1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/divnode.hpp"
  40 #include "opto/idealGraphPrinter.hpp"
  41 #include "opto/loopnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/opaquenode.hpp"
  45 #include "opto/predicates.hpp"
  46 #include "opto/rootnode.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/vectorization.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "utilities/checkedCast.hpp"
  51 #include "utilities/powerOfTwo.hpp"
  52 
  53 //=============================================================================
  54 //--------------------------is_cloop_ind_var-----------------------------------
  55 // Determine if a node is a counted loop induction variable.
  56 // NOTE: The method is declared in "node.hpp".
  57 bool Node::is_cloop_ind_var() const {
  58   return (is_Phi() &&
  59           as_Phi()->region()->is_CountedLoop() &&
  60           as_Phi()->region()->as_CountedLoop()->phi() == this);
  61 }
  62 
  63 //=============================================================================
  64 //------------------------------dump_spec--------------------------------------
  65 // Dump special per-node info
  66 #ifndef PRODUCT
  67 void LoopNode::dump_spec(outputStream *st) const {
  68   RegionNode::dump_spec(st);
  69   if (is_inner_loop()) st->print( "inner " );
  70   if (is_partial_peel_loop()) st->print( "partial_peel " );
  71   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  72 }
  73 #endif
  74 
  75 //------------------------------is_valid_counted_loop-------------------------
  76 bool LoopNode::is_valid_counted_loop(BasicType bt) const {
  77   if (is_BaseCountedLoop() && as_BaseCountedLoop()->bt() == bt) {
  78     BaseCountedLoopNode*    l  = as_BaseCountedLoop();
  79     BaseCountedLoopEndNode* le = l->loopexit_or_null();
  80     if (le != nullptr &&
  81         le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  82       Node* phi  = l->phi();
  83       Node* exit = le->proj_out_or_null(0 /* false */);
  84       if (exit != nullptr && exit->Opcode() == Op_IfFalse &&
  85           phi != nullptr && phi->is_Phi() &&
  86           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  87           le->loopnode() == l && le->stride_is_con()) {
  88         return true;
  89       }
  90     }
  91   }
  92   return false;
  93 }
  94 
  95 //------------------------------get_early_ctrl---------------------------------
  96 // Compute earliest legal control
  97 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  98   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  99   uint i;
 100   Node *early;
 101   if (n->in(0) && !n->is_expensive()) {
 102     early = n->in(0);
 103     if (!early->is_CFG()) // Might be a non-CFG multi-def
 104       early = get_ctrl(early);        // So treat input as a straight data input
 105     i = 1;
 106   } else {
 107     early = get_ctrl(n->in(1));
 108     i = 2;
 109   }
 110   uint e_d = dom_depth(early);
 111   assert( early, "" );
 112   for (; i < n->req(); i++) {
 113     Node *cin = get_ctrl(n->in(i));
 114     assert( cin, "" );
 115     // Keep deepest dominator depth
 116     uint c_d = dom_depth(cin);
 117     if (c_d > e_d) {           // Deeper guy?
 118       early = cin;              // Keep deepest found so far
 119       e_d = c_d;
 120     } else if (c_d == e_d &&    // Same depth?
 121                early != cin) { // If not equal, must use slower algorithm
 122       // If same depth but not equal, one _must_ dominate the other
 123       // and we want the deeper (i.e., dominated) guy.
 124       Node *n1 = early;
 125       Node *n2 = cin;
 126       while (1) {
 127         n1 = idom(n1);          // Walk up until break cycle
 128         n2 = idom(n2);
 129         if (n1 == cin ||        // Walked early up to cin
 130             dom_depth(n2) < c_d)
 131           break;                // early is deeper; keep him
 132         if (n2 == early ||      // Walked cin up to early
 133             dom_depth(n1) < c_d) {
 134           early = cin;          // cin is deeper; keep him
 135           break;
 136         }
 137       }
 138       e_d = dom_depth(early);   // Reset depth register cache
 139     }
 140   }
 141 
 142   // Return earliest legal location
 143   assert(early == find_non_split_ctrl(early), "unexpected early control");
 144 
 145   if (n->is_expensive() && !_verify_only && !_verify_me) {
 146     assert(n->in(0), "should have control input");
 147     early = get_early_ctrl_for_expensive(n, early);
 148   }
 149 
 150   return early;
 151 }
 152 
 153 //------------------------------get_early_ctrl_for_expensive---------------------------------
 154 // Move node up the dominator tree as high as legal while still beneficial
 155 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 156   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 157   assert(OptimizeExpensiveOps, "optimization off?");
 158 
 159   Node* ctl = n->in(0);
 160   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 161   uint min_dom_depth = dom_depth(earliest);
 162 #ifdef ASSERT
 163   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 164     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 165     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 166   }
 167 #endif
 168   if (dom_depth(ctl) < min_dom_depth) {
 169     return earliest;
 170   }
 171 
 172   while (true) {
 173     Node* next = ctl;
 174     // Moving the node out of a loop on the projection of an If
 175     // confuses Loop Predication. So, once we hit a loop in an If branch
 176     // that doesn't branch to an UNC, we stop. The code that process
 177     // expensive nodes will notice the loop and skip over it to try to
 178     // move the node further up.
 179     if (ctl->is_CountedLoop() && ctl->in(1) != nullptr && ctl->in(1)->in(0) != nullptr && ctl->in(1)->in(0)->is_If()) {
 180       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern()) {
 181         break;
 182       }
 183       next = idom(ctl->in(1)->in(0));
 184     } else if (ctl->is_Proj()) {
 185       // We only move it up along a projection if the projection is
 186       // the single control projection for its parent: same code path,
 187       // if it's a If with UNC or fallthrough of a call.
 188       Node* parent_ctl = ctl->in(0);
 189       if (parent_ctl == nullptr) {
 190         break;
 191       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != nullptr) {
 192         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 193       } else if (parent_ctl->is_If()) {
 194         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern()) {
 195           break;
 196         }
 197         assert(idom(ctl) == parent_ctl, "strange");
 198         next = idom(parent_ctl);
 199       } else if (ctl->is_CatchProj()) {
 200         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 201           break;
 202         }
 203         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 204         next = parent_ctl->in(0)->in(0)->in(0);
 205       } else {
 206         // Check if parent control has a single projection (this
 207         // control is the only possible successor of the parent
 208         // control). If so, we can try to move the node above the
 209         // parent control.
 210         int nb_ctl_proj = 0;
 211         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 212           Node *p = parent_ctl->fast_out(i);
 213           if (p->is_Proj() && p->is_CFG()) {
 214             nb_ctl_proj++;
 215             if (nb_ctl_proj > 1) {
 216               break;
 217             }
 218           }
 219         }
 220 
 221         if (nb_ctl_proj > 1) {
 222           break;
 223         }
 224         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() ||
 225                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node");
 226         assert(idom(ctl) == parent_ctl, "strange");
 227         next = idom(parent_ctl);
 228       }
 229     } else {
 230       next = idom(ctl);
 231     }
 232     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 233       break;
 234     }
 235     ctl = next;
 236   }
 237 
 238   if (ctl != n->in(0)) {
 239     _igvn.replace_input_of(n, 0, ctl);
 240     _igvn.hash_insert(n);
 241   }
 242 
 243   return ctl;
 244 }
 245 
 246 
 247 //------------------------------set_early_ctrl---------------------------------
 248 // Set earliest legal control
 249 void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) {
 250   Node *early = get_early_ctrl(n);
 251 
 252   // Record earliest legal location
 253   set_ctrl(n, early);
 254   IdealLoopTree *loop = get_loop(early);
 255   if (update_body && loop->_child == nullptr) {
 256     loop->_body.push(n);
 257   }
 258 }
 259 
 260 //------------------------------set_subtree_ctrl-------------------------------
 261 // set missing _ctrl entries on new nodes
 262 void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) {
 263   // Already set?  Get out.
 264   if (_loop_or_ctrl[n->_idx]) return;
 265   // Recursively set _loop_or_ctrl array to indicate where the Node goes
 266   uint i;
 267   for (i = 0; i < n->req(); ++i) {
 268     Node *m = n->in(i);
 269     if (m && m != C->root()) {
 270       set_subtree_ctrl(m, update_body);
 271     }
 272   }
 273 
 274   // Fixup self
 275   set_early_ctrl(n, update_body);
 276 }
 277 
 278 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) {
 279   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
 280   IdealLoopTree* parent = loop->_parent;
 281   IdealLoopTree* sibling = parent->_child;
 282   if (sibling == loop) {
 283     parent->_child = outer_ilt;
 284   } else {
 285     while (sibling->_next != loop) {
 286       sibling = sibling->_next;
 287     }
 288     sibling->_next = outer_ilt;
 289   }
 290   outer_ilt->_next = loop->_next;
 291   outer_ilt->_parent = parent;
 292   outer_ilt->_child = loop;
 293   outer_ilt->_nest = loop->_nest;
 294   loop->_parent = outer_ilt;
 295   loop->_next = nullptr;
 296   loop->_nest++;
 297   assert(loop->_nest <= SHRT_MAX, "sanity");
 298   return outer_ilt;
 299 }
 300 
 301 // Create a skeleton strip mined outer loop: a Loop head before the
 302 // inner strip mined loop, a safepoint and an exit condition guarded
 303 // by an opaque node after the inner strip mined loop with a backedge
 304 // to the loop head. The inner strip mined loop is left as it is. Only
 305 // once loop optimizations are over, do we adjust the inner loop exit
 306 // condition to limit its number of iterations, set the outer loop
 307 // exit condition and add Phis to the outer loop head. Some loop
 308 // optimizations that operate on the inner strip mined loop need to be
 309 // aware of the outer strip mined loop: loop unswitching needs to
 310 // clone the outer loop as well as the inner, unrolling needs to only
 311 // clone the inner loop etc. No optimizations need to change the outer
 312 // strip mined loop as it is only a skeleton.
 313 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
 314                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
 315                                                              Node*& entry_control, Node*& iffalse) {
 316   Node* outer_test = _igvn.intcon(0);
 317   set_ctrl(outer_test, C->root());
 318   Node *orig = iffalse;
 319   iffalse = iffalse->clone();
 320   _igvn.register_new_node_with_optimizer(iffalse);
 321   set_idom(iffalse, idom(orig), dom_depth(orig));
 322 
 323   IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt);
 324   Node *outer_ift = new IfTrueNode (outer_le);
 325   Node* outer_iff = orig;
 326   _igvn.replace_input_of(outer_iff, 0, outer_le);
 327 
 328   LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift);
 329   entry_control = outer_l;
 330 
 331   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift);
 332 
 333   set_loop(iffalse, outer_ilt);
 334   // When this code runs, loop bodies have not yet been populated.
 335   const bool body_populated = false;
 336   register_control(outer_le, outer_ilt, iffalse, body_populated);
 337   register_control(outer_ift, outer_ilt, outer_le, body_populated);
 338   set_idom(outer_iff, outer_le, dom_depth(outer_le));
 339   _igvn.register_new_node_with_optimizer(outer_l);
 340   set_loop(outer_l, outer_ilt);
 341   set_idom(outer_l, init_control, dom_depth(init_control)+1);
 342 
 343   return outer_ilt;
 344 }
 345 
 346 void PhaseIdealLoop::insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj,
 347                                                        Node* cmp_limit, Node* bol) {
 348   assert(loop_limit_check_parse_proj->in(0)->is_ParsePredicate(), "must be parse predicate");
 349   Node* new_predicate_proj = create_new_if_for_predicate(loop_limit_check_parse_proj, nullptr,
 350                                                          Deoptimization::Reason_loop_limit_check,
 351                                                          Op_If);
 352   Node* iff = new_predicate_proj->in(0);
 353   cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 354   bol = _igvn.register_new_node_with_optimizer(bol);
 355   set_subtree_ctrl(bol, false);
 356   _igvn.replace_input_of(iff, 1, bol);
 357 
 358 #ifndef PRODUCT
 359   // report that the loop predication has been actually performed
 360   // for this loop
 361   if (TraceLoopLimitCheck) {
 362     tty->print_cr("Counted Loop Limit Check generated:");
 363     debug_only( bol->dump(2); )
 364   }
 365 #endif
 366 }
 367 
 368 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) {
 369   // Counted loop head must be a good RegionNode with only 3 not null
 370   // control input edges: Self, Entry, LoopBack.
 371   if (x->in(LoopNode::Self) == nullptr || x->req() != 3 || loop->_irreducible) {
 372     return nullptr;
 373   }
 374   Node *init_control = x->in(LoopNode::EntryControl);
 375   Node *back_control = x->in(LoopNode::LoopBackControl);
 376   if (init_control == nullptr || back_control == nullptr) {   // Partially dead
 377     return nullptr;
 378   }
 379   // Must also check for TOP when looking for a dead loop
 380   if (init_control->is_top() || back_control->is_top()) {
 381     return nullptr;
 382   }
 383 
 384   // Allow funny placement of Safepoint
 385   if (back_control->Opcode() == Op_SafePoint) {
 386     back_control = back_control->in(TypeFunc::Control);
 387   }
 388 
 389   // Controlling test for loop
 390   Node *iftrue = back_control;
 391   uint iftrue_op = iftrue->Opcode();
 392   if (iftrue_op != Op_IfTrue &&
 393       iftrue_op != Op_IfFalse) {
 394     // I have a weird back-control.  Probably the loop-exit test is in
 395     // the middle of the loop and I am looking at some trailing control-flow
 396     // merge point.  To fix this I would have to partially peel the loop.
 397     return nullptr; // Obscure back-control
 398   }
 399 
 400   // Get boolean guarding loop-back test
 401   Node *iff = iftrue->in(0);
 402   if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) {
 403     return nullptr;
 404   }
 405   return iftrue;
 406 }
 407 
 408 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) {
 409   Node* iftrue = back_control;
 410   uint iftrue_op = iftrue->Opcode();
 411   Node* iff = iftrue->in(0);
 412   BoolNode* test = iff->in(1)->as_Bool();
 413   bt = test->_test._test;
 414   cl_prob = iff->as_If()->_prob;
 415   if (iftrue_op == Op_IfFalse) {
 416     bt = BoolTest(bt).negate();
 417     cl_prob = 1.0 - cl_prob;
 418   }
 419   // Get backedge compare
 420   Node* cmp = test->in(1);
 421   if (!cmp->is_Cmp()) {
 422     return nullptr;
 423   }
 424 
 425   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 426   incr  = cmp->in(1);
 427   limit = cmp->in(2);
 428 
 429   // ---------
 430   // need 'loop()' test to tell if limit is loop invariant
 431   // ---------
 432 
 433   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 434     Node* tmp = incr;            // Then reverse order into the CmpI
 435     incr = limit;
 436     limit = tmp;
 437     bt = BoolTest(bt).commute(); // And commute the exit test
 438   }
 439   if (is_member(loop, get_ctrl(limit))) { // Limit must be loop-invariant
 440     return nullptr;
 441   }
 442   if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant
 443     return nullptr;
 444   }
 445   return cmp;
 446 }
 447 
 448 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) {
 449   if (incr->is_Phi()) {
 450     if (incr->as_Phi()->region() != x || incr->req() != 3) {
 451       return nullptr; // Not simple trip counter expression
 452     }
 453     phi_incr = incr;
 454     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 455     if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant
 456       return nullptr;
 457     }
 458   }
 459   return incr;
 460 }
 461 
 462 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi) {
 463   assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp.");
 464   // Get merge point
 465   xphi = incr->in(1);
 466   Node *stride = incr->in(2);
 467   if (!stride->is_Con()) {     // Oops, swap these
 468     if (!xphi->is_Con()) {     // Is the other guy a constant?
 469       return nullptr;          // Nope, unknown stride, bail out
 470     }
 471     Node *tmp = xphi;          // 'incr' is commutative, so ok to swap
 472     xphi = stride;
 473     stride = tmp;
 474   }
 475   return stride;
 476 }
 477 
 478 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop) {
 479   if (!xphi->is_Phi()) {
 480     return nullptr; // Too much math on the trip counter
 481   }
 482   if (phi_incr != nullptr && phi_incr != xphi) {
 483     return nullptr;
 484   }
 485   PhiNode *phi = xphi->as_Phi();
 486 
 487   // Phi must be of loop header; backedge must wrap to increment
 488   if (phi->region() != x) {
 489     return nullptr;
 490   }
 491   return phi;
 492 }
 493 
 494 static int check_stride_overflow(jlong final_correction, const TypeInteger* limit_t, BasicType bt) {
 495   if (final_correction > 0) {
 496     if (limit_t->lo_as_long() > (max_signed_integer(bt) - final_correction)) {
 497       return -1;
 498     }
 499     if (limit_t->hi_as_long() > (max_signed_integer(bt) - final_correction)) {
 500       return 1;
 501     }
 502   } else {
 503     if (limit_t->hi_as_long() < (min_signed_integer(bt) - final_correction)) {
 504       return -1;
 505     }
 506     if (limit_t->lo_as_long() < (min_signed_integer(bt) - final_correction)) {
 507       return 1;
 508     }
 509   }
 510   return 0;
 511 }
 512 
 513 static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) {
 514   // If the condition is inverted and we will be rolling
 515   // through MININT to MAXINT, then bail out.
 516   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 517       // Odd stride
 518       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
 519       // Count down loop rolls through MAXINT
 520       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
 521       // Count up loop rolls through MININT
 522       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
 523     return false; // Bail out
 524   }
 525   return true;
 526 }
 527 
 528 Node* PhaseIdealLoop::loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head,
 529                                            BasicType bt) {
 530   Node* iv_as_long;
 531   if (bt == T_LONG) {
 532     iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT);
 533     register_new_node(iv_as_long, inner_head);
 534   } else {
 535     iv_as_long = inner_iv;
 536   }
 537   Node* iv_replacement = AddNode::make(outer_phi, iv_as_long, bt);
 538   register_new_node(iv_replacement, inner_head);
 539   for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) {
 540     Node* u = iv_to_replace->last_out(i);
 541 #ifdef ASSERT
 542     if (!is_dominator(inner_head, ctrl_or_self(u))) {
 543       assert(u->is_Phi(), "should be a Phi");
 544       for (uint j = 1; j < u->req(); j++) {
 545         if (u->in(j) == iv_to_replace) {
 546           assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?");
 547         }
 548       }
 549     }
 550 #endif
 551     _igvn.rehash_node_delayed(u);
 552     int nb = u->replace_edge(iv_to_replace, iv_replacement, &_igvn);
 553     i -= nb;
 554   }
 555   return iv_replacement;
 556 }
 557 
 558 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
 559 void PhaseIdealLoop::add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop,
 560                                          SafePointNode* sfpt) {
 561   if (!C->too_many_traps(reason)) {
 562     ParsePredicateNode* parse_predicate = new ParsePredicateNode(inner_head->in(LoopNode::EntryControl), reason, &_igvn);
 563     register_control(parse_predicate, loop, inner_head->in(LoopNode::EntryControl));
 564     Node* if_false = new IfFalseNode(parse_predicate);
 565     register_control(if_false, _ltree_root, parse_predicate);
 566     Node* if_true = new IfTrueNode(parse_predicate);
 567     register_control(if_true, loop, parse_predicate);
 568 
 569     int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile);
 570     address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
 571     const TypePtr* no_memory_effects = nullptr;
 572     JVMState* jvms = sfpt->jvms();
 573     CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap",
 574                                            no_memory_effects);
 575 
 576     Node* mem = nullptr;
 577     Node* i_o = nullptr;
 578     if (sfpt->is_Call()) {
 579       mem = sfpt->proj_out(TypeFunc::Memory);
 580       i_o = sfpt->proj_out(TypeFunc::I_O);
 581     } else {
 582       mem = sfpt->memory();
 583       i_o = sfpt->i_o();
 584     }
 585 
 586     Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr);
 587     register_new_node(frame, C->start());
 588     Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr);
 589     register_new_node(ret, C->start());
 590 
 591     unc->init_req(TypeFunc::Control, if_false);
 592     unc->init_req(TypeFunc::I_O, i_o);
 593     unc->init_req(TypeFunc::Memory, mem); // may gc ptrs
 594     unc->init_req(TypeFunc::FramePtr, frame);
 595     unc->init_req(TypeFunc::ReturnAdr, ret);
 596     unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request));
 597     unc->set_cnt(PROB_UNLIKELY_MAG(4));
 598     unc->copy_call_debug_info(&_igvn, sfpt);
 599 
 600     for (uint i = TypeFunc::Parms; i < unc->req(); i++) {
 601       set_subtree_ctrl(unc->in(i), false);
 602     }
 603     register_control(unc, _ltree_root, if_false);
 604 
 605     Node* ctrl = new ProjNode(unc, TypeFunc::Control);
 606     register_control(ctrl, _ltree_root, unc);
 607     Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false));
 608     register_control(halt, _ltree_root, ctrl);
 609     _igvn.add_input_to(C->root(), halt);
 610 
 611     _igvn.replace_input_of(inner_head, LoopNode::EntryControl, if_true);
 612     set_idom(inner_head, if_true, dom_depth(inner_head));
 613   }
 614 }
 615 
 616 // Find a safepoint node that dominates the back edge. We need a
 617 // SafePointNode so we can use its jvm state to create empty
 618 // predicates.
 619 static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm, PhaseIdealLoop* phase) {
 620   SafePointNode* safepoint = nullptr;
 621   for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
 622     Node* u = x->fast_out(i);
 623     if (u->is_memory_phi()) {
 624       Node* m = u->in(LoopNode::LoopBackControl);
 625       if (u->adr_type() == TypePtr::BOTTOM) {
 626         if (m->is_MergeMem() && mem->is_MergeMem()) {
 627           if (m != mem DEBUG_ONLY(|| true)) {
 628             // MergeMemStream can modify m, for example to adjust the length to mem.
 629             // This is unfortunate, and probably unnecessary. But as it is, we need
 630             // to add m to the igvn worklist, else we may have a modified node that
 631             // is not on the igvn worklist.
 632             phase->igvn()._worklist.push(m);
 633             for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
 634               if (!mms.is_empty()) {
 635                 if (mms.memory() != mms.memory2()) {
 636                   return false;
 637                 }
 638 #ifdef ASSERT
 639                 if (mms.alias_idx() != Compile::AliasIdxBot) {
 640                   mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 641                 }
 642 #endif
 643               }
 644             }
 645           }
 646         } else if (mem->is_MergeMem()) {
 647           if (m != mem->as_MergeMem()->base_memory()) {
 648             return false;
 649           }
 650         } else {
 651           return false;
 652         }
 653       } else {
 654         if (mem->is_MergeMem()) {
 655           if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) {
 656             return false;
 657           }
 658 #ifdef ASSERT
 659           mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory());
 660 #endif
 661         } else {
 662           if (m != mem) {
 663             return false;
 664           }
 665         }
 666       }
 667     }
 668   }
 669   return true;
 670 }
 671 
 672 SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) {
 673   IfNode* exit_test = back_control->in(0)->as_If();
 674   SafePointNode* safepoint = nullptr;
 675   if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) {
 676     safepoint = exit_test->in(0)->as_SafePoint();
 677   } else {
 678     Node* c = back_control;
 679     while (c != x && c->Opcode() != Op_SafePoint) {
 680       c = idom(c);
 681     }
 682 
 683     if (c->Opcode() == Op_SafePoint) {
 684       safepoint = c->as_SafePoint();
 685     }
 686 
 687     if (safepoint == nullptr) {
 688       return nullptr;
 689     }
 690 
 691     Node* mem = safepoint->in(TypeFunc::Memory);
 692 
 693     // We can only use that safepoint if there's no side effect between the backedge and the safepoint.
 694 
 695     // mm is used for book keeping
 696     MergeMemNode* mm = nullptr;
 697 #ifdef ASSERT
 698     if (mem->is_MergeMem()) {
 699       mm = mem->clone()->as_MergeMem();
 700       _igvn._worklist.push(mm);
 701       for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) {
 702         if (mms.alias_idx() != Compile::AliasIdxBot && loop != get_loop(ctrl_or_self(mms.memory()))) {
 703           mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 704         }
 705       }
 706     }
 707 #endif
 708     if (!no_side_effect_since_safepoint(C, x, mem, mm, this)) {
 709       safepoint = nullptr;
 710     } else {
 711       assert(mm == nullptr|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed");
 712     }
 713 #ifdef ASSERT
 714     if (mm != nullptr) {
 715       _igvn.remove_dead_node(mm);
 716     }
 717 #endif
 718   }
 719   return safepoint;
 720 }
 721 
 722 // If the loop has the shape of a counted loop but with a long
 723 // induction variable, transform the loop in a loop nest: an inner
 724 // loop that iterates for at most max int iterations with an integer
 725 // induction variable and an outer loop that iterates over the full
 726 // range of long values from the initial loop in (at most) max int
 727 // steps. That is:
 728 //
 729 // x: for (long phi = init; phi < limit; phi += stride) {
 730 //   // phi := Phi(L, init, incr)
 731 //   // incr := AddL(phi, longcon(stride))
 732 //   long incr = phi + stride;
 733 //   ... use phi and incr ...
 734 // }
 735 //
 736 // OR:
 737 //
 738 // x: for (long phi = init; (phi += stride) < limit; ) {
 739 //   // phi := Phi(L, AddL(init, stride), incr)
 740 //   // incr := AddL(phi, longcon(stride))
 741 //   long incr = phi + stride;
 742 //   ... use phi and (phi + stride) ...
 743 // }
 744 //
 745 // ==transform=>
 746 //
 747 // const ulong inner_iters_limit = INT_MAX - stride - 1;  //near 0x7FFFFFF0
 748 // assert(stride <= inner_iters_limit);  // else abort transform
 749 // assert((extralong)limit + stride <= LONG_MAX);  // else deopt
 750 // outer_head: for (long outer_phi = init;;) {
 751 //   // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi)))
 752 //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi));
 753 //   long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max);
 754 //   assert(inner_iters_actual == (int)inner_iters_actual);
 755 //   int inner_phi, inner_incr;
 756 //   x: for (inner_phi = 0;; inner_phi = inner_incr) {
 757 //     // inner_phi := Phi(x, intcon(0), inner_incr)
 758 //     // inner_incr := AddI(inner_phi, intcon(stride))
 759 //     inner_incr = inner_phi + stride;
 760 //     if (inner_incr < inner_iters_actual) {
 761 //       ... use phi=>(outer_phi+inner_phi) ...
 762 //       continue;
 763 //     }
 764 //     else break;
 765 //   }
 766 //   if ((outer_phi+inner_phi) < limit)  //OR (outer_phi+inner_incr) < limit
 767 //     continue;
 768 //   else break;
 769 // }
 770 //
 771 // The same logic is used to transform an int counted loop that contains long range checks into a loop nest of 2 int
 772 // loops with long range checks transformed to int range checks in the inner loop.
 773 bool PhaseIdealLoop::create_loop_nest(IdealLoopTree* loop, Node_List &old_new) {
 774   Node* x = loop->_head;
 775   // Only for inner loops
 776   if (loop->_child != nullptr || !x->is_BaseCountedLoop() || x->as_Loop()->is_loop_nest_outer_loop()) {
 777     return false;
 778   }
 779 
 780   if (x->is_CountedLoop() && !x->as_CountedLoop()->is_main_loop() && !x->as_CountedLoop()->is_normal_loop()) {
 781     return false;
 782   }
 783 
 784   BaseCountedLoopNode* head = x->as_BaseCountedLoop();
 785   BasicType bt = x->as_BaseCountedLoop()->bt();
 786 
 787   check_counted_loop_shape(loop, x, bt);
 788 
 789 #ifndef PRODUCT
 790   if (bt == T_LONG) {
 791     Atomic::inc(&_long_loop_candidates);
 792   }
 793 #endif
 794 
 795   jlong stride_con_long = head->stride_con();
 796   assert(stride_con_long != 0, "missed some peephole opt");
 797   // We can't iterate for more than max int at a time.
 798   if (stride_con_long != (jint)stride_con_long || stride_con_long == min_jint) {
 799     assert(bt == T_LONG, "only for long loops");
 800     return false;
 801   }
 802   jint stride_con = checked_cast<jint>(stride_con_long);
 803   // The number of iterations for the integer count loop: guarantee no
 804   // overflow: max_jint - stride_con max. -1 so there's no need for a
 805   // loop limit check if the exit test is <= or >=.
 806   int iters_limit = max_jint - ABS(stride_con) - 1;
 807 #ifdef ASSERT
 808   if (bt == T_LONG && StressLongCountedLoop > 0) {
 809     iters_limit = iters_limit / StressLongCountedLoop;
 810   }
 811 #endif
 812   // At least 2 iterations so counted loop construction doesn't fail
 813   if (iters_limit/ABS(stride_con) < 2) {
 814     return false;
 815   }
 816 
 817   PhiNode* phi = head->phi()->as_Phi();
 818   Node* incr = head->incr();
 819 
 820   Node* back_control = head->in(LoopNode::LoopBackControl);
 821 
 822   // data nodes on back branch not supported
 823   if (back_control->outcnt() > 1) {
 824     return false;
 825   }
 826 
 827   Node* limit = head->limit();
 828   // We'll need to use the loop limit before the inner loop is entered
 829   if (!is_dominator(get_ctrl(limit), x)) {
 830     return false;
 831   }
 832 
 833   IfNode* exit_test = head->loopexit();
 834 
 835   assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge");
 836 
 837   Node_List range_checks;
 838   iters_limit = extract_long_range_checks(loop, stride_con, iters_limit, phi, range_checks);
 839 
 840   if (bt == T_INT) {
 841     // The only purpose of creating a loop nest is to handle long range checks. If there are none, do not proceed further.
 842     if (range_checks.size() == 0) {
 843       return false;
 844     }
 845   }
 846 
 847   // Take what we know about the number of iterations of the long counted loop into account when computing the limit of
 848   // the inner loop.
 849   const Node* init = head->init_trip();
 850   const TypeInteger* lo = _igvn.type(init)->is_integer(bt);
 851   const TypeInteger* hi = _igvn.type(limit)->is_integer(bt);
 852   if (stride_con < 0) {
 853     swap(lo, hi);
 854   }
 855   if (hi->hi_as_long() <= lo->lo_as_long()) {
 856     // not a loop after all
 857     return false;
 858   }
 859 
 860   if (range_checks.size() > 0) {
 861     // This transformation requires peeling one iteration. Also, if it has range checks and they are eliminated by Loop
 862     // Predication, then 2 Hoisted Check Predicates are added for one range check. Finally, transforming a long range
 863     // check requires extra logic to be executed before the loop is entered and for the outer loop. As a result, the
 864     // transformations can't pay off for a small number of iterations: roughly, if the loop runs for 3 iterations, it's
 865     // going to execute as many range checks once transformed with range checks eliminated (1 peeled iteration with
 866     // range checks + 2 predicates per range checks) as it would have not transformed. It also has to pay for the extra
 867     // logic on loop entry and for the outer loop.
 868     loop->compute_trip_count(this);
 869     if (head->is_CountedLoop() && head->as_CountedLoop()->has_exact_trip_count()) {
 870       if (head->as_CountedLoop()->trip_count() <= 3) {
 871         return false;
 872       }
 873     } else {
 874       loop->compute_profile_trip_cnt(this);
 875       if (!head->is_profile_trip_failed() && head->profile_trip_cnt() <= 3) {
 876         return false;
 877       }
 878     }
 879   }
 880 
 881   julong orig_iters = (julong)hi->hi_as_long() - lo->lo_as_long();
 882   iters_limit = checked_cast<int>(MIN2((julong)iters_limit, orig_iters));
 883 
 884   // We need a safepoint to insert Parse Predicates for the inner loop.
 885   SafePointNode* safepoint;
 886   if (bt == T_INT && head->as_CountedLoop()->is_strip_mined()) {
 887     // Loop is strip mined: use the safepoint of the outer strip mined loop
 888     OuterStripMinedLoopNode* outer_loop = head->as_CountedLoop()->outer_loop();
 889     assert(outer_loop != nullptr, "no outer loop");
 890     safepoint = outer_loop->outer_safepoint();
 891     outer_loop->transform_to_counted_loop(&_igvn, this);
 892     exit_test = head->loopexit();
 893   } else {
 894     safepoint = find_safepoint(back_control, x, loop);
 895   }
 896 
 897   Node* exit_branch = exit_test->proj_out(false);
 898   Node* entry_control = head->in(LoopNode::EntryControl);
 899 
 900   // Clone the control flow of the loop to build an outer loop
 901   Node* outer_back_branch = back_control->clone();
 902   Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
 903   Node* inner_exit_branch = exit_branch->clone();
 904 
 905   LoopNode* outer_head = new LoopNode(entry_control, outer_back_branch);
 906   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head, outer_back_branch);
 907 
 908   const bool body_populated = true;
 909   register_control(outer_head, outer_ilt, entry_control, body_populated);
 910 
 911   _igvn.register_new_node_with_optimizer(inner_exit_branch);
 912   set_loop(inner_exit_branch, outer_ilt);
 913   set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch));
 914 
 915   outer_exit_test->set_req(0, inner_exit_branch);
 916   register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated);
 917 
 918   _igvn.replace_input_of(exit_branch, 0, outer_exit_test);
 919   set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch));
 920 
 921   outer_back_branch->set_req(0, outer_exit_test);
 922   register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated);
 923 
 924   _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head);
 925   set_idom(x, outer_head, dom_depth(x));
 926 
 927   // add an iv phi to the outer loop and use it to compute the inner
 928   // loop iteration limit
 929   Node* outer_phi = phi->clone();
 930   outer_phi->set_req(0, outer_head);
 931   register_new_node(outer_phi, outer_head);
 932 
 933   Node* inner_iters_max = nullptr;
 934   if (stride_con > 0) {
 935     inner_iters_max = MaxNode::max_diff_with_zero(limit, outer_phi, TypeInteger::bottom(bt), _igvn);
 936   } else {
 937     inner_iters_max = MaxNode::max_diff_with_zero(outer_phi, limit, TypeInteger::bottom(bt), _igvn);
 938   }
 939 
 940   Node* inner_iters_limit = _igvn.integercon(iters_limit, bt);
 941   // inner_iters_max may not fit in a signed integer (iterating from
 942   // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned
 943   // min.
