1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.inline.hpp" 26 #include "code/aotCodeCache.hpp" 27 #include "code/compiledIC.hpp" 28 #include "code/debugInfo.hpp" 29 #include "code/debugInfoRec.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compilerDirectives.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/c2/barrierSetC2.hpp" 36 #include "memory/allocation.hpp" 37 #include "opto/ad.hpp" 38 #include "opto/block.hpp" 39 #include "opto/c2_MacroAssembler.hpp" 40 #include "opto/c2compiler.hpp" 41 #include "opto/callnode.hpp" 42 #include "opto/cfgnode.hpp" 43 #include "opto/locknode.hpp" 44 #include "opto/machnode.hpp" 45 #include "opto/node.hpp" 46 #include "opto/optoreg.hpp" 47 #include "opto/output.hpp" 48 #include "opto/regalloc.hpp" 49 #include "opto/type.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "utilities/macros.hpp" 52 #include "utilities/powerOfTwo.hpp" 53 #include "utilities/xmlstream.hpp" 54 55 #ifndef PRODUCT 56 #define DEBUG_ARG(x) , x 57 #else 58 #define DEBUG_ARG(x) 59 #endif 60 61 //------------------------------Scheduling---------------------------------- 62 // This class contains all the information necessary to implement instruction 63 // scheduling and bundling. 64 class Scheduling { 65 66 private: 67 // Arena to use 68 Arena *_arena; 69 70 // Control-Flow Graph info 71 PhaseCFG *_cfg; 72 73 // Register Allocation info 74 PhaseRegAlloc *_regalloc; 75 76 // Number of nodes in the method 77 uint _node_bundling_limit; 78 79 // List of scheduled nodes. Generated in reverse order 80 Node_List _scheduled; 81 82 // List of nodes currently available for choosing for scheduling 83 Node_List _available; 84 85 // For each instruction beginning a bundle, the number of following 86 // nodes to be bundled with it. 87 Bundle *_node_bundling_base; 88 89 // Mapping from register to Node 90 Node_List _reg_node; 91 92 // Free list for pinch nodes. 93 Node_List _pinch_free_list; 94 95 // Number of uses of this node within the containing basic block. 96 short *_uses; 97 98 // Schedulable portion of current block. Skips Region/Phi/CreateEx up 99 // front, branch+proj at end. Also skips Catch/CProj (same as 100 // branch-at-end), plus just-prior exception-throwing call. 101 uint _bb_start, _bb_end; 102 103 // Latency from the end of the basic block as scheduled 104 unsigned short *_current_latency; 105 106 // Remember the next node 107 Node *_next_node; 108 109 // Use this for an unconditional branch delay slot 110 Node *_unconditional_delay_slot; 111 112 // Pointer to a Nop 113 MachNopNode *_nop; 114 115 // Length of the current bundle, in instructions 116 uint _bundle_instr_count; 117 118 // Current Cycle number, for computing latencies and bundling 119 uint _bundle_cycle_number; 120 121 // Bundle information 122 Pipeline_Use_Element _bundle_use_elements[resource_count]; 123 Pipeline_Use _bundle_use; 124 125 // Dump the available list 126 void dump_available() const; 127 128 public: 129 Scheduling(Arena *arena, Compile &compile); 130 131 // Destructor 132 NOT_PRODUCT( ~Scheduling(); ) 133 134 // Step ahead "i" cycles 135 void step(uint i); 136 137 // Step ahead 1 cycle, and clear the bundle state (for example, 138 // at a branch target) 139 void step_and_clear(); 140 141 Bundle* node_bundling(const Node *n) { 142 assert(valid_bundle_info(n), "oob"); 143 return (&_node_bundling_base[n->_idx]); 144 } 145 146 bool valid_bundle_info(const Node *n) const { 147 return (_node_bundling_limit > n->_idx); 148 } 149 150 bool starts_bundle(const Node *n) const { 151 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); 152 } 153 154 // Do the scheduling 155 void DoScheduling(); 156 157 // Compute the register antidependencies within a basic block 158 void ComputeRegisterAntidependencies(Block *bb); 159 void verify_do_def( Node *n, OptoReg::Name def, const char *msg ); 160 void verify_good_schedule( Block *b, const char *msg ); 161 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ); 162 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ); 163 164 // Add a node to the current bundle 165 void AddNodeToBundle(Node *n, const Block *bb); 166 167 // Return an integer less than, equal to, or greater than zero 168 // if the stack offset of the first argument is respectively 169 // less than, equal to, or greater than the second. 170 int compare_two_spill_nodes(Node* first, Node* second); 171 172 // Add a node to the list of available nodes 173 void AddNodeToAvailableList(Node *n); 174 175 // Compute the local use count for the nodes in a block, and compute 176 // the list of instructions with no uses in the block as available 177 void ComputeUseCount(const Block *bb); 178 179 // Choose an instruction from the available list to add to the bundle 180 Node * ChooseNodeToBundle(); 181 182 // See if this Node fits into the currently accumulating bundle 183 bool NodeFitsInBundle(Node *n); 184 185 // Decrement the use count for a node 186 void DecrementUseCounts(Node *n, const Block *bb); 187 188 // Garbage collect pinch nodes for reuse by other blocks. 189 void garbage_collect_pinch_nodes(); 190 // Clean up a pinch node for reuse (helper for above). 191 void cleanup_pinch( Node *pinch ); 192 193 // Information for statistics gathering 194 #ifndef PRODUCT 195 private: 196 // Gather information on size of nops relative to total 197 uint _branches, _unconditional_delays; 198 199 static uint _total_nop_size, _total_method_size; 200 static uint _total_branches, _total_unconditional_delays; 201 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 202 203 public: 204 static void print_statistics(); 205 206 static void increment_instructions_per_bundle(uint i) { 207 _total_instructions_per_bundle[i]++; 208 } 209 210 static void increment_nop_size(uint s) { 211 _total_nop_size += s; 212 } 213 214 static void increment_method_size(uint s) { 215 _total_method_size += s; 216 } 217 #endif 218 219 }; 220 221 PhaseOutput::PhaseOutput() 222 : Phase(Phase::Output), 223 _code_buffer("Compile::Fill_buffer"), 224 _first_block_size(0), 225 _handler_table(), 226 _inc_table(), 227 _stub_list(), 228 _oop_map_set(nullptr), 229 _scratch_buffer_blob(nullptr), 230 _scratch_locs_memory(nullptr), 231 _scratch_const_size(-1), 232 _in_scratch_emit_size(false), 233 _frame_slots(0), 234 _code_offsets(), 235 _node_bundling_limit(0), 236 _node_bundling_base(nullptr), 237 _orig_pc_slot(0), 238 _orig_pc_slot_offset_in_bytes(0), 239 _buf_sizes(), 240 _block(nullptr), 241 _index(0) { 242 C->set_output(this); 243 if (C->stub_name() == nullptr) { 244 _orig_pc_slot = C->fixed_slots() - (sizeof(address) / VMRegImpl::stack_slot_size); 245 } 246 } 247 248 PhaseOutput::~PhaseOutput() { 249 C->set_output(nullptr); 250 if (_scratch_buffer_blob != nullptr) { 251 BufferBlob::free(_scratch_buffer_blob); 252 } 253 } 254 255 void PhaseOutput::perform_mach_node_analysis() { 256 // Late barrier analysis must be done after schedule and bundle 257 // Otherwise liveness based spilling will fail 258 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 259 bs->late_barrier_analysis(); 260 261 pd_perform_mach_node_analysis(); 262 263 C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 3); 264 } 265 266 // Convert Nodes to instruction bits and pass off to the VM 267 void PhaseOutput::Output() { 268 // RootNode goes 269 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" ); 270 271 // The number of new nodes (mostly MachNop) is proportional to 272 // the number of java calls and inner loops which are aligned. 273 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 274 C->inner_loops()*(OptoLoopAlignment-1)), 275 "out of nodes before code generation" ) ) { 276 return; 277 } 278 // Make sure I can find the Start Node 279 Block *entry = C->cfg()->get_block(1); 280 Block *broot = C->cfg()->get_root_block(); 281 282 const StartNode *start = entry->head()->as_Start(); 283 284 // Replace StartNode with prolog 285 MachPrologNode *prolog = new MachPrologNode(); 286 entry->map_node(prolog, 0); 287 C->cfg()->map_node_to_block(prolog, entry); 288 C->cfg()->unmap_node_from_block(start); // start is no longer in any block 289 290 // Virtual methods need an unverified entry point 291 292 if( C->is_osr_compilation() ) { 293 if( PoisonOSREntry ) { 294 // TODO: Should use a ShouldNotReachHereNode... 295 C->cfg()->insert( broot, 0, new MachBreakpointNode() ); 296 } 297 } else { 298 if( C->method() && !C->method()->flags().is_static() ) { 299 // Insert unvalidated entry point 300 C->cfg()->insert( broot, 0, new MachUEPNode() ); 301 } 302 303 } 304 305 // Break before main entry point 306 if ((C->method() && C->directive()->BreakAtExecuteOption) || 307 (OptoBreakpoint && C->is_method_compilation()) || 308 (OptoBreakpointOSR && C->is_osr_compilation()) || 309 (OptoBreakpointC2R && !C->method()) ) { 310 // checking for C->method() means that OptoBreakpoint does not apply to 311 // runtime stubs or frame converters 312 C->cfg()->insert( entry, 1, new MachBreakpointNode() ); 313 } 314 315 // Insert epilogs before every return 316 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 317 Block* block = C->cfg()->get_block(i); 318 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point? 319 Node* m = block->end(); 320 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { 321 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 322 block->add_inst(epilog); 323 C->cfg()->map_node_to_block(epilog, block); 324 } 325 } 326 } 327 328 // Keeper of sizing aspects 329 _buf_sizes = BufferSizingData(); 330 331 // Initialize code buffer 332 estimate_buffer_size(_buf_sizes._const); 333 if (C->failing()) return; 334 335 // Pre-compute the length of blocks and replace 336 // long branches with short if machine supports it. 337 // Must be done before ScheduleAndBundle due to SPARC delay slots 338 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1); 339 blk_starts[0] = 0; 340 shorten_branches(blk_starts); 341 342 ScheduleAndBundle(); 343 if (C->failing()) { 344 return; 345 } 346 347 perform_mach_node_analysis(); 348 349 // Complete sizing of codebuffer 350 CodeBuffer* cb = init_buffer(); 351 if (cb == nullptr || C->failing()) { 352 return; 353 } 354 355 BuildOopMaps(); 356 357 if (C->failing()) { 358 return; 359 } 360 361 C2_MacroAssembler masm(cb); 362 fill_buffer(&masm, blk_starts); 363 } 364 365 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const { 366 // Determine if we need to generate a stack overflow check. 367 // Do it if the method is not a stub function and 368 // has java calls or has frame size > vm_page_size/8. 369 // The debug VM checks that deoptimization doesn't trigger an 370 // unexpected stack overflow (compiled method stack banging should 371 // guarantee it doesn't happen) so we always need the stack bang in 372 // a debug VM. 373 return (C->stub_function() == nullptr && 374 (C->has_java_calls() || frame_size_in_bytes > (int)(os::vm_page_size())>>3 375 DEBUG_ONLY(|| true))); 376 } 377 378 bool PhaseOutput::need_register_stack_bang() const { 379 // Determine if we need to generate a register stack overflow check. 380 // This is only used on architectures which have split register 381 // and memory stacks. 382 // Bang if the method is not a stub function and has java calls 383 return (C->stub_function() == nullptr && C->has_java_calls()); 384 } 385 386 387 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 388 // of a loop. When aligning a loop we need to provide enough instructions 389 // in cpu's fetch buffer to feed decoders. The loop alignment could be 390 // avoided if we have enough instructions in fetch buffer at the head of a loop. 391 // By default, the size is set to 999999 by Block's constructor so that 392 // a loop will be aligned if the size is not reset here. 393 // 394 // Note: Mach instructions could contain several HW instructions 395 // so the size is estimated only. 396 // 397 void PhaseOutput::compute_loop_first_inst_sizes() { 398 // The next condition is used to gate the loop alignment optimization. 399 // Don't aligned a loop if there are enough instructions at the head of a loop 400 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 401 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 402 // equal to 11 bytes which is the largest address NOP instruction. 403 if (MaxLoopPad < OptoLoopAlignment - 1) { 404 uint last_block = C->cfg()->number_of_blocks() - 1; 405 for (uint i = 1; i <= last_block; i++) { 406 Block* block = C->cfg()->get_block(i); 407 // Check the first loop's block which requires an alignment. 408 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { 409 uint sum_size = 0; 410 uint inst_cnt = NumberOfLoopInstrToAlign; 411 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 412 413 // Check subsequent fallthrough blocks if the loop's first 414 // block(s) does not have enough instructions. 415 Block *nb = block; 416 while(inst_cnt > 0 && 417 i < last_block && 418 !C->cfg()->get_block(i + 1)->has_loop_alignment() && 419 !nb->has_successor(block)) { 420 i++; 421 nb = C->cfg()->get_block(i); 422 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 423 } // while( inst_cnt > 0 && i < last_block ) 424 425 block->set_first_inst_size(sum_size); 426 } // f( b->head()->is_Loop() ) 427 } // for( i <= last_block ) 428 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 429 } 430 431 // The architecture description provides short branch variants for some long 432 // branch instructions. Replace eligible long branches with short branches. 433 void PhaseOutput::shorten_branches(uint* blk_starts) { 434 435 Compile::TracePhase tp(_t_shortenBranches); 436 437 // Compute size of each block, method size, and relocation information size 438 uint nblocks = C->cfg()->number_of_blocks(); 439 440 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 441 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 442 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 443 444 // Collect worst case block paddings 445 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); 446 memset(block_worst_case_pad, 0, nblocks * sizeof(int)); 447 448 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 449 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) 450 451 bool has_short_branch_candidate = false; 452 453 // Initialize the sizes to 0 454 int code_size = 0; // Size in bytes of generated code 455 int stub_size = 0; // Size in bytes of all stub entries 456 // Size in bytes of all relocation entries, including those in local stubs. 457 // Start with 2-bytes of reloc info for the unvalidated entry point 458 int reloc_size = 1; // Number of relocation entries 459 460 // Make three passes. The first computes pessimistic blk_starts, 461 // relative jmp_offset and reloc_size information. The second performs 462 // short branch substitution using the pessimistic sizing. The 463 // third inserts nops where needed. 464 465 // Step one, perform a pessimistic sizing pass. 466 uint last_call_adr = max_juint; 467 uint last_avoid_back_to_back_adr = max_juint; 468 uint nop_size = (new MachNopNode())->size(C->regalloc()); 469 for (uint i = 0; i < nblocks; i++) { // For all blocks 470 Block* block = C->cfg()->get_block(i); 471 _block = block; 472 473 // During short branch replacement, we store the relative (to blk_starts) 474 // offset of jump in jmp_offset, rather than the absolute offset of jump. 475 // This is so that we do not need to recompute sizes of all nodes when 476 // we compute correct blk_starts in our next sizing pass. 477 jmp_offset[i] = 0; 478 jmp_size[i] = 0; 479 jmp_nidx[i] = -1; 480 DEBUG_ONLY( jmp_target[i] = 0; ) 481 DEBUG_ONLY( jmp_rule[i] = 0; ) 482 483 // Sum all instruction sizes to compute block size 484 uint last_inst = block->number_of_nodes(); 485 uint blk_size = 0; 486 for (uint j = 0; j < last_inst; j++) { 487 _index = j; 488 Node* nj = block->get_node(_index); 489 // Handle machine instruction nodes 490 if (nj->is_Mach()) { 491 MachNode* mach = nj->as_Mach(); 492 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 493 reloc_size += mach->reloc(); 494 if (mach->is_MachCall()) { 495 // add size information for trampoline stub 496 // class CallStubImpl is platform-specific and defined in the *.ad files. 