1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "compiler/compileLog.hpp"
  26 #include "interpreter/linkResolver.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/method.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/idealGraphPrinter.hpp"
  33 #include "opto/locknode.hpp"
  34 #include "opto/memnode.hpp"
  35 #include "opto/opaquenode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/type.hpp"
  40 #include "runtime/handles.inline.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "utilities/bitMap.inline.hpp"
  44 #include "utilities/copy.hpp"
  45 
  46 // Static array so we can figure out which bytecodes stop us from compiling
  47 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  48 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  49 
  50 #ifndef PRODUCT
  51 uint nodes_created             = 0;
  52 uint methods_parsed            = 0;
  53 uint methods_seen              = 0;
  54 uint blocks_parsed             = 0;
  55 uint blocks_seen               = 0;
  56 
  57 uint explicit_null_checks_inserted = 0;
  58 uint explicit_null_checks_elided   = 0;
  59 uint all_null_checks_found         = 0;
  60 uint implicit_null_checks          = 0;
  61 
  62 bool Parse::BytecodeParseHistogram::_initialized = false;
  63 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  64 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  66 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  67 
  68 //------------------------------print_statistics-------------------------------
  69 void Parse::print_statistics() {
  70   tty->print_cr("--- Compiler Statistics ---");
  71   tty->print("Methods seen: %u  Methods parsed: %u", methods_seen, methods_parsed);
  72   tty->print("  Nodes created: %u", nodes_created);
  73   tty->cr();
  74   if (methods_seen != methods_parsed) {
  75     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  76   }
  77   tty->print_cr("Blocks parsed: %u  Blocks seen: %u", blocks_parsed, blocks_seen);
  78 
  79   if (explicit_null_checks_inserted) {
  80     tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,",
  81                   explicit_null_checks_inserted, explicit_null_checks_elided,
  82                   (100*explicit_null_checks_elided)/explicit_null_checks_inserted,
  83                   all_null_checks_found);
  84   }
  85   if (all_null_checks_found) {
  86     tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
  87                   (100*implicit_null_checks)/all_null_checks_found);
  88   }
  89   if (SharedRuntime::_implicit_null_throws) {
  90     tty->print_cr("%u implicit null exceptions at runtime",
  91                   SharedRuntime::_implicit_null_throws);
  92   }
  93 
  94   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
  95     BytecodeParseHistogram::print();
  96   }
  97 }
  98 #endif
  99 
 100 //------------------------------ON STACK REPLACEMENT---------------------------
 101 
 102 // Construct a node which can be used to get incoming state for
 103 // on stack replacement.
 104 Node *Parse::fetch_interpreter_state(int index,
 105                                      BasicType bt,
 106                                      Node *local_addrs,
 107                                      Node *local_addrs_base) {
 108   Node *mem = memory(Compile::AliasIdxRaw);
 109   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 110   Node *ctl = control();
 111 
 112   // Very similar to LoadNode::make, except we handle un-aligned longs and
 113   // doubles on Sparc.  Intel can handle them just fine directly.
 114   Node *l = nullptr;
 115   switch (bt) {                // Signature is flattened
 116   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 117   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 118   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 119   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 120   case T_LONG:
 121   case T_DOUBLE: {
 122     // Since arguments are in reverse order, the argument address 'adr'
 123     // refers to the back half of the long/double.  Recompute adr.
 124     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 125     if (Matcher::misaligned_doubles_ok) {
 126       l = (bt == T_DOUBLE)
 127         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 128         : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 129     } else {
 130       l = (bt == T_DOUBLE)
 131         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 132         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 133     }
 134     break;
 135   }
 136   default: ShouldNotReachHere();
 137   }
 138   return _gvn.transform(l);
 139 }
 140 
 141 // Helper routine to prevent the interpreter from handing
 142 // unexpected typestate to an OSR method.
 143 // The Node l is a value newly dug out of the interpreter frame.
 144 // The type is the type predicted by ciTypeFlow.  Note that it is
 145 // not a general type, but can only come from Type::get_typeflow_type.
 146 // The safepoint is a map which will feed an uncommon trap.
 147 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 148                                     SafePointNode* &bad_type_exit) {
 149 
 150   const TypeOopPtr* tp = type->isa_oopptr();
 151 
 152   // TypeFlow may assert null-ness if a type appears unloaded.
 153   if (type == TypePtr::NULL_PTR ||
 154       (tp != nullptr && !tp->is_loaded())) {
 155     // Value must be null, not a real oop.
 156     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 157     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 158     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 159     set_control(_gvn.transform( new IfTrueNode(iff) ));
 160     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 161     bad_type_exit->control()->add_req(bad_type);
 162     l = null();
 163   }
 164 
 165   // Typeflow can also cut off paths from the CFG, based on
 166   // types which appear unloaded, or call sites which appear unlinked.
 167   // When paths are cut off, values at later merge points can rise
 168   // toward more specific classes.  Make sure these specific classes
 169   // are still in effect.
 170   if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
 171     // TypeFlow asserted a specific object type.  Value must have that type.
 172     Node* bad_type_ctrl = nullptr;
 173     l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl);
 174     bad_type_exit->control()->add_req(bad_type_ctrl);
 175   }
 176 
 177   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 178   return l;
 179 }
 180 
 181 // Helper routine which sets up elements of the initial parser map when
 182 // performing a parse for on stack replacement.  Add values into map.
 183 // The only parameter contains the address of a interpreter arguments.
 184 void Parse::load_interpreter_state(Node* osr_buf) {
 185   int index;
 186   int max_locals = jvms()->loc_size();
 187   int max_stack  = jvms()->stk_size();
 188 
 189 
 190   // Mismatch between method and jvms can occur since map briefly held
 191   // an OSR entry state (which takes up one RawPtr word).
 192   assert(max_locals == method()->max_locals(), "sanity");
 193   assert(max_stack  >= method()->max_stack(),  "sanity");
 194   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 195   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 196 
 197   // Find the start block.
 198   Block* osr_block = start_block();
 199   assert(osr_block->start() == osr_bci(), "sanity");
 200 
 201   // Set initial BCI.
 202   set_parse_bci(osr_block->start());
 203 
 204   // Set initial stack depth.
 205   set_sp(osr_block->start_sp());
 206 
 207   // Check bailouts.  We currently do not perform on stack replacement
 208   // of loops in catch blocks or loops which branch with a non-empty stack.
 209   if (sp() != 0) {
 210     C->record_method_not_compilable("OSR starts with non-empty stack");
 211     return;
 212   }
 213   // Do not OSR inside finally clauses:
 214   if (osr_block->has_trap_at(osr_block->start())) {
 215     assert(false, "OSR starts with an immediate trap");
 216     C->record_method_not_compilable("OSR starts with an immediate trap");
 217     return;
 218   }
 219 
 220   // Commute monitors from interpreter frame to compiler frame.
 221   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 222   int mcnt = osr_block->flow()->monitor_count();
 223   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 224   for (index = 0; index < mcnt; index++) {
 225     // Make a BoxLockNode for the monitor.
 226     BoxLockNode* osr_box = new BoxLockNode(next_monitor());
 227     // Check for bailout after new BoxLockNode
 228     if (failing()) { return; }
 229 
 230     // This OSR locking region is unbalanced because it does not have Lock node:
 231     // locking was done in Interpreter.
 232     // This is similar to Coarsened case when Lock node is eliminated
 233     // and as result the region is marked as Unbalanced.
 234 
 235     // Emulate Coarsened state transition from Regular to Unbalanced.
 236     osr_box->set_coarsened();
 237     osr_box->set_unbalanced();
 238 
 239     Node* box = _gvn.transform(osr_box);
 240 
 241     // Displaced headers and locked objects are interleaved in the
 242     // temp OSR buffer.  We only copy the locked objects out here.
 243     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 244     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 245     // Try and copy the displaced header to the BoxNode
 246     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 247 
 248 
 249     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, MemNode::unordered);
 250 
 251     // Build a bogus FastLockNode (no code will be generated) and push the
 252     // monitor into our debug info.
 253     const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock();
 254     map()->push_monitor(flock);
 255 
 256     // If the lock is our method synchronization lock, tuck it away in
 257     // _sync_lock for return and rethrow exit paths.
 258     if (index == 0 && method()->is_synchronized()) {
 259       _synch_lock = flock;
 260     }
 261   }
 262 
 263   // Use the raw liveness computation to make sure that unexpected
 264   // values don't propagate into the OSR frame.
 265   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 266   if (!live_locals.is_valid()) {
 267     // Degenerate or breakpointed method.
 268     assert(false, "OSR in empty or breakpointed method");
 269     C->record_method_not_compilable("OSR in empty or breakpointed method");
 270     return;
 271   }
 272 
 273   // Extract the needed locals from the interpreter frame.
 274   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 275 
 276   // find all the locals that the interpreter thinks contain live oops
 277   const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 278   for (index = 0; index < max_locals; index++) {
 279 
 280     if (!live_locals.at(index)) {
 281       continue;
 282     }
 283 
 284     const Type *type = osr_block->local_type_at(index);
 285 
 286     if (type->isa_oopptr() != nullptr) {
 287 
 288       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 289       // else we might load a stale oop if the MethodLiveness disagrees with the
 290       // result of the interpreter. If the interpreter says it is dead we agree
 291       // by making the value go to top.
 292       //
 293 
 294       if (!live_oops.at(index)) {
 295         if (C->log() != nullptr) {
 296           C->log()->elem("OSR_mismatch local_index='%d'",index);
 297         }
 298         set_local(index, null());
 299         // and ignore it for the loads
 300         continue;
 301       }
 302     }
 303 
 304     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 305     if (type == Type::TOP || type == Type::HALF) {
 306       continue;
 307     }
 308     // If the type falls to bottom, then this must be a local that
 309     // is mixing ints and oops or some such.  Forcing it to top
 310     // makes it go dead.
 311     if (type == Type::BOTTOM) {
 312       continue;
 313     }
 314     // Construct code to access the appropriate local.
 315     BasicType bt = type->basic_type();
 316     if (type == TypePtr::NULL_PTR) {
 317       // Ptr types are mixed together with T_ADDRESS but null is
 318       // really for T_OBJECT types so correct it.
 319       bt = T_OBJECT;
 320     }
 321     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 322     set_local(index, value);
 323   }
 324 
 325   // Extract the needed stack entries from the interpreter frame.