 944   const TypeInteger* inner_iters_actual_range = TypeInteger::make(0, iters_limit, Type::WidenMin, bt);
 945   Node* inner_iters_actual = MaxNode::unsigned_min(inner_iters_max, inner_iters_limit, inner_iters_actual_range, _igvn);
 946 
 947   Node* inner_iters_actual_int;
 948   if (bt == T_LONG) {
 949     inner_iters_actual_int = new ConvL2INode(inner_iters_actual);
 950     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
 951     // When the inner loop is transformed to a counted loop, a loop limit check is not expected to be needed because
 952     // the loop limit is less or equal to max_jint - stride - 1 (if stride is positive but a similar argument exists for
 953     // a negative stride). We add a CastII here to guarantee that, when the counted loop is created in a subsequent loop
 954     // opts pass, an accurate range of values for the limits is found.
 955     const TypeInt* inner_iters_actual_int_range = TypeInt::make(0, iters_limit, Type::WidenMin);
 956     inner_iters_actual_int = new CastIINode(outer_head, inner_iters_actual_int, inner_iters_actual_int_range, ConstraintCastNode::UnconditionalDependency);
 957     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
 958   } else {
 959     inner_iters_actual_int = inner_iters_actual;
 960   }
 961 
 962   Node* int_zero = _igvn.intcon(0);
 963   set_ctrl(int_zero, C->root());
 964   if (stride_con < 0) {
 965     inner_iters_actual_int = new SubINode(int_zero, inner_iters_actual_int);
 966     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
 967   }
 968 
 969   // Clone the iv data nodes as an integer iv
 970   Node* int_stride = _igvn.intcon(stride_con);
 971   set_ctrl(int_stride, C->root());
 972   Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT);
 973   Node* inner_incr = new AddINode(inner_phi, int_stride);
 974   Node* inner_cmp = nullptr;
 975   inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int);
 976   Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test);
 977   inner_phi->set_req(LoopNode::EntryControl, int_zero);
 978   inner_phi->set_req(LoopNode::LoopBackControl, inner_incr);
 979   register_new_node(inner_phi, x);
 980   register_new_node(inner_incr, x);
 981   register_new_node(inner_cmp, x);
 982   register_new_node(inner_bol, x);
 983 
 984   _igvn.replace_input_of(exit_test, 1, inner_bol);
 985 
 986   // Clone inner loop phis to outer loop
 987   for (uint i = 0; i < head->outcnt(); i++) {
 988     Node* u = head->raw_out(i);
 989     if (u->is_Phi() && u != inner_phi && u != phi) {
 990       assert(u->in(0) == head, "inconsistent");
 991       Node* clone = u->clone();
 992       clone->set_req(0, outer_head);
 993       register_new_node(clone, outer_head);
 994       _igvn.replace_input_of(u, LoopNode::EntryControl, clone);
 995     }
 996   }
 997 
 998   // Replace inner loop long iv phi as inner loop int iv phi + outer
 999   // loop iv phi
1000   Node* iv_add = loop_nest_replace_iv(phi, inner_phi, outer_phi, head, bt);
1001 
1002   set_subtree_ctrl(inner_iters_actual_int, body_populated);
1003 
1004   LoopNode* inner_head = create_inner_head(loop, head, exit_test);
1005 
1006   // Summary of steps from initial loop to loop nest:
1007   //
1008   // == old IR nodes =>
1009   //
1010   // entry_control: {...}
1011   // x:
1012   // for (long phi = init;;) {
1013   //   // phi := Phi(x, init, incr)
1014   //   // incr := AddL(phi, longcon(stride))
1015   //   exit_test:
1016   //   if (phi < limit)
1017   //     back_control: fallthrough;
1018   //   else
1019   //     exit_branch: break;
1020   //   long incr = phi + stride;
1021   //   ... use phi and incr ...
1022   //   phi = incr;
1023   // }
1024   //
1025   // == new IR nodes (just before final peel) =>
1026   //
1027   // entry_control: {...}
1028   // long adjusted_limit = limit + stride;  //because phi_incr != nullptr
1029   // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit);  // else deopt
1030   // ulong inner_iters_limit = max_jint - ABS(stride) - 1;  //near 0x7FFFFFF0
1031   // outer_head:
1032   // for (long outer_phi = init;;) {
1033   //   // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr)
1034   //   // REPLACE phi  => AddL(outer_phi, I2L(inner_phi))
1035   //   // REPLACE incr => AddL(outer_phi, I2L(inner_incr))
1036   //   // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr)))
1037   //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride));
1038   //   int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride);
1039   //   inner_head: x: //in(1) := outer_head
1040   //   int inner_phi;
1041   //   for (inner_phi = 0;;) {
1042   //     // inner_phi := Phi(x, intcon(0), inner_phi + stride)
1043   //     int inner_incr = inner_phi + stride;
1044   //     bool inner_bol = (inner_incr < inner_iters_actual_int);
1045   //     exit_test: //exit_test->in(1) := inner_bol;
1046   //     if (inner_bol) // WAS (phi < limit)
1047   //       back_control: fallthrough;
1048   //     else
1049   //       inner_exit_branch: break;  //exit_branch->clone()
1050   //     ... use phi=>(outer_phi+inner_phi) ...
1051   //     inner_phi = inner_phi + stride;  // inner_incr
1052   //   }
1053   //   outer_exit_test:  //exit_test->clone(), in(0):=inner_exit_branch
1054   //   if ((outer_phi+inner_phi) < limit)  // WAS (phi < limit)
1055   //     outer_back_branch: fallthrough;  //back_control->clone(), in(0):=outer_exit_test
1056   //   else
1057   //     exit_branch: break;  //in(0) := outer_exit_test
1058   // }
1059 
1060   if (bt == T_INT) {
1061     outer_phi = new ConvI2LNode(outer_phi);
1062     register_new_node(outer_phi, outer_head);
1063   }
1064 
1065   transform_long_range_checks(stride_con, range_checks, outer_phi, inner_iters_actual_int,
1066                               inner_phi, iv_add, inner_head);
1067   // Peel one iteration of the loop and use the safepoint at the end
1068   // of the peeled iteration to insert Parse Predicates. If no well
1069   // positioned safepoint peel to guarantee a safepoint in the outer
1070   // loop.
1071   if (safepoint != nullptr || !loop->_has_call) {
1072     old_new.clear();
1073     do_peeling(loop, old_new);
1074   } else {
1075     C->set_major_progress();
1076   }
1077 
1078   if (safepoint != nullptr) {
1079     SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint();
1080 
1081     if (UseLoopPredicate) {
1082       add_parse_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt);
1083     }
1084     if (UseProfiledLoopPredicate) {
1085       add_parse_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt);
1086     }
1087     add_parse_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt);
1088   }
1089 
1090 #ifndef PRODUCT
1091   if (bt == T_LONG) {
1092     Atomic::inc(&_long_loop_nests);
1093   }
1094 #endif
1095 
1096   inner_head->mark_loop_nest_inner_loop();
1097   outer_head->mark_loop_nest_outer_loop();
1098 
1099   return true;
1100 }
1101 
1102 int PhaseIdealLoop::extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
1103                                               Node_List& range_checks) {
1104   const jlong min_iters = 2;
1105   jlong reduced_iters_limit = iters_limit;
1106   jlong original_iters_limit = iters_limit;
1107   for (uint i = 0; i < loop->_body.size(); i++) {
1108     Node* c = loop->_body.at(i);
1109     if (c->is_IfProj() && c->in(0)->is_RangeCheck()) {
1110       IfProjNode* if_proj = c->as_IfProj();
1111       CallStaticJavaNode* call = if_proj->is_uncommon_trap_if_pattern();
1112       if (call != nullptr) {
1113         Node* range = nullptr;
1114         Node* offset = nullptr;
1115         jlong scale = 0;
1116         if (loop->is_range_check_if(if_proj, this, T_LONG, phi, range, offset, scale) &&
1117             loop->is_invariant(range) && loop->is_invariant(offset) &&
1118             scale != min_jlong &&
1119             original_iters_limit / ABS(scale) >= min_iters * ABS(stride_con)) {
1120           assert(scale == (jint)scale, "scale should be an int");
1121           reduced_iters_limit = MIN2(reduced_iters_limit, original_iters_limit/ABS(scale));
1122           range_checks.push(c);
1123         }
1124       }
1125     }
1126   }
1127 
1128   return checked_cast<int>(reduced_iters_limit);
1129 }
1130 
1131 // One execution of the inner loop covers a sub-range of the entire iteration range of the loop: [A,Z), aka [A=init,
1132 // Z=limit). If the loop has at least one trip (which is the case here), the iteration variable i always takes A as its
1133 // first value, followed by A+S (S is the stride), next A+2S, etc. The limit is exclusive, so that the final value B of
1134 // i is never Z.  It will be B=Z-1 if S=1, or B=Z+1 if S=-1.
1135 
1136 // If |S|>1 the formula for the last value B would require a floor operation, specifically B=floor((Z-sgn(S)-A)/S)*S+A,
1137 // which is B=Z-sgn(S)U for some U in [1,|S|].  So when S>0, i ranges as i:[A,Z) or i:[A,B=Z-U], or else (in reverse)
1138 // as i:(Z,A] or i:[B=Z+U,A].  It will become important to reason about this inclusive range [A,B] or [B,A].
1139 
1140 // Within the loop there may be many range checks.  Each such range check (R.C.) is of the form 0 <= i*K+L < R, where K
1141 // is a scale factor applied to the loop iteration variable i, and L is some offset; K, L, and R are loop-invariant.
1142 // Because R is never negative (see below), this check can always be simplified to an unsigned check i*K+L <u R.
1143 
1144 // When a long loop over a 64-bit variable i (outer_iv) is decomposed into a series of shorter sub-loops over a 32-bit
1145 // variable j (inner_iv), j ranges over a shorter interval j:[0,B_2] or [0,Z_2) (assuming S > 0), where the limit is
1146 // chosen to prevent various cases of 32-bit overflow (including multiplications j*K below).  In the sub-loop the
1147 // logical value i is offset from j by a 64-bit constant C, so i ranges in i:C+[0,Z_2).
1148 
1149 // For S<0, j ranges (in reverse!) through j:[-|B_2|,0] or (-|Z_2|,0].  For either sign of S, we can say i=j+C and j
1150 // ranges through 32-bit ranges [A_2,B_2] or [B_2,A_2] (A_2=0 of course).
1151 
1152 // The disjoint union of all the C+[A_2,B_2] ranges from the sub-loops must be identical to the whole range [A,B].
1153 // Assuming S>0, the first C must be A itself, and the next C value is the previous C+B_2, plus S.  If |S|=1, the next
1154 // C value is also the previous C+Z_2.  In each sub-loop, j counts from j=A_2=0 and i counts from C+0 and exits at
1155 // j=B_2 (i=C+B_2), just before it gets to i=C+Z_2.  Both i and j count up (from C and 0) if S>0; otherwise they count
1156 // down (from C and 0 again).
1157 
1158 // Returning to range checks, we see that each i*K+L <u R expands to (C+j)*K+L <u R, or j*K+Q <u R, where Q=(C*K+L).
1159 // (Recall that K and L and R are loop-invariant scale, offset and range values for a particular R.C.)  This is still a
1160 // 64-bit comparison, so the range check elimination logic will not apply to it.  (The R.C.E. transforms operate only on
1161 // 32-bit indexes and comparisons, because they use 64-bit temporary values to avoid overflow; see
1162 // PhaseIdealLoop::add_constraint.)
1163 
1164 // We must transform this comparison so that it gets the same answer, but by means of a 32-bit R.C. (using j not i) of
1165 // the form j*K+L_2 <u32 R_2.  Note that L_2 and R_2 must be loop-invariant, but only with respect to the sub-loop.  Thus, the
1166 // problem reduces to computing values for L_2 and R_2 (for each R.C. in the loop) in the loop header for the sub-loop.
1167 // Then the standard R.C.E. transforms can take those as inputs and further compute the necessary minimum and maximum
1168 // values for the 32-bit counter j within which the range checks can be eliminated.
1169 
1170 // So, given j*K+Q <u R, we need to find some j*K+L_2 <u32 R_2, where L_2 and R_2 fit in 32 bits, and the 32-bit operations do
1171 // not overflow. We also need to cover the cases where i*K+L (= j*K+Q) overflows to a 64-bit negative, since that is
1172 // allowed as an input to the R.C., as long as the R.C. as a whole fails.
1173 
1174 // If 32-bit multiplication j*K might overflow, we adjust the sub-loop limit Z_2 closer to zero to reduce j's range.
1175 
1176 // For each R.C. j*K+Q <u32 R, the range of mathematical values of j*K+Q in the sub-loop is [Q_min, Q_max], where
1177 // Q_min=Q and Q_max=B_2*K+Q (if S>0 and K>0), Q_min=A_2*K+Q and Q_max=Q (if S<0 and K>0),
1178 // Q_min=B_2*K+Q and Q_max=Q if (S>0 and K<0), Q_min=Q and Q_max=A_2*K+Q (if S<0 and K<0)
1179 
1180 // Note that the first R.C. value is always Q=(S*K>0 ? Q_min : Q_max).  Also Q_{min,max} = Q + {min,max}(A_2*K,B_2*K).
1181 // If S*K>0 then, as the loop iterations progress, each R.C. value i*K+L = j*K+Q goes up from Q=Q_min towards Q_max.
1182 // If S*K<0 then j*K+Q starts at Q=Q_max and goes down towards Q_min.
1183 
1184 // Case A: Some Negatives (but no overflow).
1185 // Number line:
1186 // |s64_min   .    .    .    0    .    .    .   s64_max|
1187 // |    .  Q_min..Q_max .    0    .    .    .     .    |  s64 negative
1188 // |    .     .    .    .    R=0  R<   R<   R<    R<   |  (against R values)
1189 // |    .     .    .  Q_min..0..Q_max  .    .     .    |  small mixed
1190 // |    .     .    .    .    R    R    R<   R<    R<   |  (against R values)
1191 //
1192 // R values which are out of range (>Q_max+1) are reduced to max(0,Q_max+1).  They are marked on the number line as R<.
1193 //
1194 // So, if Q_min <s64 0, then use this test:
1195 // j*K + s32_trunc(Q_min) <u32 clamp(R, 0, Q_max+1) if S*K>0 (R.C.E. steps upward)
1196 // j*K + s32_trunc(Q_max) <u32 clamp(R, 0, Q_max+1) if S*K<0 (R.C.E. steps downward)
1197 // Both formulas reduce to adding j*K to the 32-bit truncated value of the first R.C. expression value, Q:
1198 // j*K + s32_trunc(Q) <u32 clamp(R, 0, Q_max+1) for all S,K
1199 
1200 // If the 32-bit truncation loses information, no harm is done, since certainly the clamp also will return R_2=zero.
1201 
1202 // Case B: No Negatives.
1203 // Number line:
1204 // |s64_min   .    .    .    0    .    .    .   s64_max|
1205 // |    .     .    .    .    0 Q_min..Q_max .     .    |  small positive
1206 // |    .     .    .    .    R>   R    R    R<    R<   |  (against R values)
1207 // |    .     .    .    .    0    . Q_min..Q_max  .    |  s64 positive
1208 // |    .     .    .    .    R>   R>   R    R     R<   |  (against R values)
1209 //
1210 // R values which are out of range (<Q_min or >Q_max+1) are reduced as marked: R> up to Q_min, R< down to Q_max+1.
1211 // Then the whole comparison is shifted left by Q_min, so it can take place at zero, which is a nice 32-bit value.
1212 //
1213 // So, if both Q_min, Q_max+1 >=s64 0, then use this test:
1214 // j*K + 0         <u32 clamp(R, Q_min, Q_max+1) - Q_min if S*K>0
1215 // More generally:
1216 // j*K + Q - Q_min <u32 clamp(R, Q_min, Q_max+1) - Q_min for all S,K
1217 
1218 // Case C: Overflow in the 64-bit domain
1219 // Number line:
1220 // |..Q_max-2^64   .    .    0    .    .    .   Q_min..|  s64 overflow
1221 // |    .     .    .    .    R>   R>   R>   R>    R    |  (against R values)
1222 //
1223 // In this case, Q_min >s64 Q_max+1, even though the mathematical values of Q_min and Q_max+1 are correctly ordered.
1224 // The formulas from the previous case can be used, except that the bad upper bound Q_max is replaced by max_jlong.
1225 // (In fact, we could use any replacement bound from R to max_jlong inclusive, as the input to the clamp function.)
1226 //
1227 // So if Q_min >=s64 0 but Q_max+1 <s64 0, use this test:
1228 // j*K + 0         <u32 clamp(R, Q_min, max_jlong) - Q_min if S*K>0
1229 // More generally:
1230 // j*K + Q - Q_min <u32 clamp(R, Q_min, max_jlong) - Q_min for all S,K
1231 //
1232 // Dropping the bad bound means only Q_min is used to reduce the range of R:
1233 // j*K + Q - Q_min <u32 max(Q_min, R) - Q_min for all S,K
1234 //
1235 // Here the clamp function is a 64-bit min/max that reduces the dynamic range of its R operand to the required [L,H]:
1236 //     clamp(X, L, H) := max(L, min(X, H))
1237 // When degenerately L > H, it returns L not H.
1238 //
1239 // All of the formulas above can be merged into a single one:
1240 //     L_clamp = Q_min < 0 ? 0 : Q_min        --whether and how far to left-shift
1241 //     H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1242 //             = Q_max+1 < 0 && Q_min >= 0 ? max_jlong : Q_max+1
1243 //     Q_first = Q = (S*K>0 ? Q_min : Q_max) = (C*K+L)
1244 //     R_clamp = clamp(R, L_clamp, H_clamp)   --reduced dynamic range
1245 //     replacement R.C.:
1246 //       j*K + Q_first - L_clamp <u32 R_clamp - L_clamp
1247 //     or equivalently:
1248 //       j*K + L_2 <u32 R_2
1249 //     where
1250 //       L_2 = Q_first - L_clamp
1251 //       R_2 = R_clamp - L_clamp
1252 //
1253 // Note on why R is never negative:
1254 //
1255 // Various details of this transformation would break badly if R could be negative, so this transformation only
1256 // operates after obtaining hard evidence that R<0 is impossible.  For example, if R comes from a LoadRange node, we
1257 // know R cannot be negative.  For explicit checks (of both int and long) a proof is constructed in
1258 // inline_preconditions_checkIndex, which triggers an uncommon trap if R<0, then wraps R in a ConstraintCastNode with a
1259 // non-negative type.  Later on, when IdealLoopTree::is_range_check_if looks for an optimizable R.C., it checks that
1260 // the type of that R node is non-negative.  Any "wild" R node that could be negative is not treated as an optimizable
1261 // R.C., but R values from a.length and inside checkIndex are good to go.
1262 //
1263 void PhaseIdealLoop::transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1264                                                  Node* inner_iters_actual_int, Node* inner_phi,
1265                                                  Node* iv_add, LoopNode* inner_head) {
1266   Node* long_zero = _igvn.longcon(0);
1267   set_ctrl(long_zero, C->root());
1268   Node* int_zero = _igvn.intcon(0);
1269   set_ctrl(int_zero, this->C->root());
1270   Node* long_one = _igvn.longcon(1);
1271   set_ctrl(long_one, this->C->root());
1272   Node* int_stride = _igvn.intcon(checked_cast<int>(stride_con));
1273   set_ctrl(int_stride, this->C->root());
1274 
1275   for (uint i = 0; i < range_checks.size(); i++) {
1276     ProjNode* proj = range_checks.at(i)->as_Proj();
1277     ProjNode* unc_proj = proj->other_if_proj();
1278     RangeCheckNode* rc = proj->in(0)->as_RangeCheck();
1279     jlong scale = 0;
1280     Node* offset = nullptr;
1281     Node* rc_bol = rc->in(1);
1282     Node* rc_cmp = rc_bol->in(1);
1283     if (rc_cmp->Opcode() == Op_CmpU) {
1284       // could be shared and have already been taken care of
1285       continue;
1286     }
1287     bool short_scale = false;
1288     bool ok = is_scaled_iv_plus_offset(rc_cmp->in(1), iv_add, T_LONG, &scale, &offset, &short_scale);
1289     assert(ok, "inconsistent: was tested before");
1290     Node* range = rc_cmp->in(2);
1291     Node* c = rc->in(0);
1292     Node* entry_control = inner_head->in(LoopNode::EntryControl);
1293 
1294     Node* R = range;
1295     Node* K = _igvn.longcon(scale);
1296     set_ctrl(K, this->C->root());
1297 
1298     Node* L = offset;
1299 
1300     if (short_scale) {
1301       // This converts:
1302       // (int)i*K + L <u64 R
1303       // with K an int into:
1304       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1305       // to protect against an overflow of (int)i*K
1306       //
1307       // Because if (int)i*K overflows, there are K,L where:
1308       // (int)i*K + L <u64 R is false because (int)i*K+L overflows to a negative which becomes a huge u64 value.
1309       // But if i*(long)K + L is >u64 (long)max_jint and still is <u64 R, then
1310       // i*(long)K + L <u64 R is true.
1311       //
1312       // As a consequence simply converting i*K + L <u64 R to i*(long)K + L <u64 R could cause incorrect execution.
1313       //
1314       // It's always true that:
1315       // (int)i*K <u64 (long)max_jint + 1
1316       // which implies (int)i*K + L <u64 (long)max_jint + 1 + L
1317       // As a consequence:
1318       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1319       // is always false in case of overflow of i*K
1320       //
1321       // Note, there are also K,L where i*K overflows and
1322       // i*K + L <u64 R is true, but
1323       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) is false
1324       // So this transformation could cause spurious deoptimizations and failed range check elimination
1325       // (but not incorrect execution) for unlikely corner cases with overflow.
1326       // If this causes problems in practice, we could maybe direct execution to a post-loop, instead of deoptimizing.
1327       Node* max_jint_plus_one_long = _igvn.longcon((jlong)max_jint + 1);
1328       set_ctrl(max_jint_plus_one_long, C->root());
1329       Node* max_range = new AddLNode(max_jint_plus_one_long, L);
1330       register_new_node(max_range, entry_control);
1331       R = MaxNode::unsigned_min(R, max_range, TypeLong::POS, _igvn);
1332       set_subtree_ctrl(R, true);
1333     }
1334 
1335     Node* C = outer_phi;
1336 
1337     // Start with 64-bit values:
1338     //   i*K + L <u64 R
1339     //   (C+j)*K + L <u64 R
1340     //   j*K + Q <u64 R    where Q = Q_first = C*K+L
1341     Node* Q_first = new MulLNode(C, K);
1342     register_new_node(Q_first, entry_control);
1343     Q_first = new AddLNode(Q_first, L);
1344     register_new_node(Q_first, entry_control);
1345 
1346     // Compute endpoints of the range of values j*K + Q.
1347     //  Q_min = (j=0)*K + Q;  Q_max = (j=B_2)*K + Q
1348     Node* Q_min = Q_first;
1349 
1350     // Compute the exact ending value B_2 (which is really A_2 if S < 0)
1351     Node* B_2 = new LoopLimitNode(this->C, int_zero, inner_iters_actual_int, int_stride);
1352     register_new_node(B_2, entry_control);
1353     B_2 = new SubINode(B_2, int_stride);
1354     register_new_node(B_2, entry_control);
1355     B_2 = new ConvI2LNode(B_2);
1356     register_new_node(B_2, entry_control);
1357 
1358     Node* Q_max = new MulLNode(B_2, K);
1359     register_new_node(Q_max, entry_control);
1360     Q_max = new AddLNode(Q_max, Q_first);
1361     register_new_node(Q_max, entry_control);
1362 
1363     if (scale * stride_con < 0) {
1364       swap(Q_min, Q_max);
1365     }
1366     // Now, mathematically, Q_max > Q_min, and they are close enough so that (Q_max-Q_min) fits in 32 bits.
1367 
1368     // L_clamp = Q_min < 0 ? 0 : Q_min
1369     Node* Q_min_cmp = new CmpLNode(Q_min, long_zero);
1370     register_new_node(Q_min_cmp, entry_control);
1371     Node* Q_min_bool = new BoolNode(Q_min_cmp, BoolTest::lt);
1372     register_new_node(Q_min_bool, entry_control);
1373     Node* L_clamp = new CMoveLNode(Q_min_bool, Q_min, long_zero, TypeLong::LONG);
1374     register_new_node(L_clamp, entry_control);
1375     // (This could also be coded bitwise as L_clamp = Q_min & ~(Q_min>>63).)
1376 
1377     Node* Q_max_plus_one = new AddLNode(Q_max, long_one);
1378     register_new_node(Q_max_plus_one, entry_control);
1379 
1380     // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1381     // (Because Q_min and Q_max are close, the overflow check could also be encoded as Q_max+1 < 0 & Q_min >= 0.)
1382     Node* max_jlong_long = _igvn.longcon(max_jlong);
1383     set_ctrl(max_jlong_long, this->C->root());
1384     Node* Q_max_cmp = new CmpLNode(Q_max_plus_one, Q_min);
1385     register_new_node(Q_max_cmp, entry_control);
1386     Node* Q_max_bool = new BoolNode(Q_max_cmp, BoolTest::lt);
1387     register_new_node(Q_max_bool, entry_control);
1388     Node* H_clamp = new CMoveLNode(Q_max_bool, Q_max_plus_one, max_jlong_long, TypeLong::LONG);
1389     register_new_node(H_clamp, entry_control);
1390     // (This could also be coded bitwise as H_clamp = ((Q_max+1)<<1 | M)>>>1 where M = (Q_max+1)>>63 & ~Q_min>>63.)
1391 
1392     // R_2 = clamp(R, L_clamp, H_clamp) - L_clamp
1393     // that is:  R_2 = clamp(R, L_clamp=0, H_clamp=Q_max)      if Q_min < 0
1394     // or else:  R_2 = clamp(R, L_clamp,   H_clamp) - Q_min    if Q_min >= 0
1395     // and also: R_2 = clamp(R, L_clamp,   Q_max+1) - L_clamp  if Q_min < Q_max+1 (no overflow)
1396     // or else:  R_2 = clamp(R, L_clamp, *no limit*)- L_clamp  if Q_max+1 < Q_min (overflow)
1397     Node* R_2 = clamp(R, L_clamp, H_clamp);
1398     R_2 = new SubLNode(R_2, L_clamp);
1399     register_new_node(R_2, entry_control);
1400     R_2 = new ConvL2INode(R_2, TypeInt::POS);
1401     register_new_node(R_2, entry_control);
1402 
1403     // L_2 = Q_first - L_clamp
1404     // We are subtracting L_clamp from both sides of the <u32 comparison.
1405     // If S*K>0, then Q_first == 0 and the R.C. expression at -L_clamp and steps upward to Q_max-L_clamp.
1406     // If S*K<0, then Q_first != 0 and the R.C. expression starts high and steps downward to Q_min-L_clamp.
1407     Node* L_2 = new SubLNode(Q_first, L_clamp);
1408     register_new_node(L_2, entry_control);
1409     L_2 = new ConvL2INode(L_2, TypeInt::INT);
1410     register_new_node(L_2, entry_control);
1411 
1412     // Transform the range check using the computed values L_2/R_2
1413     // from:   i*K + L   <u64 R
1414     // to:     j*K + L_2 <u32 R_2
1415     // that is:
1416     //   (j*K + Q_first) - L_clamp <u32 clamp(R, L_clamp, H_clamp) - L_clamp
1417     K = _igvn.intcon(checked_cast<int>(scale));
1418     set_ctrl(K, this->C->root());
1419     Node* scaled_iv = new MulINode(inner_phi, K);
1420     register_new_node(scaled_iv, c);
1421     Node* scaled_iv_plus_offset = new AddINode(scaled_iv, L_2);
1422     register_new_node(scaled_iv_plus_offset, c);
1423 
1424     Node* new_rc_cmp = new CmpUNode(scaled_iv_plus_offset, R_2);
1425     register_new_node(new_rc_cmp, c);
1426 
1427     _igvn.replace_input_of(rc_bol, 1, new_rc_cmp);
1428   }
1429 }
1430 
1431 Node* PhaseIdealLoop::clamp(Node* R, Node* L, Node* H) {
1432   Node* min = MaxNode::signed_min(R, H, TypeLong::LONG, _igvn);
1433   set_subtree_ctrl(min, true);
1434   Node* max = MaxNode::signed_max(L, min, TypeLong::LONG, _igvn);
1435   set_subtree_ctrl(max, true);
1436   return max;
1437 }
1438 
1439 LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head,
1440                                             IfNode* exit_test) {
1441   LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2));
1442   IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
1443   _igvn.register_new_node_with_optimizer(new_inner_head);
1444   _igvn.register_new_node_with_optimizer(new_inner_exit);
1445   loop->_body.push(new_inner_head);
1446   loop->_body.push(new_inner_exit);
1447   loop->_body.yank(head);
1448   loop->_body.yank(exit_test);
1449   set_loop(new_inner_head, loop);
1450   set_loop(new_inner_exit, loop);
1451   set_idom(new_inner_head, idom(head), dom_depth(head));
1452   set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test));
1453   lazy_replace(head, new_inner_head);
1454   lazy_replace(exit_test, new_inner_exit);
1455   loop->_head = new_inner_head;
1456   return new_inner_head;
1457 }
1458 
1459 #ifdef ASSERT
1460 void PhaseIdealLoop::check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) {
1461   Node* back_control = loop_exit_control(x, loop);
1462   assert(back_control != nullptr, "no back control");
1463 
1464   BoolTest::mask mask = BoolTest::illegal;
1465   float cl_prob = 0;
1466   Node* incr = nullptr;
1467   Node* limit = nullptr;
1468 
1469   Node* cmp = loop_exit_test(back_control, loop, incr, limit, mask, cl_prob);
1470   assert(cmp != nullptr && cmp->Opcode() == Op_Cmp(bt), "no exit test");
1471 
1472   Node* phi_incr = nullptr;
1473   incr = loop_iv_incr(incr, x, loop, phi_incr);
1474   assert(incr != nullptr && incr->Opcode() == Op_Add(bt), "no incr");
1475 
1476   Node* xphi = nullptr;
1477   Node* stride = loop_iv_stride(incr, loop, xphi);
1478 
1479   assert(stride != nullptr, "no stride");
1480 
1481   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop);
1482 
1483   assert(phi != nullptr && phi->in(LoopNode::LoopBackControl) == incr, "No phi");
1484 
1485   jlong stride_con = stride->get_integer_as_long(bt);
1486 
1487   assert(condition_stride_ok(mask, stride_con), "illegal condition");
1488 
1489   assert(mask != BoolTest::ne, "unexpected condition");
1490   assert(phi_incr == nullptr, "bad loop shape");
1491   assert(cmp->in(1) == incr, "bad exit test shape");
1492 
1493   // Safepoint on backedge not supported
1494   assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge");
1495 }
1496 #endif
1497 
1498 #ifdef ASSERT
1499 // convert an int counted loop to a long counted to stress handling of
1500 // long counted loops
1501 bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) {
1502   Unique_Node_List iv_nodes;
1503   Node_List old_new;
1504   iv_nodes.push(cmp);
1505   bool failed = false;
1506 
1507   for (uint i = 0; i < iv_nodes.size() && !failed; i++) {
1508     Node* n = iv_nodes.at(i);
1509     switch(n->Opcode()) {
1510       case Op_Phi: {
1511         Node* clone = new PhiNode(n->in(0), TypeLong::LONG);
1512         old_new.map(n->_idx, clone);
1513         break;
1514       }
1515       case Op_CmpI: {
1516         Node* clone = new CmpLNode(nullptr, nullptr);
1517         old_new.map(n->_idx, clone);
1518         break;
1519       }
1520       case Op_AddI: {
1521         Node* clone = new AddLNode(nullptr, nullptr);
1522         old_new.map(n->_idx, clone);
1523         break;
1524       }
1525       case Op_CastII: {
1526         failed = true;
1527         break;
1528       }
1529       default:
1530         DEBUG_ONLY(n->dump());
1531         fatal("unexpected");
1532     }
1533 
1534     for (uint i = 1; i < n->req(); i++) {
1535       Node* in = n->in(i);
1536       if (in == nullptr) {
1537         continue;
1538       }
1539       if (loop->is_member(get_loop(get_ctrl(in)))) {
1540         iv_nodes.push(in);
1541       }
1542     }
1543   }
1544 
1545   if (failed) {
1546     for (uint i = 0; i < iv_nodes.size(); i++) {
1547       Node* n = iv_nodes.at(i);
1548       Node* clone = old_new[n->_idx];
1549       if (clone != nullptr) {
1550         _igvn.remove_dead_node(clone);
1551       }
1552     }
1553     return false;
1554   }
1555 
1556   for (uint i = 0; i < iv_nodes.size(); i++) {
1557     Node* n = iv_nodes.at(i);
1558     Node* clone = old_new[n->_idx];
1559     for (uint i = 1; i < n->req(); i++) {
1560       Node* in = n->in(i);
1561       if (in == nullptr) {
1562         continue;
1563       }
1564       Node* in_clone = old_new[in->_idx];
1565       if (in_clone == nullptr) {
1566         assert(_igvn.type(in)->isa_int(), "");
1567         in_clone = new ConvI2LNode(in);
1568         _igvn.register_new_node_with_optimizer(in_clone);
1569         set_subtree_ctrl(in_clone, false);
1570       }
1571       if (in_clone->in(0) == nullptr) {
1572         in_clone->set_req(0, C->top());
1573         clone->set_req(i, in_clone);
1574         in_clone->set_req(0, nullptr);
1575       } else {
1576         clone->set_req(i, in_clone);
1577       }
1578     }
1579     _igvn.register_new_node_with_optimizer(clone);
1580   }
1581   set_ctrl(old_new[phi->_idx], phi->in(0));
1582 
1583   for (uint i = 0; i < iv_nodes.size(); i++) {
1584     Node* n = iv_nodes.at(i);
1585     Node* clone = old_new[n->_idx];
1586     set_subtree_ctrl(clone, false);
1587     Node* m = n->Opcode() == Op_CmpI ? clone : nullptr;
1588     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1589       Node* u = n->fast_out(i);
1590       if (iv_nodes.member(u)) {
1591         continue;
1592       }
1593       if (m == nullptr) {
1594         m = new ConvL2INode(clone);
1595         _igvn.register_new_node_with_optimizer(m);
1596         set_subtree_ctrl(m, false);
1597       }
1598       _igvn.rehash_node_delayed(u);
1599       int nb = u->replace_edge(n, m, &_igvn);
1600       --i, imax -= nb;
1601     }
1602   }
1603   return true;
1604 }
1605 #endif
1606 
1607 //------------------------------is_counted_loop--------------------------------
1608 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt) {
1609   PhaseGVN *gvn = &_igvn;
1610 
1611   Node* back_control = loop_exit_control(x, loop);
1612   if (back_control == nullptr) {
1613     return false;
1614   }
1615 
1616   BoolTest::mask bt = BoolTest::illegal;
1617   float cl_prob = 0;
1618   Node* incr = nullptr;
1619   Node* limit = nullptr;
1620   Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
1621   if (cmp == nullptr || cmp->Opcode() != Op_Cmp(iv_bt)) {
1622     return false; // Avoid pointer & float & 64-bit compares
1623   }
1624 
1625   // Trip-counter increment must be commutative & associative.
