1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "classfile/javaClasses.hpp"
  27 #include "code/aotCodeCache.hpp"
  28 #include "compiler/compileLog.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/c2/barrierSetC2.hpp"
  31 #include "gc/shared/tlab_globals.hpp"
  32 #include "memory/allocation.inline.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/objArrayKlass.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/arraycopynode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/regalloc.hpp"
  39 #include "opto/compile.hpp"
  40 #include "opto/connode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/loopnode.hpp"
  43 #include "opto/machnode.hpp"
  44 #include "opto/matcher.hpp"
  45 #include "opto/memnode.hpp"
  46 #include "opto/mempointer.hpp"
  47 #include "opto/mulnode.hpp"
  48 #include "opto/narrowptrnode.hpp"
  49 #include "opto/phaseX.hpp"
  50 #include "opto/regmask.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/traceMergeStoresTag.hpp"
  53 #include "opto/vectornode.hpp"
  54 #include "utilities/align.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/macros.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 #include "utilities/vmError.hpp"
  59 
  60 // Portions of code courtesy of Clifford Click
  61 
  62 // Optimization - Graph Style
  63 
  64 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  65 
  66 //=============================================================================
  67 uint MemNode::size_of() const { return sizeof(*this); }
  68 
  69 const TypePtr *MemNode::adr_type() const {
  70   Node* adr = in(Address);
  71   if (adr == nullptr)  return nullptr; // node is dead
  72   const TypePtr* cross_check = nullptr;
  73   DEBUG_ONLY(cross_check = _adr_type);
  74   return calculate_adr_type(adr->bottom_type(), cross_check);
  75 }
  76 
  77 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  78   if (adr != nullptr) {
  79     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  80       return true;
  81     }
  82   }
  83   return false;
  84 }
  85 
  86 #ifndef PRODUCT
  87 void MemNode::dump_spec(outputStream *st) const {
  88   if (in(Address) == nullptr)  return; // node is dead
  89 #ifndef ASSERT
  90   // fake the missing field
  91   const TypePtr* _adr_type = nullptr;
  92   if (in(Address) != nullptr)
  93     _adr_type = in(Address)->bottom_type()->isa_ptr();
  94 #endif
  95   dump_adr_type(this, _adr_type, st);
  96 
  97   Compile* C = Compile::current();
  98   if (C->alias_type(_adr_type)->is_volatile()) {
  99     st->print(" Volatile!");
 100   }
 101   if (_unaligned_access) {
 102     st->print(" unaligned");
 103   }
 104   if (_mismatched_access) {
 105     st->print(" mismatched");
 106   }
 107   if (_unsafe_access) {
 108     st->print(" unsafe");
 109   }
 110 }
 111 
 112 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 113   st->print(" @");
 114   if (adr_type == nullptr) {
 115     st->print("null");
 116   } else {
 117     adr_type->dump_on(st);
 118     Compile* C = Compile::current();
 119     Compile::AliasType* atp = nullptr;
 120     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 121     if (atp == nullptr)
 122       st->print(", idx=?\?;");
 123     else if (atp->index() == Compile::AliasIdxBot)
 124       st->print(", idx=Bot;");
 125     else if (atp->index() == Compile::AliasIdxTop)
 126       st->print(", idx=Top;");
 127     else if (atp->index() == Compile::AliasIdxRaw)
 128       st->print(", idx=Raw;");
 129     else {
 130       ciField* field = atp->field();
 131       if (field) {
 132         st->print(", name=");
 133         field->print_name_on(st);
 134       }
 135       st->print(", idx=%d;", atp->index());
 136     }
 137   }
 138 }
 139 
 140 extern void print_alias_types();
 141 
 142 #endif
 143 
 144 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 145   assert((t_oop != nullptr), "sanity");
 146   bool is_instance = t_oop->is_known_instance_field();
 147   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 148                              (load != nullptr) && load->is_Load() &&
 149                              (phase->is_IterGVN() != nullptr);
 150   if (!(is_instance || is_boxed_value_load))
 151     return mchain;  // don't try to optimize non-instance types
 152   uint instance_id = t_oop->instance_id();
 153   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 154   Node *prev = nullptr;
 155   Node *result = mchain;
 156   while (prev != result) {
 157     prev = result;
 158     if (result == start_mem)
 159       break;  // hit one of our sentinels
 160     // skip over a call which does not affect this memory slice
 161     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 162       Node *proj_in = result->in(0);
 163       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 164         break;  // hit one of our sentinels
 165       } else if (proj_in->is_Call()) {
 166         // ArrayCopyNodes processed here as well
 167         CallNode *call = proj_in->as_Call();
 168         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 169           result = call->in(TypeFunc::Memory);
 170         }
 171       } else if (proj_in->is_Initialize()) {
 172         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 173         // Stop if this is the initialization for the object instance which
 174         // contains this memory slice, otherwise skip over it.
 175         if ((alloc == nullptr) || (alloc->_idx == instance_id)) {
 176           break;
 177         }
 178         if (is_instance) {
 179           result = proj_in->in(TypeFunc::Memory);
 180         } else if (is_boxed_value_load) {
 181           Node* klass = alloc->in(AllocateNode::KlassNode);
 182           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 183           if (tklass->klass_is_exact() && !tklass->exact_klass()->equals(t_oop->is_instptr()->exact_klass())) {
 184             result = proj_in->in(TypeFunc::Memory); // not related allocation
 185           }
 186         }
 187       } else if (proj_in->is_MemBar()) {
 188         ArrayCopyNode* ac = nullptr;
 189         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 190           break;
 191         }
 192         result = proj_in->in(TypeFunc::Memory);
 193       } else if (proj_in->is_top()) {
 194         break; // dead code
 195       } else {
 196         assert(false, "unexpected projection");
 197       }
 198     } else if (result->is_ClearArray()) {
 199       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 200         // Can not bypass initialization of the instance
 201         // we are looking for.
 202         break;
 203       }
 204       // Otherwise skip it (the call updated 'result' value).
 205     } else if (result->is_MergeMem()) {
 206       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, nullptr, tty);
 207     }
 208   }
 209   return result;
 210 }
 211 
 212 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 213   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 214   if (t_oop == nullptr)
 215     return mchain;  // don't try to optimize non-oop types
 216   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 217   bool is_instance = t_oop->is_known_instance_field();
 218   PhaseIterGVN *igvn = phase->is_IterGVN();
 219   if (is_instance && igvn != nullptr && result->is_Phi()) {
 220     PhiNode *mphi = result->as_Phi();
 221     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 222     const TypePtr *t = mphi->adr_type();
 223     bool do_split = false;
 224     // In the following cases, Load memory input can be further optimized based on
 225     // its precise address type
 226     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ) {
 227       do_split = true;
 228     } else if (t->isa_oopptr() && !t->is_oopptr()->is_known_instance()) {
 229       const TypeOopPtr* mem_t =
 230         t->is_oopptr()->cast_to_exactness(true)
 231         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 232         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id());
 233       if (t_oop->isa_aryptr()) {
 234         mem_t = mem_t->is_aryptr()
 235                      ->cast_to_stable(t_oop->is_aryptr()->is_stable())
 236                      ->cast_to_size(t_oop->is_aryptr()->size())
 237                      ->with_offset(t_oop->is_aryptr()->offset())
 238                      ->is_aryptr();
 239       }
 240       do_split = mem_t == t_oop;
 241     }
 242     if (do_split) {
 243       // clone the Phi with our address type
 244       result = mphi->split_out_instance(t_adr, igvn);
 245     } else {
 246       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 247     }
 248   }
 249   return result;
 250 }
 251 
 252 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 253   uint alias_idx = phase->C->get_alias_index(tp);
 254   Node *mem = mmem;
 255 #ifdef ASSERT
 256   {
 257     // Check that current type is consistent with the alias index used during graph construction
 258     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 259     bool consistent =  adr_check == nullptr || adr_check->empty() ||
 260                        phase->C->must_alias(adr_check, alias_idx );
 261     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 262     if( !consistent && adr_check != nullptr && !adr_check->empty() &&
 263                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 264         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 265         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 266           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 267           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 268       // don't assert if it is dead code.
 269       consistent = true;
 270     }
 271     if( !consistent ) {
 272       st->print("alias_idx==%d, adr_check==", alias_idx);
 273       if( adr_check == nullptr ) {
 274         st->print("null");
 275       } else {
 276         adr_check->dump();
 277       }
 278       st->cr();
 279       print_alias_types();
 280       assert(consistent, "adr_check must match alias idx");
 281     }
 282   }
 283 #endif
 284   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 285   // means an array I have not precisely typed yet.  Do not do any
 286   // alias stuff with it any time soon.
 287   const TypeOopPtr *toop = tp->isa_oopptr();
 288   if (tp->base() != Type::AnyPtr &&
 289       !(toop &&
 290         toop->isa_instptr() &&
 291         toop->is_instptr()->instance_klass()->is_java_lang_Object() &&
 292         toop->offset() == Type::OffsetBot)) {
 293     // IGVN _delay_transform may be set to true and if that is the case and mmem
 294     // is already a registered node then the validation inside transform will
 295     // complain.
 296     Node* m = mmem;
 297     PhaseIterGVN* igvn = phase->is_IterGVN();
 298     if (igvn == nullptr || !igvn->delay_transform()) {
 299       // compress paths and change unreachable cycles to TOP
 300       // If not, we can update the input infinitely along a MergeMem cycle
 301       // Equivalent code in PhiNode::Ideal
 302       m = phase->transform(mmem);
 303     }
 304     // If transformed to a MergeMem, get the desired slice
 305     // Otherwise the returned node represents memory for every slice
 306     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 307     // Update input if it is progress over what we have now
 308   }
 309   return mem;
 310 }
 311 
 312 //--------------------------Ideal_common---------------------------------------
 313 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 314 // Unhook non-raw memories from complete (macro-expanded) initializations.
 315 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 316   // If our control input is a dead region, kill all below the region
 317   Node *ctl = in(MemNode::Control);
 318   if (ctl && remove_dead_region(phase, can_reshape))
 319     return this;
 320   ctl = in(MemNode::Control);
 321   // Don't bother trying to transform a dead node
 322   if (ctl && ctl->is_top())  return NodeSentinel;
 323 
 324   PhaseIterGVN *igvn = phase->is_IterGVN();
 325   // Wait if control on the worklist.
 326   if (ctl && can_reshape && igvn != nullptr) {
 327     Node* bol = nullptr;
 328     Node* cmp = nullptr;
 329     if (ctl->in(0)->is_If()) {
 330       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 331       bol = ctl->in(0)->in(1);
 332       if (bol->is_Bool())
 333         cmp = ctl->in(0)->in(1)->in(1);
 334     }
 335     if (igvn->_worklist.member(ctl) ||
 336         (bol != nullptr && igvn->_worklist.member(bol)) ||
 337         (cmp != nullptr && igvn->_worklist.member(cmp)) ) {
 338       // This control path may be dead.
 339       // Delay this memory node transformation until the control is processed.
 340       igvn->_worklist.push(this);
 341       return NodeSentinel; // caller will return null
 342     }
 343   }
 344   // Ignore if memory is dead, or self-loop
 345   Node *mem = in(MemNode::Memory);
 346   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return null
 347   assert(mem != this, "dead loop in MemNode::Ideal");
 348 
 349   if (can_reshape && igvn != nullptr && igvn->_worklist.member(mem)) {
 350     // This memory slice may be dead.
 351     // Delay this mem node transformation until the memory is processed.
 352     igvn->_worklist.push(this);
 353     return NodeSentinel; // caller will return null
 354   }
 355 
 356   Node *address = in(MemNode::Address);
 357   const Type *t_adr = phase->type(address);
 358   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return null
 359 
 360   if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) {
 361     // Unsafe off-heap access with zero address. Remove access and other control users
 362     // to not confuse optimizations and add a HaltNode to fail if this is ever executed.
 363     assert(ctl != nullptr, "unsafe accesses should be control dependent");
 364     for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
 365       Node* u = ctl->fast_out(i);
 366       if (u != ctl) {
 367         igvn->rehash_node_delayed(u);
 368         int nb = u->replace_edge(ctl, phase->C->top(), igvn);
 369         --i, imax -= nb;
 370       }
 371     }
 372     Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr));
 373     Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address"));
 374     phase->C->root()->add_req(halt);
 375     return this;
 376   }
 377 
 378   if (can_reshape && igvn != nullptr &&
 379       (igvn->_worklist.member(address) ||
 380        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 381     // The address's base and type may change when the address is processed.
 382     // Delay this mem node transformation until the address is processed.
 383     igvn->_worklist.push(this);
 384     return NodeSentinel; // caller will return null
 385   }
 386 
 387   // Do NOT remove or optimize the next lines: ensure a new alias index
 388   // is allocated for an oop pointer type before Escape Analysis.
 389   // Note: C++ will not remove it since the call has side effect.
 390   if (t_adr->isa_oopptr()) {
 391     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 392   }
 393 
 394   Node* base = nullptr;
 395   if (address->is_AddP()) {
 396     base = address->in(AddPNode::Base);
 397   }
 398   if (base != nullptr && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 399       !t_adr->isa_rawptr()) {
 400     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 401     // Skip this node optimization if its address has TOP base.
 402     return NodeSentinel; // caller will return null
 403   }
 404 
 405   // Avoid independent memory operations
 406   Node* old_mem = mem;
 407 
 408   // The code which unhooks non-raw memories from complete (macro-expanded)
 409   // initializations was removed. After macro-expansion all stores caught
 410   // by Initialize node became raw stores and there is no information
 411   // which memory slices they modify. So it is unsafe to move any memory
 412   // operation above these stores. Also in most cases hooked non-raw memories
 413   // were already unhooked by using information from detect_ptr_independence()
 414   // and find_previous_store().
 415 
 416   if (mem->is_MergeMem()) {
 417     MergeMemNode* mmem = mem->as_MergeMem();
 418     const TypePtr *tp = t_adr->is_ptr();
 419 
 420     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 421   }
 422 
 423   if (mem != old_mem) {
 424     set_req_X(MemNode::Memory, mem, phase);
 425     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 426     return this;
 427   }
 428 
 429   // let the subclass continue analyzing...
 430   return nullptr;
 431 }
 432 
 433 // Helper function for proving some simple control dominations.
 434 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 435 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 436 // is not a constant (dominated by the method's StartNode).
 437 // Used by MemNode::find_previous_store to prove that the
 438 // control input of a memory operation predates (dominates)
 439 // an allocation it wants to look past.
 440 // Returns 'DomResult::Dominate' if all control inputs of 'dom'
 441 // dominate 'sub', 'DomResult::NotDominate' if not,
 442 // and 'DomResult::EncounteredDeadCode' if we can't decide due to
 443 // dead code, but at the end of IGVN, we know the definite result
 444 // once the dead code is cleaned up.
 445 Node::DomResult MemNode::maybe_all_controls_dominate(Node* dom, Node* sub) {
 446   if (dom == nullptr || dom->is_top() || sub == nullptr || sub->is_top()) {
 447     return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 448   }
 449 
 450   // Check 'dom'. Skip Proj and CatchProj nodes.
 451   dom = dom->find_exact_control(dom);
 452   if (dom == nullptr || dom->is_top()) {
 453     return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 454   }
 455 
 456   if (dom == sub) {
 457     // For the case when, for example, 'sub' is Initialize and the original
 458     // 'dom' is Proj node of the 'sub'.
 459     return DomResult::NotDominate;
 460   }
 461 
 462   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) {
 463     return DomResult::Dominate;
 464   }
 465 
 466   // 'dom' dominates 'sub' if its control edge and control edges
 467   // of all its inputs dominate or equal to sub's control edge.
 468 
 469   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 470   // Or Region for the check in LoadNode::Ideal();
 471   // 'sub' should have sub->in(0) != nullptr.
 472   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 473          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 474 
 475   // Get control edge of 'sub'.
 476   Node* orig_sub = sub;
 477   sub = sub->find_exact_control(sub->in(0));
 478   if (sub == nullptr || sub->is_top()) {
 479     return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 480   }
 481 
 482   assert(sub->is_CFG(), "expecting control");
 483 
 484   if (sub == dom) {
 485     return DomResult::Dominate;
 486   }
 487 
 488   if (sub->is_Start() || sub->is_Root()) {
 489     return DomResult::NotDominate;
 490   }
 491 
 492   {
 493     // Check all control edges of 'dom'.
 494 
 495     ResourceMark rm;
 496     Node_List nlist;
 497     Unique_Node_List dom_list;
 498 
 499     dom_list.push(dom);
 500     bool only_dominating_controls = false;
 501 
 502     for (uint next = 0; next < dom_list.size(); next++) {
 503       Node* n = dom_list.at(next);
 504       if (n == orig_sub) {
 505         return DomResult::NotDominate; // One of dom's inputs dominated by sub.
 506       }
 507       if (!n->is_CFG() && n->pinned()) {
 508         // Check only own control edge for pinned non-control nodes.
 509         n = n->find_exact_control(n->in(0));
 510         if (n == nullptr || n->is_top()) {
 511           return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 512         }
 513         assert(n->is_CFG(), "expecting control");
 514         dom_list.push(n);
 515       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 516         only_dominating_controls = true;
 517       } else if (n->is_CFG()) {
 518         DomResult dom_result = n->dominates(sub, nlist);
 519         if (dom_result == DomResult::Dominate) {
 520           only_dominating_controls = true;
 521         } else {
 522           return dom_result;
 523         }
 524       } else {
 525         // First, own control edge.
 526         Node* m = n->find_exact_control(n->in(0));
 527         if (m != nullptr) {
 528           if (m->is_top()) {
 529             return DomResult::EncounteredDeadCode; // Conservative answer for dead code
 530           }
 531           dom_list.push(m);
 532         }
 533         // Now, the rest of edges.
 534         uint cnt = n->req();
 535         for (uint i = 1; i < cnt; i++) {
 536           m = n->find_exact_control(n->in(i));
 537           if (m == nullptr || m->is_top()) {
 538             continue;
 539           }
 540           dom_list.push(m);
 541         }
 542       }
 543     }
 544     return only_dominating_controls ? DomResult::Dominate : DomResult::NotDominate;
 545   }
 546 }
 547 
 548 //---------------------detect_ptr_independence---------------------------------
 549 // Used by MemNode::find_previous_store to prove that two base
 550 // pointers are never equal.
 551 // The pointers are accompanied by their associated allocations,
 552 // if any, which have been previously discovered by the caller.
 553 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 554                                       Node* p2, AllocateNode* a2,
 555                                       PhaseTransform* phase) {
 556   // Attempt to prove that these two pointers cannot be aliased.
 557   // They may both manifestly be allocations, and they should differ.
 558   // Or, if they are not both allocations, they can be distinct constants.
 559   // Otherwise, one is an allocation and the other a pre-existing value.
 560   if (a1 == nullptr && a2 == nullptr) {           // neither an allocation
 561     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 562   } else if (a1 != nullptr && a2 != nullptr) {    // both allocations
 563     return (a1 != a2);
 564   } else if (a1 != nullptr) {                  // one allocation a1
 565     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 566     return all_controls_dominate(p2, a1);
 567   } else { //(a2 != null)                   // one allocation a2
 568     return all_controls_dominate(p1, a2);
 569   }
 570   return false;
 571 }
 572 
 573 
 574 // Find an arraycopy ac that produces the memory state represented by parameter mem.
 575 // Return ac if
 576 // (a) can_see_stored_value=true  and ac must have set the value for this load or if
 577 // (b) can_see_stored_value=false and ac could have set the value for this load or if
 578 // (c) can_see_stored_value=false and ac cannot have set the value for this load.
 579 // In case (c) change the parameter mem to the memory input of ac to skip it
 580 // when searching stored value.
 581 // Otherwise return null.
 582 Node* LoadNode::find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 583   ArrayCopyNode* ac = find_array_copy_clone(ld_alloc, mem);
 584   if (ac != nullptr) {
 585     Node* ld_addp = in(MemNode::Address);
 586     Node* src = ac->in(ArrayCopyNode::Src);
 587     const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr();
 588 
 589     // This is a load from a cloned array. The corresponding arraycopy ac must
 590     // have set the value for the load and we can return ac but only if the load
 591     // is known to be within bounds. This is checked below.
 592     if (ary_t != nullptr && ld_addp->is_AddP()) {
 593       Node* ld_offs = ld_addp->in(AddPNode::Offset);
 594       BasicType ary_elem = ary_t->elem()->array_element_basic_type();
 595       jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 596       jlong elemsize = type2aelembytes(ary_elem);
 597 
 598       const TypeX*   ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 599       const TypeInt* sizetype  = ary_t->size();
 600 
 601       if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) {
 602         // The load is known to be within bounds. It receives its value from ac.
 603         return ac;
 604       }
 605       // The load is known to be out-of-bounds.
 606     }
 607     // The load could be out-of-bounds. It must not be hoisted but must remain
 608     // dependent on the runtime range check. This is achieved by returning null.
 609   } else if (mem->is_Proj() && mem->in(0) != nullptr && mem->in(0)->is_ArrayCopy()) {
 610     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 611 
 612     if (ac->is_arraycopy_validated() ||
 613         ac->is_copyof_validated() ||
 614         ac->is_copyofrange_validated()) {
 615       Node* ld_addp = in(MemNode::Address);
 616       if (ld_addp->is_AddP()) {
 617         Node* ld_base = ld_addp->in(AddPNode::Address);
 618         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 619 
 620         Node* dest = ac->in(ArrayCopyNode::Dest);
 621 
 622         if (dest == ld_base) {
 623           const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 624           assert(!ld_offs_t->empty(), "dead reference should be checked already");
 625           // Take into account vector or unsafe access size
 626           jlong ld_size_in_bytes = (jlong)memory_size();
 627           jlong offset_hi = ld_offs_t->_hi + ld_size_in_bytes - 1;
 628           offset_hi = MIN2(offset_hi, (jlong)(TypeX::MAX->_hi)); // Take care for overflow in 32-bit VM
 629           if (ac->modifies(ld_offs_t->_lo, (intptr_t)offset_hi, phase, can_see_stored_value)) {
 630             return ac;
 631           }
 632           if (!can_see_stored_value) {
 633             mem = ac->in(TypeFunc::Memory);
 634             return ac;
 635           }
 636         }
 637       }
 638     }
 639   }
 640   return nullptr;
 641 }
 642 
 643 ArrayCopyNode* MemNode::find_array_copy_clone(Node* ld_alloc, Node* mem) const {
 644   if (mem->is_Proj() && mem->in(0) != nullptr && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 645                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 646     if (ld_alloc != nullptr) {
 647       // Check if there is an array copy for a clone
 648       Node* mb = mem->in(0);
 649       ArrayCopyNode* ac = nullptr;
 650       if (mb->in(0) != nullptr && mb->in(0)->is_Proj() &&
 651           mb->in(0)->in(0) != nullptr && mb->in(0)->in(0)->is_ArrayCopy()) {
 652         ac = mb->in(0)->in(0)->as_ArrayCopy();
 653       } else {
 654         // Step over GC barrier when ReduceInitialCardMarks is disabled
 655         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 656         Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0));
 657 
 658         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
 659           ac = control_proj_ac->in(0)->as_ArrayCopy();
 660         }
 661       }
 662 
 663       if (ac != nullptr && ac->is_clonebasic()) {
 664         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest));
 665         if (alloc != nullptr && alloc == ld_alloc) {
 666           return ac;
 667         }
 668       }
 669     }
 670   }
 671   return nullptr;
 672 }
 673 
 674 // The logic for reordering loads and stores uses four steps:
 675 // (a) Walk carefully past stores and initializations which we
 676 //     can prove are independent of this load.
 677 // (b) Observe that the next memory state makes an exact match
 678 //     with self (load or store), and locate the relevant store.
 679 // (c) Ensure that, if we were to wire self directly to the store,
 680 //     the optimizer would fold it up somehow.
 681 // (d) Do the rewiring, and return, depending on some other part of
 682 //     the optimizer to fold up the load.
 683 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 684 // specific to loads and stores, so they are handled by the callers.
 685 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 686 //
 687 Node* MemNode::find_previous_store(PhaseValues* phase) {
 688   Node*         ctrl   = in(MemNode::Control);
 689   Node*         adr    = in(MemNode::Address);
 690   intptr_t      offset = 0;
 691   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 692   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base);
 693 
 694   if (offset == Type::OffsetBot)
 695     return nullptr;            // cannot unalias unless there are precise offsets
 696 
 697   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 698   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 699 
 700   intptr_t size_in_bytes = memory_size();
 701 
 702   Node* mem = in(MemNode::Memory);   // start searching here...
 703 
 704   int cnt = 50;             // Cycle limiter
 705   for (;;) {                // While we can dance past unrelated stores...
 706     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 707 
 708     Node* prev = mem;
 709     if (mem->is_Store()) {
 710       Node* st_adr = mem->in(MemNode::Address);
 711       intptr_t st_offset = 0;
 712       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 713       if (st_base == nullptr)
 714         break;              // inscrutable pointer
 715 
 716       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 717       // We need the bases to be the equal in order for the offset check to make sense.
 718       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 719         break;
 720       }
 721 
 722       if (st_offset != offset && st_offset != Type::OffsetBot) {
 723         const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize);
 724         assert(mem->as_Store()->memory_size() <= MAX_STORE, "");
 725         if (st_offset >= offset + size_in_bytes ||
 726             st_offset <= offset - MAX_STORE ||
 727             st_offset <= offset - mem->as_Store()->memory_size()) {
 728           // Success:  The offsets are provably independent.
 729           // (You may ask, why not just test st_offset != offset and be done?
 730           // The answer is that stores of different sizes can co-exist
 731           // in the same sequence of RawMem effects.  We sometimes initialize
 732           // a whole 'tile' of array elements with a single jint or jlong.)
 733           mem = mem->in(MemNode::Memory);
 734           continue;           // (a) advance through independent store memory
 735         }
 736       }
 737       if (st_base != base &&
 738           detect_ptr_independence(base, alloc,
 739                                   st_base,
 740                                   AllocateNode::Ideal_allocation(st_base),
 741                                   phase)) {
 742         // Success:  The bases are provably independent.
 743         mem = mem->in(MemNode::Memory);
 744         continue;           // (a) advance through independent store memory
 745       }
 746 
 747       // (b) At this point, if the bases or offsets do not agree, we lose,
 748       // since we have not managed to prove 'this' and 'mem' independent.
 749       if (st_base == base && st_offset == offset) {
 750         return mem;         // let caller handle steps (c), (d)
 751       }
 752 
 753     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 754       InitializeNode* st_init = mem->in(0)->as_Initialize();
 755       AllocateNode*  st_alloc = st_init->allocation();
 756       if (st_alloc == nullptr) {
 757         break;              // something degenerated
 758       }
 759       bool known_identical = false;
 760       bool known_independent = false;
 761       if (alloc == st_alloc) {
 762         known_identical = true;
 763       } else if (alloc != nullptr) {
 764         known_independent = true;
 765       } else if (all_controls_dominate(this, st_alloc)) {
 766         known_independent = true;
 767       }
 768 
 769       if (known_independent) {
 770         // The bases are provably independent: Either they are
 771         // manifestly distinct allocations, or else the control
 772         // of this load dominates the store's allocation.
 773         int alias_idx = phase->C->get_alias_index(adr_type());
 774         if (alias_idx == Compile::AliasIdxRaw) {
 775           mem = st_alloc->in(TypeFunc::Memory);
 776         } else {
 777           mem = st_init->memory(alias_idx);
 778         }
 779         continue;           // (a) advance through independent store memory
 780       }
 781 
 782       // (b) at this point, if we are not looking at a store initializing
 783       // the same allocation we are loading from, we lose.
 784       if (known_identical) {
 785         // From caller, can_see_stored_value will consult find_captured_store.
 786         return mem;         // let caller handle steps (c), (d)
 787       }
 788 
 789     } else if (find_previous_arraycopy(phase, alloc, mem, false) != nullptr) {
 790       if (prev != mem) {
 791         // Found an arraycopy but it doesn't affect that load
 792         continue;
 793       }
 794       // Found an arraycopy that may affect that load
 795       return mem;
 796     } else if (addr_t != nullptr && addr_t->is_known_instance_field()) {
 797       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 798       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 799         // ArrayCopyNodes processed here as well.