 326   for (index = 0; index < sp(); index++) {
 327     const Type *type = osr_block->stack_type_at(index);
 328     if (type != Type::TOP) {
 329       // Currently the compiler bails out when attempting to on stack replace
 330       // at a bci with a non-empty stack.  We should not reach here.
 331       ShouldNotReachHere();
 332     }
 333   }
 334 
 335   // End the OSR migration
 336   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 337                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 338                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 339                     osr_buf);
 340 
 341   // Now that the interpreter state is loaded, make sure it will match
 342   // at execution time what the compiler is expecting now:
 343   SafePointNode* bad_type_exit = clone_map();
 344   bad_type_exit->set_control(new RegionNode(1));
 345 
 346   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 347   for (index = 0; index < max_locals; index++) {
 348     if (stopped())  break;
 349     Node* l = local(index);
 350     if (l->is_top())  continue;  // nothing here
 351     const Type *type = osr_block->local_type_at(index);
 352     if (type->isa_oopptr() != nullptr) {
 353       if (!live_oops.at(index)) {
 354         // skip type check for dead oops
 355         continue;
 356       }
 357     }
 358     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 359       // In our current system it's illegal for jsr addresses to be
 360       // live into an OSR entry point because the compiler performs
 361       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 362       // case and aborts the compile if addresses are live into an OSR
 363       // entry point.  Because of that we can assume that any address
 364       // locals at the OSR entry point are dead.  Method liveness
 365       // isn't precise enough to figure out that they are dead in all
 366       // cases so simply skip checking address locals all
 367       // together. Any type check is guaranteed to fail since the
 368       // interpreter type is the result of a load which might have any
 369       // value and the expected type is a constant.
 370       continue;
 371     }
 372     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 373   }
 374 
 375   for (index = 0; index < sp(); index++) {
 376     if (stopped())  break;
 377     Node* l = stack(index);
 378     if (l->is_top())  continue;  // nothing here
 379     const Type *type = osr_block->stack_type_at(index);
 380     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 381   }
 382 
 383   if (bad_type_exit->control()->req() > 1) {
 384     // Build an uncommon trap here, if any inputs can be unexpected.
 385     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 386     record_for_igvn(bad_type_exit->control());
 387     SafePointNode* types_are_good = map();
 388     set_map(bad_type_exit);
 389     // The unexpected type happens because a new edge is active
 390     // in the CFG, which typeflow had previously ignored.
 391     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 392     // This x will be typed as Integer if notReached is not yet linked.
 393     // It could also happen due to a problem in ciTypeFlow analysis.
 394     uncommon_trap(Deoptimization::Reason_constraint,
 395                   Deoptimization::Action_reinterpret);
 396     set_map(types_are_good);
 397   }
 398 }
 399 
 400 //------------------------------Parse------------------------------------------
 401 // Main parser constructor.
 402 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 403   : _exits(caller)
 404 {
 405   // Init some variables
 406   _caller = caller;
 407   _method = parse_method;
 408   _expected_uses = expected_uses;
 409   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 410   _wrote_final = false;
 411   _wrote_volatile = false;
 412   _wrote_stable = false;
 413   _wrote_fields = false;
 414   _alloc_with_final_or_stable = nullptr;
 415   _block = nullptr;
 416   _first_return = true;
 417   _replaced_nodes_for_exceptions = false;
 418   _new_idx = C->unique();
 419   DEBUG_ONLY(_entry_bci = UnknownBci);
 420   DEBUG_ONLY(_block_count = -1);
 421   DEBUG_ONLY(_blocks = (Block*)-1);
 422 #ifndef PRODUCT
 423   if (PrintCompilation || PrintOpto) {
 424     // Make sure I have an inline tree, so I can print messages about it.
 425     InlineTree::find_subtree_from_root(C->ilt(), caller, parse_method);
 426   }
 427   _max_switch_depth = 0;
 428   _est_switch_depth = 0;
 429 #endif
 430 
 431   if (parse_method->has_reserved_stack_access()) {
 432     C->set_has_reserved_stack_access(true);
 433   }
 434 
 435   if (parse_method->is_synchronized() || parse_method->has_monitor_bytecodes()) {
 436     C->set_has_monitors(true);
 437   }
 438 
 439   if (parse_method->is_scoped()) {
 440     C->set_has_scoped_access(true);
 441   }
 442 
 443   _iter.reset_to_method(method());
 444   C->set_has_loops(C->has_loops() || method()->has_loops());
 445 
 446   if (_expected_uses <= 0) {
 447     _prof_factor = 1;
 448   } else {
 449     float prof_total = parse_method->interpreter_invocation_count();
 450     if (prof_total <= _expected_uses) {
 451       _prof_factor = 1;
 452     } else {
 453       _prof_factor = _expected_uses / prof_total;
 454     }
 455   }
 456 
 457   CompileLog* log = C->log();
 458   if (log != nullptr) {
 459     log->begin_head("parse method='%d' uses='%f'",
 460                     log->identify(parse_method), expected_uses);
 461     if (depth() == 1 && C->is_osr_compilation()) {
 462       log->print(" osr_bci='%d'", C->entry_bci());
 463     }
 464     log->stamp();
 465     log->end_head();
 466   }
 467 
 468   // Accumulate deoptimization counts.
 469   // (The range_check and store_check counts are checked elsewhere.)
 470   ciMethodData* md = method()->method_data();
 471   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 472     uint md_count = md->trap_count(reason);
 473     if (md_count != 0) {
 474       if (md_count >= md->trap_count_limit()) {
 475         md_count = md->trap_count_limit() + md->overflow_trap_count();
 476       }
 477       uint total_count = C->trap_count(reason);
 478       uint old_count   = total_count;
 479       total_count += md_count;
 480       // Saturate the add if it overflows.
 481       if (total_count < old_count || total_count < md_count)
 482         total_count = (uint)-1;
 483       C->set_trap_count(reason, total_count);
 484       if (log != nullptr)
 485         log->elem("observe trap='%s' count='%d' total='%d'",
 486                   Deoptimization::trap_reason_name(reason),
 487                   md_count, total_count);
 488     }
 489   }
 490   // Accumulate total sum of decompilations, also.
 491   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 492 
 493   if (log != nullptr && method()->has_exception_handlers()) {
 494     log->elem("observe that='has_exception_handlers'");
 495   }
 496 
 497   assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier");
 498   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 499 
 500   // Always register dependence if JVMTI is enabled, because
 501   // either breakpoint setting or hotswapping of methods may
 502   // cause deoptimization.
 503   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 504     C->dependencies()->assert_evol_method(method());
 505   }
 506 
 507   NOT_PRODUCT(methods_seen++);
 508 
 509   // Do some special top-level things.
 510   if (depth() == 1 && C->is_osr_compilation()) {
 511     _tf = C->tf();     // the OSR entry type is different
 512     _entry_bci = C->entry_bci();
 513     _flow = method()->get_osr_flow_analysis(osr_bci());
 514   } else {
 515     _tf = TypeFunc::make(method());
 516     _entry_bci = InvocationEntryBci;
 517     _flow = method()->get_flow_analysis();
 518   }
 519 
 520   if (_flow->failing()) {
 521     assert(false, "type flow analysis failed during parsing");
 522     C->record_method_not_compilable(_flow->failure_reason());
 523 #ifndef PRODUCT
 524       if (PrintOpto && (Verbose || WizardMode)) {
 525         if (is_osr_parse()) {
 526           tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 527         } else {
 528           tty->print_cr("type flow bailout: %s", _flow->failure_reason());
 529         }
 530         if (Verbose) {
 531           method()->print();
 532           method()->print_codes();
 533           _flow->print();
 534         }
 535       }
 536 #endif
 537   }
 538 
 539 #ifdef ASSERT
 540   if (depth() == 1) {
 541     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 542   } else {
 543     assert(!this->is_osr_parse(), "no recursive OSR");
 544   }
 545 #endif
 546 
 547 #ifndef PRODUCT
 548   if (_flow->has_irreducible_entry()) {
 549     C->set_parsed_irreducible_loop(true);
 550   }
 551 
 552   methods_parsed++;
 553   // add method size here to guarantee that inlined methods are added too
 554   if (CITime)
 555     _total_bytes_compiled += method()->code_size();
 556 
 557   show_parse_info();
 558 #endif
 559 
 560   if (failing()) {
 561     if (log)  log->done("parse");
 562     return;
 563   }
 564 
 565   gvn().transform(top());
 566 
 567   // Import the results of the ciTypeFlow.
 568   init_blocks();
 569 
 570   // Merge point for all normal exits
 571   build_exits();
 572 
 573   // Setup the initial JVM state map.
 574   SafePointNode* entry_map = create_entry_map();
 575 
 576   // Check for bailouts during map initialization
 577   if (failing() || entry_map == nullptr) {
 578     if (log)  log->done("parse");
 579     return;
 580   }
 581 
 582   Node_Notes* caller_nn = C->default_node_notes();
 583   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 584   if (DebugInlinedCalls || depth() == 1) {
 585     C->set_default_node_notes(make_node_notes(caller_nn));
 586   }
 587 
 588   if (is_osr_parse()) {
 589     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 590     entry_map->set_req(TypeFunc::Parms+0, top());
 591     set_map(entry_map);
 592     load_interpreter_state(osr_buf);
 593   } else {
 594     set_map(entry_map);
 595     do_method_entry();
 596   }
 597 
 598   if (depth() == 1 && !failing()) {
 599     if (C->clinit_barrier_on_entry()) {
 600       // Add check to deoptimize the nmethod once the holder class is fully initialized
 601       clinit_deopt();
 602     }
 603   }
 604 
 605   // Check for bailouts during method entry.
 606   if (failing()) {
 607     if (log)  log->done("parse");
 608     C->set_default_node_notes(caller_nn);
 609     return;
 610   }
 611 
 612   entry_map = map();  // capture any changes performed by method setup code
 613   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 614 
 615   // We begin parsing as if we have just encountered a jump to the
 616   // method entry.
 617   Block* entry_block = start_block();
 618   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 619   set_map_clone(entry_map);
 620   merge_common(entry_block, entry_block->next_path_num());
 621 
 622 #ifndef PRODUCT
 623   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 624   set_parse_histogram( parse_histogram_obj );
 625 #endif
 626 
 627   // Parse all the basic blocks.
 628   do_all_blocks();
 629 
 630   // Check for bailouts during conversion to graph
 631   if (failing()) {
 632     if (log)  log->done("parse");
 633     return;
 634   }
 635 
 636   // Fix up all exiting control flow.