1626   if (incr->Opcode() == Op_Cast(iv_bt)) {
1627     incr = incr->in(1);
1628   }
1629 
1630   Node* phi_incr = nullptr;
1631   incr = loop_iv_incr(incr, x, loop, phi_incr);
1632   if (incr == nullptr) {
1633     return false;
1634   }
1635 
1636   Node* trunc1 = nullptr;
1637   Node* trunc2 = nullptr;
1638   const TypeInteger* iv_trunc_t = nullptr;
1639   Node* orig_incr = incr;
1640   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) {
1641     return false; // Funny increment opcode
1642   }
1643   assert(incr->Opcode() == Op_Add(iv_bt), "wrong increment code");
1644 
1645   Node* xphi = nullptr;
1646   Node* stride = loop_iv_stride(incr, loop, xphi);
1647 
1648   if (stride == nullptr) {
1649     return false;
1650   }
1651 
1652   if (xphi->Opcode() == Op_Cast(iv_bt)) {
1653     xphi = xphi->in(1);
1654   }
1655 
1656   // Stride must be constant
1657   jlong stride_con = stride->get_integer_as_long(iv_bt);
1658   assert(stride_con != 0, "missed some peephole opt");
1659 
1660   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop);
1661 
1662   if (phi == nullptr ||
1663       (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) ||
1664       (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) {
1665     return false;
1666   }
1667 
1668   Node* iftrue = back_control;
1669   uint iftrue_op = iftrue->Opcode();
1670   Node* iff = iftrue->in(0);
1671   BoolNode* test = iff->in(1)->as_Bool();
1672 
1673   const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt);
1674   if (trunc1 != nullptr) {
1675     // When there is a truncation, we must be sure that after the truncation
1676     // the trip counter will end up higher than the limit, otherwise we are looking
1677     // at an endless loop. Can happen with range checks.
1678 
1679     // Example:
1680     // int i = 0;
1681     // while (true)
1682     //    sum + = array[i];
1683     //    i++;
1684     //    i = i && 0x7fff;
1685     //  }
1686     //
1687     // If the array is shorter than 0x8000 this exits through a AIOOB
1688     //  - Counted loop transformation is ok
1689     // If the array is longer then this is an endless loop
1690     //  - No transformation can be done.
1691 
1692     const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt);
1693     if (limit_t->hi_as_long() > incr_t->hi_as_long()) {
1694       // if the limit can have a higher value than the increment (before the phi)
1695       return false;
1696     }
1697   }
1698 
1699   Node *init_trip = phi->in(LoopNode::EntryControl);
1700 
1701   // If iv trunc type is smaller than int, check for possible wrap.
1702   if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) {
1703     assert(trunc1 != nullptr, "must have found some truncation");
1704 
1705     // Get a better type for the phi (filtered thru if's)
1706     const TypeInteger* phi_ft = filtered_type(phi);
1707 
1708     // Can iv take on a value that will wrap?
1709     //
1710     // Ensure iv's limit is not within "stride" of the wrap value.
1711     //
1712     // Example for "short" type
1713     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
1714     //    If the stride is +10, then the last value of the induction
1715     //    variable before the increment (phi_ft->_hi) must be
1716     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
1717     //    ensure no truncation occurs after the increment.
1718 
1719     if (stride_con > 0) {
1720       if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con ||
1721           iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) {
1722         return false;  // truncation may occur
1723       }
1724     } else if (stride_con < 0) {
1725       if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con ||
1726           iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) {
1727         return false;  // truncation may occur
1728       }
1729     }
1730     // No possibility of wrap so truncation can be discarded
1731     // Promote iv type to Int
1732   } else {
1733     assert(trunc1 == nullptr && trunc2 == nullptr, "no truncation for int");
1734   }
1735 
1736   if (!condition_stride_ok(bt, stride_con)) {
1737     return false;
1738   }
1739 
1740   const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt);
1741 
1742   if (stride_con > 0) {
1743     if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) {
1744       return false; // cyclic loop
1745     }
1746   } else {
1747     if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) {
1748       return false; // cyclic loop
1749     }
1750   }
1751 
1752   if (phi_incr != nullptr && bt != BoolTest::ne) {
1753     // check if there is a possibility of IV overflowing after the first increment
1754     if (stride_con > 0) {
1755       if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) {
1756         return false;
1757       }
1758     } else {
1759       if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) {
1760         return false;
1761       }
1762     }
1763   }
1764 
1765   // =================================================
1766   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
1767   //
1768 
1769   if (x->Opcode() == Op_Region) {
1770     // x has not yet been transformed to Loop or LongCountedLoop.
1771     // This should only happen if we are inside an infinite loop.
1772     // It happens like this:
1773     //   build_loop_tree -> do not attach infinite loop and nested loops
1774     //   beautify_loops  -> does not transform the infinite and nested loops to LoopNode, because not attached yet
1775     //   build_loop_tree -> find and attach infinite and nested loops
1776     //   counted_loop    -> nested Regions are not yet transformed to LoopNodes, we land here
1777     assert(x->as_Region()->is_in_infinite_subgraph(),
1778            "x can only be a Region and not Loop if inside infinite loop");
1779     // Come back later when Region is transformed to LoopNode
1780     return false;
1781   }
1782 
1783   assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only");
1784   C->print_method(PHASE_BEFORE_CLOOPS, 3, x);
1785 
1786   // ===================================================
1787   // We can only convert this loop to a counted loop if we can guarantee that the iv phi will never overflow at runtime.
1788   // This is an implicit assumption taken by some loop optimizations. We therefore must ensure this property at all cost.
1789   // At this point, we've already excluded some trivial cases where an overflow could have been proven statically.
1790   // But even though we cannot prove that an overflow will *not* happen, we still want to speculatively convert this loop
1791   // to a counted loop. This can be achieved by adding additional iv phi overflow checks before the loop. If they fail,
1792   // we trap and resume execution before the loop without having executed any iteration of the loop, yet.
1793   //
1794   // These additional iv phi overflow checks can be inserted as Loop Limit Check Predicates above the Loop Limit Check
1795   // Parse Predicate which captures a JVM state just before the entry of the loop. If there is no such Parse Predicate,
1796   // we cannot generate a Loop Limit Check Predicate and thus cannot speculatively convert the loop to a counted loop.
1797   //
1798   // In the following, we only focus on int loops with stride > 0 to keep things simple. The argumentation and proof
1799   // for stride < 0 is analogously. For long loops, we would replace max_int with max_long.
1800   //
1801   //
1802   // The loop to be converted does not always need to have the often used shape:
1803   //
1804   //                                                 i = init
1805   //     i = init                                loop:
1806   //     do {                                        ...
1807   //         // ...               equivalent         i+=stride
1808   //         i+=stride               <==>            if (i < limit)
1809   //     } while (i < limit);                          goto loop
1810   //                                             exit:
1811   //                                                 ...
1812   //
1813   // where the loop exit check uses the post-incremented iv phi and a '<'-operator.
1814   //
1815   // We could also have '<='-operator (or '>='-operator for negative strides) or use the pre-incremented iv phi value
1816   // in the loop exit check:
1817   //
1818   //         i = init
1819   //     loop:
1820   //         ...
1821   //         if (i <= limit)
1822   //             i+=stride
1823   //             goto loop
1824   //     exit:
1825   //         ...
1826   //
1827   // Let's define the following terms:
1828   // - iv_pre_i: The pre-incremented iv phi before the i-th iteration.
1829   // - iv_post_i: The post-incremented iv phi after the i-th iteration.
1830   //
1831   // The iv_pre_i and iv_post_i have the following relation:
1832   //      iv_pre_i + stride = iv_post_i
1833   //
1834   // When converting a loop to a counted loop, we want to have a canonicalized loop exit check of the form:
1835   //     iv_post_i < adjusted_limit
1836   //
1837   // If that is not the case, we need to canonicalize the loop exit check by using different values for adjusted_limit:
1838   // (LE1) iv_post_i < limit: Already canonicalized. We can directly use limit as adjusted_limit.
1839   //           -> adjusted_limit = limit.
1840   // (LE2) iv_post_i <= limit:
1841   //           iv_post_i < limit + 1
1842   //           -> adjusted limit = limit + 1
1843   // (LE3) iv_pre_i < limit:
1844   //           iv_pre_i + stride < limit + stride
1845   //           iv_post_i < limit + stride
1846   //           -> adjusted_limit = limit + stride
1847   // (LE4) iv_pre_i <= limit:
1848   //           iv_pre_i < limit + 1
1849   //           iv_pre_i + stride < limit + stride + 1
1850   //           iv_post_i < limit + stride + 1
1851   //           -> adjusted_limit = limit + stride + 1
1852   //
1853   // Note that:
1854   //     (AL) limit <= adjusted_limit.
1855   //
1856   // The following loop invariant has to hold for counted loops with n iterations (i.e. loop exit check true after n-th
1857   // loop iteration) and a canonicalized loop exit check to guarantee that no iv_post_i over- or underflows:
1858   // (INV) For i = 1..n, min_int <= iv_post_i <= max_int
1859   //
1860   // To prove (INV), we require the following two conditions/assumptions:
1861   // (i): adjusted_limit - 1 + stride <= max_int
1862   // (ii): init < limit
1863   //
1864   // If we can prove (INV), we know that there can be no over- or underflow of any iv phi value. We prove (INV) by
1865   // induction by assuming (i) and (ii).
1866   //
1867   // Proof by Induction
1868   // ------------------
1869   // > Base case (i = 1): We show that (INV) holds after the first iteration:
1870   //     min_int <= iv_post_1 = init + stride <= max_int
1871   // Proof:
1872   //     First, we note that (ii) implies
1873   //         (iii) init <= limit - 1
1874   //     max_int >= adjusted_limit - 1 + stride   [using (i)]
1875   //             >= limit - 1 + stride            [using (AL)]
1876   //             >= init + stride                 [using (iii)]
1877   //             >= min_int                       [using stride > 0, no underflow]
1878   // Thus, no overflow happens after the first iteration and (INV) holds for i = 1.
1879   //
1880   // Note that to prove the base case we need (i) and (ii).
1881   //
1882   // > Induction Hypothesis (i = j, j > 1): Assume that (INV) holds after the j-th iteration:
1883   //     min_int <= iv_post_j <= max_int
1884   // > Step case (i = j + 1): We show that (INV) also holds after the j+1-th iteration:
1885   //     min_int <= iv_post_{j+1} = iv_post_j + stride <= max_int
1886   // Proof:
1887   // If iv_post_j >= adjusted_limit:
1888   //     We exit the loop after the j-th iteration, and we don't execute the j+1-th iteration anymore. Thus, there is
1889   //     also no iv_{j+1}. Since (INV) holds for iv_j, there is nothing left to prove.
1890   // If iv_post_j < adjusted_limit:
1891   //     First, we note that:
1892   //         (iv) iv_post_j <= adjusted_limit - 1
1893   //     max_int >= adjusted_limit - 1 + stride    [using (i)]
1894   //             >= iv_post_j + stride             [using (iv)]
1895   //             >= min_int                        [using stride > 0, no underflow]
1896   //
1897   // Note that to prove the step case we only need (i).
1898   //
1899   // Thus, by assuming (i) and (ii), we proved (INV).
1900   //
1901   //
1902   // It is therefore enough to add the following two Loop Limit Check Predicates to check assumptions (i) and (ii):
1903   //
1904   // (1) Loop Limit Check Predicate for (i):
1905   //     Using (i): adjusted_limit - 1 + stride <= max_int
1906   //
1907   //     This condition is now restated to use limit instead of adjusted_limit:
1908   //
1909   //     To prevent an overflow of adjusted_limit -1 + stride itself, we rewrite this check to
1910   //         max_int - stride + 1 >= adjusted_limit
1911   //     We can merge the two constants into
1912   //         canonicalized_correction = stride - 1
1913   //     which gives us
1914   //        max_int - canonicalized_correction >= adjusted_limit
1915   //
1916   //     To directly use limit instead of adjusted_limit in the predicate condition, we split adjusted_limit into:
1917   //         adjusted_limit = limit + limit_correction
1918   //     Since stride > 0 and limit_correction <= stride + 1, we can restate this with no over- or underflow into:
1919   //         max_int - canonicalized_correction - limit_correction >= limit
1920   //     Since canonicalized_correction and limit_correction are both constants, we can replace them with a new constant:
1921   //         (v) final_correction = canonicalized_correction + limit_correction
1922   //
1923   //     which gives us:
1924   //
1925   //     Final predicate condition:
1926   //         max_int - final_correction >= limit
1927   //
1928   //     However, we need to be careful that (v) does not over- or underflow.
1929   //     We know that:
1930   //         canonicalized_correction = stride - 1
1931   //     and
1932   //         limit_correction <= stride + 1
1933   //     and thus
1934   //         canonicalized_correction + limit_correction <= 2 * stride
1935   //     To prevent an over- or underflow of (v), we must ensure that
1936   //         2 * stride <= max_int
1937   //     which can safely be checked without over- or underflow with
1938   //         (vi) stride != min_int AND abs(stride) <= max_int / 2
1939   //
1940   //     We could try to further optimize the cases where (vi) does not hold but given that such large strides are
1941   //     very uncommon and the loop would only run for a very few iterations anyway, we simply bail out if (vi) fails.
1942   //
1943   // (2) Loop Limit Check Predicate for (ii):
1944   //     Using (ii): init < limit
1945   //
1946   //     This Loop Limit Check Predicate is not required if we can prove at compile time that either:
1947   //        (2.1) type(init) < type(limit)
1948   //             In this case, we know:
1949   //                 all possible values of init < all possible values of limit
1950   //             and we can skip the predicate.
1951   //
1952   //        (2.2) init < limit is already checked before (i.e. found as a dominating check)
1953   //            In this case, we do not need to re-check the condition and can skip the predicate.
1954   //            This is often found for while- and for-loops which have the following shape:
1955   //
1956   //                if (init < limit) { // Dominating test. Do not need the Loop Limit Check Predicate below.
1957   //                    i = init;
1958   //                    if (init >= limit) { trap(); } // Here we would insert the Loop Limit Check Predicate
1959   //                    do {
1960   //                        i += stride;
1961   //                    } while (i < limit);
1962   //                }
1963   //
1964   //        (2.3) init + stride <= max_int
1965   //            In this case, there is no overflow of the iv phi after the first loop iteration.
1966   //            In the proof of the base case above we showed that init + stride <= max_int by using assumption (ii):
1967   //                init < limit
1968   //            In the proof of the step case above, we did not need (ii) anymore. Therefore, if we already know at
1969   //            compile time that init + stride <= max_int then we have trivially proven the base case and that
1970   //            there is no overflow of the iv phi after the first iteration. In this case, we don't need to check (ii)
1971   //            again and can skip the predicate.
1972 
1973   // Check (vi) and bail out if the stride is too big.
1974   if (stride_con == min_signed_integer(iv_bt) || (ABS(stride_con) > max_signed_integer(iv_bt) / 2)) {
1975     return false;
1976   }
1977 
1978   // Accounting for (LE3) and (LE4) where we use pre-incremented phis in the loop exit check.
1979   const jlong limit_correction_for_pre_iv_exit_check = (phi_incr != nullptr) ? stride_con : 0;
1980 
1981   // Accounting for (LE2) and (LE4) where we use <= or >= in the loop exit check.
1982   const bool includes_limit = (bt == BoolTest::le || bt == BoolTest::ge);
1983   const jlong limit_correction_for_le_ge_exit_check = (includes_limit ? (stride_con > 0 ? 1 : -1) : 0);
1984 
1985   const jlong limit_correction = limit_correction_for_pre_iv_exit_check + limit_correction_for_le_ge_exit_check;
1986   const jlong canonicalized_correction = stride_con + (stride_con > 0 ? -1 : 1);
1987   const jlong final_correction = canonicalized_correction + limit_correction;
1988 
1989   int sov = check_stride_overflow(final_correction, limit_t, iv_bt);
1990   Node* init_control = x->in(LoopNode::EntryControl);
1991 
1992   // If sov==0, limit's type always satisfies the condition, for
1993   // example, when it is an array length.
1994   if (sov != 0) {
1995     if (sov < 0) {
1996       return false;  // Bailout: integer overflow is certain.
1997     }
1998     // (1) Loop Limit Check Predicate is required because we could not statically prove that
1999     //     limit + final_correction = adjusted_limit - 1 + stride <= max_int
2000     assert(!x->as_Loop()->is_loop_nest_inner_loop(), "loop was transformed");
2001     const Predicates predicates(init_control);
2002     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2003     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2004       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2005 #ifdef ASSERT
2006       if (TraceLoopLimitCheck) {
2007         tty->print("Missing Loop Limit Check Parse Predicate:");
2008         loop->dump_head();
2009         x->dump(1);
2010       }
2011 #endif
2012       return false;
2013     }
2014 
2015     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2016     if (!is_dominator(get_ctrl(limit), loop_limit_check_parse_predicate->in(0))) {
2017       return false;
2018     }
2019 
2020     Node* cmp_limit;
2021     Node* bol;
2022 
2023     if (stride_con > 0) {
2024       cmp_limit = CmpNode::make(limit, _igvn.integercon(max_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2025       bol = new BoolNode(cmp_limit, BoolTest::le);
2026     } else {
2027       cmp_limit = CmpNode::make(limit, _igvn.integercon(min_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2028       bol = new BoolNode(cmp_limit, BoolTest::ge);
2029     }
2030 
2031     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2032   }
2033 
2034   // (2.3)
2035   const bool init_plus_stride_could_overflow =
2036           (stride_con > 0 && init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) ||
2037           (stride_con < 0 && init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con);
2038   // (2.1)
2039   const bool init_gte_limit = (stride_con > 0 && init_t->hi_as_long() >= limit_t->lo_as_long()) ||
2040                               (stride_con < 0 && init_t->lo_as_long() <= limit_t->hi_as_long());
2041 
2042   if (init_gte_limit && // (2.1)
2043      ((bt == BoolTest::ne || init_plus_stride_could_overflow) && // (2.3)
2044       !has_dominating_loop_limit_check(init_trip, limit, stride_con, iv_bt, init_control))) { // (2.2)
2045     // (2) Iteration Loop Limit Check Predicate is required because neither (2.1), (2.2), nor (2.3) holds.
2046     // We use the following condition:
2047     // - stride > 0: init < limit
2048     // - stride < 0: init > limit
2049     //
2050     // This predicate is always required if we have a non-equal-operator in the loop exit check (where stride = 1 is
2051     // a requirement). We transform the loop exit check by using a less-than-operator. By doing so, we must always
2052     // check that init < limit. Otherwise, we could have a different number of iterations at runtime.
2053 
2054     const Predicates predicates(init_control);
2055     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2056     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2057       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2058 #ifdef ASSERT
2059       if (TraceLoopLimitCheck) {
2060         tty->print("Missing Loop Limit Check Parse Predicate:");
2061         loop->dump_head();
2062         x->dump(1);
2063       }
2064 #endif
2065       return false;
2066     }
2067 
2068     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2069     Node* parse_predicate_entry = loop_limit_check_parse_predicate->in(0);
2070     if (!is_dominator(get_ctrl(limit), parse_predicate_entry) ||
2071         !is_dominator(get_ctrl(init_trip), parse_predicate_entry)) {
2072       return false;
2073     }
2074 
2075     Node* cmp_limit;
2076     Node* bol;
2077 
2078     if (stride_con > 0) {
2079       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2080       bol = new BoolNode(cmp_limit, BoolTest::lt);
2081     } else {
2082       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2083       bol = new BoolNode(cmp_limit, BoolTest::gt);
2084     }
2085 
2086     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2087   }
2088 
2089   if (bt == BoolTest::ne) {
2090     // Now we need to canonicalize the loop condition if it is 'ne'.
2091     assert(stride_con == 1 || stride_con == -1, "simple increment only - checked before");
2092     if (stride_con > 0) {
2093       // 'ne' can be replaced with 'lt' only when init < limit. This is ensured by the inserted predicate above.
2094       bt = BoolTest::lt;
2095     } else {
2096       assert(stride_con < 0, "must be");
2097       // 'ne' can be replaced with 'gt' only when init > limit. This is ensured by the inserted predicate above.
2098       bt = BoolTest::gt;
2099     }
2100   }
2101 
2102   Node* sfpt = nullptr;
2103   if (loop->_child == nullptr) {
2104     sfpt = find_safepoint(back_control, x, loop);
2105   } else {
2106     sfpt = iff->in(0);
2107     if (sfpt->Opcode() != Op_SafePoint) {
2108       sfpt = nullptr;
2109     }
2110   }
2111 
2112   if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint) {
2113     Node* backedge_sfpt = x->in(LoopNode::LoopBackControl);
2114     if (((iv_bt == T_INT && LoopStripMiningIter != 0) ||
2115          iv_bt == T_LONG) &&
2116         sfpt == nullptr) {
2117       // Leaving the safepoint on the backedge and creating a
2118       // CountedLoop will confuse optimizations. We can't move the
2119       // safepoint around because its jvm state wouldn't match a new
2120       // location. Give up on that loop.
2121       return false;
2122     }
2123     if (is_deleteable_safept(backedge_sfpt)) {
2124       lazy_replace(backedge_sfpt, iftrue);
2125       if (loop->_safepts != nullptr) {
2126         loop->_safepts->yank(backedge_sfpt);
2127       }
2128       loop->_tail = iftrue;
2129     }
2130   }
2131 
2132 
2133 #ifdef ASSERT
2134   if (iv_bt == T_INT &&
2135       !x->as_Loop()->is_loop_nest_inner_loop() &&
2136       StressLongCountedLoop > 0 &&
2137       trunc1 == nullptr &&
2138       convert_to_long_loop(cmp, phi, loop)) {
2139     return false;
2140   }
2141 #endif
2142 
2143   Node* adjusted_limit = limit;
2144   if (phi_incr != nullptr) {
2145     // If compare points directly to the phi we need to adjust
2146     // the compare so that it points to the incr. Limit have
2147     // to be adjusted to keep trip count the same and we
2148     // should avoid int overflow.
2149     //
2150     //   i = init; do {} while(i++ < limit);
2151     // is converted to
2152     //   i = init; do {} while(++i < limit+1);
2153     //
2154     adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt));
2155   }
2156 
2157   if (includes_limit) {
2158     // The limit check guaranties that 'limit <= (max_jint - stride)' so
2159     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
2160     //
2161     Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt);
2162     adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt));
2163     if (bt == BoolTest::le)
2164       bt = BoolTest::lt;
2165     else if (bt == BoolTest::ge)
2166       bt = BoolTest::gt;
2167     else
2168       ShouldNotReachHere();
2169   }
2170   set_subtree_ctrl(adjusted_limit, false);
2171 
2172   // Build a canonical trip test.
2173   // Clone code, as old values may be in use.
2174   incr = incr->clone();
2175   incr->set_req(1,phi);
2176   incr->set_req(2,stride);
2177   incr = _igvn.register_new_node_with_optimizer(incr);
2178   set_early_ctrl(incr, false);
2179   _igvn.rehash_node_delayed(phi);
2180   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
2181 
2182   // If phi type is more restrictive than Int, raise to
2183   // Int to prevent (almost) infinite recursion in igvn
2184   // which can only handle integer types for constants or minint..maxint.
2185   if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) {
2186     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt));
2187     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
2188     nphi = _igvn.register_new_node_with_optimizer(nphi);
2189     set_ctrl(nphi, get_ctrl(phi));
2190     _igvn.replace_node(phi, nphi);
2191     phi = nphi->as_Phi();
2192   }
2193   cmp = cmp->clone();
2194   cmp->set_req(1,incr);
2195   cmp->set_req(2, adjusted_limit);
2196   cmp = _igvn.register_new_node_with_optimizer(cmp);
2197   set_ctrl(cmp, iff->in(0));
2198 
2199   test = test->clone()->as_Bool();
2200   (*(BoolTest*)&test->_test)._test = bt;
2201   test->set_req(1,cmp);
2202   _igvn.register_new_node_with_optimizer(test);
2203   set_ctrl(test, iff->in(0));
2204 
2205   // Replace the old IfNode with a new LoopEndNode
2206   Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt));
2207   IfNode *le = lex->as_If();
2208   uint dd = dom_depth(iff);
2209   set_idom(le, le->in(0), dd); // Update dominance for loop exit
2210   set_loop(le, loop);
2211 
2212   // Get the loop-exit control
2213   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
2214 
2215   // Need to swap loop-exit and loop-back control?
2216   if (iftrue_op == Op_IfFalse) {
2217     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
2218     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
2219 
2220     loop->_tail = back_control = ift2;
2221     set_loop(ift2, loop);
2222     set_loop(iff2, get_loop(iffalse));
2223 
2224     // Lazy update of 'get_ctrl' mechanism.
2225     lazy_replace(iffalse, iff2);
2226     lazy_replace(iftrue,  ift2);
2227 
2228     // Swap names
2229     iffalse = iff2;
2230     iftrue  = ift2;
2231   } else {
2232     _igvn.rehash_node_delayed(iffalse);
2233     _igvn.rehash_node_delayed(iftrue);
2234     iffalse->set_req_X( 0, le, &_igvn );
2235     iftrue ->set_req_X( 0, le, &_igvn );
2236   }
2237 
2238   set_idom(iftrue,  le, dd+1);
2239   set_idom(iffalse, le, dd+1);
2240   assert(iff->outcnt() == 0, "should be dead now");
2241   lazy_replace( iff, le ); // fix 'get_ctrl'
2242 
2243   Node* entry_control = init_control;
2244   bool strip_mine_loop = iv_bt == T_INT &&
2245                          loop->_child == nullptr &&
2246                          sfpt != nullptr &&
2247                          !loop->_has_call &&
2248                          is_deleteable_safept(sfpt);
2249   IdealLoopTree* outer_ilt = nullptr;
2250   if (strip_mine_loop) {
2251     outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop,
2252                                               cl_prob, le->_fcnt, entry_control,
2253                                               iffalse);
2254   }
2255 
2256   // Now setup a new CountedLoopNode to replace the existing LoopNode
2257   BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt);
2258   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
2259   // The following assert is approximately true, and defines the intention
2260   // of can_be_counted_loop.  It fails, however, because phase->type
2261   // is not yet initialized for this loop and its parts.
2262   //assert(l->can_be_counted_loop(this), "sanity");
2263   _igvn.register_new_node_with_optimizer(l);
2264   set_loop(l, loop);
2265   loop->_head = l;
2266   // Fix all data nodes placed at the old loop head.
2267   // Uses the lazy-update mechanism of 'get_ctrl'.
2268   lazy_replace( x, l );
2269   set_idom(l, entry_control, dom_depth(entry_control) + 1);
2270 
2271   if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) {
2272     // Check for immediately preceding SafePoint and remove
2273     if (sfpt != nullptr && (strip_mine_loop || is_deleteable_safept(sfpt))) {
2274       if (strip_mine_loop) {
2275         Node* outer_le = outer_ilt->_tail->in(0);
2276         Node* sfpt_clone = sfpt->clone();
2277         sfpt_clone->set_req(0, iffalse);
2278         outer_le->set_req(0, sfpt_clone);
2279 
2280         Node* polladdr = sfpt_clone->in(TypeFunc::Parms);
2281         if (polladdr != nullptr && polladdr->is_Load()) {
2282           // Polling load should be pinned outside inner loop.
2283           Node* new_polladdr = polladdr->clone();
2284           new_polladdr->set_req(0, iffalse);
2285           _igvn.register_new_node_with_optimizer(new_polladdr, polladdr);
2286           set_ctrl(new_polladdr, iffalse);
2287           sfpt_clone->set_req(TypeFunc::Parms, new_polladdr);
2288         }
2289         // When this code runs, loop bodies have not yet been populated.
2290         const bool body_populated = false;
2291         register_control(sfpt_clone, outer_ilt, iffalse, body_populated);
2292         set_idom(outer_le, sfpt_clone, dom_depth(sfpt_clone));
2293       }
2294       lazy_replace(sfpt, sfpt->in(TypeFunc::Control));
2295       if (loop->_safepts != nullptr) {
2296         loop->_safepts->yank(sfpt);
2297       }
2298     }
2299   }
2300 
2301 #ifdef ASSERT
2302   assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up");
2303   assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" );
2304 #endif
2305 #ifndef PRODUCT
2306   if (TraceLoopOpts) {
2307     tty->print("Counted      ");
2308     loop->dump_head();
2309   }
2310 #endif
2311 
2312   C->print_method(PHASE_AFTER_CLOOPS, 3, l);
2313 
2314   // Capture bounds of the loop in the induction variable Phi before
2315   // subsequent transformation (iteration splitting) obscures the
2316   // bounds
2317   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
2318 
2319   if (strip_mine_loop) {
2320     l->mark_strip_mined();
2321     l->verify_strip_mined(1);
2322     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
2323     loop = outer_ilt;
2324   }
2325 
2326 #ifndef PRODUCT
2327   if (x->as_Loop()->is_loop_nest_inner_loop() && iv_bt == T_LONG) {
2328     Atomic::inc(&_long_loop_counted_loops);
2329   }
2330 #endif
2331   if (iv_bt == T_LONG && x->as_Loop()->is_loop_nest_outer_loop()) {
2332     l->mark_loop_nest_outer_loop();
2333   }
2334 
2335   return true;
2336 }
2337 
2338 // Check if there is a dominating loop limit check of the form 'init < limit' starting at the loop entry.
2339 // If there is one, then we do not need to create an additional Loop Limit Check Predicate.
2340 bool PhaseIdealLoop::has_dominating_loop_limit_check(Node* init_trip, Node* limit, const jlong stride_con,
2341                                                      const BasicType iv_bt, Node* loop_entry) {
2342   // Eagerly call transform() on the Cmp and Bool node to common them up if possible. This is required in order to
2343   // successfully find a dominated test with the If node below.
2344   Node* cmp_limit;
2345   Node* bol;
2346   if (stride_con > 0) {
2347     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2348     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::lt));
2349   } else {
2350     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2351     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::gt));
2352   }
2353 
2354   // Check if there is already a dominating init < limit check. If so, we do not need a Loop Limit Check Predicate.
2355   IfNode* iff = new IfNode(loop_entry, bol, PROB_MIN, COUNT_UNKNOWN);
2356   // Also add fake IfProj nodes in order to call transform() on the newly created IfNode.
2357   IfFalseNode* if_false = new IfFalseNode(iff);
2358   IfTrueNode* if_true = new IfTrueNode(iff);
2359   Node* dominated_iff = _igvn.transform(iff);
2360   // ConI node? Found dominating test (IfNode::dominated_by() returns a ConI node).
2361   const bool found_dominating_test = dominated_iff != nullptr && dominated_iff->is_ConI();
2362 
2363   // Kill the If with its projections again in the next IGVN round by cutting it off from the graph.
2364   _igvn.replace_input_of(iff, 0, C->top());
2365   _igvn.replace_input_of(iff, 1, C->top());
2366   return found_dominating_test;
2367 }
2368 
2369 //----------------------exact_limit-------------------------------------------
2370 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
2371   assert(loop->_head->is_CountedLoop(), "");
2372   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2373   assert(cl->is_valid_counted_loop(T_INT), "");
2374 
2375   if (cl->stride_con() == 1 ||
2376       cl->stride_con() == -1 ||
2377       cl->limit()->Opcode() == Op_LoopLimit) {
2378     // Old code has exact limit (it could be incorrect in case of int overflow).
2379     // Loop limit is exact with stride == 1. And loop may already have exact limit.
2380     return cl->limit();
2381   }
2382   Node *limit = nullptr;
2383 #ifdef ASSERT
2384   BoolTest::mask bt = cl->loopexit()->test_trip();
2385   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
2386 #endif
2387   if (cl->has_exact_trip_count()) {
2388     // Simple case: loop has constant boundaries.
2389     // Use jlongs to avoid integer overflow.
2390     int stride_con = cl->stride_con();
2391     jlong  init_con = cl->init_trip()->get_int();
2392     jlong limit_con = cl->limit()->get_int();
2393     julong trip_cnt = cl->trip_count();
2394     jlong final_con = init_con + trip_cnt*stride_con;
2395     int final_int = (int)final_con;
2396     // The final value should be in integer range since the loop
2397     // is counted and the limit was checked for overflow.
2398     assert(final_con == (jlong)final_int, "final value should be integer");
2399     limit = _igvn.intcon(final_int);
2400   } else {
2401     // Create new LoopLimit node to get exact limit (final iv value).
2402     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
2403     register_new_node(limit, cl->in(LoopNode::EntryControl));
2404   }
2405   assert(limit != nullptr, "sanity");
2406   return limit;
2407 }
2408 
2409 //------------------------------Ideal------------------------------------------
2410 // Return a node which is more "ideal" than the current node.
