1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.inline.hpp" 26 #include "code/aotCodeCache.hpp" 27 #include "code/compiledIC.hpp" 28 #include "code/debugInfo.hpp" 29 #include "code/debugInfoRec.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compilerDirectives.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/c2/barrierSetC2.hpp" 36 #include "memory/allocation.hpp" 37 #include "opto/ad.hpp" 38 #include "opto/block.hpp" 39 #include "opto/c2_MacroAssembler.hpp" 40 #include "opto/c2compiler.hpp" 41 #include "opto/callnode.hpp" 42 #include "opto/cfgnode.hpp" 43 #include "opto/locknode.hpp" 44 #include "opto/machnode.hpp" 45 #include "opto/node.hpp" 46 #include "opto/optoreg.hpp" 47 #include "opto/output.hpp" 48 #include "opto/regalloc.hpp" 49 #include "opto/type.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "utilities/macros.hpp" 52 #include "utilities/powerOfTwo.hpp" 53 #include "utilities/xmlstream.hpp" 54 55 #ifndef PRODUCT 56 #define DEBUG_ARG(x) , x 57 #else 58 #define DEBUG_ARG(x) 59 #endif 60 61 //------------------------------Scheduling---------------------------------- 62 // This class contains all the information necessary to implement instruction 63 // scheduling and bundling. 64 class Scheduling { 65 66 private: 67 // Arena to use 68 Arena *_arena; 69 70 // Control-Flow Graph info 71 PhaseCFG *_cfg; 72 73 // Register Allocation info 74 PhaseRegAlloc *_regalloc; 75 76 // Number of nodes in the method 77 uint _node_bundling_limit; 78 79 // List of scheduled nodes. Generated in reverse order 80 Node_List _scheduled; 81 82 // List of nodes currently available for choosing for scheduling 83 Node_List _available; 84 85 // For each instruction beginning a bundle, the number of following 86 // nodes to be bundled with it. 87 Bundle *_node_bundling_base; 88 89 // Mapping from register to Node 90 Node_List _reg_node; 91 92 // Free list for pinch nodes. 93 Node_List _pinch_free_list; 94 95 // Number of uses of this node within the containing basic block. 96 short *_uses; 97 98 // Schedulable portion of current block. Skips Region/Phi/CreateEx up 99 // front, branch+proj at end. Also skips Catch/CProj (same as 100 // branch-at-end), plus just-prior exception-throwing call. 101 uint _bb_start, _bb_end; 102 103 // Latency from the end of the basic block as scheduled 104 unsigned short *_current_latency; 105 106 // Remember the next node 107 Node *_next_node; 108 109 // Use this for an unconditional branch delay slot 110 Node *_unconditional_delay_slot; 111 112 // Pointer to a Nop 113 MachNopNode *_nop; 114 115 // Length of the current bundle, in instructions 116 uint _bundle_instr_count; 117 118 // Current Cycle number, for computing latencies and bundling 119 uint _bundle_cycle_number; 120 121 // Bundle information 122 Pipeline_Use_Element _bundle_use_elements[resource_count]; 123 Pipeline_Use _bundle_use; 124 125 // Dump the available list 126 void dump_available() const; 127 128 public: 129 Scheduling(Arena *arena, Compile &compile); 130 131 // Destructor 132 NOT_PRODUCT( ~Scheduling(); ) 133 134 // Step ahead "i" cycles 135 void step(uint i); 136 137 // Step ahead 1 cycle, and clear the bundle state (for example, 138 // at a branch target) 139 void step_and_clear(); 140 141 Bundle* node_bundling(const Node *n) { 142 assert(valid_bundle_info(n), "oob"); 143 return (&_node_bundling_base[n->_idx]); 144 } 145 146 bool valid_bundle_info(const Node *n) const { 147 return (_node_bundling_limit > n->_idx); 148 } 149 150 bool starts_bundle(const Node *n) const { 151 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); 152 } 153 154 // Do the scheduling 155 void DoScheduling(); 156 157 // Compute the register antidependencies within a basic block 158 void ComputeRegisterAntidependencies(Block *bb); 159 void verify_do_def( Node *n, OptoReg::Name def, const char *msg ); 160 void verify_good_schedule( Block *b, const char *msg ); 161 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ); 162 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ); 163 164 // Add a node to the current bundle 165 void AddNodeToBundle(Node *n, const Block *bb); 166 167 // Return an integer less than, equal to, or greater than zero 168 // if the stack offset of the first argument is respectively 169 // less than, equal to, or greater than the second. 170 int compare_two_spill_nodes(Node* first, Node* second); 171 172 // Add a node to the list of available nodes 173 void AddNodeToAvailableList(Node *n); 174 175 // Compute the local use count for the nodes in a block, and compute 176 // the list of instructions with no uses in the block as available 177 void ComputeUseCount(const Block *bb); 178 179 // Choose an instruction from the available list to add to the bundle 180 Node * ChooseNodeToBundle(); 181 182 // See if this Node fits into the currently accumulating bundle 183 bool NodeFitsInBundle(Node *n); 184 185 // Decrement the use count for a node 186 void DecrementUseCounts(Node *n, const Block *bb); 187 188 // Garbage collect pinch nodes for reuse by other blocks. 189 void garbage_collect_pinch_nodes(); 190 // Clean up a pinch node for reuse (helper for above). 191 void cleanup_pinch( Node *pinch ); 192 193 // Information for statistics gathering 194 #ifndef PRODUCT 195 private: 196 // Gather information on size of nops relative to total 197 uint _branches, _unconditional_delays; 198 199 static uint _total_nop_size, _total_method_size; 200 static uint _total_branches, _total_unconditional_delays; 201 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 202 203 public: 204 static void print_statistics(); 205 206 static void increment_instructions_per_bundle(uint i) { 207 _total_instructions_per_bundle[i]++; 208 } 209 210 static void increment_nop_size(uint s) { 211 _total_nop_size += s; 212 } 213 214 static void increment_method_size(uint s) { 215 _total_method_size += s; 216 } 217 #endif 218 219 }; 220 221 PhaseOutput::PhaseOutput() 222 : Phase(Phase::Output), 223 _code_buffer("Compile::Fill_buffer"), 224 _first_block_size(0), 225 _handler_table(), 226 _inc_table(), 227 _stub_list(), 228 _oop_map_set(nullptr), 229 _scratch_buffer_blob(nullptr), 230 _scratch_locs_memory(nullptr), 231 _scratch_const_size(-1), 232 _in_scratch_emit_size(false), 233 _frame_slots(0), 234 _code_offsets(), 235 _node_bundling_limit(0), 236 _node_bundling_base(nullptr), 237 _orig_pc_slot(0), 238 _orig_pc_slot_offset_in_bytes(0), 239 _buf_sizes(), 240 _block(nullptr), 241 _index(0) { 242 C->set_output(this); 243 if (C->stub_name() == nullptr) { 244 _orig_pc_slot = C->fixed_slots() - (sizeof(address) / VMRegImpl::stack_slot_size); 245 } 246 } 247 248 PhaseOutput::~PhaseOutput() { 249 C->set_output(nullptr); 250 if (_scratch_buffer_blob != nullptr) { 251 BufferBlob::free(_scratch_buffer_blob); 252 } 253 } 254 255 void PhaseOutput::perform_mach_node_analysis() { 256 // Late barrier analysis must be done after schedule and bundle 257 // Otherwise liveness based spilling will fail 258 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 259 bs->late_barrier_analysis(); 260 261 pd_perform_mach_node_analysis(); 262 263 C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 3); 264 } 265 266 // Convert Nodes to instruction bits and pass off to the VM 267 void PhaseOutput::Output() { 268 // RootNode goes 269 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" ); 270 271 // The number of new nodes (mostly MachNop) is proportional to 272 // the number of java calls and inner loops which are aligned. 273 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 274 C->inner_loops()*(OptoLoopAlignment-1)), 275 "out of nodes before code generation" ) ) { 276 return; 277 } 278 // Make sure I can find the Start Node 279 Block *entry = C->cfg()->get_block(1); 280 Block *broot = C->cfg()->get_root_block(); 281 282 const StartNode *start = entry->head()->as_Start(); 283 284 // Replace StartNode with prolog 285 MachPrologNode *prolog = new MachPrologNode(); 286 entry->map_node(prolog, 0); 287 C->cfg()->map_node_to_block(prolog, entry); 288 C->cfg()->unmap_node_from_block(start); // start is no longer in any block 289 290 // Virtual methods need an unverified entry point 291 292 if( C->is_osr_compilation() ) { 293 if( PoisonOSREntry ) { 294 // TODO: Should use a ShouldNotReachHereNode... 295 C->cfg()->insert( broot, 0, new MachBreakpointNode() ); 296 } 297 } else { 298 if( C->method() && !C->method()->flags().is_static() ) { 299 // Insert unvalidated entry point 300 C->cfg()->insert( broot, 0, new MachUEPNode() ); 301 } 302 303 } 304 305 // Break before main entry point 306 if ((C->method() && C->directive()->BreakAtExecuteOption) || 307 (OptoBreakpoint && C->is_method_compilation()) || 308 (OptoBreakpointOSR && C->is_osr_compilation()) || 309 (OptoBreakpointC2R && !C->method()) ) { 310 // checking for C->method() means that OptoBreakpoint does not apply to 311 // runtime stubs or frame converters 312 C->cfg()->insert( entry, 1, new MachBreakpointNode() ); 313 } 314 315 // Insert epilogs before every return 316 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 317 Block* block = C->cfg()->get_block(i); 318 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point? 319 Node* m = block->end(); 320 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { 321 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 322 block->add_inst(epilog); 323 C->cfg()->map_node_to_block(epilog, block); 324 } 325 } 326 } 327 328 // Keeper of sizing aspects 329 _buf_sizes = BufferSizingData(); 330 331 // Initialize code buffer 332 estimate_buffer_size(_buf_sizes._const); 333 if (C->failing()) return; 334 335 // Pre-compute the length of blocks and replace 336 // long branches with short if machine supports it. 337 // Must be done before ScheduleAndBundle due to SPARC delay slots 338 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1); 339 blk_starts[0] = 0; 340 shorten_branches(blk_starts); 341 342 ScheduleAndBundle(); 343 if (C->failing()) { 344 return; 345 } 346 347 perform_mach_node_analysis(); 348 349 // Complete sizing of codebuffer 350 CodeBuffer* cb = init_buffer(); 351 if (cb == nullptr || C->failing()) { 352 return; 353 } 354 355 BuildOopMaps(); 356 357 if (C->failing()) { 358 return; 359 } 360 361 C2_MacroAssembler masm(cb); 362 fill_buffer(&masm, blk_starts); 363 } 364 365 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const { 366 // Determine if we need to generate a stack overflow check. 367 // Do it if the method is not a stub function and 368 // has java calls or has frame size > vm_page_size/8. 369 // The debug VM checks that deoptimization doesn't trigger an 370 // unexpected stack overflow (compiled method stack banging should 371 // guarantee it doesn't happen) so we always need the stack bang in 372 // a debug VM. 373 return (C->stub_function() == nullptr && 374 (C->has_java_calls() || frame_size_in_bytes > (int)(os::vm_page_size())>>3 375 DEBUG_ONLY(|| true))); 376 } 377 378 bool PhaseOutput::need_register_stack_bang() const { 379 // Determine if we need to generate a register stack overflow check. 380 // This is only used on architectures which have split register 381 // and memory stacks. 382 // Bang if the method is not a stub function and has java calls 383 return (C->stub_function() == nullptr && C->has_java_calls()); 384 } 385 386 387 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 388 // of a loop. When aligning a loop we need to provide enough instructions 389 // in cpu's fetch buffer to feed decoders. The loop alignment could be 390 // avoided if we have enough instructions in fetch buffer at the head of a loop. 391 // By default, the size is set to 999999 by Block's constructor so that 392 // a loop will be aligned if the size is not reset here. 393 // 394 // Note: Mach instructions could contain several HW instructions 395 // so the size is estimated only. 396 // 397 void PhaseOutput::compute_loop_first_inst_sizes() { 398 // The next condition is used to gate the loop alignment optimization. 399 // Don't aligned a loop if there are enough instructions at the head of a loop 400 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 401 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 402 // equal to 11 bytes which is the largest address NOP instruction. 403 if (MaxLoopPad < OptoLoopAlignment - 1) { 404 uint last_block = C->cfg()->number_of_blocks() - 1; 405 for (uint i = 1; i <= last_block; i++) { 406 Block* block = C->cfg()->get_block(i); 407 // Check the first loop's block which requires an alignment. 408 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { 409 uint sum_size = 0; 410 uint inst_cnt = NumberOfLoopInstrToAlign; 411 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 412 413 // Check subsequent fallthrough blocks if the loop's first 414 // block(s) does not have enough instructions. 415 Block *nb = block; 416 while(inst_cnt > 0 && 417 i < last_block && 418 !C->cfg()->get_block(i + 1)->has_loop_alignment() && 419 !nb->has_successor(block)) { 420 i++; 421 nb = C->cfg()->get_block(i); 422 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 423 } // while( inst_cnt > 0 && i < last_block ) 424 425 block->set_first_inst_size(sum_size); 426 } // f( b->head()->is_Loop() ) 427 } // for( i <= last_block ) 428 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 429 } 430 431 // The architecture description provides short branch variants for some long 432 // branch instructions. Replace eligible long branches with short branches. 433 void PhaseOutput::shorten_branches(uint* blk_starts) { 434 435 Compile::TracePhase tp(_t_shortenBranches); 436 437 // Compute size of each block, method size, and relocation information size 438 uint nblocks = C->cfg()->number_of_blocks(); 439 440 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 441 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 442 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 443 444 // Collect worst case block paddings 445 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); 446 memset(block_worst_case_pad, 0, nblocks * sizeof(int)); 447 448 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 449 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) 450 451 bool has_short_branch_candidate = false; 452 453 // Initialize the sizes to 0 454 int code_size = 0; // Size in bytes of generated code 455 int stub_size = 0; // Size in bytes of all stub entries 456 // Size in bytes of all relocation entries, including those in local stubs. 457 // Start with 2-bytes of reloc info for the unvalidated entry point 458 int reloc_size = 1; // Number of relocation entries 459 460 // Make three passes. The first computes pessimistic blk_starts, 461 // relative jmp_offset and reloc_size information. The second performs 462 // short branch substitution using the pessimistic sizing. The 463 // third inserts nops where needed. 464 465 // Step one, perform a pessimistic sizing pass. 466 uint last_call_adr = max_juint; 467 uint last_avoid_back_to_back_adr = max_juint; 468 uint nop_size = (new MachNopNode())->size(C->regalloc()); 469 for (uint i = 0; i < nblocks; i++) { // For all blocks 470 Block* block = C->cfg()->get_block(i); 471 _block = block; 472 473 // During short branch replacement, we store the relative (to blk_starts) 474 // offset of jump in jmp_offset, rather than the absolute offset of jump. 475 // This is so that we do not need to recompute sizes of all nodes when 476 // we compute correct blk_starts in our next sizing pass. 477 jmp_offset[i] = 0; 478 jmp_size[i] = 0; 479 jmp_nidx[i] = -1; 480 DEBUG_ONLY( jmp_target[i] = 0; ) 481 DEBUG_ONLY( jmp_rule[i] = 0; ) 482 483 // Sum all instruction sizes to compute block size 484 uint last_inst = block->number_of_nodes(); 485 uint blk_size = 0; 486 for (uint j = 0; j < last_inst; j++) { 487 _index = j; 488 Node* nj = block->get_node(_index); 489 // Handle machine instruction nodes 490 if (nj->is_Mach()) { 491 MachNode* mach = nj->as_Mach(); 492 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 493 reloc_size += mach->reloc(); 494 if (mach->is_MachCall()) { 495 // add size information for trampoline stub 496 // class CallStubImpl is platform-specific and defined in the *.ad files. 