1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compileLog.hpp" 26 #include "interpreter/linkResolver.hpp" 27 #include "memory/resourceArea.hpp" 28 #include "oops/method.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/c2compiler.hpp" 31 #include "opto/castnode.hpp" 32 #include "opto/idealGraphPrinter.hpp" 33 #include "opto/locknode.hpp" 34 #include "opto/memnode.hpp" 35 #include "opto/opaquenode.hpp" 36 #include "opto/parse.hpp" 37 #include "opto/rootnode.hpp" 38 #include "opto/runtime.hpp" 39 #include "opto/type.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/runtimeUpcalls.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/bitMap.inline.hpp" 45 #include "utilities/copy.hpp" 46 47 // Static array so we can figure out which bytecodes stop us from compiling 48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 49 // and eventually should be encapsulated in a proper class (gri 8/18/98). 50 51 #ifndef PRODUCT 52 uint nodes_created = 0; 53 uint methods_parsed = 0; 54 uint methods_seen = 0; 55 uint blocks_parsed = 0; 56 uint blocks_seen = 0; 57 58 uint explicit_null_checks_inserted = 0; 59 uint explicit_null_checks_elided = 0; 60 uint all_null_checks_found = 0; 61 uint implicit_null_checks = 0; 62 63 bool Parse::BytecodeParseHistogram::_initialized = false; 64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 67 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 68 69 //------------------------------print_statistics------------------------------- 70 void Parse::print_statistics() { 71 tty->print_cr("--- Compiler Statistics ---"); 72 tty->print("Methods seen: %u Methods parsed: %u", methods_seen, methods_parsed); 73 tty->print(" Nodes created: %u", nodes_created); 74 tty->cr(); 75 if (methods_seen != methods_parsed) { 76 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 77 } 78 tty->print_cr("Blocks parsed: %u Blocks seen: %u", blocks_parsed, blocks_seen); 79 80 if (explicit_null_checks_inserted) { 81 tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,", 82 explicit_null_checks_inserted, explicit_null_checks_elided, 83 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 84 all_null_checks_found); 85 } 86 if (all_null_checks_found) { 87 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks, 88 (100*implicit_null_checks)/all_null_checks_found); 89 } 90 if (SharedRuntime::_implicit_null_throws) { 91 tty->print_cr("%u implicit null exceptions at runtime", 92 SharedRuntime::_implicit_null_throws); 93 } 94 95 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 96 BytecodeParseHistogram::print(); 97 } 98 } 99 #endif 100 101 //------------------------------ON STACK REPLACEMENT--------------------------- 102 103 // Construct a node which can be used to get incoming state for 104 // on stack replacement. 105 Node *Parse::fetch_interpreter_state(int index, 106 BasicType bt, 107 Node *local_addrs, 108 Node *local_addrs_base) { 109 Node *mem = memory(Compile::AliasIdxRaw); 110 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 111 Node *ctl = control(); 112 113 // Very similar to LoadNode::make, except we handle un-aligned longs and 114 // doubles on Sparc. Intel can handle them just fine directly. 115 Node *l = nullptr; 116 switch (bt) { // Signature is flattened 117 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 118 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 119 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 120 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 121 case T_LONG: 122 case T_DOUBLE: { 123 // Since arguments are in reverse order, the argument address 'adr' 124 // refers to the back half of the long/double. Recompute adr. 125 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 126 if (Matcher::misaligned_doubles_ok) { 127 l = (bt == T_DOUBLE) 128 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 129 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 130 } else { 131 l = (bt == T_DOUBLE) 132 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 133 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 134 } 135 break; 136 } 137 default: ShouldNotReachHere(); 138 } 139 return _gvn.transform(l); 140 } 141 142 // Helper routine to prevent the interpreter from handing 143 // unexpected typestate to an OSR method. 144 // The Node l is a value newly dug out of the interpreter frame. 