 800         CallNode *call = mem->in(0)->as_Call();
 801         if (!call->may_modify(addr_t, phase)) {
 802           mem = call->in(TypeFunc::Memory);
 803           continue;         // (a) advance through independent call memory
 804         }
 805       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 806         ArrayCopyNode* ac = nullptr;
 807         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 808           break;
 809         }
 810         mem = mem->in(0)->in(TypeFunc::Memory);
 811         continue;           // (a) advance through independent MemBar memory
 812       } else if (mem->is_ClearArray()) {
 813         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 814           // (the call updated 'mem' value)
 815           continue;         // (a) advance through independent allocation memory
 816         } else {
 817           // Can not bypass initialization of the instance
 818           // we are looking for.
 819           return mem;
 820         }
 821       } else if (mem->is_MergeMem()) {
 822         int alias_idx = phase->C->get_alias_index(adr_type());
 823         mem = mem->as_MergeMem()->memory_at(alias_idx);
 824         continue;           // (a) advance through independent MergeMem memory
 825       }
 826     }
 827 
 828     // Unless there is an explicit 'continue', we must bail out here,
 829     // because 'mem' is an inscrutable memory state (e.g., a call).
 830     break;
 831   }
 832 
 833   return nullptr;              // bail out
 834 }
 835 
 836 //----------------------calculate_adr_type-------------------------------------
 837 // Helper function.  Notices when the given type of address hits top or bottom.
 838 // Also, asserts a cross-check of the type against the expected address type.
 839 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 840   if (t == Type::TOP)  return nullptr; // does not touch memory any more?
 841   #ifdef ASSERT
 842   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = nullptr;
 843   #endif
 844   const TypePtr* tp = t->isa_ptr();
 845   if (tp == nullptr) {
 846     assert(cross_check == nullptr || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 847     return TypePtr::BOTTOM;           // touches lots of memory
 848   } else {
 849     #ifdef ASSERT
 850     // %%%% [phh] We don't check the alias index if cross_check is
 851     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 852     if (cross_check != nullptr &&
 853         cross_check != TypePtr::BOTTOM &&
 854         cross_check != TypeRawPtr::BOTTOM) {
 855       // Recheck the alias index, to see if it has changed (due to a bug).
 856       Compile* C = Compile::current();
 857       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 858              "must stay in the original alias category");
 859       // The type of the address must be contained in the adr_type,
 860       // disregarding "null"-ness.
 861       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 862       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 863       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 864              "real address must not escape from expected memory type");
 865     }
 866     #endif
 867     return tp;
 868   }
 869 }
 870 
 871 uint8_t MemNode::barrier_data(const Node* n) {
 872   if (n->is_LoadStore()) {
 873     return n->as_LoadStore()->barrier_data();
 874   } else if (n->is_Mem()) {
 875     return n->as_Mem()->barrier_data();
 876   }
 877   return 0;
 878 }
 879 
 880 //=============================================================================
 881 // Should LoadNode::Ideal() attempt to remove control edges?
 882 bool LoadNode::can_remove_control() const {
 883   return !has_pinned_control_dependency();
 884 }
 885 uint LoadNode::size_of() const { return sizeof(*this); }
 886 bool LoadNode::cmp(const Node &n) const {
 887   LoadNode& load = (LoadNode &)n;
 888   return Type::equals(_type, load._type) &&
 889          _control_dependency == load._control_dependency &&
 890          _mo == load._mo;
 891 }
 892 const Type *LoadNode::bottom_type() const { return _type; }
 893 uint LoadNode::ideal_reg() const {
 894   return _type->ideal_reg();
 895 }
 896 
 897 #ifndef PRODUCT
 898 void LoadNode::dump_spec(outputStream *st) const {
 899   MemNode::dump_spec(st);
 900   if( !Verbose && !WizardMode ) {
 901     // standard dump does this in Verbose and WizardMode
 902     st->print(" #"); _type->dump_on(st);
 903   }
 904   if (!depends_only_on_test()) {
 905     st->print(" (does not depend only on test, ");
 906     if (control_dependency() == UnknownControl) {
 907       st->print("unknown control");
 908     } else if (control_dependency() == Pinned) {
 909       st->print("pinned");
 910     } else if (adr_type() == TypeRawPtr::BOTTOM) {
 911       st->print("raw access");
 912     } else {
 913       st->print("unknown reason");
 914     }
 915     st->print(")");
 916   }
 917 }
 918 #endif
 919 
 920 #ifdef ASSERT
 921 //----------------------------is_immutable_value-------------------------------
 922 // Helper function to allow a raw load without control edge for some cases
 923 bool LoadNode::is_immutable_value(Node* adr) {
 924   if (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 925       adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal) {
 926 
 927     jlong offset = adr->in(AddPNode::Offset)->find_intptr_t_con(-1);
 928     int offsets[] = {
 929       in_bytes(JavaThread::osthread_offset()),
 930       in_bytes(JavaThread::threadObj_offset()),
 931       in_bytes(JavaThread::vthread_offset()),
 932       in_bytes(JavaThread::scopedValueCache_offset()),
 933     };
 934 
 935     for (size_t i = 0; i < sizeof offsets / sizeof offsets[0]; i++) {
 936       if (offset == offsets[i]) {
 937         return true;
 938       }
 939     }
 940   }
 941 
 942   return false;
 943 }
 944 #endif
 945 
 946 //----------------------------LoadNode::make-----------------------------------
 947 // Polymorphic factory method:
 948 Node* LoadNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, BasicType bt, MemOrd mo,
 949                      ControlDependency control_dependency, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) {
 950   Compile* C = gvn.C;
 951 
 952   // sanity check the alias category against the created node type
 953   assert(!(adr_type->isa_oopptr() &&
 954            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 955          "use LoadKlassNode instead");
 956   assert(!(adr_type->isa_aryptr() &&
 957            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 958          "use LoadRangeNode instead");
 959   // Check control edge of raw loads
 960   assert( ctl != nullptr || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 961           // oop will be recorded in oop map if load crosses safepoint
 962           rt->isa_oopptr() || is_immutable_value(adr),
 963           "raw memory operations should have control edge");
 964   LoadNode* load = nullptr;
 965   switch (bt) {
 966   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 967   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 968   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 969   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 970   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 971   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic_access); break;
 972   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 973   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency, require_atomic_access); break;
 974   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 975   case T_OBJECT:
 976   case T_NARROWOOP:
 977 #ifdef _LP64
 978     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 979       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 980     } else
 981 #endif
 982     {
 983       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 984       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 985     }
 986     break;
 987   default:
 988     ShouldNotReachHere();
 989     break;
 990   }
 991   assert(load != nullptr, "LoadNode should have been created");
 992   if (unaligned) {
 993     load->set_unaligned_access();
 994   }
 995   if (mismatched) {
 996     load->set_mismatched_access();
 997   }
 998   if (unsafe) {
 999     load->set_unsafe_access();
1000   }
1001   load->set_barrier_data(barrier_data);
1002   if (load->Opcode() == Op_LoadN) {
1003     Node* ld = gvn.transform(load);
1004     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
1005   }
1006 
1007   return load;
1008 }
1009 
1010 //------------------------------hash-------------------------------------------
1011 uint LoadNode::hash() const {
1012   // unroll addition of interesting fields
1013   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
1014 }
1015 
1016 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
1017   if ((atp != nullptr) && (atp->index() >= Compile::AliasIdxRaw)) {
1018     bool non_volatile = (atp->field() != nullptr) && !atp->field()->is_volatile();
1019     bool is_stable_ary = FoldStableValues &&
1020                          (tp != nullptr) && (tp->isa_aryptr() != nullptr) &&
1021                          tp->isa_aryptr()->is_stable();
1022 
1023     return (eliminate_boxing && non_volatile) || is_stable_ary;
1024   }
1025 
1026   return false;
1027 }
1028 
1029 LoadNode* LoadNode::pin_array_access_node() const {
1030   const TypePtr* adr_type = this->adr_type();
1031   if (adr_type != nullptr && adr_type->isa_aryptr()) {
1032     return clone_pinned();
1033   }
1034   return nullptr;
1035 }
1036 
1037 // Is the value loaded previously stored by an arraycopy? If so return
1038 // a load node that reads from the source array so we may be able to
1039 // optimize out the ArrayCopy node later.
1040 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
1041   Node* ld_adr = in(MemNode::Address);
1042   intptr_t ld_off = 0;
1043   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
1044   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
1045   if (ac != nullptr) {
1046     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
1047 
1048     Node* mem = ac->in(TypeFunc::Memory);
1049     Node* ctl = ac->in(0);
1050     Node* src = ac->in(ArrayCopyNode::Src);
1051 
1052     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
1053       return nullptr;
1054     }
1055 
1056     // load depends on the tests that validate the arraycopy
1057     LoadNode* ld = clone_pinned();
1058     Node* addp = in(MemNode::Address)->clone();
1059     if (ac->as_ArrayCopy()->is_clonebasic()) {
1060       assert(ld_alloc != nullptr, "need an alloc");
1061       assert(addp->is_AddP(), "address must be addp");
1062       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1063       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern");
1064       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern");
1065       addp->set_req(AddPNode::Base, src);
1066       addp->set_req(AddPNode::Address, src);
1067     } else {
1068       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
1069              ac->as_ArrayCopy()->is_copyof_validated() ||
1070              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
1071       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
1072       addp->set_req(AddPNode::Base, src);
1073       addp->set_req(AddPNode::Address, src);
1074 
1075       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
1076       BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
1077       if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
1078 
1079       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
1080       uint shift  = exact_log2(type2aelembytes(ary_elem));
1081 
1082       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
1083 #ifdef _LP64
1084       diff = phase->transform(new ConvI2LNode(diff));
1085 #endif
1086       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
1087 
1088       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
1089       addp->set_req(AddPNode::Offset, offset);
1090     }
1091     addp = phase->transform(addp);
1092 #ifdef ASSERT
1093     const TypePtr* adr_type = phase->type(addp)->is_ptr();
1094     ld->_adr_type = adr_type;
1095 #endif
1096     ld->set_req(MemNode::Address, addp);
1097     ld->set_req(0, ctl);
1098     ld->set_req(MemNode::Memory, mem);
1099     return ld;
1100   }
1101   return nullptr;
1102 }
1103 
1104 
1105 //---------------------------can_see_stored_value------------------------------
1106 // This routine exists to make sure this set of tests is done the same
1107 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
1108 // will change the graph shape in a way which makes memory alive twice at the
1109 // same time (uses the Oracle model of aliasing), then some
1110 // LoadXNode::Identity will fold things back to the equivalence-class model
1111 // of aliasing.
1112 Node* MemNode::can_see_stored_value(Node* st, PhaseValues* phase) const {
1113   Node* ld_adr = in(MemNode::Address);
1114   intptr_t ld_off = 0;
1115   Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off);
1116   Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base);
1117   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
1118   Compile::AliasType* atp = (tp != nullptr) ? phase->C->alias_type(tp) : nullptr;
1119   // This is more general than load from boxing objects.
1120   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
1121     uint alias_idx = atp->index();
1122     Node* result = nullptr;
1123     Node* current = st;
1124     // Skip through chains of MemBarNodes checking the MergeMems for
1125     // new states for the slice of this load.  Stop once any other
1126     // kind of node is encountered.  Loads from final memory can skip
1127     // through any kind of MemBar but normal loads shouldn't skip
1128     // through MemBarAcquire since the could allow them to move out of
1129     // a synchronized region. It is not safe to step over MemBarCPUOrder,
1130     // because alias info above them may be inaccurate (e.g., due to
1131     // mixed/mismatched unsafe accesses).
1132     bool is_final_mem = !atp->is_rewritable();
1133     while (current->is_Proj()) {
1134       int opc = current->in(0)->Opcode();
1135       if ((is_final_mem && (opc == Op_MemBarAcquire ||
1136                             opc == Op_MemBarAcquireLock ||
1137                             opc == Op_LoadFence)) ||
1138           opc == Op_MemBarRelease ||
1139           opc == Op_StoreFence ||
1140           opc == Op_MemBarReleaseLock ||
1141           opc == Op_MemBarStoreStore ||
1142           opc == Op_StoreStoreFence) {
1143         Node* mem = current->in(0)->in(TypeFunc::Memory);
1144         if (mem->is_MergeMem()) {
1145           MergeMemNode* merge = mem->as_MergeMem();
1146           Node* new_st = merge->memory_at(alias_idx);
1147           if (new_st == merge->base_memory()) {
1148             // Keep searching
1149             current = new_st;
1150             continue;
1151           }
1152           // Save the new memory state for the slice and fall through
1153           // to exit.
1154           result = new_st;
1155         }
1156       }
1157       break;
1158     }
1159     if (result != nullptr) {
1160       st = result;
1161     }
1162   }
1163 
1164   // Loop around twice in the case Load -> Initialize -> Store.
1165   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1166   for (int trip = 0; trip <= 1; trip++) {
1167 
1168     if (st->is_Store()) {
1169       Node* st_adr = st->in(MemNode::Address);
1170       if (st_adr != ld_adr) {
1171         // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers).
1172         intptr_t st_off = 0;
1173         Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off);
1174         if (ld_base == nullptr)                                return nullptr;
1175         if (st_base == nullptr)                                return nullptr;
1176         if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return nullptr;
1177         if (ld_off != st_off)                                  return nullptr;
1178         if (ld_off == Type::OffsetBot)                         return nullptr;
1179         // Same base, same offset.
1180         // Possible improvement for arrays: check index value instead of absolute offset.
1181 
1182         // At this point we have proven something like this setup:
1183         //   B = << base >>
1184         //   L =  LoadQ(AddP(Check/CastPP(B), #Off))
1185         //   S = StoreQ(AddP(             B , #Off), V)
1186         // (Actually, we haven't yet proven the Q's are the same.)
1187         // In other words, we are loading from a casted version of
1188         // the same pointer-and-offset that we stored to.
1189         // Casted version may carry a dependency and it is respected.
1190         // Thus, we are able to replace L by V.
1191       }
1192       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1193       if (store_Opcode() != st->Opcode()) {
1194         return nullptr;
1195       }
1196       // LoadVector/StoreVector needs additional check to ensure the types match.
1197       if (st->is_StoreVector()) {
1198         const TypeVect*  in_vt = st->as_StoreVector()->vect_type();
1199         const TypeVect* out_vt = as_LoadVector()->vect_type();
1200         if (in_vt != out_vt) {
1201           return nullptr;
1202         }
1203       }
1204       return st->in(MemNode::ValueIn);
1205     }
1206 
1207     // A load from a freshly-created object always returns zero.
1208     // (This can happen after LoadNode::Ideal resets the load's memory input
1209     // to find_captured_store, which returned InitializeNode::zero_memory.)
1210     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1211         (st->in(0) == ld_alloc) &&
1212         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1213       // return a zero value for the load's basic type
1214       // (This is one of the few places where a generic PhaseTransform
1215       // can create new nodes.  Think of it as lazily manifesting
1216       // virtually pre-existing constants.)
1217       if (value_basic_type() != T_VOID) {
1218         if (ReduceBulkZeroing || find_array_copy_clone(ld_alloc, in(MemNode::Memory)) == nullptr) {
1219           // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an
1220           // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done
1221           // by the ArrayCopyNode.
1222           return phase->zerocon(value_basic_type());
1223         }
1224       } else {
1225         // TODO: materialize all-zero vector constant
1226         assert(!isa_Load() || as_Load()->type()->isa_vect(), "");
1227       }
1228     }
1229 
1230     // A load from an initialization barrier can match a captured store.
1231     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1232       InitializeNode* init = st->in(0)->as_Initialize();
1233       AllocateNode* alloc = init->allocation();
1234       if ((alloc != nullptr) && (alloc == ld_alloc)) {
1235         // examine a captured store value
1236         st = init->find_captured_store(ld_off, memory_size(), phase);
1237         if (st != nullptr) {
1238           continue;             // take one more trip around
1239         }
1240       }
1241     }
1242 
1243     // Load boxed value from result of valueOf() call is input parameter.
1244     if (this->is_Load() && ld_adr->is_AddP() &&
1245         (tp != nullptr) && tp->is_ptr_to_boxed_value()) {
1246       intptr_t ignore = 0;
1247       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1248       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1249       base = bs->step_over_gc_barrier(base);
1250       if (base != nullptr && base->is_Proj() &&
1251           base->as_Proj()->_con == TypeFunc::Parms &&
1252           base->in(0)->is_CallStaticJava() &&
1253           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1254         return base->in(0)->in(TypeFunc::Parms);
1255       }
1256     }
1257 
1258     break;
1259   }
1260 
1261   return nullptr;
1262 }
1263 
1264 //----------------------is_instance_field_load_with_local_phi------------------
1265 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1266   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1267       in(Address)->is_AddP() ) {
1268     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1269     // Only instances and boxed values.
1270     if( t_oop != nullptr &&
1271         (t_oop->is_ptr_to_boxed_value() ||
1272          t_oop->is_known_instance_field()) &&
1273         t_oop->offset() != Type::OffsetBot &&
1274         t_oop->offset() != Type::OffsetTop) {
1275       return true;
1276     }
1277   }
1278   return false;
1279 }
1280 
1281 //------------------------------Identity---------------------------------------
1282 // Loads are identity if previous store is to same address
1283 Node* LoadNode::Identity(PhaseGVN* phase) {
1284   // If the previous store-maker is the right kind of Store, and the store is
1285   // to the same address, then we are equal to the value stored.
1286   Node* mem = in(Memory);
1287   Node* value = can_see_stored_value(mem, phase);
1288   if( value ) {
1289     // byte, short & char stores truncate naturally.
1290     // A load has to load the truncated value which requires
1291     // some sort of masking operation and that requires an
1292     // Ideal call instead of an Identity call.
1293     if (memory_size() < BytesPerInt) {
1294       // If the input to the store does not fit with the load's result type,
1295       // it must be truncated via an Ideal call.
1296       if (!phase->type(value)->higher_equal(phase->type(this)))
1297         return this;
1298     }
1299     // (This works even when value is a Con, but LoadNode::Value
1300     // usually runs first, producing the singleton type of the Con.)
1301     if (!has_pinned_control_dependency() || value->is_Con()) {
1302       return value;
1303     } else {
1304       return this;
1305     }
1306   }
1307 
1308   if (has_pinned_control_dependency()) {
1309     return this;
1310   }
1311   // Search for an existing data phi which was generated before for the same
1312   // instance's field to avoid infinite generation of phis in a loop.
1313   Node *region = mem->in(0);
1314   if (is_instance_field_load_with_local_phi(region)) {
1315     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1316     int this_index  = phase->C->get_alias_index(addr_t);
1317     int this_offset = addr_t->offset();
1318     int this_iid    = addr_t->instance_id();
1319     if (!addr_t->is_known_instance() &&
1320          addr_t->is_ptr_to_boxed_value()) {
1321       // Use _idx of address base (could be Phi node) for boxed values.
1322       intptr_t   ignore = 0;
1323       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1324       if (base == nullptr) {
1325         return this;
1326       }
1327       this_iid = base->_idx;
1328     }
1329     const Type* this_type = bottom_type();
1330     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1331       Node* phi = region->fast_out(i);
1332       if (phi->is_Phi() && phi != mem &&
1333           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1334         return phi;
1335       }
1336     }
1337   }
1338 
1339   return this;
1340 }
1341 
1342 // Construct an equivalent unsigned load.
1343 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1344   BasicType bt = T_ILLEGAL;
1345   const Type* rt = nullptr;
1346   switch (Opcode()) {
1347     case Op_LoadUB: return this;
1348     case Op_LoadUS: return this;
1349     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1350     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1351     default:
1352       assert(false, "no unsigned variant: %s", Name());
1353       return nullptr;
1354   }
1355   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1356                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1357                         false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access());
1358 }
1359 
1360 // Construct an equivalent signed load.
1361 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1362   BasicType bt = T_ILLEGAL;
1363   const Type* rt = nullptr;
1364   switch (Opcode()) {
1365     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1366     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1367     case Op_LoadB: // fall through
1368     case Op_LoadS: // fall through
1369     case Op_LoadI: // fall through
1370     case Op_LoadL: return this;
1371     default:
1372       assert(false, "no signed variant: %s", Name());
1373       return nullptr;
1374   }
1375   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1376                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1377                         false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access());
1378 }
1379 
1380 bool LoadNode::has_reinterpret_variant(const Type* rt) {
1381   BasicType bt = rt->basic_type();
1382   switch (Opcode()) {
1383     case Op_LoadI: return (bt == T_FLOAT);
1384     case Op_LoadL: return (bt == T_DOUBLE);
1385     case Op_LoadF: return (bt == T_INT);
1386     case Op_LoadD: return (bt == T_LONG);
1387 
1388     default: return false;
1389   }
1390 }
1391 
1392 Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) {
1393   BasicType bt = rt->basic_type();
1394   assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt));
1395   bool is_mismatched = is_mismatched_access();
1396   const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr();
1397   if (raw_type == nullptr) {
1398     is_mismatched = true; // conservatively match all non-raw accesses as mismatched
1399   }
1400   const int op = Opcode();
1401   bool require_atomic_access = (op == Op_LoadL && ((LoadLNode*)this)->require_atomic_access()) ||
1402                                (op == Op_LoadD && ((LoadDNode*)this)->require_atomic_access());
1403   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1404                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1405                         require_atomic_access, is_unaligned_access(), is_mismatched);
1406 }
1407 
1408 bool StoreNode::has_reinterpret_variant(const Type* vt) {
1409   BasicType bt = vt->basic_type();
1410   switch (Opcode()) {
1411     case Op_StoreI: return (bt == T_FLOAT);
1412     case Op_StoreL: return (bt == T_DOUBLE);
1413     case Op_StoreF: return (bt == T_INT);
1414     case Op_StoreD: return (bt == T_LONG);
1415 
1416     default: return false;
1417   }
1418 }
1419 
1420 Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) {
1421   BasicType bt = vt->basic_type();
1422   assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt));
1423   const int op = Opcode();
1424   bool require_atomic_access = (op == Op_StoreL && ((StoreLNode*)this)->require_atomic_access()) ||
1425                                (op == Op_StoreD && ((StoreDNode*)this)->require_atomic_access());
1426   StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1427                                   raw_adr_type(), val, bt, _mo, require_atomic_access);
1428 
1429   bool is_mismatched = is_mismatched_access();
1430   const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr();
1431   if (raw_type == nullptr) {
1432     is_mismatched = true; // conservatively match all non-raw accesses as mismatched
1433   }
1434   if (is_mismatched) {
1435     st->set_mismatched_access();
1436   }
1437   return st;
1438 }
1439 
1440 // We're loading from an object which has autobox behaviour.
1441 // If this object is result of a valueOf call we'll have a phi
1442 // merging a newly allocated object and a load from the cache.
1443 // We want to replace this load with the original incoming
1444 // argument to the valueOf call.
1445 Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) {
1446   assert(igvn->C->eliminate_boxing(), "sanity");
1447   intptr_t ignore = 0;
1448   Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore);
1449   if ((base == nullptr) || base->is_Phi()) {
1450     // Push the loads from the phi that comes from valueOf up
1451     // through it to allow elimination of the loads and the recovery
1452     // of the original value. It is done in split_through_phi().
1453     return nullptr;
1454   } else if (base->is_Load() ||
1455              (base->is_DecodeN() && base->in(1)->is_Load())) {
1456     // Eliminate the load of boxed value for integer types from the cache
1457     // array by deriving the value from the index into the array.
1458     // Capture the offset of the load and then reverse the computation.
1459 
1460     // Get LoadN node which loads a boxing object from 'cache' array.
1461     if (base->is_DecodeN()) {
1462       base = base->in(1);
1463     }
1464     if (!base->in(Address)->is_AddP()) {
1465       return nullptr; // Complex address
1466     }
1467     AddPNode* address = base->in(Address)->as_AddP();
1468     Node* cache_base = address->in(AddPNode::Base);
1469     if ((cache_base != nullptr) && cache_base->is_DecodeN()) {
1470       // Get ConP node which is static 'cache' field.
1471       cache_base = cache_base->in(1);
1472     }
1473     if ((cache_base != nullptr) && cache_base->is_Con()) {
1474       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1475       if ((base_type != nullptr) && base_type->is_autobox_cache()) {
1476         Node* elements[4];
1477         int shift = exact_log2(type2aelembytes(T_OBJECT));
1478         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1479         if (count > 0 && elements[0]->is_Con() &&
1480             (count == 1 ||
1481              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1482                             elements[1]->in(2) == igvn->intcon(shift)))) {
1483           ciObjArray* array = base_type->const_oop()->as_obj_array();
1484           // Fetch the box object cache[0] at the base of the array and get its value
1485           ciInstance* box = array->obj_at(0)->as_instance();
1486           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1487           assert(ik->is_box_klass(), "sanity");
1488           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1489           if (ik->nof_nonstatic_fields() == 1) {
1490             // This should be true nonstatic_field_at requires calling
1491             // nof_nonstatic_fields so check it anyway
1492             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1493             BasicType bt = c.basic_type();
1494             // Only integer types have boxing cache.
1495             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1496                    bt == T_BYTE    || bt == T_SHORT ||
1497                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1498             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1499             if (cache_low != (int)cache_low) {
1500               return nullptr; // should not happen since cache is array indexed by value
1501             }
1502             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1503             if (offset != (int)offset) {
1504               return nullptr; // should not happen since cache is array indexed by value
1505             }
1506            // Add up all the offsets making of the address of the load
1507             Node* result = elements[0];
1508             for (int i = 1; i < count; i++) {
1509               result = igvn->transform(new AddXNode(result, elements[i]));
1510             }
1511             // Remove the constant offset from the address and then
1512             result = igvn->transform(new AddXNode(result, igvn->MakeConX(-(int)offset)));
1513             // remove the scaling of the offset to recover the original index.
1514             if (result->Opcode() == Op_LShiftX && result->in(2) == igvn->intcon(shift)) {
1515               // Peel the shift off directly but wrap it in a dummy node
1516               // since Ideal can't return existing nodes
1517               igvn->_worklist.push(result); // remove dead node later
1518               result = new RShiftXNode(result->in(1), igvn->intcon(0));
1519             } else if (result->is_Add() && result->in(2)->is_Con() &&
1520                        result->in(1)->Opcode() == Op_LShiftX &&
1521                        result->in(1)->in(2) == igvn->intcon(shift)) {
1522               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1523               // but for boxing cache access we know that X<<Z will not overflow
1524               // (there is range check) so we do this optimizatrion by hand here.
1525               igvn->_worklist.push(result); // remove dead node later
1526               Node* add_con = new RShiftXNode(result->in(2), igvn->intcon(shift));
1527               result = new AddXNode(result->in(1)->in(1), igvn->transform(add_con));
1528             } else {
1529               result = new RShiftXNode(result, igvn->intcon(shift));
1530             }
1531 #ifdef _LP64
1532             if (bt != T_LONG) {
1533               result = new ConvL2INode(igvn->transform(result));
1534             }
1535 #else
1536             if (bt == T_LONG) {
1537               result = new ConvI2LNode(igvn->transform(result));
1538             }
1539 #endif
1540             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1541             // Need to preserve unboxing load type if it is unsigned.
1542             switch(this->Opcode()) {
1543               case Op_LoadUB:
1544                 result = new AndINode(igvn->transform(result), igvn->intcon(0xFF));
1545                 break;
1546               case Op_LoadUS:
1547                 result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF));
1548                 break;
1549             }
1550             return result;
1551           }
1552         }
1553       }
1554     }
1555   }
1556   return nullptr;
1557 }
1558 
1559 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1560   Node* region = phi->in(0);
1561   if (region == nullptr) {
1562     return false; // Wait stable graph
1563   }
1564   uint cnt = phi->req();
1565   for (uint i = 1; i < cnt; i++) {
1566     Node* rc = region->in(i);
1567     if (rc == nullptr || phase->type(rc) == Type::TOP)
1568       return false; // Wait stable graph
1569     Node* in = phi->in(i);
1570     if (in == nullptr || phase->type(in) == Type::TOP)
1571       return false; // Wait stable graph
1572   }
1573   return true;
1574 }
1575 
1576 //------------------------------split_through_phi------------------------------
1577 // Check whether a call to 'split_through_phi' would split this load through the
1578 // Phi *base*. This method is essentially a copy of the validations performed
1579 // by 'split_through_phi'. The first use of this method was in EA code as part
1580 // of simplification of allocation merges.