 637   set_map(entry_map);
 638   do_exits();
 639 
 640   // Only reset this now, to make sure that debug information emitted
 641   // for exiting control flow still refers to the inlined method.
 642   C->set_default_node_notes(caller_nn);
 643 
 644   if (log)  log->done("parse nodes='%d' live='%d' memory='%zu'",
 645                       C->unique(), C->live_nodes(), C->node_arena()->used());
 646 }
 647 
 648 //---------------------------do_all_blocks-------------------------------------
 649 void Parse::do_all_blocks() {
 650   bool has_irreducible = flow()->has_irreducible_entry();
 651 
 652   // Walk over all blocks in Reverse Post-Order.
 653   while (true) {
 654     bool progress = false;
 655     for (int rpo = 0; rpo < block_count(); rpo++) {
 656       Block* block = rpo_at(rpo);
 657 
 658       if (block->is_parsed()) continue;
 659 
 660       if (!block->is_merged()) {
 661         // Dead block, no state reaches this block
 662         continue;
 663       }
 664 
 665       // Prepare to parse this block.
 666       load_state_from(block);
 667 
 668       if (stopped()) {
 669         // Block is dead.
 670         continue;
 671       }
 672 
 673       NOT_PRODUCT(blocks_parsed++);
 674 
 675       progress = true;
 676       if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) {
 677         // Not all preds have been parsed.  We must build phis everywhere.
 678         // (Note that dead locals do not get phis built, ever.)
 679         ensure_phis_everywhere();
 680 
 681         if (block->is_SEL_head()) {
 682           // Add predicate to single entry (not irreducible) loop head.
 683           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 684           // Predicates may have been added after a dominating if
 685           if (!block->has_predicates()) {
 686             // Need correct bci for predicate.
 687             // It is fine to set it here since do_one_block() will set it anyway.
 688             set_parse_bci(block->start());
 689             add_parse_predicates();
 690           }
 691           // Add new region for back branches.
 692           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 693           RegionNode *r = new RegionNode(edges+1);
 694           _gvn.set_type(r, Type::CONTROL);
 695           record_for_igvn(r);
 696           r->init_req(edges, control());
 697           set_control(r);
 698           block->copy_irreducible_status_to(r, jvms());
 699           // Add new phis.
 700           ensure_phis_everywhere();
 701         }
 702 
 703         // Leave behind an undisturbed copy of the map, for future merges.
 704         set_map(clone_map());
 705       }
 706 
 707       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 708         // In the absence of irreducible loops, the Region and Phis
 709         // associated with a merge that doesn't involve a backedge can
 710         // be simplified now since the RPO parsing order guarantees
 711         // that any path which was supposed to reach here has already
 712         // been parsed or must be dead.
 713         Node* c = control();
 714         Node* result = _gvn.transform(control());
 715         if (c != result && TraceOptoParse) {
 716           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 717         }
 718         if (result != top()) {
 719           record_for_igvn(result);
 720         }
 721       }
 722 
 723       // Parse the block.
 724       do_one_block();
 725 
 726       // Check for bailouts.
 727       if (failing())  return;
 728     }
 729 
 730     // with irreducible loops multiple passes might be necessary to parse everything
 731     if (!has_irreducible || !progress) {
 732       break;
 733     }
 734   }
 735 
 736 #ifndef PRODUCT
 737   blocks_seen += block_count();
 738 
 739   // Make sure there are no half-processed blocks remaining.
 740   // Every remaining unprocessed block is dead and may be ignored now.
 741   for (int rpo = 0; rpo < block_count(); rpo++) {
 742     Block* block = rpo_at(rpo);
 743     if (!block->is_parsed()) {
 744       if (TraceOptoParse) {
 745         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 746       }
 747       assert(!block->is_merged(), "no half-processed blocks");
 748     }
 749   }
 750 #endif
 751 }
 752 
 753 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
 754   switch (bt) {
 755   case T_BYTE:
 756     v = gvn->transform(new LShiftINode(v, gvn->intcon(24)));
 757     v = gvn->transform(new RShiftINode(v, gvn->intcon(24)));
 758     break;
 759   case T_SHORT:
 760     v = gvn->transform(new LShiftINode(v, gvn->intcon(16)));
 761     v = gvn->transform(new RShiftINode(v, gvn->intcon(16)));
 762     break;
 763   case T_CHAR:
 764     v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF)));
 765     break;
 766   case T_BOOLEAN:
 767     v = gvn->transform(new AndINode(v, gvn->intcon(0x1)));
 768     break;
 769   default:
 770     break;
 771   }
 772   return v;
 773 }
 774 
 775 //-------------------------------build_exits----------------------------------
 776 // Build normal and exceptional exit merge points.
 777 void Parse::build_exits() {
 778   // make a clone of caller to prevent sharing of side-effects
 779   _exits.set_map(_exits.clone_map());
 780   _exits.clean_stack(_exits.sp());
 781   _exits.sync_jvms();
 782 
 783   RegionNode* region = new RegionNode(1);
 784   record_for_igvn(region);
 785   gvn().set_type_bottom(region);
 786   _exits.set_control(region);
 787 
 788   // Note:  iophi and memphi are not transformed until do_exits.
 789   Node* iophi  = new PhiNode(region, Type::ABIO);
 790   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 791   gvn().set_type_bottom(iophi);
 792   gvn().set_type_bottom(memphi);
 793   _exits.set_i_o(iophi);
 794   _exits.set_all_memory(memphi);
 795 
 796   // Add a return value to the exit state.  (Do not push it yet.)
 797   if (tf()->range()->cnt() > TypeFunc::Parms) {
 798     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 799     if (ret_type->isa_int()) {
 800       BasicType ret_bt = method()->return_type()->basic_type();
 801       if (ret_bt == T_BOOLEAN ||
 802           ret_bt == T_CHAR ||
 803           ret_bt == T_BYTE ||
 804           ret_bt == T_SHORT) {
 805         ret_type = TypeInt::INT;
 806       }
 807     }
 808 
 809     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 810     // becomes loaded during the subsequent parsing, the loaded and unloaded
 811     // types will not join when we transform and push in do_exits().
 812     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 813     if (ret_oop_type && !ret_oop_type->is_loaded()) {
 814       ret_type = TypeOopPtr::BOTTOM;
 815     }
 816     int         ret_size = type2size[ret_type->basic_type()];
 817     Node*       ret_phi  = new PhiNode(region, ret_type);
 818     gvn().set_type_bottom(ret_phi);
 819     _exits.ensure_stack(ret_size);
 820     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 821     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 822     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 823     // Note:  ret_phi is not yet pushed, until do_exits.
 824   }
 825 }
 826 
 827 
 828 //----------------------------build_start_state-------------------------------
 829 // Construct a state which contains only the incoming arguments from an
 830 // unknown caller.  The method & bci will be null & InvocationEntryBci.
 831 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 832   int        arg_size = tf->domain()->cnt();
 833   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 834   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 835   SafePointNode* map  = new SafePointNode(max_size, jvms);
 836   record_for_igvn(map);
 837   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 838   Node_Notes* old_nn = default_node_notes();
 839   if (old_nn != nullptr && has_method()) {
 840     Node_Notes* entry_nn = old_nn->clone(this);
 841     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 842     entry_jvms->set_offsets(0);
 843     entry_jvms->set_bci(entry_bci());
 844     entry_nn->set_jvms(entry_jvms);
 845     set_default_node_notes(entry_nn);
 846   }
 847   uint i;
 848   for (i = 0; i < (uint)arg_size; i++) {
 849     Node* parm = initial_gvn()->transform(new ParmNode(start, i));
 850     map->init_req(i, parm);
 851     // Record all these guys for later GVN.
 852     record_for_igvn(parm);
 853   }
 854   for (; i < map->req(); i++) {
 855     map->init_req(i, top());
 856   }
 857   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 858   set_default_node_notes(old_nn);
 859   jvms->set_map(map);
 860   return jvms;
 861 }
 862 
 863 //-----------------------------make_node_notes---------------------------------
 864 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 865   if (caller_nn == nullptr)  return nullptr;
 866   Node_Notes* nn = caller_nn->clone(C);
 867   JVMState* caller_jvms = nn->jvms();
 868   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 869   jvms->set_offsets(0);
 870   jvms->set_bci(_entry_bci);
 871   nn->set_jvms(jvms);
 872   return nn;
 873 }
 874 
 875 
 876 //--------------------------return_values--------------------------------------
 877 void Compile::return_values(JVMState* jvms) {
 878   GraphKit kit(jvms);
 879   Node* ret = new ReturnNode(TypeFunc::Parms,
 880                              kit.control(),
 881                              kit.i_o(),
 882                              kit.reset_memory(),
 883                              kit.frameptr(),
 884                              kit.returnadr());
 885   // Add zero or 1 return values
 886   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 887   if (ret_size > 0) {
 888     kit.inc_sp(-ret_size);  // pop the return value(s)
 889     kit.sync_jvms();
 890     ret->add_req(kit.argument(0));
 891     // Note:  The second dummy edge is not needed by a ReturnNode.
 892   }
 893   // bind it to root
 894   root()->add_req(ret);
 895   record_for_igvn(ret);
 896   initial_gvn()->transform(ret);
 897 }
 898 
 899 //------------------------rethrow_exceptions-----------------------------------
 900 // Bind all exception states in the list into a single RethrowNode.
 901 void Compile::rethrow_exceptions(JVMState* jvms) {
 902   GraphKit kit(jvms);
 903   if (!kit.has_exceptions())  return;  // nothing to generate
 904   // Load my combined exception state into the kit, with all phis transformed:
 905   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 906   Node* ex_oop = kit.use_exception_state(ex_map);
 907   RethrowNode* exit = new RethrowNode(kit.control(),
 908                                       kit.i_o(), kit.reset_memory(),
 909                                       kit.frameptr(), kit.returnadr(),
 910                                       // like a return but with exception input
 911                                       ex_oop);
 912   // bind to root
 913   root()->add_req(exit);
 914   record_for_igvn(exit);
 915   initial_gvn()->transform(exit);
 916 }
 917 
 918 //---------------------------do_exceptions-------------------------------------
 919 // Process exceptions arising from the current bytecode.
 920 // Send caught exceptions to the proper handler within this method.
 921 // Unhandled exceptions feed into _exit.
 922 void Parse::do_exceptions() {
 923   if (!has_exceptions())  return;
 924 
 925   if (failing()) {
 926     // Pop them all off and throw them away.