145 // The type is the type predicted by ciTypeFlow. Note that it is 146 // not a general type, but can only come from Type::get_typeflow_type. 147 // The safepoint is a map which will feed an uncommon trap. 148 Node* Parse::check_interpreter_type(Node* l, const Type* type, 149 SafePointNode* &bad_type_exit) { 150 151 const TypeOopPtr* tp = type->isa_oopptr(); 152 153 // TypeFlow may assert null-ness if a type appears unloaded. 154 if (type == TypePtr::NULL_PTR || 155 (tp != nullptr && !tp->is_loaded())) { 156 // Value must be null, not a real oop. 157 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 158 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 159 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 160 set_control(_gvn.transform( new IfTrueNode(iff) )); 161 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 162 bad_type_exit->control()->add_req(bad_type); 163 l = null(); 164 } 165 166 // Typeflow can also cut off paths from the CFG, based on 167 // types which appear unloaded, or call sites which appear unlinked. 168 // When paths are cut off, values at later merge points can rise 169 // toward more specific classes. Make sure these specific classes 170 // are still in effect. 171 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) { 172 // TypeFlow asserted a specific object type. Value must have that type. 173 Node* bad_type_ctrl = nullptr; 174 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl); 175 bad_type_exit->control()->add_req(bad_type_ctrl); 176 } 177 178 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 179 return l; 180 } 181 182 // Helper routine which sets up elements of the initial parser map when 183 // performing a parse for on stack replacement. Add values into map. 184 // The only parameter contains the address of a interpreter arguments. 185 void Parse::load_interpreter_state(Node* osr_buf) { 186 int index; 187 int max_locals = jvms()->loc_size(); 188 int max_stack = jvms()->stk_size(); 189 190 191 // Mismatch between method and jvms can occur since map briefly held 192 // an OSR entry state (which takes up one RawPtr word). 193 assert(max_locals == method()->max_locals(), "sanity"); 194 assert(max_stack >= method()->max_stack(), "sanity"); 195 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 196 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 197 198 // Find the start block. 199 Block* osr_block = start_block(); 200 assert(osr_block->start() == osr_bci(), "sanity"); 201 202 // Set initial BCI. 203 set_parse_bci(osr_block->start()); 204 205 // Set initial stack depth. 206 set_sp(osr_block->start_sp()); 207 208 // Check bailouts. We currently do not perform on stack replacement 209 // of loops in catch blocks or loops which branch with a non-empty stack. 210 if (sp() != 0) { 211 C->record_method_not_compilable("OSR starts with non-empty stack"); 212 return; 213 } 214 // Do not OSR inside finally clauses: 215 if (osr_block->has_trap_at(osr_block->start())) { 216 assert(false, "OSR starts with an immediate trap"); 217 C->record_method_not_compilable("OSR starts with an immediate trap"); 218 return; 219 } 220 221 // Commute monitors from interpreter frame to compiler frame. 222 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 223 int mcnt = osr_block->flow()->monitor_count(); 224 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 225 for (index = 0; index < mcnt; index++) { 226 // Make a BoxLockNode for the monitor. 227 BoxLockNode* osr_box = new BoxLockNode(next_monitor()); 228 // Check for bailout after new BoxLockNode 229 if (failing()) { return; } 230 231 // This OSR locking region is unbalanced because it does not have Lock node: 232 // locking was done in Interpreter. 233 // This is similar to Coarsened case when Lock node is eliminated 234 // and as result the region is marked as Unbalanced. 235 236 // Emulate Coarsened state transition from Regular to Unbalanced. 237 osr_box->set_coarsened(); 238 osr_box->set_unbalanced(); 239 240 Node* box = _gvn.transform(osr_box); 241 242 // Displaced headers and locked objects are interleaved in the 243 // temp OSR buffer. We only copy the locked objects out here. 244 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 245 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf); 246 // Try and copy the displaced header to the BoxNode 247 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf); 248 249 250 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, MemNode::unordered); 251 252 // Build a bogus FastLockNode (no code will be generated) and push the 253 // monitor into our debug info. 254 const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock(); 255 map()->push_monitor(flock); 256 257 // If the lock is our method synchronization lock, tuck it away in 258 // _sync_lock for return and rethrow exit paths. 