497 stub_size += CallStubImpl::size_call_trampoline(); 498 reloc_size += CallStubImpl::reloc_call_trampoline(); 499 500 MachCallNode *mcall = mach->as_MachCall(); 501 // This destination address is NOT PC-relative 502 503 mcall->method_set((intptr_t)mcall->entry_point()); 504 505 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { 506 stub_size += CompiledDirectCall::to_interp_stub_size(); 507 reloc_size += CompiledDirectCall::reloc_to_interp_stub(); 508 } 509 } else if (mach->is_MachSafePoint()) { 510 // If call/safepoint are adjacent, account for possible 511 // nop to disambiguate the two safepoints. 512 // ScheduleAndBundle() can rearrange nodes in a block, 513 // check for all offsets inside this block. 514 if (last_call_adr >= blk_starts[i]) { 515 blk_size += nop_size; 516 } 517 } 518 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 519 // Nop is inserted between "avoid back to back" instructions. 520 // ScheduleAndBundle() can rearrange nodes in a block, 521 // check for all offsets inside this block. 522 if (last_avoid_back_to_back_adr >= blk_starts[i]) { 523 blk_size += nop_size; 524 } 525 } 526 if (mach->may_be_short_branch()) { 527 if (!nj->is_MachBranch()) { 528 #ifndef PRODUCT 529 nj->dump(3); 530 #endif 531 Unimplemented(); 532 } 533 assert(jmp_nidx[i] == -1, "block should have only one branch"); 534 jmp_offset[i] = blk_size; 535 jmp_size[i] = nj->size(C->regalloc()); 536 jmp_nidx[i] = j; 537 has_short_branch_candidate = true; 538 } 539 } 540 blk_size += nj->size(C->regalloc()); 541 // Remember end of call offset 542 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { 543 last_call_adr = blk_starts[i]+blk_size; 544 } 545 // Remember end of avoid_back_to_back offset 546 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 547 last_avoid_back_to_back_adr = blk_starts[i]+blk_size; 548 } 549 } 550 551 // When the next block starts a loop, we may insert pad NOP 552 // instructions. Since we cannot know our future alignment, 553 // assume the worst. 554 if (i < nblocks - 1) { 555 Block* nb = C->cfg()->get_block(i + 1); 556 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 557 if (max_loop_pad > 0) { 558 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 559 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 560 // If either is the last instruction in this block, bump by 561 // max_loop_pad in lock-step with blk_size, so sizing 562 // calculations in subsequent blocks still can conservatively 563 // detect that it may the last instruction in this block. 564 if (last_call_adr == blk_starts[i]+blk_size) { 565 last_call_adr += max_loop_pad; 566 } 567 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { 568 last_avoid_back_to_back_adr += max_loop_pad; 569 } 570 blk_size += max_loop_pad; 571 block_worst_case_pad[i + 1] = max_loop_pad; 572 } 573 } 574 575 // Save block size; update total method size 576 blk_starts[i+1] = blk_starts[i]+blk_size; 577 } 578 579 // Step two, replace eligible long jumps. 580 bool progress = true; 581 uint last_may_be_short_branch_adr = max_juint; 582 while (has_short_branch_candidate && progress) { 583 progress = false; 584 has_short_branch_candidate = false; 585 int adjust_block_start = 0; 586 for (uint i = 0; i < nblocks; i++) { 587 Block* block = C->cfg()->get_block(i); 588 int idx = jmp_nidx[i]; 589 MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach(); 590 if (mach != nullptr && mach->may_be_short_branch()) { 591 #ifdef ASSERT 592 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 593 int j; 594 // Find the branch; ignore trailing NOPs. 595 for (j = block->number_of_nodes()-1; j>=0; j--) { 596 Node* n = block->get_node(j); 597 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 598 break; 599 } 600 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity"); 601 #endif 602 int br_size = jmp_size[i]; 603 int br_offs = blk_starts[i] + jmp_offset[i]; 604 605 // This requires the TRUE branch target be in succs[0] 606 uint bnum = block->non_connector_successor(0)->_pre_order; 607 int offset = blk_starts[bnum] - br_offs; 608 if (bnum > i) { // adjust following block's offset 609 offset -= adjust_block_start; 610 } 611 612 // This block can be a loop header, account for the padding 613 // in the previous block. 614 int block_padding = block_worst_case_pad[i]; 615 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top"); 616 // In the following code a nop could be inserted before 617 // the branch which will increase the backward distance. 618 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); 619 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block"); 620 621 if (needs_padding && offset <= 0) 622 offset -= nop_size; 623 624 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 625 // We've got a winner. Replace this branch. 626 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 627 628 // Update the jmp_size. 629 int new_size = replacement->size(C->regalloc()); 630 int diff = br_size - new_size; 631 assert(diff >= (int)nop_size, "short_branch size should be smaller"); 632 // Conservatively take into account padding between 633 // avoid_back_to_back branches. Previous branch could be 634 // converted into avoid_back_to_back branch during next 635 // rounds. 636 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 637 jmp_offset[i] += nop_size; 638 diff -= nop_size; 639 } 640 adjust_block_start += diff; 641 block->map_node(replacement, idx); 642 mach->subsume_by(replacement, C); 643 mach = replacement; 644 progress = true; 645 646 jmp_size[i] = new_size; 647 DEBUG_ONLY( jmp_target[i] = bnum; ); 648 DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); 649 } else { 650 // The jump distance is not short, try again during next iteration. 651 has_short_branch_candidate = true; 652 } 653 } // (mach->may_be_short_branch()) 654 if (mach != nullptr && (mach->may_be_short_branch() || 655 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { 656 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; 657 } 658 blk_starts[i+1] -= adjust_block_start; 659 } 660 } 661 662 #ifdef ASSERT 663 for (uint i = 0; i < nblocks; i++) { // For all blocks 664 if (jmp_target[i] != 0) { 665 int br_size = jmp_size[i]; 666 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 667 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 668 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 669 } 670 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp"); 671 } 672 } 673 #endif 674 675 // Step 3, compute the offsets of all blocks, will be done in fill_buffer() 676 // after ScheduleAndBundle(). 677 678 // ------------------ 679 // Compute size for code buffer 680 code_size = blk_starts[nblocks]; 681 682 // Relocation records 683 reloc_size += 1; // Relo entry for exception handler 684 685 // Adjust reloc_size to number of record of relocation info 686 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for 687 // a relocation index. 688 // The CodeBuffer will expand the locs array if this estimate is too low. 689 reloc_size *= 10 / sizeof(relocInfo); 690 691 _buf_sizes._reloc = reloc_size; 692 _buf_sizes._code = code_size; 693 _buf_sizes._stub = stub_size; 694 } 695 696 //------------------------------FillLocArray----------------------------------- 697 // Create a bit of debug info and append it to the array. The mapping is from 698 // Java local or expression stack to constant, register or stack-slot. For 699 // doubles, insert 2 mappings and return 1 (to tell the caller that the next 700 // entry has been taken care of and caller should skip it). 701 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { 702 // This should never have accepted Bad before 703 assert(OptoReg::is_valid(regnum), "location must be valid"); 704 return (OptoReg::is_reg(regnum)) 705 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) 706 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); 707 } 708 709 710 ObjectValue* 711 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { 712 for (int i = 0; i < objs->length(); i++) { 713 assert(objs->at(i)->is_object(), "corrupt object cache"); 714 ObjectValue* sv = objs->at(i)->as_ObjectValue(); 715 if (sv->id() == id) { 716 return sv; 717 } 718 } 719 // Otherwise.. 720 return nullptr; 721 } 722 723 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, 724 ObjectValue* sv ) { 725 assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition"); 726 objs->append(sv); 727 } 728 729 730 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, 731 GrowableArray<ScopeValue*> *array, 732 GrowableArray<ScopeValue*> *objs ) { 733 assert( local, "use _top instead of null" ); 734 if (array->length() != idx) { 735 assert(array->length() == idx + 1, "Unexpected array count"); 736 // Old functionality: 737 // return 738 // New functionality: 739 // Assert if the local is not top. In product mode let the new node 740 // override the old entry. 741 assert(local == C->top(), "LocArray collision"); 742 if (local == C->top()) { 743 return; 744 } 745 array->pop(); 746 } 747 const Type *t = local->bottom_type(); 748 749 // Is it a safepoint scalar object node? 750 if (local->is_SafePointScalarObject()) { 751 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); 752 753 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx); 754 if (sv == nullptr) { 755 ciKlass* cik = t->is_oopptr()->exact_klass(); 756 assert(cik->is_instance_klass() || 757 cik->is_array_klass(), "Not supported allocation."); 758 sv = new ObjectValue(spobj->_idx, 759 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 760 set_sv_for_object_node(objs, sv); 761 762 uint first_ind = spobj->first_index(sfpt->jvms()); 763 for (uint i = 0; i < spobj->n_fields(); i++) { 764 Node* fld_node = sfpt->in(first_ind+i); 765 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 766 } 767 } 768 array->append(sv); 769 return; 770 } else if (local->is_SafePointScalarMerge()) { 771 SafePointScalarMergeNode* smerge = local->as_SafePointScalarMerge(); 772 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 773 774 if (mv == nullptr) { 775 GrowableArray<ScopeValue*> deps; 776 777 int merge_pointer_idx = smerge->merge_pointer_idx(sfpt->jvms()); 778 (void)FillLocArray(0, sfpt, sfpt->in(merge_pointer_idx), &deps, objs); 779 assert(deps.length() == 1, "missing value"); 780 781 int selector_idx = smerge->selector_idx(sfpt->jvms()); 782 (void)FillLocArray(1, nullptr, sfpt->in(selector_idx), &deps, nullptr); 783 assert(deps.length() == 2, "missing value"); 784 785 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 786 set_sv_for_object_node(objs, mv); 787 788 for (uint i = 1; i < smerge->req(); i++) { 789 Node* obj_node = smerge->in(i); 790 int idx = mv->possible_objects()->length(); 791 (void)FillLocArray(idx, sfpt, obj_node, mv->possible_objects(), objs); 792 793 // By default ObjectValues that are in 'possible_objects' are not root objects. 794 // They will be marked as root later if they are directly referenced in a JVMS. 795 assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!"); 796 assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue."); 797 mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false); 798 } 799 } 800 array->append(mv); 801 return; 802 } 803 804 // Grab the register number for the local 805 OptoReg::Name regnum = C->regalloc()->get_reg_first(local); 806 if( OptoReg::is_valid(regnum) ) {// Got a register/stack? 807 // Record the double as two float registers. 808 // The register mask for such a value always specifies two adjacent 809 // float registers, with the lower register number even. 810 // Normally, the allocation of high and low words to these registers 811 // is irrelevant, because nearly all operations on register pairs 812 // (e.g., StoreD) treat them as a single unit. 813 // Here, we assume in addition that the words in these two registers 814 // stored "naturally" (by operations like StoreD and double stores 815 // within the interpreter) such that the lower-numbered register 816 // is written to the lower memory address. This may seem like 817 // a machine dependency, but it is not--it is a requirement on 818 // the author of the <arch>.ad file to ensure that, for every 819 // even/odd double-register pair to which a double may be allocated, 820 // the word in the even single-register is stored to the first 821 // memory word. (Note that register numbers are completely 822 // arbitrary, and are not tied to any machine-level encodings.) 823 #ifdef _LP64 824 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { 825 array->append(new ConstantIntValue((jint)0)); 826 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl )); 827 } else if ( t->base() == Type::Long ) { 828 array->append(new ConstantIntValue((jint)0)); 829 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 830 } else if ( t->base() == Type::RawPtr ) { 831 // jsr/ret return address which must be restored into the full 832 // width 64-bit stack slot. 833 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 834 } 835 #else //_LP64 836 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { 837 // Repack the double/long as two jints. 838 // The convention the interpreter uses is that the second local 839 // holds the first raw word of the native double representation. 840 // This is actually reasonable, since locals and stack arrays 841 // grow downwards in all implementations. 842 // (If, on some machine, the interpreter's Java locals or stack 843 // were to grow upwards, the embedded doubles would be word-swapped.) 844 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal )); 845 array->append(new_loc_value( C->regalloc(), regnum , Location::normal )); 846 } 847 #endif //_LP64 848 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && 849 OptoReg::is_reg(regnum) ) { 850 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double() 851 ? Location::float_in_dbl : Location::normal )); 852 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { 853 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long 854 ? Location::int_in_long : Location::normal )); 855 } else if( t->base() == Type::NarrowOop ) { 856 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop )); 857 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS || 858 t->base() == Type::VectorD || t->base() == Type::VectorX || 859 t->base() == Type::VectorY || t->base() == Type::VectorZ) { 860 array->append(new_loc_value( C->regalloc(), regnum, Location::vector )); 861 } else if (C->regalloc()->is_oop(local)) { 862 assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr || 863 t->base() == Type::AryPtr, 864 "Unexpected type: %s", t->msg()); 865 array->append(new_loc_value( C->regalloc(), regnum, Location::oop )); 866 } else { 867 assert(t->base() == Type::Int || t->base() == Type::Half || 868 t->base() == Type::FloatCon || t->base() == Type::FloatBot, 869 "Unexpected type: %s", t->msg()); 870 array->append(new_loc_value( C->regalloc(), regnum, Location::normal )); 871 } 872 return; 873 } 874 875 // No register. It must be constant data. 876 switch (t->base()) { 877 case Type::Half: // Second half of a double 878 ShouldNotReachHere(); // Caller should skip 2nd halves 879 break; 880 case Type::AnyPtr: 881 array->append(new ConstantOopWriteValue(nullptr)); 882 break; 883 case Type::AryPtr: 884 case Type::InstPtr: // fall through 885 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); 886 break; 887 case Type::NarrowOop: 888 if (t == TypeNarrowOop::NULL_PTR) { 889 array->append(new ConstantOopWriteValue(nullptr)); 890 } else { 891 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); 892 } 893 break; 894 case Type::Int: 895 array->append(new ConstantIntValue(t->is_int()->get_con())); 896 break; 897 case Type::RawPtr: 898 // A return address (T_ADDRESS). 899 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); 900 #ifdef _LP64 901 // Must be restored to the full-width 64-bit stack slot. 902 array->append(new ConstantLongValue(t->is_ptr()->get_con())); 903 #else 904 array->append(new ConstantIntValue(t->is_ptr()->get_con())); 905 #endif 906 break; 907 case Type::FloatCon: { 908 float f = t->is_float_constant()->getf(); 909 array->append(new ConstantIntValue(jint_cast(f))); 910 break; 911 } 912 case Type::DoubleCon: { 913 jdouble d = t->is_double_constant()->getd(); 914 #ifdef _LP64 915 array->append(new ConstantIntValue((jint)0)); 916 array->append(new ConstantDoubleValue(d)); 917 #else 918 // Repack the double as two jints. 