 927     while (pop_exception_state() != nullptr) ;
 928     return;
 929   }
 930 
 931   PreserveJVMState pjvms(this, false);
 932 
 933   SafePointNode* ex_map;
 934   while ((ex_map = pop_exception_state()) != nullptr) {
 935     if (!method()->has_exception_handlers()) {
 936       // Common case:  Transfer control outward.
 937       // Doing it this early allows the exceptions to common up
 938       // even between adjacent method calls.
 939       throw_to_exit(ex_map);
 940     } else {
 941       // Have to look at the exception first.
 942       assert(stopped(), "catch_inline_exceptions trashes the map");
 943       catch_inline_exceptions(ex_map);
 944       stop_and_kill_map();      // we used up this exception state; kill it
 945     }
 946   }
 947 
 948   // We now return to our regularly scheduled program:
 949 }
 950 
 951 //---------------------------throw_to_exit-------------------------------------
 952 // Merge the given map into an exception exit from this method.
 953 // The exception exit will handle any unlocking of receiver.
 954 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 955 void Parse::throw_to_exit(SafePointNode* ex_map) {
 956   // Pop the JVMS to (a copy of) the caller.
 957   GraphKit caller;
 958   caller.set_map_clone(_caller->map());
 959   caller.set_bci(_caller->bci());
 960   caller.set_sp(_caller->sp());
 961   // Copy out the standard machine state:
 962   for (uint i = 0; i < TypeFunc::Parms; i++) {
 963     caller.map()->set_req(i, ex_map->in(i));
 964   }
 965   if (ex_map->has_replaced_nodes()) {
 966     _replaced_nodes_for_exceptions = true;
 967   }
 968   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
 969   // ...and the exception:
 970   Node*          ex_oop        = saved_ex_oop(ex_map);
 971   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 972   // Finally, collect the new exception state in my exits:
 973   _exits.add_exception_state(caller_ex_map);
 974 }
 975 
 976 //------------------------------do_exits---------------------------------------
 977 void Parse::do_exits() {
 978   set_parse_bci(InvocationEntryBci);
 979 
 980   // Now peephole on the return bits
 981   Node* region = _exits.control();
 982   _exits.set_control(gvn().transform(region));
 983 
 984   Node* iophi = _exits.i_o();
 985   _exits.set_i_o(gvn().transform(iophi));
 986 
 987   // Figure out if we need to emit the trailing barrier. The barrier is only
 988   // needed in the constructors, and only in three cases:
 989   //
 990   // 1. The constructor wrote a final or a @Stable field. All these
 991   //    initializations must be ordered before any code after the constructor
 992   //    publishes the reference to the newly constructed object. Rather
 993   //    than wait for the publication, we simply block the writes here.
 994   //    Rather than put a barrier on only those writes which are required
 995   //    to complete, we force all writes to complete.
 996   //
 997   // 2. Experimental VM option is used to force the barrier if any field
 998   //    was written out in the constructor.
 999   //
1000   // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
1001   //    support_IRIW_for_not_multiple_copy_atomic_cpu selects that
1002   //    MemBarVolatile is used before volatile load instead of after volatile
1003   //    store, so there's no barrier after the store.
1004   //    We want to guarantee the same behavior as on platforms with total store
1005   //    order, although this is not required by the Java memory model.
1006   //    In this case, we want to enforce visibility of volatile field
1007   //    initializations which are performed in constructors.
1008   //    So as with finals, we add a barrier here.
1009   //
1010   // "All bets are off" unless the first publication occurs after a
1011   // normal return from the constructor.  We do not attempt to detect
1012   // such unusual early publications.  But no barrier is needed on
1013   // exceptional returns, since they cannot publish normally.
1014   //
1015   if (method()->is_object_initializer() &&
1016        (wrote_final() || wrote_stable() ||
1017          (AlwaysSafeConstructors && wrote_fields()) ||
1018          (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1019     Node* recorded_alloc = alloc_with_final_or_stable();
1020     _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease,
1021                           recorded_alloc);
1022 
1023     // If Memory barrier is created for final fields write
1024     // and allocation node does not escape the initialize method,
1025     // then barrier introduced by allocation node can be removed.
1026     if (DoEscapeAnalysis && (recorded_alloc != nullptr)) {
1027       AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc);
1028       alloc->compute_MemBar_redundancy(method());
1029     }
1030     if (PrintOpto && (Verbose || WizardMode)) {
1031       method()->print_name();
1032       tty->print_cr(" writes finals/@Stable and needs a memory barrier");
1033     }
1034   }
1035 
1036   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1037     // transform each slice of the original memphi:
1038     mms.set_memory(_gvn.transform(mms.memory()));
1039   }
1040   // Clean up input MergeMems created by transforming the slices
1041   _gvn.transform(_exits.merged_memory());
1042 
1043   if (tf()->range()->cnt() > TypeFunc::Parms) {
1044     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1045     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1046     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1047       // If the type we set for the ret_phi in build_exits() is too optimistic and
1048       // the ret_phi is top now, there's an extremely small chance that it may be due to class
1049       // loading.  It could also be due to an error, so mark this method as not compilable because
1050       // otherwise this could lead to an infinite compile loop.
1051       // In any case, this code path is rarely (and never in my testing) reached.
1052       C->record_method_not_compilable("Can't determine return type.");
1053       return;
1054     }
1055     if (ret_type->isa_int()) {
1056       BasicType ret_bt = method()->return_type()->basic_type();
1057       ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1058     }
1059     _exits.push_node(ret_type->basic_type(), ret_phi);
1060   }
1061 
1062   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
1063 
1064   // Unlock along the exceptional paths.
1065   // This is done late so that we can common up equivalent exceptions
1066   // (e.g., null checks) arising from multiple points within this method.
1067   // See GraphKit::add_exception_state, which performs the commoning.
1068   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
1069 
1070   // record exit from a method if compiled while Dtrace is turned on.
1071   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1072     // First move the exception list out of _exits:
1073     GraphKit kit(_exits.transfer_exceptions_into_jvms());
1074     SafePointNode* normal_map = kit.map();  // keep this guy safe
1075     // Now re-collect the exceptions into _exits:
1076     SafePointNode* ex_map;
1077     while ((ex_map = kit.pop_exception_state()) != nullptr) {
1078       Node* ex_oop = kit.use_exception_state(ex_map);
1079       // Force the exiting JVM state to have this method at InvocationEntryBci.
1080       // The exiting JVM state is otherwise a copy of the calling JVMS.
1081       JVMState* caller = kit.jvms();
1082       JVMState* ex_jvms = caller->clone_shallow(C);
1083       ex_jvms->bind_map(kit.clone_map());
1084       ex_jvms->set_bci(   InvocationEntryBci);
1085       kit.set_jvms(ex_jvms);
1086       if (do_synch) {
1087         // Add on the synchronized-method box/object combo
1088         kit.map()->push_monitor(_synch_lock);
1089         // Unlock!
1090         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1091       }
1092       if (C->env()->dtrace_method_probes()) {
1093         kit.make_dtrace_method_exit(method());
1094       }
1095       if (_replaced_nodes_for_exceptions) {
1096         kit.map()->apply_replaced_nodes(_new_idx);
1097       }
1098       // Done with exception-path processing.
1099       ex_map = kit.make_exception_state(ex_oop);
1100       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1101       // Pop the last vestige of this method:
1102       caller->clone_shallow(C)->bind_map(ex_map);
1103       _exits.push_exception_state(ex_map);
1104     }
1105     assert(_exits.map() == normal_map, "keep the same return state");
1106   }
1107 
1108   {
1109     // Capture very early exceptions (receiver null checks) from caller JVMS
1110     GraphKit caller(_caller);
1111     SafePointNode* ex_map;
1112     while ((ex_map = caller.pop_exception_state()) != nullptr) {
1113       _exits.add_exception_state(ex_map);
1114     }
1115   }
1116   _exits.map()->apply_replaced_nodes(_new_idx);
1117 }
1118 
1119 //-----------------------------create_entry_map-------------------------------
1120 // Initialize our parser map to contain the types at method entry.
1121 // For OSR, the map contains a single RawPtr parameter.
1122 // Initial monitor locking for sync. methods is performed by do_method_entry.
1123 SafePointNode* Parse::create_entry_map() {
1124   // Check for really stupid bail-out cases.
1125   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1126   if (len >= 32760) {
1127     // Bailout expected, this is a very rare edge case.
1128     C->record_method_not_compilable("too many local variables");
1129     return nullptr;
1130   }
1131 
1132   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1133   _caller->map()->delete_replaced_nodes();
1134 
1135   // If this is an inlined method, we may have to do a receiver null check.
1136   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1137     GraphKit kit(_caller);
1138     kit.null_check_receiver_before_call(method());
1139     _caller = kit.transfer_exceptions_into_jvms();
1140     if (kit.stopped()) {
1141       _exits.add_exception_states_from(_caller);
1142       _exits.set_jvms(_caller);
1143       return nullptr;
1144     }
1145   }
1146 
1147   assert(method() != nullptr, "parser must have a method");
1148 
1149   // Create an initial safepoint to hold JVM state during parsing
1150   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1151   set_map(new SafePointNode(len, jvms));
1152   jvms->set_map(map());
1153   record_for_igvn(map());
1154   assert(jvms->endoff() == len, "correct jvms sizing");
1155 
1156   SafePointNode* inmap = _caller->map();
1157   assert(inmap != nullptr, "must have inmap");
1158   // In case of null check on receiver above
1159   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1160 
1161   uint i;
1162 
1163   // Pass thru the predefined input parameters.
1164   for (i = 0; i < TypeFunc::Parms; i++) {
1165     map()->init_req(i, inmap->in(i));
1166   }
1167 
1168   if (depth() == 1) {
1169     assert(map()->memory()->Opcode() == Op_Parm, "");
1170     // Insert the memory aliasing node
1171     set_all_memory(reset_memory());
1172   }
1173   assert(merged_memory(), "");
1174 
1175   // Now add the locals which are initially bound to arguments:
1176   uint arg_size = tf()->domain()->cnt();
1177   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1178   for (i = TypeFunc::Parms; i < arg_size; i++) {
1179     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1180   }
1181 
1182   // Clear out the rest of the map (locals and stack)
1183   for (i = arg_size; i < len; i++) {
1184     map()->init_req(i, top());
1185   }
1186 
1187   SafePointNode* entry_map = stop();
1188   return entry_map;
1189 }
1190 
1191 //-----------------------------do_method_entry--------------------------------
1192 // Emit any code needed in the pseudo-block before BCI zero.