1581 // Some differences from original method (split_through_phi):
1582 //  - If base->is_CastPP(): base = base->in(1)
1583 bool LoadNode::can_split_through_phi_base(PhaseGVN* phase) {
1584   Node* mem        = in(Memory);
1585   Node* address    = in(Address);
1586   intptr_t ignore  = 0;
1587   Node*    base    = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1588 
1589   if (base->is_CastPP()) {
1590     base = base->in(1);
1591   }
1592 
1593   if (req() > 3 || base == nullptr || !base->is_Phi()) {
1594     return false;
1595   }
1596 
1597   if (!mem->is_Phi()) {
1598     if (!MemNode::all_controls_dominate(mem, base->in(0))) {
1599       return false;
1600     }
1601   } else if (base->in(0) != mem->in(0)) {
1602     if (!MemNode::all_controls_dominate(mem, base->in(0))) {
1603       return false;
1604     }
1605   }
1606 
1607   return true;
1608 }
1609 
1610 //------------------------------split_through_phi------------------------------
1611 // Split instance or boxed field load through Phi.
1612 Node* LoadNode::split_through_phi(PhaseGVN* phase, bool ignore_missing_instance_id) {
1613   if (req() > 3) {
1614     assert(is_LoadVector() && Opcode() != Op_LoadVector, "load has too many inputs");
1615     // LoadVector subclasses such as LoadVectorMasked have extra inputs that the logic below doesn't take into account
1616     return nullptr;
1617   }
1618   Node* mem     = in(Memory);
1619   Node* address = in(Address);
1620   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1621 
1622   assert((t_oop != nullptr) &&
1623          (ignore_missing_instance_id ||
1624           t_oop->is_known_instance_field() ||
1625           t_oop->is_ptr_to_boxed_value()), "invalid conditions");
1626 
1627   Compile* C = phase->C;
1628   intptr_t ignore = 0;
1629   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1630   bool base_is_phi = (base != nullptr) && base->is_Phi();
1631   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1632                            (base != nullptr) && (base == address->in(AddPNode::Base)) &&
1633                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1634 
1635   if (!((mem->is_Phi() || base_is_phi) &&
1636         (ignore_missing_instance_id || load_boxed_values || t_oop->is_known_instance_field()))) {
1637     return nullptr; // Neither memory or base are Phi
1638   }
1639 
1640   if (mem->is_Phi()) {
1641     if (!stable_phi(mem->as_Phi(), phase)) {
1642       return nullptr; // Wait stable graph
1643     }
1644     uint cnt = mem->req();
1645     // Check for loop invariant memory.
1646     if (cnt == 3) {
1647       for (uint i = 1; i < cnt; i++) {
1648         Node* in = mem->in(i);
1649         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1650         if (m == mem) {
1651           if (i == 1) {
1652             // if the first edge was a loop, check second edge too.
1653             // If both are replaceable - we are in an infinite loop
1654             Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase);
1655             if (n == mem) {
1656               break;
1657             }
1658           }
1659           set_req(Memory, mem->in(cnt - i));
1660           return this; // made change
1661         }
1662       }
1663     }
1664   }
1665   if (base_is_phi) {
1666     if (!stable_phi(base->as_Phi(), phase)) {
1667       return nullptr; // Wait stable graph
1668     }
1669     uint cnt = base->req();
1670     // Check for loop invariant memory.
1671     if (cnt == 3) {
1672       for (uint i = 1; i < cnt; i++) {
1673         if (base->in(i) == base) {
1674           return nullptr; // Wait stable graph
1675         }
1676       }
1677     }
1678   }
1679 
1680   // Split through Phi (see original code in loopopts.cpp).
1681   assert(ignore_missing_instance_id || C->have_alias_type(t_oop), "instance should have alias type");
1682 
1683   // Do nothing here if Identity will find a value
1684   // (to avoid infinite chain of value phis generation).
1685   if (this != Identity(phase)) {
1686     return nullptr;
1687   }
1688 
1689   // Select Region to split through.
1690   Node* region;
1691   DomResult dom_result = DomResult::Dominate;
1692   if (!base_is_phi) {
1693     assert(mem->is_Phi(), "sanity");
1694     region = mem->in(0);
1695     // Skip if the region dominates some control edge of the address.
1696     // We will check `dom_result` later.
1697     dom_result = MemNode::maybe_all_controls_dominate(address, region);
1698   } else if (!mem->is_Phi()) {
1699     assert(base_is_phi, "sanity");
1700     region = base->in(0);
1701     // Skip if the region dominates some control edge of the memory.
1702     // We will check `dom_result` later.
1703     dom_result = MemNode::maybe_all_controls_dominate(mem, region);
1704   } else if (base->in(0) != mem->in(0)) {
1705     assert(base_is_phi && mem->is_Phi(), "sanity");
1706     dom_result = MemNode::maybe_all_controls_dominate(mem, base->in(0));
1707     if (dom_result == DomResult::Dominate) {
1708       region = base->in(0);
1709     } else {
1710       dom_result = MemNode::maybe_all_controls_dominate(address, mem->in(0));
1711       if (dom_result == DomResult::Dominate) {
1712         region = mem->in(0);
1713       }
1714       // Otherwise we encountered a complex graph.
1715     }
1716   } else {
1717     assert(base->in(0) == mem->in(0), "sanity");
1718     region = mem->in(0);
1719   }
1720 
1721   PhaseIterGVN* igvn = phase->is_IterGVN();
1722   if (dom_result != DomResult::Dominate) {
1723     if (dom_result == DomResult::EncounteredDeadCode) {
1724       // There is some dead code which eventually will be removed in IGVN.
1725       // Once this is the case, we get an unambiguous dominance result.
1726       // Push the node to the worklist again until the dead code is removed.
1727       igvn->_worklist.push(this);
1728     }
1729     return nullptr;
1730   }
1731 
1732   Node* phi = nullptr;
1733   const Type* this_type = this->bottom_type();
1734   if (t_oop != nullptr && (t_oop->is_known_instance_field() || load_boxed_values)) {
1735     int this_index = C->get_alias_index(t_oop);
1736     int this_offset = t_oop->offset();
1737     int this_iid = t_oop->is_known_instance_field() ? t_oop->instance_id() : base->_idx;
1738     phi = new PhiNode(region, this_type, nullptr, mem->_idx, this_iid, this_index, this_offset);
1739   } else if (ignore_missing_instance_id) {
1740     phi = new PhiNode(region, this_type, nullptr, mem->_idx);
1741   } else {
1742     return nullptr;
1743   }
1744 
1745   for (uint i = 1; i < region->req(); i++) {
1746     Node* x;
1747     Node* the_clone = nullptr;
1748     Node* in = region->in(i);
1749     if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl &&
1750         in != nullptr && in->is_OuterStripMinedLoop()) {
1751       // No node should go in the outer strip mined loop
1752       in = in->in(LoopNode::EntryControl);
1753     }
1754     if (in == nullptr || in == C->top()) {
1755       x = C->top();      // Dead path?  Use a dead data op
1756     } else {
1757       x = this->clone();        // Else clone up the data op
1758       the_clone = x;            // Remember for possible deletion.
1759       // Alter data node to use pre-phi inputs
1760       if (this->in(0) == region) {
1761         x->set_req(0, in);
1762       } else {
1763         x->set_req(0, nullptr);
1764       }
1765       if (mem->is_Phi() && (mem->in(0) == region)) {
1766         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1767       }
1768       if (address->is_Phi() && address->in(0) == region) {
1769         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1770       }
1771       if (base_is_phi && (base->in(0) == region)) {
1772         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1773         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1774         x->set_req(Address, adr_x);
1775       }
1776     }
1777     // Check for a 'win' on some paths
1778     const Type *t = x->Value(igvn);
1779 
1780     bool singleton = t->singleton();
1781 
1782     // See comments in PhaseIdealLoop::split_thru_phi().
1783     if (singleton && t == Type::TOP) {
1784       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1785     }
1786 
1787     if (singleton) {
1788       x = igvn->makecon(t);
1789     } else {
1790       // We now call Identity to try to simplify the cloned node.
1791       // Note that some Identity methods call phase->type(this).
1792       // Make sure that the type array is big enough for
1793       // our new node, even though we may throw the node away.
1794       // (This tweaking with igvn only works because x is a new node.)
1795       igvn->set_type(x, t);
1796       // If x is a TypeNode, capture any more-precise type permanently into Node
1797       // otherwise it will be not updated during igvn->transform since
1798       // igvn->type(x) is set to x->Value() already.
1799       x->raise_bottom_type(t);
1800       Node* y = x->Identity(igvn);
1801       if (y != x) {
1802         x = y;
1803       } else {
1804         y = igvn->hash_find_insert(x);
1805         if (y) {
1806           x = y;
1807         } else {
1808           // Else x is a new node we are keeping
1809           // We do not need register_new_node_with_optimizer
1810           // because set_type has already been called.
1811           igvn->_worklist.push(x);
1812         }
1813       }
1814     }
1815     if (x != the_clone && the_clone != nullptr) {
1816       igvn->remove_dead_node(the_clone);
1817     }
1818     phi->set_req(i, x);
1819   }
1820   // Record Phi
1821   igvn->register_new_node_with_optimizer(phi);
1822   return phi;
1823 }
1824 
1825 AllocateNode* LoadNode::is_new_object_mark_load() const {
1826   if (Opcode() == Op_LoadX) {
1827     Node* address = in(MemNode::Address);
1828     AllocateNode* alloc = AllocateNode::Ideal_allocation(address);
1829     Node* mem = in(MemNode::Memory);
1830     if (alloc != nullptr && mem->is_Proj() &&
1831         mem->in(0) != nullptr &&
1832         mem->in(0) == alloc->initialization() &&
1833         alloc->initialization()->proj_out_or_null(0) != nullptr) {
1834       return alloc;
1835     }
1836   }
1837   return nullptr;
1838 }
1839 
1840 
1841 //------------------------------Ideal------------------------------------------
1842 // If the load is from Field memory and the pointer is non-null, it might be possible to
1843 // zero out the control input.
1844 // If the offset is constant and the base is an object allocation,
1845 // try to hook me up to the exact initializing store.
1846 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1847   if (has_pinned_control_dependency()) {
1848     return nullptr;
1849   }
1850   Node* p = MemNode::Ideal_common(phase, can_reshape);
1851   if (p)  return (p == NodeSentinel) ? nullptr : p;
1852 
1853   Node* ctrl    = in(MemNode::Control);
1854   Node* address = in(MemNode::Address);
1855   bool progress = false;
1856 
1857   bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
1858          phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
1859 
1860   // Skip up past a SafePoint control.  Cannot do this for Stores because
1861   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1862   if( ctrl != nullptr && ctrl->Opcode() == Op_SafePoint &&
1863       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  &&
1864       !addr_mark &&
1865       (depends_only_on_test() || has_unknown_control_dependency())) {
1866     ctrl = ctrl->in(0);
1867     set_req(MemNode::Control,ctrl);
1868     progress = true;
1869   }
1870 
1871   intptr_t ignore = 0;
1872   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1873   if (base != nullptr
1874       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1875     // Check for useless control edge in some common special cases
1876     if (in(MemNode::Control) != nullptr
1877         && can_remove_control()
1878         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1879         && all_controls_dominate(base, phase->C->start())) {
1880       // A method-invariant, non-null address (constant or 'this' argument).
1881       set_req(MemNode::Control, nullptr);
1882       progress = true;
1883     }
1884   }
1885 
1886   Node* mem = in(MemNode::Memory);
1887   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1888 
1889   if (can_reshape && (addr_t != nullptr)) {
1890     // try to optimize our memory input
1891     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1892     if (opt_mem != mem) {
1893       set_req_X(MemNode::Memory, opt_mem, phase);
1894       if (phase->type( opt_mem ) == Type::TOP) return nullptr;
1895       return this;
1896     }
1897     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1898     if ((t_oop != nullptr) &&
1899         (t_oop->is_known_instance_field() ||
1900          t_oop->is_ptr_to_boxed_value())) {
1901       PhaseIterGVN *igvn = phase->is_IterGVN();
1902       assert(igvn != nullptr, "must be PhaseIterGVN when can_reshape is true");
1903       if (igvn->_worklist.member(opt_mem)) {
1904         // Delay this transformation until memory Phi is processed.
1905         igvn->_worklist.push(this);
1906         return nullptr;
1907       }
1908       // Split instance field load through Phi.
1909       Node* result = split_through_phi(phase);
1910       if (result != nullptr) return result;
1911 
1912       if (t_oop->is_ptr_to_boxed_value()) {
1913         Node* result = eliminate_autobox(igvn);
1914         if (result != nullptr) return result;
1915       }
1916     }
1917   }
1918 
1919   // Is there a dominating load that loads the same value?  Leave
1920   // anything that is not a load of a field/array element (like
1921   // barriers etc.) alone
1922   if (in(0) != nullptr && !adr_type()->isa_rawptr() && can_reshape) {
1923     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1924       Node *use = mem->fast_out(i);
1925       if (use != this &&
1926           use->Opcode() == Opcode() &&
1927           use->in(0) != nullptr &&
1928           use->in(0) != in(0) &&
1929           use->in(Address) == in(Address)) {
1930         Node* ctl = in(0);
1931         for (int i = 0; i < 10 && ctl != nullptr; i++) {
1932           ctl = IfNode::up_one_dom(ctl);
1933           if (ctl == use->in(0)) {
1934             set_req(0, use->in(0));
1935             return this;
1936           }
1937         }
1938       }
1939     }
1940   }
1941 
1942   // Check for prior store with a different base or offset; make Load
1943   // independent.  Skip through any number of them.  Bail out if the stores
1944   // are in an endless dead cycle and report no progress.  This is a key
1945   // transform for Reflection.  However, if after skipping through the Stores
1946   // we can't then fold up against a prior store do NOT do the transform as
1947   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1948   // array memory alive twice: once for the hoisted Load and again after the
1949   // bypassed Store.  This situation only works if EVERYBODY who does
1950   // anti-dependence work knows how to bypass.  I.e. we need all
1951   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1952   // the alias index stuff.  So instead, peek through Stores and IFF we can
1953   // fold up, do so.
1954   Node* prev_mem = find_previous_store(phase);
1955   if (prev_mem != nullptr) {
1956     Node* value = can_see_arraycopy_value(prev_mem, phase);
1957     if (value != nullptr) {
1958       return value;
1959     }
1960   }
1961   // Steps (a), (b):  Walk past independent stores to find an exact match.
1962   if (prev_mem != nullptr && prev_mem != in(MemNode::Memory)) {
1963     // (c) See if we can fold up on the spot, but don't fold up here.
1964     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1965     // just return a prior value, which is done by Identity calls.
1966     if (can_see_stored_value(prev_mem, phase)) {
1967       // Make ready for step (d):
1968       set_req_X(MemNode::Memory, prev_mem, phase);
1969       return this;
1970     }
1971   }
1972 
1973   return progress ? this : nullptr;
1974 }
1975 
1976 // Helper to recognize certain Klass fields which are invariant across
1977 // some group of array types (e.g., int[] or all T[] where T < Object).
1978 const Type*
1979 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1980                                  ciKlass* klass) const {
1981   assert(!UseCompactObjectHeaders ||
1982          AOTCodeCache::is_on_for_dump() ||
1983          tkls->offset() != in_bytes(Klass::prototype_header_offset()),
1984          "must not happen");
1985   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1986     // The field is Klass::_access_flags.  Return its (constant) value.
1987     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1988     assert(Opcode() == Op_LoadUS, "must load an unsigned short from _access_flags");
1989     return TypeInt::make(klass->access_flags());
1990   }
1991   if (tkls->offset() == in_bytes(Klass::misc_flags_offset())) {
1992     // The field is Klass::_misc_flags.  Return its (constant) value.
1993     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1994     assert(Opcode() == Op_LoadUB, "must load an unsigned byte from _misc_flags");
1995     return TypeInt::make(klass->misc_flags());
1996   }
1997   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1998     // The field is Klass::_layout_helper.  Return its constant value if known.
1999     assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
2000     return TypeInt::make(klass->layout_helper());
2001   }
2002 
2003   // No match.
2004   return nullptr;
2005 }
2006 
2007 //------------------------------Value-----------------------------------------
2008 const Type* LoadNode::Value(PhaseGVN* phase) const {
2009   // Either input is TOP ==> the result is TOP
2010   Node* mem = in(MemNode::Memory);
2011   const Type *t1 = phase->type(mem);
2012   if (t1 == Type::TOP)  return Type::TOP;
2013   Node* adr = in(MemNode::Address);
2014   const TypePtr* tp = phase->type(adr)->isa_ptr();
2015   if (tp == nullptr || tp->empty())  return Type::TOP;
2016   int off = tp->offset();
2017   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
2018   Compile* C = phase->C;
2019 
2020   // If we are loading from a freshly-allocated object, produce a zero,
2021   // if the load is provably beyond the header of the object.
2022   // (Also allow a variable load from a fresh array to produce zero.)
2023   const TypeOopPtr* tinst = tp->isa_oopptr();
2024   bool is_instance = (tinst != nullptr) && tinst->is_known_instance_field();
2025   Node* value = can_see_stored_value(mem, phase);
2026   if (value != nullptr && value->is_Con()) {
2027     assert(value->bottom_type()->higher_equal(_type), "sanity");
2028     return value->bottom_type();
2029   }
2030 
2031   // Try to guess loaded type from pointer type
2032   if (tp->isa_aryptr()) {
2033     const TypeAryPtr* ary = tp->is_aryptr();
2034     const Type* t = ary->elem();
2035 
2036     // Determine whether the reference is beyond the header or not, by comparing
2037     // the offset against the offset of the start of the array's data.
2038     // Different array types begin at slightly different offsets (12 vs. 16).
2039     // We choose T_BYTE as an example base type that is least restrictive
2040     // as to alignment, which will therefore produce the smallest
2041     // possible base offset.
2042     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
2043     const bool off_beyond_header = (off >= min_base_off);
2044 
2045     // Try to constant-fold a stable array element.
2046     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
2047       // Make sure the reference is not into the header and the offset is constant
2048       ciObject* aobj = ary->const_oop();
2049       if (aobj != nullptr && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
2050         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
2051         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
2052                                                                       stable_dimension,
2053                                                                       value_basic_type(), is_unsigned());
2054         if (con_type != nullptr) {
2055           return con_type;
2056         }
2057       }
2058     }
2059 
2060     // Don't do this for integer types. There is only potential profit if
2061     // the element type t is lower than _type; that is, for int types, if _type is
2062     // more restrictive than t.  This only happens here if one is short and the other
2063     // char (both 16 bits), and in those cases we've made an intentional decision
2064     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
2065     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
2066     //
2067     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
2068     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
2069     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
2070     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
2071     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
2072     // In fact, that could have been the original type of p1, and p1 could have
2073     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
2074     // expression (LShiftL quux 3) independently optimized to the constant 8.
2075     if ((t->isa_int() == nullptr) && (t->isa_long() == nullptr)
2076         && (_type->isa_vect() == nullptr)
2077         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
2078       // t might actually be lower than _type, if _type is a unique
2079       // concrete subclass of abstract class t.
2080       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
2081         const Type* jt = t->join_speculative(_type);
2082         // In any case, do not allow the join, per se, to empty out the type.
2083         if (jt->empty() && !t->empty()) {
2084           // This can happen if a interface-typed array narrows to a class type.
2085           jt = _type;
2086         }
2087 #ifdef ASSERT
2088         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
2089           // The pointers in the autobox arrays are always non-null
2090           Node* base = adr->in(AddPNode::Base);
2091           if ((base != nullptr) && base->is_DecodeN()) {
2092             // Get LoadN node which loads IntegerCache.cache field
2093             base = base->in(1);
2094           }
2095           if ((base != nullptr) && base->is_Con()) {
2096             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
2097             if ((base_type != nullptr) && base_type->is_autobox_cache()) {
2098               // It could be narrow oop
2099               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
2100             }
2101           }
2102         }
2103 #endif
2104         return jt;
2105       }
2106     }
2107   } else if (tp->base() == Type::InstPtr) {
2108     assert( off != Type::OffsetBot ||
2109             // arrays can be cast to Objects
2110             !tp->isa_instptr() ||
2111             tp->is_instptr()->instance_klass()->is_java_lang_Object() ||
2112             // unsafe field access may not have a constant offset
2113             C->has_unsafe_access(),
2114             "Field accesses must be precise" );
2115     // For oop loads, we expect the _type to be precise.
2116 
2117     // Optimize loads from constant fields.
2118     const TypeInstPtr* tinst = tp->is_instptr();
2119     ciObject* const_oop = tinst->const_oop();
2120     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != nullptr && const_oop->is_instance()) {
2121       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), value_basic_type());
2122       if (con_type != nullptr) {
2123         return con_type;
2124       }
2125     }
2126   } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) {
2127     assert(off != Type::OffsetBot ||
2128             !tp->isa_instklassptr() ||
2129            // arrays can be cast to Objects
2130            tp->isa_instklassptr()->instance_klass()->is_java_lang_Object() ||
2131            // also allow array-loading from the primary supertype
2132            // array during subtype checks
2133            Opcode() == Op_LoadKlass,
2134            "Field accesses must be precise");
2135     // For klass/static loads, we expect the _type to be precise
2136   } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) {
2137     /* With mirrors being an indirect in the Klass*
2138      * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
2139      * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
2140      *
2141      * So check the type and klass of the node before the LoadP.
2142      */
2143     Node* adr2 = adr->in(MemNode::Address);
2144     const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2145     if (tkls != nullptr && !StressReflectiveCode) {
2146       if (tkls->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
2147         ciKlass* klass = tkls->exact_klass();
2148         assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
2149         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
2150         return TypeInstPtr::make(klass->java_mirror());
2151       }
2152     }
2153   }
2154 
2155   const TypeKlassPtr *tkls = tp->isa_klassptr();
2156   if (tkls != nullptr) {
2157     if (tkls->is_loaded() && tkls->klass_is_exact()) {
2158       ciKlass* klass = tkls->exact_klass();
2159       // We are loading a field from a Klass metaobject whose identity
2160       // is known at compile time (the type is "exact" or "precise").
2161       // Check for fields we know are maintained as constants by the VM.
2162       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
2163         // The field is Klass::_super_check_offset.  Return its (constant) value.
2164         // (Folds up type checking code.)
2165         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
2166         return TypeInt::make(klass->super_check_offset());
2167       }
2168       // Class encoding in prototype header may change between runs.
2169       // Force loading prototype header when AOT code is generated.
2170       if (UseCompactObjectHeaders && !AOTCodeCache::is_on_for_dump()) {
2171         if (tkls->offset() == in_bytes(Klass::prototype_header_offset())) {
2172           // The field is Klass::_prototype_header. Return its (constant) value.
2173           assert(this->Opcode() == Op_LoadX, "must load a proper type from _prototype_header");
2174           return TypeX::make(klass->prototype_header());
2175         }
2176       }
2177       // Compute index into primary_supers array
2178       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
2179       // Check for overflowing; use unsigned compare to handle the negative case.
2180       if( depth < ciKlass::primary_super_limit() ) {
2181         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
2182         // (Folds up type checking code.)
2183         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
2184         ciKlass *ss = klass->super_of_depth(depth);
2185         return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR;
2186       }
2187       const Type* aift = load_array_final_field(tkls, klass);
2188       if (aift != nullptr)  return aift;
2189     }
2190 
2191     // We can still check if we are loading from the primary_supers array at a
2192     // shallow enough depth.  Even though the klass is not exact, entries less
2193     // than or equal to its super depth are correct.
2194     if (tkls->is_loaded()) {
2195       ciKlass* klass = nullptr;
2196       if (tkls->isa_instklassptr()) {
2197         klass = tkls->is_instklassptr()->instance_klass();
2198       } else {
2199         int dims;
2200         const Type* inner = tkls->is_aryklassptr()->base_element_type(dims);
2201         if (inner->isa_instklassptr()) {
2202           klass = inner->is_instklassptr()->instance_klass();
2203           klass = ciObjArrayKlass::make(klass, dims);
2204         }
2205       }
2206       if (klass != nullptr) {
2207         // Compute index into primary_supers array
2208         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
2209         // Check for overflowing; use unsigned compare to handle the negative case.
2210         if (depth < ciKlass::primary_super_limit() &&
2211             depth <= klass->super_depth()) { // allow self-depth checks to handle self-check case
2212           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
2213           // (Folds up type checking code.)
2214           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
2215           ciKlass *ss = klass->super_of_depth(depth);
2216           return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR;
2217         }
2218       }
2219     }
2220 
2221     // If the type is enough to determine that the thing is not an array,
2222     // we can give the layout_helper a positive interval type.
2223     // This will help short-circuit some reflective code.
2224     if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) &&
2225         tkls->isa_instklassptr() && // not directly typed as an array
2226         !tkls->is_instklassptr()->might_be_an_array() // not the supertype of all T[] (java.lang.Object) or has an interface that is not Serializable or Cloneable
2227     ) {
2228       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
2229       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
2230       // The key property of this type is that it folds up tests
2231       // for array-ness, since it proves that the layout_helper is positive.
2232       // Thus, a generic value like the basic object layout helper works fine.
2233       return TypeInt::make(min_size, max_jint, Type::WidenMin);
2234     }
2235   }
2236 
2237   bool is_vect = (_type->isa_vect() != nullptr);
2238   if (is_instance && !is_vect) {
2239     // If we have an instance type and our memory input is the
2240     // programs's initial memory state, there is no matching store,
2241     // so just return a zero of the appropriate type -
2242     // except if it is vectorized - then we have no zero constant.
2243     Node *mem = in(MemNode::Memory);
2244     if (mem->is_Parm() && mem->in(0)->is_Start()) {
2245       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
2246       return Type::get_zero_type(_type->basic_type());
2247     }
2248   }
2249 
2250   if (!UseCompactObjectHeaders) {
2251     Node* alloc = is_new_object_mark_load();
2252     if (alloc != nullptr) {
2253       return TypeX::make(markWord::prototype().value());
2254     }
2255   }
2256 
2257   return _type;
2258 }
2259 
2260 //------------------------------match_edge-------------------------------------
2261 // Do we Match on this edge index or not?  Match only the address.
2262 uint LoadNode::match_edge(uint idx) const {
2263   return idx == MemNode::Address;
2264 }
2265 
2266 //--------------------------LoadBNode::Ideal--------------------------------------
2267 //
2268 //  If the previous store is to the same address as this load,
2269 //  and the value stored was larger than a byte, replace this load
2270 //  with the value stored truncated to a byte.  If no truncation is
2271 //  needed, the replacement is done in LoadNode::Identity().
2272 //
2273 Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2274   Node* mem = in(MemNode::Memory);
2275   Node* value = can_see_stored_value(mem,phase);
2276   if (value != nullptr) {
2277     Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false);
2278     if (narrow != value) {
2279       return narrow;
2280     }
2281   }
2282   // Identity call will handle the case where truncation is not needed.
2283   return LoadNode::Ideal(phase, can_reshape);
2284 }
2285 
2286 const Type* LoadBNode::Value(PhaseGVN* phase) const {
2287   Node* mem = in(MemNode::Memory);
2288   Node* value = can_see_stored_value(mem,phase);
2289   if (value != nullptr && value->is_Con() &&
2290       !value->bottom_type()->higher_equal(_type)) {
2291     // If the input to the store does not fit with the load's result type,
2292     // it must be truncated. We can't delay until Ideal call since
2293     // a singleton Value is needed for split_thru_phi optimization.
2294     int con = value->get_int();
2295     return TypeInt::make((con << 24) >> 24);
2296   }
2297   return LoadNode::Value(phase);
2298 }
2299 
2300 //--------------------------LoadUBNode::Ideal-------------------------------------
2301 //
2302 //  If the previous store is to the same address as this load,
2303 //  and the value stored was larger than a byte, replace this load
2304 //  with the value stored truncated to a byte.  If no truncation is
2305 //  needed, the replacement is done in LoadNode::Identity().
2306 //
2307 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2308   Node* mem = in(MemNode::Memory);
2309   Node* value = can_see_stored_value(mem, phase);
2310   if (value != nullptr) {
2311     Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false);
2312     if (narrow != value) {
2313       return narrow;
2314     }
2315   }
2316   // Identity call will handle the case where truncation is not needed.