919 // The convention the interpreter uses is that the second local 920 // holds the first raw word of the native double representation. 921 // This is actually reasonable, since locals and stack arrays 922 // grow downwards in all implementations. 923 // (If, on some machine, the interpreter's Java locals or stack 924 // were to grow upwards, the embedded doubles would be word-swapped.) 925 jlong_accessor acc; 926 acc.long_value = jlong_cast(d); 927 array->append(new ConstantIntValue(acc.words[1])); 928 array->append(new ConstantIntValue(acc.words[0])); 929 #endif 930 break; 931 } 932 case Type::Long: { 933 jlong d = t->is_long()->get_con(); 934 #ifdef _LP64 935 array->append(new ConstantIntValue((jint)0)); 936 array->append(new ConstantLongValue(d)); 937 #else 938 // Repack the long as two jints. 939 // The convention the interpreter uses is that the second local 940 // holds the first raw word of the native double representation. 941 // This is actually reasonable, since locals and stack arrays 942 // grow downwards in all implementations. 943 // (If, on some machine, the interpreter's Java locals or stack 944 // were to grow upwards, the embedded doubles would be word-swapped.) 945 jlong_accessor acc; 946 acc.long_value = d; 947 array->append(new ConstantIntValue(acc.words[1])); 948 array->append(new ConstantIntValue(acc.words[0])); 949 #endif 950 break; 951 } 952 case Type::Top: // Add an illegal value here 953 array->append(new LocationValue(Location())); 954 break; 955 default: 956 ShouldNotReachHere(); 957 break; 958 } 959 } 960 961 // Determine if this node starts a bundle 962 bool PhaseOutput::starts_bundle(const Node *n) const { 963 return (_node_bundling_limit > n->_idx && 964 _node_bundling_base[n->_idx].starts_bundle()); 965 } 966 967 // Determine if there is a monitor that has 'ov' as its owner. 968 bool PhaseOutput::contains_as_owner(GrowableArray<MonitorValue*> *monarray, ObjectValue *ov) const { 969 for (int k = 0; k < monarray->length(); k++) { 970 MonitorValue* mv = monarray->at(k); 971 if (mv->owner() == ov) { 972 return true; 973 } 974 } 975 976 return false; 977 } 978 979 // Determine if there is a scalar replaced object description represented by 'ov'. 980 bool PhaseOutput::contains_as_scalarized_obj(JVMState* jvms, MachSafePointNode* sfn, 981 GrowableArray<ScopeValue*>* objs, 982 ObjectValue* ov) const { 983 for (int i = 0; i < jvms->scl_size(); i++) { 984 Node* n = sfn->scalarized_obj(jvms, i); 985 // Other kinds of nodes that we may encounter here, for instance constants 986 // representing values of fields of objects scalarized, aren't relevant for 987 // us, since they don't map to ObjectValue. 988 if (!n->is_SafePointScalarObject()) { 989 continue; 990 } 991 992 ObjectValue* other = sv_for_node_id(objs, n->_idx); 993 if (ov == other) { 994 return true; 995 } 996 } 997 return false; 998 } 999 1000 //--------------------------Process_OopMap_Node-------------------------------- 1001 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) { 1002 // Handle special safepoint nodes for synchronization 1003 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1004 MachCallNode *mcall; 1005 1006 int safepoint_pc_offset = current_offset; 1007 bool is_method_handle_invoke = false; 1008 bool return_oop = false; 1009 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope; 1010 bool arg_escape = false; 1011 1012 // Add the safepoint in the DebugInfoRecorder 1013 if( !mach->is_MachCall() ) { 1014 mcall = nullptr; 1015 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); 1016 } else { 1017 mcall = mach->as_MachCall(); 1018 1019 // Is the call a MethodHandle call? 1020 if (mcall->is_MachCallJava()) { 1021 if (mcall->as_MachCallJava()->_method_handle_invoke) { 1022 assert(C->has_method_handle_invokes(), "must have been set during call generation"); 1023 is_method_handle_invoke = true; 1024 } 1025 arg_escape = mcall->as_MachCallJava()->_arg_escape; 1026 } 1027 1028 // Check if a call returns an object. 1029 if (mcall->returns_pointer()) { 1030 return_oop = true; 1031 } 1032 safepoint_pc_offset += mcall->ret_addr_offset(); 1033 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); 1034 } 1035 1036 // Loop over the JVMState list to add scope information 1037 // Do not skip safepoints with a null method, they need monitor info 1038 JVMState* youngest_jvms = sfn->jvms(); 1039 int max_depth = youngest_jvms->depth(); 1040 1041 // Allocate the object pool for scalar-replaced objects -- the map from 1042 // small-integer keys (which can be recorded in the local and ostack 1043 // arrays) to descriptions of the object state. 1044 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); 1045 1046 // Visit scopes from oldest to youngest. 1047 for (int depth = 1; depth <= max_depth; depth++) { 1048 JVMState* jvms = youngest_jvms->of_depth(depth); 1049 int idx; 1050 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1051 // Safepoints that do not have method() set only provide oop-map and monitor info 1052 // to support GC; these do not support deoptimization. 1053 int num_locs = (method == nullptr) ? 0 : jvms->loc_size(); 1054 int num_exps = (method == nullptr) ? 0 : jvms->stk_size(); 1055 int num_mon = jvms->nof_monitors(); 1056 assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(), 1057 "JVMS local count must match that of the method"); 1058 1059 // Add Local and Expression Stack Information 1060 1061 // Insert locals into the locarray 1062 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); 1063 for( idx = 0; idx < num_locs; idx++ ) { 1064 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); 1065 } 1066 1067 // Insert expression stack entries into the exparray 1068 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); 1069 for( idx = 0; idx < num_exps; idx++ ) { 1070 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); 1071 } 1072 1073 // Add in mappings of the monitors 1074 assert( !method || 1075 !method->is_synchronized() || 1076 method->is_native() || 1077 num_mon > 0, 1078 "monitors must always exist for synchronized methods"); 1079 1080 // Build the growable array of ScopeValues for exp stack 1081 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 1082 1083 // Loop over monitors and insert into array 1084 for (idx = 0; idx < num_mon; idx++) { 1085 // Grab the node that defines this monitor 1086 Node* box_node = sfn->monitor_box(jvms, idx); 1087 Node* obj_node = sfn->monitor_obj(jvms, idx); 1088 1089 // Create ScopeValue for object 1090 ScopeValue *scval = nullptr; 1091 1092 if (obj_node->is_SafePointScalarObject()) { 1093 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 1094 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx); 1095 if (scval == nullptr) { 1096 const Type *t = spobj->bottom_type(); 1097 ciKlass* cik = t->is_oopptr()->exact_klass(); 1098 assert(cik->is_instance_klass() || 1099 cik->is_array_klass(), "Not supported allocation."); 1100 ObjectValue* sv = new ObjectValue(spobj->_idx, 1101 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 1102 PhaseOutput::set_sv_for_object_node(objs, sv); 1103 1104 uint first_ind = spobj->first_index(youngest_jvms); 1105 for (uint i = 0; i < spobj->n_fields(); i++) { 1106 Node* fld_node = sfn->in(first_ind+i); 1107 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 1108 } 1109 scval = sv; 1110 } 1111 } else if (obj_node->is_SafePointScalarMerge()) { 1112 SafePointScalarMergeNode* smerge = obj_node->as_SafePointScalarMerge(); 1113 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 1114 1115 if (mv == nullptr) { 1116 GrowableArray<ScopeValue*> deps; 1117 1118 int merge_pointer_idx = smerge->merge_pointer_idx(youngest_jvms); 1119 FillLocArray(0, sfn, sfn->in(merge_pointer_idx), &deps, objs); 1120 assert(deps.length() == 1, "missing value"); 1121 1122 int selector_idx = smerge->selector_idx(youngest_jvms); 1123 FillLocArray(1, nullptr, sfn->in(selector_idx), &deps, nullptr); 1124 assert(deps.length() == 2, "missing value"); 1125 1126 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 1127 set_sv_for_object_node(objs, mv); 1128 1129 for (uint i = 1; i < smerge->req(); i++) { 1130 Node* obj_node = smerge->in(i); 1131 int idx = mv->possible_objects()->length(); 1132 (void)FillLocArray(idx, sfn, obj_node, mv->possible_objects(), objs); 1133 1134 // By default ObjectValues that are in 'possible_objects' are not root objects. 1135 // They will be marked as root later if they are directly referenced in a JVMS. 1136 assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!"); 1137 assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue."); 1138 mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false); 1139 } 1140 } 1141 scval = mv; 1142 } else if (!obj_node->is_Con()) { 1143 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node); 1144 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 1145 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop ); 1146 } else { 1147 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop ); 1148 } 1149 } else { 1150 const TypePtr *tp = obj_node->get_ptr_type(); 1151 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); 1152 } 1153 1154 OptoReg::Name box_reg = BoxLockNode::reg(box_node); 1155 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg)); 1156 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); 1157 monarray->append(new MonitorValue(scval, basic_lock, eliminated)); 1158 } 1159 1160 // Mark ObjectValue nodes as root nodes if they are directly 1161 // referenced in the JVMS. 1162 for (int i = 0; i < objs->length(); i++) { 1163 ScopeValue* sv = objs->at(i); 1164 if (sv->is_object_merge()) { 1165 ObjectMergeValue* merge = sv->as_ObjectMergeValue(); 1166 1167 for (int j = 0; j< merge->possible_objects()->length(); j++) { 1168 ObjectValue* ov = merge->possible_objects()->at(j)->as_ObjectValue(); 1169 if (ov->is_root()) { 1170 // Already flagged as 'root' by something else. We shouldn't change it 1171 // to non-root in a younger JVMS because it may need to be alive in 1172 // a younger JVMS. 1173 } else { 1174 bool is_root = locarray->contains(ov) || 1175 exparray->contains(ov) || 1176 contains_as_owner(monarray, ov) || 1177 contains_as_scalarized_obj(jvms, sfn, objs, ov); 1178 ov->set_root(is_root); 1179 } 1180 } 1181 } 1182 } 1183 1184 // We dump the object pool first, since deoptimization reads it in first. 1185 C->debug_info()->dump_object_pool(objs); 1186 1187 // Build first class objects to pass to scope 1188 DebugToken *locvals = C->debug_info()->create_scope_values(locarray); 1189 DebugToken *expvals = C->debug_info()->create_scope_values(exparray); 1190 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray); 1191 1192 // Make method available for all Safepoints 1193 ciMethod* scope_method = method ? method : C->method(); 1194 // Describe the scope here 1195 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); 1196 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest"); 1197 // Now we can describe the scope. 1198 methodHandle null_mh; 1199 bool rethrow_exception = false; 1200 C->debug_info()->describe_scope( 1201 safepoint_pc_offset, 1202 null_mh, 1203 scope_method, 1204 jvms->bci(), 1205 jvms->should_reexecute(), 1206 rethrow_exception, 1207 is_method_handle_invoke, 1208 return_oop, 1209 has_ea_local_in_scope, 1210 arg_escape, 1211 locvals, 1212 expvals, 1213 monvals 1214 ); 1215 } // End jvms loop 1216 1217 // Mark the end of the scope set. 1218 C->debug_info()->end_safepoint(safepoint_pc_offset); 1219 } 1220 1221 1222 1223 // A simplified version of Process_OopMap_Node, to handle non-safepoints. 1224 class NonSafepointEmitter { 1225 Compile* C; 1226 JVMState* _pending_jvms; 1227 int _pending_offset; 1228 1229 void emit_non_safepoint(); 1230 1231 public: 1232 NonSafepointEmitter(Compile* compile) { 1233 this->C = compile; 1234 _pending_jvms = nullptr; 1235 _pending_offset = 0; 1236 } 1237 1238 void observe_instruction(Node* n, int pc_offset) { 1239 if (!C->debug_info()->recording_non_safepoints()) return; 1240 1241 Node_Notes* nn = C->node_notes_at(n->_idx); 1242 if (nn == nullptr || nn->jvms() == nullptr) return; 1243 if (_pending_jvms != nullptr && 1244 _pending_jvms->same_calls_as(nn->jvms())) { 1245 // Repeated JVMS? Stretch it up here. 1246 _pending_offset = pc_offset; 1247 } else { 1248 if (_pending_jvms != nullptr && 1249 _pending_offset < pc_offset) { 1250 emit_non_safepoint(); 1251 } 1252 _pending_jvms = nullptr; 1253 if (pc_offset > C->debug_info()->last_pc_offset()) { 1254 // This is the only way _pending_jvms can become non-null: 1255 _pending_jvms = nn->jvms(); 1256 _pending_offset = pc_offset; 1257 } 1258 } 1259 } 1260 1261 // Stay out of the way of real safepoints: 1262 void observe_safepoint(JVMState* jvms, int pc_offset) { 1263 if (_pending_jvms != nullptr && 1264 !_pending_jvms->same_calls_as(jvms) && 1265 _pending_offset < pc_offset) { 1266 emit_non_safepoint(); 1267 } 1268 _pending_jvms = nullptr; 1269 } 1270 1271 void flush_at_end() { 1272 if (_pending_jvms != nullptr) { 1273 emit_non_safepoint(); 1274 } 1275 _pending_jvms = nullptr; 1276 } 1277 }; 1278 1279 void NonSafepointEmitter::emit_non_safepoint() { 1280 JVMState* youngest_jvms = _pending_jvms; 1281 int pc_offset = _pending_offset; 1282 1283 // Clear it now: 1284 _pending_jvms = nullptr; 1285 1286 DebugInformationRecorder* debug_info = C->debug_info(); 1287 assert(debug_info->recording_non_safepoints(), "sanity"); 1288 1289 debug_info->add_non_safepoint(pc_offset); 1290 int max_depth = youngest_jvms->depth(); 1291 1292 // Visit scopes from oldest to youngest. 1293 for (int depth = 1; depth <= max_depth; depth++) { 1294 JVMState* jvms = youngest_jvms->of_depth(depth); 1295 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1296 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest"); 1297 methodHandle null_mh; 1298 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); 1299 } 1300 1301 // Mark the end of the scope set. 1302 debug_info->end_non_safepoint(pc_offset); 1303 } 1304 1305 //------------------------------init_buffer------------------------------------ 1306 void PhaseOutput::estimate_buffer_size(int& const_req) { 1307 1308 // Set the initially allocated size 1309 const_req = initial_const_capacity; 1310 1311 // The extra spacing after the code is necessary on some platforms. 1312 // Sometimes we need to patch in a jump after the last instruction, 1313 // if the nmethod has been deoptimized. (See 4932387, 4894843.) 1314 1315 // Compute the byte offset where we can store the deopt pc. 1316 if (C->fixed_slots() != 0) { 1317 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); 1318 } 1319 1320 // Compute prolog code size 1321 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize; 1322 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1323 1324 if (C->has_mach_constant_base_node()) { 1325 uint add_size = 0; 1326 // Fill the constant table. 1327 // Note: This must happen before shorten_branches. 1328 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1329 Block* b = C->cfg()->get_block(i); 1330 1331 for (uint j = 0; j < b->number_of_nodes(); j++) { 1332 Node* n = b->get_node(j); 1333 1334 // If the node is a MachConstantNode evaluate the constant 1335 // value section. 1336 if (n->is_MachConstant()) { 1337 MachConstantNode* machcon = n->as_MachConstant(); 1338 machcon->eval_constant(C); 1339 } else if (n->is_Mach()) { 1340 // On Power there are more nodes that issue constants. 1341 add_size += (n->as_Mach()->ins_num_consts() * 8); 1342 } 1343 } 1344 } 1345 1346 // Calculate the offsets of the constants and the size of the 1347 // constant table (including the padding to the next section). 1348 constant_table().calculate_offsets_and_size(); 1349 const_req = constant_table().alignment() + constant_table().size() + add_size; 1350 } 1351 1352 // Initialize the space for the BufferBlob used to find and verify 1353 // instruction size in MachNode::emit_size() 1354 init_scratch_buffer_blob(const_req); 1355 } 1356 1357 CodeBuffer* PhaseOutput::init_buffer() { 1358 int stub_req = _buf_sizes._stub; 1359 int code_req = _buf_sizes._code; 1360 int const_req = _buf_sizes._const; 1361 1362 int pad_req = NativeCall::byte_size(); 1363 1364 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1365 stub_req += bs->estimate_stub_size(); 1366 1367 // nmethod and CodeBuffer count stubs & constants as part of method's code. 1368 // class HandlerImpl is platform-specific and defined in the *.ad files. 