259 if (index == 0 && method()->is_synchronized()) { 260 _synch_lock = flock; 261 } 262 } 263 264 // Use the raw liveness computation to make sure that unexpected 265 // values don't propagate into the OSR frame. 266 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 267 if (!live_locals.is_valid()) { 268 // Degenerate or breakpointed method. 269 assert(false, "OSR in empty or breakpointed method"); 270 C->record_method_not_compilable("OSR in empty or breakpointed method"); 271 return; 272 } 273 274 // Extract the needed locals from the interpreter frame. 275 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 276 277 // find all the locals that the interpreter thinks contain live oops 278 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 279 for (index = 0; index < max_locals; index++) { 280 281 if (!live_locals.at(index)) { 282 continue; 283 } 284 285 const Type *type = osr_block->local_type_at(index); 286 287 if (type->isa_oopptr() != nullptr) { 288 289 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 290 // else we might load a stale oop if the MethodLiveness disagrees with the 291 // result of the interpreter. If the interpreter says it is dead we agree 292 // by making the value go to top. 293 // 294 295 if (!live_oops.at(index)) { 296 if (C->log() != nullptr) { 297 C->log()->elem("OSR_mismatch local_index='%d'",index); 298 } 299 set_local(index, null()); 300 // and ignore it for the loads 301 continue; 302 } 303 } 304 305 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 306 if (type == Type::TOP || type == Type::HALF) { 307 continue; 308 } 309 // If the type falls to bottom, then this must be a local that 310 // is mixing ints and oops or some such. Forcing it to top 311 // makes it go dead. 312 if (type == Type::BOTTOM) { 313 continue; 314 } 315 // Construct code to access the appropriate local. 316 BasicType bt = type->basic_type(); 317 if (type == TypePtr::NULL_PTR) { 318 // Ptr types are mixed together with T_ADDRESS but null is 319 // really for T_OBJECT types so correct it. 320 bt = T_OBJECT; 321 } 322 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf); 323 set_local(index, value); 324 } 325 326 // Extract the needed stack entries from the interpreter frame. 327 for (index = 0; index < sp(); index++) { 328 const Type *type = osr_block->stack_type_at(index); 329 if (type != Type::TOP) { 330 // Currently the compiler bails out when attempting to on stack replace 331 // at a bci with a non-empty stack. We should not reach here. 332 ShouldNotReachHere(); 333 } 334 } 335 336 // End the OSR migration 337 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 338 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 339 "OSR_migration_end", TypeRawPtr::BOTTOM, 340 osr_buf); 341 342 // Now that the interpreter state is loaded, make sure it will match 343 // at execution time what the compiler is expecting now: 344 SafePointNode* bad_type_exit = clone_map(); 345 bad_type_exit->set_control(new RegionNode(1)); 346 347 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 348 for (index = 0; index < max_locals; index++) { 349 if (stopped()) break; 350 Node* l = local(index); 351 if (l->is_top()) continue; // nothing here 352 const Type *type = osr_block->local_type_at(index); 353 if (type->isa_oopptr() != nullptr) { 354 if (!live_oops.at(index)) { 355 // skip type check for dead oops 356 continue; 357 } 358 } 359 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 360 // In our current system it's illegal for jsr addresses to be 361 // live into an OSR entry point because the compiler performs 362 // inlining of jsrs. ciTypeFlow has a bailout that detect this 363 // case and aborts the compile if addresses are live into an OSR 364 // entry point. Because of that we can assume that any address 365 // locals at the OSR entry point are dead. Method liveness 366 // isn't precise enough to figure out that they are dead in all 367 // cases so simply skip checking address locals all 368 // together. Any type check is guaranteed to fail since the 369 // interpreter type is the result of a load which might have any 370 // value and the expected type is a constant. 