2317   return LoadNode::Ideal(phase, can_reshape);
2318 }
2319 
2320 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2321   Node* mem = in(MemNode::Memory);
2322   Node* value = can_see_stored_value(mem,phase);
2323   if (value != nullptr && value->is_Con() &&
2324       !value->bottom_type()->higher_equal(_type)) {
2325     // If the input to the store does not fit with the load's result type,
2326     // it must be truncated. We can't delay until Ideal call since
2327     // a singleton Value is needed for split_thru_phi optimization.
2328     int con = value->get_int();
2329     return TypeInt::make(con & 0xFF);
2330   }
2331   return LoadNode::Value(phase);
2332 }
2333 
2334 //--------------------------LoadUSNode::Ideal-------------------------------------
2335 //
2336 //  If the previous store is to the same address as this load,
2337 //  and the value stored was larger than a char, replace this load
2338 //  with the value stored truncated to a char.  If no truncation is
2339 //  needed, the replacement is done in LoadNode::Identity().
2340 //
2341 Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2342   Node* mem = in(MemNode::Memory);
2343   Node* value = can_see_stored_value(mem,phase);
2344   if (value != nullptr) {
2345     Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false);
2346     if (narrow != value) {
2347       return narrow;
2348     }
2349   }
2350   // Identity call will handle the case where truncation is not needed.
2351   return LoadNode::Ideal(phase, can_reshape);
2352 }
2353 
2354 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2355   Node* mem = in(MemNode::Memory);
2356   Node* value = can_see_stored_value(mem,phase);
2357   if (value != nullptr && value->is_Con() &&
2358       !value->bottom_type()->higher_equal(_type)) {
2359     // If the input to the store does not fit with the load's result type,
2360     // it must be truncated. We can't delay until Ideal call since
2361     // a singleton Value is needed for split_thru_phi optimization.
2362     int con = value->get_int();
2363     return TypeInt::make(con & 0xFFFF);
2364   }
2365   return LoadNode::Value(phase);
2366 }
2367 
2368 //--------------------------LoadSNode::Ideal--------------------------------------
2369 //
2370 //  If the previous store is to the same address as this load,
2371 //  and the value stored was larger than a short, replace this load
2372 //  with the value stored truncated to a short.  If no truncation is
2373 //  needed, the replacement is done in LoadNode::Identity().
2374 //
2375 Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2376   Node* mem = in(MemNode::Memory);
2377   Node* value = can_see_stored_value(mem,phase);
2378   if (value != nullptr) {
2379     Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false);
2380     if (narrow != value) {
2381       return narrow;
2382     }
2383   }
2384   // Identity call will handle the case where truncation is not needed.
2385   return LoadNode::Ideal(phase, can_reshape);
2386 }
2387 
2388 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2389   Node* mem = in(MemNode::Memory);
2390   Node* value = can_see_stored_value(mem,phase);
2391   if (value != nullptr && value->is_Con() &&
2392       !value->bottom_type()->higher_equal(_type)) {
2393     // If the input to the store does not fit with the load's result type,
2394     // it must be truncated. We can't delay until Ideal call since
2395     // a singleton Value is needed for split_thru_phi optimization.
2396     int con = value->get_int();
2397     return TypeInt::make((con << 16) >> 16);
2398   }
2399   return LoadNode::Value(phase);
2400 }
2401 
2402 //=============================================================================
2403 //----------------------------LoadKlassNode::make------------------------------
2404 // Polymorphic factory method:
2405 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2406   // sanity check the alias category against the created node type
2407   const TypePtr* adr_type = adr->bottom_type()->isa_ptr();
2408   assert(adr_type != nullptr, "expecting TypeKlassPtr");
2409 #ifdef _LP64
2410   if (adr_type->is_ptr_to_narrowklass()) {
2411     assert(UseCompressedClassPointers, "no compressed klasses");
2412     Node* load_klass = gvn.transform(new LoadNKlassNode(mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2413     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2414   }
2415 #endif
2416   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2417   return new LoadKlassNode(mem, adr, at, tk, MemNode::unordered);
2418 }
2419 
2420 //------------------------------Value------------------------------------------
2421 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2422   return klass_value_common(phase);
2423 }
2424 
2425 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2426   // Either input is TOP ==> the result is TOP
2427   const Type *t1 = phase->type( in(MemNode::Memory) );
2428   if (t1 == Type::TOP)  return Type::TOP;
2429   Node *adr = in(MemNode::Address);
2430   const Type *t2 = phase->type( adr );
2431   if (t2 == Type::TOP)  return Type::TOP;
2432   const TypePtr *tp = t2->is_ptr();
2433   if (TypePtr::above_centerline(tp->ptr()) ||
2434       tp->ptr() == TypePtr::Null)  return Type::TOP;
2435 
2436   // Return a more precise klass, if possible
2437   const TypeInstPtr *tinst = tp->isa_instptr();
2438   if (tinst != nullptr) {
2439     ciInstanceKlass* ik = tinst->instance_klass();
2440     int offset = tinst->offset();
2441     if (ik == phase->C->env()->Class_klass()
2442         && (offset == java_lang_Class::klass_offset() ||
2443             offset == java_lang_Class::array_klass_offset())) {
2444       // We are loading a special hidden field from a Class mirror object,
2445       // the field which points to the VM's Klass metaobject.
2446       ciType* t = tinst->java_mirror_type();
2447       // java_mirror_type returns non-null for compile-time Class constants.
2448       if (t != nullptr) {
2449         // constant oop => constant klass
2450         if (offset == java_lang_Class::array_klass_offset()) {
2451           if (t->is_void()) {
2452             // We cannot create a void array.  Since void is a primitive type return null
2453             // klass.  Users of this result need to do a null check on the returned klass.
2454             return TypePtr::NULL_PTR;
2455           }
2456           return TypeKlassPtr::make(ciArrayKlass::make(t), Type::trust_interfaces);
2457         }
2458         if (!t->is_klass()) {
2459           // a primitive Class (e.g., int.class) has null for a klass field
2460           return TypePtr::NULL_PTR;
2461         }
2462         // Fold up the load of the hidden field
2463         return TypeKlassPtr::make(t->as_klass(), Type::trust_interfaces);
2464       }
2465       // non-constant mirror, so we can't tell what's going on
2466     }
2467     if (!tinst->is_loaded())
2468       return _type;             // Bail out if not loaded
2469     if (offset == oopDesc::klass_offset_in_bytes()) {
2470       return tinst->as_klass_type(true);
2471     }
2472   }
2473 
2474   // Check for loading klass from an array
2475   const TypeAryPtr *tary = tp->isa_aryptr();
2476   if (tary != nullptr &&
2477       tary->offset() == oopDesc::klass_offset_in_bytes()) {
2478     return tary->as_klass_type(true);
2479   }
2480 
2481   // Check for loading klass from an array klass
2482   const TypeKlassPtr *tkls = tp->isa_klassptr();
2483   if (tkls != nullptr && !StressReflectiveCode) {
2484     if (!tkls->is_loaded())
2485      return _type;             // Bail out if not loaded
2486     if (tkls->isa_aryklassptr() && tkls->is_aryklassptr()->elem()->isa_klassptr() &&
2487         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2488       // // Always returning precise element type is incorrect,
2489       // // e.g., element type could be object and array may contain strings
2490       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2491 
2492       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2493       // according to the element type's subclassing.
2494       return tkls->is_aryklassptr()->elem()->isa_klassptr()->cast_to_exactness(tkls->klass_is_exact());
2495     }
2496     if (tkls->isa_instklassptr() != nullptr && tkls->klass_is_exact() &&
2497         tkls->offset() == in_bytes(Klass::super_offset())) {
2498       ciKlass* sup = tkls->is_instklassptr()->instance_klass()->super();
2499       // The field is Klass::_super.  Return its (constant) value.
2500       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2501       return sup ? TypeKlassPtr::make(sup, Type::trust_interfaces) : TypePtr::NULL_PTR;
2502     }
2503   }
2504 
2505   if (tkls != nullptr && !UseSecondarySupersCache
2506       && tkls->offset() == in_bytes(Klass::secondary_super_cache_offset()))  {
2507     // Treat Klass::_secondary_super_cache as a constant when the cache is disabled.
2508     return TypePtr::NULL_PTR;
2509   }
2510 
2511   // Bailout case
2512   return LoadNode::Value(phase);
2513 }
2514 
2515 //------------------------------Identity---------------------------------------
2516 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2517 // Also feed through the klass in Allocate(...klass...)._klass.
2518 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2519   return klass_identity_common(phase);
2520 }
2521 
2522 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2523   Node* x = LoadNode::Identity(phase);
2524   if (x != this)  return x;
2525 
2526   // Take apart the address into an oop and offset.
2527   // Return 'this' if we cannot.
2528   Node*    adr    = in(MemNode::Address);
2529   intptr_t offset = 0;
2530   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2531   if (base == nullptr)     return this;
2532   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2533   if (toop == nullptr)     return this;
2534 
2535   // Step over potential GC barrier for OopHandle resolve
2536   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2537   if (bs->is_gc_barrier_node(base)) {
2538     base = bs->step_over_gc_barrier(base);
2539   }
2540 
2541   // We can fetch the klass directly through an AllocateNode.
2542   // This works even if the klass is not constant (clone or newArray).
2543   if (offset == oopDesc::klass_offset_in_bytes()) {
2544     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2545     if (allocated_klass != nullptr) {
2546       return allocated_klass;
2547     }
2548   }
2549 
2550   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2551   // See inline_native_Class_query for occurrences of these patterns.
2552   // Java Example:  x.getClass().isAssignableFrom(y)
2553   //
2554   // This improves reflective code, often making the Class
2555   // mirror go completely dead.  (Current exception:  Class
2556   // mirrors may appear in debug info, but we could clean them out by
2557   // introducing a new debug info operator for Klass.java_mirror).
2558 
2559   if (toop->isa_instptr() && toop->is_instptr()->instance_klass() == phase->C->env()->Class_klass()
2560       && offset == java_lang_Class::klass_offset()) {
2561     if (base->is_Load()) {
2562       Node* base2 = base->in(MemNode::Address);
2563       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2564         Node* adr2 = base2->in(MemNode::Address);
2565         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2566         if (tkls != nullptr && !tkls->empty()
2567             && (tkls->isa_instklassptr() || tkls->isa_aryklassptr())
2568             && adr2->is_AddP()
2569            ) {
2570           int mirror_field = in_bytes(Klass::java_mirror_offset());
2571           if (tkls->offset() == mirror_field) {
2572             return adr2->in(AddPNode::Base);
2573           }
2574         }
2575       }
2576     }
2577   }
2578 
2579   return this;
2580 }
2581 
2582 LoadNode* LoadNode::clone_pinned() const {
2583   LoadNode* ld = clone()->as_Load();
2584   ld->_control_dependency = UnknownControl;
2585   return ld;
2586 }
2587 
2588 
2589 //------------------------------Value------------------------------------------
2590 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2591   const Type *t = klass_value_common(phase);
2592   if (t == Type::TOP)
2593     return t;
2594 
2595   return t->make_narrowklass();
2596 }
2597 
2598 //------------------------------Identity---------------------------------------
2599 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2600 // Also feed through the klass in Allocate(...klass...)._klass.
2601 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2602   Node *x = klass_identity_common(phase);
2603 
2604   const Type *t = phase->type( x );
2605   if( t == Type::TOP ) return x;
2606   if( t->isa_narrowklass()) return x;
2607   assert (!t->isa_narrowoop(), "no narrow oop here");
2608 
2609   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2610 }
2611 
2612 //------------------------------Value-----------------------------------------
2613 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2614   // Either input is TOP ==> the result is TOP
2615   const Type *t1 = phase->type( in(MemNode::Memory) );
2616   if( t1 == Type::TOP ) return Type::TOP;
2617   Node *adr = in(MemNode::Address);
2618   const Type *t2 = phase->type( adr );
2619   if( t2 == Type::TOP ) return Type::TOP;
2620   const TypePtr *tp = t2->is_ptr();
2621   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2622   const TypeAryPtr *tap = tp->isa_aryptr();
2623   if( !tap ) return _type;
2624   return tap->size();
2625 }
2626 
2627 //-------------------------------Ideal---------------------------------------
2628 // Feed through the length in AllocateArray(...length...)._length.
2629 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2630   Node* p = MemNode::Ideal_common(phase, can_reshape);
2631   if (p)  return (p == NodeSentinel) ? nullptr : p;
2632 
2633   // Take apart the address into an oop and offset.
2634   // Return 'this' if we cannot.
2635   Node*    adr    = in(MemNode::Address);
2636   intptr_t offset = 0;
2637   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2638   if (base == nullptr)     return nullptr;
2639   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2640   if (tary == nullptr)     return nullptr;
2641 
2642   // We can fetch the length directly through an AllocateArrayNode.
2643   // This works even if the length is not constant (clone or newArray).
2644   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2645     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base);
2646     if (alloc != nullptr) {
2647       Node* allocated_length = alloc->Ideal_length();
2648       Node* len = alloc->make_ideal_length(tary, phase);
2649       if (allocated_length != len) {
2650         // New CastII improves on this.
2651         return len;
2652       }
2653     }
2654   }
2655 
2656   return nullptr;
2657 }
2658 
2659 //------------------------------Identity---------------------------------------
2660 // Feed through the length in AllocateArray(...length...)._length.
2661 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2662   Node* x = LoadINode::Identity(phase);
2663   if (x != this)  return x;
2664 
2665   // Take apart the address into an oop and offset.
2666   // Return 'this' if we cannot.
2667   Node*    adr    = in(MemNode::Address);
2668   intptr_t offset = 0;
2669   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2670   if (base == nullptr)     return this;
2671   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2672   if (tary == nullptr)     return this;
2673 
2674   // We can fetch the length directly through an AllocateArrayNode.
2675   // This works even if the length is not constant (clone or newArray).
2676   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2677     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base);
2678     if (alloc != nullptr) {
2679       Node* allocated_length = alloc->Ideal_length();
2680       // Do not allow make_ideal_length to allocate a CastII node.
2681       Node* len = alloc->make_ideal_length(tary, phase, false);
2682       if (allocated_length == len) {
2683         // Return allocated_length only if it would not be improved by a CastII.
2684         return allocated_length;
2685       }
2686     }
2687   }
2688 
2689   return this;
2690 
2691 }
2692 
2693 //=============================================================================
2694 //---------------------------StoreNode::make-----------------------------------
2695 // Polymorphic factory method:
2696 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo, bool require_atomic_access) {
2697   assert((mo == unordered || mo == release), "unexpected");
2698   Compile* C = gvn.C;
2699   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2700          ctl != nullptr, "raw memory operations should have control edge");
2701 
2702   switch (bt) {
2703   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2704   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2705   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2706   case T_CHAR:
2707   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2708   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access);
2709   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2710   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access);
2711   case T_METADATA:
2712   case T_ADDRESS:
2713   case T_OBJECT:
2714 #ifdef _LP64
2715     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2716       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2717       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2718     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2719                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2720                 adr->bottom_type()->isa_rawptr())) {
2721       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2722       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2723     }
2724 #endif
2725     {
2726       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2727     }
2728   default:
2729     ShouldNotReachHere();
2730     return (StoreNode*)nullptr;
2731   }
2732 }
2733 
2734 //--------------------------bottom_type----------------------------------------
2735 const Type *StoreNode::bottom_type() const {
2736   return Type::MEMORY;
2737 }
2738 
2739 //------------------------------hash-------------------------------------------
2740 uint StoreNode::hash() const {
2741   // unroll addition of interesting fields
2742   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2743 
2744   // Since they are not commoned, do not hash them:
2745   return NO_HASH;
2746 }
2747 
2748 // Link together multiple stores (B/S/C/I) into a longer one.
2749 //
2750 // Example: _store = StoreB[i+3]
2751 //
2752 //   RangeCheck[i+0]           RangeCheck[i+0]
2753 //   StoreB[i+0]
2754 //   RangeCheck[i+3]           RangeCheck[i+3]
2755 //   StoreB[i+1]         -->   pass:             fail:
2756 //   StoreB[i+2]               StoreI[i+0]       StoreB[i+0]
2757 //   StoreB[i+3]
2758 //
2759 // The 4 StoreB are merged into a single StoreI node. We have to be careful with RangeCheck[i+1]: before
2760 // the optimization, if this RangeCheck[i+1] fails, then we execute only StoreB[i+0], and then trap. After
2761 // the optimization, the new StoreI[i+0] is on the passing path of RangeCheck[i+3], and StoreB[i+0] on the
2762 // failing path.
2763 //
2764 // Note: For normal array stores, every store at first has a RangeCheck. But they can be removed with:
2765 //       - RCE (RangeCheck Elimination): the RangeChecks in the loop are hoisted out and before the loop,
2766 //                                       and possibly no RangeChecks remain between the stores.
2767 //       - RangeCheck smearing: the earlier RangeChecks are adjusted such that they cover later RangeChecks,
2768 //                              and those later RangeChecks can be removed. Example:
2769 //
2770 //                              RangeCheck[i+0]                         RangeCheck[i+0] <- before first store
2771 //                              StoreB[i+0]                             StoreB[i+0]     <- first store
2772 //                              RangeCheck[i+1]     --> smeared -->     RangeCheck[i+3] <- only RC between first and last store
2773 //                              StoreB[i+1]                             StoreB[i+1]     <- second store
2774 //                              RangeCheck[i+2]     --> removed
2775 //                              StoreB[i+2]                             StoreB[i+2]
2776 //                              RangeCheck[i+3]     --> removed
2777 //                              StoreB[i+3]                             StoreB[i+3]     <- last store
2778 //
2779 //                              Thus, it is a common pattern that between the first and last store in a chain
2780 //                              of adjacent stores there remains exactly one RangeCheck, located between the
2781 //                              first and the second store (e.g. RangeCheck[i+3]).
2782 //
2783 class MergePrimitiveStores : public StackObj {
2784 private:
2785   PhaseGVN* const _phase;
2786   StoreNode* const _store;
2787   // State machine with initial state Unknown
2788   // Allowed transitions:
2789   //   Unknown     -> Const
2790   //   Unknown     -> Platform
2791   //   Unknown     -> Reverse
2792   //   Unknown     -> NotAdjacent
2793   //   Const       -> Const
2794   //   Const       -> NotAdjacent
2795   //   Platform    -> Platform
2796   //   Platform    -> NotAdjacent
2797   //   Reverse     -> Reverse
2798   //   Reverse     -> NotAdjacent
2799   //   NotAdjacent -> NotAdjacent
2800   enum ValueOrder : uint8_t {
2801     Unknown,     // Initial state
2802     Const,       // Input values are const
2803     Platform,    // Platform order
2804     Reverse,     // Reverse platform order
2805     NotAdjacent  // Not adjacent
2806   };
2807   ValueOrder  _value_order;
2808 
2809   NOT_PRODUCT( const CHeapBitMap &_trace_tags; )
2810 
2811 public:
2812   MergePrimitiveStores(PhaseGVN* phase, StoreNode* store) :
2813     _phase(phase), _store(store), _value_order(ValueOrder::Unknown)
2814     NOT_PRODUCT( COMMA _trace_tags(Compile::current()->directive()->trace_merge_stores_tags()) )
2815     {}
2816 
2817   StoreNode* run();
2818 
2819 private:
2820   bool is_compatible_store(const StoreNode* other_store) const;
2821   bool is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const;
2822   bool is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const;
2823   static bool is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out, PhaseGVN* phase);
2824   enum CFGStatus { SuccessNoRangeCheck, SuccessWithRangeCheck, Failure };
2825   static CFGStatus cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store);
2826 
2827   class Status {
2828   private:
2829     StoreNode* _found_store;
2830     bool       _found_range_check;
2831 
2832     Status(StoreNode* found_store, bool found_range_check)
2833       : _found_store(found_store), _found_range_check(found_range_check) {}
2834 
2835   public:
2836     StoreNode* found_store() const { return _found_store; }
2837     bool found_range_check() const { return _found_range_check; }
2838     static Status make_failure() { return Status(nullptr, false); }
2839 
2840     static Status make(StoreNode* found_store, const CFGStatus cfg_status) {
2841       if (cfg_status == CFGStatus::Failure) {
2842         return Status::make_failure();
2843       }
2844       return Status(found_store, cfg_status == CFGStatus::SuccessWithRangeCheck);
2845     }
2846 
2847 #ifndef PRODUCT
2848     void print_on(outputStream* st) const {
2849       if (_found_store == nullptr) {
2850         st->print_cr("None");
2851       } else {
2852         st->print_cr("Found[%d %s, %s]", _found_store->_idx, _found_store->Name(),
2853                                          _found_range_check ? "RC" : "no-RC");
2854       }
2855     }
2856 #endif
2857   };
2858 
2859   enum ValueOrder find_adjacent_input_value_order(const Node* n1, const Node* n2, const int memory_size) const;
2860   Status find_adjacent_use_store(const StoreNode* def_store) const;
2861   Status find_adjacent_def_store(const StoreNode* use_store) const;
2862   Status find_use_store(const StoreNode* def_store) const;
2863   Status find_def_store(const StoreNode* use_store) const;
2864   Status find_use_store_unidirectional(const StoreNode* def_store) const;
2865   Status find_def_store_unidirectional(const StoreNode* use_store) const;
2866 
2867   void collect_merge_list(Node_List& merge_list) const;
2868   Node* make_merged_input_value(const Node_List& merge_list);
2869   StoreNode* make_merged_store(const Node_List& merge_list, Node* merged_input_value);
2870 
2871 #ifndef PRODUCT
2872   // Access to TraceMergeStores tags
2873   bool is_trace(TraceMergeStores::Tag tag) const {
2874     return _trace_tags.at(tag);
2875   }
2876 
2877   bool is_trace_basic() const {
2878     return is_trace(TraceMergeStores::Tag::BASIC);
2879   }
2880 
2881   bool is_trace_pointer_parsing() const {
2882     return is_trace(TraceMergeStores::Tag::POINTER_PARSING);
2883   }
2884 
2885   bool is_trace_pointer_aliasing() const {
2886     return is_trace(TraceMergeStores::Tag::POINTER_ALIASING);
2887   }
2888 
2889   bool is_trace_pointer_adjacency() const {
2890     return is_trace(TraceMergeStores::Tag::POINTER_ADJACENCY);
2891   }
2892 
2893   bool is_trace_success() const {
2894     return is_trace(TraceMergeStores::Tag::SUCCESS);
2895   }
2896 #endif
2897 
2898   NOT_PRODUCT( void trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const; )
2899 };
2900 
2901 StoreNode* MergePrimitiveStores::run() {
2902   // Check for B/S/C/I
2903   int opc = _store->Opcode();
2904   if (opc != Op_StoreB && opc != Op_StoreC && opc != Op_StoreI) {
2905     return nullptr;
2906   }
2907 
2908   NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] MergePrimitiveStores::run: "); _store->dump(); })
2909 
2910   // The _store must be the "last" store in a chain. If we find a use we could merge with
2911   // then that use or a store further down is the "last" store.
2912   Status status_use = find_adjacent_use_store(_store);
2913   NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect no use: "); status_use.print_on(tty); })
2914   if (status_use.found_store() != nullptr) {
2915     return nullptr;
2916   }
2917 
2918   // Check if we can merge with at least one def, so that we have at least 2 stores to merge.
2919   Status status_def = find_adjacent_def_store(_store);
2920   NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect def: "); status_def.print_on(tty); })
2921   Node* def_store = status_def.found_store();
2922   if (def_store == nullptr) {
2923     return nullptr;
2924   }
2925 
2926   // Initialize value order
2927   _value_order = find_adjacent_input_value_order(def_store->in(MemNode::ValueIn),
2928                                                  _store->in(MemNode::ValueIn),
2929                                                  _store->memory_size());
2930   assert(_value_order != ValueOrder::NotAdjacent && _value_order != ValueOrder::Unknown, "Order should be checked");
2931 
2932   ResourceMark rm;
2933   Node_List merge_list;
2934   collect_merge_list(merge_list);
2935 
2936   Node* merged_input_value = make_merged_input_value(merge_list);
2937   if (merged_input_value == nullptr) { return nullptr; }
2938 
2939   StoreNode* merged_store = make_merged_store(merge_list, merged_input_value);
2940 
2941   NOT_PRODUCT( if (is_trace_success()) { trace(merge_list, merged_input_value, merged_store); } )
2942 
2943   return merged_store;
2944 }
2945 
2946 // Check compatibility between _store and other_store.
2947 bool MergePrimitiveStores::is_compatible_store(const StoreNode* other_store) const {
2948   int opc = _store->Opcode();
2949   assert(opc == Op_StoreB || opc == Op_StoreC || opc == Op_StoreI, "precondition");
2950 
2951   if (other_store == nullptr ||
2952       _store->Opcode() != other_store->Opcode()) {
2953     return false;
2954   }
2955 
2956   return true;
2957 }
2958 
2959 bool MergePrimitiveStores::is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const {
2960   if (!is_adjacent_input_pair(def_store->in(MemNode::ValueIn),
2961                               use_store->in(MemNode::ValueIn),
2962                               def_store->memory_size())) {
2963     return false;
2964   }
2965 
2966   ResourceMark rm;
2967 #ifndef PRODUCT
2968   const TraceMemPointer trace(is_trace_pointer_parsing(),
2969                               is_trace_pointer_aliasing(),
2970                               is_trace_pointer_adjacency(),
2971                               true);
2972 #endif
2973   const MemPointer pointer_use(use_store NOT_PRODUCT(COMMA trace));
2974   const MemPointer pointer_def(def_store NOT_PRODUCT(COMMA trace));
2975   return pointer_def.is_adjacent_to_and_before(pointer_use);
2976 }
2977 
2978 // Check input values n1 and n2 can be merged and return the value order
2979 MergePrimitiveStores::ValueOrder MergePrimitiveStores::find_adjacent_input_value_order(const Node* n1, const Node* n2,
2980                                                                                        const int memory_size) const {
2981   // Pattern: [n1 = ConI, n2 = ConI]
2982   if (n1->Opcode() == Op_ConI && n2->Opcode() == Op_ConI) {
2983     return ValueOrder::Const;
2984   }
2985 
2986   Node const *base_n2;
2987   jint shift_n2;
2988   if (!is_con_RShift(n2, base_n2, shift_n2, _phase)) {
2989     return ValueOrder::NotAdjacent;
2990   }
2991   Node const *base_n1;
2992   jint shift_n1;
2993   if (!is_con_RShift(n1, base_n1, shift_n1, _phase)) {
2994     return ValueOrder::NotAdjacent;
2995   }
2996 
2997   int bits_per_store = memory_size * 8;
2998   if (base_n1 != base_n2 ||
2999       abs(shift_n1 - shift_n2) != bits_per_store ||
3000       shift_n1 % bits_per_store != 0) {
3001     // Values are not adjacent
3002     return ValueOrder::NotAdjacent;
3003   }
3004 
3005   // Detect value order
3006 #ifdef VM_LITTLE_ENDIAN
3007   return shift_n1 < shift_n2 ? ValueOrder::Platform     // Pattern: [n1 = base >> shift, n2 = base >> (shift + memory_size)]
3008                              : ValueOrder::Reverse;     // Pattern: [n1 = base >> (shift + memory_size), n2 = base >> shift]
3009 #else
3010   return shift_n1 > shift_n2 ? ValueOrder::Platform     // Pattern: [n1 = base >> (shift + memory_size), n2 = base >> shift]
3011                              : ValueOrder::Reverse;     // Pattern: [n1 = base >> shift, n2 = base >> (shift + memory_size)]
3012 #endif
3013 }
3014 
3015 bool MergePrimitiveStores::is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const {
3016   ValueOrder input_value_order = find_adjacent_input_value_order(n1, n2, memory_size);
3017 
3018   switch (input_value_order) {
3019     case ValueOrder::NotAdjacent:
3020       return false;
3021     case ValueOrder::Reverse:
3022       if (memory_size != 1 ||
3023           !Matcher::match_rule_supported(Op_ReverseBytesS) ||
3024           !Matcher::match_rule_supported(Op_ReverseBytesI) ||
3025           !Matcher::match_rule_supported(Op_ReverseBytesL)) {
3026         // ReverseBytes are not supported by platform
3027         return false;
3028       }
3029       // fall-through.