497 stub_size += CallStubImpl::size_call_trampoline(); 498 reloc_size += CallStubImpl::reloc_call_trampoline(); 499 500 MachCallNode *mcall = mach->as_MachCall(); 501 // This destination address is NOT PC-relative 502 503 mcall->method_set((intptr_t)mcall->entry_point()); 504 505 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { 506 stub_size += CompiledDirectCall::to_interp_stub_size(); 507 reloc_size += CompiledDirectCall::reloc_to_interp_stub(); 508 } 509 } else if (mach->is_MachSafePoint()) { 510 // If call/safepoint are adjacent, account for possible 511 // nop to disambiguate the two safepoints. 512 // ScheduleAndBundle() can rearrange nodes in a block, 513 // check for all offsets inside this block. 514 if (last_call_adr >= blk_starts[i]) { 515 blk_size += nop_size; 516 } 517 } 518 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 519 // Nop is inserted between "avoid back to back" instructions. 520 // ScheduleAndBundle() can rearrange nodes in a block, 521 // check for all offsets inside this block. 522 if (last_avoid_back_to_back_adr >= blk_starts[i]) { 523 blk_size += nop_size; 524 } 525 } 526 if (mach->may_be_short_branch()) { 527 if (!nj->is_MachBranch()) { 528 #ifndef PRODUCT 529 nj->dump(3); 530 #endif 531 Unimplemented(); 532 } 533 assert(jmp_nidx[i] == -1, "block should have only one branch"); 534 jmp_offset[i] = blk_size; 535 jmp_size[i] = nj->size(C->regalloc()); 536 jmp_nidx[i] = j; 537 has_short_branch_candidate = true; 538 } 539 } 540 blk_size += nj->size(C->regalloc()); 541 // Remember end of call offset 542 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { 543 last_call_adr = blk_starts[i]+blk_size; 544 } 545 // Remember end of avoid_back_to_back offset 546 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 547 last_avoid_back_to_back_adr = blk_starts[i]+blk_size; 548 } 549 } 550 551 // When the next block starts a loop, we may insert pad NOP 552 // instructions. Since we cannot know our future alignment, 553 // assume the worst. 554 if (i < nblocks - 1) { 555 Block* nb = C->cfg()->get_block(i + 1); 556 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 557 if (max_loop_pad > 0) { 558 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 559 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 560 // If either is the last instruction in this block, bump by 561 // max_loop_pad in lock-step with blk_size, so sizing 562 // calculations in subsequent blocks still can conservatively 563 // detect that it may the last instruction in this block. 564 if (last_call_adr == blk_starts[i]+blk_size) { 565 last_call_adr += max_loop_pad; 566 } 567 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { 568 last_avoid_back_to_back_adr += max_loop_pad; 569 } 570 blk_size += max_loop_pad; 571 block_worst_case_pad[i + 1] = max_loop_pad; 572 } 573 } 574 575 // Save block size; update total method size 576 blk_starts[i+1] = blk_starts[i]+blk_size; 577 } 578 579 // Step two, replace eligible long jumps. 580 bool progress = true; 581 uint last_may_be_short_branch_adr = max_juint; 582 while (has_short_branch_candidate && progress) { 583 progress = false; 584 has_short_branch_candidate = false; 585 int adjust_block_start = 0; 586 for (uint i = 0; i < nblocks; i++) { 587 Block* block = C->cfg()->get_block(i); 588 int idx = jmp_nidx[i]; 589 MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach(); 590 if (mach != nullptr && mach->may_be_short_branch()) { 591 #ifdef ASSERT 592 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 593 int j; 594 // Find the branch; ignore trailing NOPs. 595 for (j = block->number_of_nodes()-1; j>=0; j--) { 596 Node* n = block->get_node(j); 597 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 598 break; 599 } 600 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity"); 601 #endif 602 int br_size = jmp_size[i]; 603 int br_offs = blk_starts[i] + jmp_offset[i]; 604 605 // This requires the TRUE branch target be in succs[0] 606 uint bnum = block->non_connector_successor(0)->_pre_order; 607 int offset = blk_starts[bnum] - br_offs; 608 if (bnum > i) { // adjust following block's offset 609 offset -= adjust_block_start; 610 } 611 612 // This block can be a loop header, account for the padding 613 // in the previous block. 614 int block_padding = block_worst_case_pad[i]; 615 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top"); 616 // In the following code a nop could be inserted before 617 // the branch which will increase the backward distance. 618 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); 619 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block"); 620 621 if (needs_padding && offset <= 0) 622 offset -= nop_size; 623 624 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 625 // We've got a winner. Replace this branch. 626 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 627 628 // Update the jmp_size. 629 int new_size = replacement->size(C->regalloc()); 630 int diff = br_size - new_size; 631 assert(diff >= (int)nop_size, "short_branch size should be smaller"); 632 // Conservatively take into account padding between 633 // avoid_back_to_back branches. Previous branch could be 634 // converted into avoid_back_to_back branch during next 635 // rounds. 636 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 637 jmp_offset[i] += nop_size; 638 diff -= nop_size; 639 } 640 adjust_block_start += diff; 641 block->map_node(replacement, idx); 642 mach->subsume_by(replacement, C); 643 mach = replacement; 644 progress = true; 645 646 jmp_size[i] = new_size; 647 DEBUG_ONLY( jmp_target[i] = bnum; ); 648 DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); 649 } else { 650 // The jump distance is not short, try again during next iteration. 651 has_short_branch_candidate = true; 652 } 653 } // (mach->may_be_short_branch()) 654 if (mach != nullptr && (mach->may_be_short_branch() || 655 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { 656 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; 657 } 658 blk_starts[i+1] -= adjust_block_start; 659 } 660 } 661 662 #ifdef ASSERT 663 for (uint i = 0; i < nblocks; i++) { // For all blocks 664 if (jmp_target[i] != 0) { 665 int br_size = jmp_size[i]; 666 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 667 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 668 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 669 } 670 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp"); 671 } 672 } 673 #endif 674 675 // Step 3, compute the offsets of all blocks, will be done in fill_buffer() 676 // after ScheduleAndBundle(). 677 678 // ------------------ 679 // Compute size for code buffer 680 code_size = blk_starts[nblocks]; 681 682 // Relocation records 683 reloc_size += 1; // Relo entry for exception handler 684 685 // Adjust reloc_size to number of record of relocation info 686 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for 687 // a relocation index. 688 // The CodeBuffer will expand the locs array if this estimate is too low. 689 reloc_size *= 10 / sizeof(relocInfo); 690 691 _buf_sizes._reloc = reloc_size; 692 _buf_sizes._code = code_size; 693 _buf_sizes._stub = stub_size; 694 } 695 696 //------------------------------FillLocArray----------------------------------- 697 // Create a bit of debug info and append it to the array. The mapping is from 698 // Java local or expression stack to constant, register or stack-slot. For 699 // doubles, insert 2 mappings and return 1 (to tell the caller that the next 700 // entry has been taken care of and caller should skip it). 701 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { 702 // This should never have accepted Bad before 703 assert(OptoReg::is_valid(regnum), "location must be valid"); 704 return (OptoReg::is_reg(regnum)) 705 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) 706 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); 707 } 708 709 710 ObjectValue* 711 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { 712 for (int i = 0; i < objs->length(); i++) { 713 assert(objs->at(i)->is_object(), "corrupt object cache"); 714 ObjectValue* sv = objs->at(i)->as_ObjectValue(); 715 if (sv->id() == id) { 716 return sv; 717 } 718 } 719 // Otherwise.. 720 return nullptr; 721 } 722 723 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, 724 ObjectValue* sv ) { 725 assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition"); 726 objs->append(sv); 727 } 728 729 730 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, 731 GrowableArray<ScopeValue*> *array, 732 GrowableArray<ScopeValue*> *objs ) { 733 assert( local, "use _top instead of null" ); 734 if (array->length() != idx) { 735 assert(array->length() == idx + 1, "Unexpected array count"); 736 // Old functionality: 737 // return 738 // New functionality: 739 // Assert if the local is not top. In product mode let the new node 740 // override the old entry. 741 assert(local == C->top(), "LocArray collision"); 742 if (local == C->top()) { 743 return; 744 } 745 array->pop(); 746 } 747 const Type *t = local->bottom_type(); 748 749 // Is it a safepoint scalar object node? 750 if (local->is_SafePointScalarObject()) { 751 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); 752 753 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx); 754 if (sv == nullptr) { 755 ciKlass* cik = t->is_oopptr()->exact_klass(); 756 assert(cik->is_instance_klass() || 757 cik->is_array_klass(), "Not supported allocation."); 758 sv = new ObjectValue(spobj->_idx, 759 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 760 set_sv_for_object_node(objs, sv); 761 762 uint first_ind = spobj->first_index(sfpt->jvms()); 763 for (uint i = 0; i < spobj->n_fields(); i++) { 764 Node* fld_node = sfpt->in(first_ind+i); 765 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 766 } 767 } 768 array->append(sv); 769 return; 770 } else if (local->is_SafePointScalarMerge()) { 771 SafePointScalarMergeNode* smerge = local->as_SafePointScalarMerge(); 772 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 773 774 if (mv == nullptr) { 775 GrowableArray<ScopeValue*> deps; 776 777 int merge_pointer_idx = smerge->merge_pointer_idx(sfpt->jvms()); 778 (void)FillLocArray(0, sfpt, sfpt->in(merge_pointer_idx), &deps, objs); 779 assert(deps.length() == 1, "missing value"); 780 781 int selector_idx = smerge->selector_idx(sfpt->jvms()); 782 (void)FillLocArray(1, nullptr, sfpt->in(selector_idx), &deps, nullptr); 783 assert(deps.length() == 2, "missing value"); 784 785 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 786 set_sv_for_object_node(objs, mv); 787 788 for (uint i = 1; i < smerge->req(); i++) { 789 Node* obj_node = smerge->in(i); 790 int idx = mv->possible_objects()->length(); 791 (void)FillLocArray(idx, sfpt, obj_node, mv->possible_objects(), objs); 792 793 // By default ObjectValues that are in 'possible_objects' are not root objects. 794 // They will be marked as root later if they are directly referenced in a JVMS. 795 assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!"); 796 assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue."); 797 mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false); 798 } 799 } 800 array->append(mv); 801 return; 802 } 803 804 // Grab the register number for the local 805 OptoReg::Name regnum = C->regalloc()->get_reg_first(local); 806 if( OptoReg::is_valid(regnum) ) {// Got a register/stack? 807 // Record the double as two float registers. 808 // The register mask for such a value always specifies two adjacent 809 // float registers, with the lower register number even. 810 // Normally, the allocation of high and low words to these registers 811 // is irrelevant, because nearly all operations on register pairs 812 // (e.g., StoreD) treat them as a single unit. 813 // Here, we assume in addition that the words in these two registers 814 // stored "naturally" (by operations like StoreD and double stores 815 // within the interpreter) such that the lower-numbered register 816 // is written to the lower memory address. This may seem like 817 // a machine dependency, but it is not--it is a requirement on 818 // the author of the <arch>.ad file to ensure that, for every 819 // even/odd double-register pair to which a double may be allocated, 820 // the word in the even single-register is stored to the first 821 // memory word. (Note that register numbers are completely 822 // arbitrary, and are not tied to any machine-level encodings.) 823 #ifdef _LP64 824 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { 825 array->append(new ConstantIntValue((jint)0)); 826 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl )); 827 } else if ( t->base() == Type::Long ) { 828 array->append(new ConstantIntValue((jint)0)); 829 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 830 } else if ( t->base() == Type::RawPtr ) { 831 // jsr/ret return address which must be restored into the full 832 // width 64-bit stack slot. 833 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 834 } 835 #else //_LP64 836 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { 837 // Repack the double/long as two jints. 838 // The convention the interpreter uses is that the second local 839 // holds the first raw word of the native double representation. 840 // This is actually reasonable, since locals and stack arrays 841 // grow downwards in all implementations. 842 // (If, on some machine, the interpreter's Java locals or stack 843 // were to grow upwards, the embedded doubles would be word-swapped.) 844 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal )); 845 array->append(new_loc_value( C->regalloc(), regnum , Location::normal )); 846 } 847 #endif //_LP64 848 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && 849 OptoReg::is_reg(regnum) ) { 850 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double() 851 ? Location::float_in_dbl : Location::normal )); 852 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { 853 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long 854 ? Location::int_in_long : Location::normal )); 855 } else if( t->base() == Type::NarrowOop ) { 856 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop )); 857 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS || 858 t->base() == Type::VectorD || t->base() == Type::VectorX || 859 t->base() == Type::VectorY || t->base() == Type::VectorZ) { 860 array->append(new_loc_value( C->regalloc(), regnum, Location::vector )); 861 } else if (C->regalloc()->is_oop(local)) { 862 assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr || 863 t->base() == Type::AryPtr, 864 "Unexpected type: %s", t->msg()); 865 array->append(new_loc_value( C->regalloc(), regnum, Location::oop )); 866 } else { 867 assert(t->base() == Type::Int || t->base() == Type::Half || 868 t->base() == Type::FloatCon || t->base() == Type::FloatBot, 869 "Unexpected type: %s", t->msg()); 870 array->append(new_loc_value( C->regalloc(), regnum, Location::normal )); 871 } 872 return; 873 } 874 875 // No register. It must be constant data. 876 switch (t->base()) { 877 case Type::Half: // Second half of a double 878 ShouldNotReachHere(); // Caller should skip 2nd halves 879 break; 880 case Type::AnyPtr: 881 array->append(new ConstantOopWriteValue(nullptr)); 882 break; 883 case Type::AryPtr: 884 case Type::InstPtr: // fall through 885 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); 886 break; 887 case Type::NarrowOop: 888 if (t == TypeNarrowOop::NULL_PTR) { 889 array->append(new ConstantOopWriteValue(nullptr)); 890 } else { 891 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); 892 } 893 break; 894 case Type::Int: 895 array->append(new ConstantIntValue(t->is_int()->get_con())); 896 break; 897 case Type::RawPtr: 898 // A return address (T_ADDRESS). 899 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); 900 #ifdef _LP64 901 // Must be restored to the full-width 64-bit stack slot. 902 array->append(new ConstantLongValue(t->is_ptr()->get_con())); 903 #else 904 array->append(new ConstantIntValue(t->is_ptr()->get_con())); 905 #endif 906 break; 907 case Type::FloatCon: { 908 float f = t->is_float_constant()->getf(); 909 array->append(new ConstantIntValue(jint_cast(f))); 910 break; 911 } 912 case Type::DoubleCon: { 913 jdouble d = t->is_double_constant()->getd(); 914 #ifdef _LP64 915 array->append(new ConstantIntValue((jint)0)); 916 array->append(new ConstantDoubleValue(d)); 917 #else 918 // Repack the double as two jints. 