2411 // Attempt to convert into a counted-loop.
2412 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2413   if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) {
2414     phase->C->set_major_progress();
2415   }
2416   return RegionNode::Ideal(phase, can_reshape);
2417 }
2418 
2419 #ifdef ASSERT
2420 void LoopNode::verify_strip_mined(int expect_skeleton) const {
2421   const OuterStripMinedLoopNode* outer = nullptr;
2422   const CountedLoopNode* inner = nullptr;
2423   if (is_strip_mined()) {
2424     if (!is_valid_counted_loop(T_INT)) {
2425       return; // Skip malformed counted loop
2426     }
2427     assert(is_CountedLoop(), "no Loop should be marked strip mined");
2428     inner = as_CountedLoop();
2429     outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop();
2430   } else if (is_OuterStripMinedLoop()) {
2431     outer = this->as_OuterStripMinedLoop();
2432     inner = outer->unique_ctrl_out()->as_CountedLoop();
2433     assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed");
2434     assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined");
2435   }
2436   if (inner != nullptr || outer != nullptr) {
2437     assert(inner != nullptr && outer != nullptr, "missing loop in strip mined nest");
2438     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
2439     Node* outer_le = outer_tail->in(0);
2440     assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If");
2441     Node* sfpt = outer_le->in(0);
2442     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
2443     Node* inner_out = sfpt->in(0);
2444     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
2445     assert(cle == inner->loopexit_or_null(), "mismatch");
2446     bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0;
2447     if (has_skeleton) {
2448       assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node");
2449       assert(outer->outcnt() == 2, "only control nodes");
2450     } else {
2451       assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?");
2452       uint phis = 0;
2453       uint be_loads = 0;
2454       Node* be = inner->in(LoopNode::LoopBackControl);
2455       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
2456         Node* u = inner->fast_out(i);
2457         if (u->is_Phi()) {
2458           phis++;
2459           for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) {
2460             Node* n = be->fast_out(j);
2461             if (n->is_Load()) {
2462               assert(n->in(0) == be || n->find_prec_edge(be) > 0, "should be on the backedge");
2463               do {
2464                 n = n->raw_out(0);
2465               } while (!n->is_Phi());
2466               if (n == u) {
2467                 be_loads++;
2468                 break;
2469               }
2470             }
2471           }
2472         }
2473       }
2474       assert(be_loads <= phis, "wrong number phis that depends on a pinned load");
2475       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
2476         Node* u = outer->fast_out(i);
2477         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
2478       }
2479       uint stores = 0;
2480       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
2481         Node* u = inner_out->fast_out(i);
2482         if (u->is_Store()) {
2483           stores++;
2484         }
2485       }
2486       // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is
2487       // not guaranteed to be optimized out.
2488       assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
2489     }
2490     assert(sfpt->outcnt() == 1, "no data node");
2491     assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node");
2492   }
2493 }
2494 #endif
2495 
2496 //=============================================================================
2497 //------------------------------Ideal------------------------------------------
2498 // Return a node which is more "ideal" than the current node.
2499 // Attempt to convert into a counted-loop.
2500 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2501   return RegionNode::Ideal(phase, can_reshape);
2502 }
2503 
2504 //------------------------------dump_spec--------------------------------------
2505 // Dump special per-node info
2506 #ifndef PRODUCT
2507 void CountedLoopNode::dump_spec(outputStream *st) const {
2508   LoopNode::dump_spec(st);
2509   if (stride_is_con()) {
2510     st->print("stride: %d ",stride_con());
2511   }
2512   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
2513   if (is_main_loop()) st->print("main of N%d", _idx);
2514   if (is_post_loop()) st->print("post of N%d", _main_idx);
2515   if (is_strip_mined()) st->print(" strip mined");
2516 }
2517 #endif
2518 
2519 //=============================================================================
2520 jlong BaseCountedLoopEndNode::stride_con() const {
2521   return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt());
2522 }
2523 
2524 
2525 BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) {
2526   if (bt == T_INT) {
2527     return new CountedLoopEndNode(control, test, prob, cnt);
2528   }
2529   assert(bt == T_LONG, "unsupported");
2530   return new LongCountedLoopEndNode(control, test, prob, cnt);
2531 }
2532 
2533 //=============================================================================
2534 //------------------------------Value-----------------------------------------
2535 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
2536   const Type* init_t   = phase->type(in(Init));
2537   const Type* limit_t  = phase->type(in(Limit));
2538   const Type* stride_t = phase->type(in(Stride));
2539   // Either input is TOP ==> the result is TOP
2540   if (init_t   == Type::TOP) return Type::TOP;
2541   if (limit_t  == Type::TOP) return Type::TOP;
2542   if (stride_t == Type::TOP) return Type::TOP;
2543 
2544   int stride_con = stride_t->is_int()->get_con();
2545   if (stride_con == 1)
2546     return bottom_type();  // Identity
2547 
2548   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
2549     // Use jlongs to avoid integer overflow.
2550     jlong init_con   =  init_t->is_int()->get_con();
2551     jlong limit_con  = limit_t->is_int()->get_con();
2552     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
2553     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
2554     jlong final_con  = init_con + stride_con*trip_count;
2555     int final_int = (int)final_con;
2556     // The final value should be in integer range since the loop
2557     // is counted and the limit was checked for overflow.
2558     // Assert checks for overflow only if all input nodes are ConINodes, as during CCP
2559     // there might be a temporary overflow from PhiNodes see JDK-8309266
2560     assert((in(Init)->is_ConI() && in(Limit)->is_ConI() && in(Stride)->is_ConI()) ? final_con == (jlong)final_int : true, "final value should be integer");
2561     if (final_con == (jlong)final_int) {
2562       return TypeInt::make(final_int);
2563     } else {
2564       return bottom_type();
2565     }
2566   }
2567 
2568   return bottom_type(); // TypeInt::INT
2569 }
2570 
2571 //------------------------------Ideal------------------------------------------
2572 // Return a node which is more "ideal" than the current node.
2573 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2574   if (phase->type(in(Init))   == Type::TOP ||
2575       phase->type(in(Limit))  == Type::TOP ||
2576       phase->type(in(Stride)) == Type::TOP)
2577     return nullptr;  // Dead
2578 
2579   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2580   if (stride_con == 1)
2581     return nullptr;  // Identity
2582 
2583   if (in(Init)->is_Con() && in(Limit)->is_Con())
2584     return nullptr;  // Value
2585 
2586   // Delay following optimizations until all loop optimizations
2587   // done to keep Ideal graph simple.
2588   if (!can_reshape || !phase->C->post_loop_opts_phase()) {
2589     return nullptr;
2590   }
2591 
2592   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
2593   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
2594   int stride_p;
2595   jlong lim, ini;
2596   julong max;
2597   if (stride_con > 0) {
2598     stride_p = stride_con;
2599     lim = limit_t->_hi;
2600     ini = init_t->_lo;
2601     max = (julong)max_jint;
2602   } else {
2603     stride_p = -stride_con;
2604     lim = init_t->_hi;
2605     ini = limit_t->_lo;
2606     max = (julong)min_jint;
2607   }
2608   julong range = lim - ini + stride_p;
2609   if (range <= max) {
2610     // Convert to integer expression if it is not overflow.
2611     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
2612     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
2613     Node *bias  = phase->transform(new AddINode(range, stride_m));
2614     Node *trip  = phase->transform(new DivINode(nullptr, bias, in(Stride)));
2615     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
2616     return new AddINode(span, in(Init)); // exact limit
2617   }
2618 
2619   if (is_power_of_2(stride_p) ||                // divisor is 2^n
2620       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
2621     // Convert to long expression to avoid integer overflow
2622     // and let igvn optimizer convert this division.
2623     //
2624     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
2625     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
2626     Node* stride   = phase->longcon(stride_con);
2627     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
2628 
2629     Node *range = phase->transform(new SubLNode(limit, init));
2630     Node *bias  = phase->transform(new AddLNode(range, stride_m));
2631     Node *span;
2632     if (stride_con > 0 && is_power_of_2(stride_p)) {
2633       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
2634       // and avoid generating rounding for division. Zero trip guard should
2635       // guarantee that init < limit but sometimes the guard is missing and
2636       // we can get situation when init > limit. Note, for the empty loop
2637       // optimization zero trip guard is generated explicitly which leaves
2638       // only RCE predicate where exact limit is used and the predicate
2639       // will simply fail forcing recompilation.
2640       Node* neg_stride   = phase->longcon(-stride_con);
2641       span = phase->transform(new AndLNode(bias, neg_stride));
2642     } else {
2643       Node *trip  = phase->transform(new DivLNode(nullptr, bias, stride));
2644       span = phase->transform(new MulLNode(trip, stride));
2645     }
2646     // Convert back to int
2647     Node *span_int = phase->transform(new ConvL2INode(span));
2648     return new AddINode(span_int, in(Init)); // exact limit
2649   }
2650 
2651   return nullptr;    // No progress
2652 }
2653 
2654 //------------------------------Identity---------------------------------------
2655 // If stride == 1 return limit node.
2656 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
2657   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2658   if (stride_con == 1 || stride_con == -1)
2659     return in(Limit);
2660   return this;
2661 }
2662 
2663 //=============================================================================
2664 //----------------------match_incr_with_optional_truncation--------------------
2665 // Match increment with optional truncation:
2666 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
2667 // Return null for failure. Success returns the increment node.
2668 Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2,
2669                                                            const TypeInteger** trunc_type,
2670                                                            BasicType bt) {
2671   // Quick cutouts:
2672   if (expr == nullptr || expr->req() != 3)  return nullptr;
2673 
2674   Node *t1 = nullptr;
2675   Node *t2 = nullptr;
2676   Node* n1 = expr;
2677   int   n1op = n1->Opcode();
2678   const TypeInteger* trunc_t = TypeInteger::bottom(bt);
2679 
2680   if (bt == T_INT) {
2681     // Try to strip (n1 & M) or (n1 << N >> N) from n1.
2682     if (n1op == Op_AndI &&
2683         n1->in(2)->is_Con() &&
2684         n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
2685       // %%% This check should match any mask of 2**K-1.
2686       t1 = n1;
2687       n1 = t1->in(1);
2688       n1op = n1->Opcode();
2689       trunc_t = TypeInt::CHAR;
2690     } else if (n1op == Op_RShiftI &&
2691                n1->in(1) != nullptr &&
2692                n1->in(1)->Opcode() == Op_LShiftI &&
2693                n1->in(2) == n1->in(1)->in(2) &&
2694                n1->in(2)->is_Con()) {
2695       jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
2696       // %%% This check should match any shift in [1..31].
2697       if (shift == 16 || shift == 8) {
2698         t1 = n1;
2699         t2 = t1->in(1);
2700         n1 = t2->in(1);
2701         n1op = n1->Opcode();
2702         if (shift == 16) {
2703           trunc_t = TypeInt::SHORT;
2704         } else if (shift == 8) {
2705           trunc_t = TypeInt::BYTE;
2706         }
2707       }
2708     }
2709   }
2710 
2711   // If (maybe after stripping) it is an AddI, we won:
2712   if (n1op == Op_Add(bt)) {
2713     *trunc1 = t1;
2714     *trunc2 = t2;
2715     *trunc_type = trunc_t;
2716     return n1;
2717   }
2718 
2719   // failed
2720   return nullptr;
2721 }
2722 
2723 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) {
2724   if (is_strip_mined() && in(EntryControl) != nullptr && in(EntryControl)->is_OuterStripMinedLoop()) {
2725     verify_strip_mined(expect_skeleton);
2726     return in(EntryControl)->as_Loop();
2727   }
2728   return this;
2729 }
2730 
2731 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const {
2732   assert(is_strip_mined(), "not a strip mined loop");
2733   Node* c = in(EntryControl);
2734   if (c == nullptr || c->is_top() || !c->is_OuterStripMinedLoop()) {
2735     return nullptr;
2736   }
2737   return c->as_OuterStripMinedLoop();
2738 }
2739 
2740 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const {
2741   Node* c = in(LoopBackControl);
2742   if (c == nullptr || c->is_top()) {
2743     return nullptr;
2744   }
2745   return c->as_IfTrue();
2746 }
2747 
2748 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
2749   LoopNode* l = outer_loop();
2750   if (l == nullptr) {
2751     return nullptr;
2752   }
2753   return l->outer_loop_tail();
2754 }
2755 
2756 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const {
2757   IfTrueNode* proj = outer_loop_tail();
2758   if (proj == nullptr) {
2759     return nullptr;
2760   }
2761   Node* c = proj->in(0);
2762   if (c == nullptr || c->is_top() || c->outcnt() != 2) {
2763     return nullptr;
2764   }
2765   return c->as_OuterStripMinedLoopEnd();
2766 }
2767 
2768 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const {
2769   LoopNode* l = outer_loop();
2770   if (l == nullptr) {
2771     return nullptr;
2772   }
2773   return l->outer_loop_end();
2774 }
2775 
2776 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const {
2777   IfNode* le = outer_loop_end();
2778   if (le == nullptr) {
2779     return nullptr;
2780   }
2781   Node* c = le->proj_out_or_null(false);
2782   if (c == nullptr) {
2783     return nullptr;
2784   }
2785   return c->as_IfFalse();
2786 }
2787 
2788 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
2789   LoopNode* l = outer_loop();
2790   if (l == nullptr) {
2791     return nullptr;
2792   }
2793   return l->outer_loop_exit();
2794 }
2795 
2796 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const {
2797   IfNode* le = outer_loop_end();
2798   if (le == nullptr) {
2799     return nullptr;
2800   }
2801   Node* c = le->in(0);
2802   if (c == nullptr || c->is_top()) {
2803     return nullptr;
2804   }
2805   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
2806   return c->as_SafePoint();
2807 }
2808 
2809 SafePointNode* CountedLoopNode::outer_safepoint() const {
2810   LoopNode* l = outer_loop();
2811   if (l == nullptr) {
2812     return nullptr;
2813   }
2814   return l->outer_safepoint();
2815 }
2816 
2817 Node* CountedLoopNode::skip_assertion_predicates_with_halt() {
2818   Node* ctrl = in(LoopNode::EntryControl);
2819   if (is_main_loop()) {
2820     ctrl = skip_strip_mined()->in(LoopNode::EntryControl);
2821   }
2822   if (is_main_loop() || is_post_loop()) {
2823     AssertionPredicatesWithHalt assertion_predicates(ctrl);
2824     return assertion_predicates.entry();
2825   }
2826   return ctrl;
2827 }
2828 
2829 
2830 int CountedLoopNode::stride_con() const {
2831   CountedLoopEndNode* cle = loopexit_or_null();
2832   return cle != nullptr ? cle->stride_con() : 0;
2833 }
2834 
2835 BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) {
2836   if (bt == T_INT) {
2837     return new CountedLoopNode(entry, backedge);
2838   }
2839   assert(bt == T_LONG, "unsupported");
2840   return new LongCountedLoopNode(entry, backedge);
2841 }
2842 
2843 void OuterStripMinedLoopNode::fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn,
2844                                               PhaseIdealLoop* iloop) {
2845   Node* cle_out = inner_cle->proj_out(false);
2846   Node* cle_tail = inner_cle->proj_out(true);
2847   if (cle_out->outcnt() > 1) {
2848     // Look for chains of stores that were sunk
2849     // out of the inner loop and are in the outer loop
2850     for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) {
2851       Node* u = cle_out->fast_out(i);
2852       if (u->is_Store()) {
2853         int alias_idx = igvn->C->get_alias_index(u->adr_type());
2854         Node* first = u;
2855         for (;;) {
2856           Node* next = first->in(MemNode::Memory);
2857           if (!next->is_Store() || next->in(0) != cle_out) {
2858             break;
2859           }
2860           assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
2861           first = next;
2862         }
2863         Node* last = u;
2864         for (;;) {
2865           Node* next = nullptr;
2866           for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) {
2867             Node* uu = last->fast_out(j);
2868             if (uu->is_Store() && uu->in(0) == cle_out) {
2869               assert(next == nullptr, "only one in the outer loop");
2870               next = uu;
2871               assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
2872             }
2873           }
2874           if (next == nullptr) {
2875             break;
2876           }
2877           last = next;
2878         }
2879         Node* phi = nullptr;
2880         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
2881           Node* uu = inner_cl->fast_out(j);
2882           if (uu->is_Phi()) {
2883             Node* be = uu->in(LoopNode::LoopBackControl);
2884             if (be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)) {
2885               assert(igvn->C->get_alias_index(uu->adr_type()) != alias_idx && igvn->C->get_alias_index(uu->adr_type()) != Compile::AliasIdxBot, "unexpected store");
2886             }
2887             if (be == last || be == first->in(MemNode::Memory)) {
2888               assert(igvn->C->get_alias_index(uu->adr_type()) == alias_idx || igvn->C->get_alias_index(uu->adr_type()) == Compile::AliasIdxBot, "unexpected alias");
2889               assert(phi == nullptr, "only one phi");
2890               phi = uu;
2891             }
2892           }
2893         }
2894 #ifdef ASSERT
2895         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
2896           Node* uu = inner_cl->fast_out(j);
2897           if (uu->is_memory_phi()) {
2898             if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) {
2899               assert(phi == uu, "what's that phi?");
2900             } else if (uu->adr_type() == TypePtr::BOTTOM) {
2901               Node* n = uu->in(LoopNode::LoopBackControl);
2902               uint limit = igvn->C->live_nodes();
2903               uint i = 0;
2904               while (n != uu) {
2905                 i++;
2906                 assert(i < limit, "infinite loop");
2907                 if (n->is_Proj()) {
2908                   n = n->in(0);
2909                 } else if (n->is_SafePoint() || n->is_MemBar()) {
2910                   n = n->in(TypeFunc::Memory);
2911                 } else if (n->is_Phi()) {
2912                   n = n->in(1);
2913                 } else if (n->is_MergeMem()) {
2914                   n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type()));
2915                 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) {
2916                   n = n->in(MemNode::Memory);
2917                 } else {
2918                   n->dump();
2919                   ShouldNotReachHere();
2920                 }
2921               }
2922             }
2923           }
2924         }
2925 #endif
2926         if (phi == nullptr) {
2927           // If an entire chains was sunk, the
2928           // inner loop has no phi for that memory
2929           // slice, create one for the outer loop
2930           phi = PhiNode::make(inner_cl, first->in(MemNode::Memory), Type::MEMORY,
2931                               igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type())));
2932           phi->set_req(LoopNode::LoopBackControl, last);
2933           phi = register_new_node(phi, inner_cl, igvn, iloop);
2934           igvn->replace_input_of(first, MemNode::Memory, phi);
2935         } else {
2936           // Or fix the outer loop fix to include
2937           // that chain of stores.
2938           Node* be = phi->in(LoopNode::LoopBackControl);
2939           assert(!(be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)), "store on the backedge + sunk stores: unsupported");
2940           if (be == first->in(MemNode::Memory)) {
2941             if (be == phi->in(LoopNode::LoopBackControl)) {
2942               igvn->replace_input_of(phi, LoopNode::LoopBackControl, last);
2943             } else {
2944               igvn->replace_input_of(be, MemNode::Memory, last);
2945             }
2946           } else {
2947 #ifdef ASSERT
2948             if (be == phi->in(LoopNode::LoopBackControl)) {
2949               assert(phi->in(LoopNode::LoopBackControl) == last, "");
2950             } else {
2951               assert(be->in(MemNode::Memory) == last, "");
2952             }
2953 #endif
2954           }
2955         }
2956       }
2957     }
2958   }
2959 }
2960 
2961 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) {
2962   // Look for the outer & inner strip mined loop, reduce number of
2963   // iterations of the inner loop, set exit condition of outer loop,
2964   // construct required phi nodes for outer loop.
2965   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
2966   assert(inner_cl->is_strip_mined(), "inner loop should be strip mined");
2967   if (LoopStripMiningIter == 0) {
2968     remove_outer_loop_and_safepoint(igvn);
2969     return;
2970   }
2971   if (LoopStripMiningIter == 1) {
2972     transform_to_counted_loop(igvn, nullptr);
2973     return;
2974   }
2975   Node* inner_iv_phi = inner_cl->phi();
2976   if (inner_iv_phi == nullptr) {
2977     IfNode* outer_le = outer_loop_end();
2978     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
2979     igvn->replace_node(outer_le, iff);
2980     inner_cl->clear_strip_mined();
2981     return;
2982   }
2983   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
2984 
2985   int stride = inner_cl->stride_con();
2986   // For a min int stride, LoopStripMiningIter * stride overflows the int range for all values of LoopStripMiningIter
2987   // except 0 or 1. Those values are handled early on in this method and causes the method to return. So for a min int
2988   // stride, the method is guaranteed to return at the next check below.
2989   jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS((jlong)stride);
2990   int scaled_iters = (int)scaled_iters_long;
2991   if ((jlong)scaled_iters != scaled_iters_long) {
2992     // Remove outer loop and safepoint (too few iterations)
2993     remove_outer_loop_and_safepoint(igvn);
2994     return;
2995   }
2996   jlong short_scaled_iters = LoopStripMiningIterShortLoop * ABS(stride);
2997   const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int();
2998   jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo;
2999   assert(iter_estimate > 0, "broken");
3000   if (iter_estimate <= short_scaled_iters) {
3001     // Remove outer loop and safepoint: loop executes less than LoopStripMiningIterShortLoop
3002     remove_outer_loop_and_safepoint(igvn);
3003     return;
3004   }
3005   if (iter_estimate <= scaled_iters_long) {
3006     // We would only go through one iteration of
3007     // the outer loop: drop the outer loop but
3008     // keep the safepoint so we don't run for
3009     // too long without a safepoint
3010     IfNode* outer_le = outer_loop_end();
3011     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3012     igvn->replace_node(outer_le, iff);
3013     inner_cl->clear_strip_mined();
3014     return;
3015   }
3016 
3017   Node* cle_tail = inner_cle->proj_out(true);
3018   ResourceMark rm;
3019   Node_List old_new;
3020   if (cle_tail->outcnt() > 1) {
3021     // Look for nodes on backedge of inner loop and clone them
3022     Unique_Node_List backedge_nodes;
3023     for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) {
3024       Node* u = cle_tail->fast_out(i);
3025       if (u != inner_cl) {
3026         assert(!u->is_CFG(), "control flow on the backedge?");
3027         backedge_nodes.push(u);
3028       }
3029     }
3030     uint last = igvn->C->unique();
3031     for (uint next = 0; next < backedge_nodes.size(); next++) {
3032       Node* n = backedge_nodes.at(next);
3033       old_new.map(n->_idx, n->clone());
3034       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3035         Node* u = n->fast_out(i);
3036         assert(!u->is_CFG(), "broken");
3037         if (u->_idx >= last) {
3038           continue;
3039         }
3040         if (!u->is_Phi()) {
3041           backedge_nodes.push(u);
3042         } else {
3043           assert(u->in(0) == inner_cl, "strange phi on the backedge");
3044         }
3045       }
3046     }
3047     // Put the clones on the outer loop backedge
3048     Node* le_tail = outer_loop_tail();
3049     for (uint next = 0; next < backedge_nodes.size(); next++) {
3050       Node *n = old_new[backedge_nodes.at(next)->_idx];
3051       for (uint i = 1; i < n->req(); i++) {
3052         if (n->in(i) != nullptr && old_new[n->in(i)->_idx] != nullptr) {
3053           n->set_req(i, old_new[n->in(i)->_idx]);
3054         }
3055       }
3056       if (n->in(0) != nullptr && n->in(0) == cle_tail) {
3057         n->set_req(0, le_tail);
3058       }
3059       igvn->register_new_node_with_optimizer(n);
3060     }
3061   }
3062 
3063   Node* iv_phi = nullptr;
3064   // Make a clone of each phi in the inner loop
3065   // for the outer loop
3066   for (uint i = 0; i < inner_cl->outcnt(); i++) {
3067     Node* u = inner_cl->raw_out(i);
3068     if (u->is_Phi()) {
3069       assert(u->in(0) == inner_cl, "inconsistent");
3070       Node* phi = u->clone();
3071       phi->set_req(0, this);
3072       Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx];
3073       if (be != nullptr) {
3074         phi->set_req(LoopNode::LoopBackControl, be);
3075       }
3076       phi = igvn->transform(phi);
3077       igvn->replace_input_of(u, LoopNode::EntryControl, phi);
3078       if (u == inner_iv_phi) {
3079         iv_phi = phi;
3080       }
3081     }
3082   }
3083 
3084   if (iv_phi != nullptr) {
3085     // Now adjust the inner loop's exit condition
3086     Node* limit = inner_cl->limit();
3087     // If limit < init for stride > 0 (or limit > init for stride < 0),
3088     // the loop body is run only once. Given limit - init (init - limit resp.)
3089     // would be negative, the unsigned comparison below would cause
3090     // the loop body to be run for LoopStripMiningIter.
3091     Node* max = nullptr;
3092     if (stride > 0) {
3093       max = MaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn);
3094     } else {
3095       max = MaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn);
3096     }
3097     // sub is positive and can be larger than the max signed int
3098     // value. Use an unsigned min.
3099     Node* const_iters = igvn->intcon(scaled_iters);
3100     Node* min = MaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn);
3101     // min is the number of iterations for the next inner loop execution:
3102     // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0
3103     // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0
3104 
3105     Node* new_limit = nullptr;
3106     if (stride > 0) {
3107       new_limit = igvn->transform(new AddINode(min, iv_phi));
3108     } else {
3109       new_limit = igvn->transform(new SubINode(iv_phi, min));
3110     }
3111     Node* inner_cmp = inner_cle->cmp_node();
3112     Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue);
3113     Node* outer_bol = inner_bol;
3114     // cmp node for inner loop may be shared
3115     inner_cmp = inner_cmp->clone();
3116     inner_cmp->set_req(2, new_limit);
3117     inner_bol = inner_bol->clone();
3118     inner_bol->set_req(1, igvn->transform(inner_cmp));
3119     igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol));
3120     // Set the outer loop's exit condition too
3121     igvn->replace_input_of(outer_loop_end(), 1, outer_bol);
3122   } else {
3123     assert(false, "should be able to adjust outer loop");
3124     IfNode* outer_le = outer_loop_end();
3125     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3126     igvn->replace_node(outer_le, iff);
3127     inner_cl->clear_strip_mined();
3128   }
3129 }
3130 
3131 void OuterStripMinedLoopNode::transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3132   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3133   CountedLoopEndNode* cle = inner_cl->loopexit();
3134   Node* inner_test = cle->in(1);
3135   IfNode* outer_le = outer_loop_end();
3136   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
3137   Node* safepoint = outer_safepoint();
3138 
3139   fix_sunk_stores(inner_cle, inner_cl, igvn, iloop);
3140 
3141   // make counted loop exit test always fail
3142   ConINode* zero = igvn->intcon(0);
3143   if (iloop != nullptr) {
3144     iloop->set_ctrl(zero, igvn->C->root());
3145   }
3146   igvn->replace_input_of(cle, 1, zero);
3147   // replace outer loop end with CountedLoopEndNode with formers' CLE's exit test
3148   Node* new_end = new CountedLoopEndNode(outer_le->in(0), inner_test, cle->_prob, cle->_fcnt);
3149   register_control(new_end, inner_cl, outer_le->in(0), igvn, iloop);
3150   if (iloop == nullptr) {
3151     igvn->replace_node(outer_le, new_end);
3152   } else {
3153     iloop->lazy_replace(outer_le, new_end);
3154   }
3155   // the backedge of the inner loop must be rewired to the new loop end
3156   Node* backedge = cle->proj_out(true);
3157   igvn->replace_input_of(backedge, 0, new_end);
3158   if (iloop != nullptr) {
3159     iloop->set_idom(backedge, new_end, iloop->dom_depth(new_end) + 1);
3160   }
3161   // make the outer loop go away
3162   igvn->replace_input_of(in(LoopBackControl), 0, igvn->C->top());
3163   igvn->replace_input_of(this, LoopBackControl, igvn->C->top());
3164   inner_cl->clear_strip_mined();
3165   if (iloop != nullptr) {
3166     Unique_Node_List wq;
3167     wq.push(safepoint);
3168 
3169     IdealLoopTree* outer_loop_ilt = iloop->get_loop(this);
3170     IdealLoopTree* loop = iloop->get_loop(inner_cl);
3171 
3172     for (uint i = 0; i < wq.size(); i++) {
3173       Node* n = wq.at(i);
3174       for (uint j = 0; j < n->req(); ++j) {
3175         Node* in = n->in(j);
3176         if (in == nullptr || in->is_CFG()) {
3177           continue;
3178         }
3179         if (iloop->get_loop(iloop->get_ctrl(in)) != outer_loop_ilt) {
3180           continue;
3181         }
3182         assert(!loop->_body.contains(in), "");
3183         loop->_body.push(in);
3184         wq.push(in);
3185       }
3186     }
3187     iloop->set_loop(safepoint, loop);
3188     loop->_body.push(safepoint);
3189     iloop->set_loop(safepoint->in(0), loop);
3190     loop->_body.push(safepoint->in(0));
3191     outer_loop_ilt->_tail = igvn->C->top();
3192   }
3193 }
3194 
3195 void OuterStripMinedLoopNode::remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const {
3196   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3197   Node* outer_sfpt = outer_safepoint();
3198   Node* outer_out = outer_loop_exit();
3199   igvn->replace_node(outer_out, outer_sfpt->in(0));
3200   igvn->replace_input_of(outer_sfpt, 0, igvn->C->top());
3201   inner_cl->clear_strip_mined();
3202 }
3203 
3204 Node* OuterStripMinedLoopNode::register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3205   if (iloop == nullptr) {
3206     return igvn->transform(node);
3207   }
3208   iloop->register_new_node(node, ctrl);
3209   return node;
3210 }
3211 
3212 Node* OuterStripMinedLoopNode::register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
3213                                                 PhaseIdealLoop* iloop) {
3214   if (iloop == nullptr) {
3215     return igvn->transform(node);
3216   }
3217   iloop->register_control(node, iloop->get_loop(loop), idom);
3218   return node;
3219 }
3220 
3221 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const {
3222   if (!in(0)) return Type::TOP;
3223   if (phase->type(in(0)) == Type::TOP)
3224     return Type::TOP;
3225 
3226   // Until expansion, the loop end condition is not set so this should not constant fold.
3227   if (is_expanded(phase)) {
3228     return IfNode::Value(phase);
3229   }
3230 
3231   return TypeTuple::IFBOTH;
3232 }
3233 
3234 bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const {
3235   // The outer strip mined loop head only has Phi uses after expansion
3236   if (phase->is_IterGVN()) {
3237     Node* backedge = proj_out_or_null(true);
3238     if (backedge != nullptr) {
3239       Node* head = backedge->unique_ctrl_out_or_null();
3240       if (head != nullptr && head->is_OuterStripMinedLoop()) {
3241         if (head->find_out_with(Op_Phi) != nullptr) {
3242           return true;
3243         }
3244       }
3245     }
3246   }
3247   return false;
3248 }
3249 
3250 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3251   if (remove_dead_region(phase, can_reshape))  return this;
3252 
3253   return nullptr;
3254 }
3255 
3256 //------------------------------filtered_type--------------------------------
3257 // Return a type based on condition control flow
3258 // A successful return will be a type that is restricted due
3259 // to a series of dominating if-tests, such as:
3260 //    if (i < 10) {
3261 //       if (i > 0) {
3262 //          here: "i" type is [1..10)
3263 //       }
3264 //    }
3265 // or a control flow merge
3266 //    if (i < 10) {
3267 //       do {
3268 //          phi( , ) -- at top of loop type is [min_int..10)
3269 //         i = ?
3270 //       } while ( i < 10)
3271 //
3272 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
3273   assert(n && n->bottom_type()->is_int(), "must be int");
3274   const TypeInt* filtered_t = nullptr;
3275   if (!n->is_Phi()) {
3276     assert(n_ctrl != nullptr || n_ctrl == C->top(), "valid control");
3277     filtered_t = filtered_type_from_dominators(n, n_ctrl);
3278 
3279   } else {
3280     Node* phi    = n->as_Phi();
3281     Node* region = phi->in(0);
3282     assert(n_ctrl == nullptr || n_ctrl == region, "ctrl parameter must be region");
3283     if (region && region != C->top()) {
3284       for (uint i = 1; i < phi->req(); i++) {
3285         Node* val   = phi->in(i);
3286         Node* use_c = region->in(i);
3287         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
3288         if (val_t != nullptr) {
3289           if (filtered_t == nullptr) {
3290             filtered_t = val_t;
3291           } else {
3292             filtered_t = filtered_t->meet(val_t)->is_int();
3293           }
3294         }
3295       }
3296     }
3297   }
3298   const TypeInt* n_t = _igvn.type(n)->is_int();
3299   if (filtered_t != nullptr) {
3300     n_t = n_t->join(filtered_t)->is_int();
3301   }
3302   return n_t;
3303 }
3304 
3305 
3306 //------------------------------filtered_type_from_dominators--------------------------------
3307 // Return a possibly more restrictive type for val based on condition control flow of dominators
3308 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
3309   if (val->is_Con()) {
3310      return val->bottom_type()->is_int();
3311   }
3312   uint if_limit = 10; // Max number of dominating if's visited
3313   const TypeInt* rtn_t = nullptr;
3314 
3315   if (use_ctrl && use_ctrl != C->top()) {
3316     Node* val_ctrl = get_ctrl(val);
3317     uint val_dom_depth = dom_depth(val_ctrl);
3318     Node* pred = use_ctrl;
3319     uint if_cnt = 0;
3320     while (if_cnt < if_limit) {
3321       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
3322         if_cnt++;
3323         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
3324         if (if_t != nullptr) {
3325           if (rtn_t == nullptr) {
3326             rtn_t = if_t;
3327           } else {
3328             rtn_t = rtn_t->join(if_t)->is_int();
3329           }
3330         }
3331       }
3332       pred = idom(pred);
3333       if (pred == nullptr || pred == C->top()) {
3334         break;
3335       }
3336       // Stop if going beyond definition block of val
3337       if (dom_depth(pred) < val_dom_depth) {
3338         break;
3339       }
3340     }
3341   }
3342   return rtn_t;
3343 }
3344 
3345 
3346 //------------------------------dump_spec--------------------------------------
3347 // Dump special per-node info
3348 #ifndef PRODUCT
3349 void CountedLoopEndNode::dump_spec(outputStream *st) const {
3350   if( in(TestValue) != nullptr && in(TestValue)->is_Bool() ) {
3351     BoolTest bt( test_trip()); // Added this for g++.
3352 
3353     st->print("[");
3354     bt.dump_on(st);
3355     st->print("]");
3356   }
3357   st->print(" ");
3358   IfNode::dump_spec(st);
3359 }
3360 #endif
3361 
3362 //=============================================================================
3363 //------------------------------is_member--------------------------------------
3364 // Is 'l' a member of 'this'?