371 continue; 372 } 373 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 374 } 375 376 for (index = 0; index < sp(); index++) { 377 if (stopped()) break; 378 Node* l = stack(index); 379 if (l->is_top()) continue; // nothing here 380 const Type *type = osr_block->stack_type_at(index); 381 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 382 } 383 384 if (bad_type_exit->control()->req() > 1) { 385 // Build an uncommon trap here, if any inputs can be unexpected. 386 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 387 record_for_igvn(bad_type_exit->control()); 388 SafePointNode* types_are_good = map(); 389 set_map(bad_type_exit); 390 // The unexpected type happens because a new edge is active 391 // in the CFG, which typeflow had previously ignored. 392 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 393 // This x will be typed as Integer if notReached is not yet linked. 394 // It could also happen due to a problem in ciTypeFlow analysis. 395 uncommon_trap(Deoptimization::Reason_constraint, 396 Deoptimization::Action_reinterpret); 397 set_map(types_are_good); 398 } 399 } 400 401 //------------------------------Parse------------------------------------------ 402 // Main parser constructor. 403 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 404 : _exits(caller) 405 { 406 // Init some variables 407 _caller = caller; 408 _method = parse_method; 409 _expected_uses = expected_uses; 410 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 411 _wrote_final = false; 412 _wrote_volatile = false; 413 _wrote_stable = false; 414 _wrote_fields = false; 415 _alloc_with_final_or_stable = nullptr; 416 _block = nullptr; 417 _first_return = true; 418 _replaced_nodes_for_exceptions = false; 419 _new_idx = C->unique(); 420 DEBUG_ONLY(_entry_bci = UnknownBci); 421 DEBUG_ONLY(_block_count = -1); 422 DEBUG_ONLY(_blocks = (Block*)-1); 423 #ifndef PRODUCT 424 if (PrintCompilation || PrintOpto) { 425 // Make sure I have an inline tree, so I can print messages about it. 426 InlineTree::find_subtree_from_root(C->ilt(), caller, parse_method); 427 } 428 _max_switch_depth = 0; 429 _est_switch_depth = 0; 430 #endif 431 432 if (parse_method->has_reserved_stack_access()) { 433 C->set_has_reserved_stack_access(true); 434 } 435 436 if (parse_method->is_synchronized() || parse_method->has_monitor_bytecodes()) { 437 C->set_has_monitors(true); 438 } 439 440 if (parse_method->is_scoped()) { 441 C->set_has_scoped_access(true); 442 } 443 444 _iter.reset_to_method(method()); 445 C->set_has_loops(C->has_loops() || method()->has_loops()); 446 447 if (_expected_uses <= 0) { 448 _prof_factor = 1; 449 } else { 450 float prof_total = parse_method->interpreter_invocation_count(); 451 if (prof_total <= _expected_uses) { 452 _prof_factor = 1; 453 } else { 454 _prof_factor = _expected_uses / prof_total; 455 } 456 } 457 458 CompileLog* log = C->log(); 459 if (log != nullptr) { 460 log->begin_head("parse method='%d' uses='%f'", 461 log->identify(parse_method), expected_uses); 462 if (depth() == 1 && C->is_osr_compilation()) { 463 log->print(" osr_bci='%d'", C->entry_bci()); 464 } 465 log->stamp(); 466 log->end_head(); 467 } 468 469 // Accumulate deoptimization counts. 470 // (The range_check and store_check counts are checked elsewhere.) 471 ciMethodData* md = method()->method_data(); 472 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 473 uint md_count = md->trap_count(reason); 474 if (md_count != 0) { 475 if (md_count >= md->trap_count_limit()) { 476 md_count = md->trap_count_limit() + md->overflow_trap_count(); 477 } 478 uint total_count = C->trap_count(reason); 479 uint old_count = total_count; 480 total_count += md_count; 481 // Saturate the add if it overflows. 482 if (total_count < old_count || total_count < md_count) 483 total_count = (uint)-1; 484 C->set_trap_count(reason, total_count); 485 if (log != nullptr) 486 log->elem("observe trap='%s' count='%d' total='%d'", 487 Deoptimization::trap_reason_name(reason), 488 md_count, total_count); 489 } 490 } 491 // Accumulate total sum of decompilations, also. 492 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 493 494 if (log != nullptr && method()->has_exception_handlers()) { 495 log->elem("observe that='has_exception_handlers'"); 496 } 497 498 assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier"); 499 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 500 501 // Always register dependence if JVMTI is enabled, because 502 // either breakpoint setting or hotswapping of methods may 503 // cause deoptimization. 