919 // The convention the interpreter uses is that the second local 920 // holds the first raw word of the native double representation. 921 // This is actually reasonable, since locals and stack arrays 922 // grow downwards in all implementations. 923 // (If, on some machine, the interpreter's Java locals or stack 924 // were to grow upwards, the embedded doubles would be word-swapped.) 925 jlong_accessor acc; 926 acc.long_value = jlong_cast(d); 927 array->append(new ConstantIntValue(acc.words[1])); 928 array->append(new ConstantIntValue(acc.words[0])); 929 #endif 930 break; 931 } 932 case Type::Long: { 933 jlong d = t->is_long()->get_con(); 934 #ifdef _LP64 935 array->append(new ConstantIntValue((jint)0)); 936 array->append(new ConstantLongValue(d)); 937 #else 938 // Repack the long as two jints. 939 // The convention the interpreter uses is that the second local 940 // holds the first raw word of the native double representation. 941 // This is actually reasonable, since locals and stack arrays 942 // grow downwards in all implementations. 943 // (If, on some machine, the interpreter's Java locals or stack 944 // were to grow upwards, the embedded doubles would be word-swapped.) 945 jlong_accessor acc; 946 acc.long_value = d; 947 array->append(new ConstantIntValue(acc.words[1])); 948 array->append(new ConstantIntValue(acc.words[0])); 949 #endif 950 break; 951 } 952 case Type::Top: // Add an illegal value here 953 array->append(new LocationValue(Location())); 954 break; 955 default: 956 ShouldNotReachHere(); 957 break; 958 } 959 } 960 961 // Determine if this node starts a bundle 962 bool PhaseOutput::starts_bundle(const Node *n) const { 963 return (_node_bundling_limit > n->_idx && 964 _node_bundling_base[n->_idx].starts_bundle()); 965 } 966 967 // Determine if there is a monitor that has 'ov' as its owner. 968 bool PhaseOutput::contains_as_owner(GrowableArray<MonitorValue*> *monarray, ObjectValue *ov) const { 969 for (int k = 0; k < monarray->length(); k++) { 970 MonitorValue* mv = monarray->at(k); 971 if (mv->owner() == ov) { 972 return true; 973 } 974 } 975 976 return false; 977 } 978 979 // Determine if there is a scalar replaced object description represented by 'ov'. 980 bool PhaseOutput::contains_as_scalarized_obj(JVMState* jvms, MachSafePointNode* sfn, 981 GrowableArray<ScopeValue*>* objs, 982 ObjectValue* ov) const { 983 for (int i = 0; i < jvms->scl_size(); i++) { 984 Node* n = sfn->scalarized_obj(jvms, i); 985 // Other kinds of nodes that we may encounter here, for instance constants 986 // representing values of fields of objects scalarized, aren't relevant for 987 // us, since they don't map to ObjectValue. 988 if (!n->is_SafePointScalarObject()) { 989 continue; 990 } 991 992 ObjectValue* other = sv_for_node_id(objs, n->_idx); 993 if (ov == other) { 994 return true; 995 } 996 } 997 return false; 998 } 999 1000 //--------------------------Process_OopMap_Node-------------------------------- 1001 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) { 1002 // Handle special safepoint nodes for synchronization 1003 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1004 MachCallNode *mcall; 1005 1006 int safepoint_pc_offset = current_offset; 1007 bool is_method_handle_invoke = false; 1008 bool return_oop = false; 1009 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope; 1010 bool arg_escape = false; 1011 1012 // Add the safepoint in the DebugInfoRecorder 1013 if( !mach->is_MachCall() ) { 1014 mcall = nullptr; 1015 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); 1016 } else { 1017 mcall = mach->as_MachCall(); 1018 1019 // Is the call a MethodHandle call? 1020 if (mcall->is_MachCallJava()) { 1021 if (mcall->as_MachCallJava()->_method_handle_invoke) { 1022 assert(C->has_method_handle_invokes(), "must have been set during call generation"); 1023 is_method_handle_invoke = true; 1024 } 1025 arg_escape = mcall->as_MachCallJava()->_arg_escape; 1026 } 1027 1028 // Check if a call returns an object. 1029 if (mcall->returns_pointer()) { 1030 return_oop = true; 1031 } 1032 safepoint_pc_offset += mcall->ret_addr_offset(); 1033 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); 1034 } 1035 1036 // Loop over the JVMState list to add scope information 1037 // Do not skip safepoints with a null method, they need monitor info 1038 JVMState* youngest_jvms = sfn->jvms(); 1039 int max_depth = youngest_jvms->depth(); 1040 1041 // Allocate the object pool for scalar-replaced objects -- the map from 1042 // small-integer keys (which can be recorded in the local and ostack 1043 // arrays) to descriptions of the object state. 1044 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); 1045 1046 // Visit scopes from oldest to youngest. 1047 for (int depth = 1; depth <= max_depth; depth++) { 1048 JVMState* jvms = youngest_jvms->of_depth(depth); 1049 int idx; 1050 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1051 // Safepoints that do not have method() set only provide oop-map and monitor info 1052 // to support GC; these do not support deoptimization. 1053 int num_locs = (method == nullptr) ? 0 : jvms->loc_size(); 1054 int num_exps = (method == nullptr) ? 0 : jvms->stk_size(); 1055 int num_mon = jvms->nof_monitors(); 1056 assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(), 1057 "JVMS local count must match that of the method"); 1058 1059 // Add Local and Expression Stack Information 1060 1061 // Insert locals into the locarray 1062 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); 1063 for( idx = 0; idx < num_locs; idx++ ) { 1064 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); 1065 } 1066 1067 // Insert expression stack entries into the exparray 1068 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); 1069 for( idx = 0; idx < num_exps; idx++ ) { 1070 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); 1071 } 1072 1073 // Add in mappings of the monitors 1074 assert( !method || 1075 !method->is_synchronized() || 1076 method->is_native() || 1077 num_mon > 0, 1078 "monitors must always exist for synchronized methods"); 1079 1080 // Build the growable array of ScopeValues for exp stack 1081 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 1082 1083 // Loop over monitors and insert into array 1084 for (idx = 0; idx < num_mon; idx++) { 1085 // Grab the node that defines this monitor 1086 Node* box_node = sfn->monitor_box(jvms, idx); 1087 Node* obj_node = sfn->monitor_obj(jvms, idx); 1088 1089 // Create ScopeValue for object 1090 ScopeValue *scval = nullptr; 1091 1092 if (obj_node->is_SafePointScalarObject()) { 1093 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 1094 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx); 1095 if (scval == nullptr) { 1096 const Type *t = spobj->bottom_type(); 1097 ciKlass* cik = t->is_oopptr()->exact_klass(); 1098 assert(cik->is_instance_klass() || 1099 cik->is_array_klass(), "Not supported allocation."); 1100 ObjectValue* sv = new ObjectValue(spobj->_idx, 1101 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 1102 PhaseOutput::set_sv_for_object_node(objs, sv); 1103 1104 uint first_ind = spobj->first_index(youngest_jvms); 1105 for (uint i = 0; i < spobj->n_fields(); i++) { 1106 Node* fld_node = sfn->in(first_ind+i); 1107 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 1108 } 1109 scval = sv; 1110 } 1111 } else if (obj_node->is_SafePointScalarMerge()) { 1112 SafePointScalarMergeNode* smerge = obj_node->as_SafePointScalarMerge(); 1113 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 1114 1115 if (mv == nullptr) { 1116 GrowableArray<ScopeValue*> deps; 1117 1118 int merge_pointer_idx = smerge->merge_pointer_idx(youngest_jvms); 1119 FillLocArray(0, sfn, sfn->in(merge_pointer_idx), &deps, objs); 1120 assert(deps.length() == 1, "missing value"); 1121 1122 int selector_idx = smerge->selector_idx(youngest_jvms); 1123 FillLocArray(1, nullptr, sfn->in(selector_idx), &deps, nullptr); 1124 assert(deps.length() == 2, "missing value"); 1125 1126 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 1127 set_sv_for_object_node(objs, mv); 1128 1129 for (uint i = 1; i < smerge->req(); i++) { 1130 Node* obj_node = smerge->in(i); 1131 int idx = mv->possible_objects()->length(); 1132 (void)FillLocArray(idx, sfn, obj_node, mv->possible_objects(), objs); 1133 1134 // By default ObjectValues that are in 'possible_objects' are not root objects. 1135 // They will be marked as root later if they are directly referenced in a JVMS. 1136 assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!"); 1137 assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue."); 1138 mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false); 1139 } 1140 } 1141 scval = mv; 1142 } else if (!obj_node->is_Con()) { 1143 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node); 1144 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 1145 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop ); 1146 } else { 1147 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop ); 1148 } 1149 } else { 1150 const TypePtr *tp = obj_node->get_ptr_type(); 1151 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); 1152 } 1153 1154 OptoReg::Name box_reg = BoxLockNode::reg(box_node); 1155 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg)); 1156 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); 1157 monarray->append(new MonitorValue(scval, basic_lock, eliminated)); 1158 } 1159 1160 // Mark ObjectValue nodes as root nodes if they are directly 1161 // referenced in the JVMS. 1162 for (int i = 0; i < objs->length(); i++) { 1163 ScopeValue* sv = objs->at(i); 1164 if (sv->is_object_merge()) { 1165 ObjectMergeValue* merge = sv->as_ObjectMergeValue(); 1166 1167 for (int j = 0; j< merge->possible_objects()->length(); j++) { 1168 ObjectValue* ov = merge->possible_objects()->at(j)->as_ObjectValue(); 1169 if (ov->is_root()) { 1170 // Already flagged as 'root' by something else. We shouldn't change it 1171 // to non-root in a younger JVMS because it may need to be alive in 1172 // a younger JVMS. 1173 } else { 1174 bool is_root = locarray->contains(ov) || 1175 exparray->contains(ov) || 1176 contains_as_owner(monarray, ov) || 1177 contains_as_scalarized_obj(jvms, sfn, objs, ov); 1178 ov->set_root(is_root); 1179 } 1180 } 1181 } 1182 } 1183 1184 // We dump the object pool first, since deoptimization reads it in first. 1185 C->debug_info()->dump_object_pool(objs); 1186 1187 // Build first class objects to pass to scope 1188 DebugToken *locvals = C->debug_info()->create_scope_values(locarray); 1189 DebugToken *expvals = C->debug_info()->create_scope_values(exparray); 1190 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray); 1191 1192 // Make method available for all Safepoints 1193 ciMethod* scope_method = method ? method : C->method(); 1194 // Describe the scope here 1195 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); 1196 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest"); 1197 // Now we can describe the scope. 1198 methodHandle null_mh; 1199 bool rethrow_exception = false; 1200 C->debug_info()->describe_scope( 1201 safepoint_pc_offset, 1202 null_mh, 1203 scope_method, 1204 jvms->bci(), 1205 jvms->should_reexecute(), 1206 rethrow_exception, 1207 is_method_handle_invoke, 1208 return_oop, 1209 has_ea_local_in_scope, 1210 arg_escape, 1211 locvals, 1212 expvals, 1213 monvals 1214 ); 1215 } // End jvms loop 1216 1217 // Mark the end of the scope set. 1218 C->debug_info()->end_safepoint(safepoint_pc_offset); 1219 } 1220 1221 1222 1223 // A simplified version of Process_OopMap_Node, to handle non-safepoints. 1224 class NonSafepointEmitter { 1225 Compile* C; 1226 JVMState* _pending_jvms; 1227 int _pending_offset; 1228 1229 void emit_non_safepoint(); 1230 1231 public: 1232 NonSafepointEmitter(Compile* compile) { 1233 this->C = compile; 1234 _pending_jvms = nullptr; 1235 _pending_offset = 0; 1236 } 1237 1238 void observe_instruction(Node* n, int pc_offset) { 1239 if (!C->debug_info()->recording_non_safepoints()) return; 1240 1241 Node_Notes* nn = C->node_notes_at(n->_idx); 1242 if (nn == nullptr || nn->jvms() == nullptr) return; 1243 if (_pending_jvms != nullptr && 1244 _pending_jvms->same_calls_as(nn->jvms())) { 1245 // Repeated JVMS? Stretch it up here. 1246 _pending_offset = pc_offset; 1247 } else { 1248 if (_pending_jvms != nullptr && 1249 _pending_offset < pc_offset) { 1250 emit_non_safepoint(); 1251 } 1252 _pending_jvms = nullptr; 1253 if (pc_offset > C->debug_info()->last_pc_offset()) { 1254 // This is the only way _pending_jvms can become non-null: 1255 _pending_jvms = nn->jvms(); 1256 _pending_offset = pc_offset; 1257 } 1258 } 1259 } 1260 1261 // Stay out of the way of real safepoints: 1262 void observe_safepoint(JVMState* jvms, int pc_offset) { 1263 if (_pending_jvms != nullptr && 1264 !_pending_jvms->same_calls_as(jvms) && 1265 _pending_offset < pc_offset) { 1266 emit_non_safepoint(); 1267 } 1268 _pending_jvms = nullptr; 1269 } 1270 1271 void flush_at_end() { 1272 if (_pending_jvms != nullptr) { 1273 emit_non_safepoint(); 1274 } 1275 _pending_jvms = nullptr; 1276 } 1277 }; 1278 1279 void NonSafepointEmitter::emit_non_safepoint() { 1280 JVMState* youngest_jvms = _pending_jvms; 1281 int pc_offset = _pending_offset; 1282 1283 // Clear it now: 1284 _pending_jvms = nullptr; 1285 1286 DebugInformationRecorder* debug_info = C->debug_info(); 1287 assert(debug_info->recording_non_safepoints(), "sanity"); 1288 1289 debug_info->add_non_safepoint(pc_offset); 1290 int max_depth = youngest_jvms->depth(); 1291 1292 // Visit scopes from oldest to youngest. 1293 for (int depth = 1; depth <= max_depth; depth++) { 1294 JVMState* jvms = youngest_jvms->of_depth(depth); 1295 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1296 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest"); 1297 methodHandle null_mh; 1298 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); 1299 } 1300 1301 // Mark the end of the scope set. 1302 debug_info->end_non_safepoint(pc_offset); 1303 } 1304 1305 //------------------------------init_buffer------------------------------------ 1306 void PhaseOutput::estimate_buffer_size(int& const_req) { 1307 1308 // Set the initially allocated size 1309 const_req = initial_const_capacity; 1310 1311 // The extra spacing after the code is necessary on some platforms. 1312 // Sometimes we need to patch in a jump after the last instruction, 1313 // if the nmethod has been deoptimized. (See 4932387, 4894843.) 1314 1315 // Compute the byte offset where we can store the deopt pc. 1316 if (C->fixed_slots() != 0) { 1317 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); 1318 } 1319 1320 // Compute prolog code size 1321 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize; 1322 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1323 1324 if (C->has_mach_constant_base_node()) { 1325 uint add_size = 0; 1326 // Fill the constant table. 1327 // Note: This must happen before shorten_branches. 1328 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1329 Block* b = C->cfg()->get_block(i); 1330 1331 for (uint j = 0; j < b->number_of_nodes(); j++) { 1332 Node* n = b->get_node(j); 1333 1334 // If the node is a MachConstantNode evaluate the constant 1335 // value section. 1336 if (n->is_MachConstant()) { 1337 MachConstantNode* machcon = n->as_MachConstant(); 1338 machcon->eval_constant(C); 1339 } else if (n->is_Mach()) { 1340 // On Power there are more nodes that issue constants. 1341 add_size += (n->as_Mach()->ins_num_consts() * 8); 1342 } 1343 } 1344 } 1345 1346 // Calculate the offsets of the constants and the size of the 1347 // constant table (including the padding to the next section). 1348 constant_table().calculate_offsets_and_size(); 1349 const_req = constant_table().alignment() + constant_table().size() + add_size; 1350 } 1351 1352 // Initialize the space for the BufferBlob used to find and verify 1353 // instruction size in MachNode::emit_size() 1354 init_scratch_buffer_blob(const_req); 1355 } 1356 1357 CodeBuffer* PhaseOutput::init_buffer() { 1358 int stub_req = _buf_sizes._stub; 1359 int code_req = _buf_sizes._code; 1360 int const_req = _buf_sizes._const; 1361 1362 int pad_req = NativeCall::byte_size(); 1363 1364 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1365 stub_req += bs->estimate_stub_size(); 1366 1367 // nmethod and CodeBuffer count stubs & constants as part of method's code. 1368 // class HandlerImpl is platform-specific and defined in the *.ad files. 