1369 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler 1370 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler 1371 stub_req += MAX_stubs_size; // ensure per-stub margin 1372 code_req += max_inst_size(); // ensure per-instruction margin 1373 1374 if (StressCodeBuffers) 1375 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion 1376 1377 int total_req = 1378 const_req + 1379 code_req + 1380 pad_req + 1381 stub_req + 1382 exception_handler_req + 1383 deopt_handler_req; // deopt handler 1384 1385 if (C->has_method_handle_invokes()) 1386 total_req += deopt_handler_req; // deopt MH handler 1387 1388 CodeBuffer* cb = code_buffer(); 1389 cb->set_const_section_alignment(constant_table().alignment()); 1390 cb->initialize(total_req, _buf_sizes._reloc); 1391 1392 // Have we run out of code space? 1393 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1394 C->record_failure("CodeCache is full"); 1395 return nullptr; 1396 } 1397 // Configure the code buffer. 1398 cb->initialize_consts_size(const_req); 1399 cb->initialize_stubs_size(stub_req); 1400 cb->initialize_oop_recorder(C->env()->oop_recorder()); 1401 1402 // fill in the nop array for bundling computations 1403 MachNode *_nop_list[Bundle::_nop_count]; 1404 Bundle::initialize_nops(_nop_list); 1405 1406 return cb; 1407 } 1408 1409 //------------------------------fill_buffer------------------------------------ 1410 void PhaseOutput::fill_buffer(C2_MacroAssembler* masm, uint* blk_starts) { 1411 // blk_starts[] contains offsets calculated during short branches processing, 1412 // offsets should not be increased during following steps. 1413 1414 // Compute the size of first NumberOfLoopInstrToAlign instructions at head 1415 // of a loop. It is used to determine the padding for loop alignment. 1416 Compile::TracePhase tp(_t_fillBuffer); 1417 1418 compute_loop_first_inst_sizes(); 1419 1420 // Create oopmap set. 1421 _oop_map_set = new OopMapSet(); 1422 1423 // !!!!! This preserves old handling of oopmaps for now 1424 C->debug_info()->set_oopmaps(_oop_map_set); 1425 1426 uint nblocks = C->cfg()->number_of_blocks(); 1427 // Count and start of implicit null check instructions 1428 uint inct_cnt = 0; 1429 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1430 1431 // Count and start of calls 1432 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1433 1434 uint return_offset = 0; 1435 int nop_size = (new MachNopNode())->size(C->regalloc()); 1436 1437 int previous_offset = 0; 1438 int current_offset = 0; 1439 int last_call_offset = -1; 1440 int last_avoid_back_to_back_offset = -1; 1441 #ifdef ASSERT 1442 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); 1443 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 1444 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 1445 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); 1446 #endif 1447 1448 // Create an array of unused labels, one for each basic block, if printing is enabled 1449 #if defined(SUPPORT_OPTO_ASSEMBLY) 1450 int* node_offsets = nullptr; 1451 uint node_offset_limit = C->unique(); 1452 1453 if (C->print_assembly()) { 1454 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); 1455 } 1456 if (node_offsets != nullptr) { 1457 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. 1458 memset(node_offsets, 0, node_offset_limit*sizeof(int)); 1459 } 1460 #endif 1461 1462 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily 1463 1464 // Emit the constant table. 1465 if (C->has_mach_constant_base_node()) { 1466 if (!constant_table().emit(masm)) { 1467 C->record_failure("consts section overflow"); 1468 return; 1469 } 1470 } 1471 1472 // Create an array of labels, one for each basic block 1473 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); 1474 for (uint i = 0; i <= nblocks; i++) { 1475 blk_labels[i].init(); 1476 } 1477 1478 // Now fill in the code buffer 1479 Node* delay_slot = nullptr; 1480 for (uint i = 0; i < nblocks; i++) { 1481 Block* block = C->cfg()->get_block(i); 1482 _block = block; 1483 Node* head = block->head(); 1484 1485 // If this block needs to start aligned (i.e, can be reached other 1486 // than by falling-thru from the previous block), then force the 1487 // start of a new bundle. 1488 if (Pipeline::requires_bundling() && starts_bundle(head)) { 1489 masm->code()->flush_bundle(true); 1490 } 1491 1492 #ifdef ASSERT 1493 if (!block->is_connector()) { 1494 stringStream st; 1495 block->dump_head(C->cfg(), &st); 1496 masm->block_comment(st.freeze()); 1497 } 1498 jmp_target[i] = 0; 1499 jmp_offset[i] = 0; 1500 jmp_size[i] = 0; 1501 jmp_rule[i] = 0; 1502 #endif 1503 int blk_offset = current_offset; 1504 1505 // Define the label at the beginning of the basic block 1506 masm->bind(blk_labels[block->_pre_order]); 1507 1508 uint last_inst = block->number_of_nodes(); 1509 1510 // Emit block normally, except for last instruction. 1511 // Emit means "dump code bits into code buffer". 1512 for (uint j = 0; j<last_inst; j++) { 1513 _index = j; 1514 1515 // Get the node 1516 Node* n = block->get_node(j); 1517 1518 // See if delay slots are supported 1519 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { 1520 assert(delay_slot == nullptr, "no use of delay slot node"); 1521 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); 1522 1523 delay_slot = n; 1524 continue; 1525 } 1526 1527 // If this starts a new instruction group, then flush the current one 1528 // (but allow split bundles) 1529 if (Pipeline::requires_bundling() && starts_bundle(n)) 1530 masm->code()->flush_bundle(false); 1531 1532 // Special handling for SafePoint/Call Nodes 1533 bool is_mcall = false; 1534 if (n->is_Mach()) { 1535 MachNode *mach = n->as_Mach(); 1536 is_mcall = n->is_MachCall(); 1537 bool is_sfn = n->is_MachSafePoint(); 1538 1539 // If this requires all previous instructions be flushed, then do so 1540 if (is_sfn || is_mcall || mach->alignment_required() != 1) { 1541 masm->code()->flush_bundle(true); 1542 current_offset = masm->offset(); 1543 } 1544 1545 // A padding may be needed again since a previous instruction 1546 // could be moved to delay slot. 1547 1548 // align the instruction if necessary 1549 int padding = mach->compute_padding(current_offset); 1550 // Make sure safepoint node for polling is distinct from a call's 1551 // return by adding a nop if needed. 1552 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { 1553 padding = nop_size; 1554 } 1555 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && 1556 current_offset == last_avoid_back_to_back_offset) { 1557 // Avoid back to back some instructions. 1558 padding = nop_size; 1559 } 1560 1561 if (padding > 0) { 1562 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1563 int nops_cnt = padding / nop_size; 1564 MachNode *nop = new MachNopNode(nops_cnt); 1565 block->insert_node(nop, j++); 1566 last_inst++; 1567 C->cfg()->map_node_to_block(nop, block); 1568 // Ensure enough space. 1569 masm->code()->insts()->maybe_expand_to_ensure_remaining(max_inst_size()); 1570 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1571 C->record_failure("CodeCache is full"); 1572 return; 1573 } 1574 nop->emit(masm, C->regalloc()); 1575 masm->code()->flush_bundle(true); 1576 current_offset = masm->offset(); 1577 } 1578 1579 bool observe_safepoint = is_sfn; 1580 // Remember the start of the last call in a basic block 1581 if (is_mcall) { 1582 MachCallNode *mcall = mach->as_MachCall(); 1583 1584 // This destination address is NOT PC-relative 1585 mcall->method_set((intptr_t)mcall->entry_point()); 1586 1587 // Save the return address 1588 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); 1589 1590 observe_safepoint = mcall->guaranteed_safepoint(); 1591 } 1592 1593 // sfn will be valid whenever mcall is valid now because of inheritance 1594 if (observe_safepoint) { 1595 // Handle special safepoint nodes for synchronization 1596 if (!is_mcall) { 1597 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1598 // !!!!! Stubs only need an oopmap right now, so bail out 1599 if (sfn->jvms()->method() == nullptr) { 1600 // Write the oopmap directly to the code blob??!! 1601 continue; 1602 } 1603 } // End synchronization 1604 1605 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1606 current_offset); 1607 Process_OopMap_Node(mach, current_offset); 1608 } // End if safepoint 1609 1610 // If this is a null check, then add the start of the previous instruction to the list 1611 else if( mach->is_MachNullCheck() ) { 1612 inct_starts[inct_cnt++] = previous_offset; 1613 } 1614 1615 // If this is a branch, then fill in the label with the target BB's label 1616 else if (mach->is_MachBranch()) { 1617 // This requires the TRUE branch target be in succs[0] 1618 uint block_num = block->non_connector_successor(0)->_pre_order; 1619 1620 // Try to replace long branch if delay slot is not used, 1621 // it is mostly for back branches since forward branch's 1622 // distance is not updated yet. 1623 bool delay_slot_is_used = valid_bundle_info(n) && 1624 C->output()->node_bundling(n)->use_unconditional_delay(); 1625 if (!delay_slot_is_used && mach->may_be_short_branch()) { 1626 assert(delay_slot == nullptr, "not expecting delay slot node"); 1627 int br_size = n->size(C->regalloc()); 1628 int offset = blk_starts[block_num] - current_offset; 1629 if (block_num >= i) { 1630 // Current and following block's offset are not 1631 // finalized yet, adjust distance by the difference 1632 // between calculated and final offsets of current block. 1633 offset -= (blk_starts[i] - blk_offset); 1634 } 1635 // In the following code a nop could be inserted before 1636 // the branch which will increase the backward distance. 1637 bool needs_padding = (current_offset == last_avoid_back_to_back_offset); 1638 if (needs_padding && offset <= 0) 1639 offset -= nop_size; 1640 1641 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 1642 // We've got a winner. Replace this branch. 1643 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 1644 1645 // Update the jmp_size. 1646 int new_size = replacement->size(C->regalloc()); 1647 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1648 // Insert padding between avoid_back_to_back branches. 1649 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 1650 MachNode *nop = new MachNopNode(); 1651 block->insert_node(nop, j++); 1652 C->cfg()->map_node_to_block(nop, block); 1653 last_inst++; 1654 nop->emit(masm, C->regalloc()); 1655 masm->code()->flush_bundle(true); 1656 current_offset = masm->offset(); 1657 } 1658 #ifdef ASSERT 1659 jmp_target[i] = block_num; 1660 jmp_offset[i] = current_offset - blk_offset; 1661 jmp_size[i] = new_size; 1662 jmp_rule[i] = mach->rule(); 1663 #endif 1664 block->map_node(replacement, j); 1665 mach->subsume_by(replacement, C); 1666 n = replacement; 1667 mach = replacement; 1668 } 1669 } 1670 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1671 } else if (mach->ideal_Opcode() == Op_Jump) { 1672 for (uint h = 0; h < block->_num_succs; h++) { 1673 Block* succs_block = block->_succs[h]; 1674 for (uint j = 1; j < succs_block->num_preds(); j++) { 1675 Node* jpn = succs_block->pred(j); 1676 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1677 uint block_num = succs_block->non_connector()->_pre_order; 1678 Label *blkLabel = &blk_labels[block_num]; 1679 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1680 } 1681 } 1682 } 1683 } else if (!n->is_Proj()) { 1684 // Remember the beginning of the previous instruction, in case 1685 // it's followed by a flag-kill and a null-check. Happens on 1686 // Intel all the time, with add-to-memory kind of opcodes. 1687 previous_offset = current_offset; 1688 } 1689 1690 // Not an else-if! 1691 // If this is a trap based cmp then add its offset to the list. 1692 if (mach->is_TrapBasedCheckNode()) { 1693 inct_starts[inct_cnt++] = current_offset; 1694 } 1695 } 1696 1697 // Verify that there is sufficient space remaining 1698 masm->code()->insts()->maybe_expand_to_ensure_remaining(max_inst_size()); 1699 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1700 C->record_failure("CodeCache is full"); 1701 return; 1702 } 1703 1704 // Save the offset for the listing 1705 #if defined(SUPPORT_OPTO_ASSEMBLY) 1706 if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) { 1707 node_offsets[n->_idx] = masm->offset(); 1708 } 1709 #endif 1710 assert(!C->failing_internal() || C->failure_is_artificial(), "Should not reach here if failing."); 1711 1712 // "Normal" instruction case 1713 DEBUG_ONLY(uint instr_offset = masm->offset()); 1714 n->emit(masm, C->regalloc()); 1715 current_offset = masm->offset(); 1716 1717 // Above we only verified that there is enough space in the instruction section. 1718 // However, the instruction may emit stubs that cause code buffer expansion. 1719 // Bail out here if expansion failed due to a lack of code cache space. 1720 if (C->failing()) { 1721 return; 1722 } 1723 1724 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset), 1725 "ret_addr_offset() not within emitted code"); 1726 1727 #ifdef ASSERT 1728 uint n_size = n->size(C->regalloc()); 1729 if (n_size < (current_offset-instr_offset)) { 1730 MachNode* mach = n->as_Mach(); 1731 n->dump(); 1732 mach->dump_format(C->regalloc(), tty); 1733 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset); 1734 Disassembler::decode(masm->code()->insts_begin() + instr_offset, masm->code()->insts_begin() + current_offset + 1, tty); 1735 tty->print_cr(" ------------------- "); 1736 BufferBlob* blob = this->scratch_buffer_blob(); 1737 address blob_begin = blob->content_begin(); 1738 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty); 1739 assert(false, "wrong size of mach node"); 1740 } 1741 #endif 1742 non_safepoints.observe_instruction(n, current_offset); 1743 1744 // mcall is last "call" that can be a safepoint 1745 // record it so we can see if a poll will directly follow it 1746 // in which case we'll need a pad to make the PcDesc sites unique 1747 // see 5010568. This can be slightly inaccurate but conservative 1748 // in the case that return address is not actually at current_offset. 1749 // This is a small price to pay. 1750 1751 if (is_mcall) { 1752 last_call_offset = current_offset; 1753 } 1754 1755 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 1756 // Avoid back to back some instructions. 1757 last_avoid_back_to_back_offset = current_offset; 1758 } 1759 1760 // See if this instruction has a delay slot 1761 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 1762 guarantee(delay_slot != nullptr, "expecting delay slot node"); 1763 1764 // Back up 1 instruction 1765 masm->code()->set_insts_end(masm->code()->insts_end() - Pipeline::instr_unit_size()); 1766 1767 // Save the offset for the listing 1768 #if defined(SUPPORT_OPTO_ASSEMBLY) 1769 if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) { 1770 node_offsets[delay_slot->_idx] = masm->offset(); 1771 } 1772 #endif 1773 1774 // Support a SafePoint in the delay slot 1775 if (delay_slot->is_MachSafePoint()) { 1776 MachNode *mach = delay_slot->as_Mach(); 1777 // !!!!! Stubs only need an oopmap right now, so bail out 1778 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) { 1779 // Write the oopmap directly to the code blob??!! 1780 delay_slot = nullptr; 1781 continue; 1782 } 1783 1784 int adjusted_offset = current_offset - Pipeline::instr_unit_size(); 1785 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1786 adjusted_offset); 1787 // Generate an OopMap entry 1788 Process_OopMap_Node(mach, adjusted_offset); 1789 } 1790 1791 // Insert the delay slot instruction 1792 delay_slot->emit(masm, C->regalloc()); 1793 1794 // Don't reuse it 1795 delay_slot = nullptr; 1796 } 1797 1798 } // End for all instructions in block 1799 1800 // If the next block is the top of a loop, pad this block out to align 1801 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1802 if (i < nblocks-1) { 1803 Block *nb = C->cfg()->get_block(i + 1); 1804 int padding = nb->alignment_padding(current_offset); 1805 if( padding > 0 ) { 1806 MachNode *nop = new MachNopNode(padding / nop_size); 1807 block->insert_node(nop, block->number_of_nodes()); 1808 C->cfg()->map_node_to_block(nop, block); 1809 nop->emit(masm, C->regalloc()); 1810 current_offset = masm->offset(); 1811 } 1812 } 1813 // Verify that the distance for generated before forward 1814 // short branches is still valid. 