3030     case ValueOrder::Const:
3031     case ValueOrder::Platform:
3032       if (_value_order == ValueOrder::Unknown) {
3033         // Initial state is Unknown, and we find a valid input value order
3034         return true;
3035       }
3036       // The value order can not be changed
3037       return _value_order == input_value_order;
3038     case ValueOrder::Unknown:
3039     default:
3040       ShouldNotReachHere();
3041   }
3042   return false;
3043 }
3044 
3045 // Detect pattern: n = base_out >> shift_out
3046 bool MergePrimitiveStores::is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out, PhaseGVN* phase) {
3047   assert(n != nullptr, "precondition");
3048 
3049   int opc = n->Opcode();
3050   if (opc == Op_ConvL2I) {
3051     n = n->in(1);
3052     opc = n->Opcode();
3053   }
3054 
3055   if ((opc == Op_RShiftI ||
3056        opc == Op_RShiftL ||
3057        opc == Op_URShiftI ||
3058        opc == Op_URShiftL) &&
3059       n->in(2)->is_ConI()) {
3060     base_out = n->in(1);
3061     shift_out = n->in(2)->get_int();
3062     // The shift must be positive:
3063     return shift_out >= 0;
3064   }
3065 
3066   if (phase->type(n)->isa_int()  != nullptr ||
3067       phase->type(n)->isa_long() != nullptr) {
3068     // (base >> 0)
3069     base_out = n;
3070     shift_out = 0;
3071     return true;
3072   }
3073   return false;
3074 }
3075 
3076 // Check if there is nothing between the two stores, except optionally a RangeCheck leading to an uncommon trap.
3077 MergePrimitiveStores::CFGStatus MergePrimitiveStores::cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store) {
3078   assert(use_store->in(MemNode::Memory) == def_store, "use-def relationship");
3079 
3080   Node* ctrl_use = use_store->in(MemNode::Control);
3081   Node* ctrl_def = def_store->in(MemNode::Control);
3082   if (ctrl_use == nullptr || ctrl_def == nullptr) {
3083     return CFGStatus::Failure;
3084   }
3085 
3086   if (ctrl_use == ctrl_def) {
3087     // Same ctrl -> no RangeCheck in between.
3088     // Check: use_store must be the only use of def_store.
3089     if (def_store->outcnt() > 1) {
3090       return CFGStatus::Failure;
3091     }
3092     return CFGStatus::SuccessNoRangeCheck;
3093   }
3094 
3095   // Different ctrl -> could have RangeCheck in between.
3096   // Check: 1. def_store only has these uses: use_store and MergeMem for uncommon trap, and
3097   //        2. ctrl separated by RangeCheck.
3098   if (def_store->outcnt() != 2) {
3099     return CFGStatus::Failure; // Cannot have exactly these uses: use_store and MergeMem for uncommon trap.
3100   }
3101   int use_store_out_idx = def_store->raw_out(0) == use_store ? 0 : 1;
3102   Node* merge_mem = def_store->raw_out(1 - use_store_out_idx)->isa_MergeMem();
3103   if (merge_mem == nullptr ||
3104       merge_mem->outcnt() != 1) {
3105     return CFGStatus::Failure; // Does not have MergeMem for uncommon trap.
3106   }
3107   if (!ctrl_use->is_IfProj() ||
3108       !ctrl_use->in(0)->is_RangeCheck() ||
3109       ctrl_use->in(0)->outcnt() != 2) {
3110     return CFGStatus::Failure; // Not RangeCheck.
3111   }
3112   ProjNode* other_proj = ctrl_use->as_IfProj()->other_if_proj();
3113   Node* trap = other_proj->is_uncommon_trap_proj(Deoptimization::Reason_range_check);
3114   if (trap != merge_mem->unique_out() ||
3115       ctrl_use->in(0)->in(0) != ctrl_def) {
3116     return CFGStatus::Failure; // Not RangeCheck with merge_mem leading to uncommon trap.
3117   }
3118 
3119   return CFGStatus::SuccessWithRangeCheck;
3120 }
3121 
3122 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_use_store(const StoreNode* def_store) const {
3123   Status status_use = find_use_store(def_store);
3124   StoreNode* use_store = status_use.found_store();
3125   if (use_store != nullptr && !is_adjacent_pair(use_store, def_store)) {
3126     return Status::make_failure();
3127   }
3128   return status_use;
3129 }
3130 
3131 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_def_store(const StoreNode* use_store) const {
3132   Status status_def = find_def_store(use_store);
3133   StoreNode* def_store = status_def.found_store();
3134   if (def_store != nullptr && !is_adjacent_pair(use_store, def_store)) {
3135     return Status::make_failure();
3136   }
3137   return status_def;
3138 }
3139 
3140 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store(const StoreNode* def_store) const {
3141   Status status_use = find_use_store_unidirectional(def_store);
3142 
3143 #ifdef ASSERT
3144   StoreNode* use_store = status_use.found_store();
3145   if (use_store != nullptr) {
3146     Status status_def = find_def_store_unidirectional(use_store);
3147     assert(status_def.found_store() == def_store &&
3148            status_def.found_range_check() == status_use.found_range_check(),
3149            "find_use_store and find_def_store must be symmetric");
3150   }
3151 #endif
3152 
3153   return status_use;
3154 }
3155 
3156 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store(const StoreNode* use_store) const {
3157   Status status_def = find_def_store_unidirectional(use_store);
3158 
3159 #ifdef ASSERT
3160   StoreNode* def_store = status_def.found_store();
3161   if (def_store != nullptr) {
3162     Status status_use = find_use_store_unidirectional(def_store);
3163     assert(status_use.found_store() == use_store &&
3164            status_use.found_range_check() == status_def.found_range_check(),
3165            "find_use_store and find_def_store must be symmetric");
3166   }
3167 #endif
3168 
3169   return status_def;
3170 }
3171 
3172 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store_unidirectional(const StoreNode* def_store) const {
3173   assert(is_compatible_store(def_store), "precondition: must be compatible with _store");
3174 
3175   for (DUIterator_Fast imax, i = def_store->fast_outs(imax); i < imax; i++) {
3176     StoreNode* use_store = def_store->fast_out(i)->isa_Store();
3177     if (is_compatible_store(use_store)) {
3178       return Status::make(use_store, cfg_status_for_pair(use_store, def_store));
3179     }
3180   }
3181 
3182   return Status::make_failure();
3183 }
3184 
3185 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store_unidirectional(const StoreNode* use_store) const {
3186   assert(is_compatible_store(use_store), "precondition: must be compatible with _store");
3187 
3188   StoreNode* def_store = use_store->in(MemNode::Memory)->isa_Store();
3189   if (!is_compatible_store(def_store)) {
3190     return Status::make_failure();
3191   }
3192 
3193   return Status::make(def_store, cfg_status_for_pair(use_store, def_store));
3194 }
3195 
3196 void MergePrimitiveStores::collect_merge_list(Node_List& merge_list) const {
3197   // The merged store can be at most 8 bytes.
3198   const uint merge_list_max_size = 8 / _store->memory_size();
3199   assert(merge_list_max_size >= 2 &&
3200          merge_list_max_size <= 8 &&
3201          is_power_of_2(merge_list_max_size),
3202          "must be 2, 4 or 8");
3203 
3204   // Traverse up the chain of adjacent def stores.
3205   StoreNode* current = _store;
3206   merge_list.push(current);
3207   while (current != nullptr && merge_list.size() < merge_list_max_size) {
3208     Status status = find_adjacent_def_store(current);
3209     NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] find def: "); status.print_on(tty); })
3210 
3211     current = status.found_store();
3212     if (current != nullptr) {
3213       merge_list.push(current);
3214 
3215       // We can have at most one RangeCheck.
3216       if (status.found_range_check()) {
3217         NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found RangeCheck, stop traversal."); })
3218         break;
3219       }
3220     }
3221   }
3222 
3223   NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found:"); merge_list.dump(); })
3224 
3225   // Truncate the merge_list to a power of 2.
3226   const uint pow2size = round_down_power_of_2(merge_list.size());
3227   assert(pow2size >= 2, "must be merging at least 2 stores");
3228   while (merge_list.size() > pow2size) { merge_list.pop(); }
3229 
3230   NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] truncated:"); merge_list.dump(); })
3231 }
3232 
3233 // Merge the input values of the smaller stores to a single larger input value.
3234 Node* MergePrimitiveStores::make_merged_input_value(const Node_List& merge_list) {
3235   int new_memory_size = _store->memory_size() * merge_list.size();
3236   Node* first = merge_list.at(merge_list.size()-1);
3237   Node* merged_input_value = nullptr;
3238   if (_store->in(MemNode::ValueIn)->Opcode() == Op_ConI) {
3239     assert(_value_order == ValueOrder::Const, "must match");
3240     // Pattern: [ConI, ConI, ...] -> new constant
3241     jlong con = 0;
3242     jlong bits_per_store = _store->memory_size() * 8;
3243     jlong mask = (((jlong)1) << bits_per_store) - 1;
3244     for (uint i = 0; i < merge_list.size(); i++) {
3245       jlong con_i = merge_list.at(i)->in(MemNode::ValueIn)->get_int();
3246 #ifdef VM_LITTLE_ENDIAN
3247       con = con << bits_per_store;
3248       con = con | (mask & con_i);
3249 #else // VM_LITTLE_ENDIAN
3250       con_i = (mask & con_i) << (i * bits_per_store);
3251       con = con | con_i;
3252 #endif // VM_LITTLE_ENDIAN
3253     }
3254     merged_input_value = _phase->longcon(con);
3255   } else {
3256     assert(_value_order == ValueOrder::Platform || _value_order == ValueOrder::Reverse, "must match");
3257     // Pattern: [base >> 24, base >> 16, base >> 8, base] -> base
3258     //             |                                  |
3259     //           _store                             first
3260     //
3261     Node* hi = _store->in(MemNode::ValueIn);
3262     Node* lo = first->in(MemNode::ValueIn);
3263 #ifndef VM_LITTLE_ENDIAN
3264     // `_store` and `first` are swapped in the diagram above
3265     swap(hi, lo);
3266 #endif // !VM_LITTLE_ENDIAN
3267     if (_value_order == ValueOrder::Reverse) {
3268       swap(hi, lo);
3269     }
3270     Node const* hi_base;
3271     jint hi_shift;
3272     merged_input_value = lo;
3273     bool is_true = is_con_RShift(hi, hi_base, hi_shift, _phase);
3274     assert(is_true, "must detect con RShift");
3275     if (merged_input_value != hi_base && merged_input_value->Opcode() == Op_ConvL2I) {
3276       // look through
3277       merged_input_value = merged_input_value->in(1);
3278     }
3279     if (merged_input_value != hi_base) {
3280       // merged_input_value is not the base
3281       return nullptr;
3282     }
3283   }
3284 
3285   if (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size <= 4) {
3286     // Example:
3287     //
3288     //   long base = ...;
3289     //   a[0] = (byte)(base >> 0);
3290     //   a[1] = (byte)(base >> 8);
3291     //
3292     merged_input_value = _phase->transform(new ConvL2INode(merged_input_value));
3293   }
3294 
3295   assert((_phase->type(merged_input_value)->isa_int() != nullptr && new_memory_size <= 4) ||
3296          (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size == 8),
3297          "merged_input_value is either int or long, and new_memory_size is small enough");
3298 
3299   if (_value_order == ValueOrder::Reverse) {
3300     assert(_store->memory_size() == 1, "only implemented for bytes");
3301     if (new_memory_size == 8) {
3302       merged_input_value = _phase->transform(new ReverseBytesLNode(merged_input_value));
3303     } else if (new_memory_size == 4) {
3304       merged_input_value = _phase->transform(new ReverseBytesINode(merged_input_value));
3305     } else {
3306       assert(new_memory_size == 2, "sanity check");
3307       merged_input_value = _phase->transform(new ReverseBytesSNode(merged_input_value));
3308     }
3309   }
3310   return merged_input_value;
3311 }
3312 
3313 //                                                                                                          //
3314 // first_ctrl    first_mem   first_adr                first_ctrl    first_mem         first_adr             //
3315 //  |                |           |                     |                |                 |                 //
3316 //  |                |           |                     |                +---------------+ |                 //
3317 //  |                |           |                     |                |               | |                 //
3318 //  |                | +---------+                     |                | +---------------+                 //
3319 //  |                | |                               |                | |             | |                 //
3320 //  +--------------+ | |  v1                           +------------------------------+ | |  v1             //
3321 //  |              | | |  |                            |                | |           | | |  |              //
3322 // RangeCheck     first_store                         RangeCheck        | |          first_store            //
3323 //  |                |  |                              |                | |                |                //
3324 // last_ctrl         |  +----> unc_trap               last_ctrl         | |                +----> unc_trap  //
3325 //  |                |                       ===>      |                | |                                 //
3326 //  +--------------+ | a2 v2                           |                | |                                 //
3327 //  |              | | |  |                            |                | |                                 //
3328 //  |             second_store                         |                | |                                 //
3329 //  |                |                                 |                | | [v1 v2   ...   vn]              //
3330 // ...              ...                                |                | |         |                       //
3331 //  |                |                                 |                | |         v                       //
3332 //  +--------------+ | an vn                           +--------------+ | | merged_input_value              //
3333 //                 | | |  |                                           | | |  |                              //
3334 //                last_store (= _store)                              merged_store                           //
3335 //                                                                                                          //
3336 StoreNode* MergePrimitiveStores::make_merged_store(const Node_List& merge_list, Node* merged_input_value) {
3337   Node* first_store = merge_list.at(merge_list.size()-1);
3338   Node* last_ctrl   = _store->in(MemNode::Control); // after (optional) RangeCheck
3339   Node* first_mem   = first_store->in(MemNode::Memory);
3340   Node* first_adr   = first_store->in(MemNode::Address);
3341 
3342   const TypePtr* new_adr_type = _store->adr_type();
3343 
3344   int new_memory_size = _store->memory_size() * merge_list.size();
3345   BasicType bt = T_ILLEGAL;
3346   switch (new_memory_size) {
3347     case 2: bt = T_SHORT; break;
3348     case 4: bt = T_INT;   break;
3349     case 8: bt = T_LONG;  break;
3350   }
3351 
3352   StoreNode* merged_store = StoreNode::make(*_phase, last_ctrl, first_mem, first_adr,
3353                                             new_adr_type, merged_input_value, bt, MemNode::unordered);
3354 
3355   // Marking the store mismatched is sufficient to prevent reordering, since array stores
3356   // are all on the same slice. Hence, we need no barriers.
3357   merged_store->set_mismatched_access();
3358 
3359   // Constants above may now also be be packed -> put candidate on worklist
3360   _phase->is_IterGVN()->_worklist.push(first_mem);
3361 
3362   return merged_store;
3363 }
3364 
3365 #ifndef PRODUCT
3366 void MergePrimitiveStores::trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const {
3367   stringStream ss;
3368   ss.print_cr("[TraceMergeStores]: Replace");
3369   for (int i = (int)merge_list.size() - 1; i >= 0; i--) {
3370     merge_list.at(i)->dump("\n", false, &ss);
3371   }
3372   ss.print_cr("[TraceMergeStores]: with");
3373   merged_input_value->dump("\n", false, &ss);
3374   merged_store->dump("\n", false, &ss);
3375   tty->print("%s", ss.as_string());
3376 }
3377 #endif
3378 
3379 //------------------------------Ideal------------------------------------------
3380 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
3381 // When a store immediately follows a relevant allocation/initialization,
3382 // try to capture it into the initialization, or hoist it above.
3383 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3384   Node* p = MemNode::Ideal_common(phase, can_reshape);
3385   if (p)  return (p == NodeSentinel) ? nullptr : p;
3386 
3387   Node* mem     = in(MemNode::Memory);
3388   Node* address = in(MemNode::Address);
3389   Node* value   = in(MemNode::ValueIn);
3390   // Back-to-back stores to same address?  Fold em up.  Generally
3391   // unsafe if I have intervening uses.
3392   {
3393     Node* st = mem;
3394     // If Store 'st' has more than one use, we cannot fold 'st' away.
3395     // For example, 'st' might be the final state at a conditional
3396     // return.  Or, 'st' might be used by some node which is live at
3397     // the same time 'st' is live, which might be unschedulable.  So,
3398     // require exactly ONE user until such time as we clone 'mem' for
3399     // each of 'mem's uses (thus making the exactly-1-user-rule hold
3400     // true).
3401     while (st->is_Store() && st->outcnt() == 1) {
3402       // Looking at a dead closed cycle of memory?
3403       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
3404       assert(Opcode() == st->Opcode() ||
3405              st->Opcode() == Op_StoreVector ||
3406              Opcode() == Op_StoreVector ||
3407              st->Opcode() == Op_StoreVectorScatter ||
3408              Opcode() == Op_StoreVectorScatter ||
3409              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
3410              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
3411              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
3412              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
3413              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
3414 
3415       if (st->in(MemNode::Address)->eqv_uncast(address) &&
3416           st->as_Store()->memory_size() <= this->memory_size()) {
3417         Node* use = st->raw_out(0);
3418         if (phase->is_IterGVN()) {
3419           phase->is_IterGVN()->rehash_node_delayed(use);
3420         }
3421         // It's OK to do this in the parser, since DU info is always accurate,
3422         // and the parser always refers to nodes via SafePointNode maps.
3423         use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase);
3424         return this;
3425       }
3426       st = st->in(MemNode::Memory);
3427     }
3428   }
3429 
3430 
3431   // Capture an unaliased, unconditional, simple store into an initializer.
3432   // Or, if it is independent of the allocation, hoist it above the allocation.
3433   if (ReduceFieldZeroing && /*can_reshape &&*/
3434       mem->is_Proj() && mem->in(0)->is_Initialize()) {
3435     InitializeNode* init = mem->in(0)->as_Initialize();
3436     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
3437     if (offset > 0) {
3438       Node* moved = init->capture_store(this, offset, phase, can_reshape);
3439       // If the InitializeNode captured me, it made a raw copy of me,
3440       // and I need to disappear.
3441       if (moved != nullptr) {
3442         // %%% hack to ensure that Ideal returns a new node:
3443         mem = MergeMemNode::make(mem);
3444         return mem;             // fold me away
3445       }
3446     }
3447   }
3448 
3449   // Fold reinterpret cast into memory operation:
3450   //    StoreX mem (MoveY2X v) => StoreY mem v
3451   if (value->is_Move()) {
3452     const Type* vt = value->in(1)->bottom_type();
3453     if (has_reinterpret_variant(vt)) {
3454       if (phase->C->post_loop_opts_phase()) {
3455         return convert_to_reinterpret_store(*phase, value->in(1), vt);
3456       } else {
3457         phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over
3458       }
3459     }
3460   }
3461 
3462   if (MergeStores && UseUnalignedAccesses) {
3463     if (phase->C->merge_stores_phase()) {
3464       MergePrimitiveStores merge(phase, this);
3465       Node* progress = merge.run();
3466       if (progress != nullptr) { return progress; }
3467     } else {
3468       // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during
3469       // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between
3470       // the stores, and we merge the wrong sequence of stores.
3471       // Example:
3472       //   StoreI RangeCheck StoreI StoreI RangeCheck StoreI
3473       // Apply MergeStores:
3474       //   StoreI RangeCheck [   StoreL  ] RangeCheck StoreI
3475       // Remove more RangeChecks:
3476       //   StoreI            [   StoreL  ]            StoreI
3477       // But now it would have been better to do this instead:
3478       //   [         StoreL       ] [       StoreL         ]
3479       phase->C->record_for_merge_stores_igvn(this);
3480     }
3481   }
3482 
3483   return nullptr;                  // No further progress
3484 }
3485 
3486 //------------------------------Value-----------------------------------------
3487 const Type* StoreNode::Value(PhaseGVN* phase) const {
3488   // Either input is TOP ==> the result is TOP
3489   const Type *t1 = phase->type( in(MemNode::Memory) );
3490   if( t1 == Type::TOP ) return Type::TOP;
3491   const Type *t2 = phase->type( in(MemNode::Address) );
3492   if( t2 == Type::TOP ) return Type::TOP;
3493   const Type *t3 = phase->type( in(MemNode::ValueIn) );
3494   if( t3 == Type::TOP ) return Type::TOP;
3495   return Type::MEMORY;
3496 }
3497 
3498 //------------------------------Identity---------------------------------------
3499 // Remove redundant stores:
3500 //   Store(m, p, Load(m, p)) changes to m.
3501 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
3502 Node* StoreNode::Identity(PhaseGVN* phase) {
3503   Node* mem = in(MemNode::Memory);
3504   Node* adr = in(MemNode::Address);
3505   Node* val = in(MemNode::ValueIn);
3506 
3507   Node* result = this;
3508 
3509   // Load then Store?  Then the Store is useless
3510   if (val->is_Load() &&
3511       val->in(MemNode::Address)->eqv_uncast(adr) &&
3512       val->in(MemNode::Memory )->eqv_uncast(mem) &&
3513       val->as_Load()->store_Opcode() == Opcode()) {
3514     // Ensure vector type is the same
3515     if (!is_StoreVector() || (mem->is_LoadVector() && as_StoreVector()->vect_type() == mem->as_LoadVector()->vect_type())) {
3516       result = mem;
3517     }
3518   }
3519 
3520   // Two stores in a row of the same value?
3521   if (result == this &&
3522       mem->is_Store() &&
3523       mem->in(MemNode::Address)->eqv_uncast(adr) &&
3524       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
3525       mem->Opcode() == Opcode()) {
3526     if (!is_StoreVector()) {
3527       result = mem;
3528     } else {
3529       const StoreVectorNode* store_vector = as_StoreVector();
3530       const StoreVectorNode* mem_vector = mem->as_StoreVector();
3531       const Node* store_indices = store_vector->indices();
3532       const Node* mem_indices = mem_vector->indices();
3533       const Node* store_mask = store_vector->mask();
3534       const Node* mem_mask = mem_vector->mask();
3535       // Ensure types, indices, and masks match
3536       if (store_vector->vect_type() == mem_vector->vect_type() &&
3537           ((store_indices == nullptr) == (mem_indices == nullptr) &&
3538            (store_indices == nullptr || store_indices->eqv_uncast(mem_indices))) &&
3539           ((store_mask == nullptr) == (mem_mask == nullptr) &&
3540            (store_mask == nullptr || store_mask->eqv_uncast(mem_mask)))) {
3541         result = mem;
3542       }
3543     }
3544   }
3545 
3546   // Store of zero anywhere into a freshly-allocated object?
3547   // Then the store is useless.
3548   // (It must already have been captured by the InitializeNode.)
3549   if (result == this &&
3550       ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
3551     // a newly allocated object is already all-zeroes everywhere
3552     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
3553       result = mem;
3554     }
3555 
3556     if (result == this) {
3557       // the store may also apply to zero-bits in an earlier object
3558       Node* prev_mem = find_previous_store(phase);
3559       // Steps (a), (b):  Walk past independent stores to find an exact match.
3560       if (prev_mem != nullptr) {
3561         Node* prev_val = can_see_stored_value(prev_mem, phase);
3562         if (prev_val != nullptr && prev_val == val) {
3563           // prev_val and val might differ by a cast; it would be good
3564           // to keep the more informative of the two.
3565           result = mem;
3566         }
3567       }
3568     }
3569   }
3570 
3571   PhaseIterGVN* igvn = phase->is_IterGVN();
3572   if (result != this && igvn != nullptr) {
3573     MemBarNode* trailing = trailing_membar();
3574     if (trailing != nullptr) {
3575 #ifdef ASSERT
3576       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
3577       assert(t_oop == nullptr || t_oop->is_known_instance_field(), "only for non escaping objects");
3578 #endif
3579       trailing->remove(igvn);
3580     }
3581   }
3582 
3583   return result;
3584 }
3585 
3586 //------------------------------match_edge-------------------------------------
3587 // Do we Match on this edge index or not?  Match only memory & value
3588 uint StoreNode::match_edge(uint idx) const {
3589   return idx == MemNode::Address || idx == MemNode::ValueIn;
3590 }
3591 
3592 //------------------------------cmp--------------------------------------------
3593 // Do not common stores up together.  They generally have to be split
3594 // back up anyways, so do not bother.
3595 bool StoreNode::cmp( const Node &n ) const {
3596   return (&n == this);          // Always fail except on self
3597 }
3598 
3599 //------------------------------Ideal_masked_input-----------------------------
3600 // Check for a useless mask before a partial-word store
3601 // (StoreB ... (AndI valIn conIa) )
3602 // If (conIa & mask == mask) this simplifies to
3603 // (StoreB ... (valIn) )
3604 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
3605   Node *val = in(MemNode::ValueIn);
3606   if( val->Opcode() == Op_AndI ) {
3607     const TypeInt *t = phase->type( val->in(2) )->isa_int();
3608     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
3609       set_req_X(MemNode::ValueIn, val->in(1), phase);
3610       return this;
3611     }
3612   }
3613   return nullptr;
3614 }
3615 
3616 
3617 //------------------------------Ideal_sign_extended_input----------------------
3618 // Check for useless sign-extension before a partial-word store
3619 // (StoreB ... (RShiftI _ (LShiftI _ v conIL) conIR))
3620 // If (conIL == conIR && conIR <= num_rejected_bits) this simplifies to
3621 // (StoreB ... (v))
3622 // If (conIL > conIR) under some conditions, it can be simplified into
3623 // (StoreB ... (LShiftI _ v (conIL - conIR)))
3624 // This case happens when the value of the store was itself a left shift, that
3625 // gets merged into the inner left shift of the sign-extension. For instance,
3626 // if we have
3627 // array_of_shorts[0] = (short)(v << 2)
3628 // We get a structure such as:
3629 // (StoreB ... (RShiftI _ (LShiftI _ (LShiftI _ v 2) 16) 16))
3630 // that is simplified into
3631 // (StoreB ... (RShiftI _ (LShiftI _ v 18) 16)).
3632 // It is thus useful to handle cases where conIL > conIR. But this simplification
3633 // does not always hold. Let's see in which cases it's valid.
3634 //
3635 // Let's assume we have the following 32 bits integer v:
3636 // +----------------------------------+
3637 // |             v[0..31]             |
3638 // +----------------------------------+
3639 //  31                               0
3640 // that will be stuffed in 8 bits byte after a shift left and a shift right of
3641 // potentially different magnitudes.
3642 // We denote num_rejected_bits the number of bits of the discarded part. In this
3643 // case, num_rejected_bits == 24.
3644 //
3645 // Statement (proved further below in case analysis):
3646 //   Given:
3647 //   - 0 <= conIL < BitsPerJavaInteger   (no wrap in shift, enforced by maskShiftAmount)
3648 //   - 0 <= conIR < BitsPerJavaInteger   (no wrap in shift, enforced by maskShiftAmount)
3649 //   - conIL >= conIR
3650 //   - num_rejected_bits >= conIR
3651 //   Then this form:
3652 //      (RShiftI _ (LShiftI _ v conIL) conIR)
3653 //   can be replaced with this form:
3654 //      (LShiftI _ v (conIL-conIR))
3655 //
3656 // Note: We only have to show that the non-rejected lowest bits (8 bits for byte)
3657 //       have to be correct, as the higher bits are rejected / truncated by the store.
3658 //
3659 // The hypotheses
3660 //   0 <= conIL < BitsPerJavaInteger
3661 //   0 <= conIR < BitsPerJavaInteger
3662 // are ensured by maskShiftAmount (called from ::Ideal of shift nodes). Indeed,
3663 // (v << 31) << 2 must be simplified into 0, not into v << 33 (which is equivalent
3664 // to v << 1).
3665 //
3666 //
3667 // If you don't like case analysis, jump after the conclusion.
3668 // ### Case 1 : conIL == conIR
3669 // ###### Case 1.1: conIL == conIR == num_rejected_bits
3670 // If we do the shift left then right by 24 bits, we get:
3671 // after: v << 24
3672 // +---------+------------------------+
3673 // | v[0..7] |           0            |
3674 // +---------+------------------------+
3675 //  31     24 23                      0
3676 // after: (v << 24) >> 24
3677 // +------------------------+---------+
3678 // |        sign bit        | v[0..7] |
3679 // +------------------------+---------+
3680 //  31                     8 7        0
3681 // The non-rejected bits (bits kept by the store, that is the 8 lower bits of the
3682 // result) are the same before and after, so, indeed, simplifying is correct.