504 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 505 C->dependencies()->assert_evol_method(method()); 506 } 507 508 NOT_PRODUCT(methods_seen++); 509 510 // Do some special top-level things. 511 if (depth() == 1 && C->is_osr_compilation()) { 512 _tf = C->tf(); // the OSR entry type is different 513 _entry_bci = C->entry_bci(); 514 _flow = method()->get_osr_flow_analysis(osr_bci()); 515 } else { 516 _tf = TypeFunc::make(method()); 517 _entry_bci = InvocationEntryBci; 518 _flow = method()->get_flow_analysis(); 519 } 520 521 if (_flow->failing()) { 522 assert(false, "type flow analysis failed during parsing"); 523 C->record_method_not_compilable(_flow->failure_reason()); 524 #ifndef PRODUCT 525 if (PrintOpto && (Verbose || WizardMode)) { 526 if (is_osr_parse()) { 527 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 528 } else { 529 tty->print_cr("type flow bailout: %s", _flow->failure_reason()); 530 } 531 if (Verbose) { 532 method()->print(); 533 method()->print_codes(); 534 _flow->print(); 535 } 536 } 537 #endif 538 } 539 540 #ifdef ASSERT 541 if (depth() == 1) { 542 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 543 } else { 544 assert(!this->is_osr_parse(), "no recursive OSR"); 545 } 546 #endif 547 548 #ifndef PRODUCT 549 if (_flow->has_irreducible_entry()) { 550 C->set_parsed_irreducible_loop(true); 551 } 552 553 methods_parsed++; 554 // add method size here to guarantee that inlined methods are added too 555 if (CITime) 556 _total_bytes_compiled += method()->code_size(); 557 558 show_parse_info(); 559 #endif 560 561 if (failing()) { 562 if (log) log->done("parse"); 563 return; 564 } 565 566 gvn().transform(top()); 567 568 // Import the results of the ciTypeFlow. 569 init_blocks(); 570 571 // Merge point for all normal exits 572 build_exits(); 573 574 // Setup the initial JVM state map. 575 SafePointNode* entry_map = create_entry_map(); 576 577 // Check for bailouts during map initialization 578 if (failing() || entry_map == nullptr) { 579 if (log) log->done("parse"); 580 return; 581 } 582 583 Node_Notes* caller_nn = C->default_node_notes(); 584 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 585 if (DebugInlinedCalls || depth() == 1) { 586 C->set_default_node_notes(make_node_notes(caller_nn)); 587 } 588 589 if (is_osr_parse()) { 590 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 591 entry_map->set_req(TypeFunc::Parms+0, top()); 592 set_map(entry_map); 593 load_interpreter_state(osr_buf); 594 } else { 595 set_map(entry_map); 596 do_method_entry(); 597 } 598 599 if (depth() == 1 && !failing()) { 600 if (C->clinit_barrier_on_entry()) { 601 // Add check to deoptimize the nmethod once the holder class is fully initialized 602 clinit_deopt(); 603 } 604 } 605 606 // Check for bailouts during method entry. 607 if (failing()) { 608 if (log) log->done("parse"); 609 C->set_default_node_notes(caller_nn); 610 return; 611 } 612 613 entry_map = map(); // capture any changes performed by method setup code 614 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 615 616 // We begin parsing as if we have just encountered a jump to the 617 // method entry. 618 Block* entry_block = start_block(); 619 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 620 set_map_clone(entry_map); 621 merge_common(entry_block, entry_block->next_path_num()); 622 623 #ifndef PRODUCT 624 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 625 set_parse_histogram( parse_histogram_obj ); 626 #endif 627 628 // Parse all the basic blocks. 629 do_all_blocks(); 630 631 // Check for bailouts during conversion to graph 632 if (failing()) { 633 if (log) log->done("parse"); 634 return; 635 } 636 637 // Fix up all exiting control flow. 638 set_map(entry_map); 639 do_exits(); 640 641 // Only reset this now, to make sure that debug information emitted 642 // for exiting control flow still refers to the inlined method. 643 C->set_default_node_notes(caller_nn); 644 645 if (log) log->done("parse nodes='%d' live='%d' memory='%zu'", 646 C->unique(), C->live_nodes(), C->node_arena()->used()); 647 } 648 649 //---------------------------do_all_blocks------------------------------------- 650 void Parse::do_all_blocks() { 651 bool has_irreducible = flow()->has_irreducible_entry(); 652 653 // Walk over all blocks in Reverse Post-Order. 