3365 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
3366   while( l->_nest > _nest ) l = l->_parent;
3367   return l == this;
3368 }
3369 
3370 //------------------------------set_nest---------------------------------------
3371 // Set loop tree nesting depth.  Accumulate _has_call bits.
3372 int IdealLoopTree::set_nest( uint depth ) {
3373   assert(depth <= SHRT_MAX, "sanity");
3374   _nest = depth;
3375   int bits = _has_call;
3376   if( _child ) bits |= _child->set_nest(depth+1);
3377   if( bits ) _has_call = 1;
3378   if( _next  ) bits |= _next ->set_nest(depth  );
3379   return bits;
3380 }
3381 
3382 //------------------------------split_fall_in----------------------------------
3383 // Split out multiple fall-in edges from the loop header.  Move them to a
3384 // private RegionNode before the loop.  This becomes the loop landing pad.
3385 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
3386   PhaseIterGVN &igvn = phase->_igvn;
3387   uint i;
3388 
3389   // Make a new RegionNode to be the landing pad.
3390   RegionNode* landing_pad = new RegionNode(fall_in_cnt + 1);
3391   phase->set_loop(landing_pad,_parent);
3392   // If _head was irreducible loop entry, landing_pad may now be too
3393   landing_pad->set_loop_status(_head->as_Region()->loop_status());
3394   // Gather all the fall-in control paths into the landing pad
3395   uint icnt = fall_in_cnt;
3396   uint oreq = _head->req();
3397   for( i = oreq-1; i>0; i-- )
3398     if( !phase->is_member( this, _head->in(i) ) )
3399       landing_pad->set_req(icnt--,_head->in(i));
3400 
3401   // Peel off PhiNode edges as well
3402   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3403     Node *oj = _head->fast_out(j);
3404     if( oj->is_Phi() ) {
3405       PhiNode* old_phi = oj->as_Phi();
3406       assert( old_phi->region() == _head, "" );
3407       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
3408       Node *p = PhiNode::make_blank(landing_pad, old_phi);
3409       uint icnt = fall_in_cnt;
3410       for( i = oreq-1; i>0; i-- ) {
3411         if( !phase->is_member( this, _head->in(i) ) ) {
3412           p->init_req(icnt--, old_phi->in(i));
3413           // Go ahead and clean out old edges from old phi
3414           old_phi->del_req(i);
3415         }
3416       }
3417       // Search for CSE's here, because ZKM.jar does a lot of
3418       // loop hackery and we need to be a little incremental
3419       // with the CSE to avoid O(N^2) node blow-up.
3420       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
3421       if( p2 ) {                // Found CSE
3422         p->destruct(&igvn);     // Recover useless new node
3423         p = p2;                 // Use old node
3424       } else {
3425         igvn.register_new_node_with_optimizer(p, old_phi);
3426       }
3427       // Make old Phi refer to new Phi.
3428       old_phi->add_req(p);
3429       // Check for the special case of making the old phi useless and
3430       // disappear it.  In JavaGrande I have a case where this useless
3431       // Phi is the loop limit and prevents recognizing a CountedLoop
3432       // which in turn prevents removing an empty loop.
3433       Node *id_old_phi = old_phi->Identity(&igvn);
3434       if( id_old_phi != old_phi ) { // Found a simple identity?
3435         // Note that I cannot call 'replace_node' here, because
3436         // that will yank the edge from old_phi to the Region and
3437         // I'm mid-iteration over the Region's uses.
3438         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
3439           Node* use = old_phi->last_out(i);
3440           igvn.rehash_node_delayed(use);
3441           uint uses_found = 0;
3442           for (uint j = 0; j < use->len(); j++) {
3443             if (use->in(j) == old_phi) {
3444               if (j < use->req()) use->set_req (j, id_old_phi);
3445               else                use->set_prec(j, id_old_phi);
3446               uses_found++;
3447             }
3448           }
3449           i -= uses_found;    // we deleted 1 or more copies of this edge
3450         }
3451       }
3452       igvn._worklist.push(old_phi);
3453     }
3454   }
3455   // Finally clean out the fall-in edges from the RegionNode
3456   for( i = oreq-1; i>0; i-- ) {
3457     if( !phase->is_member( this, _head->in(i) ) ) {
3458       _head->del_req(i);
3459     }
3460   }
3461   igvn.rehash_node_delayed(_head);
3462   // Transform landing pad
3463   igvn.register_new_node_with_optimizer(landing_pad, _head);
3464   // Insert landing pad into the header
3465   _head->add_req(landing_pad);
3466 }
3467 
3468 //------------------------------split_outer_loop-------------------------------
3469 // Split out the outermost loop from this shared header.
3470 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
3471   PhaseIterGVN &igvn = phase->_igvn;
3472 
3473   // Find index of outermost loop; it should also be my tail.
3474   uint outer_idx = 1;
3475   while( _head->in(outer_idx) != _tail ) outer_idx++;
3476 
3477   // Make a LoopNode for the outermost loop.
3478   Node *ctl = _head->in(LoopNode::EntryControl);
3479   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
3480   outer = igvn.register_new_node_with_optimizer(outer, _head);
3481   phase->set_created_loop_node();
3482 
3483   // Outermost loop falls into '_head' loop
3484   _head->set_req(LoopNode::EntryControl, outer);
3485   _head->del_req(outer_idx);
3486   // Split all the Phis up between '_head' loop and 'outer' loop.
3487   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3488     Node *out = _head->fast_out(j);
3489     if( out->is_Phi() ) {
3490       PhiNode *old_phi = out->as_Phi();
3491       assert( old_phi->region() == _head, "" );
3492       Node *phi = PhiNode::make_blank(outer, old_phi);
3493       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
3494       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
3495       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
3496       // Make old Phi point to new Phi on the fall-in path
3497       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
3498       old_phi->del_req(outer_idx);
3499     }
3500   }
3501 
3502   // Use the new loop head instead of the old shared one
3503   _head = outer;
3504   phase->set_loop(_head, this);
3505 }
3506 
3507 //------------------------------fix_parent-------------------------------------
3508 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
3509   loop->_parent = parent;
3510   if( loop->_child ) fix_parent( loop->_child, loop   );
3511   if( loop->_next  ) fix_parent( loop->_next , parent );
3512 }
3513 
3514 //------------------------------estimate_path_freq-----------------------------
3515 static float estimate_path_freq( Node *n ) {
3516   // Try to extract some path frequency info
3517   IfNode *iff;
3518   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
3519     uint nop = n->Opcode();
3520     if( nop == Op_SafePoint ) {   // Skip any safepoint
3521       n = n->in(0);
3522       continue;
3523     }
3524     if( nop == Op_CatchProj ) {   // Get count from a prior call
3525       // Assume call does not always throw exceptions: means the call-site
3526       // count is also the frequency of the fall-through path.
3527       assert( n->is_CatchProj(), "" );
3528       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
3529         return 0.0f;            // Assume call exception path is rare
3530       Node *call = n->in(0)->in(0)->in(0);
3531       assert( call->is_Call(), "expect a call here" );
3532       const JVMState *jvms = ((CallNode*)call)->jvms();
3533       ciMethodData* methodData = jvms->method()->method_data();
3534       if (!methodData->is_mature())  return 0.0f; // No call-site data
3535       ciProfileData* data = methodData->bci_to_data(jvms->bci());
3536       if ((data == nullptr) || !data->is_CounterData()) {
3537         // no call profile available, try call's control input
3538         n = n->in(0);
3539         continue;
3540       }
3541       return data->as_CounterData()->count()/FreqCountInvocations;
3542     }
3543     // See if there's a gating IF test
3544     Node *n_c = n->in(0);
3545     if( !n_c->is_If() ) break;       // No estimate available
3546     iff = n_c->as_If();
3547     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
3548       // Compute how much count comes on this path
3549       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
3550     // Have no count info.  Skip dull uncommon-trap like branches.
3551     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
3552         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
3553       break;
3554     // Skip through never-taken branch; look for a real loop exit.
3555     n = iff->in(0);
3556   }
3557   return 0.0f;                  // No estimate available
3558 }
3559 
3560 //------------------------------merge_many_backedges---------------------------
3561 // Merge all the backedges from the shared header into a private Region.
3562 // Feed that region as the one backedge to this loop.
3563 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
3564   uint i;
3565 
3566   // Scan for the top 2 hottest backedges
3567   float hotcnt = 0.0f;
3568   float warmcnt = 0.0f;
3569   uint hot_idx = 0;
3570   // Loop starts at 2 because slot 1 is the fall-in path
3571   for( i = 2; i < _head->req(); i++ ) {
3572     float cnt = estimate_path_freq(_head->in(i));
3573     if( cnt > hotcnt ) {       // Grab hottest path
3574       warmcnt = hotcnt;
3575       hotcnt = cnt;
3576       hot_idx = i;
3577     } else if( cnt > warmcnt ) { // And 2nd hottest path
3578       warmcnt = cnt;
3579     }
3580   }
3581 
3582   // See if the hottest backedge is worthy of being an inner loop
3583   // by being much hotter than the next hottest backedge.
3584   if( hotcnt <= 0.0001 ||
3585       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
3586 
3587   // Peel out the backedges into a private merge point; peel
3588   // them all except optionally hot_idx.
3589   PhaseIterGVN &igvn = phase->_igvn;
3590 
3591   Node *hot_tail = nullptr;
3592   // Make a Region for the merge point
3593   Node *r = new RegionNode(1);
3594   for( i = 2; i < _head->req(); i++ ) {
3595     if( i != hot_idx )
3596       r->add_req( _head->in(i) );
3597     else hot_tail = _head->in(i);
3598   }
3599   igvn.register_new_node_with_optimizer(r, _head);
3600   // Plug region into end of loop _head, followed by hot_tail
3601   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
3602   igvn.replace_input_of(_head, 2, r);
3603   if( hot_idx ) _head->add_req(hot_tail);
3604 
3605   // Split all the Phis up between '_head' loop and the Region 'r'
3606   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3607     Node *out = _head->fast_out(j);
3608     if( out->is_Phi() ) {
3609       PhiNode* n = out->as_Phi();
3610       igvn.hash_delete(n);      // Delete from hash before hacking edges
3611       Node *hot_phi = nullptr;
3612       Node *phi = new PhiNode(r, n->type(), n->adr_type());
3613       // Check all inputs for the ones to peel out
3614       uint j = 1;
3615       for( uint i = 2; i < n->req(); i++ ) {
3616         if( i != hot_idx )
3617           phi->set_req( j++, n->in(i) );
3618         else hot_phi = n->in(i);
3619       }
3620       // Register the phi but do not transform until whole place transforms
3621       igvn.register_new_node_with_optimizer(phi, n);
3622       // Add the merge phi to the old Phi
3623       while( n->req() > 3 ) n->del_req( n->req()-1 );
3624       igvn.replace_input_of(n, 2, phi);
3625       if( hot_idx ) n->add_req(hot_phi);
3626     }
3627   }
3628 
3629 
3630   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
3631   // of self loop tree.  Turn self into a loop headed by _head and with
3632   // tail being the new merge point.
3633   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
3634   phase->set_loop(_tail,ilt);   // Adjust tail
3635   _tail = r;                    // Self's tail is new merge point
3636   phase->set_loop(r,this);
3637   ilt->_child = _child;         // New guy has my children
3638   _child = ilt;                 // Self has new guy as only child
3639   ilt->_parent = this;          // new guy has self for parent
3640   ilt->_nest = _nest;           // Same nesting depth (for now)
3641 
3642   // Starting with 'ilt', look for child loop trees using the same shared
3643   // header.  Flatten these out; they will no longer be loops in the end.
3644   IdealLoopTree **pilt = &_child;
3645   while( ilt ) {
3646     if( ilt->_head == _head ) {
3647       uint i;
3648       for( i = 2; i < _head->req(); i++ )
3649         if( _head->in(i) == ilt->_tail )
3650           break;                // Still a loop
3651       if( i == _head->req() ) { // No longer a loop
3652         // Flatten ilt.  Hang ilt's "_next" list from the end of
3653         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
3654         IdealLoopTree **cp = &ilt->_child;
3655         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
3656         *cp = ilt->_next;       // Hang next list at end of child list
3657         *pilt = ilt->_child;    // Move child up to replace ilt
3658         ilt->_head = nullptr;   // Flag as a loop UNIONED into parent
3659         ilt = ilt->_child;      // Repeat using new ilt
3660         continue;               // do not advance over ilt->_child
3661       }
3662       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
3663       phase->set_loop(_head,ilt);
3664     }
3665     pilt = &ilt->_child;        // Advance to next
3666     ilt = *pilt;
3667   }
3668 
3669   if( _child ) fix_parent( _child, this );
3670 }
3671 
3672 //------------------------------beautify_loops---------------------------------
3673 // Split shared headers and insert loop landing pads.
3674 // Insert a LoopNode to replace the RegionNode.
3675 // Return TRUE if loop tree is structurally changed.
3676 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
3677   bool result = false;
3678   // Cache parts in locals for easy
3679   PhaseIterGVN &igvn = phase->_igvn;
3680 
3681   igvn.hash_delete(_head);      // Yank from hash before hacking edges
3682 
3683   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
3684   int fall_in_cnt = 0;
3685   for( uint i = 1; i < _head->req(); i++ )
3686     if( !phase->is_member( this, _head->in(i) ) )
3687       fall_in_cnt++;
3688   assert( fall_in_cnt, "at least 1 fall-in path" );
3689   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
3690     split_fall_in( phase, fall_in_cnt );
3691 
3692   // Swap inputs to the _head and all Phis to move the fall-in edge to
3693   // the left.
3694   fall_in_cnt = 1;
3695   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
3696     fall_in_cnt++;
3697   if( fall_in_cnt > 1 ) {
3698     // Since I am just swapping inputs I do not need to update def-use info
3699     Node *tmp = _head->in(1);
3700     igvn.rehash_node_delayed(_head);
3701     _head->set_req( 1, _head->in(fall_in_cnt) );
3702     _head->set_req( fall_in_cnt, tmp );
3703     // Swap also all Phis
3704     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
3705       Node* phi = _head->fast_out(i);
3706       if( phi->is_Phi() ) {
3707         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
3708         tmp = phi->in(1);
3709         phi->set_req( 1, phi->in(fall_in_cnt) );
3710         phi->set_req( fall_in_cnt, tmp );
3711       }
3712     }
3713   }
3714   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
3715   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
3716 
3717   // If I am a shared header (multiple backedges), peel off the many
3718   // backedges into a private merge point and use the merge point as
3719   // the one true backedge.
3720   if (_head->req() > 3) {
3721     // Merge the many backedges into a single backedge but leave
3722     // the hottest backedge as separate edge for the following peel.
3723     if (!_irreducible) {
3724       merge_many_backedges( phase );
3725     }
3726 
3727     // When recursively beautify my children, split_fall_in can change
3728     // loop tree structure when I am an irreducible loop. Then the head
3729     // of my children has a req() not bigger than 3. Here we need to set
3730     // result to true to catch that case in order to tell the caller to
3731     // rebuild loop tree. See issue JDK-8244407 for details.
3732     result = true;
3733   }
3734 
3735   // If I have one hot backedge, peel off myself loop.
3736   // I better be the outermost loop.
3737   if (_head->req() > 3 && !_irreducible) {
3738     split_outer_loop( phase );
3739     result = true;
3740 
3741   } else if (!_head->is_Loop() && !_irreducible) {
3742     // Make a new LoopNode to replace the old loop head
3743     Node *l = new LoopNode( _head->in(1), _head->in(2) );
3744     l = igvn.register_new_node_with_optimizer(l, _head);
3745     phase->set_created_loop_node();
3746     // Go ahead and replace _head
3747     phase->_igvn.replace_node( _head, l );
3748     _head = l;
3749     phase->set_loop(_head, this);
3750   }
3751 
3752   // Now recursively beautify nested loops
3753   if( _child ) result |= _child->beautify_loops( phase );
3754   if( _next  ) result |= _next ->beautify_loops( phase );
3755   return result;
3756 }
3757 
3758 //------------------------------allpaths_check_safepts----------------------------
3759 // Allpaths backwards scan. Starting at the head, traversing all backedges, and the body. Terminating each path at first
3760 // safepoint encountered.  Helper for check_safepts.
3761 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
3762   assert(stack.size() == 0, "empty stack");
3763   stack.push(_head);
3764   visited.clear();
3765   visited.set(_head->_idx);
3766   while (stack.size() > 0) {
3767     Node* n = stack.pop();
3768     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
3769       // Terminate this path
3770     } else if (n->Opcode() == Op_SafePoint) {
3771       if (_phase->get_loop(n) != this) {
3772         if (_required_safept == nullptr) _required_safept = new Node_List();
3773         // save the first we run into on that path: closest to the tail if the head has a single backedge
3774         _required_safept->push(n);
3775       }
3776       // Terminate this path
3777     } else {
3778       uint start = n->is_Region() ? 1 : 0;
3779       uint end   = n->is_Region() && (!n->is_Loop() || n == _head) ? n->req() : start + 1;
3780       for (uint i = start; i < end; i++) {
3781         Node* in = n->in(i);
3782         assert(in->is_CFG(), "must be");
3783         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
3784           stack.push(in);
3785         }
3786       }
3787     }
3788   }
3789 }
3790 
3791 //------------------------------check_safepts----------------------------
3792 // Given dominators, try to find loops with calls that must always be
3793 // executed (call dominates loop tail).  These loops do not need non-call
3794 // safepoints (ncsfpt).
3795 //
3796 // A complication is that a safepoint in a inner loop may be needed
3797 // by an outer loop. In the following, the inner loop sees it has a
3798 // call (block 3) on every path from the head (block 2) to the
3799 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
3800 // in block 2, _but_ this leaves the outer loop without a safepoint.
3801 //
3802 //          entry  0
3803 //                 |
3804 //                 v
3805 // outer 1,2    +->1
3806 //              |  |
3807 //              |  v
3808 //              |  2<---+  ncsfpt in 2
3809 //              |_/|\   |
3810 //                 | v  |
3811 // inner 2,3      /  3  |  call in 3
3812 //               /   |  |
3813 //              v    +--+
3814 //        exit  4
3815 //
3816 //
3817 // This method creates a list (_required_safept) of ncsfpt nodes that must
3818 // be protected is created for each loop. When a ncsfpt maybe deleted, it
3819 // is first looked for in the lists for the outer loops of the current loop.
3820 //
3821 // The insights into the problem:
3822 //  A) counted loops are okay
3823 //  B) innermost loops are okay (only an inner loop can delete
3824 //     a ncsfpt needed by an outer loop)
3825 //  C) a loop is immune from an inner loop deleting a safepoint
3826 //     if the loop has a call on the idom-path
3827 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
3828 //     idom-path that is not in a nested loop
3829 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
3830 //     loop needs to be prevented from deletion by an inner loop
3831 //
3832 // There are two analyses:
3833 //  1) The first, and cheaper one, scans the loop body from
3834 //     tail to head following the idom (immediate dominator)
3835 //     chain, looking for the cases (C,D,E) above.
3836 //     Since inner loops are scanned before outer loops, there is summary
3837 //     information about inner loops.  Inner loops can be skipped over
3838 //     when the tail of an inner loop is encountered.
3839 //
3840 //  2) The second, invoked if the first fails to find a call or ncsfpt on
3841 //     the idom path (which is rare), scans all predecessor control paths
3842 //     from the tail to the head, terminating a path when a call or sfpt
3843 //     is encountered, to find the ncsfpt's that are closest to the tail.
3844 //
3845 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
3846   // Bottom up traversal
3847   IdealLoopTree* ch = _child;
3848   if (_child) _child->check_safepts(visited, stack);
3849   if (_next)  _next ->check_safepts(visited, stack);
3850 
3851   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != nullptr) {
3852     bool  has_call         = false;    // call on dom-path
3853     bool  has_local_ncsfpt = false;    // ncsfpt on dom-path at this loop depth
3854     Node* nonlocal_ncsfpt  = nullptr;  // ncsfpt on dom-path at a deeper depth
3855     if (!_irreducible) {
3856       // Scan the dom-path nodes from tail to head
3857       for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
3858         if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
3859           has_call = true;
3860           _has_sfpt = 1;          // Then no need for a safept!
3861           break;
3862         } else if (n->Opcode() == Op_SafePoint) {
3863           if (_phase->get_loop(n) == this) {
3864             has_local_ncsfpt = true;
3865             break;
3866           }
3867           if (nonlocal_ncsfpt == nullptr) {
3868             nonlocal_ncsfpt = n; // save the one closest to the tail
3869           }
3870         } else {
3871           IdealLoopTree* nlpt = _phase->get_loop(n);
3872           if (this != nlpt) {
3873             // If at an inner loop tail, see if the inner loop has already
3874             // recorded seeing a call on the dom-path (and stop.)  If not,
3875             // jump to the head of the inner loop.
3876             assert(is_member(nlpt), "nested loop");
3877             Node* tail = nlpt->_tail;
3878             if (tail->in(0)->is_If()) tail = tail->in(0);
3879             if (n == tail) {
3880               // If inner loop has call on dom-path, so does outer loop
3881               if (nlpt->_has_sfpt) {
3882                 has_call = true;
3883                 _has_sfpt = 1;
3884                 break;
3885               }
3886               // Skip to head of inner loop
3887               assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
3888               n = nlpt->_head;
3889               if (_head == n) {
3890                 // this and nlpt (inner loop) have the same loop head. This should not happen because
3891                 // during beautify_loops we call merge_many_backedges. However, infinite loops may not
3892                 // have been attached to the loop-tree during build_loop_tree before beautify_loops,
3893                 // but then attached in the build_loop_tree afterwards, and so still have unmerged
3894                 // backedges. Check if we are indeed in an infinite subgraph, and terminate the scan,
3895                 // since we have reached the loop head of this.
3896                 assert(_head->as_Region()->is_in_infinite_subgraph(),
3897                        "only expect unmerged backedges in infinite loops");
3898                 break;
3899               }
3900             }
3901           }
3902         }
3903       }
3904     }
3905     // Record safept's that this loop needs preserved when an
3906     // inner loop attempts to delete it's safepoints.
3907     if (_child != nullptr && !has_call && !has_local_ncsfpt) {
3908       if (nonlocal_ncsfpt != nullptr) {
3909         if (_required_safept == nullptr) _required_safept = new Node_List();
3910         _required_safept->push(nonlocal_ncsfpt);
3911       } else {
3912         // Failed to find a suitable safept on the dom-path.  Now use
3913         // an all paths walk from tail to head, looking for safepoints to preserve.
3914         allpaths_check_safepts(visited, stack);
3915       }
3916     }
3917   }
3918 }
3919 
3920 //---------------------------is_deleteable_safept----------------------------
3921 // Is safept not required by an outer loop?
3922 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
3923   assert(sfpt->Opcode() == Op_SafePoint, "");
3924   IdealLoopTree* lp = get_loop(sfpt)->_parent;
3925   while (lp != nullptr) {
3926     Node_List* sfpts = lp->_required_safept;
3927     if (sfpts != nullptr) {
3928       for (uint i = 0; i < sfpts->size(); i++) {
3929         if (sfpt == sfpts->at(i))
3930           return false;
3931       }
3932     }
3933     lp = lp->_parent;
3934   }
3935   return true;
3936 }
3937 
3938 //---------------------------replace_parallel_iv-------------------------------
3939 // Replace parallel induction variable (parallel to trip counter)
3940 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
3941   assert(loop->_head->is_CountedLoop(), "");
3942   CountedLoopNode *cl = loop->_head->as_CountedLoop();
3943   if (!cl->is_valid_counted_loop(T_INT)) {
3944     return;         // skip malformed counted loop
3945   }
3946   Node *incr = cl->incr();
3947   if (incr == nullptr) {
3948     return;         // Dead loop?
3949   }
3950   Node *init = cl->init_trip();
3951   Node *phi  = cl->phi();
3952   int stride_con = cl->stride_con();
3953 
3954   // Visit all children, looking for Phis
3955   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
3956     Node *out = cl->out(i);
3957     // Look for other phis (secondary IVs). Skip dead ones
3958     if (!out->is_Phi() || out == phi || !has_node(out)) {
3959       continue;
3960     }
3961 
3962     PhiNode* phi2 = out->as_Phi();
3963     Node* incr2 = phi2->in(LoopNode::LoopBackControl);
3964     // Look for induction variables of the form:  X += constant
3965     if (phi2->region() != loop->_head ||
3966         incr2->req() != 3 ||
3967         incr2->in(1)->uncast() != phi2 ||
3968         incr2 == incr ||
3969         incr2->Opcode() != Op_AddI ||
3970         !incr2->in(2)->is_Con()) {
3971       continue;
3972     }
3973 
3974     if (incr2->in(1)->is_ConstraintCast() &&
3975         !(incr2->in(1)->in(0)->is_IfProj() && incr2->in(1)->in(0)->in(0)->is_RangeCheck())) {
3976       // Skip AddI->CastII->Phi case if CastII is not controlled by local RangeCheck
3977       continue;
3978     }
3979     // Check for parallel induction variable (parallel to trip counter)
3980     // via an affine function.  In particular, count-down loops with
3981     // count-up array indices are common. We only RCE references off
3982     // the trip-counter, so we need to convert all these to trip-counter
3983     // expressions.
3984     Node* init2 = phi2->in(LoopNode::EntryControl);
3985     int stride_con2 = incr2->in(2)->get_int();
3986 
3987     // The ratio of the two strides cannot be represented as an int
3988     // if stride_con2 is min_int and stride_con is -1.
3989     if (stride_con2 == min_jint && stride_con == -1) {
3990       continue;
3991     }
3992 
3993     // The general case here gets a little tricky.  We want to find the
3994     // GCD of all possible parallel IV's and make a new IV using this
3995     // GCD for the loop.  Then all possible IVs are simple multiples of
3996     // the GCD.  In practice, this will cover very few extra loops.
3997     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
3998     // where +/-1 is the common case, but other integer multiples are
3999     // also easy to handle.
4000     int ratio_con = stride_con2/stride_con;
4001 
4002     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
4003 #ifndef PRODUCT
4004       if (TraceLoopOpts) {
4005         tty->print("Parallel IV: %d ", phi2->_idx);
4006         loop->dump_head();
4007       }
4008 #endif
4009       // Convert to using the trip counter.  The parallel induction
4010       // variable differs from the trip counter by a loop-invariant
4011       // amount, the difference between their respective initial values.
4012       // It is scaled by the 'ratio_con'.
4013       Node* ratio = _igvn.intcon(ratio_con);
4014       set_ctrl(ratio, C->root());
4015       Node* ratio_init = new MulINode(init, ratio);
4016       _igvn.register_new_node_with_optimizer(ratio_init, init);
4017       set_early_ctrl(ratio_init, false);
4018       Node* diff = new SubINode(init2, ratio_init);
4019       _igvn.register_new_node_with_optimizer(diff, init2);
4020       set_early_ctrl(diff, false);
4021       Node* ratio_idx = new MulINode(phi, ratio);
4022       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
4023       set_ctrl(ratio_idx, cl);
4024       Node* add = new AddINode(ratio_idx, diff);
4025       _igvn.register_new_node_with_optimizer(add);
4026       set_ctrl(add, cl);
4027       _igvn.replace_node( phi2, add );
4028       // Sometimes an induction variable is unused
4029       if (add->outcnt() == 0) {
4030         _igvn.remove_dead_node(add);
4031       }
4032       --i; // deleted this phi; rescan starting with next position
4033       continue;
4034     }
4035   }
4036 }
4037 
4038 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
4039   Node* keep = nullptr;
4040   if (keep_one) {
4041     // Look for a safepoint on the idom-path.
4042     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
4043       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
4044         keep = i;
4045         break; // Found one
4046       }
4047     }
4048   }
4049 
4050   // Don't remove any safepoints if it is requested to keep a single safepoint and
4051   // no safepoint was found on idom-path. It is not safe to remove any safepoint
4052   // in this case since there's no safepoint dominating all paths in the loop body.
4053   bool prune = !keep_one || keep != nullptr;
4054 
4055   // Delete other safepoints in this loop.
4056   Node_List* sfpts = _safepts;
4057   if (prune && sfpts != nullptr) {
4058     assert(keep == nullptr || keep->Opcode() == Op_SafePoint, "not safepoint");
4059     for (uint i = 0; i < sfpts->size(); i++) {
4060       Node* n = sfpts->at(i);
4061       assert(phase->get_loop(n) == this, "");
4062       if (n != keep && phase->is_deleteable_safept(n)) {
4063         phase->lazy_replace(n, n->in(TypeFunc::Control));
4064       }
4065     }
4066   }
4067 }
4068 
4069 //------------------------------counted_loop-----------------------------------
4070 // Convert to counted loops where possible
4071 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
4072 
4073   // For grins, set the inner-loop flag here
4074   if (!_child) {
4075     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
4076   }
4077 
4078   IdealLoopTree* loop = this;
4079   if (_head->is_CountedLoop() ||
4080       phase->is_counted_loop(_head, loop, T_INT)) {
4081 
4082     if (LoopStripMiningIter == 0 || _head->as_CountedLoop()->is_strip_mined()) {
4083       // Indicate we do not need a safepoint here
4084       _has_sfpt = 1;
4085     }
4086 
4087     // Remove safepoints
4088     bool keep_one_sfpt = !(_has_call || _has_sfpt);
4089     remove_safepoints(phase, keep_one_sfpt);
4090 
4091     // Look for induction variables
4092     phase->replace_parallel_iv(this);
4093   } else if (_head->is_LongCountedLoop() ||
4094              phase->is_counted_loop(_head, loop, T_LONG)) {
4095     remove_safepoints(phase, true);
4096   } else {
4097     assert(!_head->is_Loop() || !_head->as_Loop()->is_loop_nest_inner_loop(), "transformation to counted loop should not fail");
4098     if (_parent != nullptr && !_irreducible) {
4099       // Not a counted loop. Keep one safepoint.
4100       bool keep_one_sfpt = true;
4101       remove_safepoints(phase, keep_one_sfpt);
4102     }
4103   }
4104 
4105   // Recursively
4106   assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
4107   assert(loop->_child != this || (loop->_child->_child == nullptr && loop->_child->_next == nullptr), "would miss some loops");
4108   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
4109   if (loop->_next)  loop->_next ->counted_loop(phase);
4110 }
4111 
4112 
4113 // The Estimated Loop Clone Size:
4114 //   CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm,
4115 // where  BC and  CC are  totally ad-hoc/magic  "body" and "clone" constants,
4116 // respectively, used to ensure that the node usage estimates made are on the
4117 // safe side, for the most part. The FanOutTerm is an attempt to estimate the
4118 // possible additional/excessive nodes generated due to data and control flow
4119 // merging, for edges reaching outside the loop.
4120 uint IdealLoopTree::est_loop_clone_sz(uint factor) const {
4121 
4122   precond(0 < factor && factor < 16);
4123 
4124   uint const bc = 13;
4125   uint const cc = 17;
4126   uint const sz = _body.size() + (_body.size() + 7) / 2;
4127   uint estimate = factor * (sz + bc) + cc;
4128 
4129   assert((estimate - cc) / factor == sz + bc, "overflow");
4130 
4131   return estimate + est_loop_flow_merge_sz();
4132 }
4133 
4134 // The Estimated Loop (full-) Unroll Size:
4135 //   UnrollFactor * (~106% * BodySize) + CC + FanOutTerm,
4136 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that
4137 // node usage estimates made are on the safe side, for the most part. This is
4138 // a "light" version of the loop clone size calculation (above), based on the
4139 // assumption that most of the loop-construct overhead will be unraveled when
4140 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1),
4141 // including an overflow check and returning UINT_MAX in case of an overflow.
4142 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const {
4143 
4144   precond(factor > 0);
4145 
4146   // Take into account that after unroll conjoined heads and tails will fold.
4147   uint const b0 = _body.size() - EMPTY_LOOP_SIZE;
4148   uint const cc = 7;
4149   uint const sz = b0 + (b0 + 15) / 16;
4150   uint estimate = factor * sz + cc;
4151 
4152   if ((estimate - cc) / factor != sz) {
4153     return UINT_MAX;
4154   }
4155 
4156   return estimate + est_loop_flow_merge_sz();
4157 }
4158 
4159 // Estimate the growth effect (in nodes) of merging control and data flow when
4160 // cloning a loop body, based on the amount of  control and data flow reaching
4161 // outside of the (current) loop body.
4162 uint IdealLoopTree::est_loop_flow_merge_sz() const {
4163 
4164   uint ctrl_edge_out_cnt = 0;
4165   uint data_edge_out_cnt = 0;
4166 
4167   for (uint i = 0; i < _body.size(); i++) {
4168     Node* node = _body.at(i);
4169     uint outcnt = node->outcnt();
4170 
4171     for (uint k = 0; k < outcnt; k++) {
4172       Node* out = node->raw_out(k);
4173       if (out == nullptr) continue;
4174       if (out->is_CFG()) {
4175         if (!is_member(_phase->get_loop(out))) {
4176           ctrl_edge_out_cnt++;
4177         }
4178       } else if (_phase->has_ctrl(out)) {
4179         Node* ctrl = _phase->get_ctrl(out);
4180         assert(ctrl != nullptr, "must be");
4181         assert(ctrl->is_CFG(), "must be");
4182         if (!is_member(_phase->get_loop(ctrl))) {
4183           data_edge_out_cnt++;
4184         }
4185       }
4186     }
4187   }
4188   // Use data and control count (x2.0) in estimate iff both are > 0. This is
4189   // a rather pessimistic estimate for the most part, in particular for some
4190   // complex loops, but still not enough to capture all loops.