1815 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size"); 1816 1817 // Save new block start offset 1818 blk_starts[i] = blk_offset; 1819 } // End of for all blocks 1820 blk_starts[nblocks] = current_offset; 1821 1822 non_safepoints.flush_at_end(); 1823 1824 // Offset too large? 1825 if (C->failing()) return; 1826 1827 // Define a pseudo-label at the end of the code 1828 masm->bind( blk_labels[nblocks] ); 1829 1830 // Compute the size of the first block 1831 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); 1832 1833 #ifdef ASSERT 1834 for (uint i = 0; i < nblocks; i++) { // For all blocks 1835 if (jmp_target[i] != 0) { 1836 int br_size = jmp_size[i]; 1837 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 1838 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 1839 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 1840 assert(false, "Displacement too large for short jmp"); 1841 } 1842 } 1843 } 1844 #endif 1845 1846 if (!masm->code()->finalize_stubs()) { 1847 C->record_failure("CodeCache is full"); 1848 return; 1849 } 1850 1851 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1852 bs->emit_stubs(*masm->code()); 1853 if (C->failing()) return; 1854 1855 // Fill in stubs. 1856 assert(masm->inst_mark() == nullptr, "should be."); 1857 _stub_list.emit(*masm); 1858 if (C->failing()) return; 1859 1860 #ifndef PRODUCT 1861 // Information on the size of the method, without the extraneous code 1862 Scheduling::increment_method_size(masm->offset()); 1863 #endif 1864 1865 // ------------------ 1866 // Fill in exception table entries. 1867 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); 1868 1869 // Only java methods have exception handlers and deopt handlers 1870 // class HandlerImpl is platform-specific and defined in the *.ad files. 1871 if (C->method()) { 1872 // Emit the exception handler code. 1873 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(masm)); 1874 if (C->failing()) { 1875 return; // CodeBuffer::expand failed 1876 } 1877 // Emit the deopt handler code. 1878 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(masm)); 1879 1880 // Emit the MethodHandle deopt handler code (if required). 1881 if (C->has_method_handle_invokes() && !C->failing()) { 1882 // We can use the same code as for the normal deopt handler, we 1883 // just need a different entry point address. 1884 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(masm)); 1885 } 1886 } 1887 1888 // One last check for failed CodeBuffer::expand: 1889 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1890 C->record_failure("CodeCache is full"); 1891 return; 1892 } 1893 1894 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) 1895 if (C->print_assembly()) { 1896 tty->cr(); 1897 tty->print_cr("============================= C2-compiled nmethod =============================="); 1898 } 1899 #endif 1900 1901 #if defined(SUPPORT_OPTO_ASSEMBLY) 1902 // Dump the assembly code, including basic-block numbers 1903 if (C->print_assembly()) { 1904 ttyLocker ttyl; // keep the following output all in one block 1905 if (!VMThread::should_terminate()) { // test this under the tty lock 1906 // print_metadata and dump_asm may safepoint which makes us loose the ttylock. 1907 // We call them first and write to a stringStream, then we retake the lock to 1908 // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe. 1909 ResourceMark rm; 1910 stringStream method_metadata_str; 1911 if (C->method() != nullptr) { 1912 C->method()->print_metadata(&method_metadata_str); 1913 } 1914 stringStream dump_asm_str; 1915 dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit); 1916 1917 NoSafepointVerifier nsv; 1918 ttyLocker ttyl2; 1919 // This output goes directly to the tty, not the compiler log. 1920 // To enable tools to match it up with the compilation activity, 1921 // be sure to tag this tty output with the compile ID. 1922 if (xtty != nullptr) { 1923 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(), 1924 C->is_osr_compilation() ? " compile_kind='osr'" : 1925 (C->for_preload() ? " compile_kind='AP'" : "")); 1926 } 1927 if (C->method() != nullptr) { 1928 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id()); 1929 tty->print_raw(method_metadata_str.freeze()); 1930 } else if (C->stub_name() != nullptr) { 1931 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name()); 1932 } 1933 tty->cr(); 1934 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id()); 1935 tty->print_raw(dump_asm_str.freeze()); 1936 tty->print_cr("--------------------------------------------------------------------------------"); 1937 if (xtty != nullptr) { 1938 xtty->tail("opto_assembly"); 1939 } 1940 } 1941 } 1942 #endif 1943 } 1944 1945 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 1946 _inc_table.set_size(cnt); 1947 1948 uint inct_cnt = 0; 1949 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1950 Block* block = C->cfg()->get_block(i); 1951 Node *n = nullptr; 1952 int j; 1953 1954 // Find the branch; ignore trailing NOPs. 1955 for (j = block->number_of_nodes() - 1; j >= 0; j--) { 1956 n = block->get_node(j); 1957 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { 1958 break; 1959 } 1960 } 1961 1962 // If we didn't find anything, continue 1963 if (j < 0) { 1964 continue; 1965 } 1966 1967 // Compute ExceptionHandlerTable subtable entry and add it 1968 // (skip empty blocks) 1969 if (n->is_Catch()) { 1970 1971 // Get the offset of the return from the call 1972 uint call_return = call_returns[block->_pre_order]; 1973 #ifdef ASSERT 1974 assert( call_return > 0, "no call seen for this basic block" ); 1975 while (block->get_node(--j)->is_MachProj()) ; 1976 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call"); 1977 #endif 1978 // last instruction is a CatchNode, find it's CatchProjNodes 1979 int nof_succs = block->_num_succs; 1980 // allocate space 1981 GrowableArray<intptr_t> handler_bcis(nof_succs); 1982 GrowableArray<intptr_t> handler_pcos(nof_succs); 1983 // iterate through all successors 1984 for (int j = 0; j < nof_succs; j++) { 1985 Block* s = block->_succs[j]; 1986 bool found_p = false; 1987 for (uint k = 1; k < s->num_preds(); k++) { 1988 Node* pk = s->pred(k); 1989 if (pk->is_CatchProj() && pk->in(0) == n) { 1990 const CatchProjNode* p = pk->as_CatchProj(); 1991 found_p = true; 1992 // add the corresponding handler bci & pco information 1993 if (p->_con != CatchProjNode::fall_through_index) { 1994 // p leads to an exception handler (and is not fall through) 1995 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering"); 1996 // no duplicates, please 1997 if (!handler_bcis.contains(p->handler_bci())) { 1998 uint block_num = s->non_connector()->_pre_order; 1999 handler_bcis.append(p->handler_bci()); 2000 handler_pcos.append(blk_labels[block_num].loc_pos()); 2001 } 2002 } 2003 } 2004 } 2005 assert(found_p, "no matching predecessor found"); 2006 // Note: Due to empty block removal, one block may have 2007 // several CatchProj inputs, from the same Catch. 2008 } 2009 2010 // Set the offset of the return from the call 2011 assert(handler_bcis.find(-1) != -1, "must have default handler"); 2012 _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos); 2013 continue; 2014 } 2015 2016 // Handle implicit null exception table updates 2017 if (n->is_MachNullCheck()) { 2018 MachNode* access = n->in(1)->as_Mach(); 2019 assert(access->barrier_data() == 0 || 2020 access->is_late_expanded_null_check_candidate(), 2021 "Implicit null checks on memory accesses with barriers are only supported on nodes explicitly marked as null-check candidates"); 2022 uint block_num = block->non_connector_successor(0)->_pre_order; 2023 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2024 continue; 2025 } 2026 // Handle implicit exception table updates: trap instructions. 2027 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { 2028 uint block_num = block->non_connector_successor(0)->_pre_order; 2029 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2030 continue; 2031 } 2032 } // End of for all blocks fill in exception table entries 2033 } 2034 2035 // Static Variables 2036 #ifndef PRODUCT 2037 uint Scheduling::_total_nop_size = 0; 2038 uint Scheduling::_total_method_size = 0; 2039 uint Scheduling::_total_branches = 0; 2040 uint Scheduling::_total_unconditional_delays = 0; 2041 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 2042 #endif 2043 2044 // Initializer for class Scheduling 2045 2046 Scheduling::Scheduling(Arena *arena, Compile &compile) 2047 : _arena(arena), 2048 _cfg(compile.cfg()), 2049 _regalloc(compile.regalloc()), 2050 _scheduled(arena), 2051 _available(arena), 2052 _reg_node(arena), 2053 _pinch_free_list(arena), 2054 _next_node(nullptr), 2055 _bundle_instr_count(0), 2056 _bundle_cycle_number(0), 2057 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) 2058 #ifndef PRODUCT 2059 , _branches(0) 2060 , _unconditional_delays(0) 2061 #endif 2062 { 2063 // Create a MachNopNode 2064 _nop = new MachNopNode(); 2065 2066 // Now that the nops are in the array, save the count 2067 // (but allow entries for the nops) 2068 _node_bundling_limit = compile.unique(); 2069 uint node_max = _regalloc->node_regs_max_index(); 2070 2071 compile.output()->set_node_bundling_limit(_node_bundling_limit); 2072 2073 // This one is persistent within the Compile class 2074 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); 2075 2076 // Allocate space for fixed-size arrays 2077 _uses = NEW_ARENA_ARRAY(arena, short, node_max); 2078 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 2079 2080 // Clear the arrays 2081 for (uint i = 0; i < node_max; i++) { 2082 ::new (&_node_bundling_base[i]) Bundle(); 2083 } 2084 memset(_uses, 0, node_max * sizeof(short)); 2085 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 2086 2087 // Clear the bundling information 2088 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); 2089 2090 // Get the last node 2091 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); 2092 2093 _next_node = block->get_node(block->number_of_nodes() - 1); 2094 } 2095 2096 #ifndef PRODUCT 2097 // Scheduling destructor 2098 Scheduling::~Scheduling() { 2099 _total_branches += _branches; 2100 _total_unconditional_delays += _unconditional_delays; 2101 } 2102 #endif 2103 2104 // Step ahead "i" cycles 2105 void Scheduling::step(uint i) { 2106 2107 Bundle *bundle = node_bundling(_next_node); 2108 bundle->set_starts_bundle(); 2109 2110 // Update the bundle record, but leave the flags information alone 2111 if (_bundle_instr_count > 0) { 2112 bundle->set_instr_count(_bundle_instr_count); 2113 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2114 } 2115 2116 // Update the state information 2117 _bundle_instr_count = 0; 2118 _bundle_cycle_number += i; 2119 _bundle_use.step(i); 2120 } 2121 2122 void Scheduling::step_and_clear() { 2123 Bundle *bundle = node_bundling(_next_node); 2124 bundle->set_starts_bundle(); 2125 2126 // Update the bundle record 2127 if (_bundle_instr_count > 0) { 2128 bundle->set_instr_count(_bundle_instr_count); 2129 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2130 2131 _bundle_cycle_number += 1; 2132 } 2133 2134 // Clear the bundling information 2135 _bundle_instr_count = 0; 2136 _bundle_use.reset(); 2137 2138 memcpy(_bundle_use_elements, 2139 Pipeline_Use::elaborated_elements, 2140 sizeof(Pipeline_Use::elaborated_elements)); 2141 } 2142 2143 // Perform instruction scheduling and bundling over the sequence of 2144 // instructions in backwards order. 2145 void PhaseOutput::ScheduleAndBundle() { 2146 2147 // Don't optimize this if it isn't a method 2148 if (!C->method()) 2149 return; 2150 2151 // Don't optimize this if scheduling is disabled 2152 if (!C->do_scheduling()) 2153 return; 2154 2155 // Scheduling code works only with pairs (8 bytes) maximum. 2156 // And when the scalable vector register is used, we may spill/unspill 2157 // the whole reg regardless of the max vector size. 2158 if (C->max_vector_size() > 8 || 2159 (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) { 2160 return; 2161 } 2162 2163 Compile::TracePhase tp(_t_instrSched); 2164 2165 // Create a data structure for all the scheduling information 2166 Scheduling scheduling(Thread::current()->resource_area(), *C); 2167 2168 // Walk backwards over each basic block, computing the needed alignment 2169 // Walk over all the basic blocks 2170 scheduling.DoScheduling(); 2171 2172 #ifndef PRODUCT 2173 if (C->trace_opto_output()) { 2174 // Buffer and print all at once 2175 ResourceMark rm; 2176 stringStream ss; 2177 ss.print("\n---- After ScheduleAndBundle ----\n"); 2178 print_scheduling(&ss); 2179 tty->print("%s", ss.as_string()); 2180 } 2181 #endif 2182 } 2183 2184 #ifndef PRODUCT 2185 // Separated out so that it can be called directly from debugger 2186 void PhaseOutput::print_scheduling() { 2187 print_scheduling(tty); 2188 } 2189 2190 void PhaseOutput::print_scheduling(outputStream* output_stream) { 2191 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2192 output_stream->print("\nBB#%03d:\n", i); 2193 Block* block = C->cfg()->get_block(i); 2194 for (uint j = 0; j < block->number_of_nodes(); j++) { 2195 Node* n = block->get_node(j); 2196 OptoReg::Name reg = C->regalloc()->get_reg_first(n); 2197 output_stream->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 2198 n->dump("\n", false, output_stream); 2199 } 2200 } 2201 } 2202 #endif 2203 2204 // See if this node fits into the present instruction bundle 2205 bool Scheduling::NodeFitsInBundle(Node *n) { 2206 uint n_idx = n->_idx; 2207 2208 // If this is the unconditional delay instruction, then it fits 2209 if (n == _unconditional_delay_slot) { 2210 #ifndef PRODUCT 2211 if (_cfg->C->trace_opto_output()) 2212 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); 2213 #endif 2214 return (true); 2215 } 2216 2217 // If the node cannot be scheduled this cycle, skip it 2218 if (_current_latency[n_idx] > _bundle_cycle_number) { 2219 #ifndef PRODUCT 2220 if (_cfg->C->trace_opto_output()) 2221 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", 2222 n->_idx, _current_latency[n_idx], _bundle_cycle_number); 2223 #endif 2224 return (false); 2225 } 2226 2227 const Pipeline *node_pipeline = n->pipeline(); 2228 2229 uint instruction_count = node_pipeline->instructionCount(); 2230 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2231 instruction_count = 0; 2232 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2233 instruction_count++; 2234 2235 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { 2236 #ifndef PRODUCT 2237 if (_cfg->C->trace_opto_output()) 2238 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", 2239 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); 2240 #endif 2241 return (false); 2242 } 2243 2244 // Don't allow non-machine nodes to be handled this way 2245 if (!n->is_Mach() && instruction_count == 0) 2246 return (false); 2247 2248 // See if there is any overlap 2249 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); 2250 2251 if (delay > 0) { 2252 #ifndef PRODUCT 2253 if (_cfg->C->trace_opto_output()) 2254 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); 2255 #endif 2256 return false; 2257 } 2258 2259 #ifndef PRODUCT 2260 if (_cfg->C->trace_opto_output()) 2261 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); 2262 #endif 2263 2264 return true; 2265 } 2266 2267 Node * Scheduling::ChooseNodeToBundle() { 2268 uint siz = _available.size(); 2269 2270 if (siz == 0) { 2271 2272 #ifndef PRODUCT 2273 if (_cfg->C->trace_opto_output()) 2274 tty->print("# ChooseNodeToBundle: null\n"); 2275 #endif 2276 return (nullptr); 2277 } 2278 2279 // Fast path, if only 1 instruction in the bundle 2280 if (siz == 1) { 2281 #ifndef PRODUCT 2282 if (_cfg->C->trace_opto_output()) { 2283 tty->print("# ChooseNodeToBundle (only 1): "); 2284 _available[0]->dump(); 2285 } 2286 #endif 2287 return (_available[0]); 2288 } 2289 2290 // Don't bother, if the bundle is already full 2291 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { 2292 for ( uint i = 0; i < siz; i++ ) { 2293 Node *n = _available[i]; 2294 2295 // Skip projections, we'll handle them another way 2296 if (n->is_Proj()) 2297 continue; 