3683 
3684 // ###### Case 1.2: conIL == conIR < num_rejected_bits
3685 // If we do the shift left then right by 22 bits, we get:
3686 // after: v << 22
3687 // +---------+------------------------+
3688 // | v[0..9] |           0            |
3689 // +---------+------------------------+
3690 //  31     22 21                      0
3691 // after: (v << 22) >> 22
3692 // +------------------------+---------+
3693 // |        sign bit        | v[0..9] |
3694 // +------------------------+---------+
3695 //  31                    10 9        0
3696 // The non-rejected bits are the 8 lower bits of v. The bits 8 and 9 of v are still
3697 // present in (v << 22) >> 22 but will be dropped by the store. The simplification is
3698 // still correct.
3699 
3700 // ###### But! Case 1.3: conIL == conIR > num_rejected_bits
3701 // If we do the shift left then right by 26 bits, we get:
3702 // after: v << 26
3703 // +---------+------------------------+
3704 // | v[0..5] |           0            |
3705 // +---------+------------------------+
3706 //  31     26 25                      0
3707 // after: (v << 26) >> 26
3708 // +------------------------+---------+
3709 // |        sign bit        | v[0..5] |
3710 // +------------------------+---------+
3711 //  31                     6 5        0
3712 // The non-rejected bits are made of
3713 // - 0-5 => the bits 0 to 5 of v
3714 // - 6-7 => the sign bit of v[0..5] (that is v[5])
3715 // Simplifying this as v is not correct.
3716 // The condition conIR <= num_rejected_bits is indeed necessary in Case 1
3717 //
3718 // ### Case 2: conIL > conIR
3719 // ###### Case 2.1: num_rejected_bits == conIR
3720 // We take conIL == 26 for this example.
3721 // after: v << 26
3722 // +---------+------------------------+
3723 // | v[0..5] |           0            |
3724 // +---------+------------------------+
3725 //  31     26 25                      0
3726 // after: (v << 26) >> 24
3727 // +------------------+---------+-----+
3728 // |     sign bit     | v[0..5] |  0  |
3729 // +------------------+---------+-----+
3730 //  31               8 7       2 1   0
3731 // The non-rejected bits are the 8 lower ones of (v << conIL - conIR).
3732 // The bits 6 and 7 of v have been thrown away after the shift left.
3733 // The simplification is still correct.
3734 //
3735 // ###### Case 2.2: num_rejected_bits > conIR.
3736 // Let's say conIL == 26 and conIR == 22.
3737 // after: v << 26
3738 // +---------+------------------------+
3739 // | v[0..5] |           0            |
3740 // +---------+------------------------+
3741 //  31     26 25                      0
3742 // after: (v << 26) >> 22
3743 // +------------------+---------+-----+
3744 // |     sign bit     | v[0..5] |  0  |
3745 // +------------------+---------+-----+
3746 //  31              10 9       4 3   0
3747 // The bits non-rejected by the store are exactly the 8 lower ones of (v << (conIL - conIR)):
3748 // - 0-3 => 0
3749 // - 4-7 => bits 0 to 3 of v
3750 // The simplification is still correct.
3751 // The bits 4 and 5 of v are still present in (v << (conIL - conIR)) but they don't
3752 // matter as they are not in the 8 lower bits: they will be cut out by the store.
3753 //
3754 // ###### But! Case 2.3: num_rejected_bits < conIR.
3755 // Let's see that this case is not as easy to simplify.
3756 // Let's say conIL == 28 and conIR == 26.
3757 // after: v << 28
3758 // +---------+------------------------+
3759 // | v[0..3] |           0            |
3760 // +---------+------------------------+
3761 //  31     28 27                      0
3762 // after: (v << 28) >> 26
3763 // +------------------+---------+-----+
3764 // |     sign bit     | v[0..3] |  0  |
3765 // +------------------+---------+-----+
3766 //  31               6 5       2 1   0
3767 // The non-rejected bits are made of
3768 // - 0-1 => 0
3769 // - 2-5 => the bits 0 to 3 of v
3770 // - 6-7 => the sign bit of v[0..3] (that is v[3])
3771 // Simplifying this as (v << 2) is not correct.
3772 // The condition conIR <= num_rejected_bits is indeed necessary in Case 2.
3773 //
3774 // ### Conclusion:
3775 // Our hypotheses are indeed sufficient:
3776 //   - 0 <= conIL < BitsPerJavaInteger
3777 //   - 0 <= conIR < BitsPerJavaInteger
3778 //   - conIL >= conIR
3779 //   - num_rejected_bits >= conIR
3780 //
3781 // ### A rationale without case analysis:
3782 // After the shift left, conIL upper  bits of v are discarded and conIL lower bit
3783 // zeroes are added. After the shift right, conIR lower bits of the previous result
3784 // are discarded. If conIL >= conIR, we discard only the zeroes we made up during
3785 // the shift left, but if conIL < conIR, then we discard also lower bits of v. But
3786 // the point of the simplification is to get an expression of the form
3787 // (v << (conIL - conIR)). This expression discard only higher bits of v, thus the
3788 // simplification is not correct if conIL < conIR.
3789 //
3790 // Moreover, after the shift right, the higher bit of (v << conIL) is repeated on the
3791 // conIR higher bits of ((v << conIL) >> conIR), it's the sign-extension. If
3792 // conIR > num_rejected_bits, then at least one artificial copy of this sign bit will
3793 // be in the window of the store. Thus ((v << conIL) >> conIR) is not equivalent to
3794 // (v << (conIL-conIR)) if conIR > num_rejected_bits.
3795 //
3796 // We do not treat the case conIL < conIR here since the point of this function is
3797 // to skip sign-extensions (that is conIL == conIR == num_rejected_bits). The need
3798 // of treating conIL > conIR comes from the cases where the sign-extended value is
3799 // also left-shift expression. Computing the sign-extension of a right-shift expression
3800 // doesn't yield a situation such as
3801 // (StoreB ... (RShiftI _ (LShiftI _ v conIL) conIR))
3802 // where conIL < conIR.
3803 Node* StoreNode::Ideal_sign_extended_input(PhaseGVN* phase, int num_rejected_bits) {
3804   Node* shr = in(MemNode::ValueIn);
3805   if (shr->Opcode() == Op_RShiftI) {
3806     const TypeInt* conIR = phase->type(shr->in(2))->isa_int();
3807     if (conIR != nullptr && conIR->is_con() && conIR->get_con() >= 0 && conIR->get_con() < BitsPerJavaInteger && conIR->get_con() <= num_rejected_bits) {
3808       Node* shl = shr->in(1);
3809       if (shl->Opcode() == Op_LShiftI) {
3810         const TypeInt* conIL = phase->type(shl->in(2))->isa_int();
3811         if (conIL != nullptr && conIL->is_con() && conIL->get_con() >= 0 && conIL->get_con() < BitsPerJavaInteger) {
3812           if (conIL->get_con() == conIR->get_con()) {
3813             set_req_X(MemNode::ValueIn, shl->in(1), phase);
3814             return this;
3815           }
3816           if (conIL->get_con() > conIR->get_con()) {
3817             Node* new_shl = phase->transform(new LShiftINode(shl->in(1), phase->intcon(conIL->get_con() - conIR->get_con())));
3818             set_req_X(MemNode::ValueIn, new_shl, phase);
3819             return this;
3820           }
3821         }
3822       }
3823     }
3824   }
3825   return nullptr;
3826 }
3827 
3828 //------------------------------value_never_loaded-----------------------------------
3829 // Determine whether there are any possible loads of the value stored.
3830 // For simplicity, we actually check if there are any loads from the
3831 // address stored to, not just for loads of the value stored by this node.
3832 //
3833 bool StoreNode::value_never_loaded(PhaseValues* phase) const {
3834   Node *adr = in(Address);
3835   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
3836   if (adr_oop == nullptr)
3837     return false;
3838   if (!adr_oop->is_known_instance_field())
3839     return false; // if not a distinct instance, there may be aliases of the address
3840   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
3841     Node *use = adr->fast_out(i);
3842     if (use->is_Load() || use->is_LoadStore()) {
3843       return false;
3844     }
3845   }
3846   return true;
3847 }
3848 
3849 MemBarNode* StoreNode::trailing_membar() const {
3850   if (is_release()) {
3851     MemBarNode* trailing_mb = nullptr;
3852     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
3853       Node* u = fast_out(i);
3854       if (u->is_MemBar()) {
3855         if (u->as_MemBar()->trailing_store()) {
3856           assert(u->Opcode() == Op_MemBarVolatile, "");
3857           assert(trailing_mb == nullptr, "only one");
3858           trailing_mb = u->as_MemBar();
3859 #ifdef ASSERT
3860           Node* leading = u->as_MemBar()->leading_membar();
3861           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
3862           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
3863           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
3864 #endif
3865         } else {
3866           assert(u->as_MemBar()->standalone(), "");
3867         }
3868       }
3869     }
3870     return trailing_mb;
3871   }
3872   return nullptr;
3873 }
3874 
3875 
3876 //=============================================================================
3877 //------------------------------Ideal------------------------------------------
3878 // If the store is from an AND mask that leaves the low bits untouched, then
3879 // we can skip the AND operation.  If the store is from a sign-extension
3880 // (a left shift, then right shift) we can skip both.
3881 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
3882   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
3883   if( progress != nullptr ) return progress;
3884 
3885   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
3886   if( progress != nullptr ) return progress;
3887 
3888   // Finally check the default case
3889   return StoreNode::Ideal(phase, can_reshape);
3890 }
3891 
3892 //=============================================================================
3893 //------------------------------Ideal------------------------------------------
3894 // If the store is from an AND mask that leaves the low bits untouched, then
3895 // we can skip the AND operation
3896 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
3897   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
3898   if( progress != nullptr ) return progress;
3899 
3900   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
3901   if( progress != nullptr ) return progress;
3902 
3903   // Finally check the default case
3904   return StoreNode::Ideal(phase, can_reshape);
3905 }
3906 
3907 //=============================================================================
3908 //----------------------------------SCMemProjNode------------------------------
3909 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
3910 {
3911   if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
3912     return Type::TOP;
3913   }
3914   return bottom_type();
3915 }
3916 
3917 //=============================================================================
3918 //----------------------------------LoadStoreNode------------------------------
3919 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
3920   : Node(required),
3921     _type(rt),
3922     _adr_type(at),
3923     _barrier_data(0)
3924 {
3925   init_req(MemNode::Control, c  );
3926   init_req(MemNode::Memory , mem);
3927   init_req(MemNode::Address, adr);
3928   init_req(MemNode::ValueIn, val);
3929   init_class_id(Class_LoadStore);
3930 }
3931 
3932 //------------------------------Value-----------------------------------------
3933 const Type* LoadStoreNode::Value(PhaseGVN* phase) const {
3934   // Either input is TOP ==> the result is TOP
3935   if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) {
3936     return Type::TOP;
3937   }
3938   const Type* t = phase->type(in(MemNode::Memory));
3939   if (t == Type::TOP) {
3940     return Type::TOP;
3941   }
3942   t = phase->type(in(MemNode::Address));
3943   if (t == Type::TOP) {
3944     return Type::TOP;
3945   }
3946   t = phase->type(in(MemNode::ValueIn));
3947   if (t == Type::TOP) {
3948     return Type::TOP;
3949   }
3950   return bottom_type();
3951 }
3952 
3953 uint LoadStoreNode::ideal_reg() const {
3954   return _type->ideal_reg();
3955 }
3956 
3957 // This method conservatively checks if the result of a LoadStoreNode is
3958 // used, that is, if it returns true, then it is definitely the case that
3959 // the result of the node is not needed.
3960 // For example, GetAndAdd can be matched into a lock_add instead of a
3961 // lock_xadd if the result of LoadStoreNode::result_not_used() is true
3962 bool LoadStoreNode::result_not_used() const {
3963   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
3964     Node *x = fast_out(i);
3965     if (x->Opcode() == Op_SCMemProj) {
3966       continue;
3967     }
3968     if (x->bottom_type() == TypeTuple::MEMBAR &&
3969         !x->is_Call() &&
3970         x->Opcode() != Op_Blackhole) {
3971       continue;
3972     }
3973     return false;
3974   }
3975   return true;
3976 }
3977 
3978 MemBarNode* LoadStoreNode::trailing_membar() const {
3979   MemBarNode* trailing = nullptr;
3980   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
3981     Node* u = fast_out(i);
3982     if (u->is_MemBar()) {
3983       if (u->as_MemBar()->trailing_load_store()) {
3984         assert(u->Opcode() == Op_MemBarAcquire, "");
3985         assert(trailing == nullptr, "only one");
3986         trailing = u->as_MemBar();
3987 #ifdef ASSERT
3988         Node* leading = trailing->leading_membar();
3989         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
3990         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
3991         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
3992 #endif
3993       } else {
3994         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
3995       }
3996     }
3997   }
3998 
3999   return trailing;
4000 }
4001 
4002 uint LoadStoreNode::size_of() const { return sizeof(*this); }
4003 
4004 //=============================================================================
4005 //----------------------------------LoadStoreConditionalNode--------------------
4006 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, nullptr, TypeInt::BOOL, 5) {
4007   init_req(ExpectedIn, ex );
4008 }
4009 
4010 const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const {
4011   // Either input is TOP ==> the result is TOP
4012   const Type* t = phase->type(in(ExpectedIn));
4013   if (t == Type::TOP) {
4014     return Type::TOP;
4015   }
4016   return LoadStoreNode::Value(phase);
4017 }
4018 
4019 //=============================================================================
4020 //-------------------------------adr_type--------------------------------------
4021 const TypePtr* ClearArrayNode::adr_type() const {
4022   Node *adr = in(3);
4023   if (adr == nullptr)  return nullptr; // node is dead
4024   return MemNode::calculate_adr_type(adr->bottom_type());
4025 }
4026 
4027 //------------------------------match_edge-------------------------------------
4028 // Do we Match on this edge index or not?  Do not match memory
4029 uint ClearArrayNode::match_edge(uint idx) const {
4030   return idx > 1;
4031 }
4032 
4033 //------------------------------Identity---------------------------------------
4034 // Clearing a zero length array does nothing
4035 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
4036   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
4037 }
4038 
4039 //------------------------------Idealize---------------------------------------
4040 // Clearing a short array is faster with stores
4041 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4042   // Already know this is a large node, do not try to ideal it
4043   if (_is_large) return nullptr;
4044 
4045   const int unit = BytesPerLong;
4046   const TypeX* t = phase->type(in(2))->isa_intptr_t();
4047   if (!t)  return nullptr;
4048   if (!t->is_con())  return nullptr;
4049   intptr_t raw_count = t->get_con();
4050   intptr_t size = raw_count;
4051   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
4052   // Clearing nothing uses the Identity call.
4053   // Negative clears are possible on dead ClearArrays
4054   // (see jck test stmt114.stmt11402.val).
4055   if (size <= 0 || size % unit != 0)  return nullptr;
4056   intptr_t count = size / unit;
4057   // Length too long; communicate this to matchers and assemblers.
4058   // Assemblers are responsible to produce fast hardware clears for it.
4059   if (size > InitArrayShortSize) {
4060     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
4061   } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) {
4062     return nullptr;
4063   }
4064   if (!IdealizeClearArrayNode) return nullptr;
4065   Node *mem = in(1);
4066   if( phase->type(mem)==Type::TOP ) return nullptr;
4067   Node *adr = in(3);
4068   const Type* at = phase->type(adr);
4069   if( at==Type::TOP ) return nullptr;
4070   const TypePtr* atp = at->isa_ptr();
4071   // adjust atp to be the correct array element address type
4072   if (atp == nullptr)  atp = TypePtr::BOTTOM;
4073   else              atp = atp->add_offset(Type::OffsetBot);
4074   // Get base for derived pointer purposes
4075   if( adr->Opcode() != Op_AddP ) Unimplemented();
4076   Node *base = adr->in(1);
4077 
4078   Node *zero = phase->makecon(TypeLong::ZERO);
4079   Node *off  = phase->MakeConX(BytesPerLong);
4080   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
4081   count--;
4082   while( count-- ) {
4083     mem = phase->transform(mem);
4084     adr = phase->transform(new AddPNode(base,adr,off));
4085     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
4086   }
4087   return mem;
4088 }
4089 
4090 //----------------------------step_through----------------------------------
4091 // Return allocation input memory edge if it is different instance
4092 // or itself if it is the one we are looking for.
4093 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseValues* phase) {
4094   Node* n = *np;
4095   assert(n->is_ClearArray(), "sanity");
4096   intptr_t offset;
4097   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
4098   // This method is called only before Allocate nodes are expanded
4099   // during macro nodes expansion. Before that ClearArray nodes are
4100   // only generated in PhaseMacroExpand::generate_arraycopy() (before
4101   // Allocate nodes are expanded) which follows allocations.
4102   assert(alloc != nullptr, "should have allocation");
4103   if (alloc->_idx == instance_id) {
4104     // Can not bypass initialization of the instance we are looking for.
4105     return false;
4106   }
4107   // Otherwise skip it.
4108   InitializeNode* init = alloc->initialization();
4109   if (init != nullptr)
4110     *np = init->in(TypeFunc::Memory);
4111   else
4112     *np = alloc->in(TypeFunc::Memory);
4113   return true;
4114 }
4115 
4116 //----------------------------clear_memory-------------------------------------
4117 // Generate code to initialize object storage to zero.
4118 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
4119                                    intptr_t start_offset,
4120                                    Node* end_offset,
4121                                    PhaseGVN* phase) {
4122   intptr_t offset = start_offset;
4123 
4124   int unit = BytesPerLong;
4125   if ((offset % unit) != 0) {
4126     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
4127     adr = phase->transform(adr);
4128     const TypePtr* atp = TypeRawPtr::BOTTOM;
4129     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
4130     mem = phase->transform(mem);
4131     offset += BytesPerInt;
4132   }
4133   assert((offset % unit) == 0, "");
4134 
4135   // Initialize the remaining stuff, if any, with a ClearArray.
4136   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
4137 }
4138 
4139 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
4140                                    Node* start_offset,
4141                                    Node* end_offset,
4142                                    PhaseGVN* phase) {
4143   if (start_offset == end_offset) {
4144     // nothing to do
4145     return mem;
4146   }
4147 
4148   int unit = BytesPerLong;
4149   Node* zbase = start_offset;
4150   Node* zend  = end_offset;
4151 
4152   // Scale to the unit required by the CPU:
4153   if (!Matcher::init_array_count_is_in_bytes) {
4154     Node* shift = phase->intcon(exact_log2(unit));
4155     zbase = phase->transform(new URShiftXNode(zbase, shift) );
4156     zend  = phase->transform(new URShiftXNode(zend,  shift) );
4157   }
4158 
4159   // Bulk clear double-words
4160   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
4161   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
4162   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
4163   return phase->transform(mem);
4164 }
4165 
4166 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
4167                                    intptr_t start_offset,
4168                                    intptr_t end_offset,
4169                                    PhaseGVN* phase) {
4170   if (start_offset == end_offset) {
4171     // nothing to do
4172     return mem;
4173   }
4174 
4175   assert((end_offset % BytesPerInt) == 0, "odd end offset");
4176   intptr_t done_offset = end_offset;
4177   if ((done_offset % BytesPerLong) != 0) {
4178     done_offset -= BytesPerInt;
4179   }
4180   if (done_offset > start_offset) {
4181     mem = clear_memory(ctl, mem, dest,
4182                        start_offset, phase->MakeConX(done_offset), phase);
4183   }
4184   if (done_offset < end_offset) { // emit the final 32-bit store
4185     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
4186     adr = phase->transform(adr);
4187     const TypePtr* atp = TypeRawPtr::BOTTOM;
4188     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
4189     mem = phase->transform(mem);
4190     done_offset += BytesPerInt;
4191   }
4192   assert(done_offset == end_offset, "");
4193   return mem;
4194 }
4195 
4196 //=============================================================================
4197 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
4198   : MultiNode(TypeFunc::Parms + (precedent == nullptr? 0: 1)),
4199     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
4200 #ifdef ASSERT
4201   , _pair_idx(0)
4202 #endif
4203 {
4204   init_class_id(Class_MemBar);
4205   Node* top = C->top();
4206   init_req(TypeFunc::I_O,top);
4207   init_req(TypeFunc::FramePtr,top);
4208   init_req(TypeFunc::ReturnAdr,top);
4209   if (precedent != nullptr)
4210     init_req(TypeFunc::Parms, precedent);
4211 }
4212 
4213 //------------------------------cmp--------------------------------------------
4214 uint MemBarNode::hash() const { return NO_HASH; }
4215 bool MemBarNode::cmp( const Node &n ) const {
4216   return (&n == this);          // Always fail except on self
4217 }
4218 
4219 //------------------------------make-------------------------------------------
4220 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
4221   switch (opcode) {
4222   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
4223   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
4224   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
4225   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
4226   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
4227   case Op_StoreStoreFence:   return new StoreStoreFenceNode(C, atp, pn);
4228   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
4229   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
4230   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
4231   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
4232   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
4233   case Op_Initialize:        return new InitializeNode(C, atp, pn);
4234   default: ShouldNotReachHere(); return nullptr;
4235   }
4236 }
4237 
4238 void MemBarNode::remove(PhaseIterGVN *igvn) {
4239   if (outcnt() != 2) {
4240     assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory");
4241     assert(outcnt() == 1, "Only control then");
4242   }
4243   if (trailing_store() || trailing_load_store()) {
4244     MemBarNode* leading = leading_membar();
4245     if (leading != nullptr) {
4246       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
4247       leading->remove(igvn);
4248     }
4249   }
4250   if (proj_out_or_null(TypeFunc::Memory) != nullptr) {
4251     igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
4252   }
4253   if (proj_out_or_null(TypeFunc::Control) != nullptr) {
4254     igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
4255   }
4256 }
4257 
4258 //------------------------------Ideal------------------------------------------
4259 // Return a node which is more "ideal" than the current node.  Strip out
4260 // control copies
4261 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4262   if (remove_dead_region(phase, can_reshape)) return this;
4263   // Don't bother trying to transform a dead node
4264   if (in(0) && in(0)->is_top()) {
4265     return nullptr;
4266   }
4267 
4268   bool progress = false;
4269   // Eliminate volatile MemBars for scalar replaced objects.
4270   if (can_reshape && req() == (Precedent+1)) {
4271     bool eliminate = false;
4272     int opc = Opcode();
4273     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
4274       // Volatile field loads and stores.
4275       Node* my_mem = in(MemBarNode::Precedent);
4276       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
4277       if ((my_mem != nullptr) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
4278         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
4279         // replace this Precedent (decodeN) with the Load instead.
4280         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
4281           Node* load_node = my_mem->in(1);
4282           set_req(MemBarNode::Precedent, load_node);
4283           phase->is_IterGVN()->_worklist.push(my_mem);
4284           my_mem = load_node;
4285         } else {
4286           assert(my_mem->unique_out() == this, "sanity");
4287           assert(!trailing_load_store(), "load store node can't be eliminated");
4288           del_req(Precedent);
4289           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
4290           my_mem = nullptr;
4291         }
4292         progress = true;
4293       }
4294       if (my_mem != nullptr && my_mem->is_Mem()) {
4295         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
4296         // Check for scalar replaced object reference.
4297         if( t_oop != nullptr && t_oop->is_known_instance_field() &&
4298             t_oop->offset() != Type::OffsetBot &&
4299             t_oop->offset() != Type::OffsetTop) {
4300           eliminate = true;
4301         }
4302       }
4303     } else if (opc == Op_MemBarRelease || (UseStoreStoreForCtor && opc == Op_MemBarStoreStore)) {
4304       // Final field stores.
4305       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent));
4306       if ((alloc != nullptr) && alloc->is_Allocate() &&
4307           alloc->as_Allocate()->does_not_escape_thread()) {
4308         // The allocated object does not escape.
4309         eliminate = true;
4310       }
4311     }
4312     if (eliminate) {
4313       // Replace MemBar projections by its inputs.
4314       PhaseIterGVN* igvn = phase->is_IterGVN();
4315       remove(igvn);
4316       // Must return either the original node (now dead) or a new node
4317       // (Do not return a top here, since that would break the uniqueness of top.)
4318       return new ConINode(TypeInt::ZERO);
4319     }
4320   }
4321   return progress ? this : nullptr;
4322 }
4323 
4324 //------------------------------Value------------------------------------------
4325 const Type* MemBarNode::Value(PhaseGVN* phase) const {
4326   if( !in(0) ) return Type::TOP;
4327   if( phase->type(in(0)) == Type::TOP )
4328     return Type::TOP;
4329   return TypeTuple::MEMBAR;
4330 }
4331 
4332 //------------------------------match------------------------------------------
4333 // Construct projections for memory.
4334 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
4335   switch (proj->_con) {
4336   case TypeFunc::Control:
4337   case TypeFunc::Memory:
4338     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
4339   }
4340   ShouldNotReachHere();
4341   return nullptr;
4342 }
4343 
4344 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
4345   trailing->_kind = TrailingStore;
4346   leading->_kind = LeadingStore;
4347 #ifdef ASSERT
4348   trailing->_pair_idx = leading->_idx;
4349   leading->_pair_idx = leading->_idx;
4350 #endif
4351 }
4352 
4353 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
4354   trailing->_kind = TrailingLoadStore;
4355   leading->_kind = LeadingLoadStore;
4356 #ifdef ASSERT
4357   trailing->_pair_idx = leading->_idx;
4358   leading->_pair_idx = leading->_idx;
4359 #endif
4360 }
4361 
4362 MemBarNode* MemBarNode::trailing_membar() const {
4363   ResourceMark rm;
4364   Node* trailing = (Node*)this;
4365   VectorSet seen;
4366   Node_Stack multis(0);
4367   do {
4368     Node* c = trailing;
4369     uint i = 0;
4370     do {
4371       trailing = nullptr;
4372       for (; i < c->outcnt(); i++) {
4373         Node* next = c->raw_out(i);
4374         if (next != c && next->is_CFG()) {
4375           if (c->is_MultiBranch()) {
4376             if (multis.node() == c) {
4377               multis.set_index(i+1);
4378             } else {
4379               multis.push(c, i+1);
4380             }
4381           }
4382           trailing = next;
4383           break;
4384         }
4385       }
4386       if (trailing != nullptr && !seen.test_set(trailing->_idx)) {
4387         break;
4388       }
4389       while (multis.size() > 0) {
4390         c = multis.node();
4391         i = multis.index();
4392         if (i < c->req()) {
4393           break;
4394         }
4395         multis.pop();
4396       }
4397     } while (multis.size() > 0);
4398   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
4399 
4400   MemBarNode* mb = trailing->as_MemBar();
4401   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
4402          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
4403   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
4404   return mb;
4405 }
4406 
4407 MemBarNode* MemBarNode::leading_membar() const {
4408   ResourceMark rm;
4409   VectorSet seen;
4410   Node_Stack regions(0);
4411   Node* leading = in(0);
4412   while (leading != nullptr && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
4413     while (leading == nullptr || leading->is_top() || seen.test_set(leading->_idx)) {
4414       leading = nullptr;
4415       while (regions.size() > 0 && leading == nullptr) {
4416         Node* r = regions.node();
4417         uint i = regions.index();
4418         if (i < r->req()) {
4419           leading = r->in(i);
4420           regions.set_index(i+1);
4421         } else {
4422           regions.pop();
4423         }
4424       }
4425       if (leading == nullptr) {
4426         assert(regions.size() == 0, "all paths should have been tried");
4427         return nullptr;
4428       }
4429     }
4430     if (leading->is_Region()) {
4431       regions.push(leading, 2);
4432       leading = leading->in(1);
4433     } else {
4434       leading = leading->in(0);
4435     }
4436   }
4437 #ifdef ASSERT
4438   Unique_Node_List wq;
4439   wq.push((Node*)this);
4440   uint found = 0;
4441   for (uint i = 0; i < wq.size(); i++) {
4442     Node* n = wq.at(i);
4443     if (n->is_Region()) {
4444       for (uint j = 1; j < n->req(); j++) {
4445         Node* in = n->in(j);
4446         if (in != nullptr && !in->is_top()) {
4447           wq.push(in);
4448         }
4449       }
4450     } else {
4451       if (n->is_MemBar() && n->as_MemBar()->leading()) {
4452         assert(n == leading, "consistency check failed");
4453         found++;
4454       } else {
4455         Node* in = n->in(0);
4456         if (in != nullptr && !in->is_top()) {
4457           wq.push(in);
4458         }
4459       }
4460     }
4461   }
4462   assert(found == 1 || (found == 0 && leading == nullptr), "consistency check failed");
4463 #endif
4464   if (leading == nullptr) {
4465     return nullptr;
4466   }
4467   MemBarNode* mb = leading->as_MemBar();
4468   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
4469          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
4470   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
4471   return mb;
4472 }
4473 
4474 
4475 //===========================InitializeNode====================================
4476 // SUMMARY:
4477 // This node acts as a memory barrier on raw memory, after some raw stores.