1193 // The main thing to do is lock the receiver of a synchronized method.
1194 void Parse::do_method_entry() {
1195   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1196   set_sp(0);                         // Java Stack Pointer
1197 
1198   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1199 
1200   if (C->env()->dtrace_method_probes()) {
1201     make_dtrace_method_entry(method());
1202   }
1203 
1204 #ifdef ASSERT
1205   // Narrow receiver type when it is too broad for the method being parsed.
1206   if (!method()->is_static()) {
1207     ciInstanceKlass* callee_holder = method()->holder();
1208     const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces);
1209 
1210     Node* receiver_obj = local(0);
1211     const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr();
1212 
1213     if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) {
1214       // Receiver should always be a subtype of callee holder.
1215       // But, since C2 type system doesn't properly track interfaces,
1216       // the invariant can't be expressed in the type system for default methods.
1217       // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I.
1218       assert(callee_holder->is_interface(), "missing subtype check");
1219 
1220       // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure.
1221       Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces));
1222       Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass);
1223       assert(!stopped(), "not a subtype");
1224 
1225       Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check"));
1226       C->root()->add_req(halt);
1227     }
1228   }
1229 #endif // ASSERT
1230 
1231   // If the method is synchronized, we need to construct a lock node, attach
1232   // it to the Start node, and pin it there.
1233   if (method()->is_synchronized()) {
1234     // Insert a FastLockNode right after the Start which takes as arguments
1235     // the current thread pointer, the "this" pointer & the address of the
1236     // stack slot pair used for the lock.  The "this" pointer is a projection
1237     // off the start node, but the locking spot has to be constructed by
1238     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1239     // becomes the second argument to the FastLockNode call.  The
1240     // FastLockNode becomes the new control parent to pin it to the start.
1241 
1242     // Setup Object Pointer
1243     Node *lock_obj = nullptr;
1244     if (method()->is_static()) {
1245       ciInstance* mirror = _method->holder()->java_mirror();
1246       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1247       lock_obj = makecon(t_lock);
1248     } else {                  // Else pass the "this" pointer,
1249       lock_obj = local(0);    // which is Parm0 from StartNode
1250     }
1251     // Clear out dead values from the debug info.
1252     kill_dead_locals();
1253     // Build the FastLockNode
1254     _synch_lock = shared_lock(lock_obj);
1255     // Check for bailout in shared_lock
1256     if (failing()) { return; }
1257   }
1258 
1259   // Feed profiling data for parameters to the type system so it can
1260   // propagate it as speculative types
1261   record_profiled_parameters_for_speculation();
1262 }
1263 
1264 //------------------------------init_blocks------------------------------------
1265 // Initialize our parser map to contain the types/monitors at method entry.
1266 void Parse::init_blocks() {
1267   // Create the blocks.
1268   _block_count = flow()->block_count();
1269   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1270 
1271   // Initialize the structs.
1272   for (int rpo = 0; rpo < block_count(); rpo++) {
1273     Block* block = rpo_at(rpo);
1274     new(block) Block(this, rpo);
1275   }
1276 
1277   // Collect predecessor and successor information.
1278   for (int rpo = 0; rpo < block_count(); rpo++) {
1279     Block* block = rpo_at(rpo);
1280     block->init_graph(this);
1281   }
1282 }
1283 
1284 //-------------------------------init_node-------------------------------------
1285 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() {
1286   _flow = outer->flow()->rpo_at(rpo);
1287   _pred_count = 0;
1288   _preds_parsed = 0;
1289   _count = 0;
1290   _is_parsed = false;
1291   _is_handler = false;
1292   _has_merged_backedge = false;
1293   _start_map = nullptr;
1294   _has_predicates = false;
1295   _num_successors = 0;
1296   _all_successors = 0;
1297   _successors = nullptr;
1298   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1299   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1300   assert(_live_locals.size() == 0, "sanity");
1301 
1302   // entry point has additional predecessor
1303   if (flow()->is_start())  _pred_count++;
1304   assert(flow()->is_start() == (this == outer->start_block()), "");
1305 }
1306 
1307 //-------------------------------init_graph------------------------------------
1308 void Parse::Block::init_graph(Parse* outer) {
1309   // Create the successor list for this parser block.
1310   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1311   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1312   int ns = tfs->length();
1313   int ne = tfe->length();
1314   _num_successors = ns;
1315   _all_successors = ns+ne;
1316   _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1317   int p = 0;
1318   for (int i = 0; i < ns+ne; i++) {
1319     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1320     Block* block2 = outer->rpo_at(tf2->rpo());
1321     _successors[i] = block2;
1322 
1323     // Accumulate pred info for the other block, too.
1324     // Note: We also need to set _pred_count for exception blocks since they could
1325     // also have normal predecessors (reached without athrow by an explicit jump).
1326     // This also means that next_path_num can be called along exception paths.
1327     block2->_pred_count++;
1328     if (i >= ns) {
1329       block2->_is_handler = true;
1330     }
1331 
1332     #ifdef ASSERT
1333     // A block's successors must be distinguishable by BCI.
1334     // That is, no bytecode is allowed to branch to two different
1335     // clones of the same code location.
1336     for (int j = 0; j < i; j++) {
1337       Block* block1 = _successors[j];
1338       if (block1 == block2)  continue;  // duplicates are OK
1339       assert(block1->start() != block2->start(), "successors have unique bcis");
1340     }
1341     #endif
1342   }
1343 }
1344 
1345 //---------------------------successor_for_bci---------------------------------
1346 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1347   for (int i = 0; i < all_successors(); i++) {
1348     Block* block2 = successor_at(i);
1349     if (block2->start() == bci)  return block2;
1350   }
1351   // We can actually reach here if ciTypeFlow traps out a block
1352   // due to an unloaded class, and concurrently with compilation the
1353   // class is then loaded, so that a later phase of the parser is
1354   // able to see more of the bytecode CFG.  Or, the flow pass and
1355   // the parser can have a minor difference of opinion about executability
1356   // of bytecodes.  For example, "obj.field = null" is executable even
1357   // if the field's type is an unloaded class; the flow pass used to
1358   // make a trap for such code.
1359   return nullptr;
1360 }
1361 
1362 
1363 //-----------------------------stack_type_at-----------------------------------
1364 const Type* Parse::Block::stack_type_at(int i) const {
1365   return get_type(flow()->stack_type_at(i));
1366 }
1367 
1368 
1369 //-----------------------------local_type_at-----------------------------------
1370 const Type* Parse::Block::local_type_at(int i) const {
1371   // Make dead locals fall to bottom.
1372   if (_live_locals.size() == 0) {
1373     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1374     // This bitmap can be zero length if we saw a breakpoint.
1375     // In such cases, pretend they are all live.
1376     ((Block*)this)->_live_locals = live_locals;
1377   }
1378   if (_live_locals.size() > 0 && !_live_locals.at(i))
1379     return Type::BOTTOM;
1380 
1381   return get_type(flow()->local_type_at(i));
1382 }
1383 
1384 
1385 #ifndef PRODUCT
1386 
1387 //----------------------------name_for_bc--------------------------------------
1388 // helper method for BytecodeParseHistogram
1389 static const char* name_for_bc(int i) {
1390   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1391 }
1392 
1393 //----------------------------BytecodeParseHistogram------------------------------------
1394 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1395   _parser   = p;
1396   _compiler = c;
1397   if( ! _initialized ) { _initialized = true; reset(); }
1398 }
1399 
1400 //----------------------------current_count------------------------------------
1401 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1402   switch( bph_type ) {
1403   case BPH_transforms: { return _parser->gvn().made_progress(); }
1404   case BPH_values:     { return _parser->gvn().made_new_values(); }
1405   default: { ShouldNotReachHere(); return 0; }
1406   }
1407 }
1408 
1409 //----------------------------initialized--------------------------------------
1410 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1411 
1412 //----------------------------reset--------------------------------------------
1413 void Parse::BytecodeParseHistogram::reset() {
1414   int i = Bytecodes::number_of_codes;
1415   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1416 }
1417 
1418 //----------------------------set_initial_state--------------------------------
1419 // Record info when starting to parse one bytecode
1420 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1421   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1422     _initial_bytecode    = bc;
1423     _initial_node_count  = _compiler->unique();
1424     _initial_transforms  = current_count(BPH_transforms);
1425     _initial_values      = current_count(BPH_values);
1426   }
1427 }
1428 
1429 //----------------------------record_change--------------------------------
1430 // Record results of parsing one bytecode
1431 void Parse::BytecodeParseHistogram::record_change() {
1432   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1433     ++_bytecodes_parsed[_initial_bytecode];
1434     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1435     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1436     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1437   }
1438 }
1439 
1440 
1441 //----------------------------print--------------------------------------------
1442 void Parse::BytecodeParseHistogram::print(float cutoff) {
1443   ResourceMark rm;
1444   // print profile
1445   int total  = 0;
1446   int i      = 0;
1447   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1448   int abs_sum = 0;
1449   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1450   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1451   if( total == 0 ) { return; }
1452   tty->cr();
1453   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1454   tty->print_cr("relative:  percentage contribution to compiled nodes");
1455   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1456   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1457   tty->print_cr("transforms: Average amount of transform progress per bytecode compiled");
1458   tty->print_cr("values  :  Average number of node values improved per bytecode");
1459   tty->print_cr("name    :  Bytecode name");
1460   tty->cr();
1461   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1462   tty->print_cr("----------------------------------------------------------------------");
1463   while (--i > 0) {
1464     int       abs = _bytecodes_parsed[i];
1465     float     rel = abs * 100.0F / total;
1466     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1467     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1468     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1469     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1470     if (cutoff <= rel) {
1471       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1472       abs_sum += abs;
1473     }
1474   }
1475   tty->print_cr("----------------------------------------------------------------------");
1476   float rel_sum = abs_sum * 100.0F / total;
1477   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1478   tty->print_cr("----------------------------------------------------------------------");
1479   tty->cr();
1480 }
1481 #endif
1482 
1483 //----------------------------load_state_from----------------------------------
1484 // Load block/map/sp.  But not do not touch iter/bci.