4191   if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) {
4192     return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt);
4193   }
4194   return 0;
4195 }
4196 
4197 #ifndef PRODUCT
4198 //------------------------------dump_head--------------------------------------
4199 // Dump 1 liner for loop header info
4200 void IdealLoopTree::dump_head() {
4201   tty->sp(2 * _nest);
4202   tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx);
4203   if (_irreducible) tty->print(" IRREDUCIBLE");
4204   Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl)
4205                                  : _head->in(LoopNode::EntryControl);
4206   const Predicates predicates(entry);
4207   if (predicates.loop_limit_check_predicate_block()->is_non_empty()) {
4208     tty->print(" limit_check");
4209   }
4210   if (UseProfiledLoopPredicate && predicates.profiled_loop_predicate_block()->is_non_empty()) {
4211     tty->print(" profile_predicated");
4212   }
4213   if (UseLoopPredicate && predicates.loop_predicate_block()->is_non_empty()) {
4214     tty->print(" predicated");
4215   }
4216   if (_head->is_CountedLoop()) {
4217     CountedLoopNode *cl = _head->as_CountedLoop();
4218     tty->print(" counted");
4219 
4220     Node* init_n = cl->init_trip();
4221     if (init_n  != nullptr &&  init_n->is_Con())
4222       tty->print(" [%d,", cl->init_trip()->get_int());
4223     else
4224       tty->print(" [int,");
4225     Node* limit_n = cl->limit();
4226     if (limit_n  != nullptr &&  limit_n->is_Con())
4227       tty->print("%d),", cl->limit()->get_int());
4228     else
4229       tty->print("int),");
4230     int stride_con  = cl->stride_con();
4231     if (stride_con > 0) tty->print("+");
4232     tty->print("%d", stride_con);
4233 
4234     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
4235 
4236     if (cl->is_pre_loop ()) tty->print(" pre" );
4237     if (cl->is_main_loop()) tty->print(" main");
4238     if (cl->is_post_loop()) tty->print(" post");
4239     if (cl->is_vectorized_loop()) tty->print(" vector");
4240     if (range_checks_present()) tty->print(" rc ");
4241   }
4242   if (_has_call) tty->print(" has_call");
4243   if (_has_sfpt) tty->print(" has_sfpt");
4244   if (_rce_candidate) tty->print(" rce");
4245   if (_safepts != nullptr && _safepts->size() > 0) {
4246     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
4247   }
4248   if (_required_safept != nullptr && _required_safept->size() > 0) {
4249     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
4250   }
4251   if (Verbose) {
4252     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
4253   }
4254   if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) {
4255     tty->print(" strip_mined");
4256   }
4257   tty->cr();
4258 }
4259 
4260 //------------------------------dump-------------------------------------------
4261 // Dump loops by loop tree
4262 void IdealLoopTree::dump() {
4263   dump_head();
4264   if (_child) _child->dump();
4265   if (_next)  _next ->dump();
4266 }
4267 
4268 #endif
4269 
4270 static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
4271   if (loop == root) {
4272     if (loop->_child != nullptr) {
4273       log->begin_head("loop_tree");
4274       log->end_head();
4275       log_loop_tree_helper(root, loop->_child, log);
4276       log->tail("loop_tree");
4277       assert(loop->_next == nullptr, "what?");
4278     }
4279   } else if (loop != nullptr) {
4280     Node* head = loop->_head;
4281     log->begin_head("loop idx='%d'", head->_idx);
4282     if (loop->_irreducible) log->print(" irreducible='1'");
4283     if (head->is_Loop()) {
4284       if (head->as_Loop()->is_inner_loop())        log->print(" inner_loop='1'");
4285       if (head->as_Loop()->is_partial_peel_loop()) log->print(" partial_peel_loop='1'");
4286     } else if (head->is_CountedLoop()) {
4287       CountedLoopNode* cl = head->as_CountedLoop();
4288       if (cl->is_pre_loop())  log->print(" pre_loop='%d'",  cl->main_idx());
4289       if (cl->is_main_loop()) log->print(" main_loop='%d'", cl->_idx);
4290       if (cl->is_post_loop()) log->print(" post_loop='%d'", cl->main_idx());
4291     }
4292     log->end_head();
4293     log_loop_tree_helper(root, loop->_child, log);
4294     log->tail("loop");
4295     log_loop_tree_helper(root, loop->_next, log);
4296   }
4297 }
4298 
4299 void PhaseIdealLoop::log_loop_tree() {
4300   if (C->log() != nullptr) {
4301     log_loop_tree_helper(_ltree_root, _ltree_root, C->log());
4302   }
4303 }
4304 
4305 // Eliminate all Parse and Template Assertion Predicates that are not associated with a loop anymore. The eliminated
4306 // predicates will be removed during the next round of IGVN.
4307 void PhaseIdealLoop::eliminate_useless_predicates() {
4308   if (C->parse_predicate_count() == 0 && C->template_assertion_predicate_count() == 0) {
4309     return; // No predicates left.
4310   }
4311 
4312   eliminate_useless_parse_predicates();
4313   eliminate_useless_template_assertion_predicates();
4314 }
4315 
4316 // Eliminate all Parse Predicates that do not belong to a loop anymore by marking them useless. These will be removed
4317 // during the next round of IGVN.
4318 void PhaseIdealLoop::eliminate_useless_parse_predicates() {
4319   mark_all_parse_predicates_useless();
4320   if (C->has_loops()) {
4321     mark_loop_associated_parse_predicates_useful();
4322   }
4323   add_useless_parse_predicates_to_igvn_worklist();
4324 }
4325 
4326 void PhaseIdealLoop::mark_all_parse_predicates_useless() const {
4327   for (int i = 0; i < C->parse_predicate_count(); i++) {
4328     C->parse_predicate(i)->mark_useless();
4329   }
4330 }
4331 
4332 void PhaseIdealLoop::mark_loop_associated_parse_predicates_useful() {
4333   for (LoopTreeIterator iterator(_ltree_root); !iterator.done(); iterator.next()) {
4334     IdealLoopTree* loop = iterator.current();
4335     if (loop->can_apply_loop_predication()) {
4336       mark_useful_parse_predicates_for_loop(loop);
4337     }
4338   }
4339 }
4340 
4341 void PhaseIdealLoop::mark_useful_parse_predicates_for_loop(IdealLoopTree* loop) {
4342   Node* entry = loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl);
4343   const Predicates predicates(entry);
4344   ParsePredicateIterator iterator(predicates);
4345   while (iterator.has_next()) {
4346     iterator.next()->mark_useful();
4347   }
4348 }
4349 
4350 void PhaseIdealLoop::add_useless_parse_predicates_to_igvn_worklist() {
4351   for (int i = 0; i < C->parse_predicate_count(); i++) {
4352     ParsePredicateNode* parse_predicate_node = C->parse_predicate(i);
4353     if (parse_predicate_node->is_useless()) {
4354       _igvn._worklist.push(parse_predicate_node);
4355     }
4356   }
4357 }
4358 
4359 
4360 // Eliminate all Template Assertion Predicates that do not belong to their originally associated loop anymore by
4361 // replacing the Opaque4 node of the If node with true. These nodes will be removed during the next round of IGVN.
4362 void PhaseIdealLoop::eliminate_useless_template_assertion_predicates() {
4363   Unique_Node_List useful_predicates;
4364   if (C->has_loops()) {
4365     collect_useful_template_assertion_predicates(useful_predicates);
4366   }
4367   eliminate_useless_template_assertion_predicates(useful_predicates);
4368 }
4369 
4370 void PhaseIdealLoop::collect_useful_template_assertion_predicates(Unique_Node_List& useful_predicates) {
4371   for (LoopTreeIterator iterator(_ltree_root); !iterator.done(); iterator.next()) {
4372     IdealLoopTree* loop = iterator.current();
4373     if (loop->can_apply_loop_predication()) {
4374       collect_useful_template_assertion_predicates_for_loop(loop, useful_predicates);
4375     }
4376   }
4377 }
4378 
4379 void PhaseIdealLoop::collect_useful_template_assertion_predicates_for_loop(IdealLoopTree* loop,
4380                                                                            Unique_Node_List &useful_predicates) {
4381   Node* entry = loop->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl);
4382   const Predicates predicates(entry);
4383   if (UseProfiledLoopPredicate) {
4384     const PredicateBlock* profiled_loop_predicate_block = predicates.profiled_loop_predicate_block();
4385     if (profiled_loop_predicate_block->has_parse_predicate()) {
4386       IfProjNode* parse_predicate_proj = profiled_loop_predicate_block->parse_predicate_success_proj();
4387       get_assertion_predicates(parse_predicate_proj, useful_predicates, true);
4388     }
4389   }
4390 
4391   if (UseLoopPredicate) {
4392     const PredicateBlock* loop_predicate_block = predicates.loop_predicate_block();
4393     if (loop_predicate_block->has_parse_predicate()) {
4394       IfProjNode* parse_predicate_proj = loop_predicate_block->parse_predicate_success_proj();
4395       get_assertion_predicates(parse_predicate_proj, useful_predicates, true);
4396     }
4397   }
4398 }
4399 
4400 void PhaseIdealLoop::eliminate_useless_template_assertion_predicates(Unique_Node_List& useful_predicates) {
4401   for (int i = C->template_assertion_predicate_count(); i > 0; i--) {
4402     Opaque4Node* opaque4_node = C->template_assertion_predicate_opaq_node(i - 1)->as_Opaque4();
4403     if (!useful_predicates.member(opaque4_node)) { // not in the useful list
4404       _igvn.replace_node(opaque4_node, opaque4_node->in(2));
4405     }
4406   }
4407 }
4408 
4409 // If a post or main loop is removed due to an assert predicate, the opaque that guards the loop is not needed anymore
4410 void PhaseIdealLoop::eliminate_useless_zero_trip_guard() {
4411   if (_zero_trip_guard_opaque_nodes.size() == 0) {
4412     return;
4413   }
4414   Unique_Node_List useful_zero_trip_guard_opaques_nodes;
4415   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4416     IdealLoopTree* lpt = iter.current();
4417     if (lpt->_child == nullptr && lpt->is_counted()) {
4418       CountedLoopNode* head = lpt->_head->as_CountedLoop();
4419       Node* opaque = head->is_canonical_loop_entry();
4420       if (opaque != nullptr) {
4421         useful_zero_trip_guard_opaques_nodes.push(opaque);
4422       }
4423     }
4424   }
4425   for (uint i = 0; i < _zero_trip_guard_opaque_nodes.size(); ++i) {
4426     OpaqueZeroTripGuardNode* opaque = ((OpaqueZeroTripGuardNode*)_zero_trip_guard_opaque_nodes.at(i));
4427     DEBUG_ONLY(CountedLoopNode* guarded_loop = opaque->guarded_loop());
4428     if (!useful_zero_trip_guard_opaques_nodes.member(opaque)) {
4429       IfNode* iff = opaque->if_node();
4430       IdealLoopTree* loop = get_loop(iff);
4431       while (loop != _ltree_root && loop != nullptr) {
4432         loop = loop->_parent;
4433       }
4434       if (loop == nullptr) {
4435         // unreachable from _ltree_root: zero trip guard is in a newly discovered infinite loop.
4436         // We can't tell if the opaque node is useful or not
4437         assert(guarded_loop == nullptr || guarded_loop->is_in_infinite_subgraph(), "");
4438       } else {
4439         assert(guarded_loop == nullptr, "");
4440         this->_igvn.replace_node(opaque, opaque->in(1));
4441       }
4442     } else {
4443       assert(guarded_loop != nullptr, "");
4444     }
4445   }
4446 }
4447 
4448 //------------------------process_expensive_nodes-----------------------------
4449 // Expensive nodes have their control input set to prevent the GVN
4450 // from commoning them and as a result forcing the resulting node to
4451 // be in a more frequent path. Use CFG information here, to change the
4452 // control inputs so that some expensive nodes can be commoned while
4453 // not executed more frequently.
4454 bool PhaseIdealLoop::process_expensive_nodes() {
4455   assert(OptimizeExpensiveOps, "optimization off?");
4456 
4457   // Sort nodes to bring similar nodes together
4458   C->sort_expensive_nodes();
4459 
4460   bool progress = false;
4461 
4462   for (int i = 0; i < C->expensive_count(); ) {
4463     Node* n = C->expensive_node(i);
4464     int start = i;
4465     // Find nodes similar to n
4466     i++;
4467     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
4468     int end = i;
4469     // And compare them two by two
4470     for (int j = start; j < end; j++) {
4471       Node* n1 = C->expensive_node(j);
4472       if (is_node_unreachable(n1)) {
4473         continue;
4474       }
4475       for (int k = j+1; k < end; k++) {
4476         Node* n2 = C->expensive_node(k);
4477         if (is_node_unreachable(n2)) {
4478           continue;
4479         }
4480 
4481         assert(n1 != n2, "should be pair of nodes");
4482 
4483         Node* c1 = n1->in(0);
4484         Node* c2 = n2->in(0);
4485 
4486         Node* parent_c1 = c1;
4487         Node* parent_c2 = c2;
4488 
4489         // The call to get_early_ctrl_for_expensive() moves the
4490         // expensive nodes up but stops at loops that are in a if
4491         // branch. See whether we can exit the loop and move above the
4492         // If.
4493         if (c1->is_Loop()) {
4494           parent_c1 = c1->in(1);
4495         }
4496         if (c2->is_Loop()) {
4497           parent_c2 = c2->in(1);
4498         }
4499 
4500         if (parent_c1 == parent_c2) {
4501           _igvn._worklist.push(n1);
4502           _igvn._worklist.push(n2);
4503           continue;
4504         }
4505 
4506         // Look for identical expensive node up the dominator chain.
4507         if (is_dominator(c1, c2)) {
4508           c2 = c1;
4509         } else if (is_dominator(c2, c1)) {
4510           c1 = c2;
4511         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
4512                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
4513           // Both branches have the same expensive node so move it up
4514           // before the if.
4515           c1 = c2 = idom(parent_c1->in(0));
4516         }
4517         // Do the actual moves
4518         if (n1->in(0) != c1) {
4519           _igvn.replace_input_of(n1, 0, c1);
4520           progress = true;
4521         }
4522         if (n2->in(0) != c2) {
4523           _igvn.replace_input_of(n2, 0, c2);
4524           progress = true;
4525         }
4526       }
4527     }
4528   }
4529 
4530   return progress;
4531 }
4532 
4533 //=============================================================================
4534 //----------------------------build_and_optimize-------------------------------
4535 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
4536 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
4537 void PhaseIdealLoop::build_and_optimize() {
4538   assert(!C->post_loop_opts_phase(), "no loop opts allowed");
4539 
4540   bool do_split_ifs = (_mode == LoopOptsDefault);
4541   bool skip_loop_opts = (_mode == LoopOptsNone);
4542   bool do_max_unroll = (_mode == LoopOptsMaxUnroll);
4543 
4544 
4545   int old_progress = C->major_progress();
4546   uint orig_worklist_size = _igvn._worklist.size();
4547 
4548   // Reset major-progress flag for the driver's heuristics
4549   C->clear_major_progress();
4550 
4551 #ifndef PRODUCT
4552   // Capture for later assert
4553   uint unique = C->unique();
4554   _loop_invokes++;
4555   _loop_work += unique;
4556 #endif
4557 
4558   // True if the method has at least 1 irreducible loop
4559   _has_irreducible_loops = false;
4560 
4561   _created_loop_node = false;
4562 
4563   VectorSet visited;
4564   // Pre-grow the mapping from Nodes to IdealLoopTrees.
4565   _loop_or_ctrl.map(C->unique(), nullptr);
4566   memset(_loop_or_ctrl.adr(), 0, wordSize * C->unique());
4567 
4568   // Pre-build the top-level outermost loop tree entry
4569   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
4570   // Do not need a safepoint at the top level
4571   _ltree_root->_has_sfpt = 1;
4572 
4573   // Initialize Dominators.
4574   // Checked in clone_loop_predicate() during beautify_loops().
4575   _idom_size = 0;
4576   _idom      = nullptr;
4577   _dom_depth = nullptr;
4578   _dom_stk   = nullptr;
4579 
4580   // Empty pre-order array
4581   allocate_preorders();
4582 
4583   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
4584   // IdealLoopTree entries.  Data nodes are NOT walked.
4585   build_loop_tree();
4586   // Check for bailout, and return
4587   if (C->failing()) {
4588     return;
4589   }
4590 
4591   // Verify that the has_loops() flag set at parse time is consistent with the just built loop tree. When the back edge
4592   // is an exception edge, parsing doesn't set has_loops().
4593   assert(_ltree_root->_child == nullptr || C->has_loops() || C->has_exception_backedge(), "parsing found no loops but there are some");
4594   // No loops after all
4595   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
4596 
4597   // There should always be an outer loop containing the Root and Return nodes.
4598   // If not, we have a degenerate empty program.  Bail out in this case.
4599   if (!has_node(C->root())) {
4600     if (!_verify_only) {
4601       C->clear_major_progress();
4602       assert(false, "empty program detected during loop optimization");
4603       C->record_method_not_compilable("empty program detected during loop optimization");
4604     }
4605     return;
4606   }
4607 
4608   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4609   // Nothing to do, so get out
4610   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !do_max_unroll && !_verify_me &&
4611           !_verify_only && !bs->is_gc_specific_loop_opts_pass(_mode);
4612   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
4613   bool strip_mined_loops_expanded = bs->strip_mined_loops_expanded(_mode);
4614   if (stop_early && !do_expensive_nodes) {
4615     return;
4616   }
4617 
4618   // Set loop nesting depth
4619   _ltree_root->set_nest( 0 );
4620 
4621   // Split shared headers and insert loop landing pads.
4622   // Do not bother doing this on the Root loop of course.
4623   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
4624     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
4625     if( _ltree_root->_child->beautify_loops( this ) ) {
4626       // Re-build loop tree!
4627       _ltree_root->_child = nullptr;
4628       _loop_or_ctrl.clear();
4629       reallocate_preorders();
4630       build_loop_tree();
4631       // Check for bailout, and return
4632       if (C->failing()) {
4633         return;
4634       }
4635       // Reset loop nesting depth
4636       _ltree_root->set_nest( 0 );
4637 
4638       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
4639     }
4640   }
4641 
4642   // Build Dominators for elision of null checks & loop finding.
4643   // Since nodes do not have a slot for immediate dominator, make
4644   // a persistent side array for that info indexed on node->_idx.
4645   _idom_size = C->unique();
4646   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
4647   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
4648   _dom_stk   = nullptr; // Allocated on demand in recompute_dom_depth
4649   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
4650 
4651   Dominators();
4652 
4653   if (!_verify_only) {
4654     // As a side effect, Dominators removed any unreachable CFG paths
4655     // into RegionNodes.  It doesn't do this test against Root, so
4656     // we do it here.
4657     for( uint i = 1; i < C->root()->req(); i++ ) {
4658       if (!_loop_or_ctrl[C->root()->in(i)->_idx]) { // Dead path into Root?
4659         _igvn.delete_input_of(C->root(), i);
4660         i--;                      // Rerun same iteration on compressed edges
4661       }
4662     }
4663 
4664     // Given dominators, try to find inner loops with calls that must
4665     // always be executed (call dominates loop tail).  These loops do
4666     // not need a separate safepoint.
4667     Node_List cisstack;
4668     _ltree_root->check_safepts(visited, cisstack);
4669   }
4670 
4671   // Walk the DATA nodes and place into loops.  Find earliest control
4672   // node.  For CFG nodes, the _loop_or_ctrl array starts out and remains
4673   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
4674   // _loop_or_ctrl array holds the earliest legal controlling CFG node.
4675 
4676   // Allocate stack with enough space to avoid frequent realloc
4677   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
4678   Node_Stack nstack(stack_size);
4679 
4680   visited.clear();
4681   Node_List worklist;
4682   // Don't need C->root() on worklist since
4683   // it will be processed among C->top() inputs
4684   worklist.push(C->top());
4685   visited.set(C->top()->_idx); // Set C->top() as visited now
4686   build_loop_early( visited, worklist, nstack );
4687 
4688   // Given early legal placement, try finding counted loops.  This placement
4689   // is good enough to discover most loop invariants.
4690   if (!_verify_me && !_verify_only && !strip_mined_loops_expanded) {
4691     _ltree_root->counted_loop( this );
4692   }
4693 
4694   // Find latest loop placement.  Find ideal loop placement.
4695   visited.clear();
4696   init_dom_lca_tags();
4697   // Need C->root() on worklist when processing outs
4698   worklist.push(C->root());
4699   NOT_PRODUCT( C->verify_graph_edges(); )
4700   worklist.push(C->top());
4701   build_loop_late( visited, worklist, nstack );
4702   if (C->failing()) { return; }
4703 
4704   if (_verify_only) {
4705     C->restore_major_progress(old_progress);
4706     assert(C->unique() == unique, "verification _mode made Nodes? ? ?");
4707     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
4708     return;
4709   }
4710 
4711   // clear out the dead code after build_loop_late
4712   while (_deadlist.size()) {
4713     _igvn.remove_globally_dead_node(_deadlist.pop());
4714   }
4715 
4716   eliminate_useless_zero_trip_guard();
4717 
4718   if (stop_early) {
4719     assert(do_expensive_nodes, "why are we here?");
4720     if (process_expensive_nodes()) {
4721       // If we made some progress when processing expensive nodes then
4722       // the IGVN may modify the graph in a way that will allow us to
4723       // make some more progress: we need to try processing expensive
4724       // nodes again.
4725       C->set_major_progress();
4726     }
4727     return;
4728   }
4729 
4730   // Some parser-inserted loop predicates could never be used by loop
4731   // predication or they were moved away from loop during some optimizations.
4732   // For example, peeling. Eliminate them before next loop optimizations.
4733   eliminate_useless_predicates();
4734 
4735 #ifndef PRODUCT
4736   C->verify_graph_edges();
4737   if (_verify_me) {             // Nested verify pass?
4738     // Check to see if the verify _mode is broken
4739     assert(C->unique() == unique, "non-optimize _mode made Nodes? ? ?");
4740     return;
4741   }
4742   DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
4743   if (TraceLoopOpts && C->has_loops()) {
4744     _ltree_root->dump();
4745   }
4746 #endif
4747 
4748   if (skip_loop_opts) {
4749     C->restore_major_progress(old_progress);
4750     return;
4751   }
4752 
4753   if (do_max_unroll) {
4754     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4755       IdealLoopTree* lpt = iter.current();
4756       if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) {
4757         lpt->compute_trip_count(this);
4758         if (!lpt->do_one_iteration_loop(this) &&
4759             !lpt->do_remove_empty_loop(this)) {
4760           AutoNodeBudget node_budget(this);
4761           if (lpt->_head->as_CountedLoop()->is_normal_loop() &&
4762               lpt->policy_maximally_unroll(this)) {
4763             memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
4764             do_maximally_unroll(lpt, worklist);
4765           }
4766         }
4767       }
4768     }
4769 
4770     C->restore_major_progress(old_progress);
4771     return;
4772   }
4773 
4774   if (bs->optimize_loops(this, _mode, visited, nstack, worklist)) {
4775     return;
4776   }
4777 
4778   if (ReassociateInvariants && !C->major_progress()) {
4779     // Reassociate invariants and prep for split_thru_phi
4780     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4781       IdealLoopTree* lpt = iter.current();
4782       if (!lpt->is_loop()) {
4783         continue;
4784       }
4785       Node* head = lpt->_head;
4786       if (!head->is_BaseCountedLoop() || !lpt->is_innermost()) continue;
4787 
4788       // check for vectorized loops, any reassociation of invariants was already done
4789       if (head->is_CountedLoop()) {
4790         if (head->as_CountedLoop()->is_unroll_only()) {
4791           continue;
4792         } else {
4793           AutoNodeBudget node_budget(this);
4794           lpt->reassociate_invariants(this);
4795         }
4796       }
4797       // Because RCE opportunities can be masked by split_thru_phi,
4798       // look for RCE candidates and inhibit split_thru_phi
4799       // on just their loop-phi's for this pass of loop opts
4800       if (SplitIfBlocks && do_split_ifs &&
4801           head->as_BaseCountedLoop()->is_valid_counted_loop(head->as_BaseCountedLoop()->bt()) &&
4802           (lpt->policy_range_check(this, true, T_LONG) ||
4803            (head->is_CountedLoop() && lpt->policy_range_check(this, true, T_INT)))) {
4804         lpt->_rce_candidate = 1; // = true
4805       }
4806     }
4807   }
4808 
4809   // Check for aggressive application of split-if and other transforms
4810   // that require basic-block info (like cloning through Phi's)
4811   if (!C->major_progress() && SplitIfBlocks && do_split_ifs) {
4812     visited.clear();
4813     split_if_with_blocks( visited, nstack);
4814     DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
4815   }
4816 
4817   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
4818     C->set_major_progress();
4819   }
4820 
4821   // Perform loop predication before iteration splitting
4822   if (UseLoopPredicate && C->has_loops() && !C->major_progress() && (C->parse_predicate_count() > 0)) {
4823     _ltree_root->_child->loop_predication(this);
4824   }
4825 
4826   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
4827     if (do_intrinsify_fill()) {
4828       C->set_major_progress();
4829     }
4830   }
4831 
4832   // Perform iteration-splitting on inner loops.  Split iterations to avoid
4833   // range checks or one-shot null checks.
4834 
4835   // If split-if's didn't hack the graph too bad (no CFG changes)
4836   // then do loop opts.
4837   if (C->has_loops() && !C->major_progress()) {
4838     memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
4839     _ltree_root->_child->iteration_split( this, worklist );
4840     // No verify after peeling!  GCM has hoisted code out of the loop.
4841     // After peeling, the hoisted code could sink inside the peeled area.
4842     // The peeling code does not try to recompute the best location for
4843     // all the code before the peeled area, so the verify pass will always
4844     // complain about it.
4845   }
4846 
4847   // Check for bailout, and return
4848   if (C->failing()) {
4849     return;
4850   }
4851 
4852   // Do verify graph edges in any case
4853   NOT_PRODUCT( C->verify_graph_edges(); );
4854 
4855   if (!do_split_ifs) {
4856     // We saw major progress in Split-If to get here.  We forced a
4857     // pass with unrolling and not split-if, however more split-if's
4858     // might make progress.  If the unrolling didn't make progress
4859     // then the major-progress flag got cleared and we won't try
4860     // another round of Split-If.  In particular the ever-common
4861     // instance-of/check-cast pattern requires at least 2 rounds of
4862     // Split-If to clear out.
4863     C->set_major_progress();
4864   }
4865 
4866   // Repeat loop optimizations if new loops were seen
4867   if (created_loop_node()) {
4868     C->set_major_progress();
4869   }
4870 
4871   // Keep loop predicates and perform optimizations with them
4872   // until no more loop optimizations could be done.
4873   // After that switch predicates off and do more loop optimizations.
4874   if (!C->major_progress() && (C->parse_predicate_count() > 0)) {
4875     C->mark_parse_predicate_nodes_useless(_igvn);
4876     assert(C->parse_predicate_count() == 0, "should be zero now");
4877      if (TraceLoopOpts) {
4878        tty->print_cr("PredicatesOff");
4879      }
4880      C->set_major_progress();
4881   }
4882 
4883   // Auto-vectorize main-loop
4884   if (C->do_superword() && C->has_loops() && !C->major_progress()) {
4885     Compile::TracePhase tp("autoVectorize", &timers[_t_autoVectorize]);
4886 
4887     // Shared data structures for all AutoVectorizations, to reduce allocations
4888     // of large arrays.
4889     VSharedData vshared;
4890     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4891       IdealLoopTree* lpt = iter.current();
4892       AutoVectorizeStatus status = auto_vectorize(lpt, vshared);
4893 
4894       if (status == AutoVectorizeStatus::TriedAndFailed) {
4895         // We tried vectorization, but failed. From now on only unroll the loop.
4896         CountedLoopNode* cl = lpt->_head->as_CountedLoop();
4897         if (cl->has_passed_slp()) {
4898           C->set_major_progress();
4899           cl->set_notpassed_slp();
4900           cl->mark_do_unroll_only();
4901         }
4902       }
4903     }
4904   }
4905 
4906   // Move UnorderedReduction out of counted loop. Can be introduced by AutoVectorization.
4907   if (C->has_loops() && !C->major_progress()) {
4908     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4909       IdealLoopTree* lpt = iter.current();
4910       if (lpt->is_counted() && lpt->is_innermost()) {
4911         move_unordered_reduction_out_of_loop(lpt);
4912       }
4913     }
4914   }
4915 }
4916 
4917 #ifndef PRODUCT
4918 //------------------------------print_statistics-------------------------------
4919 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
4920 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
4921 volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen
4922 volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest
4923 volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop
4924 void PhaseIdealLoop::print_statistics() {
4925   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates);
4926 }
4927 #endif
4928 
4929 #ifdef ASSERT
4930 // Build a verify-only PhaseIdealLoop, and see that it agrees with "this".
4931 void PhaseIdealLoop::verify() const {
4932   ResourceMark rm;
4933   int old_progress = C->major_progress();
4934   bool success = true;
4935 
4936   PhaseIdealLoop phase_verify(_igvn, this);
4937   if (C->failing_internal()) {
4938     return;
4939   }
4940 
4941   // Verify ctrl and idom of every node.
4942   success &= verify_idom_and_nodes(C->root(), &phase_verify);
4943 
4944   // Verify loop-tree.
4945   success &= _ltree_root->verify_tree(phase_verify._ltree_root);
4946 
4947   assert(success, "VerifyLoopOptimizations failed");
4948 
4949   // Major progress was cleared by creating a verify version of PhaseIdealLoop.
4950   C->restore_major_progress(old_progress);
4951 }
4952 
4953 // Perform a BFS starting at n, through all inputs.
4954 // Call verify_idom and verify_node on all nodes of BFS traversal.
4955 bool PhaseIdealLoop::verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const {
4956   Unique_Node_List worklist;
4957   worklist.push(root);
4958   bool success = true;
4959   for (uint i = 0; i < worklist.size(); i++) {
4960     Node* n = worklist.at(i);
4961     // process node
4962     success &= verify_idom(n, phase_verify);
4963     success &= verify_loop_ctrl(n, phase_verify);
4964     // visit inputs
4965     for (uint j = 0; j < n->req(); j++) {
4966       if (n->in(j) != nullptr) {
4967         worklist.push(n->in(j));
4968       }
4969     }
4970   }
4971   return success;
4972 }
4973 
4974 // Verify dominator structure (IDOM).
4975 bool PhaseIdealLoop::verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const {
4976   // Verify IDOM for all CFG nodes (except root).
4977   if (!n->is_CFG() || n->is_Root()) {
4978     return true; // pass
4979   }
4980 
4981   if (n->_idx >= _idom_size) {
4982     tty->print("CFG Node with no idom: ");
4983     n->dump();
4984     return false; // fail
4985   }
4986 
4987   Node* id = idom_no_update(n);
4988   Node* id_verify = phase_verify->idom_no_update(n);
4989   if (id != id_verify) {
4990     tty->print("Mismatching idom for node: ");
4991     n->dump();
4992     tty->print("  We have idom: ");
4993     id->dump();
4994     tty->print("  Verify has idom: ");
4995     id_verify->dump();
4996     tty->cr();
4997     return false; // fail
4998   }
4999   return true; // pass
5000 }
5001 
5002 // Verify "_loop_or_ctrl": control and loop membership.
5003 //  (0) _loop_or_ctrl[i] == nullptr -> node not reachable.
5004 //  (1) has_ctrl -> check lowest bit. 1 -> data node. 0 -> ctrl node.
5005 //  (2) has_ctrl true: get_ctrl_no_update returns ctrl of data node.
5006 //  (3) has_ctrl false: get_loop_idx returns IdealLoopTree for ctrl node.
5007 bool PhaseIdealLoop::verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const {
5008   const uint i = n->_idx;
5009   // The loop-tree was built from def to use (top-down).
5010   // The verification happens from use to def (bottom-up).
5011   // We may thus find nodes during verification that are not in the loop-tree.
5012   if (_loop_or_ctrl[i] == nullptr || phase_verify->_loop_or_ctrl[i] == nullptr) {
5013     if (_loop_or_ctrl[i] != nullptr || phase_verify->_loop_or_ctrl[i] != nullptr) {
5014       tty->print_cr("Was reachable in only one. this %d, verify %d.",
5015                  _loop_or_ctrl[i] != nullptr, phase_verify->_loop_or_ctrl[i] != nullptr);
5016       n->dump();
5017       return false; // fail
5018     }
5019     // Not reachable for both.
5020     return true; // pass
5021   }
5022 
5023   if (n->is_CFG() == has_ctrl(n)) {
5024     tty->print_cr("Exactly one should be true: %d for is_CFG, %d for has_ctrl.", n->is_CFG(), has_ctrl(n));
5025     n->dump();
5026     return false; // fail
5027   }
5028 
5029   if (has_ctrl(n) != phase_verify->has_ctrl(n)) {
5030     tty->print_cr("Mismatch has_ctrl: %d for this, %d for verify.", has_ctrl(n), phase_verify->has_ctrl(n));
5031     n->dump();
5032     return false; // fail
5033   } else if (has_ctrl(n)) {
5034     assert(phase_verify->has_ctrl(n), "sanity");
5035     // n is a data node.
5036     // Verify that its ctrl is the same.