654 while (true) { 655 bool progress = false; 656 for (int rpo = 0; rpo < block_count(); rpo++) { 657 Block* block = rpo_at(rpo); 658 659 if (block->is_parsed()) continue; 660 661 if (!block->is_merged()) { 662 // Dead block, no state reaches this block 663 continue; 664 } 665 666 // Prepare to parse this block. 667 load_state_from(block); 668 669 if (stopped()) { 670 // Block is dead. 671 continue; 672 } 673 674 NOT_PRODUCT(blocks_parsed++); 675 676 progress = true; 677 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) { 678 // Not all preds have been parsed. We must build phis everywhere. 679 // (Note that dead locals do not get phis built, ever.) 680 ensure_phis_everywhere(); 681 682 if (block->is_SEL_head()) { 683 // Add predicate to single entry (not irreducible) loop head. 684 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 685 // Predicates may have been added after a dominating if 686 if (!block->has_predicates()) { 687 // Need correct bci for predicate. 688 // It is fine to set it here since do_one_block() will set it anyway. 689 set_parse_bci(block->start()); 690 add_parse_predicates(); 691 } 692 // Add new region for back branches. 693 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 694 RegionNode *r = new RegionNode(edges+1); 695 _gvn.set_type(r, Type::CONTROL); 696 record_for_igvn(r); 697 r->init_req(edges, control()); 698 set_control(r); 699 block->copy_irreducible_status_to(r, jvms()); 700 // Add new phis. 701 ensure_phis_everywhere(); 702 } 703 704 // Leave behind an undisturbed copy of the map, for future merges. 705 set_map(clone_map()); 706 } 707 708 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 709 // In the absence of irreducible loops, the Region and Phis 710 // associated with a merge that doesn't involve a backedge can 711 // be simplified now since the RPO parsing order guarantees 712 // that any path which was supposed to reach here has already 713 // been parsed or must be dead. 714 Node* c = control(); 715 Node* result = _gvn.transform(control()); 716 if (c != result && TraceOptoParse) { 717 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 718 } 719 if (result != top()) { 720 record_for_igvn(result); 721 } 722 } 723 724 // Parse the block. 725 do_one_block(); 726 727 // Check for bailouts. 728 if (failing()) return; 729 } 730 731 // with irreducible loops multiple passes might be necessary to parse everything 732 if (!has_irreducible || !progress) { 733 break; 734 } 735 } 736 737 #ifndef PRODUCT 738 blocks_seen += block_count(); 739 740 // Make sure there are no half-processed blocks remaining. 741 // Every remaining unprocessed block is dead and may be ignored now. 742 for (int rpo = 0; rpo < block_count(); rpo++) { 743 Block* block = rpo_at(rpo); 744 if (!block->is_parsed()) { 745 if (TraceOptoParse) { 746 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 747 } 748 assert(!block->is_merged(), "no half-processed blocks"); 749 } 750 } 751 #endif 752 } 753 754 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) { 755 switch (bt) { 756 case T_BYTE: 757 v = gvn->transform(new LShiftINode(v, gvn->intcon(24))); 758 v = gvn->transform(new RShiftINode(v, gvn->intcon(24))); 759 break; 760 case T_SHORT: 761 v = gvn->transform(new LShiftINode(v, gvn->intcon(16))); 762 v = gvn->transform(new RShiftINode(v, gvn->intcon(16))); 763 break; 764 case T_CHAR: 765 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF))); 766 break; 767 case T_BOOLEAN: 768 v = gvn->transform(new AndINode(v, gvn->intcon(0x1))); 769 break; 770 default: 771 break; 772 } 773 return v; 774 } 775 776 //-------------------------------build_exits---------------------------------- 777 // Build normal and exceptional exit merge points. 778 void Parse::build_exits() { 779 // make a clone of caller to prevent sharing of side-effects 780 _exits.set_map(_exits.clone_map()); 781 _exits.clean_stack(_exits.sp()); 782 _exits.sync_jvms(); 783 784 RegionNode* region = new RegionNode(1); 785 record_for_igvn(region); 786 gvn().set_type_bottom(region); 787 _exits.set_control(region); 788 789 // Note: iophi and memphi are not transformed until do_exits. 