1369 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler 1370 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler 1371 stub_req += MAX_stubs_size; // ensure per-stub margin 1372 code_req += MAX_inst_size; // ensure per-instruction margin 1373 1374 if (StressCodeBuffers) 1375 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion 1376 1377 int total_req = 1378 const_req + 1379 code_req + 1380 pad_req + 1381 stub_req + 1382 exception_handler_req + 1383 deopt_handler_req; // deopt handler 1384 1385 if (C->has_method_handle_invokes()) 1386 total_req += deopt_handler_req; // deopt MH handler 1387 1388 CodeBuffer* cb = code_buffer(); 1389 cb->set_const_section_alignment(constant_table().alignment()); 1390 cb->initialize(total_req, _buf_sizes._reloc); 1391 1392 // Have we run out of code space? 1393 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1394 C->record_failure("CodeCache is full"); 1395 return nullptr; 1396 } 1397 // Configure the code buffer. 1398 cb->initialize_consts_size(const_req); 1399 cb->initialize_stubs_size(stub_req); 1400 cb->initialize_oop_recorder(C->env()->oop_recorder()); 1401 1402 // fill in the nop array for bundling computations 1403 MachNode *_nop_list[Bundle::_nop_count]; 1404 Bundle::initialize_nops(_nop_list); 1405 1406 return cb; 1407 } 1408 1409 //------------------------------fill_buffer------------------------------------ 1410 void PhaseOutput::fill_buffer(C2_MacroAssembler* masm, uint* blk_starts) { 1411 // blk_starts[] contains offsets calculated during short branches processing, 1412 // offsets should not be increased during following steps. 1413 1414 // Compute the size of first NumberOfLoopInstrToAlign instructions at head 1415 // of a loop. It is used to determine the padding for loop alignment. 1416 Compile::TracePhase tp(_t_fillBuffer); 1417 1418 compute_loop_first_inst_sizes(); 1419 1420 // Create oopmap set. 1421 _oop_map_set = new OopMapSet(); 1422 1423 // !!!!! This preserves old handling of oopmaps for now 1424 C->debug_info()->set_oopmaps(_oop_map_set); 1425 1426 uint nblocks = C->cfg()->number_of_blocks(); 1427 // Count and start of implicit null check instructions 1428 uint inct_cnt = 0; 1429 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1430 1431 // Count and start of calls 1432 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1433 1434 uint return_offset = 0; 1435 int nop_size = (new MachNopNode())->size(C->regalloc()); 1436 1437 int previous_offset = 0; 1438 int current_offset = 0; 1439 int last_call_offset = -1; 1440 int last_avoid_back_to_back_offset = -1; 1441 #ifdef ASSERT 1442 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); 1443 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 1444 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 1445 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); 1446 #endif 1447 1448 // Create an array of unused labels, one for each basic block, if printing is enabled 1449 #if defined(SUPPORT_OPTO_ASSEMBLY) 1450 int* node_offsets = nullptr; 1451 uint node_offset_limit = C->unique(); 1452 1453 if (C->print_assembly()) { 1454 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); 1455 } 1456 if (node_offsets != nullptr) { 1457 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. 1458 memset(node_offsets, 0, node_offset_limit*sizeof(int)); 1459 } 1460 #endif 1461 1462 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily 1463 1464 // Emit the constant table. 1465 if (C->has_mach_constant_base_node()) { 1466 if (!constant_table().emit(masm)) { 1467 C->record_failure("consts section overflow"); 1468 return; 1469 } 1470 } 1471 1472 // Create an array of labels, one for each basic block 1473 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); 1474 for (uint i = 0; i <= nblocks; i++) { 1475 blk_labels[i].init(); 1476 } 1477 1478 // Now fill in the code buffer 1479 Node* delay_slot = nullptr; 1480 for (uint i = 0; i < nblocks; i++) { 1481 Block* block = C->cfg()->get_block(i); 1482 _block = block; 1483 Node* head = block->head(); 1484 1485 // If this block needs to start aligned (i.e, can be reached other 1486 // than by falling-thru from the previous block), then force the 1487 // start of a new bundle. 1488 if (Pipeline::requires_bundling() && starts_bundle(head)) { 1489 masm->code()->flush_bundle(true); 1490 } 1491 1492 #ifdef ASSERT 1493 if (!block->is_connector()) { 1494 stringStream st; 1495 block->dump_head(C->cfg(), &st); 1496 masm->block_comment(st.freeze()); 1497 } 1498 jmp_target[i] = 0; 1499 jmp_offset[i] = 0; 1500 jmp_size[i] = 0; 1501 jmp_rule[i] = 0; 1502 #endif 1503 int blk_offset = current_offset; 1504 1505 // Define the label at the beginning of the basic block 1506 masm->bind(blk_labels[block->_pre_order]); 1507 1508 uint last_inst = block->number_of_nodes(); 1509 1510 // Emit block normally, except for last instruction. 1511 // Emit means "dump code bits into code buffer". 1512 for (uint j = 0; j<last_inst; j++) { 1513 _index = j; 1514 1515 // Get the node 1516 Node* n = block->get_node(j); 1517 1518 // See if delay slots are supported 1519 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { 1520 assert(delay_slot == nullptr, "no use of delay slot node"); 1521 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); 1522 1523 delay_slot = n; 1524 continue; 1525 } 1526 1527 // If this starts a new instruction group, then flush the current one 1528 // (but allow split bundles) 1529 if (Pipeline::requires_bundling() && starts_bundle(n)) 1530 masm->code()->flush_bundle(false); 1531 1532 // Special handling for SafePoint/Call Nodes 1533 bool is_mcall = false; 1534 if (n->is_Mach()) { 1535 MachNode *mach = n->as_Mach(); 1536 is_mcall = n->is_MachCall(); 1537 bool is_sfn = n->is_MachSafePoint(); 1538 1539 // If this requires all previous instructions be flushed, then do so 1540 if (is_sfn || is_mcall || mach->alignment_required() != 1) { 1541 masm->code()->flush_bundle(true); 1542 current_offset = masm->offset(); 1543 } 1544 1545 // A padding may be needed again since a previous instruction 1546 // could be moved to delay slot. 1547 1548 // align the instruction if necessary 1549 int padding = mach->compute_padding(current_offset); 1550 // Make sure safepoint node for polling is distinct from a call's 1551 // return by adding a nop if needed. 1552 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { 1553 padding = nop_size; 1554 } 1555 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && 1556 current_offset == last_avoid_back_to_back_offset) { 1557 // Avoid back to back some instructions. 1558 padding = nop_size; 1559 } 1560 1561 if (padding > 0) { 1562 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1563 int nops_cnt = padding / nop_size; 1564 MachNode *nop = new MachNopNode(nops_cnt); 1565 block->insert_node(nop, j++); 1566 last_inst++; 1567 C->cfg()->map_node_to_block(nop, block); 1568 // Ensure enough space. 1569 masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1570 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1571 C->record_failure("CodeCache is full"); 1572 return; 1573 } 1574 nop->emit(masm, C->regalloc()); 1575 masm->code()->flush_bundle(true); 1576 current_offset = masm->offset(); 1577 } 1578 1579 bool observe_safepoint = is_sfn; 1580 // Remember the start of the last call in a basic block 1581 if (is_mcall) { 1582 MachCallNode *mcall = mach->as_MachCall(); 1583 1584 // This destination address is NOT PC-relative 1585 mcall->method_set((intptr_t)mcall->entry_point()); 1586 1587 // Save the return address 1588 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); 1589 1590 observe_safepoint = mcall->guaranteed_safepoint(); 1591 } 1592 1593 // sfn will be valid whenever mcall is valid now because of inheritance 1594 if (observe_safepoint) { 1595 // Handle special safepoint nodes for synchronization 1596 if (!is_mcall) { 1597 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1598 // !!!!! Stubs only need an oopmap right now, so bail out 1599 if (sfn->jvms()->method() == nullptr) { 1600 // Write the oopmap directly to the code blob??!! 1601 continue; 1602 } 1603 } // End synchronization 1604 1605 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1606 current_offset); 1607 Process_OopMap_Node(mach, current_offset); 1608 } // End if safepoint 1609 1610 // If this is a null check, then add the start of the previous instruction to the list 1611 else if( mach->is_MachNullCheck() ) { 1612 inct_starts[inct_cnt++] = previous_offset; 1613 } 1614 1615 // If this is a branch, then fill in the label with the target BB's label 1616 else if (mach->is_MachBranch()) { 1617 // This requires the TRUE branch target be in succs[0] 1618 uint block_num = block->non_connector_successor(0)->_pre_order; 1619 1620 // Try to replace long branch if delay slot is not used, 1621 // it is mostly for back branches since forward branch's 1622 // distance is not updated yet. 1623 bool delay_slot_is_used = valid_bundle_info(n) && 1624 C->output()->node_bundling(n)->use_unconditional_delay(); 1625 if (!delay_slot_is_used && mach->may_be_short_branch()) { 1626 assert(delay_slot == nullptr, "not expecting delay slot node"); 1627 int br_size = n->size(C->regalloc()); 1628 int offset = blk_starts[block_num] - current_offset; 1629 if (block_num >= i) { 1630 // Current and following block's offset are not 1631 // finalized yet, adjust distance by the difference 1632 // between calculated and final offsets of current block. 1633 offset -= (blk_starts[i] - blk_offset); 1634 } 1635 // In the following code a nop could be inserted before 1636 // the branch which will increase the backward distance. 1637 bool needs_padding = (current_offset == last_avoid_back_to_back_offset); 1638 if (needs_padding && offset <= 0) 1639 offset -= nop_size; 1640 1641 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 1642 // We've got a winner. Replace this branch. 1643 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 1644 1645 // Update the jmp_size. 1646 int new_size = replacement->size(C->regalloc()); 1647 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1648 // Insert padding between avoid_back_to_back branches. 1649 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 1650 MachNode *nop = new MachNopNode(); 1651 block->insert_node(nop, j++); 1652 C->cfg()->map_node_to_block(nop, block); 1653 last_inst++; 1654 nop->emit(masm, C->regalloc()); 1655 masm->code()->flush_bundle(true); 1656 current_offset = masm->offset(); 1657 } 1658 #ifdef ASSERT 1659 jmp_target[i] = block_num; 1660 jmp_offset[i] = current_offset - blk_offset; 1661 jmp_size[i] = new_size; 1662 jmp_rule[i] = mach->rule(); 1663 #endif 1664 block->map_node(replacement, j); 1665 mach->subsume_by(replacement, C); 1666 n = replacement; 1667 mach = replacement; 1668 } 1669 } 1670 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1671 } else if (mach->ideal_Opcode() == Op_Jump) { 1672 for (uint h = 0; h < block->_num_succs; h++) { 1673 Block* succs_block = block->_succs[h]; 1674 for (uint j = 1; j < succs_block->num_preds(); j++) { 1675 Node* jpn = succs_block->pred(j); 1676 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1677 uint block_num = succs_block->non_connector()->_pre_order; 1678 Label *blkLabel = &blk_labels[block_num]; 1679 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1680 } 1681 } 1682 } 1683 } else if (!n->is_Proj()) { 1684 // Remember the beginning of the previous instruction, in case 1685 // it's followed by a flag-kill and a null-check. Happens on 1686 // Intel all the time, with add-to-memory kind of opcodes. 1687 previous_offset = current_offset; 1688 } 1689 1690 // Not an else-if! 1691 // If this is a trap based cmp then add its offset to the list. 1692 if (mach->is_TrapBasedCheckNode()) { 1693 inct_starts[inct_cnt++] = current_offset; 1694 } 1695 } 1696 1697 // Verify that there is sufficient space remaining 1698 masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1699 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1700 C->record_failure("CodeCache is full"); 1701 return; 1702 } 1703 1704 // Save the offset for the listing 1705 #if defined(SUPPORT_OPTO_ASSEMBLY) 1706 if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) { 1707 node_offsets[n->_idx] = masm->offset(); 1708 } 1709 #endif 1710 assert(!C->failing_internal() || C->failure_is_artificial(), "Should not reach here if failing."); 1711 1712 // "Normal" instruction case 1713 DEBUG_ONLY(uint instr_offset = masm->offset()); 1714 n->emit(masm, C->regalloc()); 1715 current_offset = masm->offset(); 1716 1717 // Above we only verified that there is enough space in the instruction section. 1718 // However, the instruction may emit stubs that cause code buffer expansion. 1719 // Bail out here if expansion failed due to a lack of code cache space. 1720 if (C->failing()) { 1721 return; 1722 } 1723 1724 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset), 1725 "ret_addr_offset() not within emitted code"); 1726 1727 #ifdef ASSERT 1728 uint n_size = n->size(C->regalloc()); 1729 if (n_size < (current_offset-instr_offset)) { 1730 MachNode* mach = n->as_Mach(); 1731 n->dump(); 1732 mach->dump_format(C->regalloc(), tty); 1733 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset); 1734 Disassembler::decode(masm->code()->insts_begin() + instr_offset, masm->code()->insts_begin() + current_offset + 1, tty); 1735 tty->print_cr(" ------------------- "); 1736 BufferBlob* blob = this->scratch_buffer_blob(); 1737 address blob_begin = blob->content_begin(); 1738 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty); 1739 assert(false, "wrong size of mach node"); 1740 } 1741 #endif 1742 non_safepoints.observe_instruction(n, current_offset); 1743 1744 // mcall is last "call" that can be a safepoint 1745 // record it so we can see if a poll will directly follow it 1746 // in which case we'll need a pad to make the PcDesc sites unique 1747 // see 5010568. This can be slightly inaccurate but conservative 1748 // in the case that return address is not actually at current_offset. 1749 // This is a small price to pay. 1750 1751 if (is_mcall) { 1752 last_call_offset = current_offset; 1753 } 1754 1755 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 1756 // Avoid back to back some instructions. 1757 last_avoid_back_to_back_offset = current_offset; 1758 } 1759 1760 // See if this instruction has a delay slot 1761 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 1762 guarantee(delay_slot != nullptr, "expecting delay slot node"); 1763 1764 // Back up 1 instruction 1765 masm->code()->set_insts_end(masm->code()->insts_end() - Pipeline::instr_unit_size()); 1766 1767 // Save the offset for the listing 1768 #if defined(SUPPORT_OPTO_ASSEMBLY) 1769 if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) { 1770 node_offsets[delay_slot->_idx] = masm->offset(); 1771 } 1772 #endif 1773 1774 // Support a SafePoint in the delay slot 1775 if (delay_slot->is_MachSafePoint()) { 1776 MachNode *mach = delay_slot->as_Mach(); 1777 // !!!!! Stubs only need an oopmap right now, so bail out 1778 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) { 1779 // Write the oopmap directly to the code blob??!! 1780 delay_slot = nullptr; 1781 continue; 1782 } 1783 1784 int adjusted_offset = current_offset - Pipeline::instr_unit_size(); 1785 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1786 adjusted_offset); 1787 // Generate an OopMap entry 1788 Process_OopMap_Node(mach, adjusted_offset); 1789 } 1790 1791 // Insert the delay slot instruction 1792 delay_slot->emit(masm, C->regalloc()); 1793 1794 // Don't reuse it 1795 delay_slot = nullptr; 1796 } 1797 1798 } // End for all instructions in block 1799 1800 // If the next block is the top of a loop, pad this block out to align 1801 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1802 if (i < nblocks-1) { 1803 Block *nb = C->cfg()->get_block(i + 1); 1804 int padding = nb->alignment_padding(current_offset); 1805 if( padding > 0 ) { 1806 MachNode *nop = new MachNopNode(padding / nop_size); 1807 block->insert_node(nop, block->number_of_nodes()); 1808 C->cfg()->map_node_to_block(nop, block); 1809 nop->emit(masm, C->regalloc()); 1810 current_offset = masm->offset(); 1811 } 1812 } 1813 // Verify that the distance for generated before forward 1814 // short branches is still valid. 