5037 
5038     // Broken part of VerifyLoopOptimizations (A)
5039     // Reason:
5040     //   BUG, wrong control set for example in
5041     //   PhaseIdealLoop::split_if_with_blocks
5042     //   at "set_ctrl(x, new_ctrl);"
5043     /*
5044     if( _loop_or_ctrl[i] != loop_verify->_loop_or_ctrl[i] &&
5045         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
5046       tty->print("Mismatched control setting for: ");
5047       n->dump();
5048       if( fail++ > 10 ) return;
5049       Node *c = get_ctrl_no_update(n);
5050       tty->print("We have it as: ");
5051       if( c->in(0) ) c->dump();
5052         else tty->print_cr("N%d",c->_idx);
5053       tty->print("Verify thinks: ");
5054       if( loop_verify->has_ctrl(n) )
5055         loop_verify->get_ctrl_no_update(n)->dump();
5056       else
5057         loop_verify->get_loop_idx(n)->dump();
5058       tty->cr();
5059     }
5060     */
5061     return true; // pass
5062   } else {
5063     assert(!phase_verify->has_ctrl(n), "sanity");
5064     // n is a ctrl node.
5065     // Verify that not has_ctrl, and that get_loop_idx is the same.
5066 
5067     // Broken part of VerifyLoopOptimizations (B)
5068     // Reason:
5069     //   NeverBranch node for example is added to loop outside its scope.
5070     //   Once we run build_loop_tree again, it is added to the correct loop.
5071     /*
5072     if (!C->major_progress()) {
5073       // Loop selection can be messed up if we did a major progress
5074       // operation, like split-if.  Do not verify in that case.
5075       IdealLoopTree *us = get_loop_idx(n);
5076       IdealLoopTree *them = loop_verify->get_loop_idx(n);
5077       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
5078         tty->print("Unequals loops for: ");
5079         n->dump();
5080         if( fail++ > 10 ) return;
5081         tty->print("We have it as: ");
5082         us->dump();
5083         tty->print("Verify thinks: ");
5084         them->dump();
5085         tty->cr();
5086       }
5087     }
5088     */
5089     return true; // pass
5090   }
5091 }
5092 
5093 static int compare_tree(IdealLoopTree* const& a, IdealLoopTree* const& b) {
5094   assert(a != nullptr && b != nullptr, "must be");
5095   return a->_head->_idx - b->_head->_idx;
5096 }
5097 
5098 GrowableArray<IdealLoopTree*> IdealLoopTree::collect_sorted_children() const {
5099   GrowableArray<IdealLoopTree*> children;
5100   IdealLoopTree* child = _child;
5101   while (child != nullptr) {
5102     assert(child->_parent == this, "all must be children of this");
5103     children.insert_sorted<compare_tree>(child);
5104     child = child->_next;
5105   }
5106   return children;
5107 }
5108 
5109 // Verify that tree structures match. Because the CFG can change, siblings
5110 // within the loop tree can be reordered. We attempt to deal with that by
5111 // reordering the verify's loop tree if possible.
5112 bool IdealLoopTree::verify_tree(IdealLoopTree* loop_verify) const {
5113   assert(_head == loop_verify->_head, "mismatched loop head");
5114   assert(this->_parent != nullptr || this->_next == nullptr, "is_root_loop implies has_no_sibling");
5115 
5116   // Collect the children
5117   GrowableArray<IdealLoopTree*> children = collect_sorted_children();
5118   GrowableArray<IdealLoopTree*> children_verify = loop_verify->collect_sorted_children();
5119 
5120   bool success = true;
5121 
5122   // Compare the two children lists
5123   for (int i = 0, j = 0; i < children.length() || j < children_verify.length(); ) {
5124     IdealLoopTree* child        = nullptr;
5125     IdealLoopTree* child_verify = nullptr;
5126     // Read from both lists, if possible.
5127     if (i < children.length()) {
5128       child = children.at(i);
5129     }
5130     if (j < children_verify.length()) {
5131       child_verify = children_verify.at(j);
5132     }
5133     assert(child != nullptr || child_verify != nullptr, "must find at least one");
5134     if (child != nullptr && child_verify != nullptr && child->_head != child_verify->_head) {
5135       // We found two non-equal children. Select the smaller one.
5136       if (child->_head->_idx < child_verify->_head->_idx) {
5137         child_verify = nullptr;
5138       } else {
5139         child = nullptr;
5140       }
5141     }
5142     // Process the two children, or potentially log the failure if we only found one.
5143     if (child_verify == nullptr) {
5144       if (child->_irreducible && Compile::current()->major_progress()) {
5145         // Irreducible loops can pick a different header (one of its entries).
5146       } else {
5147         tty->print_cr("We have a loop that verify does not have");
5148         child->dump();
5149         success = false;
5150       }
5151       i++; // step for this
5152     } else if (child == nullptr) {
5153       if (child_verify->_irreducible && Compile::current()->major_progress()) {
5154         // Irreducible loops can pick a different header (one of its entries).
5155       } else if (child_verify->_head->as_Region()->is_in_infinite_subgraph()) {
5156         // Infinite loops do not get attached to the loop-tree on their first visit.
5157         // "this" runs before "loop_verify". It is thus possible that we find the
5158         // infinite loop only for "child_verify". Only finding it with "child" would
5159         // mean that we lost it, which is not ok.
5160       } else {
5161         tty->print_cr("Verify has a loop that we do not have");
5162         child_verify->dump();
5163         success = false;
5164       }
5165       j++; // step for verify
5166     } else {
5167       assert(child->_head == child_verify->_head, "We have both and they are equal");
5168       success &= child->verify_tree(child_verify); // Recursion
5169       i++; // step for this
5170       j++; // step for verify
5171     }
5172   }
5173 
5174   // Broken part of VerifyLoopOptimizations (D)
5175   // Reason:
5176   //   split_if has to update the _tail, if it is modified. But that is done by
5177   //   checking to what loop the iff belongs to. That info can be wrong, and then
5178   //   we do not update the _tail correctly.
5179   /*
5180   Node *tail = _tail;           // Inline a non-updating version of
5181   while( !tail->in(0) )         // the 'tail()' call.
5182     tail = tail->in(1);
5183   assert( tail == loop->_tail, "mismatched loop tail" );
5184   */
5185 
5186   if (_head->is_CountedLoop()) {
5187     CountedLoopNode *cl = _head->as_CountedLoop();
5188 
5189     Node* ctrl     = cl->init_control();
5190     Node* back     = cl->back_control();
5191     assert(ctrl != nullptr && ctrl->is_CFG(), "sane loop in-ctrl");
5192     assert(back != nullptr && back->is_CFG(), "sane loop backedge");
5193     cl->loopexit(); // assert implied
5194   }
5195 
5196   // Broken part of VerifyLoopOptimizations (E)
5197   // Reason:
5198   //   PhaseIdealLoop::split_thru_region creates new nodes for loop that are not added
5199   //   to the loop body. Or maybe they are not added to the correct loop.
5200   //   at "Node* x = n->clone();"
5201   /*
5202   // Innermost loops need to verify loop bodies,
5203   // but only if no 'major_progress'
5204   int fail = 0;
5205   if (!Compile::current()->major_progress() && _child == nullptr) {
5206     for( uint i = 0; i < _body.size(); i++ ) {
5207       Node *n = _body.at(i);
5208       if (n->outcnt() == 0)  continue; // Ignore dead
5209       uint j;
5210       for( j = 0; j < loop->_body.size(); j++ )
5211         if( loop->_body.at(j) == n )
5212           break;
5213       if( j == loop->_body.size() ) { // Not found in loop body
5214         // Last ditch effort to avoid assertion: Its possible that we
5215         // have some users (so outcnt not zero) but are still dead.
5216         // Try to find from root.
5217         if (Compile::current()->root()->find(n->_idx)) {
5218           fail++;
5219           tty->print("We have that verify does not: ");
5220           n->dump();
5221         }
5222       }
5223     }
5224     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
5225       Node *n = loop->_body.at(i2);
5226       if (n->outcnt() == 0)  continue; // Ignore dead
5227       uint j;
5228       for( j = 0; j < _body.size(); j++ )
5229         if( _body.at(j) == n )
5230           break;
5231       if( j == _body.size() ) { // Not found in loop body
5232         // Last ditch effort to avoid assertion: Its possible that we
5233         // have some users (so outcnt not zero) but are still dead.
5234         // Try to find from root.
5235         if (Compile::current()->root()->find(n->_idx)) {
5236           fail++;
5237           tty->print("Verify has that we do not: ");
5238           n->dump();
5239         }
5240       }
5241     }
5242     assert( !fail, "loop body mismatch" );
5243   }
5244   */
5245   return success;
5246 }
5247 #endif
5248 
5249 //------------------------------set_idom---------------------------------------
5250 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
5251   _nesting.check(); // Check if a potential reallocation in the resource arena is safe
5252   uint idx = d->_idx;
5253   if (idx >= _idom_size) {
5254     uint newsize = next_power_of_2(idx);
5255     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
5256     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
5257     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
5258     _idom_size = newsize;
5259   }
5260   _idom[idx] = n;
5261   _dom_depth[idx] = dom_depth;
5262 }
5263 
5264 //------------------------------recompute_dom_depth---------------------------------------
5265 // The dominator tree is constructed with only parent pointers.
5266 // This recomputes the depth in the tree by first tagging all
5267 // nodes as "no depth yet" marker.  The next pass then runs up
5268 // the dom tree from each node marked "no depth yet", and computes
5269 // the depth on the way back down.
5270 void PhaseIdealLoop::recompute_dom_depth() {
5271   uint no_depth_marker = C->unique();
5272   uint i;
5273   // Initialize depth to "no depth yet" and realize all lazy updates
5274   for (i = 0; i < _idom_size; i++) {
5275     // Only indices with a _dom_depth has a Node* or null (otherwise uninitialized).
5276     if (_dom_depth[i] > 0 && _idom[i] != nullptr) {
5277       _dom_depth[i] = no_depth_marker;
5278 
5279       // heal _idom if it has a fwd mapping in _loop_or_ctrl
5280       if (_idom[i]->in(0) == nullptr) {
5281         idom(i);
5282       }
5283     }
5284   }
5285   if (_dom_stk == nullptr) {
5286     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
5287     if (init_size < 10) init_size = 10;
5288     _dom_stk = new GrowableArray<uint>(init_size);
5289   }
5290   // Compute new depth for each node.
5291   for (i = 0; i < _idom_size; i++) {
5292     uint j = i;
5293     // Run up the dom tree to find a node with a depth
5294     while (_dom_depth[j] == no_depth_marker) {
5295       _dom_stk->push(j);
5296       j = _idom[j]->_idx;
5297     }
5298     // Compute the depth on the way back down this tree branch
5299     uint dd = _dom_depth[j] + 1;
5300     while (_dom_stk->length() > 0) {
5301       uint j = _dom_stk->pop();
5302       _dom_depth[j] = dd;
5303       dd++;
5304     }
5305   }
5306 }
5307 
5308 //------------------------------sort-------------------------------------------
5309 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
5310 // loop tree, not the root.
5311 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
5312   if( !innermost ) return loop; // New innermost loop
5313 
5314   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
5315   assert( loop_preorder, "not yet post-walked loop" );
5316   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
5317   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
5318 
5319   // Insert at start of list
5320   while( l ) {                  // Insertion sort based on pre-order
5321     if( l == loop ) return innermost; // Already on list!
5322     int l_preorder = get_preorder(l->_head); // Cache pre-order number
5323     assert( l_preorder, "not yet post-walked l" );
5324     // Check header pre-order number to figure proper nesting
5325     if( loop_preorder > l_preorder )
5326       break;                    // End of insertion
5327     // If headers tie (e.g., shared headers) check tail pre-order numbers.
5328     // Since I split shared headers, you'd think this could not happen.
5329     // BUT: I must first do the preorder numbering before I can discover I
5330     // have shared headers, so the split headers all get the same preorder
5331     // number as the RegionNode they split from.
5332     if( loop_preorder == l_preorder &&
5333         get_preorder(loop->_tail) < get_preorder(l->_tail) )
5334       break;                    // Also check for shared headers (same pre#)
5335     pp = &l->_parent;           // Chain up list
5336     l = *pp;
5337   }
5338   // Link into list
5339   // Point predecessor to me
5340   *pp = loop;
5341   // Point me to successor
5342   IdealLoopTree *p = loop->_parent;
5343   loop->_parent = l;            // Point me to successor
5344   if( p ) sort( p, innermost ); // Insert my parents into list as well
5345   return innermost;
5346 }
5347 
5348 //------------------------------build_loop_tree--------------------------------
5349 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
5350 // bits.  The _loop_or_ctrl[] array is mapped by Node index and holds a null for
5351 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
5352 // tightest enclosing IdealLoopTree for post-walked.
5353 //
5354 // During my forward walk I do a short 1-layer lookahead to see if I can find
5355 // a loop backedge with that doesn't have any work on the backedge.  This
5356 // helps me construct nested loops with shared headers better.
5357 //
5358 // Once I've done the forward recursion, I do the post-work.  For each child
5359 // I check to see if there is a backedge.  Backedges define a loop!  I
5360 // insert an IdealLoopTree at the target of the backedge.
5361 //
5362 // During the post-work I also check to see if I have several children
5363 // belonging to different loops.  If so, then this Node is a decision point
5364 // where control flow can choose to change loop nests.  It is at this
5365 // decision point where I can figure out how loops are nested.  At this
5366 // time I can properly order the different loop nests from my children.
5367 // Note that there may not be any backedges at the decision point!
5368 //
5369 // Since the decision point can be far removed from the backedges, I can't
5370 // order my loops at the time I discover them.  Thus at the decision point
5371 // I need to inspect loop header pre-order numbers to properly nest my
5372 // loops.  This means I need to sort my childrens' loops by pre-order.
5373 // The sort is of size number-of-control-children, which generally limits
5374 // it to size 2 (i.e., I just choose between my 2 target loops).
5375 void PhaseIdealLoop::build_loop_tree() {
5376   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
5377   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
5378   Node *n = C->root();
5379   bltstack.push(n);
5380   int pre_order = 1;
5381   int stack_size;
5382 
5383   while ( ( stack_size = bltstack.length() ) != 0 ) {
5384     n = bltstack.top(); // Leave node on stack
5385     if ( !is_visited(n) ) {
5386       // ---- Pre-pass Work ----
5387       // Pre-walked but not post-walked nodes need a pre_order number.
5388 
5389       set_preorder_visited( n, pre_order ); // set as visited
5390 
5391       // ---- Scan over children ----
5392       // Scan first over control projections that lead to loop headers.
5393       // This helps us find inner-to-outer loops with shared headers better.
5394 
5395       // Scan children's children for loop headers.
5396       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
5397         Node* m = n->raw_out(i);       // Child
5398         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
5399           // Scan over children's children to find loop
5400           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5401             Node* l = m->fast_out(j);
5402             if( is_visited(l) &&       // Been visited?
5403                 !is_postvisited(l) &&  // But not post-visited
5404                 get_preorder(l) < pre_order ) { // And smaller pre-order
5405               // Found!  Scan the DFS down this path before doing other paths
5406               bltstack.push(m);
5407               break;
5408             }
5409           }
5410         }
5411       }
5412       pre_order++;
5413     }
5414     else if ( !is_postvisited(n) ) {
5415       // Note: build_loop_tree_impl() adds out edges on rare occasions,
5416       // such as com.sun.rsasign.am::a.
5417       // For non-recursive version, first, process current children.
5418       // On next iteration, check if additional children were added.
5419       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
5420         Node* u = n->raw_out(k);
5421         if ( u->is_CFG() && !is_visited(u) ) {
5422           bltstack.push(u);
5423         }
5424       }
5425       if ( bltstack.length() == stack_size ) {
5426         // There were no additional children, post visit node now
5427         (void)bltstack.pop(); // Remove node from stack
5428         pre_order = build_loop_tree_impl(n, pre_order);
5429         // Check for bailout
5430         if (C->failing()) {
5431           return;
5432         }
5433         // Check to grow _preorders[] array for the case when
5434         // build_loop_tree_impl() adds new nodes.
5435         check_grow_preorders();
5436       }
5437     }
5438     else {
5439       (void)bltstack.pop(); // Remove post-visited node from stack
5440     }
5441   }
5442   DEBUG_ONLY(verify_regions_in_irreducible_loops();)
5443 }
5444 
5445 //------------------------------build_loop_tree_impl---------------------------
5446 int PhaseIdealLoop::build_loop_tree_impl(Node* n, int pre_order) {
5447   // ---- Post-pass Work ----
5448   // Pre-walked but not post-walked nodes need a pre_order number.
5449 
5450   // Tightest enclosing loop for this Node
5451   IdealLoopTree *innermost = nullptr;
5452 
5453   // For all children, see if any edge is a backedge.  If so, make a loop
5454   // for it.  Then find the tightest enclosing loop for the self Node.
5455   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5456     Node* m = n->fast_out(i);   // Child
5457     if (n == m) continue;      // Ignore control self-cycles
5458     if (!m->is_CFG()) continue;// Ignore non-CFG edges
5459 
5460     IdealLoopTree *l;           // Child's loop
5461     if (!is_postvisited(m)) {  // Child visited but not post-visited?
5462       // Found a backedge
5463       assert(get_preorder(m) < pre_order, "should be backedge");
5464       // Check for the RootNode, which is already a LoopNode and is allowed
5465       // to have multiple "backedges".
5466       if (m == C->root()) {     // Found the root?
5467         l = _ltree_root;        // Root is the outermost LoopNode
5468       } else {                  // Else found a nested loop
5469         // Insert a LoopNode to mark this loop.
5470         l = new IdealLoopTree(this, m, n);
5471       } // End of Else found a nested loop
5472       if (!has_loop(m)) {        // If 'm' does not already have a loop set
5473         set_loop(m, l);         // Set loop header to loop now
5474       }
5475     } else {                    // Else not a nested loop
5476       if (!_loop_or_ctrl[m->_idx]) continue; // Dead code has no loop
5477       IdealLoopTree* m_loop = get_loop(m);
5478       l = m_loop;          // Get previously determined loop
5479       // If successor is header of a loop (nest), move up-loop till it
5480       // is a member of some outer enclosing loop.  Since there are no
5481       // shared headers (I've split them already) I only need to go up
5482       // at most 1 level.
5483       while (l && l->_head == m) { // Successor heads loop?
5484         l = l->_parent;         // Move up 1 for me
5485       }
5486       // If this loop is not properly parented, then this loop
5487       // has no exit path out, i.e. its an infinite loop.
5488       if (!l) {
5489         // Make loop "reachable" from root so the CFG is reachable.  Basically
5490         // insert a bogus loop exit that is never taken.  'm', the loop head,
5491         // points to 'n', one (of possibly many) fall-in paths.  There may be
5492         // many backedges as well.
5493 
5494         if (!_verify_only) {
5495           // Insert the NeverBranch between 'm' and it's control user.
5496           NeverBranchNode *iff = new NeverBranchNode( m );
5497           _igvn.register_new_node_with_optimizer(iff);
5498           set_loop(iff, m_loop);
5499           Node *if_t = new CProjNode( iff, 0 );
5500           _igvn.register_new_node_with_optimizer(if_t);
5501           set_loop(if_t, m_loop);
5502 
5503           Node* cfg = nullptr;       // Find the One True Control User of m
5504           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5505             Node* x = m->fast_out(j);
5506             if (x->is_CFG() && x != m && x != iff)
5507               { cfg = x; break; }
5508           }
5509           assert(cfg != nullptr, "must find the control user of m");
5510           uint k = 0;             // Probably cfg->in(0)
5511           while( cfg->in(k) != m ) k++; // But check in case cfg is a Region
5512           _igvn.replace_input_of(cfg, k, if_t); // Now point to NeverBranch
5513 
5514           // Now create the never-taken loop exit
5515           Node *if_f = new CProjNode( iff, 1 );
5516           _igvn.register_new_node_with_optimizer(if_f);
5517           set_loop(if_f, _ltree_root);
5518           // Find frame ptr for Halt.  Relies on the optimizer
5519           // V-N'ing.  Easier and quicker than searching through
5520           // the program structure.
5521           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
5522           _igvn.register_new_node_with_optimizer(frame);
5523           // Halt & Catch Fire
5524           Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached");
5525           _igvn.register_new_node_with_optimizer(halt);
5526           set_loop(halt, _ltree_root);
5527           _igvn.add_input_to(C->root(), halt);
5528         }
5529         set_loop(C->root(), _ltree_root);
5530         // move to outer most loop with same header
5531         l = m_loop;
5532         while (true) {
5533           IdealLoopTree* next = l->_parent;
5534           if (next == nullptr || next->_head != m) {
5535             break;
5536           }
5537           l = next;
5538         }
5539         // properly insert infinite loop in loop tree
5540         sort(_ltree_root, l);
5541         // fix child link from parent
5542         IdealLoopTree* p = l->_parent;
5543         l->_next = p->_child;
5544         p->_child = l;
5545         // code below needs enclosing loop
5546         l = l->_parent;
5547       }
5548     }
5549     if (is_postvisited(l->_head)) {
5550       // We are currently visiting l, but its head has already been post-visited.
5551       // l is irreducible: we just found a second entry m.
5552       _has_irreducible_loops = true;
5553       RegionNode* secondary_entry = m->as_Region();
5554       DEBUG_ONLY(secondary_entry->verify_can_be_irreducible_entry();)
5555 
5556       // Walk up the loop-tree, mark all loops that are already post-visited as irreducible
5557       // Since m is a secondary entry to them all.
5558       while( is_postvisited(l->_head) ) {
5559         l->_irreducible = 1; // = true
5560         RegionNode* head = l->_head->as_Region();
5561         DEBUG_ONLY(head->verify_can_be_irreducible_entry();)
5562         l = l->_parent;
5563         // Check for bad CFG here to prevent crash, and bailout of compile
5564         if (l == nullptr) {
5565 #ifndef PRODUCT
5566           if (TraceLoopOpts) {
5567             tty->print_cr("bailout: unhandled CFG: infinite irreducible loop");
5568             m->dump();
5569           }
5570 #endif
5571           // This is a rare case that we do not want to handle in C2.
5572           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
5573           return pre_order;
5574         }
5575       }
5576     }
5577     if (!_verify_only) {
5578       C->set_has_irreducible_loop(_has_irreducible_loops);
5579     }
5580 
5581     // This Node might be a decision point for loops.  It is only if
5582     // it's children belong to several different loops.  The sort call
5583     // does a trivial amount of work if there is only 1 child or all
5584     // children belong to the same loop.  If however, the children
5585     // belong to different loops, the sort call will properly set the
5586     // _parent pointers to show how the loops nest.
5587     //
5588     // In any case, it returns the tightest enclosing loop.
5589     innermost = sort( l, innermost );
5590   }
5591 
5592   // Def-use info will have some dead stuff; dead stuff will have no
5593   // loop decided on.
5594 
5595   // Am I a loop header?  If so fix up my parent's child and next ptrs.
5596   if( innermost && innermost->_head == n ) {
5597     assert( get_loop(n) == innermost, "" );
5598     IdealLoopTree *p = innermost->_parent;
5599     IdealLoopTree *l = innermost;
5600     while (p && l->_head == n) {
5601       l->_next = p->_child;     // Put self on parents 'next child'
5602       p->_child = l;            // Make self as first child of parent
5603       l = p;                    // Now walk up the parent chain
5604       p = l->_parent;
5605     }
5606   } else {
5607     // Note that it is possible for a LoopNode to reach here, if the
5608     // backedge has been made unreachable (hence the LoopNode no longer
5609     // denotes a Loop, and will eventually be removed).
5610 
5611     // Record tightest enclosing loop for self.  Mark as post-visited.
5612     set_loop(n, innermost);
5613     // Also record has_call flag early on
5614     if (innermost) {
5615       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
5616         // Do not count uncommon calls
5617         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
5618           Node *iff = n->in(0)->in(0);
5619           // No any calls for vectorized loops.
5620           if (C->do_superword() ||
5621               !iff->is_If() ||
5622               (n->in(0)->Opcode() == Op_IfFalse && (1.0 - iff->as_If()->_prob) >= 0.01) ||
5623               iff->as_If()->_prob >= 0.01) {
5624             innermost->_has_call = 1;
5625           }
5626         }
5627       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
5628         // Disable loop optimizations if the loop has a scalar replaceable
5629         // allocation. This disabling may cause a potential performance lost
5630         // if the allocation is not eliminated for some reason.
5631         innermost->_allow_optimizations = false;
5632         innermost->_has_call = 1; // = true
5633       } else if (n->Opcode() == Op_SafePoint) {
5634         // Record all safepoints in this loop.
5635         if (innermost->_safepts == nullptr) innermost->_safepts = new Node_List();
5636         innermost->_safepts->push(n);
5637       }
5638     }
5639   }
5640 
5641   // Flag as post-visited now
5642   set_postvisited(n);
5643   return pre_order;
5644 }
5645 
5646 #ifdef ASSERT
5647 //--------------------------verify_regions_in_irreducible_loops----------------
5648 // Iterate down from Root through CFG, verify for every region:
5649 // if it is in an irreducible loop it must be marked as such
5650 void PhaseIdealLoop::verify_regions_in_irreducible_loops() {
5651   ResourceMark rm;
5652   if (!_has_irreducible_loops) {
5653     // last build_loop_tree has not found any irreducible loops
5654     // hence no region has to be marked is_in_irreduible_loop
5655     return;
5656   }
5657 
5658   RootNode* root = C->root();
5659   Unique_Node_List worklist; // visit all nodes once
5660   worklist.push(root);
5661   bool failure = false;
5662   for (uint i = 0; i < worklist.size(); i++) {
5663     Node* n = worklist.at(i);
5664     if (n->is_Region()) {
5665       RegionNode* region = n->as_Region();
5666       if (is_in_irreducible_loop(region) &&
5667           region->loop_status() == RegionNode::LoopStatus::Reducible) {
5668         failure = true;
5669         tty->print("irreducible! ");
5670         region->dump();
5671       }
5672     }
5673     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
5674       Node* use = n->fast_out(j);
5675       if (use->is_CFG()) {
5676         worklist.push(use); // push if was not pushed before
5677       }
5678     }
5679   }
5680   assert(!failure, "region in irreducible loop was marked as reducible");
5681 }
5682 
5683 //---------------------------is_in_irreducible_loop-------------------------
5684 // Analogous to ciTypeFlow::Block::is_in_irreducible_loop
5685 bool PhaseIdealLoop::is_in_irreducible_loop(RegionNode* region) {
5686   if (!_has_irreducible_loops) {
5687     return false; // no irreducible loop in graph
5688   }
5689   IdealLoopTree* l = get_loop(region); // l: innermost loop that contains region
5690   do {
5691     if (l->_irreducible) {
5692       return true; // found it
5693     }
5694     if (l == _ltree_root) {
5695       return false; // reached root, terimnate
5696     }
5697     l = l->_parent;
5698   } while (l != nullptr);
5699   assert(region->is_in_infinite_subgraph(), "must be in infinite subgraph");
5700   // We have "l->_parent == nullptr", which happens only for infinite loops,
5701   // where no parent is attached to the loop. We did not find any irreducible
5702   // loop from this block out to lp. Thus lp only has one entry, and no exit
5703   // (it is infinite and reducible). We can always rewrite an infinite loop
5704   // that is nested inside other loops:
5705   // while(condition) { infinite_loop; }
5706   // with an equivalent program where the infinite loop is an outermost loop
5707   // that is not nested in any loop:
5708   // while(condition) { break; } infinite_loop;
5709   // Thus, we can understand lp as an outermost loop, and can terminate and
5710   // conclude: this block is in no irreducible loop.
5711   return false;
5712 }
5713 #endif
5714 
5715 //------------------------------build_loop_early-------------------------------
5716 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
5717 // First pass computes the earliest controlling node possible.  This is the
5718 // controlling input with the deepest dominating depth.
5719 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
5720   while (worklist.size() != 0) {
5721     // Use local variables nstack_top_n & nstack_top_i to cache values
5722     // on nstack's top.
5723     Node *nstack_top_n = worklist.pop();
5724     uint  nstack_top_i = 0;
5725 //while_nstack_nonempty:
5726     while (true) {
5727       // Get parent node and next input's index from stack's top.
5728       Node  *n = nstack_top_n;
5729       uint   i = nstack_top_i;
5730       uint cnt = n->req(); // Count of inputs
5731       if (i == 0) {        // Pre-process the node.
5732         if( has_node(n) &&            // Have either loop or control already?
5733             !has_ctrl(n) ) {          // Have loop picked out already?
5734           // During "merge_many_backedges" we fold up several nested loops
5735           // into a single loop.  This makes the members of the original
5736           // loop bodies pointing to dead loops; they need to move up
5737           // to the new UNION'd larger loop.  I set the _head field of these
5738           // dead loops to null and the _parent field points to the owning
5739           // loop.  Shades of UNION-FIND algorithm.
5740           IdealLoopTree *ilt;
5741           while( !(ilt = get_loop(n))->_head ) {
5742             // Normally I would use a set_loop here.  But in this one special
5743             // case, it is legal (and expected) to change what loop a Node
5744             // belongs to.
5745             _loop_or_ctrl.map(n->_idx, (Node*)(ilt->_parent));
5746           }
5747           // Remove safepoints ONLY if I've already seen I don't need one.
5748           // (the old code here would yank a 2nd safepoint after seeing a
5749           // first one, even though the 1st did not dominate in the loop body
5750           // and thus could be avoided indefinitely)
5751           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
5752               is_deleteable_safept(n)) {
5753             Node *in = n->in(TypeFunc::Control);
5754             lazy_replace(n,in);       // Pull safepoint now
5755             if (ilt->_safepts != nullptr) {
5756               ilt->_safepts->yank(n);
5757             }
5758             // Carry on with the recursion "as if" we are walking
5759             // only the control input
5760             if( !visited.test_set( in->_idx ) ) {
5761               worklist.push(in);      // Visit this guy later, using worklist
5762             }
5763             // Get next node from nstack:
5764             // - skip n's inputs processing by setting i > cnt;
5765             // - we also will not call set_early_ctrl(n) since
5766             //   has_node(n) == true (see the condition above).
5767             i = cnt + 1;
5768           }
5769         }
5770       } // if (i == 0)
5771 
5772       // Visit all inputs
5773       bool done = true;       // Assume all n's inputs will be processed
5774       while (i < cnt) {
5775         Node *in = n->in(i);
5776         ++i;
5777         if (in == nullptr) continue;
5778         if (in->pinned() && !in->is_CFG())
5779           set_ctrl(in, in->in(0));
5780         int is_visited = visited.test_set( in->_idx );
5781         if (!has_node(in)) {  // No controlling input yet?
5782           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
5783           assert( !is_visited, "visit only once" );
5784           nstack.push(n, i);  // Save parent node and next input's index.
5785           nstack_top_n = in;  // Process current input now.
5786           nstack_top_i = 0;
5787           done = false;       // Not all n's inputs processed.
5788           break; // continue while_nstack_nonempty;
5789         } else if (!is_visited) {
5790           // This guy has a location picked out for him, but has not yet
5791           // been visited.  Happens to all CFG nodes, for instance.
5792           // Visit him using the worklist instead of recursion, to break
5793           // cycles.  Since he has a location already we do not need to
5794           // find his location before proceeding with the current Node.
5795           worklist.push(in);  // Visit this guy later, using worklist
5796         }
5797       }
5798       if (done) {
5799         // All of n's inputs have been processed, complete post-processing.
5800 
5801         // Compute earliest point this Node can go.
5802         // CFG, Phi, pinned nodes already know their controlling input.
5803         if (!has_node(n)) {
5804           // Record earliest legal location
5805           set_early_ctrl(n, false);
5806         }
5807         if (nstack.is_empty()) {
5808           // Finished all nodes on stack.
5809           // Process next node on the worklist.
5810           break;
5811         }
5812         // Get saved parent node and next input's index.
5813         nstack_top_n = nstack.node();
5814         nstack_top_i = nstack.index();
5815         nstack.pop();
5816       }
5817     } // while (true)
5818   }
5819 }
5820 
5821 //------------------------------dom_lca_internal--------------------------------
5822 // Pair-wise LCA
5823 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
5824   if( !n1 ) return n2;          // Handle null original LCA
5825   assert( n1->is_CFG(), "" );
5826   assert( n2->is_CFG(), "" );
5827   // find LCA of all uses
5828   uint d1 = dom_depth(n1);
5829   uint d2 = dom_depth(n2);
5830   while (n1 != n2) {
5831     if (d1 > d2) {
5832       n1 =      idom(n1);
5833       d1 = dom_depth(n1);
5834     } else if (d1 < d2) {
5835       n2 =      idom(n2);
5836       d2 = dom_depth(n2);
5837     } else {
5838       // Here d1 == d2.  Due to edits of the dominator-tree, sections
5839       // of the tree might have the same depth.  These sections have
5840       // to be searched more carefully.
5841 
5842       // Scan up all the n1's with equal depth, looking for n2.
5843       Node *t1 = idom(n1);
5844       while (dom_depth(t1) == d1) {
5845         if (t1 == n2)  return n2;
5846         t1 = idom(t1);
5847       }
5848       // Scan up all the n2's with equal depth, looking for n1.
5849       Node *t2 = idom(n2);
5850       while (dom_depth(t2) == d2) {
5851         if (t2 == n1)  return n1;
5852         t2 = idom(t2);
5853       }
5854       // Move up to a new dominator-depth value as well as up the dom-tree.
5855       n1 = t1;
5856       n2 = t2;
5857       d1 = dom_depth(n1);
5858       d2 = dom_depth(n2);
5859     }
5860   }
5861   return n1;
5862 }
5863 
5864 //------------------------------compute_idom-----------------------------------
5865 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
5866 // IDOMs are correct.