790 Node* iophi = new PhiNode(region, Type::ABIO); 791 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 792 gvn().set_type_bottom(iophi); 793 gvn().set_type_bottom(memphi); 794 _exits.set_i_o(iophi); 795 _exits.set_all_memory(memphi); 796 797 // Add a return value to the exit state. (Do not push it yet.) 798 if (tf()->range()->cnt() > TypeFunc::Parms) { 799 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 800 if (ret_type->isa_int()) { 801 BasicType ret_bt = method()->return_type()->basic_type(); 802 if (ret_bt == T_BOOLEAN || 803 ret_bt == T_CHAR || 804 ret_bt == T_BYTE || 805 ret_bt == T_SHORT) { 806 ret_type = TypeInt::INT; 807 } 808 } 809 810 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 811 // becomes loaded during the subsequent parsing, the loaded and unloaded 812 // types will not join when we transform and push in do_exits(). 813 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 814 if (ret_oop_type && !ret_oop_type->is_loaded()) { 815 ret_type = TypeOopPtr::BOTTOM; 816 } 817 int ret_size = type2size[ret_type->basic_type()]; 818 Node* ret_phi = new PhiNode(region, ret_type); 819 gvn().set_type_bottom(ret_phi); 820 _exits.ensure_stack(ret_size); 821 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 822 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 823 _exits.set_argument(0, ret_phi); // here is where the parser finds it 824 // Note: ret_phi is not yet pushed, until do_exits. 825 } 826 } 827 828 829 //----------------------------build_start_state------------------------------- 830 // Construct a state which contains only the incoming arguments from an 831 // unknown caller. The method & bci will be null & InvocationEntryBci. 832 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 833 int arg_size = tf->domain()->cnt(); 834 int max_size = MAX2(arg_size, (int)tf->range()->cnt()); 835 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 836 SafePointNode* map = new SafePointNode(max_size, jvms); 837 record_for_igvn(map); 838 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 839 Node_Notes* old_nn = default_node_notes(); 840 if (old_nn != nullptr && has_method()) { 841 Node_Notes* entry_nn = old_nn->clone(this); 842 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 843 entry_jvms->set_offsets(0); 844 entry_jvms->set_bci(entry_bci()); 845 entry_nn->set_jvms(entry_jvms); 846 set_default_node_notes(entry_nn); 847 } 848 uint i; 849 for (i = 0; i < (uint)arg_size; i++) { 850 Node* parm = initial_gvn()->transform(new ParmNode(start, i)); 851 map->init_req(i, parm); 852 // Record all these guys for later GVN. 853 record_for_igvn(parm); 854 } 855 for (; i < map->req(); i++) { 856 map->init_req(i, top()); 857 } 858 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 859 set_default_node_notes(old_nn); 860 jvms->set_map(map); 861 return jvms; 862 } 863 864 //-----------------------------make_node_notes--------------------------------- 865 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 866 if (caller_nn == nullptr) return nullptr; 867 Node_Notes* nn = caller_nn->clone(C); 868 JVMState* caller_jvms = nn->jvms(); 869 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 870 jvms->set_offsets(0); 871 jvms->set_bci(_entry_bci); 872 nn->set_jvms(jvms); 873 return nn; 874 } 875 876 877 //--------------------------return_values-------------------------------------- 878 void Compile::return_values(JVMState* jvms) { 879 GraphKit kit(jvms); 880 Node* ret = new ReturnNode(TypeFunc::Parms, 881 kit.control(), 882 kit.i_o(), 883 kit.reset_memory(), 884 kit.frameptr(), 885 kit.returnadr()); 886 // Add zero or 1 return values 887 int ret_size = tf()->range()->cnt() - TypeFunc::Parms; 888 if (ret_size > 0) { 889 kit.inc_sp(-ret_size); // pop the return value(s) 890 kit.sync_jvms(); 891 ret->add_req(kit.argument(0)); 892 // Note: The second dummy edge is not needed by a ReturnNode. 893 } 894 // bind it to root 895 root()->add_req(ret); 896 record_for_igvn(ret); 897 initial_gvn()->transform(ret); 898 } 899 900 //------------------------rethrow_exceptions----------------------------------- 901 // Bind all exception states in the list into a single RethrowNode. 902 void Compile::rethrow_exceptions(JVMState* jvms) { 903 GraphKit kit(jvms); 904 if (!kit.has_exceptions()) return; // nothing to generate 905 // Load my combined exception state into the kit, with all phis transformed: 906 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 907 Node* ex_oop = kit.use_exception_state(ex_map); 908 RethrowNode* exit = new RethrowNode(kit.control(), 909 kit.i_o(), kit.reset_memory(), 910 kit.frameptr(), kit.returnadr(), 911 // like a return but with exception input 912 ex_oop); 913 // bind to root 914 root()->add_req(exit); 915 record_for_igvn(exit); 916 initial_gvn()->transform(exit); 917 } 918 919 //---------------------------do_exceptions------------------------------------- 920 // Process exceptions arising from the current bytecode. 