1815 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size"); 1816 1817 // Save new block start offset 1818 blk_starts[i] = blk_offset; 1819 } // End of for all blocks 1820 blk_starts[nblocks] = current_offset; 1821 1822 non_safepoints.flush_at_end(); 1823 1824 // Offset too large? 1825 if (C->failing()) return; 1826 1827 // Define a pseudo-label at the end of the code 1828 masm->bind( blk_labels[nblocks] ); 1829 1830 // Compute the size of the first block 1831 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); 1832 1833 #ifdef ASSERT 1834 for (uint i = 0; i < nblocks; i++) { // For all blocks 1835 if (jmp_target[i] != 0) { 1836 int br_size = jmp_size[i]; 1837 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 1838 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 1839 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 1840 assert(false, "Displacement too large for short jmp"); 1841 } 1842 } 1843 } 1844 #endif 1845 1846 if (!masm->code()->finalize_stubs()) { 1847 C->record_failure("CodeCache is full"); 1848 return; 1849 } 1850 1851 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1852 bs->emit_stubs(*masm->code()); 1853 if (C->failing()) return; 1854 1855 // Fill in stubs. 1856 assert(masm->inst_mark() == nullptr, "should be."); 1857 _stub_list.emit(*masm); 1858 if (C->failing()) return; 1859 1860 #ifndef PRODUCT 1861 // Information on the size of the method, without the extraneous code 1862 Scheduling::increment_method_size(masm->offset()); 1863 #endif 1864 1865 // ------------------ 1866 // Fill in exception table entries. 1867 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); 1868 1869 // Only java methods have exception handlers and deopt handlers 1870 // class HandlerImpl is platform-specific and defined in the *.ad files. 1871 if (C->method()) { 1872 // Emit the exception handler code. 1873 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(masm)); 1874 if (C->failing()) { 1875 return; // CodeBuffer::expand failed 1876 } 1877 // Emit the deopt handler code. 1878 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(masm)); 1879 1880 // Emit the MethodHandle deopt handler code (if required). 1881 if (C->has_method_handle_invokes() && !C->failing()) { 1882 // We can use the same code as for the normal deopt handler, we 1883 // just need a different entry point address. 1884 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(masm)); 1885 } 1886 } 1887 1888 // One last check for failed CodeBuffer::expand: 1889 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1890 C->record_failure("CodeCache is full"); 1891 return; 1892 } 1893 1894 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) 1895 if (C->print_assembly()) { 1896 tty->cr(); 1897 tty->print_cr("============================= C2-compiled nmethod =============================="); 1898 } 1899 #endif 1900 1901 #if defined(SUPPORT_OPTO_ASSEMBLY) 1902 // Dump the assembly code, including basic-block numbers 1903 if (C->print_assembly()) { 1904 ttyLocker ttyl; // keep the following output all in one block 1905 if (!VMThread::should_terminate()) { // test this under the tty lock 1906 // print_metadata and dump_asm may safepoint which makes us loose the ttylock. 1907 // We call them first and write to a stringStream, then we retake the lock to 1908 // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe. 1909 ResourceMark rm; 1910 stringStream method_metadata_str; 1911 if (C->method() != nullptr) { 1912 C->method()->print_metadata(&method_metadata_str); 1913 } 1914 stringStream dump_asm_str; 1915 dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit); 1916 1917 NoSafepointVerifier nsv; 1918 ttyLocker ttyl2; 1919 // This output goes directly to the tty, not the compiler log. 1920 // To enable tools to match it up with the compilation activity, 1921 // be sure to tag this tty output with the compile ID. 1922 if (xtty != nullptr) { 1923 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(), 1924 C->is_osr_compilation() ? " compile_kind='osr'" : ""); 1925 } 1926 if (C->method() != nullptr) { 1927 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id()); 1928 tty->print_raw(method_metadata_str.freeze()); 1929 } else if (C->stub_name() != nullptr) { 1930 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name()); 1931 } 1932 tty->cr(); 1933 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id()); 1934 tty->print_raw(dump_asm_str.freeze()); 1935 tty->print_cr("--------------------------------------------------------------------------------"); 1936 if (xtty != nullptr) { 1937 xtty->tail("opto_assembly"); 1938 } 1939 } 1940 } 1941 #endif 1942 } 1943 1944 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 1945 _inc_table.set_size(cnt); 1946 1947 uint inct_cnt = 0; 1948 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1949 Block* block = C->cfg()->get_block(i); 1950 Node *n = nullptr; 1951 int j; 1952 1953 // Find the branch; ignore trailing NOPs. 1954 for (j = block->number_of_nodes() - 1; j >= 0; j--) { 1955 n = block->get_node(j); 1956 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { 1957 break; 1958 } 1959 } 1960 1961 // If we didn't find anything, continue 1962 if (j < 0) { 1963 continue; 1964 } 1965 1966 // Compute ExceptionHandlerTable subtable entry and add it 1967 // (skip empty blocks) 1968 if (n->is_Catch()) { 1969 1970 // Get the offset of the return from the call 1971 uint call_return = call_returns[block->_pre_order]; 1972 #ifdef ASSERT 1973 assert( call_return > 0, "no call seen for this basic block" ); 1974 while (block->get_node(--j)->is_MachProj()) ; 1975 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call"); 1976 #endif 1977 // last instruction is a CatchNode, find it's CatchProjNodes 1978 int nof_succs = block->_num_succs; 1979 // allocate space 1980 GrowableArray<intptr_t> handler_bcis(nof_succs); 1981 GrowableArray<intptr_t> handler_pcos(nof_succs); 1982 // iterate through all successors 1983 for (int j = 0; j < nof_succs; j++) { 1984 Block* s = block->_succs[j]; 1985 bool found_p = false; 1986 for (uint k = 1; k < s->num_preds(); k++) { 1987 Node* pk = s->pred(k); 1988 if (pk->is_CatchProj() && pk->in(0) == n) { 1989 const CatchProjNode* p = pk->as_CatchProj(); 1990 found_p = true; 1991 // add the corresponding handler bci & pco information 1992 if (p->_con != CatchProjNode::fall_through_index) { 1993 // p leads to an exception handler (and is not fall through) 1994 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering"); 1995 // no duplicates, please 1996 if (!handler_bcis.contains(p->handler_bci())) { 1997 uint block_num = s->non_connector()->_pre_order; 1998 handler_bcis.append(p->handler_bci()); 1999 handler_pcos.append(blk_labels[block_num].loc_pos()); 2000 } 2001 } 2002 } 2003 } 2004 assert(found_p, "no matching predecessor found"); 2005 // Note: Due to empty block removal, one block may have 2006 // several CatchProj inputs, from the same Catch. 2007 } 2008 2009 // Set the offset of the return from the call 2010 assert(handler_bcis.find(-1) != -1, "must have default handler"); 2011 _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos); 2012 continue; 2013 } 2014 2015 // Handle implicit null exception table updates 2016 if (n->is_MachNullCheck()) { 2017 MachNode* access = n->in(1)->as_Mach(); 2018 assert(access->barrier_data() == 0 || 2019 access->is_late_expanded_null_check_candidate(), 2020 "Implicit null checks on memory accesses with barriers are only supported on nodes explicitly marked as null-check candidates"); 2021 uint block_num = block->non_connector_successor(0)->_pre_order; 2022 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2023 continue; 2024 } 2025 // Handle implicit exception table updates: trap instructions. 2026 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { 2027 uint block_num = block->non_connector_successor(0)->_pre_order; 2028 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2029 continue; 2030 } 2031 } // End of for all blocks fill in exception table entries 2032 } 2033 2034 // Static Variables 2035 #ifndef PRODUCT 2036 uint Scheduling::_total_nop_size = 0; 2037 uint Scheduling::_total_method_size = 0; 2038 uint Scheduling::_total_branches = 0; 2039 uint Scheduling::_total_unconditional_delays = 0; 2040 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 2041 #endif 2042 2043 // Initializer for class Scheduling 2044 2045 Scheduling::Scheduling(Arena *arena, Compile &compile) 2046 : _arena(arena), 2047 _cfg(compile.cfg()), 2048 _regalloc(compile.regalloc()), 2049 _scheduled(arena), 2050 _available(arena), 2051 _reg_node(arena), 2052 _pinch_free_list(arena), 2053 _next_node(nullptr), 2054 _bundle_instr_count(0), 2055 _bundle_cycle_number(0), 2056 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) 2057 #ifndef PRODUCT 2058 , _branches(0) 2059 , _unconditional_delays(0) 2060 #endif 2061 { 2062 // Create a MachNopNode 2063 _nop = new MachNopNode(); 2064 2065 // Now that the nops are in the array, save the count 2066 // (but allow entries for the nops) 2067 _node_bundling_limit = compile.unique(); 2068 uint node_max = _regalloc->node_regs_max_index(); 2069 2070 compile.output()->set_node_bundling_limit(_node_bundling_limit); 2071 2072 // This one is persistent within the Compile class 2073 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); 2074 2075 // Allocate space for fixed-size arrays 2076 _uses = NEW_ARENA_ARRAY(arena, short, node_max); 2077 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 2078 2079 // Clear the arrays 2080 for (uint i = 0; i < node_max; i++) { 2081 ::new (&_node_bundling_base[i]) Bundle(); 2082 } 2083 memset(_uses, 0, node_max * sizeof(short)); 2084 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 2085 2086 // Clear the bundling information 2087 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); 2088 2089 // Get the last node 2090 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); 2091 2092 _next_node = block->get_node(block->number_of_nodes() - 1); 2093 } 2094 2095 #ifndef PRODUCT 2096 // Scheduling destructor 2097 Scheduling::~Scheduling() { 2098 _total_branches += _branches; 2099 _total_unconditional_delays += _unconditional_delays; 2100 } 2101 #endif 2102 2103 // Step ahead "i" cycles 2104 void Scheduling::step(uint i) { 2105 2106 Bundle *bundle = node_bundling(_next_node); 2107 bundle->set_starts_bundle(); 2108 2109 // Update the bundle record, but leave the flags information alone 2110 if (_bundle_instr_count > 0) { 2111 bundle->set_instr_count(_bundle_instr_count); 2112 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2113 } 2114 2115 // Update the state information 2116 _bundle_instr_count = 0; 2117 _bundle_cycle_number += i; 2118 _bundle_use.step(i); 2119 } 2120 2121 void Scheduling::step_and_clear() { 2122 Bundle *bundle = node_bundling(_next_node); 2123 bundle->set_starts_bundle(); 2124 2125 // Update the bundle record 2126 if (_bundle_instr_count > 0) { 2127 bundle->set_instr_count(_bundle_instr_count); 2128 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2129 2130 _bundle_cycle_number += 1; 2131 } 2132 2133 // Clear the bundling information 2134 _bundle_instr_count = 0; 2135 _bundle_use.reset(); 2136 2137 memcpy(_bundle_use_elements, 2138 Pipeline_Use::elaborated_elements, 2139 sizeof(Pipeline_Use::elaborated_elements)); 2140 } 2141 2142 // Perform instruction scheduling and bundling over the sequence of 2143 // instructions in backwards order. 2144 void PhaseOutput::ScheduleAndBundle() { 2145 2146 // Don't optimize this if it isn't a method 2147 if (!C->method()) 2148 return; 2149 2150 // Don't optimize this if scheduling is disabled 2151 if (!C->do_scheduling()) 2152 return; 2153 2154 // Scheduling code works only with pairs (8 bytes) maximum. 2155 // And when the scalable vector register is used, we may spill/unspill 2156 // the whole reg regardless of the max vector size. 2157 if (C->max_vector_size() > 8 || 2158 (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) { 2159 return; 2160 } 2161 2162 Compile::TracePhase tp(_t_instrSched); 2163 2164 // Create a data structure for all the scheduling information 2165 Scheduling scheduling(Thread::current()->resource_area(), *C); 2166 2167 // Walk backwards over each basic block, computing the needed alignment 2168 // Walk over all the basic blocks 2169 scheduling.DoScheduling(); 2170 2171 #ifndef PRODUCT 2172 if (C->trace_opto_output()) { 2173 // Buffer and print all at once 2174 ResourceMark rm; 2175 stringStream ss; 2176 ss.print("\n---- After ScheduleAndBundle ----\n"); 2177 print_scheduling(&ss); 2178 tty->print("%s", ss.as_string()); 2179 } 2180 #endif 2181 } 2182 2183 #ifndef PRODUCT 2184 // Separated out so that it can be called directly from debugger 2185 void PhaseOutput::print_scheduling() { 2186 print_scheduling(tty); 2187 } 2188 2189 void PhaseOutput::print_scheduling(outputStream* output_stream) { 2190 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2191 output_stream->print("\nBB#%03d:\n", i); 2192 Block* block = C->cfg()->get_block(i); 2193 for (uint j = 0; j < block->number_of_nodes(); j++) { 2194 Node* n = block->get_node(j); 2195 OptoReg::Name reg = C->regalloc()->get_reg_first(n); 2196 output_stream->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 2197 n->dump("\n", false, output_stream); 2198 } 2199 } 2200 } 2201 #endif 2202 2203 // See if this node fits into the present instruction bundle 2204 bool Scheduling::NodeFitsInBundle(Node *n) { 2205 uint n_idx = n->_idx; 2206 2207 // If this is the unconditional delay instruction, then it fits 2208 if (n == _unconditional_delay_slot) { 2209 #ifndef PRODUCT 2210 if (_cfg->C->trace_opto_output()) 2211 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); 2212 #endif 2213 return (true); 2214 } 2215 2216 // If the node cannot be scheduled this cycle, skip it 2217 if (_current_latency[n_idx] > _bundle_cycle_number) { 2218 #ifndef PRODUCT 2219 if (_cfg->C->trace_opto_output()) 2220 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", 2221 n->_idx, _current_latency[n_idx], _bundle_cycle_number); 2222 #endif 2223 return (false); 2224 } 2225 2226 const Pipeline *node_pipeline = n->pipeline(); 2227 2228 uint instruction_count = node_pipeline->instructionCount(); 2229 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2230 instruction_count = 0; 2231 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2232 instruction_count++; 2233 2234 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { 2235 #ifndef PRODUCT 2236 if (_cfg->C->trace_opto_output()) 2237 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", 2238 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); 2239 #endif 2240 return (false); 2241 } 2242 2243 // Don't allow non-machine nodes to be handled this way 2244 if (!n->is_Mach() && instruction_count == 0) 2245 return (false); 2246 2247 // See if there is any overlap 2248 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); 2249 2250 if (delay > 0) { 2251 #ifndef PRODUCT 2252 if (_cfg->C->trace_opto_output()) 2253 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); 2254 #endif 2255 return false; 2256 } 2257 2258 #ifndef PRODUCT 2259 if (_cfg->C->trace_opto_output()) 2260 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); 2261 #endif 2262 2263 return true; 2264 } 2265 2266 Node * Scheduling::ChooseNodeToBundle() { 2267 uint siz = _available.size(); 2268 2269 if (siz == 0) { 2270 2271 #ifndef PRODUCT 2272 if (_cfg->C->trace_opto_output()) 2273 tty->print("# ChooseNodeToBundle: null\n"); 2274 #endif 2275 return (nullptr); 2276 } 2277 2278 // Fast path, if only 1 instruction in the bundle 2279 if (siz == 1) { 2280 #ifndef PRODUCT 2281 if (_cfg->C->trace_opto_output()) { 2282 tty->print("# ChooseNodeToBundle (only 1): "); 2283 _available[0]->dump(); 2284 } 2285 #endif 2286 