2298 2299 // This presupposed that instructions are inserted into the 2300 // available list in a legality order; i.e. instructions that 2301 // must be inserted first are at the head of the list 2302 if (NodeFitsInBundle(n)) { 2303 #ifndef PRODUCT 2304 if (_cfg->C->trace_opto_output()) { 2305 tty->print("# ChooseNodeToBundle: "); 2306 n->dump(); 2307 } 2308 #endif 2309 return (n); 2310 } 2311 } 2312 } 2313 2314 // Nothing fits in this bundle, choose the highest priority 2315 #ifndef PRODUCT 2316 if (_cfg->C->trace_opto_output()) { 2317 tty->print("# ChooseNodeToBundle: "); 2318 _available[0]->dump(); 2319 } 2320 #endif 2321 2322 return _available[0]; 2323 } 2324 2325 int Scheduling::compare_two_spill_nodes(Node* first, Node* second) { 2326 assert(first->is_MachSpillCopy() && second->is_MachSpillCopy(), ""); 2327 2328 OptoReg::Name first_src_lo = _regalloc->get_reg_first(first->in(1)); 2329 OptoReg::Name first_dst_lo = _regalloc->get_reg_first(first); 2330 OptoReg::Name second_src_lo = _regalloc->get_reg_first(second->in(1)); 2331 OptoReg::Name second_dst_lo = _regalloc->get_reg_first(second); 2332 2333 // Comparison between stack -> reg and stack -> reg 2334 if (OptoReg::is_stack(first_src_lo) && OptoReg::is_stack(second_src_lo) && 2335 OptoReg::is_reg(first_dst_lo) && OptoReg::is_reg(second_dst_lo)) { 2336 return _regalloc->reg2offset(first_src_lo) - _regalloc->reg2offset(second_src_lo); 2337 } 2338 2339 // Comparison between reg -> stack and reg -> stack 2340 if (OptoReg::is_stack(first_dst_lo) && OptoReg::is_stack(second_dst_lo) && 2341 OptoReg::is_reg(first_src_lo) && OptoReg::is_reg(second_src_lo)) { 2342 return _regalloc->reg2offset(first_dst_lo) - _regalloc->reg2offset(second_dst_lo); 2343 } 2344 2345 return 0; // Not comparable 2346 } 2347 2348 void Scheduling::AddNodeToAvailableList(Node *n) { 2349 assert( !n->is_Proj(), "projections never directly made available" ); 2350 #ifndef PRODUCT 2351 if (_cfg->C->trace_opto_output()) { 2352 tty->print("# AddNodeToAvailableList: "); 2353 n->dump(); 2354 } 2355 #endif 2356 2357 int latency = _current_latency[n->_idx]; 2358 2359 // Insert in latency order (insertion sort). If two MachSpillCopyNodes 2360 // for stack spilling or unspilling have the same latency, we sort 2361 // them in the order of stack offset. Some ports (e.g. aarch64) may also 2362 // have more opportunities to do ld/st merging 2363 uint i; 2364 for (i = 0; i < _available.size(); i++) { 2365 if (_current_latency[_available[i]->_idx] > latency) { 2366 break; 2367 } else if (_current_latency[_available[i]->_idx] == latency && 2368 n->is_MachSpillCopy() && _available[i]->is_MachSpillCopy() && 2369 compare_two_spill_nodes(n, _available[i]) > 0) { 2370 break; 2371 } 2372 } 2373 2374 // Special Check for compares following branches 2375 if( n->is_Mach() && _scheduled.size() > 0 ) { 2376 int op = n->as_Mach()->ideal_Opcode(); 2377 Node *last = _scheduled[0]; 2378 if( last->is_MachIf() && last->in(1) == n && 2379 ( op == Op_CmpI || 2380 op == Op_CmpU || 2381 op == Op_CmpUL || 2382 op == Op_CmpP || 2383 op == Op_CmpF || 2384 op == Op_CmpD || 2385 op == Op_CmpL ) ) { 2386 2387 // Recalculate position, moving to front of same latency 2388 for ( i=0 ; i < _available.size(); i++ ) 2389 if (_current_latency[_available[i]->_idx] >= latency) 2390 break; 2391 } 2392 } 2393 2394 // Insert the node in the available list 2395 _available.insert(i, n); 2396 2397 #ifndef PRODUCT 2398 if (_cfg->C->trace_opto_output()) 2399 dump_available(); 2400 #endif 2401 } 2402 2403 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2404 for ( uint i=0; i < n->len(); i++ ) { 2405 Node *def = n->in(i); 2406 if (!def) continue; 2407 if( def->is_Proj() ) // If this is a machine projection, then 2408 def = def->in(0); // propagate usage thru to the base instruction 2409 2410 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local 2411 continue; 2412 } 2413 2414 // Compute the latency 2415 uint l = _bundle_cycle_number + n->latency(i); 2416 if (_current_latency[def->_idx] < l) 2417 _current_latency[def->_idx] = l; 2418 2419 // If this does not have uses then schedule it 2420 if ((--_uses[def->_idx]) == 0) 2421 AddNodeToAvailableList(def); 2422 } 2423 } 2424 2425 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2426 #ifndef PRODUCT 2427 if (_cfg->C->trace_opto_output()) { 2428 tty->print("# AddNodeToBundle: "); 2429 n->dump(); 2430 } 2431 #endif 2432 2433 // Remove this from the available list 2434 uint i; 2435 for (i = 0; i < _available.size(); i++) 2436 if (_available[i] == n) 2437 break; 2438 assert(i < _available.size(), "entry in _available list not found"); 2439 _available.remove(i); 2440 2441 // See if this fits in the current bundle 2442 const Pipeline *node_pipeline = n->pipeline(); 2443 const Pipeline_Use& node_usage = node_pipeline->resourceUse(); 2444 2445 // Check for instructions to be placed in the delay slot. We 2446 // do this before we actually schedule the current instruction, 2447 // because the delay slot follows the current instruction. 2448 if (Pipeline::_branch_has_delay_slot && 2449 node_pipeline->hasBranchDelay() && 2450 !_unconditional_delay_slot) { 2451 2452 uint siz = _available.size(); 2453 2454 // Conditional branches can support an instruction that 2455 // is unconditionally executed and not dependent by the 2456 // branch, OR a conditionally executed instruction if 2457 // the branch is taken. In practice, this means that 2458 // the first instruction at the branch target is 2459 // copied to the delay slot, and the branch goes to 2460 // the instruction after that at the branch target 2461 if ( n->is_MachBranch() ) { 2462 2463 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); 2464 assert( !n->is_Catch(), "should not look for delay slot for Catch" ); 2465 2466 #ifndef PRODUCT 2467 _branches++; 2468 #endif 2469 2470 // At least 1 instruction is on the available list 2471 // that is not dependent on the branch 2472 for (uint i = 0; i < siz; i++) { 2473 Node *d = _available[i]; 2474 const Pipeline *avail_pipeline = d->pipeline(); 2475 2476 // Don't allow safepoints in the branch shadow, that will 2477 // cause a number of difficulties 2478 if ( avail_pipeline->instructionCount() == 1 && 2479 !avail_pipeline->hasMultipleBundles() && 2480 !avail_pipeline->hasBranchDelay() && 2481 Pipeline::instr_has_unit_size() && 2482 d->size(_regalloc) == Pipeline::instr_unit_size() && 2483 NodeFitsInBundle(d) && 2484 !node_bundling(d)->used_in_delay()) { 2485 2486 if (d->is_Mach() && !d->is_MachSafePoint()) { 2487 // A node that fits in the delay slot was found, so we need to 2488 // set the appropriate bits in the bundle pipeline information so 2489 // that it correctly indicates resource usage. Later, when we 2490 // attempt to add this instruction to the bundle, we will skip 2491 // setting the resource usage. 2492 _unconditional_delay_slot = d; 2493 node_bundling(n)->set_use_unconditional_delay(); 2494 node_bundling(d)->set_used_in_unconditional_delay(); 2495 _bundle_use.add_usage(avail_pipeline->resourceUse()); 2496 _current_latency[d->_idx] = _bundle_cycle_number; 2497 _next_node = d; 2498 ++_bundle_instr_count; 2499 #ifndef PRODUCT 2500 _unconditional_delays++; 2501 #endif 2502 break; 2503 } 2504 } 2505 } 2506 } 2507 2508 // No delay slot, add a nop to the usage 2509 if (!_unconditional_delay_slot) { 2510 // See if adding an instruction in the delay slot will overflow 2511 // the bundle. 2512 if (!NodeFitsInBundle(_nop)) { 2513 #ifndef PRODUCT 2514 if (_cfg->C->trace_opto_output()) 2515 tty->print("# *** STEP(1 instruction for delay slot) ***\n"); 2516 #endif 2517 step(1); 2518 } 2519 2520 _bundle_use.add_usage(_nop->pipeline()->resourceUse()); 2521 _next_node = _nop; 2522 ++_bundle_instr_count; 2523 } 2524 2525 // See if the instruction in the delay slot requires a 2526 // step of the bundles 2527 if (!NodeFitsInBundle(n)) { 2528 #ifndef PRODUCT 2529 if (_cfg->C->trace_opto_output()) 2530 tty->print("# *** STEP(branch won't fit) ***\n"); 2531 #endif 2532 // Update the state information 2533 _bundle_instr_count = 0; 2534 _bundle_cycle_number += 1; 2535 _bundle_use.step(1); 2536 } 2537 } 2538 2539 // Get the number of instructions 2540 uint instruction_count = node_pipeline->instructionCount(); 2541 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2542 instruction_count = 0; 2543 2544 // Compute the latency information 2545 uint delay = 0; 2546 2547 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { 2548 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; 2549 if (relative_latency < 0) 2550 relative_latency = 0; 2551 2552 delay = _bundle_use.full_latency(relative_latency, node_usage); 2553 2554 // Does not fit in this bundle, start a new one 2555 if (delay > 0) { 2556 step(delay); 2557 2558 #ifndef PRODUCT 2559 if (_cfg->C->trace_opto_output()) 2560 tty->print("# *** STEP(%d) ***\n", delay); 2561 #endif 2562 } 2563 } 2564 2565 // If this was placed in the delay slot, ignore it 2566 if (n != _unconditional_delay_slot) { 2567 2568 if (delay == 0) { 2569 if (node_pipeline->hasMultipleBundles()) { 2570 #ifndef PRODUCT 2571 if (_cfg->C->trace_opto_output()) 2572 tty->print("# *** STEP(multiple instructions) ***\n"); 2573 #endif 2574 step(1); 2575 } 2576 2577 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { 2578 #ifndef PRODUCT 2579 if (_cfg->C->trace_opto_output()) 2580 tty->print("# *** STEP(%d >= %d instructions) ***\n", 2581 instruction_count + _bundle_instr_count, 2582 Pipeline::_max_instrs_per_cycle); 2583 #endif 2584 step(1); 2585 } 2586 } 2587 2588 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2589 _bundle_instr_count++; 2590 2591 // Set the node's latency 2592 _current_latency[n->_idx] = _bundle_cycle_number; 2593 2594 // Now merge the functional unit information 2595 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) 2596 _bundle_use.add_usage(node_usage); 2597 2598 // Increment the number of instructions in this bundle 2599 _bundle_instr_count += instruction_count; 2600 2601 // Remember this node for later 2602 if (n->is_Mach()) 2603 _next_node = n; 2604 } 2605 2606 // It's possible to have a BoxLock in the graph and in the _bbs mapping but 2607 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. 2608 // 'Schedule' them (basically ignore in the schedule) but do not insert them 2609 // into the block. All other scheduled nodes get put in the schedule here. 2610 int op = n->Opcode(); 2611 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR 2612 (op != Op_Node && // Not an unused antidepedence node and 2613 // not an unallocated boxlock 2614 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2615 2616 // Push any trailing projections 2617 if( bb->get_node(bb->number_of_nodes()-1) != n ) { 2618 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2619 Node *foi = n->fast_out(i); 2620 if( foi->is_Proj() ) 2621 _scheduled.push(foi); 2622 } 2623 } 2624 2625 // Put the instruction in the schedule list 2626 _scheduled.push(n); 2627 } 2628 2629 #ifndef PRODUCT 2630 if (_cfg->C->trace_opto_output()) 2631 dump_available(); 2632 #endif 2633 2634 // Walk all the definitions, decrementing use counts, and 2635 // if a definition has a 0 use count, place it in the available list. 2636 DecrementUseCounts(n,bb); 2637 } 2638 2639 // This method sets the use count within a basic block. We will ignore all 2640 // uses outside the current basic block. As we are doing a backwards walk, 2641 // any node we reach that has a use count of 0 may be scheduled. This also 2642 // avoids the problem of cyclic references from phi nodes, as long as phi 2643 // nodes are at the front of the basic block. This method also initializes 2644 // the available list to the set of instructions that have no uses within this 2645 // basic block. 2646 void Scheduling::ComputeUseCount(const Block *bb) { 2647 #ifndef PRODUCT 2648 if (_cfg->C->trace_opto_output()) 2649 tty->print("# -> ComputeUseCount\n"); 2650 #endif 2651 2652 // Clear the list of available and scheduled instructions, just in case 2653 _available.clear(); 2654 _scheduled.clear(); 2655 2656 // No delay slot specified 2657 _unconditional_delay_slot = nullptr; 2658 2659 #ifdef ASSERT 2660 for( uint i=0; i < bb->number_of_nodes(); i++ ) 2661 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); 2662 #endif 2663 2664 // Force the _uses count to never go to zero for unscheduable pieces 2665 // of the block 2666 for( uint k = 0; k < _bb_start; k++ ) 2667 _uses[bb->get_node(k)->_idx] = 1; 2668 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) 2669 _uses[bb->get_node(l)->_idx] = 1; 2670 2671 // Iterate backwards over the instructions in the block. Don't count the 2672 // branch projections at end or the block header instructions. 2673 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2674 Node *n = bb->get_node(j); 2675 if( n->is_Proj() ) continue; // Projections handled another way 2676 2677 // Account for all uses 2678 for ( uint k = 0; k < n->len(); k++ ) { 2679 Node *inp = n->in(k); 2680 if (!inp) continue; 2681 assert(inp != n, "no cycles allowed" ); 2682 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? 2683 if (inp->is_Proj()) { // Skip through Proj's 2684 inp = inp->in(0); 2685 } 2686 ++_uses[inp->_idx]; // Count 1 block-local use 2687 } 2688 } 2689 2690 // If this instruction has a 0 use count, then it is available 2691 if (!_uses[n->_idx]) { 2692 _current_latency[n->_idx] = _bundle_cycle_number; 2693 AddNodeToAvailableList(n); 2694 } 2695 2696 #ifndef PRODUCT 2697 if (_cfg->C->trace_opto_output()) { 2698 tty->print("# uses: %3d: ", _uses[n->_idx]); 2699 n->dump(); 2700 } 2701 #endif 2702 } 2703 2704 #ifndef PRODUCT 2705 if (_cfg->C->trace_opto_output()) 2706 tty->print("# <- ComputeUseCount\n"); 2707 #endif 2708 } 2709 2710 // This routine performs scheduling on each basic block in reverse order, 2711 // using instruction latencies and taking into account function unit 2712 // availability. 2713 void Scheduling::DoScheduling() { 2714 #ifndef PRODUCT 2715 if (_cfg->C->trace_opto_output()) 2716 tty->print("# -> DoScheduling\n"); 2717 #endif 2718 2719 Block *succ_bb = nullptr; 2720 Block *bb; 2721 Compile* C = Compile::current(); 2722 2723 // Walk over all the basic blocks in reverse order 2724 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { 2725 bb = _cfg->get_block(i); 2726 2727 #ifndef PRODUCT 2728 if (_cfg->C->trace_opto_output()) { 2729 tty->print("# Schedule BB#%03d (initial)\n", i); 2730 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2731 bb->get_node(j)->dump(); 2732 } 2733 } 2734 #endif 2735 2736 // On the head node, skip processing 2737 if (bb == _cfg->get_root_block()) { 2738 continue; 2739 } 2740 2741 // Skip empty, connector blocks 2742 if (bb->is_connector()) 2743 continue; 2744 2745 // If the following block is not the sole successor of 2746 // this one, then reset the pipeline information 2747 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { 2748 #ifndef PRODUCT 2749 if (_cfg->C->trace_opto_output()) { 2750 tty->print("*** bundle start of next BB, node %d, for %d instructions\n", 2751 _next_node->_idx, _bundle_instr_count); 2752 } 2753 #endif 2754 step_and_clear(); 2755 } 2756 2757 // Leave untouched the starting instruction, any Phis, a CreateEx node 2758 // or Top. bb->get_node(_bb_start) is the first schedulable instruction. 2759 _bb_end = bb->number_of_nodes()-1; 2760 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2761 Node *n = bb->get_node(_bb_start); 2762 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2763 // Also, MachIdealNodes do not get scheduled 2764 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2765 MachNode *mach = n->as_Mach(); 2766 int iop = mach->ideal_Opcode(); 2767 if( iop == Op_CreateEx ) continue; // CreateEx is pinned 2768 if( iop == Op_Con ) continue; // Do not schedule Top 2769 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes 2770 mach->pipeline() == MachNode::pipeline_class() && 2771 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc 2772 continue; 2773 break; // Funny loop structure to be sure... 2774 } 2775 // Compute last "interesting" instruction in block - last instruction we 2776 // might schedule. _bb_end points just after last schedulable inst. We 2777 // normally schedule conditional branches (despite them being forced last 2778 // in the block), because they have delay slots we can fill. Calls all 2779 // have their delay slots filled in the template expansions, so we don't 2780 // bother scheduling them. 2781 Node *last = bb->get_node(_bb_end); 2782 // Ignore trailing NOPs. 2783 while (_bb_end > 0 && last->is_Mach() && 2784 last->as_Mach()->ideal_Opcode() == Op_Con) { 2785 last = bb->get_node(--_bb_end); 2786 } 2787 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2788 if( last->is_Catch() || 2789 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2790 // There might be a prior call. Skip it. 2791 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); 2792 } else if( last->is_MachNullCheck() ) { 2793 // Backup so the last null-checked memory instruction is 2794 // outside the schedulable range. Skip over the nullcheck, 2795 // projection, and the memory nodes. 