4478 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
4479 // The Initialize can 'capture' suitably constrained stores as raw inits.
4480 // It can coalesce related raw stores into larger units (called 'tiles').
4481 // It can avoid zeroing new storage for memory units which have raw inits.
4482 // At macro-expansion, it is marked 'complete', and does not optimize further.
4483 //
4484 // EXAMPLE:
4485 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
4486 //   ctl = incoming control; mem* = incoming memory
4487 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
4488 // First allocate uninitialized memory and fill in the header:
4489 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
4490 //   ctl := alloc.Control; mem* := alloc.Memory*
4491 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
4492 // Then initialize to zero the non-header parts of the raw memory block:
4493 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
4494 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
4495 // After the initialize node executes, the object is ready for service:
4496 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
4497 // Suppose its body is immediately initialized as {1,2}:
4498 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
4499 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
4500 //   mem.SLICE(#short[*]) := store2
4501 //
4502 // DETAILS:
4503 // An InitializeNode collects and isolates object initialization after
4504 // an AllocateNode and before the next possible safepoint.  As a
4505 // memory barrier (MemBarNode), it keeps critical stores from drifting
4506 // down past any safepoint or any publication of the allocation.
4507 // Before this barrier, a newly-allocated object may have uninitialized bits.
4508 // After this barrier, it may be treated as a real oop, and GC is allowed.
4509 //
4510 // The semantics of the InitializeNode include an implicit zeroing of
4511 // the new object from object header to the end of the object.
4512 // (The object header and end are determined by the AllocateNode.)
4513 //
4514 // Certain stores may be added as direct inputs to the InitializeNode.
4515 // These stores must update raw memory, and they must be to addresses
4516 // derived from the raw address produced by AllocateNode, and with
4517 // a constant offset.  They must be ordered by increasing offset.
4518 // The first one is at in(RawStores), the last at in(req()-1).
4519 // Unlike most memory operations, they are not linked in a chain,
4520 // but are displayed in parallel as users of the rawmem output of
4521 // the allocation.
4522 //
4523 // (See comments in InitializeNode::capture_store, which continue
4524 // the example given above.)
4525 //
4526 // When the associated Allocate is macro-expanded, the InitializeNode
4527 // may be rewritten to optimize collected stores.  A ClearArrayNode
4528 // may also be created at that point to represent any required zeroing.
4529 // The InitializeNode is then marked 'complete', prohibiting further
4530 // capturing of nearby memory operations.
4531 //
4532 // During macro-expansion, all captured initializations which store
4533 // constant values of 32 bits or smaller are coalesced (if advantageous)
4534 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
4535 // initialized in fewer memory operations.  Memory words which are
4536 // covered by neither tiles nor non-constant stores are pre-zeroed
4537 // by explicit stores of zero.  (The code shape happens to do all
4538 // zeroing first, then all other stores, with both sequences occurring
4539 // in order of ascending offsets.)
4540 //
4541 // Alternatively, code may be inserted between an AllocateNode and its
4542 // InitializeNode, to perform arbitrary initialization of the new object.
4543 // E.g., the object copying intrinsics insert complex data transfers here.
4544 // The initialization must then be marked as 'complete' disable the
4545 // built-in zeroing semantics and the collection of initializing stores.
4546 //
4547 // While an InitializeNode is incomplete, reads from the memory state
4548 // produced by it are optimizable if they match the control edge and
4549 // new oop address associated with the allocation/initialization.
4550 // They return a stored value (if the offset matches) or else zero.
4551 // A write to the memory state, if it matches control and address,
4552 // and if it is to a constant offset, may be 'captured' by the
4553 // InitializeNode.  It is cloned as a raw memory operation and rewired
4554 // inside the initialization, to the raw oop produced by the allocation.
4555 // Operations on addresses which are provably distinct (e.g., to
4556 // other AllocateNodes) are allowed to bypass the initialization.
4557 //
4558 // The effect of all this is to consolidate object initialization
4559 // (both arrays and non-arrays, both piecewise and bulk) into a
4560 // single location, where it can be optimized as a unit.
4561 //
4562 // Only stores with an offset less than TrackedInitializationLimit words
4563 // will be considered for capture by an InitializeNode.  This puts a
4564 // reasonable limit on the complexity of optimized initializations.
4565 
4566 //---------------------------InitializeNode------------------------------------
4567 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
4568   : MemBarNode(C, adr_type, rawoop),
4569     _is_complete(Incomplete), _does_not_escape(false)
4570 {
4571   init_class_id(Class_Initialize);
4572 
4573   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
4574   assert(in(RawAddress) == rawoop, "proper init");
4575   // Note:  allocation() can be null, for secondary initialization barriers
4576 }
4577 
4578 // Since this node is not matched, it will be processed by the
4579 // register allocator.  Declare that there are no constraints
4580 // on the allocation of the RawAddress edge.
4581 const RegMask &InitializeNode::in_RegMask(uint idx) const {
4582   // This edge should be set to top, by the set_complete.  But be conservative.
4583   if (idx == InitializeNode::RawAddress)
4584     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
4585   return RegMask::Empty;
4586 }
4587 
4588 Node* InitializeNode::memory(uint alias_idx) {
4589   Node* mem = in(Memory);
4590   if (mem->is_MergeMem()) {
4591     return mem->as_MergeMem()->memory_at(alias_idx);
4592   } else {
4593     // incoming raw memory is not split
4594     return mem;
4595   }
4596 }
4597 
4598 bool InitializeNode::is_non_zero() {
4599   if (is_complete())  return false;
4600   remove_extra_zeroes();
4601   return (req() > RawStores);
4602 }
4603 
4604 void InitializeNode::set_complete(PhaseGVN* phase) {
4605   assert(!is_complete(), "caller responsibility");
4606   _is_complete = Complete;
4607 
4608   // After this node is complete, it contains a bunch of
4609   // raw-memory initializations.  There is no need for
4610   // it to have anything to do with non-raw memory effects.
4611   // Therefore, tell all non-raw users to re-optimize themselves,
4612   // after skipping the memory effects of this initialization.
4613   PhaseIterGVN* igvn = phase->is_IterGVN();
4614   if (igvn)  igvn->add_users_to_worklist(this);
4615 }
4616 
4617 // convenience function
4618 // return false if the init contains any stores already
4619 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
4620   InitializeNode* init = initialization();
4621   if (init == nullptr || init->is_complete())  return false;
4622   init->remove_extra_zeroes();
4623   // for now, if this allocation has already collected any inits, bail:
4624   if (init->is_non_zero())  return false;
4625   init->set_complete(phase);
4626   return true;
4627 }
4628 
4629 void InitializeNode::remove_extra_zeroes() {
4630   if (req() == RawStores)  return;
4631   Node* zmem = zero_memory();
4632   uint fill = RawStores;
4633   for (uint i = fill; i < req(); i++) {
4634     Node* n = in(i);
4635     if (n->is_top() || n == zmem)  continue;  // skip
4636     if (fill < i)  set_req(fill, n);          // compact
4637     ++fill;
4638   }
4639   // delete any empty spaces created:
4640   while (fill < req()) {
4641     del_req(fill);
4642   }
4643 }
4644 
4645 // Helper for remembering which stores go with which offsets.
4646 intptr_t InitializeNode::get_store_offset(Node* st, PhaseValues* phase) {
4647   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
4648   intptr_t offset = -1;
4649   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
4650                                                phase, offset);
4651   if (base == nullptr)  return -1;  // something is dead,
4652   if (offset < 0)       return -1;  //        dead, dead
4653   return offset;
4654 }
4655 
4656 // Helper for proving that an initialization expression is
4657 // "simple enough" to be folded into an object initialization.
4658 // Attempts to prove that a store's initial value 'n' can be captured
4659 // within the initialization without creating a vicious cycle, such as:
4660 //     { Foo p = new Foo(); p.next = p; }
4661 // True for constants and parameters and small combinations thereof.
4662 bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) {
4663   ResourceMark rm;
4664   Unique_Node_List worklist;
4665   worklist.push(value);
4666 
4667   uint complexity_limit = 20;
4668   for (uint j = 0; j < worklist.size(); j++) {
4669     if (j >= complexity_limit) {
4670       return false;  // Bail out if processed too many nodes
4671     }
4672 
4673     Node* n = worklist.at(j);
4674     if (n == nullptr)   continue;   // (can this really happen?)
4675     if (n->is_Proj())   n = n->in(0);
4676     if (n == this)      return false;  // found a cycle
4677     if (n->is_Con())    continue;
4678     if (n->is_Start())  continue;   // params, etc., are OK
4679     if (n->is_Root())   continue;   // even better
4680 
4681     // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation
4682     if (n->is_CFG() && phase->is_dominator(n, allocation())) {
4683       continue;
4684     }
4685 
4686     Node* ctl = n->in(0);
4687     if (ctl != nullptr && !ctl->is_top()) {
4688       if (ctl->is_Proj())  ctl = ctl->in(0);
4689       if (ctl == this)  return false;
4690 
4691       // If we already know that the enclosing memory op is pinned right after
4692       // the init, then any control flow that the store has picked up
4693       // must have preceded the init, or else be equal to the init.
4694       // Even after loop optimizations (which might change control edges)
4695       // a store is never pinned *before* the availability of its inputs.
4696       if (!MemNode::all_controls_dominate(n, this)) {
4697         return false;                  // failed to prove a good control
4698       }
4699     }
4700 
4701     // Check data edges for possible dependencies on 'this'.
4702     for (uint i = 1; i < n->req(); i++) {
4703       Node* m = n->in(i);
4704       if (m == nullptr || m == n || m->is_top())  continue;
4705 
4706       // Only process data inputs once
4707       worklist.push(m);
4708     }
4709   }
4710 
4711   return true;
4712 }
4713 
4714 // Here are all the checks a Store must pass before it can be moved into
4715 // an initialization.  Returns zero if a check fails.
4716 // On success, returns the (constant) offset to which the store applies,
4717 // within the initialized memory.
4718 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) {
4719   const int FAIL = 0;
4720   if (st->req() != MemNode::ValueIn + 1)
4721     return FAIL;                // an inscrutable StoreNode (card mark?)
4722   Node* ctl = st->in(MemNode::Control);
4723   if (!(ctl != nullptr && ctl->is_Proj() && ctl->in(0) == this))
4724     return FAIL;                // must be unconditional after the initialization
4725   Node* mem = st->in(MemNode::Memory);
4726   if (!(mem->is_Proj() && mem->in(0) == this))
4727     return FAIL;                // must not be preceded by other stores
4728   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4729   if ((st->Opcode() == Op_StoreP || st->Opcode() == Op_StoreN) &&
4730       !bs->can_initialize_object(st)) {
4731     return FAIL;
4732   }
4733   Node* adr = st->in(MemNode::Address);
4734   intptr_t offset;
4735   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
4736   if (alloc == nullptr)
4737     return FAIL;                // inscrutable address
4738   if (alloc != allocation())
4739     return FAIL;                // wrong allocation!  (store needs to float up)
4740   int size_in_bytes = st->memory_size();
4741   if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) {
4742     return FAIL;                // mismatched access
4743   }
4744   Node* val = st->in(MemNode::ValueIn);
4745 
4746   if (!detect_init_independence(val, phase))
4747     return FAIL;                // stored value must be 'simple enough'
4748 
4749   // The Store can be captured only if nothing after the allocation
4750   // and before the Store is using the memory location that the store
4751   // overwrites.
4752   bool failed = false;
4753   // If is_complete_with_arraycopy() is true the shape of the graph is
4754   // well defined and is safe so no need for extra checks.
4755   if (!is_complete_with_arraycopy()) {
4756     // We are going to look at each use of the memory state following
4757     // the allocation to make sure nothing reads the memory that the
4758     // Store writes.
4759     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
4760     int alias_idx = phase->C->get_alias_index(t_adr);
4761     ResourceMark rm;
4762     Unique_Node_List mems;
4763     mems.push(mem);
4764     Node* unique_merge = nullptr;
4765     for (uint next = 0; next < mems.size(); ++next) {
4766       Node *m  = mems.at(next);
4767       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
4768         Node *n = m->fast_out(j);
4769         if (n->outcnt() == 0) {
4770           continue;
4771         }
4772         if (n == st) {
4773           continue;
4774         } else if (n->in(0) != nullptr && n->in(0) != ctl) {
4775           // If the control of this use is different from the control
4776           // of the Store which is right after the InitializeNode then
4777           // this node cannot be between the InitializeNode and the
4778           // Store.
4779           continue;
4780         } else if (n->is_MergeMem()) {
4781           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
4782             // We can hit a MergeMemNode (that will likely go away
4783             // later) that is a direct use of the memory state
4784             // following the InitializeNode on the same slice as the
4785             // store node that we'd like to capture. We need to check
4786             // the uses of the MergeMemNode.
4787             mems.push(n);
4788           }
4789         } else if (n->is_Mem()) {
4790           Node* other_adr = n->in(MemNode::Address);
4791           if (other_adr == adr) {
4792             failed = true;
4793             break;
4794           } else {
4795             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
4796             if (other_t_adr != nullptr) {
4797               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
4798               if (other_alias_idx == alias_idx) {
4799                 // A load from the same memory slice as the store right
4800                 // after the InitializeNode. We check the control of the
4801                 // object/array that is loaded from. If it's the same as
4802                 // the store control then we cannot capture the store.
4803                 assert(!n->is_Store(), "2 stores to same slice on same control?");
4804                 Node* base = other_adr;
4805                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
4806                 base = base->in(AddPNode::Base);
4807                 if (base != nullptr) {
4808                   base = base->uncast();
4809                   if (base->is_Proj() && base->in(0) == alloc) {
4810                     failed = true;
4811                     break;
4812                   }
4813                 }
4814               }
4815             }
4816           }
4817         } else {
4818           failed = true;
4819           break;
4820         }
4821       }
4822     }
4823   }
4824   if (failed) {
4825     if (!can_reshape) {
4826       // We decided we couldn't capture the store during parsing. We
4827       // should try again during the next IGVN once the graph is
4828       // cleaner.
4829       phase->C->record_for_igvn(st);
4830     }
4831     return FAIL;
4832   }
4833 
4834   return offset;                // success
4835 }
4836 
4837 // Find the captured store in(i) which corresponds to the range
4838 // [start..start+size) in the initialized object.
4839 // If there is one, return its index i.  If there isn't, return the
4840 // negative of the index where it should be inserted.
4841 // Return 0 if the queried range overlaps an initialization boundary
4842 // or if dead code is encountered.
4843 // If size_in_bytes is zero, do not bother with overlap checks.
4844 int InitializeNode::captured_store_insertion_point(intptr_t start,
4845                                                    int size_in_bytes,
4846                                                    PhaseValues* phase) {
4847   const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize);
4848 
4849   if (is_complete())
4850     return FAIL;                // arraycopy got here first; punt
4851 
4852   assert(allocation() != nullptr, "must be present");
4853 
4854   // no negatives, no header fields:
4855   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
4856 
4857   // after a certain size, we bail out on tracking all the stores:
4858   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
4859   if (start >= ti_limit)  return FAIL;
4860 
4861   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
4862     if (i >= limit)  return -(int)i; // not found; here is where to put it
4863 
4864     Node*    st     = in(i);
4865     intptr_t st_off = get_store_offset(st, phase);
4866     if (st_off < 0) {
4867       if (st != zero_memory()) {
4868         return FAIL;            // bail out if there is dead garbage
4869       }
4870     } else if (st_off > start) {
4871       // ...we are done, since stores are ordered
4872       if (st_off < start + size_in_bytes) {
4873         return FAIL;            // the next store overlaps
4874       }
4875       return -(int)i;           // not found; here is where to put it
4876     } else if (st_off < start) {
4877       assert(st->as_Store()->memory_size() <= MAX_STORE, "");
4878       if (size_in_bytes != 0 &&
4879           start < st_off + MAX_STORE &&
4880           start < st_off + st->as_Store()->memory_size()) {
4881         return FAIL;            // the previous store overlaps
4882       }
4883     } else {
4884       if (size_in_bytes != 0 &&
4885           st->as_Store()->memory_size() != size_in_bytes) {
4886         return FAIL;            // mismatched store size
4887       }
4888       return i;
4889     }
4890 
4891     ++i;
4892   }
4893 }
4894 
4895 // Look for a captured store which initializes at the offset 'start'
4896 // with the given size.  If there is no such store, and no other
4897 // initialization interferes, then return zero_memory (the memory
4898 // projection of the AllocateNode).
4899 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
4900                                           PhaseValues* phase) {
4901   assert(stores_are_sane(phase), "");
4902   int i = captured_store_insertion_point(start, size_in_bytes, phase);
4903   if (i == 0) {
4904     return nullptr;              // something is dead
4905   } else if (i < 0) {
4906     return zero_memory();       // just primordial zero bits here
4907   } else {
4908     Node* st = in(i);           // here is the store at this position
4909     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
4910     return st;
4911   }
4912 }
4913 
4914 // Create, as a raw pointer, an address within my new object at 'offset'.
4915 Node* InitializeNode::make_raw_address(intptr_t offset,
4916                                        PhaseGVN* phase) {
4917   Node* addr = in(RawAddress);
4918   if (offset != 0) {
4919     Compile* C = phase->C;
4920     addr = phase->transform( new AddPNode(C->top(), addr,
4921                                                  phase->MakeConX(offset)) );
4922   }
4923   return addr;
4924 }
4925 
4926 // Clone the given store, converting it into a raw store
4927 // initializing a field or element of my new object.
4928 // Caller is responsible for retiring the original store,
4929 // with subsume_node or the like.
4930 //
4931 // From the example above InitializeNode::InitializeNode,
4932 // here are the old stores to be captured:
4933 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
4934 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
4935 //
4936 // Here is the changed code; note the extra edges on init:
4937 //   alloc = (Allocate ...)
4938 //   rawoop = alloc.RawAddress
4939 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
4940 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
4941 //   init = (Initialize alloc.Control alloc.Memory rawoop
4942 //                      rawstore1 rawstore2)
4943 //
4944 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
4945                                     PhaseGVN* phase, bool can_reshape) {
4946   assert(stores_are_sane(phase), "");
4947 
4948   if (start < 0)  return nullptr;
4949   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
4950 
4951   Compile* C = phase->C;
4952   int size_in_bytes = st->memory_size();
4953   int i = captured_store_insertion_point(start, size_in_bytes, phase);
4954   if (i == 0)  return nullptr;  // bail out
4955   Node* prev_mem = nullptr;     // raw memory for the captured store
4956   if (i > 0) {
4957     prev_mem = in(i);           // there is a pre-existing store under this one
4958     set_req(i, C->top());       // temporarily disconnect it
4959     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
4960   } else {
4961     i = -i;                     // no pre-existing store
4962     prev_mem = zero_memory();   // a slice of the newly allocated object
4963     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
4964       set_req(--i, C->top());   // reuse this edge; it has been folded away
4965     else
4966       ins_req(i, C->top());     // build a new edge
4967   }
4968   Node* new_st = st->clone();
4969   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4970   new_st->set_req(MemNode::Control, in(Control));
4971   new_st->set_req(MemNode::Memory,  prev_mem);
4972   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
4973   bs->eliminate_gc_barrier_data(new_st);
4974   new_st = phase->transform(new_st);
4975 
4976   // At this point, new_st might have swallowed a pre-existing store
4977   // at the same offset, or perhaps new_st might have disappeared,
4978   // if it redundantly stored the same value (or zero to fresh memory).
4979 
4980   // In any case, wire it in:
4981   PhaseIterGVN* igvn = phase->is_IterGVN();
4982   if (igvn) {
4983     igvn->rehash_node_delayed(this);
4984   }
4985   set_req(i, new_st);
4986 
4987   // The caller may now kill the old guy.
4988   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
4989   assert(check_st == new_st || check_st == nullptr, "must be findable");
4990   assert(!is_complete(), "");
4991   return new_st;
4992 }
4993 
4994 static bool store_constant(jlong* tiles, int num_tiles,
4995                            intptr_t st_off, int st_size,
4996                            jlong con) {
4997   if ((st_off & (st_size-1)) != 0)
4998     return false;               // strange store offset (assume size==2**N)
4999   address addr = (address)tiles + st_off;
5000   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
5001   switch (st_size) {
5002   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
5003   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
5004   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
5005   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
5006   default: return false;        // strange store size (detect size!=2**N here)
5007   }
5008   return true;                  // return success to caller
5009 }
5010 
5011 // Coalesce subword constants into int constants and possibly
5012 // into long constants.  The goal, if the CPU permits,
5013 // is to initialize the object with a small number of 64-bit tiles.
5014 // Also, convert floating-point constants to bit patterns.
5015 // Non-constants are not relevant to this pass.
5016 //
5017 // In terms of the running example on InitializeNode::InitializeNode
5018 // and InitializeNode::capture_store, here is the transformation
5019 // of rawstore1 and rawstore2 into rawstore12:
5020 //   alloc = (Allocate ...)
5021 //   rawoop = alloc.RawAddress
5022 //   tile12 = 0x00010002
5023 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
5024 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
5025 //
5026 void
5027 InitializeNode::coalesce_subword_stores(intptr_t header_size,
5028                                         Node* size_in_bytes,
5029                                         PhaseGVN* phase) {
5030   Compile* C = phase->C;
5031 
5032   assert(stores_are_sane(phase), "");
5033   // Note:  After this pass, they are not completely sane,
5034   // since there may be some overlaps.
5035 
5036   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
5037 
5038   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
5039   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
5040   size_limit = MIN2(size_limit, ti_limit);
5041   size_limit = align_up(size_limit, BytesPerLong);
5042   int num_tiles = size_limit / BytesPerLong;
5043 
5044   // allocate space for the tile map:
5045   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
5046   jlong  tiles_buf[small_len];
5047   Node*  nodes_buf[small_len];
5048   jlong  inits_buf[small_len];
5049   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
5050                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
5051   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
5052                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
5053   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
5054                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
5055   // tiles: exact bitwise model of all primitive constants
5056   // nodes: last constant-storing node subsumed into the tiles model
5057   // inits: which bytes (in each tile) are touched by any initializations
5058 
5059   //// Pass A: Fill in the tile model with any relevant stores.
5060 
5061   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
5062   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
5063   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
5064   Node* zmem = zero_memory(); // initially zero memory state
5065   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
5066     Node* st = in(i);
5067     intptr_t st_off = get_store_offset(st, phase);
5068 
5069     // Figure out the store's offset and constant value:
5070     if (st_off < header_size)             continue; //skip (ignore header)
5071     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
5072     int st_size = st->as_Store()->memory_size();
5073     if (st_off + st_size > size_limit)    break;
5074 
5075     // Record which bytes are touched, whether by constant or not.
5076     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
5077       continue;                 // skip (strange store size)
5078 
5079     const Type* val = phase->type(st->in(MemNode::ValueIn));
5080     if (!val->singleton())                continue; //skip (non-con store)
5081     BasicType type = val->basic_type();
5082 
5083     jlong con = 0;
5084     switch (type) {
5085     case T_INT:    con = val->is_int()->get_con();  break;
5086     case T_LONG:   con = val->is_long()->get_con(); break;
5087     case T_FLOAT:  con = jint_cast(val->getf());    break;
5088     case T_DOUBLE: con = jlong_cast(val->getd());   break;
5089     default:                              continue; //skip (odd store type)
5090     }
5091 
5092     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
5093         st->Opcode() == Op_StoreL) {
5094       continue;                 // This StoreL is already optimal.
5095     }
5096 
5097     // Store down the constant.
5098     store_constant(tiles, num_tiles, st_off, st_size, con);
5099 
5100     intptr_t j = st_off >> LogBytesPerLong;
5101 
5102     if (type == T_INT && st_size == BytesPerInt
5103         && (st_off & BytesPerInt) == BytesPerInt) {
5104       jlong lcon = tiles[j];
5105       if (!Matcher::isSimpleConstant64(lcon) &&
5106           st->Opcode() == Op_StoreI) {
5107         // This StoreI is already optimal by itself.
5108         jint* intcon = (jint*) &tiles[j];
5109         intcon[1] = 0;  // undo the store_constant()
5110 
5111         // If the previous store is also optimal by itself, back up and
5112         // undo the action of the previous loop iteration... if we can.
5113         // But if we can't, just let the previous half take care of itself.
5114         st = nodes[j];
5115         st_off -= BytesPerInt;
5116         con = intcon[0];
5117         if (con != 0 && st != nullptr && st->Opcode() == Op_StoreI) {
5118           assert(st_off >= header_size, "still ignoring header");
5119           assert(get_store_offset(st, phase) == st_off, "must be");
5120           assert(in(i-1) == zmem, "must be");
5121           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
5122           assert(con == tcon->is_int()->get_con(), "must be");
5123           // Undo the effects of the previous loop trip, which swallowed st:
5124           intcon[0] = 0;        // undo store_constant()
5125           set_req(i-1, st);     // undo set_req(i, zmem)
5126           nodes[j] = nullptr;   // undo nodes[j] = st
5127           --old_subword;        // undo ++old_subword
5128         }
5129         continue;               // This StoreI is already optimal.
5130       }
5131     }
5132 
5133     // This store is not needed.
5134     set_req(i, zmem);
5135     nodes[j] = st;              // record for the moment
5136     if (st_size < BytesPerLong) // something has changed
5137           ++old_subword;        // includes int/float, but who's counting...
5138     else  ++old_long;
5139   }
5140 
5141   if ((old_subword + old_long) == 0)
5142     return;                     // nothing more to do
5143 
5144   //// Pass B: Convert any non-zero tiles into optimal constant stores.
5145   // Be sure to insert them before overlapping non-constant stores.
5146   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
5147   for (int j = 0; j < num_tiles; j++) {
5148     jlong con  = tiles[j];
5149     jlong init = inits[j];
5150     if (con == 0)  continue;
5151     jint con0,  con1;           // split the constant, address-wise
5152     jint init0, init1;          // split the init map, address-wise
5153     { union { jlong con; jint intcon[2]; } u;
5154       u.con = con;
5155       con0  = u.intcon[0];
5156       con1  = u.intcon[1];
5157       u.con = init;
5158       init0 = u.intcon[0];
5159       init1 = u.intcon[1];
5160     }
5161 
5162     Node* old = nodes[j];
5163     assert(old != nullptr, "need the prior store");
5164     intptr_t offset = (j * BytesPerLong);
5165 
5166     bool split = !Matcher::isSimpleConstant64(con);
5167 
5168     if (offset < header_size) {
5169       assert(offset + BytesPerInt >= header_size, "second int counts");
5170       assert(*(jint*)&tiles[j] == 0, "junk in header");
5171       split = true;             // only the second word counts
5172       // Example:  int a[] = { 42 ... }
5173     } else if (con0 == 0 && init0 == -1) {
5174       split = true;             // first word is covered by full inits
5175       // Example:  int a[] = { ... foo(), 42 ... }
5176     } else if (con1 == 0 && init1 == -1) {
5177       split = true;             // second word is covered by full inits
5178       // Example:  int a[] = { ... 42, foo() ... }
5179     }
5180 
5181     // Here's a case where init0 is neither 0 nor -1:
5182     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
5183     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
5184     // In this case the tile is not split; it is (jlong)42.
5185     // The big tile is stored down, and then the foo() value is inserted.
5186     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
5187 
5188     Node* ctl = old->in(MemNode::Control);
5189     Node* adr = make_raw_address(offset, phase);
5190     const TypePtr* atp = TypeRawPtr::BOTTOM;
5191 
5192     // One or two coalesced stores to plop down.