return (_available[0]); 2287 } 2288 2289 // Don't bother, if the bundle is already full 2290 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { 2291 for ( uint i = 0; i < siz; i++ ) { 2292 Node *n = _available[i]; 2293 2294 // Skip projections, we'll handle them another way 2295 if (n->is_Proj()) 2296 continue; 2297 2298 // This presupposed that instructions are inserted into the 2299 // available list in a legality order; i.e. instructions that 2300 // must be inserted first are at the head of the list 2301 if (NodeFitsInBundle(n)) { 2302 #ifndef PRODUCT 2303 if (_cfg->C->trace_opto_output()) { 2304 tty->print("# ChooseNodeToBundle: "); 2305 n->dump(); 2306 } 2307 #endif 2308 return (n); 2309 } 2310 } 2311 } 2312 2313 // Nothing fits in this bundle, choose the highest priority 2314 #ifndef PRODUCT 2315 if (_cfg->C->trace_opto_output()) { 2316 tty->print("# ChooseNodeToBundle: "); 2317 _available[0]->dump(); 2318 } 2319 #endif 2320 2321 return _available[0]; 2322 } 2323 2324 int Scheduling::compare_two_spill_nodes(Node* first, Node* second) { 2325 assert(first->is_MachSpillCopy() && second->is_MachSpillCopy(), ""); 2326 2327 OptoReg::Name first_src_lo = _regalloc->get_reg_first(first->in(1)); 2328 OptoReg::Name first_dst_lo = _regalloc->get_reg_first(first); 2329 OptoReg::Name second_src_lo = _regalloc->get_reg_first(second->in(1)); 2330 OptoReg::Name second_dst_lo = _regalloc->get_reg_first(second); 2331 2332 // Comparison between stack -> reg and stack -> reg 2333 if (OptoReg::is_stack(first_src_lo) && OptoReg::is_stack(second_src_lo) && 2334 OptoReg::is_reg(first_dst_lo) && OptoReg::is_reg(second_dst_lo)) { 2335 return _regalloc->reg2offset(first_src_lo) - _regalloc->reg2offset(second_src_lo); 2336 } 2337 2338 // Comparison between reg -> stack and reg -> stack 2339 if (OptoReg::is_stack(first_dst_lo) && OptoReg::is_stack(second_dst_lo) && 2340 OptoReg::is_reg(first_src_lo) && OptoReg::is_reg(second_src_lo)) { 2341 return _regalloc->reg2offset(first_dst_lo) - _regalloc->reg2offset(second_dst_lo); 2342 } 2343 2344 return 0; // Not comparable 2345 } 2346 2347 void Scheduling::AddNodeToAvailableList(Node *n) { 2348 assert( !n->is_Proj(), "projections never directly made available" ); 2349 #ifndef PRODUCT 2350 if (_cfg->C->trace_opto_output()) { 2351 tty->print("# AddNodeToAvailableList: "); 2352 n->dump(); 2353 } 2354 #endif 2355 2356 int latency = _current_latency[n->_idx]; 2357 2358 // Insert in latency order (insertion sort). If two MachSpillCopyNodes 2359 // for stack spilling or unspilling have the same latency, we sort 2360 // them in the order of stack offset. Some ports (e.g. aarch64) may also 2361 // have more opportunities to do ld/st merging 2362 uint i; 2363 for (i = 0; i < _available.size(); i++) { 2364 if (_current_latency[_available[i]->_idx] > latency) { 2365 break; 2366 } else if (_current_latency[_available[i]->_idx] == latency && 2367 n->is_MachSpillCopy() && _available[i]->is_MachSpillCopy() && 2368 compare_two_spill_nodes(n, _available[i]) > 0) { 2369 break; 2370 } 2371 } 2372 2373 // Special Check for compares following branches 2374 if( n->is_Mach() && _scheduled.size() > 0 ) { 2375 int op = n->as_Mach()->ideal_Opcode(); 2376 Node *last = _scheduled[0]; 2377 if( last->is_MachIf() && last->in(1) == n && 2378 ( op == Op_CmpI || 2379 op == Op_CmpU || 2380 op == Op_CmpUL || 2381 op == Op_CmpP || 2382 op == Op_CmpF || 2383 op == Op_CmpD || 2384 op == Op_CmpL ) ) { 2385 2386 // Recalculate position, moving to front of same latency 2387 for ( i=0 ; i < _available.size(); i++ ) 2388 if (_current_latency[_available[i]->_idx] >= latency) 2389 break; 2390 } 2391 } 2392 2393 // Insert the node in the available list 2394 _available.insert(i, n); 2395 2396 #ifndef PRODUCT 2397 if (_cfg->C->trace_opto_output()) 2398 dump_available(); 2399 #endif 2400 } 2401 2402 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2403 for ( uint i=0; i < n->len(); i++ ) { 2404 Node *def = n->in(i); 2405 if (!def) continue; 2406 if( def->is_Proj() ) // If this is a machine projection, then 2407 def = def->in(0); // propagate usage thru to the base instruction 2408 2409 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local 2410 continue; 2411 } 2412 2413 // Compute the latency 2414 uint l = _bundle_cycle_number + n->latency(i); 2415 if (_current_latency[def->_idx] < l) 2416 _current_latency[def->_idx] = l; 2417 2418 // If this does not have uses then schedule it 2419 if ((--_uses[def->_idx]) == 0) 2420 AddNodeToAvailableList(def); 2421 } 2422 } 2423 2424 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2425 #ifndef PRODUCT 2426 if (_cfg->C->trace_opto_output()) { 2427 tty->print("# AddNodeToBundle: "); 2428 n->dump(); 2429 } 2430 #endif 2431 2432 // Remove this from the available list 2433 uint i; 2434 for (i = 0; i < _available.size(); i++) 2435 if (_available[i] == n) 2436 break; 2437 assert(i < _available.size(), "entry in _available list not found"); 2438 _available.remove(i); 2439 2440 // See if this fits in the current bundle 2441 const Pipeline *node_pipeline = n->pipeline(); 2442 const Pipeline_Use& node_usage = node_pipeline->resourceUse(); 2443 2444 // Check for instructions to be placed in the delay slot. We 2445 // do this before we actually schedule the current instruction, 2446 // because the delay slot follows the current instruction. 2447 if (Pipeline::_branch_has_delay_slot && 2448 node_pipeline->hasBranchDelay() && 2449 !_unconditional_delay_slot) { 2450 2451 uint siz = _available.size(); 2452 2453 // Conditional branches can support an instruction that 2454 // is unconditionally executed and not dependent by the 2455 // branch, OR a conditionally executed instruction if 2456 // the branch is taken. In practice, this means that 2457 // the first instruction at the branch target is 2458 // copied to the delay slot, and the branch goes to 2459 // the instruction after that at the branch target 2460 if ( n->is_MachBranch() ) { 2461 2462 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); 2463 assert( !n->is_Catch(), "should not look for delay slot for Catch" ); 2464 2465 #ifndef PRODUCT 2466 _branches++; 2467 #endif 2468 2469 // At least 1 instruction is on the available list 2470 // that is not dependent on the branch 2471 for (uint i = 0; i < siz; i++) { 2472 Node *d = _available[i]; 2473 const Pipeline *avail_pipeline = d->pipeline(); 2474 2475 // Don't allow safepoints in the branch shadow, that will 2476 // cause a number of difficulties 2477 if ( avail_pipeline->instructionCount() == 1 && 2478 !avail_pipeline->hasMultipleBundles() && 2479 !avail_pipeline->hasBranchDelay() && 2480 Pipeline::instr_has_unit_size() && 2481 d->size(_regalloc) == Pipeline::instr_unit_size() && 2482 NodeFitsInBundle(d) && 2483 !node_bundling(d)->used_in_delay()) { 2484 2485 if (d->is_Mach() && !d->is_MachSafePoint()) { 2486 // A node that fits in the delay slot was found, so we need to 2487 // set the appropriate bits in the bundle pipeline information so 2488 // that it correctly indicates resource usage. Later, when we 2489 // attempt to add this instruction to the bundle, we will skip 2490 // setting the resource usage. 2491 _unconditional_delay_slot = d; 2492 node_bundling(n)->set_use_unconditional_delay(); 2493 node_bundling(d)->set_used_in_unconditional_delay(); 2494 _bundle_use.add_usage(avail_pipeline->resourceUse()); 2495 _current_latency[d->_idx] = _bundle_cycle_number; 2496 _next_node = d; 2497 ++_bundle_instr_count; 2498 #ifndef PRODUCT 2499 _unconditional_delays++; 2500 #endif 2501 break; 2502 } 2503 } 2504 } 2505 } 2506 2507 // No delay slot, add a nop to the usage 2508 if (!_unconditional_delay_slot) { 2509 // See if adding an instruction in the delay slot will overflow 2510 // the bundle. 2511 if (!NodeFitsInBundle(_nop)) { 2512 #ifndef PRODUCT 2513 if (_cfg->C->trace_opto_output()) 2514 tty->print("# *** STEP(1 instruction for delay slot) ***\n"); 2515 #endif 2516 step(1); 2517 } 2518 2519 _bundle_use.add_usage(_nop->pipeline()->resourceUse()); 2520 _next_node = _nop; 2521 ++_bundle_instr_count; 2522 } 2523 2524 // See if the instruction in the delay slot requires a 2525 // step of the bundles 2526 if (!NodeFitsInBundle(n)) { 2527 #ifndef PRODUCT 2528 if (_cfg->C->trace_opto_output()) 2529 tty->print("# *** STEP(branch won't fit) ***\n"); 2530 #endif 2531 // Update the state information 2532 _bundle_instr_count = 0; 2533 _bundle_cycle_number += 1; 2534 _bundle_use.step(1); 2535 } 2536 } 2537 2538 // Get the number of instructions 2539 uint instruction_count = node_pipeline->instructionCount(); 2540 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2541 instruction_count = 0; 2542 2543 // Compute the latency information 2544 uint delay = 0; 2545 2546 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { 2547 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; 2548 if (relative_latency < 0) 2549 relative_latency = 0; 2550 2551 delay = _bundle_use.full_latency(relative_latency, node_usage); 2552 2553 // Does not fit in this bundle, start a new one 2554 if (delay > 0) { 2555 step(delay); 2556 2557 #ifndef PRODUCT 2558 if (_cfg->C->trace_opto_output()) 2559 tty->print("# *** STEP(%d) ***\n", delay); 2560 #endif 2561 } 2562 } 2563 2564 // If this was placed in the delay slot, ignore it 2565 if (n != _unconditional_delay_slot) { 2566 2567 if (delay == 0) { 2568 if (node_pipeline->hasMultipleBundles()) { 2569 #ifndef PRODUCT 2570 if (_cfg->C->trace_opto_output()) 2571 tty->print("# *** STEP(multiple instructions) ***\n"); 2572 #endif 2573 step(1); 2574 } 2575 2576 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { 2577 #ifndef PRODUCT 2578 if (_cfg->C->trace_opto_output()) 2579 tty->print("# *** STEP(%d >= %d instructions) ***\n", 2580 instruction_count + _bundle_instr_count, 2581 Pipeline::_max_instrs_per_cycle); 2582 #endif 2583 step(1); 2584 } 2585 } 2586 2587 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2588 _bundle_instr_count++; 2589 2590 // Set the node's latency 2591 _current_latency[n->_idx] = _bundle_cycle_number; 2592 2593 // Now merge the functional unit information 2594 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) 2595 _bundle_use.add_usage(node_usage); 2596 2597 // Increment the number of instructions in this bundle 2598 _bundle_instr_count += instruction_count; 2599 2600 // Remember this node for later 2601 if (n->is_Mach()) 2602 _next_node = n; 2603 } 2604 2605 // It's possible to have a BoxLock in the graph and in the _bbs mapping but 2606 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. 2607 // 'Schedule' them (basically ignore in the schedule) but do not insert them 2608 // into the block. All other scheduled nodes get put in the schedule here. 2609 int op = n->Opcode(); 2610 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR 2611 (op != Op_Node && // Not an unused antidepedence node and 2612 // not an unallocated boxlock 2613 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2614 2615 // Push any trailing projections 2616 if( bb->get_node(bb->number_of_nodes()-1) != n ) { 2617 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2618 Node *foi = n->fast_out(i); 2619 if( foi->is_Proj() ) 2620 _scheduled.push(foi); 2621 } 2622 } 2623 2624 // Put the instruction in the schedule list 2625 _scheduled.push(n); 2626 } 2627 2628 #ifndef PRODUCT 2629 if (_cfg->C->trace_opto_output()) 2630 dump_available(); 2631 #endif 2632 2633 // Walk all the definitions, decrementing use counts, and 2634 // if a definition has a 0 use count, place it in the available list. 2635 DecrementUseCounts(n,bb); 2636 } 2637 2638 // This method sets the use count within a basic block. We will ignore all 2639 // uses outside the current basic block. As we are doing a backwards walk, 2640 // any node we reach that has a use count of 0 may be scheduled. This also 2641 // avoids the problem of cyclic references from phi nodes, as long as phi 2642 // nodes are at the front of the basic block. This method also initializes 2643 // the available list to the set of instructions that have no uses within this 2644 // basic block. 2645 void Scheduling::ComputeUseCount(const Block *bb) { 2646 #ifndef PRODUCT 2647 if (_cfg->C->trace_opto_output()) 2648 tty->print("# -> ComputeUseCount\n"); 2649 #endif 2650 2651 // Clear the list of available and scheduled instructions, just in case 2652 _available.clear(); 2653 _scheduled.clear(); 2654 2655 // No delay slot specified 2656 _unconditional_delay_slot = nullptr; 2657 2658 #ifdef ASSERT 2659 for( uint i=0; i < bb->number_of_nodes(); i++ ) 2660 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); 2661 #endif 2662 2663 // Force the _uses count to never go to zero for unscheduable pieces 2664 // of the block 2665 for( uint k = 0; k < _bb_start; k++ ) 2666 _uses[bb->get_node(k)->_idx] = 1; 2667 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) 2668 _uses[bb->get_node(l)->_idx] = 1; 2669 2670 // Iterate backwards over the instructions in the block. Don't count the 2671 // branch projections at end or the block header instructions. 2672 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2673 Node *n = bb->get_node(j); 2674 if( n->is_Proj() ) continue; // Projections handled another way 2675 2676 // Account for all uses 2677 for ( uint k = 0; k < n->len(); k++ ) { 2678 Node *inp = n->in(k); 2679 if (!inp) continue; 2680 assert(inp != n, "no cycles allowed" ); 2681 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? 2682 if (inp->is_Proj()) { // Skip through Proj's 2683 inp = inp->in(0); 2684 } 2685 ++_uses[inp->_idx]; // Count 1 block-local use 2686 } 2687 } 2688 2689 // If this instruction has a 0 use count, then it is available 2690 if (!_uses[n->_idx]) { 2691 _current_latency[n->_idx] = _bundle_cycle_number; 2692 AddNodeToAvailableList(n); 2693 } 2694 2695 #ifndef PRODUCT 2696 if (_cfg->C->trace_opto_output()) { 2697 tty->print("# uses: %3d: ", _uses[n->_idx]); 2698 n->dump(); 2699 } 2700 #endif 2701 } 2702 2703 #ifndef PRODUCT 2704 if (_cfg->C->trace_opto_output()) 2705 tty->print("# <- ComputeUseCount\n"); 2706 #endif 2707 } 2708 2709 // This routine performs scheduling on each basic block in reverse order, 2710 // using instruction latencies and taking into account function unit 2711 // availability. 2712 void Scheduling::DoScheduling() { 2713 #ifndef PRODUCT 2714 if (_cfg->C->trace_opto_output()) 2715 tty->print("# -> DoScheduling\n"); 2716 #endif 2717 2718 Block *succ_bb = nullptr; 2719 Block *bb; 2720 Compile* C = Compile::current(); 2721 2722 // Walk over all the basic blocks in reverse order 2723 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { 2724 bb = _cfg->get_block(i); 2725 2726 #ifndef PRODUCT 2727 if (_cfg->C->trace_opto_output()) { 2728 tty->print("# Schedule BB#%03d (initial)\n", i); 2729 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2730 bb->get_node(j)->dump(); 2731 } 2732 } 2733 #endif 2734 2735 // On the head node, skip processing 2736 if (bb == _cfg->get_root_block()) { 2737 continue; 2738 } 2739 2740 // Skip empty, connector blocks 2741 if (bb->is_connector()) 2742 continue; 2743 2744 // If the following block is not the sole successor of 2745 // this one, then reset the pipeline information 2746 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { 2747 #ifndef PRODUCT 2748 if (_cfg->C->trace_opto_output()) { 2749 tty->print("*** bundle start of next BB, node %d, for %d instructions\n", 2750 _next_node->_idx, _bundle_instr_count); 2751 } 2752 #endif 2753 step_and_clear(); 2754 } 2755 2756 // Leave untouched the starting instruction, any Phis, a CreateEx node 2757 // or Top. bb->get_node(_bb_start) is the first schedulable instruction. 