2796 Node *mem = last->in(1); 2797 do { 2798 _bb_end--; 2799 } while (mem != bb->get_node(_bb_end)); 2800 } else { 2801 // Set _bb_end to point after last schedulable inst. 2802 _bb_end++; 2803 } 2804 2805 assert( _bb_start <= _bb_end, "inverted block ends" ); 2806 2807 // Compute the register antidependencies for the basic block 2808 ComputeRegisterAntidependencies(bb); 2809 if (C->failing()) return; // too many D-U pinch points 2810 2811 // Compute the usage within the block, and set the list of all nodes 2812 // in the block that have no uses within the block. 2813 ComputeUseCount(bb); 2814 2815 // Schedule the remaining instructions in the block 2816 while ( _available.size() > 0 ) { 2817 Node *n = ChooseNodeToBundle(); 2818 guarantee(n != nullptr, "no nodes available"); 2819 AddNodeToBundle(n,bb); 2820 } 2821 2822 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2823 #ifdef ASSERT 2824 for( uint l = _bb_start; l < _bb_end; l++ ) { 2825 Node *n = bb->get_node(l); 2826 uint m; 2827 for( m = 0; m < _bb_end-_bb_start; m++ ) 2828 if( _scheduled[m] == n ) 2829 break; 2830 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2831 } 2832 #endif 2833 2834 // Now copy the instructions (in reverse order) back to the block 2835 for ( uint k = _bb_start; k < _bb_end; k++ ) 2836 bb->map_node(_scheduled[_bb_end-k-1], k); 2837 2838 #ifndef PRODUCT 2839 if (_cfg->C->trace_opto_output()) { 2840 tty->print("# Schedule BB#%03d (final)\n", i); 2841 uint current = 0; 2842 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2843 Node *n = bb->get_node(j); 2844 if( valid_bundle_info(n) ) { 2845 Bundle *bundle = node_bundling(n); 2846 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2847 tty->print("*** Bundle: "); 2848 bundle->dump(); 2849 } 2850 n->dump(); 2851 } 2852 } 2853 } 2854 #endif 2855 #ifdef ASSERT 2856 verify_good_schedule(bb,"after block local scheduling"); 2857 #endif 2858 } 2859 2860 #ifndef PRODUCT 2861 if (_cfg->C->trace_opto_output()) 2862 tty->print("# <- DoScheduling\n"); 2863 #endif 2864 2865 // Record final node-bundling array location 2866 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base); 2867 2868 } // end DoScheduling 2869 2870 // Verify that no live-range used in the block is killed in the block by a 2871 // wrong DEF. This doesn't verify live-ranges that span blocks. 2872 2873 // Check for edge existence. Used to avoid adding redundant precedence edges. 2874 static bool edge_from_to( Node *from, Node *to ) { 2875 for( uint i=0; i<from->len(); i++ ) 2876 if( from->in(i) == to ) 2877 return true; 2878 return false; 2879 } 2880 2881 #ifdef ASSERT 2882 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2883 // Check for bad kills 2884 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2885 Node *prior_use = _reg_node[def]; 2886 if( prior_use && !edge_from_to(prior_use,n) ) { 2887 tty->print("%s = ",OptoReg::as_VMReg(def)->name()); 2888 n->dump(); 2889 tty->print_cr("..."); 2890 prior_use->dump(); 2891 assert(edge_from_to(prior_use,n), "%s", msg); 2892 } 2893 _reg_node.map(def,nullptr); // Kill live USEs 2894 } 2895 } 2896 2897 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2898 2899 // Zap to something reasonable for the verify code 2900 _reg_node.clear(); 2901 2902 // Walk over the block backwards. Check to make sure each DEF doesn't 2903 // kill a live value (other than the one it's supposed to). Add each 2904 // USE to the live set. 2905 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { 2906 Node *n = b->get_node(i); 2907 int n_op = n->Opcode(); 2908 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 2909 // Fat-proj kills a slew of registers 2910 RegMaskIterator rmi(n->out_RegMask()); 2911 while (rmi.has_next()) { 2912 OptoReg::Name kill = rmi.next(); 2913 verify_do_def(n, kill, msg); 2914 } 2915 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes 2916 // Get DEF'd registers the normal way 2917 verify_do_def( n, _regalloc->get_reg_first(n), msg ); 2918 verify_do_def( n, _regalloc->get_reg_second(n), msg ); 2919 } 2920 2921 // Now make all USEs live 2922 for( uint i=1; i<n->req(); i++ ) { 2923 Node *def = n->in(i); 2924 assert(def != nullptr, "input edge required"); 2925 OptoReg::Name reg_lo = _regalloc->get_reg_first(def); 2926 OptoReg::Name reg_hi = _regalloc->get_reg_second(def); 2927 if( OptoReg::is_valid(reg_lo) ) { 2928 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg); 2929 _reg_node.map(reg_lo,n); 2930 } 2931 if( OptoReg::is_valid(reg_hi) ) { 2932 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg); 2933 _reg_node.map(reg_hi,n); 2934 } 2935 } 2936 2937 } 2938 2939 // Zap to something reasonable for the Antidependence code 2940 _reg_node.clear(); 2941 } 2942 #endif 2943 2944 // Conditionally add precedence edges. Avoid putting edges on Projs. 2945 static void add_prec_edge_from_to( Node *from, Node *to ) { 2946 if( from->is_Proj() ) { // Put precedence edge on Proj's input 2947 assert( from->req() == 1 && (from->len() == 1 || from->in(1) == nullptr), "no precedence edges on projections" ); 2948 from = from->in(0); 2949 } 2950 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 2951 !edge_from_to( from, to ) ) // Avoid duplicate edge 2952 from->add_prec(to); 2953 } 2954 2955 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 2956 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 2957 return; 2958 2959 if (OptoReg::is_reg(def_reg)) { 2960 VMReg vmreg = OptoReg::as_VMReg(def_reg); 2961 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) { 2962 // This is one of the high slots of a vector register. 2963 // ScheduleAndBundle already checked there are no live wide 2964 // vectors in this method so it can be safely ignored. 2965 return; 2966 } 2967 } 2968 2969 Node *pinch = _reg_node[def_reg]; // Get pinch point 2970 if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? 2971 is_def ) { // Check for a true def (not a kill) 2972 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point 2973 return; 2974 } 2975 2976 Node *kill = def; // Rename 'def' to more descriptive 'kill' 2977 DEBUG_ONLY( def = (Node*)((intptr_t)0xdeadbeef); ) 2978 2979 // After some number of kills there _may_ be a later def 2980 Node *later_def = nullptr; 2981 2982 Compile* C = Compile::current(); 2983 2984 // Finding a kill requires a real pinch-point. 2985 // Check for not already having a pinch-point. 2986 // Pinch points are Op_Node's. 2987 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? 2988 later_def = pinch; // Must be def/kill as optimistic pinch-point 2989 if ( _pinch_free_list.size() > 0) { 2990 pinch = _pinch_free_list.pop(); 2991 } else { 2992 pinch = new Node(1); // Pinch point to-be 2993 } 2994 if (pinch->_idx >= _regalloc->node_regs_max_index()) { 2995 DEBUG_ONLY( pinch->dump(); ); 2996 assert(false, "too many D-U pinch points: %d >= %d", pinch->_idx, _regalloc->node_regs_max_index()); 2997 _cfg->C->record_method_not_compilable("too many D-U pinch points"); 2998 return; 2999 } 3000 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) 3001 _reg_node.map(def_reg,pinch); // Record pinch-point 3002 //regalloc()->set_bad(pinch->_idx); // Already initialized this way. 3003 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill 3004 pinch->init_req(0, C->top()); // set not null for the next call 3005 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch 3006 later_def = nullptr; // and no later def 3007 } 3008 pinch->set_req(0,later_def); // Hook later def so we can find it 3009 } else { // Else have valid pinch point 3010 if( pinch->in(0) ) // If there is a later-def 3011 later_def = pinch->in(0); // Get it 3012 } 3013 3014 // Add output-dependence edge from later def to kill 3015 if( later_def ) // If there is some original def 3016 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill 3017 3018 // See if current kill is also a use, and so is forced to be the pinch-point. 3019 if( pinch->Opcode() == Op_Node ) { 3020 Node *uses = kill->is_Proj() ? kill->in(0) : kill; 3021 for( uint i=1; i<uses->req(); i++ ) { 3022 if( _regalloc->get_reg_first(uses->in(i)) == def_reg || 3023 _regalloc->get_reg_second(uses->in(i)) == def_reg ) { 3024 // Yes, found a use/kill pinch-point 3025 pinch->set_req(0,nullptr); // 3026 pinch->replace_by(kill); // Move anti-dep edges up 3027 pinch = kill; 3028 _reg_node.map(def_reg,pinch); 3029 return; 3030 } 3031 } 3032 } 3033 3034 // Add edge from kill to pinch-point 3035 add_prec_edge_from_to(kill,pinch); 3036 } 3037 3038 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 3039 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 3040 return; 3041 Node *pinch = _reg_node[use_reg]; // Get pinch point 3042 // Check for no later def_reg/kill in block 3043 if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b && 3044 // Use has to be block-local as well 3045 _cfg->get_block_for_node(use) == b) { 3046 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 3047 pinch->req() == 1 ) { // pinch not yet in block? 3048 pinch->del_req(0); // yank pointer to later-def, also set flag 3049 // Insert the pinch-point in the block just after the last use 3050 b->insert_node(pinch, b->find_node(use) + 1); 3051 _bb_end++; // Increase size scheduled region in block 3052 } 3053 3054 add_prec_edge_from_to(pinch,use); 3055 } 3056 } 3057 3058 // We insert antidependences between the reads and following write of 3059 // allocated registers to prevent illegal code motion. Hopefully, the 3060 // number of added references should be fairly small, especially as we 3061 // are only adding references within the current basic block. 3062 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 3063 3064 #ifdef ASSERT 3065 verify_good_schedule(b,"before block local scheduling"); 3066 #endif 3067 3068 // A valid schedule, for each register independently, is an endless cycle 3069 // of: a def, then some uses (connected to the def by true dependencies), 3070 // then some kills (defs with no uses), finally the cycle repeats with a new 3071 // def. The uses are allowed to float relative to each other, as are the 3072 // kills. No use is allowed to slide past a kill (or def). This requires 3073 // antidependencies between all uses of a single def and all kills that 3074 // follow, up to the next def. More edges are redundant, because later defs 3075 // & kills are already serialized with true or antidependencies. To keep 3076 // the edge count down, we add a 'pinch point' node if there's more than 3077 // one use or more than one kill/def. 3078 3079 // We add dependencies in one bottom-up pass. 3080 3081 // For each instruction we handle it's DEFs/KILLs, then it's USEs. 3082 3083 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this 3084 // register. If not, we record the DEF/KILL in _reg_node, the 3085 // register-to-def mapping. If there is a prior DEF/KILL, we insert a 3086 // "pinch point", a new Node that's in the graph but not in the block. 3087 // We put edges from the prior and current DEF/KILLs to the pinch point. 3088 // We put the pinch point in _reg_node. If there's already a pinch point 3089 // we merely add an edge from the current DEF/KILL to the pinch point. 3090 3091 // After doing the DEF/KILLs, we handle USEs. For each used register, we 3092 // put an edge from the pinch point to the USE. 3093 3094 // To be expedient, the _reg_node array is pre-allocated for the whole 3095 // compilation. _reg_node is lazily initialized; it either contains a null, 3096 // or a valid def/kill/pinch-point, or a leftover node from some prior 3097 // block. Leftover node from some prior block is treated like a null (no 3098 // prior def, so no anti-dependence needed). Valid def is distinguished by 3099 // it being in the current block. 3100 bool fat_proj_seen = false; 3101 uint last_safept = _bb_end-1; 3102 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr; 3103 Node* last_safept_node = end_node; 3104 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 3105 Node *n = b->get_node(i); 3106 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 3107 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 3108 // Fat-proj kills a slew of registers 3109 // This can add edges to 'n' and obscure whether or not it was a def, 3110 // hence the is_def flag. 3111 fat_proj_seen = true; 3112 RegMaskIterator rmi(n->out_RegMask()); 3113 while (rmi.has_next()) { 3114 OptoReg::Name kill = rmi.next(); 3115 anti_do_def(b, n, kill, is_def); 3116 } 3117 } else { 3118 // Get DEF'd registers the normal way 3119 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); 3120 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); 3121 } 3122 3123 // Kill projections on a branch should appear to occur on the 3124 // branch, not afterwards, so grab the masks from the projections 3125 // and process them. 3126 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { 3127 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3128 Node* use = n->fast_out(i); 3129 if (use->is_Proj()) { 3130 RegMaskIterator rmi(use->out_RegMask()); 3131 while (rmi.has_next()) { 3132 OptoReg::Name kill = rmi.next(); 3133 anti_do_def(b, n, kill, false); 3134 } 3135 } 3136 } 3137 } 3138 3139 // Check each register used by this instruction for a following DEF/KILL 3140 // that must occur afterward and requires an anti-dependence edge. 3141 for( uint j=0; j<n->req(); j++ ) { 3142 Node *def = n->in(j); 3143 if( def ) { 3144 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); 3145 anti_do_use( b, n, _regalloc->get_reg_first(def) ); 3146 anti_do_use( b, n, _regalloc->get_reg_second(def) ); 3147 } 3148 } 3149 // Do not allow defs of new derived values to float above GC 3150 // points unless the base is definitely available at the GC point. 3151 3152 Node *m = b->get_node(i); 3153 3154 // Add precedence edge from following safepoint to use of derived pointer 3155 if( last_safept_node != end_node && 3156 m != last_safept_node) { 3157 for (uint k = 1; k < m->req(); k++) { 3158 const Type *t = m->in(k)->bottom_type(); 3159 if( t->isa_oop_ptr() && 3160 t->is_ptr()->offset() != 0 ) { 3161 last_safept_node->add_prec( m ); 3162 break; 3163 } 3164 } 3165 } 3166 3167 if( n->jvms() ) { // Precedence edge from derived to safept 3168 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 3169 if( b->get_node(last_safept) != last_safept_node ) { 3170 last_safept = b->find_node(last_safept_node); 3171 } 3172 for( uint j=last_safept; j > i; j-- ) { 3173 Node *mach = b->get_node(j); 3174 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 3175 mach->add_prec( n ); 3176 } 3177 last_safept = i; 3178 last_safept_node = m; 3179 } 3180 } 3181 3182 if (fat_proj_seen) { 3183 // Garbage collect pinch nodes that were not consumed. 3184 // They are usually created by a fat kill MachProj for a call. 3185 garbage_collect_pinch_nodes(); 3186 } 3187 } 3188 3189 // Garbage collect pinch nodes for reuse by other blocks. 3190 // 3191 // The block scheduler's insertion of anti-dependence 3192 // edges creates many pinch nodes when the block contains 3193 // 2 or more Calls. A pinch node is used to prevent a 3194 // combinatorial explosion of edges. If a set of kills for a 3195 // register is anti-dependent on a set of uses (or defs), rather 3196 // than adding an edge in the graph between each pair of kill 3197 // and use (or def), a pinch is inserted between them: 3198 // 3199 // use1 use2 use3 3200 // \ | / 3201 // \ | / 3202 // pinch 3203 // / | \ 3204 // / | \ 3205 // kill1 kill2 kill3 3206 // 3207 // One pinch node is created per register killed when 3208 // the second call is encountered during a backwards pass 3209 // over the block. Most of these pinch nodes are never 3210 // wired into the graph because the register is never 3211 // used or def'ed in the block. 