5867 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
5868   assert( region->is_Region(), "" );
5869   Node *LCA = nullptr;
5870   for( uint i = 1; i < region->req(); i++ ) {
5871     if( region->in(i) != C->top() )
5872       LCA = dom_lca( LCA, region->in(i) );
5873   }
5874   return LCA;
5875 }
5876 
5877 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
5878   bool had_error = false;
5879 #ifdef ASSERT
5880   if (early != C->root()) {
5881     // Make sure that there's a dominance path from LCA to early
5882     Node* d = LCA;
5883     while (d != early) {
5884       if (d == C->root()) {
5885         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
5886         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
5887         had_error = true;
5888         break;
5889       }
5890       d = idom(d);
5891     }
5892   }
5893 #endif
5894   return had_error;
5895 }
5896 
5897 
5898 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
5899   // Compute LCA over list of uses
5900   bool had_error = false;
5901   Node *LCA = nullptr;
5902   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
5903     Node* c = n->fast_out(i);
5904     if (_loop_or_ctrl[c->_idx] == nullptr)
5905       continue;                 // Skip the occasional dead node
5906     if( c->is_Phi() ) {         // For Phis, we must land above on the path
5907       for( uint j=1; j<c->req(); j++ ) {// For all inputs
5908         if( c->in(j) == n ) {   // Found matching input?
5909           Node *use = c->in(0)->in(j);
5910           if (_verify_only && use->is_top()) continue;
5911           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
5912           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
5913         }
5914       }
5915     } else {
5916       // For CFG data-users, use is in the block just prior
5917       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
5918       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
5919       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
5920     }
5921   }
5922   assert(!had_error, "bad dominance");
5923   return LCA;
5924 }
5925 
5926 // Check the shape of the graph at the loop entry. In some cases,
5927 // the shape of the graph does not match the shape outlined below.
5928 // That is caused by the Opaque1 node "protecting" the shape of
5929 // the graph being removed by, for example, the IGVN performed
5930 // in PhaseIdealLoop::build_and_optimize().
5931 //
5932 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
5933 // loop unswitching, and IGVN, or a combination of them) can freely change
5934 // the graph's shape. As a result, the graph shape outlined below cannot
5935 // be guaranteed anymore.
5936 Node* CountedLoopNode::is_canonical_loop_entry() {
5937   if (!is_main_loop() && !is_post_loop()) {
5938     return nullptr;
5939   }
5940   Node* ctrl = skip_assertion_predicates_with_halt();
5941 
5942   if (ctrl == nullptr || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
5943     return nullptr;
5944   }
5945   Node* iffm = ctrl->in(0);
5946   if (iffm == nullptr || iffm->Opcode() != Op_If) {
5947     return nullptr;
5948   }
5949   Node* bolzm = iffm->in(1);
5950   if (bolzm == nullptr || !bolzm->is_Bool()) {
5951     return nullptr;
5952   }
5953   Node* cmpzm = bolzm->in(1);
5954   if (cmpzm == nullptr || !cmpzm->is_Cmp()) {
5955     return nullptr;
5956   }
5957 
5958   uint input = is_main_loop() ? 2 : 1;
5959   if (input >= cmpzm->req() || cmpzm->in(input) == nullptr) {
5960     return nullptr;
5961   }
5962   bool res = cmpzm->in(input)->Opcode() == Op_OpaqueZeroTripGuard;
5963 #ifdef ASSERT
5964   bool found_opaque = false;
5965   for (uint i = 1; i < cmpzm->req(); i++) {
5966     Node* opnd = cmpzm->in(i);
5967     if (opnd && opnd->is_Opaque1()) {
5968       found_opaque = true;
5969       break;
5970     }
5971   }
5972   assert(found_opaque == res, "wrong pattern");
5973 #endif
5974   return res ? cmpzm->in(input) : nullptr;
5975 }
5976 
5977 // Find pre loop end from main loop. Returns nullptr if none.
5978 CountedLoopEndNode* CountedLoopNode::find_pre_loop_end() {
5979   assert(is_main_loop(), "Can only find pre-loop from main-loop");
5980   // The loop cannot be optimized if the graph shape at the loop entry is
5981   // inappropriate.
5982   if (is_canonical_loop_entry() == nullptr) {
5983     return nullptr;
5984   }
5985 
5986   Node* p_f = skip_assertion_predicates_with_halt()->in(0)->in(0);
5987   if (!p_f->is_IfFalse() || !p_f->in(0)->is_CountedLoopEnd()) {
5988     return nullptr;
5989   }
5990   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
5991   CountedLoopNode* loop_node = pre_end->loopnode();
5992   if (loop_node == nullptr || !loop_node->is_pre_loop()) {
5993     return nullptr;
5994   }
5995   return pre_end;
5996 }
5997 
5998 //------------------------------get_late_ctrl----------------------------------
5999 // Compute latest legal control.
6000 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
6001   assert(early != nullptr, "early control should not be null");
6002 
6003   Node* LCA = compute_lca_of_uses(n, early);
6004 #ifdef ASSERT
6005   if (LCA == C->root() && LCA != early) {
6006     // def doesn't dominate uses so print some useful debugging output
6007     compute_lca_of_uses(n, early, true);
6008   }
6009 #endif
6010 
6011   if (n->is_Load() && LCA != early) {
6012     LCA = get_late_ctrl_with_anti_dep(n->as_Load(), early, LCA);
6013   }
6014 
6015   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
6016   return LCA;
6017 }
6018 
6019 // if this is a load, check for anti-dependent stores
6020 // We use a conservative algorithm to identify potential interfering
6021 // instructions and for rescheduling the load.  The users of the memory
6022 // input of this load are examined.  Any use which is not a load and is
6023 // dominated by early is considered a potentially interfering store.
6024 // This can produce false positives.
6025 Node* PhaseIdealLoop::get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA) {
6026   int load_alias_idx = C->get_alias_index(n->adr_type());
6027   if (C->alias_type(load_alias_idx)->is_rewritable()) {
6028     Unique_Node_List worklist;
6029 
6030     Node* mem = n->in(MemNode::Memory);
6031     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
6032       Node* s = mem->fast_out(i);
6033       worklist.push(s);
6034     }
6035     for (uint i = 0; i < worklist.size() && LCA != early; i++) {
6036       Node* s = worklist.at(i);
6037       if (s->is_Load() || s->Opcode() == Op_SafePoint ||
6038           (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) ||
6039           s->is_Phi()) {
6040         continue;
6041       } else if (s->is_MergeMem()) {
6042         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6043           Node* s1 = s->fast_out(i);
6044           worklist.push(s1);
6045         }
6046       } else {
6047         Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
6048         assert(sctrl != nullptr || !s->is_reachable_from_root(), "must have control");
6049         if (sctrl != nullptr && !sctrl->is_top() && is_dominator(early, sctrl)) {
6050           const TypePtr* adr_type = s->adr_type();
6051           if (s->is_ArrayCopy()) {
6052             // Copy to known instance needs destination type to test for aliasing
6053             const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type;
6054             if (dest_type != TypeOopPtr::BOTTOM) {
6055               adr_type = dest_type;
6056             }
6057           }
6058           if (C->can_alias(adr_type, load_alias_idx)) {
6059             LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
6060           } else if (s->is_CFG() && s->is_Multi()) {
6061             // Look for the memory use of s (that is the use of its memory projection)
6062             for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6063               Node* s1 = s->fast_out(i);
6064               assert(s1->is_Proj(), "projection expected");
6065               if (_igvn.type(s1) == Type::MEMORY) {
6066                 for (DUIterator_Fast jmax, j = s1->fast_outs(jmax); j < jmax; j++) {
6067                   Node* s2 = s1->fast_out(j);
6068                   worklist.push(s2);
6069                 }
6070               }
6071             }
6072           }
6073         }
6074       }
6075     }
6076     // For Phis only consider Region's inputs that were reached by following the memory edges
6077     if (LCA != early) {
6078       for (uint i = 0; i < worklist.size(); i++) {
6079         Node* s = worklist.at(i);
6080         if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) {
6081           Node* r = s->in(0);
6082           for (uint j = 1; j < s->req(); j++) {
6083             Node* in = s->in(j);
6084             Node* r_in = r->in(j);
6085             // We can't reach any node from a Phi because we don't enqueue Phi's uses above
6086             if (((worklist.member(in) && !in->is_Phi()) || in == mem) && is_dominator(early, r_in)) {
6087               LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n);
6088             }
6089           }
6090         }
6091       }
6092     }
6093   }
6094   return LCA;
6095 }
6096 
6097 // Is CFG node 'dominator' dominating node 'n'?
6098 bool PhaseIdealLoop::is_dominator(Node* dominator, Node* n) {
6099   if (dominator == n) {
6100     return true;
6101   }
6102   assert(dominator->is_CFG() && n->is_CFG(), "must have CFG nodes");
6103   uint dd = dom_depth(dominator);
6104   while (dom_depth(n) >= dd) {
6105     if (n == dominator) {
6106       return true;
6107     }
6108     n = idom(n);
6109   }
6110   return false;
6111 }
6112 
6113 // Is CFG node 'dominator' strictly dominating node 'n'?
6114 bool PhaseIdealLoop::is_strict_dominator(Node* dominator, Node* n) {
6115   return dominator != n && is_dominator(dominator, n);
6116 }
6117 
6118 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
6119 // Pair-wise LCA with tags.
6120 // Tag each index with the node 'tag' currently being processed
6121 // before advancing up the dominator chain using idom().
6122 // Later calls that find a match to 'tag' know that this path has already
6123 // been considered in the current LCA (which is input 'n1' by convention).
6124 // Since get_late_ctrl() is only called once for each node, the tag array
6125 // does not need to be cleared between calls to get_late_ctrl().
6126 // Algorithm trades a larger constant factor for better asymptotic behavior
6127 //
6128 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal(Node *n1, Node *n2, Node *tag_node) {
6129   uint d1 = dom_depth(n1);
6130   uint d2 = dom_depth(n2);
6131   jlong tag = tag_node->_idx | (((jlong)_dom_lca_tags_round) << 32);
6132 
6133   do {
6134     if (d1 > d2) {
6135       // current lca is deeper than n2
6136       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6137       n1 =      idom(n1);
6138       d1 = dom_depth(n1);
6139     } else if (d1 < d2) {
6140       // n2 is deeper than current lca
6141       jlong memo = _dom_lca_tags.at_grow(n2->_idx, 0);
6142       if (memo == tag) {
6143         return n1;    // Return the current LCA
6144       }
6145       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6146       n2 =      idom(n2);
6147       d2 = dom_depth(n2);
6148     } else {
6149       // Here d1 == d2.  Due to edits of the dominator-tree, sections
6150       // of the tree might have the same depth.  These sections have
6151       // to be searched more carefully.
6152 
6153       // Scan up all the n1's with equal depth, looking for n2.
6154       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6155       Node *t1 = idom(n1);
6156       while (dom_depth(t1) == d1) {
6157         if (t1 == n2)  return n2;
6158         _dom_lca_tags.at_put_grow(t1->_idx, tag);
6159         t1 = idom(t1);
6160       }
6161       // Scan up all the n2's with equal depth, looking for n1.
6162       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6163       Node *t2 = idom(n2);
6164       while (dom_depth(t2) == d2) {
6165         if (t2 == n1)  return n1;
6166         _dom_lca_tags.at_put_grow(t2->_idx, tag);
6167         t2 = idom(t2);
6168       }
6169       // Move up to a new dominator-depth value as well as up the dom-tree.
6170       n1 = t1;
6171       n2 = t2;
6172       d1 = dom_depth(n1);
6173       d2 = dom_depth(n2);
6174     }
6175   } while (n1 != n2);
6176   return n1;
6177 }
6178 
6179 //------------------------------init_dom_lca_tags------------------------------
6180 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
6181 // Intended use does not involve any growth for the array, so it could
6182 // be of fixed size.
6183 void PhaseIdealLoop::init_dom_lca_tags() {
6184   uint limit = C->unique() + 1;
6185   _dom_lca_tags.at_grow(limit, 0);
6186   _dom_lca_tags_round = 0;
6187 #ifdef ASSERT
6188   for (uint i = 0; i < limit; ++i) {
6189     assert(_dom_lca_tags.at(i) == 0, "Must be distinct from each node pointer");
6190   }
6191 #endif // ASSERT
6192 }
6193 
6194 //------------------------------build_loop_late--------------------------------
6195 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6196 // Second pass finds latest legal placement, and ideal loop placement.
6197 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
6198   while (worklist.size() != 0) {
6199     Node *n = worklist.pop();
6200     // Only visit once
6201     if (visited.test_set(n->_idx)) continue;
6202     uint cnt = n->outcnt();
6203     uint   i = 0;
6204     while (true) {
6205       assert(_loop_or_ctrl[n->_idx], "no dead nodes");
6206       // Visit all children
6207       if (i < cnt) {
6208         Node* use = n->raw_out(i);
6209         ++i;
6210         // Check for dead uses.  Aggressively prune such junk.  It might be
6211         // dead in the global sense, but still have local uses so I cannot
6212         // easily call 'remove_dead_node'.
6213         if (_loop_or_ctrl[use->_idx] != nullptr || use->is_top()) { // Not dead?
6214           // Due to cycles, we might not hit the same fixed point in the verify
6215           // pass as we do in the regular pass.  Instead, visit such phis as
6216           // simple uses of the loop head.
6217           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
6218             if( !visited.test(use->_idx) )
6219               worklist.push(use);
6220           } else if( !visited.test_set(use->_idx) ) {
6221             nstack.push(n, i); // Save parent and next use's index.
6222             n   = use;         // Process all children of current use.
6223             cnt = use->outcnt();
6224             i   = 0;
6225           }
6226         } else {
6227           // Do not visit around the backedge of loops via data edges.
6228           // push dead code onto a worklist
6229           _deadlist.push(use);
6230         }
6231       } else {
6232         // All of n's children have been processed, complete post-processing.
6233         build_loop_late_post(n);
6234         if (C->failing()) { return; }
6235         if (nstack.is_empty()) {
6236           // Finished all nodes on stack.
6237           // Process next node on the worklist.
6238           break;
6239         }
6240         // Get saved parent node and next use's index. Visit the rest of uses.
6241         n   = nstack.node();
6242         cnt = n->outcnt();
6243         i   = nstack.index();
6244         nstack.pop();
6245       }
6246     }
6247   }
6248 }
6249 
6250 // Verify that no data node is scheduled in the outer loop of a strip
6251 // mined loop.
6252 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
6253 #ifdef ASSERT
6254   if (get_loop(least)->_nest == 0) {
6255     return;
6256   }
6257   IdealLoopTree* loop = get_loop(least);
6258   Node* head = loop->_head;
6259   if (head->is_OuterStripMinedLoop() &&
6260       // Verification can't be applied to fully built strip mined loops
6261       head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) {
6262     Node* sfpt = head->as_Loop()->outer_safepoint();
6263     ResourceMark rm;
6264     Unique_Node_List wq;
6265     wq.push(sfpt);
6266     for (uint i = 0; i < wq.size(); i++) {
6267       Node *m = wq.at(i);
6268       for (uint i = 1; i < m->req(); i++) {
6269         Node* nn = m->in(i);
6270         if (nn == n) {
6271           return;
6272         }
6273         if (nn != nullptr && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
6274           wq.push(nn);
6275         }
6276       }
6277     }
6278     ShouldNotReachHere();
6279   }
6280 #endif
6281 }
6282 
6283 
6284 //------------------------------build_loop_late_post---------------------------
6285 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6286 // Second pass finds latest legal placement, and ideal loop placement.
6287 void PhaseIdealLoop::build_loop_late_post(Node *n) {
6288   build_loop_late_post_work(n, true);
6289 }
6290 
6291 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) {
6292 
6293   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
6294     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
6295   }
6296 
6297 #ifdef ASSERT
6298   if (_verify_only && !n->is_CFG()) {
6299     // Check def-use domination.
6300     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
6301   }
6302 #endif
6303 
6304   // CFG and pinned nodes already handled
6305   if( n->in(0) ) {
6306     if( n->in(0)->is_top() ) return; // Dead?
6307 
6308     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
6309     // _must_ be pinned (they have to observe their control edge of course).
6310     // Unlike Stores (which modify an unallocable resource, the memory
6311     // state), Mods/Loads can float around.  So free them up.
6312     switch( n->Opcode() ) {
6313     case Op_DivI:
6314     case Op_DivF:
6315     case Op_DivD:
6316     case Op_ModI:
6317     case Op_ModF:
6318     case Op_ModD:
6319     case Op_LoadB:              // Same with Loads; they can sink
6320     case Op_LoadUB:             // during loop optimizations.
6321     case Op_LoadUS:
6322     case Op_LoadD:
6323     case Op_LoadF:
6324     case Op_LoadI:
6325     case Op_LoadKlass:
6326     case Op_LoadNKlass:
6327     case Op_LoadL:
6328     case Op_LoadS:
6329     case Op_LoadP:
6330     case Op_LoadN:
6331     case Op_LoadRange:
6332     case Op_LoadD_unaligned:
6333     case Op_LoadL_unaligned:
6334     case Op_StrComp:            // Does a bunch of load-like effects
6335     case Op_StrEquals:
6336     case Op_StrIndexOf:
6337     case Op_StrIndexOfChar:
6338     case Op_AryEq:
6339     case Op_VectorizedHashCode:
6340     case Op_CountPositives:
6341       pinned = false;
6342     }
6343     if (n->is_CMove() || n->is_ConstraintCast()) {
6344       pinned = false;
6345     }
6346     if( pinned ) {
6347       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
6348       if( !chosen_loop->_child )       // Inner loop?
6349         chosen_loop->_body.push(n); // Collect inner loops
6350       return;
6351     }
6352   } else {                      // No slot zero
6353     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
6354       _loop_or_ctrl.map(n->_idx,nullptr); // No block setting, it's globally dead
6355       return;
6356     }
6357     assert(!n->is_CFG() || n->outcnt() == 0, "");
6358   }
6359 
6360   // Do I have a "safe range" I can select over?
6361   Node *early = get_ctrl(n);// Early location already computed
6362 
6363   // Compute latest point this Node can go
6364   Node *LCA = get_late_ctrl( n, early );
6365   // LCA is null due to uses being dead
6366   if( LCA == nullptr ) {
6367 #ifdef ASSERT
6368     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
6369       assert(_loop_or_ctrl[n->out(i1)->_idx] == nullptr, "all uses must also be dead");
6370     }
6371 #endif
6372     _loop_or_ctrl.map(n->_idx, nullptr); // This node is useless
6373     _deadlist.push(n);
6374     return;
6375   }
6376   assert(LCA != nullptr && !LCA->is_top(), "no dead nodes");
6377 
6378   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
6379   Node *least = legal;          // Best legal position so far
6380   while( early != legal ) {     // While not at earliest legal
6381     if (legal->is_Start() && !early->is_Root()) {
6382 #ifdef ASSERT
6383       // Bad graph. Print idom path and fail.
6384       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
6385       assert(false, "Bad graph detected in build_loop_late");
6386 #endif
6387       C->record_method_not_compilable("Bad graph detected in build_loop_late");
6388       return;
6389     }
6390     // Find least loop nesting depth
6391     legal = idom(legal);        // Bump up the IDOM tree
6392     // Check for lower nesting depth
6393     if( get_loop(legal)->_nest < get_loop(least)->_nest )
6394       least = legal;
6395   }
6396   assert(early == legal || legal != C->root(), "bad dominance of inputs");
6397 
6398   if (least != early) {
6399     // Move the node above predicates as far up as possible so a
6400     // following pass of Loop Predication doesn't hoist a predicate
6401     // that depends on it above that node.
6402     PredicateEntryIterator predicate_iterator(least);
6403     while (predicate_iterator.has_next()) {
6404       Node* next_predicate_entry = predicate_iterator.next_entry();
6405       if (is_strict_dominator(next_predicate_entry, early)) {
6406         break;
6407       }
6408       least = next_predicate_entry;
6409     }
6410   }
6411   // Try not to place code on a loop entry projection
6412   // which can inhibit range check elimination.
6413   if (least != early && !BarrierSet::barrier_set()->barrier_set_c2()->is_gc_specific_loop_opts_pass(_mode)) {
6414     Node* ctrl_out = least->unique_ctrl_out_or_null();
6415     if (ctrl_out != nullptr && ctrl_out->is_Loop() &&
6416         least == ctrl_out->in(LoopNode::EntryControl) &&
6417         (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) {
6418       Node* least_dom = idom(least);
6419       if (get_loop(least_dom)->is_member(get_loop(least))) {
6420         least = least_dom;
6421       }
6422     }
6423   }
6424   // Don't extend live ranges of raw oops
6425   if (least != early && n->is_ConstraintCast() && n->in(1)->bottom_type()->isa_rawptr() &&
6426       !n->bottom_type()->isa_rawptr()) {
6427     least = early;
6428   }
6429 
6430 #ifdef ASSERT
6431   // Broken part of VerifyLoopOptimizations (F)
6432   // Reason:
6433   //   _verify_me->get_ctrl_no_update(n) seems to return wrong result
6434   /*
6435   // If verifying, verify that 'verify_me' has a legal location
6436   // and choose it as our location.
6437   if( _verify_me ) {
6438     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
6439     Node *legal = LCA;
6440     while( early != legal ) {   // While not at earliest legal
6441       if( legal == v_ctrl ) break;  // Check for prior good location
6442       legal = idom(legal)      ;// Bump up the IDOM tree
6443     }
6444     // Check for prior good location
6445     if( legal == v_ctrl ) least = legal; // Keep prior if found
6446   }
6447   */
6448 #endif
6449 
6450   // Assign discovered "here or above" point
6451   least = find_non_split_ctrl(least);
6452   verify_strip_mined_scheduling(n, least);
6453   set_ctrl(n, least);
6454 
6455   // Collect inner loop bodies
6456   IdealLoopTree *chosen_loop = get_loop(least);
6457   if( !chosen_loop->_child )   // Inner loop?
6458     chosen_loop->_body.push(n);// Collect inner loops
6459 
6460   if (!_verify_only && n->Opcode() == Op_OpaqueZeroTripGuard) {
6461     _zero_trip_guard_opaque_nodes.push(n);
6462   }
6463 
6464 }
6465 
6466 #ifdef ASSERT
6467 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
6468   tty->print_cr("%s", msg);
6469   tty->print("n: "); n->dump();
6470   tty->print("early(n): "); early->dump();
6471   if (n->in(0) != nullptr  && !n->in(0)->is_top() &&
6472       n->in(0) != early && !n->in(0)->is_Root()) {
6473     tty->print("n->in(0): "); n->in(0)->dump();
6474   }
6475   for (uint i = 1; i < n->req(); i++) {
6476     Node* in1 = n->in(i);
6477     if (in1 != nullptr && in1 != n && !in1->is_top()) {
6478       tty->print("n->in(%d): ", i); in1->dump();
6479       Node* in1_early = get_ctrl(in1);
6480       tty->print("early(n->in(%d)): ", i); in1_early->dump();
6481       if (in1->in(0) != nullptr     && !in1->in(0)->is_top() &&
6482           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
6483         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
6484       }
6485       for (uint j = 1; j < in1->req(); j++) {
6486         Node* in2 = in1->in(j);
6487         if (in2 != nullptr && in2 != n && in2 != in1 && !in2->is_top()) {
6488           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
6489           Node* in2_early = get_ctrl(in2);
6490           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
6491           if (in2->in(0) != nullptr     && !in2->in(0)->is_top() &&
6492               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
6493             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
6494           }
6495         }
6496       }
6497     }
6498   }
6499   tty->cr();
6500   tty->print("LCA(n): "); LCA->dump();
6501   for (uint i = 0; i < n->outcnt(); i++) {
6502     Node* u1 = n->raw_out(i);
6503     if (u1 == n)
6504       continue;
6505     tty->print("n->out(%d): ", i); u1->dump();
6506     if (u1->is_CFG()) {
6507       for (uint j = 0; j < u1->outcnt(); j++) {
6508         Node* u2 = u1->raw_out(j);
6509         if (u2 != u1 && u2 != n && u2->is_CFG()) {
6510           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
6511         }
6512       }
6513     } else {
6514       Node* u1_later = get_ctrl(u1);
6515       tty->print("later(n->out(%d)): ", i); u1_later->dump();
6516       if (u1->in(0) != nullptr     && !u1->in(0)->is_top() &&
6517           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
6518         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
6519       }
6520       for (uint j = 0; j < u1->outcnt(); j++) {
6521         Node* u2 = u1->raw_out(j);
6522         if (u2 == n || u2 == u1)
6523           continue;
6524         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
6525         if (!u2->is_CFG()) {
6526           Node* u2_later = get_ctrl(u2);
6527           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
6528           if (u2->in(0) != nullptr     && !u2->in(0)->is_top() &&
6529               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
6530             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
6531           }
6532         }
6533       }
6534     }
6535   }
6536   dump_idoms(early, LCA);
6537   tty->cr();
6538 }
6539 
6540 // Class to compute the real LCA given an early node and a wrong LCA in a bad graph.
6541 class RealLCA {
6542   const PhaseIdealLoop* _phase;
6543   Node* _early;
6544   Node* _wrong_lca;
6545   uint _early_index;
6546   int _wrong_lca_index;
6547 
6548   // Given idom chains of early and wrong LCA: Walk through idoms starting at StartNode and find the first node which
6549   // is different: Return the previously visited node which must be the real LCA.
6550   // The node lists also contain _early and _wrong_lca, respectively.
6551   Node* find_real_lca(Unique_Node_List& early_with_idoms, Unique_Node_List& wrong_lca_with_idoms) {
6552     int early_index = early_with_idoms.size() - 1;
6553     int wrong_lca_index = wrong_lca_with_idoms.size() - 1;
6554     bool found_difference = false;
6555     do {
6556       if (early_with_idoms[early_index] != wrong_lca_with_idoms[wrong_lca_index]) {
6557         // First time early and wrong LCA idoms differ. Real LCA must be at the previous index.
6558         found_difference = true;
6559         break;
6560       }
6561       early_index--;
6562       wrong_lca_index--;
6563     } while (wrong_lca_index >= 0);
6564 
6565     assert(early_index >= 0, "must always find an LCA - cannot be early");
6566     _early_index = early_index;
6567     _wrong_lca_index = wrong_lca_index;
6568     Node* real_lca = early_with_idoms[_early_index + 1]; // Plus one to skip _early.
6569     assert(found_difference || real_lca == _wrong_lca, "wrong LCA dominates early and is therefore the real LCA");
6570     return real_lca;
6571   }
6572 
6573   void dump(Node* real_lca) {
6574     tty->cr();
6575     tty->print_cr("idoms of early \"%d %s\":", _early->_idx, _early->Name());
6576     _phase->dump_idom(_early, _early_index + 1);
6577 
6578     tty->cr();
6579     tty->print_cr("idoms of (wrong) LCA \"%d %s\":", _wrong_lca->_idx, _wrong_lca->Name());
6580     _phase->dump_idom(_wrong_lca, _wrong_lca_index + 1);
6581 
6582     tty->cr();
6583     tty->print("Real LCA of early \"%d %s\" (idom[%d]) and wrong LCA \"%d %s\"",
6584                _early->_idx, _early->Name(), _early_index, _wrong_lca->_idx, _wrong_lca->Name());
6585     if (_wrong_lca_index >= 0) {
6586       tty->print(" (idom[%d])", _wrong_lca_index);
6587     }
6588     tty->print_cr(":");
6589     real_lca->dump();
6590   }
6591 
6592  public:
6593   RealLCA(const PhaseIdealLoop* phase, Node* early, Node* wrong_lca)
6594       : _phase(phase), _early(early), _wrong_lca(wrong_lca), _early_index(0), _wrong_lca_index(0) {
6595     assert(!wrong_lca->is_Start(), "StartNode is always a common dominator");
6596   }
6597 
6598   void compute_and_dump() {
6599     ResourceMark rm;
6600     Unique_Node_List early_with_idoms;
6601     Unique_Node_List wrong_lca_with_idoms;
6602     early_with_idoms.push(_early);
6603     wrong_lca_with_idoms.push(_wrong_lca);
6604     _phase->get_idoms(_early, 10000, early_with_idoms);
6605     _phase->get_idoms(_wrong_lca, 10000, wrong_lca_with_idoms);
6606     Node* real_lca = find_real_lca(early_with_idoms, wrong_lca_with_idoms);
6607     dump(real_lca);
6608   }
6609 };
6610 
6611 // Dump the idom chain of early, of the wrong LCA and dump the real LCA of early and wrong LCA.
6612 void PhaseIdealLoop::dump_idoms(Node* early, Node* wrong_lca) {
6613   assert(!is_dominator(early, wrong_lca), "sanity check that early does not dominate wrong lca");
6614   assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes");
6615 
6616   RealLCA real_lca(this, early, wrong_lca);
6617   real_lca.compute_and_dump();
6618 }
6619 #endif // ASSERT
6620 
6621 #ifndef PRODUCT
6622 //------------------------------dump-------------------------------------------
6623 void PhaseIdealLoop::dump() const {
6624   ResourceMark rm;
6625   Node_Stack stack(C->live_nodes() >> 2);
6626   Node_List rpo_list;
6627   VectorSet visited;
6628   visited.set(C->top()->_idx);
6629   rpo(C->root(), stack, visited, rpo_list);
6630   // Dump root loop indexed by last element in PO order
6631   dump(_ltree_root, rpo_list.size(), rpo_list);
6632 }
6633 
6634 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const {
6635   loop->dump_head();
6636 
6637   // Now scan for CFG nodes in the same loop
6638   for (uint j = idx; j > 0; j--) {
6639     Node* n = rpo_list[j-1];
6640     if (!_loop_or_ctrl[n->_idx])      // Skip dead nodes
6641       continue;
6642 
6643     if (get_loop(n) != loop) { // Wrong loop nest
6644       if (get_loop(n)->_head == n &&    // Found nested loop?
6645           get_loop(n)->_parent == loop)
6646         dump(get_loop(n), rpo_list.size(), rpo_list);     // Print it nested-ly
6647       continue;
6648     }
6649 
6650     // Dump controlling node
6651     tty->sp(2 * loop->_nest);
6652     tty->print("C");
6653     if (n == C->root()) {
6654       n->dump();
6655     } else {
6656       Node* cached_idom   = idom_no_update(n);
6657       Node* computed_idom = n->in(0);
6658       if (n->is_Region()) {
6659         computed_idom = compute_idom(n);
6660         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
6661         // any MultiBranch ctrl node), so apply a similar transform to
6662         // the cached idom returned from idom_no_update.
6663         cached_idom = find_non_split_ctrl(cached_idom);
6664       }
6665       tty->print(" ID:%d", computed_idom->_idx);
6666       n->dump();
6667       if (cached_idom != computed_idom) {
6668         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
6669                       computed_idom->_idx, cached_idom->_idx);
6670       }
6671     }
6672     // Dump nodes it controls
6673     for (uint k = 0; k < _loop_or_ctrl.max(); k++) {
6674       // (k < C->unique() && get_ctrl(find(k)) == n)
6675       if (k < C->unique() && _loop_or_ctrl[k] == (Node*)((intptr_t)n + 1)) {
6676         Node* m = C->root()->find(k);
6677         if (m && m->outcnt() > 0) {
6678           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
6679             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _loop_or_ctrl[k] is %p, ctrl is %p",
6680                           _loop_or_ctrl[k], has_ctrl(m) ? get_ctrl_no_update(m) : nullptr);
6681           }
6682           tty->sp(2 * loop->_nest + 1);
6683           m->dump();
6684         }
6685       }
6686     }
6687   }
6688 }
6689 
6690 void PhaseIdealLoop::dump_idom(Node* n, const uint count) const {
6691   if (has_ctrl(n)) {
6692     tty->print_cr("No idom for data nodes");
6693   } else {
6694     ResourceMark rm;
6695     Unique_Node_List idoms;
6696     get_idoms(n, count, idoms);
6697     dump_idoms_in_reverse(n, idoms);
6698   }
6699 }
6700 
6701 void PhaseIdealLoop::get_idoms(Node* n, const uint count, Unique_Node_List& idoms) const {
6702   Node* next = n;
6703   for (uint i = 0; !next->is_Start() && i < count; i++) {
6704     next = idom(next);
6705     assert(!idoms.member(next), "duplicated idom is not possible");
6706     idoms.push(next);
6707   }
6708 }
6709 
6710 void PhaseIdealLoop::dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const {
6711   Node* next;
6712   uint padding = 3;
6713   uint node_index_padding_width = static_cast<int>(log10(static_cast<double>(C->unique()))) + 1;
6714   for (int i = idom_list.size() - 1; i >= 0; i--) {
6715     if (i == 9 || i == 99) {
6716       padding++;
6717     }
6718     next = idom_list[i];
6719     tty->print_cr("idom[%d]:%*c%*d  %s", i, padding, ' ', node_index_padding_width, next->_idx, next->Name());
6720   }
6721   tty->print_cr("n:      %*c%*d  %s", padding, ' ', node_index_padding_width, n->_idx, n->Name());
6722 }
6723 #endif // NOT PRODUCT
6724 
6725 // Collect a R-P-O for the whole CFG.
6726 // Result list is in post-order (scan backwards for RPO)
6727 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const {
6728   stk.push(start, 0);
6729   visited.set(start->_idx);
6730 
6731   while (stk.is_nonempty()) {
6732     Node* m   = stk.node();
6733     uint  idx = stk.index();
6734     if (idx < m->outcnt()) {
6735       stk.set_index(idx + 1);
6736       Node* n = m->raw_out(idx);
6737       if (n->is_CFG() && !visited.test_set(n->_idx)) {
6738         stk.push(n, 0);
6739       }
6740     } else {
6741       rpo_list.push(m);
6742       stk.pop();
6743     }
6744   }
6745 }
6746 
6747 
6748 //=============================================================================
6749 //------------------------------LoopTreeIterator-------------------------------
6750 
6751 // Advance to next loop tree using a preorder, left-to-right traversal.
6752 void LoopTreeIterator::next() {
6753   assert(!done(), "must not be done.");
6754   if (_curnt->_child != nullptr) {
6755     _curnt = _curnt->_child;
6756   } else if (_curnt->_next != nullptr) {
6757     _curnt = _curnt->_next;
6758   } else {
6759     while (_curnt != _root && _curnt->_next == nullptr) {
6760       _curnt = _curnt->_parent;
6761     }
6762     if (_curnt == _root) {
6763       _curnt = nullptr;
6764       assert(done(), "must be done.");
6765     } else {
6766       assert(_curnt->_next != nullptr, "must be more to do");
6767       _curnt = _curnt->_next;
6768     }
6769   }
6770 }