2758 _bb_end = bb->number_of_nodes()-1; 2759 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2760 Node *n = bb->get_node(_bb_start); 2761 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2762 // Also, MachIdealNodes do not get scheduled 2763 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2764 MachNode *mach = n->as_Mach(); 2765 int iop = mach->ideal_Opcode(); 2766 if( iop == Op_CreateEx ) continue; // CreateEx is pinned 2767 if( iop == Op_Con ) continue; // Do not schedule Top 2768 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes 2769 mach->pipeline() == MachNode::pipeline_class() && 2770 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc 2771 continue; 2772 break; // Funny loop structure to be sure... 2773 } 2774 // Compute last "interesting" instruction in block - last instruction we 2775 // might schedule. _bb_end points just after last schedulable inst. We 2776 // normally schedule conditional branches (despite them being forced last 2777 // in the block), because they have delay slots we can fill. Calls all 2778 // have their delay slots filled in the template expansions, so we don't 2779 // bother scheduling them. 2780 Node *last = bb->get_node(_bb_end); 2781 // Ignore trailing NOPs. 2782 while (_bb_end > 0 && last->is_Mach() && 2783 last->as_Mach()->ideal_Opcode() == Op_Con) { 2784 last = bb->get_node(--_bb_end); 2785 } 2786 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2787 if( last->is_Catch() || 2788 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2789 // There might be a prior call. Skip it. 2790 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); 2791 } else if( last->is_MachNullCheck() ) { 2792 // Backup so the last null-checked memory instruction is 2793 // outside the schedulable range. Skip over the nullcheck, 2794 // projection, and the memory nodes. 2795 Node *mem = last->in(1); 2796 do { 2797 _bb_end--; 2798 } while (mem != bb->get_node(_bb_end)); 2799 } else { 2800 // Set _bb_end to point after last schedulable inst. 2801 _bb_end++; 2802 } 2803 2804 assert( _bb_start <= _bb_end, "inverted block ends" ); 2805 2806 // Compute the register antidependencies for the basic block 2807 ComputeRegisterAntidependencies(bb); 2808 if (C->failing()) return; // too many D-U pinch points 2809 2810 // Compute the usage within the block, and set the list of all nodes 2811 // in the block that have no uses within the block. 2812 ComputeUseCount(bb); 2813 2814 // Schedule the remaining instructions in the block 2815 while ( _available.size() > 0 ) { 2816 Node *n = ChooseNodeToBundle(); 2817 guarantee(n != nullptr, "no nodes available"); 2818 AddNodeToBundle(n,bb); 2819 } 2820 2821 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2822 #ifdef ASSERT 2823 for( uint l = _bb_start; l < _bb_end; l++ ) { 2824 Node *n = bb->get_node(l); 2825 uint m; 2826 for( m = 0; m < _bb_end-_bb_start; m++ ) 2827 if( _scheduled[m] == n ) 2828 break; 2829 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2830 } 2831 #endif 2832 2833 // Now copy the instructions (in reverse order) back to the block 2834 for ( uint k = _bb_start; k < _bb_end; k++ ) 2835 bb->map_node(_scheduled[_bb_end-k-1], k); 2836 2837 #ifndef PRODUCT 2838 if (_cfg->C->trace_opto_output()) { 2839 tty->print("# Schedule BB#%03d (final)\n", i); 2840 uint current = 0; 2841 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2842 Node *n = bb->get_node(j); 2843 if( valid_bundle_info(n) ) { 2844 Bundle *bundle = node_bundling(n); 2845 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2846 tty->print("*** Bundle: "); 2847 bundle->dump(); 2848 } 2849 n->dump(); 2850 } 2851 } 2852 } 2853 #endif 2854 #ifdef ASSERT 2855 verify_good_schedule(bb,"after block local scheduling"); 2856 #endif 2857 } 2858 2859 #ifndef PRODUCT 2860 if (_cfg->C->trace_opto_output()) 2861 tty->print("# <- DoScheduling\n"); 2862 #endif 2863 2864 // Record final node-bundling array location 2865 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base); 2866 2867 } // end DoScheduling 2868 2869 // Verify that no live-range used in the block is killed in the block by a 2870 // wrong DEF. This doesn't verify live-ranges that span blocks. 2871 2872 // Check for edge existence. Used to avoid adding redundant precedence edges. 2873 static bool edge_from_to( Node *from, Node *to ) { 2874 for( uint i=0; i<from->len(); i++ ) 2875 if( from->in(i) == to ) 2876 return true; 2877 return false; 2878 } 2879 2880 #ifdef ASSERT 2881 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2882 // Check for bad kills 2883 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2884 Node *prior_use = _reg_node[def]; 2885 if( prior_use && !edge_from_to(prior_use,n) ) { 2886 tty->print("%s = ",OptoReg::as_VMReg(def)->name()); 2887 n->dump(); 2888 tty->print_cr("..."); 2889 prior_use->dump(); 2890 assert(edge_from_to(prior_use,n), "%s", msg); 2891 } 2892 _reg_node.map(def,nullptr); // Kill live USEs 2893 } 2894 } 2895 2896 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2897 2898 // Zap to something reasonable for the verify code 2899 _reg_node.clear(); 2900 2901 // Walk over the block backwards. Check to make sure each DEF doesn't 2902 // kill a live value (other than the one it's supposed to). Add each 2903 // USE to the live set. 2904 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { 2905 Node *n = b->get_node(i); 2906 int n_op = n->Opcode(); 2907 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 2908 // Fat-proj kills a slew of registers 2909 RegMaskIterator rmi(n->out_RegMask()); 2910 while (rmi.has_next()) { 2911 OptoReg::Name kill = rmi.next(); 2912 verify_do_def(n, kill, msg); 2913 } 2914 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes 2915 // Get DEF'd registers the normal way 2916 verify_do_def( n, _regalloc->get_reg_first(n), msg ); 2917 verify_do_def( n, _regalloc->get_reg_second(n), msg ); 2918 } 2919 2920 // Now make all USEs live 2921 for( uint i=1; i<n->req(); i++ ) { 2922 Node *def = n->in(i); 2923 assert(def != nullptr, "input edge required"); 2924 OptoReg::Name reg_lo = _regalloc->get_reg_first(def); 2925 OptoReg::Name reg_hi = _regalloc->get_reg_second(def); 2926 if( OptoReg::is_valid(reg_lo) ) { 2927 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg); 2928 _reg_node.map(reg_lo,n); 2929 } 2930 if( OptoReg::is_valid(reg_hi) ) { 2931 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg); 2932 _reg_node.map(reg_hi,n); 2933 } 2934 } 2935 2936 } 2937 2938 // Zap to something reasonable for the Antidependence code 2939 _reg_node.clear(); 2940 } 2941 #endif 2942 2943 // Conditionally add precedence edges. Avoid putting edges on Projs. 2944 static void add_prec_edge_from_to( Node *from, Node *to ) { 2945 if( from->is_Proj() ) { // Put precedence edge on Proj's input 2946 assert( from->req() == 1 && (from->len() == 1 || from->in(1) == nullptr), "no precedence edges on projections" ); 2947 from = from->in(0); 2948 } 2949 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 2950 !edge_from_to( from, to ) ) // Avoid duplicate edge 2951 from->add_prec(to); 2952 } 2953 2954 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 2955 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 2956 return; 2957 2958 if (OptoReg::is_reg(def_reg)) { 2959 VMReg vmreg = OptoReg::as_VMReg(def_reg); 2960 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) { 2961 // This is one of the high slots of a vector register. 2962 // ScheduleAndBundle already checked there are no live wide 2963 // vectors in this method so it can be safely ignored. 2964 return; 2965 } 2966 } 2967 2968 Node *pinch = _reg_node[def_reg]; // Get pinch point 2969 if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? 2970 is_def ) { // Check for a true def (not a kill) 2971 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point 2972 return; 2973 } 2974 2975 Node *kill = def; // Rename 'def' to more descriptive 'kill' 2976 DEBUG_ONLY( def = (Node*)((intptr_t)0xdeadbeef); ) 2977 2978 // After some number of kills there _may_ be a later def 2979 Node *later_def = nullptr; 2980 2981 Compile* C = Compile::current(); 2982 2983 // Finding a kill requires a real pinch-point. 2984 // Check for not already having a pinch-point. 2985 // Pinch points are Op_Node's. 2986 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? 2987 later_def = pinch; // Must be def/kill as optimistic pinch-point 2988 if ( _pinch_free_list.size() > 0) { 2989 pinch = _pinch_free_list.pop(); 2990 } else { 2991 pinch = new Node(1); // Pinch point to-be 2992 } 2993 if (pinch->_idx >= _regalloc->node_regs_max_index()) { 2994 DEBUG_ONLY( pinch->dump(); ); 2995 assert(false, "too many D-U pinch points: %d >= %d", pinch->_idx, _regalloc->node_regs_max_index()); 2996 _cfg->C->record_method_not_compilable("too many D-U pinch points"); 2997 return; 2998 } 2999 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) 3000 _reg_node.map(def_reg,pinch); // Record pinch-point 3001 //regalloc()->set_bad(pinch->_idx); // Already initialized this way. 3002 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill 3003 pinch->init_req(0, C->top()); // set not null for the next call 3004 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch 3005 later_def = nullptr; // and no later def 3006 } 3007 pinch->set_req(0,later_def); // Hook later def so we can find it 3008 } else { // Else have valid pinch point 3009 if( pinch->in(0) ) // If there is a later-def 3010 later_def = pinch->in(0); // Get it 3011 } 3012 3013 // Add output-dependence edge from later def to kill 3014 if( later_def ) // If there is some original def 3015 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill 3016 3017 // See if current kill is also a use, and so is forced to be the pinch-point. 3018 if( pinch->Opcode() == Op_Node ) { 3019 Node *uses = kill->is_Proj() ? kill->in(0) : kill; 3020 for( uint i=1; i<uses->req(); i++ ) { 3021 if( _regalloc->get_reg_first(uses->in(i)) == def_reg || 3022 _regalloc->get_reg_second(uses->in(i)) == def_reg ) { 3023 // Yes, found a use/kill pinch-point 3024 pinch->set_req(0,nullptr); // 3025 pinch->replace_by(kill); // Move anti-dep edges up 3026 pinch = kill; 3027 _reg_node.map(def_reg,pinch); 3028 return; 3029 } 3030 } 3031 } 3032 3033 // Add edge from kill to pinch-point 3034 add_prec_edge_from_to(kill,pinch); 3035 } 3036 3037 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 3038 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 3039 return; 3040 Node *pinch = _reg_node[use_reg]; // Get pinch point 3041 // Check for no later def_reg/kill in block 3042 if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b && 3043 // Use has to be block-local as well 3044 _cfg->get_block_for_node(use) == b) { 3045 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 3046 pinch->req() == 1 ) { // pinch not yet in block? 3047 pinch->del_req(0); // yank pointer to later-def, also set flag 3048 // Insert the pinch-point in the block just after the last use 3049 b->insert_node(pinch, b->find_node(use) + 1); 3050 _bb_end++; // Increase size scheduled region in block 3051 } 3052 3053 add_prec_edge_from_to(pinch,use); 3054 } 3055 } 3056 3057 // We insert antidependences between the reads and following write of 3058 // allocated registers to prevent illegal code motion. Hopefully, the 3059 // number of added references should be fairly small, especially as we 3060 // are only adding references within the current basic block. 3061 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 3062 3063 #ifdef ASSERT 3064 verify_good_schedule(b,"before block local scheduling"); 3065 #endif 3066 3067 // A valid schedule, for each register independently, is an endless cycle 3068 // of: a def, then some uses (connected to the def by true dependencies), 3069 // then some kills (defs with no uses), finally the cycle repeats with a new 3070 // def. The uses are allowed to float relative to each other, as are the 3071 // kills. No use is allowed to slide past a kill (or def). This requires 3072 // antidependencies between all uses of a single def and all kills that 3073 // follow, up to the next def. More edges are redundant, because later defs 3074 // & kills are already serialized with true or antidependencies. To keep 3075 // the edge count down, we add a 'pinch point' node if there's more than 3076 // one use or more than one kill/def. 3077 3078 // We add dependencies in one bottom-up pass. 3079 3080 // For each instruction we handle it's DEFs/KILLs, then it's USEs. 3081 3082 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this 3083 // register. If not, we record the DEF/KILL in _reg_node, the 3084 // register-to-def mapping. If there is a prior DEF/KILL, we insert a 3085 // "pinch point", a new Node that's in the graph but not in the block. 3086 // We put edges from the prior and current DEF/KILLs to the pinch point. 3087 // We put the pinch point in _reg_node. If there's already a pinch point 3088 // we merely add an edge from the current DEF/KILL to the pinch point. 3089 3090 // After doing the DEF/KILLs, we handle USEs. For each used register, we 3091 // put an edge from the pinch point to the USE. 3092 3093 // To be expedient, the _reg_node array is pre-allocated for the whole 3094 // compilation. _reg_node is lazily initialized; it either contains a null, 3095 // or a valid def/kill/pinch-point, or a leftover node from some prior 3096 // block. Leftover node from some prior block is treated like a null (no 3097 // prior def, so no anti-dependence needed). Valid def is distinguished by 3098 // it being in the current block. 3099 bool fat_proj_seen = false; 3100 uint last_safept = _bb_end-1; 3101 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr; 3102 Node* last_safept_node = end_node; 3103 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 3104 Node *n = b->get_node(i); 3105 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 3106 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 3107 // Fat-proj kills a slew of registers 3108 // This can add edges to 'n' and obscure whether or not it was a def, 3109 // hence the is_def flag. 3110 fat_proj_seen = true; 3111 RegMaskIterator rmi(n->out_RegMask()); 3112 while (rmi.has_next()) { 3113 OptoReg::Name kill = rmi.next(); 3114 anti_do_def(b, n, kill, is_def); 3115 } 3116 } else { 3117 // Get DEF'd registers the normal way 3118 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); 3119 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); 3120 } 3121 3122 // Kill projections on a branch should appear to occur on the 3123 // branch, not afterwards, so grab the masks from the projections 3124 // and process them. 3125 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { 3126 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3127 Node* use = n->fast_out(i); 3128 if (use->is_Proj()) { 3129 RegMaskIterator rmi(use->out_RegMask()); 3130 while (rmi.has_next()) { 3131 OptoReg::Name kill = rmi.next(); 3132 anti_do_def(b, n, kill, false); 3133 } 3134 } 3135 } 3136 } 3137 3138 // Check each register used by this instruction for a following DEF/KILL 3139 // that must occur afterward and requires an anti-dependence edge. 3140 for( uint j=0; j<n->req(); j++ ) { 3141 Node *def = n->in(j); 3142 if( def ) { 3143 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); 3144 anti_do_use( b, n, _regalloc->get_reg_first(def) ); 3145 anti_do_use( b, n, _regalloc->get_reg_second(def) ); 3146 } 3147 } 3148 // Do not allow defs of new derived values to float above GC 3149 // points unless the base is definitely available at the GC point. 3150 3151 Node *m = b->get_node(i); 3152 3153 // Add precedence edge from following safepoint to use of derived pointer 3154 if( last_safept_node != end_node && 3155 m != last_safept_node) { 3156 for (uint k = 1; k < m->req(); k++) { 3157 const Type *t = m->in(k)->bottom_type(); 3158 if( t->isa_oop_ptr() && 3159 t->is_ptr()->offset() != 0 ) { 3160 last_safept_node->add_prec( m ); 3161 break; 3162 } 3163 } 3164 } 3165 3166 if( n->jvms() ) { // Precedence edge from derived to safept 3167 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 3168 if( b->get_node(last_safept) != last_safept_node ) { 3169 last_safept = b->find_node(last_safept_node); 3170 } 3171 for( uint j=last_safept; j > i; j-- ) { 3172 Node *mach = b->get_node(j); 3173 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 3174 mach->add_prec( n ); 3175 } 3176 last_safept = i; 3177 last_safept_node = m; 3178 } 3179 } 3180 3181 if (fat_proj_seen) { 3182 // Garbage collect pinch nodes that were not consumed. 3183 // They are usually created by a fat kill MachProj for a call. 3184 garbage_collect_pinch_nodes(); 3185 } 3186 } 3187 3188 // Garbage collect pinch nodes for reuse by other blocks. 