5193     Node*    st[2];
5194     intptr_t off[2];
5195     int  nst = 0;
5196     if (!split) {
5197       ++new_long;
5198       off[nst] = offset;
5199       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
5200                                   phase->longcon(con), T_LONG, MemNode::unordered);
5201     } else {
5202       // Omit either if it is a zero.
5203       if (con0 != 0) {
5204         ++new_int;
5205         off[nst]  = offset;
5206         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
5207                                     phase->intcon(con0), T_INT, MemNode::unordered);
5208       }
5209       if (con1 != 0) {
5210         ++new_int;
5211         offset += BytesPerInt;
5212         adr = make_raw_address(offset, phase);
5213         off[nst]  = offset;
5214         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
5215                                     phase->intcon(con1), T_INT, MemNode::unordered);
5216       }
5217     }
5218 
5219     // Insert second store first, then the first before the second.
5220     // Insert each one just before any overlapping non-constant stores.
5221     while (nst > 0) {
5222       Node* st1 = st[--nst];
5223       C->copy_node_notes_to(st1, old);
5224       st1 = phase->transform(st1);
5225       offset = off[nst];
5226       assert(offset >= header_size, "do not smash header");
5227       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
5228       guarantee(ins_idx != 0, "must re-insert constant store");
5229       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
5230       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
5231         set_req(--ins_idx, st1);
5232       else
5233         ins_req(ins_idx, st1);
5234     }
5235   }
5236 
5237   if (PrintCompilation && WizardMode)
5238     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
5239                   old_subword, old_long, new_int, new_long);
5240   if (C->log() != nullptr)
5241     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
5242                    old_subword, old_long, new_int, new_long);
5243 
5244   // Clean up any remaining occurrences of zmem:
5245   remove_extra_zeroes();
5246 }
5247 
5248 // Explore forward from in(start) to find the first fully initialized
5249 // word, and return its offset.  Skip groups of subword stores which
5250 // together initialize full words.  If in(start) is itself part of a
5251 // fully initialized word, return the offset of in(start).  If there
5252 // are no following full-word stores, or if something is fishy, return
5253 // a negative value.
5254 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
5255   int       int_map = 0;
5256   intptr_t  int_map_off = 0;
5257   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
5258 
5259   for (uint i = start, limit = req(); i < limit; i++) {
5260     Node* st = in(i);
5261 
5262     intptr_t st_off = get_store_offset(st, phase);
5263     if (st_off < 0)  break;  // return conservative answer
5264 
5265     int st_size = st->as_Store()->memory_size();
5266     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
5267       return st_off;            // we found a complete word init
5268     }
5269 
5270     // update the map:
5271 
5272     intptr_t this_int_off = align_down(st_off, BytesPerInt);
5273     if (this_int_off != int_map_off) {
5274       // reset the map:
5275       int_map = 0;
5276       int_map_off = this_int_off;
5277     }
5278 
5279     int subword_off = st_off - this_int_off;
5280     int_map |= right_n_bits(st_size) << subword_off;
5281     if ((int_map & FULL_MAP) == FULL_MAP) {
5282       return this_int_off;      // we found a complete word init
5283     }
5284 
5285     // Did this store hit or cross the word boundary?
5286     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
5287     if (next_int_off == this_int_off + BytesPerInt) {
5288       // We passed the current int, without fully initializing it.
5289       int_map_off = next_int_off;
5290       int_map >>= BytesPerInt;
5291     } else if (next_int_off > this_int_off + BytesPerInt) {
5292       // We passed the current and next int.
5293       return this_int_off + BytesPerInt;
5294     }
5295   }
5296 
5297   return -1;
5298 }
5299 
5300 
5301 // Called when the associated AllocateNode is expanded into CFG.
5302 // At this point, we may perform additional optimizations.
5303 // Linearize the stores by ascending offset, to make memory
5304 // activity as coherent as possible.
5305 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
5306                                       intptr_t header_size,
5307                                       Node* size_in_bytes,
5308                                       PhaseIterGVN* phase) {
5309   assert(!is_complete(), "not already complete");
5310   assert(stores_are_sane(phase), "");
5311   assert(allocation() != nullptr, "must be present");
5312 
5313   remove_extra_zeroes();
5314 
5315   if (ReduceFieldZeroing || ReduceBulkZeroing)
5316     // reduce instruction count for common initialization patterns
5317     coalesce_subword_stores(header_size, size_in_bytes, phase);
5318 
5319   Node* zmem = zero_memory();   // initially zero memory state
5320   Node* inits = zmem;           // accumulating a linearized chain of inits
5321   #ifdef ASSERT
5322   intptr_t first_offset = allocation()->minimum_header_size();
5323   intptr_t last_init_off = first_offset;  // previous init offset
5324   intptr_t last_init_end = first_offset;  // previous init offset+size
5325   intptr_t last_tile_end = first_offset;  // previous tile offset+size
5326   #endif
5327   intptr_t zeroes_done = header_size;
5328 
5329   bool do_zeroing = true;       // we might give up if inits are very sparse
5330   int  big_init_gaps = 0;       // how many large gaps have we seen?
5331 
5332   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
5333   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
5334 
5335   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
5336     Node* st = in(i);
5337     intptr_t st_off = get_store_offset(st, phase);
5338     if (st_off < 0)
5339       break;                    // unknown junk in the inits
5340     if (st->in(MemNode::Memory) != zmem)
5341       break;                    // complicated store chains somehow in list
5342 
5343     int st_size = st->as_Store()->memory_size();
5344     intptr_t next_init_off = st_off + st_size;
5345 
5346     if (do_zeroing && zeroes_done < next_init_off) {
5347       // See if this store needs a zero before it or under it.
5348       intptr_t zeroes_needed = st_off;
5349 
5350       if (st_size < BytesPerInt) {
5351         // Look for subword stores which only partially initialize words.
5352         // If we find some, we must lay down some word-level zeroes first,
5353         // underneath the subword stores.
5354         //
5355         // Examples:
5356         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
5357         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
5358         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
5359         //
5360         // Note:  coalesce_subword_stores may have already done this,
5361         // if it was prompted by constant non-zero subword initializers.
5362         // But this case can still arise with non-constant stores.
5363 
5364         intptr_t next_full_store = find_next_fullword_store(i, phase);
5365 
5366         // In the examples above:
5367         //   in(i)          p   q   r   s     x   y     z
5368         //   st_off        12  13  14  15    12  13    14
5369         //   st_size        1   1   1   1     1   1     1
5370         //   next_full_s.  12  16  16  16    16  16    16
5371         //   z's_done      12  16  16  16    12  16    12
5372         //   z's_needed    12  16  16  16    16  16    16
5373         //   zsize          0   0   0   0     4   0     4
5374         if (next_full_store < 0) {
5375           // Conservative tack:  Zero to end of current word.
5376           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
5377         } else {
5378           // Zero to beginning of next fully initialized word.
5379           // Or, don't zero at all, if we are already in that word.
5380           assert(next_full_store >= zeroes_needed, "must go forward");
5381           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
5382           zeroes_needed = next_full_store;
5383         }
5384       }
5385 
5386       if (zeroes_needed > zeroes_done) {
5387         intptr_t zsize = zeroes_needed - zeroes_done;
5388         // Do some incremental zeroing on rawmem, in parallel with inits.
5389         zeroes_done = align_down(zeroes_done, BytesPerInt);
5390         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
5391                                               zeroes_done, zeroes_needed,
5392                                               phase);
5393         zeroes_done = zeroes_needed;
5394         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
5395           do_zeroing = false;   // leave the hole, next time
5396       }
5397     }
5398 
5399     // Collect the store and move on:
5400     phase->replace_input_of(st, MemNode::Memory, inits);
5401     inits = st;                 // put it on the linearized chain
5402     set_req(i, zmem);           // unhook from previous position
5403 
5404     if (zeroes_done == st_off)
5405       zeroes_done = next_init_off;
5406 
5407     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
5408 
5409     #ifdef ASSERT
5410     // Various order invariants.  Weaker than stores_are_sane because
5411     // a large constant tile can be filled in by smaller non-constant stores.
5412     assert(st_off >= last_init_off, "inits do not reverse");
5413     last_init_off = st_off;
5414     const Type* val = nullptr;
5415     if (st_size >= BytesPerInt &&
5416         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
5417         (int)val->basic_type() < (int)T_OBJECT) {
5418       assert(st_off >= last_tile_end, "tiles do not overlap");
5419       assert(st_off >= last_init_end, "tiles do not overwrite inits");
5420       last_tile_end = MAX2(last_tile_end, next_init_off);
5421     } else {
5422       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
5423       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
5424       assert(st_off      >= last_init_end, "inits do not overlap");
5425       last_init_end = next_init_off;  // it's a non-tile
5426     }
5427     #endif //ASSERT
5428   }
5429 
5430   remove_extra_zeroes();        // clear out all the zmems left over
5431   add_req(inits);
5432 
5433   if (!(UseTLAB && ZeroTLAB)) {
5434     // If anything remains to be zeroed, zero it all now.
5435     zeroes_done = align_down(zeroes_done, BytesPerInt);
5436     // if it is the last unused 4 bytes of an instance, forget about it
5437     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
5438     if (zeroes_done + BytesPerLong >= size_limit) {
5439       AllocateNode* alloc = allocation();
5440       assert(alloc != nullptr, "must be present");
5441       if (alloc != nullptr && alloc->Opcode() == Op_Allocate) {
5442         Node* klass_node = alloc->in(AllocateNode::KlassNode);
5443         ciKlass* k = phase->type(klass_node)->is_instklassptr()->instance_klass();
5444         if (zeroes_done == k->layout_helper())
5445           zeroes_done = size_limit;
5446       }
5447     }
5448     if (zeroes_done < size_limit) {
5449       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
5450                                             zeroes_done, size_in_bytes, phase);
5451     }
5452   }
5453 
5454   set_complete(phase);
5455   return rawmem;
5456 }
5457 
5458 
5459 #ifdef ASSERT
5460 bool InitializeNode::stores_are_sane(PhaseValues* phase) {
5461   if (is_complete())
5462     return true;                // stores could be anything at this point
5463   assert(allocation() != nullptr, "must be present");
5464   intptr_t last_off = allocation()->minimum_header_size();
5465   for (uint i = InitializeNode::RawStores; i < req(); i++) {
5466     Node* st = in(i);
5467     intptr_t st_off = get_store_offset(st, phase);
5468     if (st_off < 0)  continue;  // ignore dead garbage
5469     if (last_off > st_off) {
5470       tty->print_cr("*** bad store offset at %d: %zd > %zd", i, last_off, st_off);
5471       this->dump(2);
5472       assert(false, "ascending store offsets");
5473       return false;
5474     }
5475     last_off = st_off + st->as_Store()->memory_size();
5476   }
5477   return true;
5478 }
5479 #endif //ASSERT
5480 
5481 
5482 
5483 
5484 //============================MergeMemNode=====================================
5485 //
5486 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
5487 // contributing store or call operations.  Each contributor provides the memory
5488 // state for a particular "alias type" (see Compile::alias_type).  For example,
5489 // if a MergeMem has an input X for alias category #6, then any memory reference
5490 // to alias category #6 may use X as its memory state input, as an exact equivalent
5491 // to using the MergeMem as a whole.
5492 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
5493 //
5494 // (Here, the <N> notation gives the index of the relevant adr_type.)
5495 //
5496 // In one special case (and more cases in the future), alias categories overlap.
5497 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
5498 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
5499 // it is exactly equivalent to that state W:
5500 //   MergeMem(<Bot>: W) <==> W
5501 //
5502 // Usually, the merge has more than one input.  In that case, where inputs
5503 // overlap (i.e., one is Bot), the narrower alias type determines the memory
5504 // state for that type, and the wider alias type (Bot) fills in everywhere else:
5505 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
5506 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
5507 //
5508 // A merge can take a "wide" memory state as one of its narrow inputs.
5509 // This simply means that the merge observes out only the relevant parts of
5510 // the wide input.  That is, wide memory states arriving at narrow merge inputs
5511 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
5512 //
5513 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
5514 // and that memory slices "leak through":
5515 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
5516 //
5517 // But, in such a cascade, repeated memory slices can "block the leak":
5518 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
5519 //
5520 // In the last example, Y is not part of the combined memory state of the
5521 // outermost MergeMem.  The system must, of course, prevent unschedulable
5522 // memory states from arising, so you can be sure that the state Y is somehow
5523 // a precursor to state Y'.
5524 //
5525 //
5526 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
5527 // of each MergeMemNode array are exactly the numerical alias indexes, including
5528 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
5529 // Compile::alias_type (and kin) produce and manage these indexes.
5530 //
5531 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
5532 // (Note that this provides quick access to the top node inside MergeMem methods,
5533 // without the need to reach out via TLS to Compile::current.)
5534 //
5535 // As a consequence of what was just described, a MergeMem that represents a full
5536 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
5537 // containing all alias categories.
5538 //
5539 // MergeMem nodes never (?) have control inputs, so in(0) is null.
5540 //
5541 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
5542 // a memory state for the alias type <N>, or else the top node, meaning that
5543 // there is no particular input for that alias type.  Note that the length of
5544 // a MergeMem is variable, and may be extended at any time to accommodate new
5545 // memory states at larger alias indexes.  When merges grow, they are of course
5546 // filled with "top" in the unused in() positions.
5547 //
5548 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
5549 // (Top was chosen because it works smoothly with passes like GCM.)
5550 //
5551 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
5552 // the type of random VM bits like TLS references.)  Since it is always the
5553 // first non-Bot memory slice, some low-level loops use it to initialize an
5554 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
5555 //
5556 //
5557 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
5558 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
5559 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
5560 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
5561 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
5562 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
5563 //
5564 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
5565 // really that different from the other memory inputs.  An abbreviation called
5566 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
5567 //
5568 //
5569 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
5570 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
5571 // that "emerges though" the base memory will be marked as excluding the alias types
5572 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
5573 //
5574 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
5575 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
5576 //
5577 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
5578 // (It is currently unimplemented.)  As you can see, the resulting merge is
5579 // actually a disjoint union of memory states, rather than an overlay.
5580 //
5581 
5582 //------------------------------MergeMemNode-----------------------------------
5583 Node* MergeMemNode::make_empty_memory() {
5584   Node* empty_memory = (Node*) Compile::current()->top();
5585   assert(empty_memory->is_top(), "correct sentinel identity");
5586   return empty_memory;
5587 }
5588 
5589 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
5590   init_class_id(Class_MergeMem);
5591   // all inputs are nullified in Node::Node(int)
5592   // set_input(0, nullptr);  // no control input
5593 
5594   // Initialize the edges uniformly to top, for starters.
5595   Node* empty_mem = make_empty_memory();
5596   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
5597     init_req(i,empty_mem);
5598   }
5599   assert(empty_memory() == empty_mem, "");
5600 
5601   if( new_base != nullptr && new_base->is_MergeMem() ) {
5602     MergeMemNode* mdef = new_base->as_MergeMem();
5603     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
5604     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
5605       mms.set_memory(mms.memory2());
5606     }
5607     assert(base_memory() == mdef->base_memory(), "");
5608   } else {
5609     set_base_memory(new_base);
5610   }
5611 }
5612 
5613 // Make a new, untransformed MergeMem with the same base as 'mem'.
5614 // If mem is itself a MergeMem, populate the result with the same edges.
5615 MergeMemNode* MergeMemNode::make(Node* mem) {
5616   return new MergeMemNode(mem);
5617 }
5618 
5619 //------------------------------cmp--------------------------------------------
5620 uint MergeMemNode::hash() const { return NO_HASH; }
5621 bool MergeMemNode::cmp( const Node &n ) const {
5622   return (&n == this);          // Always fail except on self
5623 }
5624 
5625 //------------------------------Identity---------------------------------------
5626 Node* MergeMemNode::Identity(PhaseGVN* phase) {
5627   // Identity if this merge point does not record any interesting memory
5628   // disambiguations.
5629   Node* base_mem = base_memory();
5630   Node* empty_mem = empty_memory();
5631   if (base_mem != empty_mem) {  // Memory path is not dead?
5632     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5633       Node* mem = in(i);
5634       if (mem != empty_mem && mem != base_mem) {
5635         return this;            // Many memory splits; no change
5636       }
5637     }
5638   }
5639   return base_mem;              // No memory splits; ID on the one true input
5640 }
5641 
5642 //------------------------------Ideal------------------------------------------
5643 // This method is invoked recursively on chains of MergeMem nodes
5644 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
5645   // Remove chain'd MergeMems
5646   //
5647   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
5648   // relative to the "in(Bot)".  Since we are patching both at the same time,
5649   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
5650   // but rewrite each "in(i)" relative to the new "in(Bot)".
5651   Node *progress = nullptr;
5652 
5653 
5654   Node* old_base = base_memory();
5655   Node* empty_mem = empty_memory();
5656   if (old_base == empty_mem)
5657     return nullptr; // Dead memory path.
5658 
5659   MergeMemNode* old_mbase;
5660   if (old_base != nullptr && old_base->is_MergeMem())
5661     old_mbase = old_base->as_MergeMem();
5662   else
5663     old_mbase = nullptr;
5664   Node* new_base = old_base;
5665 
5666   // simplify stacked MergeMems in base memory
5667   if (old_mbase)  new_base = old_mbase->base_memory();
5668 
5669   // the base memory might contribute new slices beyond my req()
5670   if (old_mbase)  grow_to_match(old_mbase);
5671 
5672   // Note:  We do not call verify_sparse on entry, because inputs
5673   // can normalize to the base_memory via subsume_node or similar
5674   // mechanisms.  This method repairs that damage.
5675 
5676   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
5677 
5678   // Look at each slice.
5679   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5680     Node* old_in = in(i);
5681     // calculate the old memory value
5682     Node* old_mem = old_in;
5683     if (old_mem == empty_mem)  old_mem = old_base;
5684     assert(old_mem == memory_at(i), "");
5685 
5686     // maybe update (reslice) the old memory value
5687 
5688     // simplify stacked MergeMems
5689     Node* new_mem = old_mem;
5690     MergeMemNode* old_mmem;
5691     if (old_mem != nullptr && old_mem->is_MergeMem())
5692       old_mmem = old_mem->as_MergeMem();
5693     else
5694       old_mmem = nullptr;
5695     if (old_mmem == this) {
5696       // This can happen if loops break up and safepoints disappear.
5697       // A merge of BotPtr (default) with a RawPtr memory derived from a
5698       // safepoint can be rewritten to a merge of the same BotPtr with
5699       // the BotPtr phi coming into the loop.  If that phi disappears
5700       // also, we can end up with a self-loop of the mergemem.
5701       // In general, if loops degenerate and memory effects disappear,
5702       // a mergemem can be left looking at itself.  This simply means
5703       // that the mergemem's default should be used, since there is
5704       // no longer any apparent effect on this slice.
5705       // Note: If a memory slice is a MergeMem cycle, it is unreachable
5706       //       from start.  Update the input to TOP.
5707       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
5708     }
5709     else if (old_mmem != nullptr) {
5710       new_mem = old_mmem->memory_at(i);
5711     }
5712     // else preceding memory was not a MergeMem
5713 
5714     // maybe store down a new value
5715     Node* new_in = new_mem;
5716     if (new_in == new_base)  new_in = empty_mem;
5717 
5718     if (new_in != old_in) {
5719       // Warning:  Do not combine this "if" with the previous "if"
5720       // A memory slice might have be be rewritten even if it is semantically
5721       // unchanged, if the base_memory value has changed.
5722       set_req_X(i, new_in, phase);
5723       progress = this;          // Report progress
5724     }
5725   }
5726 
5727   if (new_base != old_base) {
5728     set_req_X(Compile::AliasIdxBot, new_base, phase);
5729     // Don't use set_base_memory(new_base), because we need to update du.
5730     assert(base_memory() == new_base, "");
5731     progress = this;
5732   }
5733 
5734   if( base_memory() == this ) {
5735     // a self cycle indicates this memory path is dead
5736     set_req(Compile::AliasIdxBot, empty_mem);
5737   }
5738 
5739   // Resolve external cycles by calling Ideal on a MergeMem base_memory
5740   // Recursion must occur after the self cycle check above
5741   if( base_memory()->is_MergeMem() ) {
5742     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
5743     Node *m = phase->transform(new_mbase);  // Rollup any cycles
5744     if( m != nullptr &&
5745         (m->is_top() ||
5746          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
5747       // propagate rollup of dead cycle to self
5748       set_req(Compile::AliasIdxBot, empty_mem);
5749     }
5750   }
5751 
5752   if( base_memory() == empty_mem ) {
5753     progress = this;
5754     // Cut inputs during Parse phase only.
5755     // During Optimize phase a dead MergeMem node will be subsumed by Top.
5756     if( !can_reshape ) {
5757       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5758         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
5759       }
5760     }
5761   }
5762 
5763   if( !progress && base_memory()->is_Phi() && can_reshape ) {
5764     // Check if PhiNode::Ideal's "Split phis through memory merges"
5765     // transform should be attempted. Look for this->phi->this cycle.
5766     uint merge_width = req();
5767     if (merge_width > Compile::AliasIdxRaw) {
5768       PhiNode* phi = base_memory()->as_Phi();
5769       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
5770         if (phi->in(i) == this) {
5771           phase->is_IterGVN()->_worklist.push(phi);
5772           break;
5773         }
5774       }
5775     }
5776   }
5777 
5778   assert(progress || verify_sparse(), "please, no dups of base");
5779   return progress;
5780 }
5781 
5782 //-------------------------set_base_memory-------------------------------------
5783 void MergeMemNode::set_base_memory(Node *new_base) {
5784   Node* empty_mem = empty_memory();
5785   set_req(Compile::AliasIdxBot, new_base);
5786   assert(memory_at(req()) == new_base, "must set default memory");
5787   // Clear out other occurrences of new_base:
5788   if (new_base != empty_mem) {
5789     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5790       if (in(i) == new_base)  set_req(i, empty_mem);
5791     }
5792   }
5793 }
5794 
5795 //------------------------------out_RegMask------------------------------------
5796 const RegMask &MergeMemNode::out_RegMask() const {
5797   return RegMask::Empty;
5798 }
5799 
5800 //------------------------------dump_spec--------------------------------------
5801 #ifndef PRODUCT
5802 void MergeMemNode::dump_spec(outputStream *st) const {
5803   st->print(" {");
5804   Node* base_mem = base_memory();
5805   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
5806     Node* mem = (in(i) != nullptr) ? memory_at(i) : base_mem;
5807     if (mem == base_mem) { st->print(" -"); continue; }
5808     st->print( " N%d:", mem->_idx );
5809     Compile::current()->get_adr_type(i)->dump_on(st);
5810   }
5811   st->print(" }");
5812 }
5813 #endif // !PRODUCT
5814 
5815 
5816 #ifdef ASSERT
5817 static bool might_be_same(Node* a, Node* b) {
5818   if (a == b)  return true;
5819   if (!(a->is_Phi() || b->is_Phi()))  return false;
5820   // phis shift around during optimization
5821   return true;  // pretty stupid...
5822 }
5823 
5824 // verify a narrow slice (either incoming or outgoing)
5825 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
5826   if (!VerifyAliases)                return;  // don't bother to verify unless requested
5827   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
5828   if (Node::in_dump())               return;  // muzzle asserts when printing
5829   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
5830   assert(n != nullptr, "");
5831   // Elide intervening MergeMem's
5832   while (n->is_MergeMem()) {
5833     n = n->as_MergeMem()->memory_at(alias_idx);
5834   }
5835   Compile* C = Compile::current();
5836   const TypePtr* n_adr_type = n->adr_type();
5837   if (n == m->empty_memory()) {
5838     // Implicit copy of base_memory()
5839   } else if (n_adr_type != TypePtr::BOTTOM) {
5840     assert(n_adr_type != nullptr, "new memory must have a well-defined adr_type");
5841     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
5842   } else {
5843     // A few places like make_runtime_call "know" that VM calls are narrow,
5844     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
5845     bool expected_wide_mem = false;
5846     if (n == m->base_memory()) {
5847       expected_wide_mem = true;
5848     } else if (alias_idx == Compile::AliasIdxRaw ||
5849                n == m->memory_at(Compile::AliasIdxRaw)) {
5850       expected_wide_mem = true;
5851     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
5852       // memory can "leak through" calls on channels that
5853       // are write-once.  Allow this also.
5854       expected_wide_mem = true;
5855     }
5856     assert(expected_wide_mem, "expected narrow slice replacement");
5857   }
5858 }
5859 #else // !ASSERT
5860 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
5861 #endif
5862 
5863 
5864 //-----------------------------memory_at---------------------------------------
5865 Node* MergeMemNode::memory_at(uint alias_idx) const {
5866   assert(alias_idx >= Compile::AliasIdxRaw ||
5867          (alias_idx == Compile::AliasIdxBot && !Compile::current()->do_aliasing()),
5868          "must avoid base_memory and AliasIdxTop");
5869 
5870   // Otherwise, it is a narrow slice.
5871   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
5872   if (is_empty_memory(n)) {
5873     // the array is sparse; empty slots are the "top" node
5874     n = base_memory();
5875     assert(Node::in_dump()
5876            || n == nullptr || n->bottom_type() == Type::TOP
5877            || n->adr_type() == nullptr // address is TOP
5878            || n->adr_type() == TypePtr::BOTTOM
5879            || n->adr_type() == TypeRawPtr::BOTTOM
5880            || !Compile::current()->do_aliasing(),
5881            "must be a wide memory");
5882     // do_aliasing == false if we are organizing the memory states manually.
5883     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
5884   } else {
5885     // make sure the stored slice is sane
5886     #ifdef ASSERT
5887     if (VMError::is_error_reported() || Node::in_dump()) {
5888     } else if (might_be_same(n, base_memory())) {
5889       // Give it a pass:  It is a mostly harmless repetition of the base.
5890       // This can arise normally from node subsumption during optimization.
5891     } else {
5892       verify_memory_slice(this, alias_idx, n);
5893     }
5894     #endif
5895   }
5896   return n;
5897 }
5898 
5899 //---------------------------set_memory_at-------------------------------------
5900 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
5901   verify_memory_slice(this, alias_idx, n);
5902   Node* empty_mem = empty_memory();
5903   if (n == base_memory())  n = empty_mem;  // collapse default
5904   uint need_req = alias_idx+1;
5905   if (req() < need_req) {
5906     if (n == empty_mem)  return;  // already the default, so do not grow me
5907     // grow the sparse array
5908     do {
5909       add_req(empty_mem);
5910     } while (req() < need_req);
5911   }
5912   set_req( alias_idx, n );
5913 }
5914 
5915 
5916 
5917 //--------------------------iteration_setup------------------------------------
5918 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
5919   if (other != nullptr) {
5920     grow_to_match(other);
5921     // invariant:  the finite support of mm2 is within mm->req()
5922     #ifdef ASSERT
5923     for (uint i = req(); i < other->req(); i++) {
5924       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
5925     }
5926     #endif
5927   }
5928   // Replace spurious copies of base_memory by top.
5929   Node* base_mem = base_memory();
5930   if (base_mem != nullptr && !base_mem->is_top()) {
5931     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
5932       if (in(i) == base_mem)
5933         set_req(i, empty_memory());
5934     }
5935   }
5936 }
5937 
5938 //---------------------------grow_to_match-------------------------------------
5939 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
5940   Node* empty_mem = empty_memory();
5941   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
5942   // look for the finite support of the other memory
5943   for (uint i = other->req(); --i >= req(); ) {
5944     if (other->in(i) != empty_mem) {
5945       uint new_len = i+1;
5946       while (req() < new_len)  add_req(empty_mem);
5947       break;
5948     }
5949   }
5950 }
5951 
5952 //---------------------------verify_sparse-------------------------------------
5953 #ifndef PRODUCT
5954 bool MergeMemNode::verify_sparse() const {
5955   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
5956   Node* base_mem = base_memory();
5957   // The following can happen in degenerate cases, since empty==top.
5958   if (is_empty_memory(base_mem))  return true;
5959   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5960     assert(in(i) != nullptr, "sane slice");
5961     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
5962   }
5963   return true;
5964 }
5965 
5966 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
5967   Node* n;
5968   n = mm->in(idx);
5969   if (mem == n)  return true;  // might be empty_memory()
5970   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
5971   if (mem == n)  return true;
5972   return false;
5973 }
5974 #endif // !PRODUCT