1485 void Parse::load_state_from(Block* block) {
1486   set_block(block);
1487   // load the block's JVM state:
1488   set_map(block->start_map());
1489   set_sp( block->start_sp());
1490 }
1491 
1492 
1493 //-----------------------------record_state------------------------------------
1494 void Parse::Block::record_state(Parse* p) {
1495   assert(!is_merged(), "can only record state once, on 1st inflow");
1496   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1497   set_start_map(p->stop());
1498 }
1499 
1500 
1501 //------------------------------do_one_block-----------------------------------
1502 void Parse::do_one_block() {
1503   if (TraceOptoParse) {
1504     Block *b = block();
1505     int ns = b->num_successors();
1506     int nt = b->all_successors();
1507 
1508     tty->print("Parsing block #%d at bci [%d,%d), successors:",
1509                   block()->rpo(), block()->start(), block()->limit());
1510     for (int i = 0; i < nt; i++) {
1511       tty->print((( i < ns) ? " %d" : " %d(exception block)"), b->successor_at(i)->rpo());
1512     }
1513     if (b->is_loop_head()) {
1514       tty->print("  loop head");
1515     }
1516     if (b->is_irreducible_loop_entry()) {
1517       tty->print("  irreducible");
1518     }
1519     tty->cr();
1520   }
1521 
1522   assert(block()->is_merged(), "must be merged before being parsed");
1523   block()->mark_parsed();
1524 
1525   // Set iterator to start of block.
1526   iter().reset_to_bci(block()->start());
1527 
1528   if (ProfileExceptionHandlers && block()->is_handler()) {
1529     ciMethodData* methodData = method()->method_data();
1530     if (methodData->is_mature()) {
1531       ciBitData data = methodData->exception_handler_bci_to_data(block()->start());
1532       if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) {
1533         // dead catch block
1534         // Emit an uncommon trap instead of processing the block.
1535         set_parse_bci(block()->start());
1536         uncommon_trap(Deoptimization::Reason_unreached,
1537                       Deoptimization::Action_reinterpret,
1538                       nullptr, "dead catch block");
1539         return;
1540       }
1541     }
1542   }
1543 
1544   CompileLog* log = C->log();
1545 
1546   // Parse bytecodes
1547   while (!stopped() && !failing()) {
1548     iter().next();
1549 
1550     // Learn the current bci from the iterator:
1551     set_parse_bci(iter().cur_bci());
1552 
1553     if (bci() == block()->limit()) {
1554       // Do not walk into the next block until directed by do_all_blocks.
1555       merge(bci());
1556       break;
1557     }
1558     assert(bci() < block()->limit(), "bci still in block");
1559 
1560     if (log != nullptr) {
1561       // Output an optional context marker, to help place actions
1562       // that occur during parsing of this BC.  If there is no log
1563       // output until the next context string, this context string
1564       // will be silently ignored.
1565       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1566     }
1567 
1568     if (block()->has_trap_at(bci())) {
1569       // We must respect the flow pass's traps, because it will refuse
1570       // to produce successors for trapping blocks.
1571       int trap_index = block()->flow()->trap_index();
1572       assert(trap_index != 0, "trap index must be valid");
1573       uncommon_trap(trap_index);
1574       break;
1575     }
1576 
1577     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1578 
1579 #ifdef ASSERT
1580     int pre_bc_sp = sp();
1581     int inputs, depth;
1582     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1583     assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1584 #endif //ASSERT
1585 
1586     do_one_bytecode();
1587     if (failing()) return;
1588 
1589     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1590            "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth);
1591 
1592     do_exceptions();
1593 
1594     NOT_PRODUCT( parse_histogram()->record_change(); );
1595 
1596     if (log != nullptr)
1597       log->clear_context();  // skip marker if nothing was printed
1598 
1599     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1600     // successor which is typically made ready by visiting this bytecode.
1601     // If the successor has several predecessors, then it is a merge
1602     // point, starts a new basic block, and is handled like other basic blocks.
1603   }
1604 }
1605 
1606 
1607 //------------------------------merge------------------------------------------
1608 void Parse::set_parse_bci(int bci) {
1609   set_bci(bci);
1610   Node_Notes* nn = C->default_node_notes();
1611   if (nn == nullptr)  return;
1612 
1613   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1614   if (!DebugInlinedCalls && depth() > 1) {
1615     return;
1616   }
1617 
1618   // Update the JVMS annotation, if present.
1619   JVMState* jvms = nn->jvms();
1620   if (jvms != nullptr && jvms->bci() != bci) {
1621     // Update the JVMS.
1622     jvms = jvms->clone_shallow(C);
1623     jvms->set_bci(bci);
1624     nn->set_jvms(jvms);
1625   }
1626 }
1627 
1628 //------------------------------merge------------------------------------------
1629 // Merge the current mapping into the basic block starting at bci
1630 void Parse::merge(int target_bci) {
1631   Block* target = successor_for_bci(target_bci);
1632   if (target == nullptr) { handle_missing_successor(target_bci); return; }
1633   assert(!target->is_ready(), "our arrival must be expected");
1634   int pnum = target->next_path_num();
1635   merge_common(target, pnum);
1636 }
1637 
1638 //-------------------------merge_new_path--------------------------------------
1639 // Merge the current mapping into the basic block, using a new path
1640 void Parse::merge_new_path(int target_bci) {
1641   Block* target = successor_for_bci(target_bci);
1642   if (target == nullptr) { handle_missing_successor(target_bci); return; }
1643   assert(!target->is_ready(), "new path into frozen graph");
1644   int pnum = target->add_new_path();
1645   merge_common(target, pnum);
1646 }
1647 
1648 //-------------------------merge_exception-------------------------------------
1649 // Merge the current mapping into the basic block starting at bci
1650 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1651 void Parse::merge_exception(int target_bci) {
1652 #ifdef ASSERT
1653   if (target_bci <= bci()) {
1654     C->set_exception_backedge();
1655   }
1656 #endif
1657   assert(sp() == 1, "must have only the throw exception on the stack");
1658   Block* target = successor_for_bci(target_bci);
1659   if (target == nullptr) { handle_missing_successor(target_bci); return; }
1660   assert(target->is_handler(), "exceptions are handled by special blocks");
1661   int pnum = target->add_new_path();
1662   merge_common(target, pnum);
1663 }
1664 
1665 //--------------------handle_missing_successor---------------------------------
1666 void Parse::handle_missing_successor(int target_bci) {
1667 #ifndef PRODUCT
1668   Block* b = block();
1669   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1670   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1671 #endif
1672   ShouldNotReachHere();
1673 }
1674 
1675 //--------------------------merge_common---------------------------------------
1676 void Parse::merge_common(Parse::Block* target, int pnum) {
1677   if (TraceOptoParse) {
1678     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1679   }
1680 
1681   // Zap extra stack slots to top
1682   assert(sp() == target->start_sp(), "");
1683   clean_stack(sp());
1684 
1685   if (!target->is_merged()) {   // No prior mapping at this bci
1686     if (TraceOptoParse) { tty->print(" with empty state");  }
1687 
1688     // If this path is dead, do not bother capturing it as a merge.
1689     // It is "as if" we had 1 fewer predecessors from the beginning.
1690     if (stopped()) {
1691       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1692       return;
1693     }
1694 
1695     // Make a region if we know there are multiple or unpredictable inputs.
1696     // (Also, if this is a plain fall-through, we might see another region,
1697     // which must not be allowed into this block's map.)
1698     if (pnum > PhiNode::Input         // Known multiple inputs.
1699         || target->is_handler()       // These have unpredictable inputs.
1700         || target->is_loop_head()     // Known multiple inputs
1701         || control()->is_Region()) {  // We must hide this guy.
1702 
1703       int current_bci = bci();
1704       set_parse_bci(target->start()); // Set target bci
1705       if (target->is_SEL_head()) {
1706         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1707         if (target->start() == 0) {
1708           // Add Parse Predicates for the special case when
1709           // there are backbranches to the method entry.
1710           add_parse_predicates();
1711         }
1712       }
1713       // Add a Region to start the new basic block.  Phis will be added
1714       // later lazily.
1715       int edges = target->pred_count();
1716       if (edges < pnum)  edges = pnum;  // might be a new path!
1717       RegionNode *r = new RegionNode(edges+1);
1718       gvn().set_type(r, Type::CONTROL);
1719       record_for_igvn(r);
1720       // zap all inputs to null for debugging (done in Node(uint) constructor)
1721       // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1722       r->init_req(pnum, control());
1723       set_control(r);
1724       target->copy_irreducible_status_to(r, jvms());
1725       set_parse_bci(current_bci); // Restore bci
1726     }
1727 
1728     // Convert the existing Parser mapping into a mapping at this bci.
1729     store_state_to(target);
1730     assert(target->is_merged(), "do not come here twice");
1731 
1732   } else {                      // Prior mapping at this bci
1733     if (TraceOptoParse) {  tty->print(" with previous state"); }
1734 #ifdef ASSERT
1735     if (target->is_SEL_head()) {
1736       target->mark_merged_backedge(block());
1737     }
1738 #endif
1739     // We must not manufacture more phis if the target is already parsed.
1740     bool nophi = target->is_parsed();
1741 
1742     SafePointNode* newin = map();// Hang on to incoming mapping
1743     Block* save_block = block(); // Hang on to incoming block;
1744     load_state_from(target);    // Get prior mapping
1745 
1746     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1747     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1748     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1749     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1750 
1751     // Iterate over my current mapping and the old mapping.
1752     // Where different, insert Phi functions.
1753     // Use any existing Phi functions.
1754     assert(control()->is_Region(), "must be merging to a region");
1755     RegionNode* r = control()->as_Region();
1756 
1757     // Compute where to merge into
1758     // Merge incoming control path
1759     r->init_req(pnum, newin->control());
1760 
1761     if (pnum == 1) {            // Last merge for this Region?
1762       if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1763         Node* result = _gvn.transform(r);
1764         if (r != result && TraceOptoParse) {
1765           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1766         }
1767       }
1768       record_for_igvn(r);
1769     }
1770 
1771     // Update all the non-control inputs to map:
1772     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1773     bool check_elide_phi = target->is_SEL_backedge(save_block);
1774     for (uint j = 1; j < newin->req(); j++) {
1775       Node* m = map()->in(j);   // Current state of target.
1776       Node* n = newin->in(j);   // Incoming change to target state.
1777       PhiNode* phi;
1778       if (m->is_Phi() && m->as_Phi()->region() == r)
1779         phi = m->as_Phi();
1780       else
1781         phi = nullptr;
1782       if (m != n) {             // Different; must merge
1783         switch (j) {
1784         // Frame pointer and Return Address never changes
1785         case TypeFunc::FramePtr:// Drop m, use the original value
1786         case TypeFunc::ReturnAdr:
1787           break;
1788         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1789           assert(phi == nullptr, "the merge contains phis, not vice versa");
1790           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1791           continue;
1792         default:                // All normal stuff
1793           if (phi == nullptr) {
1794             const JVMState* jvms = map()->jvms();
1795             if (EliminateNestedLocks &&
1796                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1797               // BoxLock nodes are not commoning when EliminateNestedLocks is on.