3212 // 3213 void Scheduling::garbage_collect_pinch_nodes() { 3214 #ifndef PRODUCT 3215 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); 3216 #endif 3217 int trace_cnt = 0; 3218 for (uint k = 0; k < _reg_node.max(); k++) { 3219 Node* pinch = _reg_node[k]; 3220 if ((pinch != nullptr) && pinch->Opcode() == Op_Node && 3221 // no predecence input edges 3222 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) { 3223 cleanup_pinch(pinch); 3224 _pinch_free_list.push(pinch); 3225 _reg_node.map(k, nullptr); 3226 #ifndef PRODUCT 3227 if (_cfg->C->trace_opto_output()) { 3228 trace_cnt++; 3229 if (trace_cnt > 40) { 3230 tty->print("\n"); 3231 trace_cnt = 0; 3232 } 3233 tty->print(" %d", pinch->_idx); 3234 } 3235 #endif 3236 } 3237 } 3238 #ifndef PRODUCT 3239 if (_cfg->C->trace_opto_output()) tty->print("\n"); 3240 #endif 3241 } 3242 3243 // Clean up a pinch node for reuse. 3244 void Scheduling::cleanup_pinch( Node *pinch ) { 3245 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); 3246 3247 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { 3248 Node* use = pinch->last_out(i); 3249 uint uses_found = 0; 3250 for (uint j = use->req(); j < use->len(); j++) { 3251 if (use->in(j) == pinch) { 3252 use->rm_prec(j); 3253 uses_found++; 3254 } 3255 } 3256 assert(uses_found > 0, "must be a precedence edge"); 3257 i -= uses_found; // we deleted 1 or more copies of this edge 3258 } 3259 // May have a later_def entry 3260 pinch->set_req(0, nullptr); 3261 } 3262 3263 #ifndef PRODUCT 3264 3265 void Scheduling::dump_available() const { 3266 tty->print("#Availist "); 3267 for (uint i = 0; i < _available.size(); i++) 3268 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); 3269 tty->cr(); 3270 } 3271 3272 // Print Scheduling Statistics 3273 void Scheduling::print_statistics() { 3274 // Print the size added by nops for bundling 3275 tty->print("Nops added %d bytes to total of %d bytes", 3276 _total_nop_size, _total_method_size); 3277 if (_total_method_size > 0) 3278 tty->print(", for %.2f%%", 3279 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); 3280 tty->print("\n"); 3281 3282 // Print the number of branch shadows filled 3283 if (Pipeline::_branch_has_delay_slot) { 3284 tty->print("Of %d branches, %d had unconditional delay slots filled", 3285 _total_branches, _total_unconditional_delays); 3286 if (_total_branches > 0) 3287 tty->print(", for %.2f%%", 3288 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); 3289 tty->print("\n"); 3290 } 3291 3292 uint total_instructions = 0, total_bundles = 0; 3293 3294 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { 3295 uint bundle_count = _total_instructions_per_bundle[i]; 3296 total_instructions += bundle_count * i; 3297 total_bundles += bundle_count; 3298 } 3299 3300 if (total_bundles > 0) 3301 tty->print("Average ILP (excluding nops) is %.2f\n", 3302 ((double)total_instructions) / ((double)total_bundles)); 3303 } 3304 #endif 3305 3306 //-----------------------init_scratch_buffer_blob------------------------------ 3307 // Construct a temporary BufferBlob and cache it for this compile. 3308 void PhaseOutput::init_scratch_buffer_blob(int const_size) { 3309 // If there is already a scratch buffer blob allocated and the 3310 // constant section is big enough, use it. Otherwise free the 3311 // current and allocate a new one. 3312 BufferBlob* blob = scratch_buffer_blob(); 3313 if ((blob != nullptr) && (const_size <= _scratch_const_size)) { 3314 // Use the current blob. 3315 } else { 3316 if (blob != nullptr) { 3317 BufferBlob::free(blob); 3318 } 3319 3320 ResourceMark rm; 3321 _scratch_const_size = const_size; 3322 int size = C2Compiler::initial_code_buffer_size(const_size); 3323 blob = BufferBlob::create("Compile::scratch_buffer", size); 3324 // Record the buffer blob for next time. 3325 set_scratch_buffer_blob(blob); 3326 // Have we run out of code space? 3327 if (scratch_buffer_blob() == nullptr) { 3328 // Let CompilerBroker disable further compilations. 3329 C->record_failure("Not enough space for scratch buffer in CodeCache"); 3330 return; 3331 } 3332 } 3333 3334 // Initialize the relocation buffers 3335 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 3336 set_scratch_locs_memory(locs_buf); 3337 } 3338 3339 3340 //-----------------------scratch_emit_size------------------------------------- 3341 // Helper function that computes size by emitting code 3342 uint PhaseOutput::scratch_emit_size(const Node* n) { 3343 // Start scratch_emit_size section. 3344 set_in_scratch_emit_size(true); 3345 3346 // Emit into a trash buffer and count bytes emitted. 3347 // This is a pretty expensive way to compute a size, 3348 // but it works well enough if seldom used. 3349 // All common fixed-size instructions are given a size 3350 // method by the AD file. 3351 // Note that the scratch buffer blob and locs memory are 3352 // allocated at the beginning of the compile task, and 3353 // may be shared by several calls to scratch_emit_size. 3354 // The allocation of the scratch buffer blob is particularly 3355 // expensive, since it has to grab the code cache lock. 3356 BufferBlob* blob = this->scratch_buffer_blob(); 3357 assert(blob != nullptr, "Initialize BufferBlob at start"); 3358 assert(blob->size() > max_inst_size(), "sanity"); 3359 relocInfo* locs_buf = scratch_locs_memory(); 3360 address blob_begin = blob->content_begin(); 3361 address blob_end = (address)locs_buf; 3362 assert(blob->contains(blob_end), "sanity"); 3363 CodeBuffer buf(blob_begin, blob_end - blob_begin); 3364 buf.initialize_consts_size(_scratch_const_size); 3365 buf.initialize_stubs_size(MAX_stubs_size); 3366 assert(locs_buf != nullptr, "sanity"); 3367 int lsize = MAX_locs_size / 3; 3368 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 3369 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 3370 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 3371 // Mark as scratch buffer. 3372 buf.consts()->set_scratch_emit(); 3373 buf.insts()->set_scratch_emit(); 3374 buf.stubs()->set_scratch_emit(); 3375 3376 // Do the emission. 3377 3378 Label fakeL; // Fake label for branch instructions. 3379 Label* saveL = nullptr; 3380 uint save_bnum = 0; 3381 bool is_branch = n->is_MachBranch(); 3382 C2_MacroAssembler masm(&buf); 3383 masm.bind(fakeL); 3384 if (is_branch) { 3385 n->as_MachBranch()->save_label(&saveL, &save_bnum); 3386 n->as_MachBranch()->label_set(&fakeL, 0); 3387 } 3388 n->emit(&masm, C->regalloc()); 3389 3390 // Emitting into the scratch buffer should not fail 3391 assert(!C->failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", C->failure_reason()); 3392 3393 if (is_branch) // Restore label. 3394 n->as_MachBranch()->label_set(saveL, save_bnum); 3395 3396 // End scratch_emit_size section. 3397 set_in_scratch_emit_size(false); 3398 3399 return buf.insts_size(); 3400 } 3401 3402 void PhaseOutput::install() { 3403 if (C->should_install_code() && C->stub_function() != nullptr) { 3404 install_stub(C->stub_name()); 3405 } else { 3406 install_code(C->method(), 3407 C->entry_bci(), 3408 CompilerThread::current()->compiler(), 3409 C->has_unsafe_access(), 3410 SharedRuntime::is_wide_vector(C->max_vector_size())); 3411 } 3412 } 3413 3414 void PhaseOutput::install_code(ciMethod* target, 3415 int entry_bci, 3416 AbstractCompiler* compiler, 3417 bool has_unsafe_access, 3418 bool has_wide_vectors) { 3419 // Check if we want to skip execution of all compiled code. 3420 { 3421 #ifndef PRODUCT 3422 if (OptoNoExecute) { 3423 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed 3424 return; 3425 } 3426 #endif 3427 Compile::TracePhase tp(_t_registerMethod); 3428 3429 if (C->is_osr_compilation()) { 3430 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 3431 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 3432 } else { 3433 if (!target->is_static()) { 3434 // The UEP of an nmethod ensures that the VEP is padded. However, the padding of the UEP is placed 3435 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 3436 // through the UEP, yet we can ensure that the VEP is aligned appropriately. 3437 _code_offsets.set_value(CodeOffsets::Entry, _first_block_size - MacroAssembler::ic_check_size()); 3438 } 3439 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 3440 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 3441 } 3442 3443 C->env()->register_method(target, 3444 entry_bci, 3445 &_code_offsets, 3446 _orig_pc_slot_offset_in_bytes, 3447 code_buffer(), 3448 frame_size_in_words(), 3449 oop_map_set(), 3450 &_handler_table, 3451 inc_table(), 3452 compiler, 3453 C->has_clinit_barriers(), 3454 C->for_preload(), 3455 has_unsafe_access, 3456 SharedRuntime::is_wide_vector(C->max_vector_size()), 3457 C->has_monitors(), 3458 C->has_scoped_access(), 3459 0, 3460 C->should_install_code()); 3461 3462 if (C->log() != nullptr) { // Print code cache state into compiler log 3463 C->log()->code_cache_state(); 3464 } 3465 assert(!C->has_clinit_barriers() || C->for_preload(), "class init barriers should be only in preload code"); 3466 } 3467 } 3468 void PhaseOutput::install_stub(const char* stub_name) { 3469 // Entry point will be accessed using stub_entry_point(); 3470 if (code_buffer() == nullptr) { 3471 Matcher::soft_match_failure(); 3472 } else { 3473 if (PrintAssembly && (WizardMode || Verbose)) 3474 tty->print_cr("### Stub::%s", stub_name); 3475 3476 if (!C->failing()) { 3477 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs"); 3478 3479 // Make the NMethod 3480 // For now we mark the frame as never safe for profile stackwalking 3481 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 3482 code_buffer(), 3483 CodeOffsets::frame_never_safe, 3484 // _code_offsets.value(CodeOffsets::Frame_Complete), 3485 frame_size_in_words(), 3486 oop_map_set(), 3487 false, 3488 false); 3489 3490 if (rs == nullptr) { 3491 C->record_failure("CodeCache is full"); 3492 } else { 3493 assert(rs->is_runtime_stub(), "sanity check"); 3494 C->set_stub_entry_point(rs->entry_point()); 3495 BlobId blob_id = StubInfo::blob(C->stub_id()); 3496 AOTCodeCache::store_code_blob(*rs, AOTCodeEntry::C2Blob, blob_id); 3497 } 3498 } 3499 } 3500 } 3501 3502 // Support for bundling info 3503 Bundle* PhaseOutput::node_bundling(const Node *n) { 3504 assert(valid_bundle_info(n), "oob"); 3505 return &_node_bundling_base[n->_idx]; 3506 } 3507 3508 bool PhaseOutput::valid_bundle_info(const Node *n) { 3509 return (_node_bundling_limit > n->_idx); 3510 } 3511 3512 //------------------------------frame_size_in_words----------------------------- 3513 // frame_slots in units of words 3514 int PhaseOutput::frame_size_in_words() const { 3515 // shift is 0 in LP32 and 1 in LP64 3516 const int shift = (LogBytesPerWord - LogBytesPerInt); 3517 int words = _frame_slots >> shift; 3518 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 3519 return words; 3520 } 3521 3522 // To bang the stack of this compiled method we use the stack size 3523 // that the interpreter would need in case of a deoptimization. This 3524 // removes the need to bang the stack in the deoptimization blob which 3525 // in turn simplifies stack overflow handling. 3526 int PhaseOutput::bang_size_in_bytes() const { 3527 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size()); 3528 } 3529 3530 //------------------------------dump_asm--------------------------------------- 3531 // Dump formatted assembly 3532 #if defined(SUPPORT_OPTO_ASSEMBLY) 3533 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) { 3534 3535 int pc_digits = 3; // #chars required for pc 3536 int sb_chars = 3; // #chars for "start bundle" indicator 3537 int tab_size = 8; 3538 if (pcs != nullptr) { 3539 int max_pc = 0; 3540 for (uint i = 0; i < pc_limit; i++) { 3541 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc; 3542 } 3543 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc 3544 } 3545 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size; 3546 3547 bool cut_short = false; 3548 st->print_cr("#"); 3549 st->print("# "); C->tf()->dump_on(st); st->cr(); 3550 st->print_cr("#"); 3551 3552 // For all blocks 3553 int pc = 0x0; // Program counter 3554 char starts_bundle = ' '; 3555 C->regalloc()->dump_frame(); 3556 3557 Node *n = nullptr; 3558 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 3559 if (VMThread::should_terminate()) { 3560 cut_short = true; 3561 break; 3562 } 3563 Block* block = C->cfg()->get_block(i); 3564 if (block->is_connector() && !Verbose) { 3565 continue; 3566 } 3567 n = block->head(); 3568 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3569 pc = pcs[n->_idx]; 3570 st->print("%*.*x", pc_digits, pc_digits, pc); 3571 } 3572 st->fill_to(prefix_len); 3573 block->dump_head(C->cfg(), st); 3574 if (block->is_connector()) { 3575 st->fill_to(prefix_len); 3576 st->print_cr("# Empty connector block"); 3577 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3578 st->fill_to(prefix_len); 3579 st->print_cr("# Block is sole successor of call"); 3580 } 3581 3582 // For all instructions 3583 Node *delay = nullptr; 3584 for (uint j = 0; j < block->number_of_nodes(); j++) { 3585 if (VMThread::should_terminate()) { 3586 cut_short = true; 3587 break; 3588 } 3589 n = block->get_node(j); 3590 if (valid_bundle_info(n)) { 3591 Bundle* bundle = node_bundling(n); 3592 if (bundle->used_in_unconditional_delay()) { 3593 delay = n; 3594 continue; 3595 } 3596 if (bundle->starts_bundle()) { 3597 starts_bundle = '+'; 3598 } 3599 } 3600 3601 if (WizardMode) { 3602 n->dump(); 3603 } 3604 3605 if( !n->is_Region() && // Dont print in the Assembly 3606 !n->is_Phi() && // a few noisely useless nodes 3607 !n->is_Proj() && 3608 !n->is_MachTemp() && 3609 !n->is_SafePointScalarObject() && 3610 !n->is_Catch() && // Would be nice to print exception table targets 3611 !n->is_MergeMem() && // Not very interesting 3612 !n->is_top() && // Debug info table constants 3613 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3614 ) { 3615 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3616 pc = pcs[n->_idx]; 3617 st->print("%*.*x", pc_digits, pc_digits, pc); 3618 } else { 3619 st->fill_to(pc_digits); 3620 } 3621 st->print(" %c ", starts_bundle); 3622 starts_bundle = ' '; 3623 st->fill_to(prefix_len); 3624 n->format(C->regalloc(), st); 3625 st->cr(); 3626 } 3627 3628 // If we have an instruction with a delay slot, and have seen a delay, 3629 // then back up and print it 3630 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3631 // Coverity finding - Explicit null dereferenced. 3632 guarantee(delay != nullptr, "no unconditional delay instruction"); 3633 if (WizardMode) delay->dump(); 3634 3635 if (node_bundling(delay)->starts_bundle()) 3636 starts_bundle = '+'; 3637 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3638 pc = pcs[n->_idx]; 3639 st->print("%*.*x", pc_digits, pc_digits, pc); 3640 } else { 3641 st->fill_to(pc_digits); 3642 } 3643 st->print(" %c ", starts_bundle); 3644 starts_bundle = ' '; 3645 st->fill_to(prefix_len); 3646 delay->format(C->regalloc(), st); 3647 st->cr(); 3648 delay = nullptr; 3649 } 3650 3651 // Dump the exception table as well 3652 if( n->is_Catch() && (Verbose || WizardMode) ) { 3653 // Print the exception table for this offset 3654 _handler_table.print_subtable_for(pc); 3655 } 3656 st->bol(); // Make sure we start on a new line 3657 } 3658 st->cr(); // one empty line between blocks 3659 assert(cut_short || delay == nullptr, "no unconditional delay branch"); 3660 } // End of per-block dump 3661 3662 if (cut_short) st->print_cr("*** disassembly is cut short ***"); 3663 } 3664 #endif 3665 3666 #ifndef PRODUCT 3667 void PhaseOutput::print_statistics() { 3668 Scheduling::print_statistics(); 3669 } 3670 #endif 3671 3672 int PhaseOutput::max_inst_size() { 3673 if (AOTCodeCache::maybe_dumping_code()) { 3674 // See the comment in output.hpp. 3675 return 16384; 3676 } else { 3677 return mainline_MAX_inst_size; 3678 } 3679 } 3680 3681 int PhaseOutput::max_inst_gcstub_size() { 3682 assert(mainline_MAX_inst_size <= max_inst_size(), "Sanity"); 3683 return mainline_MAX_inst_size; 3684 }