3189 // 3190 // The block scheduler's insertion of anti-dependence 3191 // edges creates many pinch nodes when the block contains 3192 // 2 or more Calls. A pinch node is used to prevent a 3193 // combinatorial explosion of edges. If a set of kills for a 3194 // register is anti-dependent on a set of uses (or defs), rather 3195 // than adding an edge in the graph between each pair of kill 3196 // and use (or def), a pinch is inserted between them: 3197 // 3198 // use1 use2 use3 3199 // \ | / 3200 // \ | / 3201 // pinch 3202 // / | \ 3203 // / | \ 3204 // kill1 kill2 kill3 3205 // 3206 // One pinch node is created per register killed when 3207 // the second call is encountered during a backwards pass 3208 // over the block. Most of these pinch nodes are never 3209 // wired into the graph because the register is never 3210 // used or def'ed in the block. 3211 // 3212 void Scheduling::garbage_collect_pinch_nodes() { 3213 #ifndef PRODUCT 3214 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); 3215 #endif 3216 int trace_cnt = 0; 3217 for (uint k = 0; k < _reg_node.max(); k++) { 3218 Node* pinch = _reg_node[k]; 3219 if ((pinch != nullptr) && pinch->Opcode() == Op_Node && 3220 // no predecence input edges 3221 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) { 3222 cleanup_pinch(pinch); 3223 _pinch_free_list.push(pinch); 3224 _reg_node.map(k, nullptr); 3225 #ifndef PRODUCT 3226 if (_cfg->C->trace_opto_output()) { 3227 trace_cnt++; 3228 if (trace_cnt > 40) { 3229 tty->print("\n"); 3230 trace_cnt = 0; 3231 } 3232 tty->print(" %d", pinch->_idx); 3233 } 3234 #endif 3235 } 3236 } 3237 #ifndef PRODUCT 3238 if (_cfg->C->trace_opto_output()) tty->print("\n"); 3239 #endif 3240 } 3241 3242 // Clean up a pinch node for reuse. 3243 void Scheduling::cleanup_pinch( Node *pinch ) { 3244 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); 3245 3246 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { 3247 Node* use = pinch->last_out(i); 3248 uint uses_found = 0; 3249 for (uint j = use->req(); j < use->len(); j++) { 3250 if (use->in(j) == pinch) { 3251 use->rm_prec(j); 3252 uses_found++; 3253 } 3254 } 3255 assert(uses_found > 0, "must be a precedence edge"); 3256 i -= uses_found; // we deleted 1 or more copies of this edge 3257 } 3258 // May have a later_def entry 3259 pinch->set_req(0, nullptr); 3260 } 3261 3262 #ifndef PRODUCT 3263 3264 void Scheduling::dump_available() const { 3265 tty->print("#Availist "); 3266 for (uint i = 0; i < _available.size(); i++) 3267 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); 3268 tty->cr(); 3269 } 3270 3271 // Print Scheduling Statistics 3272 void Scheduling::print_statistics() { 3273 // Print the size added by nops for bundling 3274 tty->print("Nops added %d bytes to total of %d bytes", 3275 _total_nop_size, _total_method_size); 3276 if (_total_method_size > 0) 3277 tty->print(", for %.2f%%", 3278 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); 3279 tty->print("\n"); 3280 3281 // Print the number of branch shadows filled 3282 if (Pipeline::_branch_has_delay_slot) { 3283 tty->print("Of %d branches, %d had unconditional delay slots filled", 3284 _total_branches, _total_unconditional_delays); 3285 if (_total_branches > 0) 3286 tty->print(", for %.2f%%", 3287 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); 3288 tty->print("\n"); 3289 } 3290 3291 uint total_instructions = 0, total_bundles = 0; 3292 3293 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { 3294 uint bundle_count = _total_instructions_per_bundle[i]; 3295 total_instructions += bundle_count * i; 3296 total_bundles += bundle_count; 3297 } 3298 3299 if (total_bundles > 0) 3300 tty->print("Average ILP (excluding nops) is %.2f\n", 3301 ((double)total_instructions) / ((double)total_bundles)); 3302 } 3303 #endif 3304 3305 //-----------------------init_scratch_buffer_blob------------------------------ 3306 // Construct a temporary BufferBlob and cache it for this compile. 3307 void PhaseOutput::init_scratch_buffer_blob(int const_size) { 3308 // If there is already a scratch buffer blob allocated and the 3309 // constant section is big enough, use it. Otherwise free the 3310 // current and allocate a new one. 3311 BufferBlob* blob = scratch_buffer_blob(); 3312 if ((blob != nullptr) && (const_size <= _scratch_const_size)) { 3313 // Use the current blob. 3314 } else { 3315 if (blob != nullptr) { 3316 BufferBlob::free(blob); 3317 } 3318 3319 ResourceMark rm; 3320 _scratch_const_size = const_size; 3321 int size = C2Compiler::initial_code_buffer_size(const_size); 3322 blob = BufferBlob::create("Compile::scratch_buffer", size); 3323 // Record the buffer blob for next time. 3324 set_scratch_buffer_blob(blob); 3325 // Have we run out of code space? 3326 if (scratch_buffer_blob() == nullptr) { 3327 // Let CompilerBroker disable further compilations. 3328 C->record_failure("Not enough space for scratch buffer in CodeCache"); 3329 return; 3330 } 3331 } 3332 3333 // Initialize the relocation buffers 3334 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 3335 set_scratch_locs_memory(locs_buf); 3336 } 3337 3338 3339 //-----------------------scratch_emit_size------------------------------------- 3340 // Helper function that computes size by emitting code 3341 uint PhaseOutput::scratch_emit_size(const Node* n) { 3342 // Start scratch_emit_size section. 3343 set_in_scratch_emit_size(true); 3344 3345 // Emit into a trash buffer and count bytes emitted. 3346 // This is a pretty expensive way to compute a size, 3347 // but it works well enough if seldom used. 3348 // All common fixed-size instructions are given a size 3349 // method by the AD file. 3350 // Note that the scratch buffer blob and locs memory are 3351 // allocated at the beginning of the compile task, and 3352 // may be shared by several calls to scratch_emit_size. 3353 // The allocation of the scratch buffer blob is particularly 3354 // expensive, since it has to grab the code cache lock. 3355 BufferBlob* blob = this->scratch_buffer_blob(); 3356 assert(blob != nullptr, "Initialize BufferBlob at start"); 3357 assert(blob->size() > MAX_inst_size, "sanity"); 3358 relocInfo* locs_buf = scratch_locs_memory(); 3359 address blob_begin = blob->content_begin(); 3360 address blob_end = (address)locs_buf; 3361 assert(blob->contains(blob_end), "sanity"); 3362 CodeBuffer buf(blob_begin, blob_end - blob_begin); 3363 buf.initialize_consts_size(_scratch_const_size); 3364 buf.initialize_stubs_size(MAX_stubs_size); 3365 assert(locs_buf != nullptr, "sanity"); 3366 int lsize = MAX_locs_size / 3; 3367 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 3368 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 3369 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 3370 // Mark as scratch buffer. 3371 buf.consts()->set_scratch_emit(); 3372 buf.insts()->set_scratch_emit(); 3373 buf.stubs()->set_scratch_emit(); 3374 3375 // Do the emission. 3376 3377 Label fakeL; // Fake label for branch instructions. 3378 Label* saveL = nullptr; 3379 uint save_bnum = 0; 3380 bool is_branch = n->is_MachBranch(); 3381 C2_MacroAssembler masm(&buf); 3382 masm.bind(fakeL); 3383 if (is_branch) { 3384 n->as_MachBranch()->save_label(&saveL, &save_bnum); 3385 n->as_MachBranch()->label_set(&fakeL, 0); 3386 } 3387 n->emit(&masm, C->regalloc()); 3388 3389 // Emitting into the scratch buffer should not fail 3390 assert(!C->failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", C->failure_reason()); 3391 3392 if (is_branch) // Restore label. 3393 n->as_MachBranch()->label_set(saveL, save_bnum); 3394 3395 // End scratch_emit_size section. 3396 set_in_scratch_emit_size(false); 3397 3398 return buf.insts_size(); 3399 } 3400 3401 void PhaseOutput::install() { 3402 if (!C->should_install_code()) { 3403 return; 3404 } else if (C->stub_function() != nullptr) { 3405 install_stub(C->stub_name()); 3406 } else { 3407 install_code(C->method(), 3408 C->entry_bci(), 3409 CompileBroker::compiler2(), 3410 C->has_unsafe_access(), 3411 SharedRuntime::is_wide_vector(C->max_vector_size())); 3412 } 3413 } 3414 3415 void PhaseOutput::install_code(ciMethod* target, 3416 int entry_bci, 3417 AbstractCompiler* compiler, 3418 bool has_unsafe_access, 3419 bool has_wide_vectors) { 3420 // Check if we want to skip execution of all compiled code. 3421 { 3422 #ifndef PRODUCT 3423 if (OptoNoExecute) { 3424 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed 3425 return; 3426 } 3427 #endif 3428 Compile::TracePhase tp(_t_registerMethod); 3429 3430 if (C->is_osr_compilation()) { 3431 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 3432 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 3433 } else { 3434 if (!target->is_static()) { 3435 // The UEP of an nmethod ensures that the VEP is padded. However, the padding of the UEP is placed 3436 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 3437 // through the UEP, yet we can ensure that the VEP is aligned appropriately. 3438 _code_offsets.set_value(CodeOffsets::Entry, _first_block_size - MacroAssembler::ic_check_size()); 3439 } 3440 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 3441 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 3442 } 3443 3444 C->env()->register_method(target, 3445 entry_bci, 3446 &_code_offsets, 3447 _orig_pc_slot_offset_in_bytes, 3448 code_buffer(), 3449 frame_size_in_words(), 3450 oop_map_set(), 3451 &_handler_table, 3452 inc_table(), 3453 compiler, 3454 has_unsafe_access, 3455 SharedRuntime::is_wide_vector(C->max_vector_size()), 3456 C->has_monitors(), 3457 C->has_scoped_access(), 3458 0); 3459 3460 if (C->log() != nullptr) { // Print code cache state into compiler log 3461 C->log()->code_cache_state(); 3462 } 3463 } 3464 } 3465 void PhaseOutput::install_stub(const char* stub_name) { 3466 // Entry point will be accessed using stub_entry_point(); 3467 if (code_buffer() == nullptr) { 3468 Matcher::soft_match_failure(); 3469 } else { 3470 if (PrintAssembly && (WizardMode || Verbose)) 3471 tty->print_cr("### Stub::%s", stub_name); 3472 3473 if (!C->failing()) { 3474 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs"); 3475 3476 // Make the NMethod 3477 // For now we mark the frame as never safe for profile stackwalking 3478 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 3479 code_buffer(), 3480 CodeOffsets::frame_never_safe, 3481 // _code_offsets.value(CodeOffsets::Frame_Complete), 3482 frame_size_in_words(), 3483 oop_map_set(), 3484 false, 3485 false); 3486 3487 if (rs == nullptr) { 3488 C->record_failure("CodeCache is full"); 3489 } else { 3490 assert(rs->is_runtime_stub(), "sanity check"); 3491 C->set_stub_entry_point(rs->entry_point()); 3492 BlobId blob_id = StubInfo::blob(C->stub_id()); 3493 AOTCodeCache::store_code_blob(*rs, AOTCodeEntry::C2Blob, blob_id); 3494 } 3495 } 3496 } 3497 } 3498 3499 // Support for bundling info 3500 Bundle* PhaseOutput::node_bundling(const Node *n) { 3501 assert(valid_bundle_info(n), "oob"); 3502 return &_node_bundling_base[n->_idx]; 3503 } 3504 3505 bool PhaseOutput::valid_bundle_info(const Node *n) { 3506 return (_node_bundling_limit > n->_idx); 3507 } 3508 3509 //------------------------------frame_size_in_words----------------------------- 3510 // frame_slots in units of words 3511 int PhaseOutput::frame_size_in_words() const { 3512 // shift is 0 in LP32 and 1 in LP64 3513 const int shift = (LogBytesPerWord - LogBytesPerInt); 3514 int words = _frame_slots >> shift; 3515 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 3516 return words; 3517 } 3518 3519 // To bang the stack of this compiled method we use the stack size 3520 // that the interpreter would need in case of a deoptimization. This 3521 // removes the need to bang the stack in the deoptimization blob which 3522 // in turn simplifies stack overflow handling. 3523 int PhaseOutput::bang_size_in_bytes() const { 3524 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size()); 3525 } 3526 3527 //------------------------------dump_asm--------------------------------------- 3528 // Dump formatted assembly 3529 #if defined(SUPPORT_OPTO_ASSEMBLY) 3530 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) { 3531 3532 int pc_digits = 3; // #chars required for pc 3533 int sb_chars = 3; // #chars for "start bundle" indicator 3534 int tab_size = 8; 3535 if (pcs != nullptr) { 3536 int max_pc = 0; 3537 for (uint i = 0; i < pc_limit; i++) { 3538 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc; 3539 } 3540 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc 3541 } 3542 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size; 3543 3544 bool cut_short = false; 3545 st->print_cr("#"); 3546 st->print("# "); C->tf()->dump_on(st); st->cr(); 3547 st->print_cr("#"); 3548 3549 // For all blocks 3550 int pc = 0x0; // Program counter 3551 char starts_bundle = ' '; 3552 C->regalloc()->dump_frame(); 3553 3554 Node *n = nullptr; 3555 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 3556 if (VMThread::should_terminate()) { 3557 cut_short = true; 3558 break; 3559 } 3560 Block* block = C->cfg()->get_block(i); 3561 if (block->is_connector() && !Verbose) { 3562 continue; 3563 } 3564 n = block->head(); 3565 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3566 pc = pcs[n->_idx]; 3567 st->print("%*.*x", pc_digits, pc_digits, pc); 3568 } 3569 st->fill_to(prefix_len); 3570 block->dump_head(C->cfg(), st); 3571 if (block->is_connector()) { 3572 st->fill_to(prefix_len); 3573 st->print_cr("# Empty connector block"); 3574 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3575 st->fill_to(prefix_len); 3576 st->print_cr("# Block is sole successor of call"); 3577 } 3578 3579 // For all instructions 3580 Node *delay = nullptr; 3581 for (uint j = 0; j < block->number_of_nodes(); j++) { 3582 if (VMThread::should_terminate()) { 3583 cut_short = true; 3584 break; 3585 } 3586 n = block->get_node(j); 3587 if (valid_bundle_info(n)) { 3588 Bundle* bundle = node_bundling(n); 3589 if (bundle->used_in_unconditional_delay()) { 3590 delay = n; 3591 continue; 3592 } 3593 if (bundle->starts_bundle()) { 3594 starts_bundle = '+'; 3595 } 3596 } 3597 3598 if (WizardMode) { 3599 n->dump(); 3600 } 3601 3602 if( !n->is_Region() && // Dont print in the Assembly 3603 !n->is_Phi() && // a few noisely useless nodes 3604 !n->is_Proj() && 3605 !n->is_MachTemp() && 3606 !n->is_SafePointScalarObject() && 3607 !n->is_Catch() && // Would be nice to print exception table targets 3608 !n->is_MergeMem() && // Not very interesting 3609 !n->is_top() && // Debug info table constants 3610 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3611 ) { 3612 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3613 pc = pcs[n->_idx]; 3614 st->print("%*.*x", pc_digits, pc_digits, pc); 3615 } else { 3616 st->fill_to(pc_digits); 3617 } 3618 st->print(" %c ", starts_bundle); 3619 starts_bundle = ' '; 3620 st->fill_to(prefix_len); 3621 n->format(C->regalloc(), st); 3622 st->cr(); 3623 } 3624 3625 // If we have an instruction with a delay slot, and have seen a delay, 3626 // then back up and print it 3627 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3628 // Coverity finding - Explicit null dereferenced. 3629 guarantee(delay != nullptr, "no unconditional delay instruction"); 3630 if (WizardMode) delay->dump(); 3631 3632 if (node_bundling(delay)->starts_bundle()) 3633 starts_bundle = '+'; 3634 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3635 pc = pcs[n->_idx]; 3636 st->print("%*.*x", pc_digits, pc_digits, pc); 3637 } else { 3638 st->fill_to(pc_digits); 3639 } 3640 st->print(" %c ", starts_bundle); 3641 starts_bundle = ' '; 3642 st->fill_to(prefix_len); 3643 delay->format(C->regalloc(), st); 3644 st->cr(); 3645 delay = nullptr; 3646 } 3647 3648 // Dump the exception table as well 3649 if( n->is_Catch() && (Verbose || WizardMode) ) { 3650 // Print the exception table for this offset 3651 _handler_table.print_subtable_for(pc); 3652 } 3653 st->bol(); // Make sure we start on a new line 3654 } 3655 st->cr(); // one empty line between blocks 3656 assert(cut_short || delay == nullptr, "no unconditional delay branch"); 3657 } // End of per-block dump 3658 3659 if (cut_short) st->print_cr("*** disassembly is cut short ***"); 3660 } 3661 #endif 3662 3663 #ifndef PRODUCT 3664 void PhaseOutput::print_statistics() { 3665 Scheduling::print_statistics(); 3666 } 3667 #endif