1798               // Use old BoxLock node as merged box.
1799               assert(newin->jvms()->is_monitor_box(j), "sanity");
1800               // This assert also tests that nodes are BoxLock.
1801               assert(BoxLockNode::same_slot(n, m), "sanity");
1802               BoxLockNode* old_box = m->as_BoxLock();
1803               if (n->as_BoxLock()->is_unbalanced() && !old_box->is_unbalanced()) {
1804                 // Preserve Unbalanced status.
1805                 //
1806                 // `old_box` can have only Regular or Coarsened status
1807                 // because this code is executed only during Parse phase and
1808                 // Incremental Inlining before EA and Macro nodes elimination.
1809                 //
1810                 // Incremental Inlining is executed after IGVN optimizations
1811                 // during which BoxLock can be marked as Coarsened.
1812                 old_box->set_coarsened(); // Verifies state
1813                 old_box->set_unbalanced();
1814               }
1815               C->gvn_replace_by(n, m);
1816             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1817               phi = ensure_phi(j, nophi);
1818             }
1819           }
1820           break;
1821         }
1822       }
1823       // At this point, n might be top if:
1824       //  - there is no phi (because TypeFlow detected a conflict), or
1825       //  - the corresponding control edges is top (a dead incoming path)
1826       // It is a bug if we create a phi which sees a garbage value on a live path.
1827 
1828       if (phi != nullptr) {
1829         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1830         assert(phi->region() == r, "");
1831         phi->set_req(pnum, n);  // Then add 'n' to the merge
1832         if (pnum == PhiNode::Input) {
1833           // Last merge for this Phi.
1834           // So far, Phis have had a reasonable type from ciTypeFlow.
1835           // Now _gvn will join that with the meet of current inputs.
1836           // BOTTOM is never permissible here, 'cause pessimistically
1837           // Phis of pointers cannot lose the basic pointer type.
1838           debug_only(const Type* bt1 = phi->bottom_type());
1839           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1840           map()->set_req(j, _gvn.transform(phi));
1841           debug_only(const Type* bt2 = phi->bottom_type());
1842           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1843           record_for_igvn(phi);
1844         }
1845       }
1846     } // End of for all values to be merged
1847 
1848     if (pnum == PhiNode::Input &&
1849         !r->in(0)) {         // The occasional useless Region
1850       assert(control() == r, "");
1851       set_control(r->nonnull_req());
1852     }
1853 
1854     map()->merge_replaced_nodes_with(newin);
1855 
1856     // newin has been subsumed into the lazy merge, and is now dead.
1857     set_block(save_block);
1858 
1859     stop();                     // done with this guy, for now
1860   }
1861 
1862   if (TraceOptoParse) {
1863     tty->print_cr(" on path %d", pnum);
1864   }
1865 
1866   // Done with this parser state.
1867   assert(stopped(), "");
1868 }
1869 
1870 
1871 //--------------------------merge_memory_edges---------------------------------
1872 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1873   // (nophi means we must not create phis, because we already parsed here)
1874   assert(n != nullptr, "");
1875   // Merge the inputs to the MergeMems
1876   MergeMemNode* m = merged_memory();
1877 
1878   assert(control()->is_Region(), "must be merging to a region");
1879   RegionNode* r = control()->as_Region();
1880 
1881   PhiNode* base = nullptr;
1882   MergeMemNode* remerge = nullptr;
1883   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1884     Node *p = mms.force_memory();
1885     Node *q = mms.memory2();
1886     if (mms.is_empty() && nophi) {
1887       // Trouble:  No new splits allowed after a loop body is parsed.
1888       // Instead, wire the new split into a MergeMem on the backedge.
1889       // The optimizer will sort it out, slicing the phi.
1890       if (remerge == nullptr) {
1891         guarantee(base != nullptr, "");
1892         assert(base->in(0) != nullptr, "should not be xformed away");
1893         remerge = MergeMemNode::make(base->in(pnum));
1894         gvn().set_type(remerge, Type::MEMORY);
1895         base->set_req(pnum, remerge);
1896       }
1897       remerge->set_memory_at(mms.alias_idx(), q);
1898       continue;
1899     }
1900     assert(!q->is_MergeMem(), "");
1901     PhiNode* phi;
1902     if (p != q) {
1903       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1904     } else {
1905       if (p->is_Phi() && p->as_Phi()->region() == r)
1906         phi = p->as_Phi();
1907       else
1908         phi = nullptr;
1909     }
1910     // Insert q into local phi
1911     if (phi != nullptr) {
1912       assert(phi->region() == r, "");
1913       p = phi;
1914       phi->set_req(pnum, q);
1915       if (mms.at_base_memory()) {
1916         base = phi;  // delay transforming it
1917       } else if (pnum == 1) {
1918         record_for_igvn(phi);
1919         p = _gvn.transform(phi);
1920       }
1921       mms.set_memory(p);// store back through the iterator
1922     }
1923   }
1924   // Transform base last, in case we must fiddle with remerging.
1925   if (base != nullptr && pnum == 1) {
1926     record_for_igvn(base);
1927     m->set_base_memory(_gvn.transform(base));
1928   }
1929 }
1930 
1931 
1932 //------------------------ensure_phis_everywhere-------------------------------
1933 void Parse::ensure_phis_everywhere() {
1934   ensure_phi(TypeFunc::I_O);
1935 
1936   // Ensure a phi on all currently known memories.
1937   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1938     ensure_memory_phi(mms.alias_idx());
1939     debug_only(mms.set_memory());  // keep the iterator happy
1940   }
1941 
1942   // Note:  This is our only chance to create phis for memory slices.
1943   // If we miss a slice that crops up later, it will have to be
1944   // merged into the base-memory phi that we are building here.
1945   // Later, the optimizer will comb out the knot, and build separate
1946   // phi-loops for each memory slice that matters.
1947 
1948   // Monitors must nest nicely and not get confused amongst themselves.
1949   // Phi-ify everything up to the monitors, though.
1950   uint monoff = map()->jvms()->monoff();
1951   uint nof_monitors = map()->jvms()->nof_monitors();
1952 
1953   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1954   bool check_elide_phi = block()->is_SEL_head();
1955   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1956     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1957       ensure_phi(i);
1958     }
1959   }
1960 
1961   // Even monitors need Phis, though they are well-structured.
1962   // This is true for OSR methods, and also for the rare cases where
1963   // a monitor object is the subject of a replace_in_map operation.
1964   // See bugs 4426707 and 5043395.
1965   for (uint m = 0; m < nof_monitors; m++) {
1966     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1967   }
1968 }
1969 
1970 
1971 //-----------------------------add_new_path------------------------------------
1972 // Add a previously unaccounted predecessor to this block.
1973 int Parse::Block::add_new_path() {
1974   // If there is no map, return the lowest unused path number.
1975   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1976 
1977   SafePointNode* map = start_map();
1978   if (!map->control()->is_Region())
1979     return pred_count()+1;  // there may be a region some day
1980   RegionNode* r = map->control()->as_Region();
1981 
1982   // Add new path to the region.
1983   uint pnum = r->req();
1984   r->add_req(nullptr);
1985 
1986   for (uint i = 1; i < map->req(); i++) {
1987     Node* n = map->in(i);
1988     if (i == TypeFunc::Memory) {
1989       // Ensure a phi on all currently known memories.
1990       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1991         Node* phi = mms.memory();
1992         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1993           assert(phi->req() == pnum, "must be same size as region");
1994           phi->add_req(nullptr);
1995         }
1996       }
1997     } else {
1998       if (n->is_Phi() && n->as_Phi()->region() == r) {
1999         assert(n->req() == pnum, "must be same size as region");
2000         n->add_req(nullptr);
2001       }
2002     }
2003   }
2004 
2005   return pnum;
2006 }
2007 
2008 //------------------------------ensure_phi-------------------------------------
2009 // Turn the idx'th entry of the current map into a Phi
2010 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2011   SafePointNode* map = this->map();
2012   Node* region = map->control();
2013   assert(region->is_Region(), "");
2014 
2015   Node* o = map->in(idx);
2016   assert(o != nullptr, "");
2017 
2018   if (o == top())  return nullptr; // TOP always merges into TOP
2019 
2020   if (o->is_Phi() && o->as_Phi()->region() == region) {
2021     return o->as_Phi();
2022   }
2023 
2024   // Now use a Phi here for merging
2025   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2026   const JVMState* jvms = map->jvms();
2027   const Type* t = nullptr;
2028   if (jvms->is_loc(idx)) {
2029     t = block()->local_type_at(idx - jvms->locoff());
2030   } else if (jvms->is_stk(idx)) {
2031     t = block()->stack_type_at(idx - jvms->stkoff());
2032   } else if (jvms->is_mon(idx)) {
2033     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2034     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2035   } else if ((uint)idx < TypeFunc::Parms) {
2036     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
2037   } else {
2038     assert(false, "no type information for this phi");
2039   }
2040 
2041   // If the type falls to bottom, then this must be a local that
2042   // is mixing ints and oops or some such.  Forcing it to top
2043   // makes it go dead.
2044   if (t == Type::BOTTOM) {
2045     map->set_req(idx, top());
2046     return nullptr;
2047   }
2048 
2049   // Do not create phis for top either.
2050   // A top on a non-null control flow must be an unused even after the.phi.
