[%d])", _wrong_lca_index); 6707 } 6708 tty->print_cr(":"); 6709 real_lca->dump(); 6710 } 6711 6712 public: 6713 RealLCA(const PhaseIdealLoop* phase, Node* early, Node* wrong_lca) 6714 : _phase(phase), _early(early), _wrong_lca(wrong_lca), _early_index(0), _wrong_lca_index(0) { 6715 assert(!wrong_lca->is_Start(), "StartNode is always a common dominator"); 6716 } 6717 6718 void compute_and_dump() { 6719 ResourceMark rm; 6720 Unique_Node_List early_with_idoms; 6721 Unique_Node_List wrong_lca_with_idoms; 6722 early_with_idoms.push(_early); 6723 wrong_lca_with_idoms.push(_wrong_lca); 6724 _phase->get_idoms(_early, 10000, early_with_idoms); 6725 _phase->get_idoms(_wrong_lca, 10000, wrong_lca_with_idoms); 6726 Node* real_lca = find_real_lca(early_with_idoms, wrong_lca_with_idoms); 6727 dump(real_lca); 6728 } 6729 }; 6730 6731 // Dump the idom chain of early, of the wrong LCA and dump the real LCA of early and wrong LCA. 6732 void PhaseIdealLoop::dump_idoms(Node* early, Node* wrong_lca) { 6733 assert(!is_dominator(early, wrong_lca), "sanity check that early does not dominate wrong lca"); 6734 assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes"); 6735 6736 RealLCA real_lca(this, early, wrong_lca); 6737 real_lca.compute_and_dump(); 6738 } 6739 #endif // ASSERT 6740 6741 #ifndef PRODUCT 6742 //------------------------------dump------------------------------------------- 6743 void PhaseIdealLoop::dump() const { 6744 ResourceMark rm; 6745 Node_Stack stack(C->live_nodes() >> 2); 6746 Node_List rpo_list; 6747 VectorSet visited; 6748 visited.set(C->top()->_idx); 6749 rpo(C->root(), stack, visited, rpo_list); 6750 // Dump root loop indexed by last element in PO order 6751 dump(_ltree_root, rpo_list.size(), rpo_list); 6752 } 6753 6754 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const { 6755 loop->dump_head(); 6756 6757 // Now scan for CFG nodes in the same loop 6758 for (uint j = idx; j > 0; j--) { 6759 Node* n = rpo_list[j-1]; 6760 if (!_loop_or_ctrl[n->_idx]) // Skip dead nodes 6761 continue; 6762 6763 if (get_loop(n) != loop) { // Wrong loop nest 6764 if (get_loop(n)->_head == n && // Found nested loop? 6765 get_loop(n)->_parent == loop) 6766 dump(get_loop(n), rpo_list.size(), rpo_list); // Print it nested-ly 6767 continue; 6768 } 6769 6770 // Dump controlling node 6771 tty->sp(2 * loop->_nest); 6772 tty->print("C"); 6773 if (n == C->root()) { 6774 n->dump(); 6775 } else { 6776 Node* cached_idom = idom_no_update(n); 6777 Node* computed_idom = n->in(0); 6778 if (n->is_Region()) { 6779 computed_idom = compute_idom(n); 6780 // computed_idom() will return n->in(0) when idom(n) is an IfNode (or 6781 // any MultiBranch ctrl node), so apply a similar transform to 6782 // the cached idom returned from idom_no_update. 6783 cached_idom = find_non_split_ctrl(cached_idom); 6784 } 6785 tty->print(" ID:%d", computed_idom->_idx); 6786 n->dump(); 6787 if (cached_idom != computed_idom) { 6788 tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d", 6789 computed_idom->_idx, cached_idom->_idx); 6790 } 6791 } 6792 // Dump nodes it controls 6793 for (uint k = 0; k < _loop_or_ctrl.max(); k++) { 6794 // (k < C->unique() && get_ctrl(find(k)) == n) 6795 if (k < C->unique() && _loop_or_ctrl[k] == (Node*)((intptr_t)n + 1)) { 6796 Node* m = C->root()->find(k); 6797 if (m && m->outcnt() > 0) { 6798 if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) { 6799 tty->print_cr("*** BROKEN CTRL ACCESSOR! _loop_or_ctrl[k] is %p, ctrl is %p", 6800 _loop_or_ctrl[k], has_ctrl(m) ? get_ctrl_no_update(m) : nullptr); 6801 } 6802 tty->sp(2 * loop->_nest + 1); 6803 m->dump(); 6804 } 6805 } 6806 } 6807 } 6808 } 6809 6810 void PhaseIdealLoop::dump_idom(Node* n, const uint count) const { 6811 if (has_ctrl(n)) { 6812 tty->print_cr("No idom for data nodes"); 6813 } else { 6814 ResourceMark rm; 6815 Unique_Node_List idoms; 6816 get_idoms(n, count, idoms); 6817 dump_idoms_in_reverse(n, idoms); 6818 } 6819 } 6820 6821 void PhaseIdealLoop::get_idoms(Node* n, const uint count, Unique_Node_List& idoms) const { 6822 Node* next = n; 6823 for (uint i = 0; !next->is_Start() && i < count; i++) { 6824 next = idom(next); 6825 assert(!idoms.member(next), "duplicated idom is not possible"); 6826 idoms.push(next); 6827 } 6828 } 6829 6830 void PhaseIdealLoop::dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const { 6831 Node* next; 6832 uint padding = 3; 6833 uint node_index_padding_width = static_cast<int>(log10(static_cast<double>(C->unique()))) + 1; 6834 for (int i = idom_list.size() - 1; i >= 0; i--) { 6835 if (i == 9 || i == 99) { 6836 padding++; 6837 } 6838 next = idom_list[i]; 6839 tty->print_cr("idom[%d]:%*c%*d %s", i, padding, ' ', node_index_padding_width, next->_idx, next->Name()); 6840 } 6841 tty->print_cr("n: %*c%*d %s", padding, ' ', node_index_padding_width, n->_idx, n->Name()); 6842 } 6843 #endif // NOT PRODUCT 6844 6845 // Collect a R-P-O for the whole CFG. 6846 // Result list is in post-order (scan backwards for RPO) 6847 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const { 6848 stk.push(start, 0); 6849 visited.set(start->_idx); 6850 6851 while (stk.is_nonempty()) { 6852 Node* m = stk.node(); 6853 uint idx = stk.index(); 6854 if (idx < m->outcnt()) { 6855 stk.set_index(idx + 1); 6856 Node* n = m->raw_out(idx); 6857 if (n->is_CFG() && !visited.test_set(n->_idx)) { 6858 stk.push(n, 0); 6859 } 6860 } else { 6861 rpo_list.push(m); 6862 stk.pop(); 6863 } 6864 } 6865 } 6866 6867 ConINode* PhaseIdealLoop::intcon(jint i) { 6868 ConINode* node = _igvn.intcon(i); 6869 set_root_as_ctrl(node); 6870 return node; 6871 } 6872 6873 ConLNode* PhaseIdealLoop::longcon(jlong i) { 6874 ConLNode* node = _igvn.longcon(i); 6875 set_root_as_ctrl(node); 6876 return node; 6877 } 6878 6879 ConNode* PhaseIdealLoop::makecon(const Type* t) { 6880 ConNode* node = _igvn.makecon(t); 6881 set_root_as_ctrl(node); 6882 return node; 6883 } 6884 6885 ConNode* PhaseIdealLoop::integercon(jlong l, BasicType bt) { 6886 ConNode* node = _igvn.integercon(l, bt); 6887 set_root_as_ctrl(node); 6888 return node; 6889 } 6890 6891 ConNode* PhaseIdealLoop::zerocon(BasicType bt) { 6892 ConNode* node = _igvn.zerocon(bt); 6893 set_root_as_ctrl(node); 6894 return node; 6895 } 6896 6897 6898 //============================================================================= 6899 //------------------------------LoopTreeIterator------------------------------- 6900 6901 // Advance to next loop tree using a preorder, left-to-right traversal. 6902 void LoopTreeIterator::next() { 6903 assert(!done(), "must not be done."); 6904 if (_curnt->_child != nullptr) { 6905 _curnt = _curnt->_child; 6906 } else if (_curnt->_next != nullptr) { 6907 _curnt = _curnt->_next; 6908 } else { 6909 while (_curnt != _root && _curnt->_next == nullptr) { 6910 _curnt = _curnt->_parent; 6911 } 6912 if (_curnt == _root) { 6913 _curnt = nullptr; 6914 assert(done(), "must be done."); 6915 } else { 6916 assert(_curnt->_next != nullptr, "must be more to do"); 6917 _curnt = _curnt->_next; 6918 } 6919 } 6920 }