2051   if (t == Type::TOP || t == Type::HALF) {
2052     map->set_req(idx, top());
2053     return nullptr;
2054   }
2055 
2056   PhiNode* phi = PhiNode::make(region, o, t);
2057   gvn().set_type(phi, t);
2058   if (C->do_escape_analysis()) record_for_igvn(phi);
2059   map->set_req(idx, phi);
2060   return phi;
2061 }
2062 
2063 //--------------------------ensure_memory_phi----------------------------------
2064 // Turn the idx'th slice of the current memory into a Phi
2065 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2066   MergeMemNode* mem = merged_memory();
2067   Node* region = control();
2068   assert(region->is_Region(), "");
2069 
2070   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2071   assert(o != nullptr && o != top(), "");
2072 
2073   PhiNode* phi;
2074   if (o->is_Phi() && o->as_Phi()->region() == region) {
2075     phi = o->as_Phi();
2076     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2077       // clone the shared base memory phi to make a new memory split
2078       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2079       const Type* t = phi->bottom_type();
2080       const TypePtr* adr_type = C->get_adr_type(idx);
2081       phi = phi->slice_memory(adr_type);
2082       gvn().set_type(phi, t);
2083     }
2084     return phi;
2085   }
2086 
2087   // Now use a Phi here for merging
2088   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2089   const Type* t = o->bottom_type();
2090   const TypePtr* adr_type = C->get_adr_type(idx);
2091   phi = PhiNode::make(region, o, t, adr_type);
2092   gvn().set_type(phi, t);
2093   if (idx == Compile::AliasIdxBot)
2094     mem->set_base_memory(phi);
2095   else
2096     mem->set_memory_at(idx, phi);
2097   return phi;
2098 }
2099 
2100 //------------------------------call_register_finalizer-----------------------
2101 // Check the klass of the receiver and call register_finalizer if the
2102 // class need finalization.
2103 void Parse::call_register_finalizer() {
2104   Node* receiver = local(0);
2105   assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr,
2106          "must have non-null instance type");
2107 
2108   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
2109   if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) {
2110     // The type isn't known exactly so see if CHA tells us anything.
2111     ciInstanceKlass* ik = tinst->instance_klass();
2112     if (!Dependencies::has_finalizable_subclass(ik)) {
2113       // No finalizable subclasses so skip the dynamic check.
2114       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
2115       return;
2116     }
2117   }
2118 
2119   // Insert a dynamic test for whether the instance needs
2120   // finalization.  In general this will fold up since the concrete
2121   // class is often visible so the access flags are constant.
2122   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2123   Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2124 
2125   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::misc_flags_offset()));
2126   Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2127 
2128   Node* mask  = _gvn.transform(new AndINode(access_flags, intcon(KlassFlags::_misc_has_finalizer)));
2129   Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2130   Node* test  = _gvn.transform(new BoolNode(check, BoolTest::ne));
2131 
2132   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2133 
2134   RegionNode* result_rgn = new RegionNode(3);
2135   record_for_igvn(result_rgn);
2136 
2137   Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2138   result_rgn->init_req(1, skip_register);
2139 
2140   Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2141   set_control(needs_register);
2142   if (stopped()) {
2143     // There is no slow path.
2144     result_rgn->init_req(2, top());
2145   } else {
2146     Node *call = make_runtime_call(RC_NO_LEAF,
2147                                    OptoRuntime::register_finalizer_Type(),
2148                                    OptoRuntime::register_finalizer_Java(),
2149                                    nullptr, TypePtr::BOTTOM,
2150                                    receiver);
2151     make_slow_call_ex(call, env()->Throwable_klass(), true);
2152 
2153     Node* fast_io  = call->in(TypeFunc::I_O);
2154     Node* fast_mem = call->in(TypeFunc::Memory);
2155     // These two phis are pre-filled with copies of of the fast IO and Memory
2156     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2157     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2158 
2159     result_rgn->init_req(2, control());
2160     io_phi    ->init_req(2, i_o());
2161     mem_phi   ->init_req(2, reset_memory());
2162 
2163     set_all_memory( _gvn.transform(mem_phi) );
2164     set_i_o(        _gvn.transform(io_phi) );
2165   }
2166 
2167   set_control( _gvn.transform(result_rgn) );
2168 }
2169 
2170 // Add check to deoptimize once holder klass is fully initialized.
2171 void Parse::clinit_deopt() {
2172   assert(C->has_method(), "only for normal compilations");
2173   assert(depth() == 1, "only for main compiled method");
2174   assert(is_normal_parse(), "no barrier needed on osr entry");
2175   assert(!method()->holder()->is_not_initialized(), "initialization should have been started");
2176 
2177   set_parse_bci(0);
2178 
2179   Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces));
2180   guard_klass_being_initialized(holder);
2181 }
2182 
2183 //------------------------------return_current---------------------------------
2184 // Append current _map to _exit_return
2185 void Parse::return_current(Node* value) {
2186   if (method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2187     call_register_finalizer();
2188   }
2189 
2190   // Do not set_parse_bci, so that return goo is credited to the return insn.
2191   set_bci(InvocationEntryBci);
2192   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2193     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2194   }
2195   if (C->env()->dtrace_method_probes()) {
2196     make_dtrace_method_exit(method());
2197   }
2198   SafePointNode* exit_return = _exits.map();
2199   exit_return->in( TypeFunc::Control  )->add_req( control() );
2200   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2201   Node *mem = exit_return->in( TypeFunc::Memory   );
2202   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2203     if (mms.is_empty()) {
2204       // get a copy of the base memory, and patch just this one input
2205       const TypePtr* adr_type = mms.adr_type(C);
2206       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2207       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2208       gvn().set_type_bottom(phi);
2209       phi->del_req(phi->req()-1);  // prepare to re-patch
2210       mms.set_memory(phi);
2211     }
2212     mms.memory()->add_req(mms.memory2());
2213   }
2214 
2215   // frame pointer is always same, already captured
2216   if (value != nullptr) {
2217     // If returning oops to an interface-return, there is a silent free
2218     // cast from oop to interface allowed by the Verifier.  Make it explicit
2219     // here.
2220     Node* phi = _exits.argument(0);
2221     phi->add_req(value);
2222   }
2223 
2224   if (_first_return) {
2225     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2226     _first_return = false;
2227   } else {
2228     _exits.map()->merge_replaced_nodes_with(map());
2229   }
2230 
2231   stop_and_kill_map();          // This CFG path dies here
2232 }
2233 
2234 
2235 //------------------------------add_safepoint----------------------------------
2236 void Parse::add_safepoint() {
2237   uint parms = TypeFunc::Parms+1;
2238 
2239   // Clear out dead values from the debug info.
2240   kill_dead_locals();
2241 
2242   // Clone the JVM State
2243   SafePointNode *sfpnt = new SafePointNode(parms, nullptr);
2244 
2245   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2246   // SafePoint we need our GC state to be safe; i.e. we need all our current
2247   // write barriers (card marks) to not float down after the SafePoint so we
2248   // must read raw memory.  Likewise we need all oop stores to match the card
2249   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2250   // state on a deopt).
2251 
2252   // We do not need to WRITE the memory state after a SafePoint.  The control
2253   // edge will keep card-marks and oop-stores from floating up from below a
2254   // SafePoint and our true dependency added here will keep them from floating
2255   // down below a SafePoint.
2256 
2257   // Clone the current memory state
2258   Node* mem = MergeMemNode::make(map()->memory());
2259 
2260   mem = _gvn.transform(mem);
2261 
2262   // Pass control through the safepoint
2263   sfpnt->init_req(TypeFunc::Control  , control());
2264   // Fix edges normally used by a call
2265   sfpnt->init_req(TypeFunc::I_O      , top() );
2266   sfpnt->init_req(TypeFunc::Memory   , mem   );
2267   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2268   sfpnt->init_req(TypeFunc::FramePtr , top() );
2269 
2270   // Create a node for the polling address
2271   Node *polladr;
2272   Node *thread = _gvn.transform(new ThreadLocalNode());
2273   Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset())));
2274   polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
2275   sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2276 
2277   // Fix up the JVM State edges
2278   add_safepoint_edges(sfpnt);
2279   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2280   set_control(transformed_sfpnt);
2281 
2282   // Provide an edge from root to safepoint.  This makes the safepoint
2283   // appear useful until the parse has completed.
2284   if (transformed_sfpnt->is_SafePoint()) {
2285     assert(C->root() != nullptr, "Expect parse is still valid");
2286     C->root()->add_prec(transformed_sfpnt);
2287   }
2288 }
2289 
2290 #ifndef PRODUCT
2291 //------------------------show_parse_info--------------------------------------
2292 void Parse::show_parse_info() {
2293   InlineTree* ilt = nullptr;
2294   if (C->ilt() != nullptr) {
2295     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2296     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2297   }
2298   if (PrintCompilation && Verbose) {
2299     if (depth() == 1) {
2300       if( ilt->count_inlines() ) {
2301         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2302                      ilt->count_inline_bcs());
2303         tty->cr();
2304       }
2305     } else {
2306       if (method()->is_synchronized())         tty->print("s");
2307       if (method()->has_exception_handlers())  tty->print("!");
2308       // Check this is not the final compiled version
2309       if (C->trap_can_recompile()) {
2310         tty->print("-");
2311       } else {
2312         tty->print(" ");
2313       }
2314       method()->print_short_name();
2315       if (is_osr_parse()) {
2316         tty->print(" @ %d", osr_bci());
2317       }
2318       tty->print(" (%d bytes)",method()->code_size());
2319       if (ilt->count_inlines()) {
2320         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2321                    ilt->count_inline_bcs());
2322       }
2323       tty->cr();
2324     }
2325   }
2326   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2327     // Print that we succeeded; suppress this message on the first osr parse.
2328 
2329     if (method()->is_synchronized())         tty->print("s");
2330     if (method()->has_exception_handlers())  tty->print("!");
2331     // Check this is not the final compiled version
2332     if (C->trap_can_recompile() && depth() == 1) {
2333       tty->print("-");
2334     } else {
2335       tty->print(" ");
2336     }
2337     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2338     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2339     method()->print_short_name();
2340     if (is_osr_parse()) {
2341       tty->print(" @ %d", osr_bci());
2342     }
2343     if (ilt->caller_bci() != -1) {
2344       tty->print(" @ %d", ilt->caller_bci());
2345     }
2346     tty->print(" (%d bytes)",method()->code_size());
2347     if (ilt->count_inlines()) {
2348       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2349                  ilt->count_inline_bcs());
2350     }
2351     tty->cr();
2352   }
2353 }
2354 
2355 
2356 //------------------------------dump-------------------------------------------
2357 // Dump information associated with the bytecodes of current _method
2358 void Parse::dump() {
2359   if( method() != nullptr ) {
2360     // Iterate over bytecodes
2361     ciBytecodeStream iter(method());
2362     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2363       dump_bci( iter.cur_bci() );
2364       tty->cr();
2365     }
2366   }
2367 }
2368 
2369 // Dump information associated with a byte code index, 'bci'
2370 void Parse::dump_bci(int bci) {
2371   // Output info on merge-points, cloning, and within _jsr..._ret
2372   // NYI
2373   tty->print(" bci:%d", bci);
2374 }
2375 
2376 #endif