921 // Send caught exceptions to the proper handler within this method. 922 // Unhandled exceptions feed into _exit. 923 void Parse::do_exceptions() { 924 if (!has_exceptions()) return; 925 926 if (failing()) { 927 // Pop them all off and throw them away. 928 while (pop_exception_state() != nullptr) ; 929 return; 930 } 931 932 PreserveJVMState pjvms(this, false); 933 934 SafePointNode* ex_map; 935 while ((ex_map = pop_exception_state()) != nullptr) { 936 if (!method()->has_exception_handlers()) { 937 // Common case: Transfer control outward. 938 // Doing it this early allows the exceptions to common up 939 // even between adjacent method calls. 940 throw_to_exit(ex_map); 941 } else { 942 // Have to look at the exception first. 943 assert(stopped(), "catch_inline_exceptions trashes the map"); 944 catch_inline_exceptions(ex_map); 945 stop_and_kill_map(); // we used up this exception state; kill it 946 } 947 } 948 949 // We now return to our regularly scheduled program: 950 } 951 952 //---------------------------throw_to_exit------------------------------------- 953 // Merge the given map into an exception exit from this method. 954 // The exception exit will handle any unlocking of receiver. 955 // The ex_oop must be saved within the ex_map, unlike merge_exception. 956 void Parse::throw_to_exit(SafePointNode* ex_map) { 957 // Pop the JVMS to (a copy of) the caller. 958 GraphKit caller; 959 caller.set_map_clone(_caller->map()); 960 caller.set_bci(_caller->bci()); 961 caller.set_sp(_caller->sp()); 962 // Copy out the standard machine state: 963 for (uint i = 0; i < TypeFunc::Parms; i++) { 964 caller.map()->set_req(i, ex_map->in(i)); 965 } 966 if (ex_map->has_replaced_nodes()) { 967 _replaced_nodes_for_exceptions = true; 968 } 969 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 970 // ...and the exception: 971 Node* ex_oop = saved_ex_oop(ex_map); 972 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 973 // Finally, collect the new exception state in my exits: 974 _exits.add_exception_state(caller_ex_map); 975 } 976 977 //------------------------------do_exits--------------------------------------- 978 void Parse::do_exits() { 979 set_parse_bci(InvocationEntryBci); 980 981 // Now peephole on the return bits 982 Node* region = _exits.control(); 983 _exits.set_control(gvn().transform(region)); 984 985 Node* iophi = _exits.i_o(); 986 _exits.set_i_o(gvn().transform(iophi)); 987 988 // Figure out if we need to emit the trailing barrier. The barrier is only 989 // needed in the constructors, and only in three cases: 990 // 991 // 1. The constructor wrote a final or a @Stable field. All these 992 // initializations must be ordered before any code after the constructor 993 // publishes the reference to the newly constructed object. Rather 994 // than wait for the publication, we simply block the writes here. 995 // Rather than put a barrier on only those writes which are required 996 // to complete, we force all writes to complete. 997 // 998 // 2. Experimental VM option is used to force the barrier if any field 999 // was written out in the constructor. 1000 // 1001 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64), 1002 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that 1003 // MemBarVolatile is used before volatile load instead of after volatile 1004 // store, so there's no barrier after the store. 1005 // We want to guarantee the same behavior as on platforms with total store 1006 // order, although this is not required by the Java memory model. 1007 // In this case, we want to enforce visibility of volatile field 1008 // initializations which are performed in constructors. 1009 // So as with finals, we add a barrier here. 1010 // 1011 // "All bets are off" unless the first publication occurs after a 1012 // normal return from the constructor. We do not attempt to detect 1013 // such unusual early publications. But no barrier is needed on 1014 // exceptional returns, since they cannot publish normally. 1015 // 1016 if (method()->is_object_initializer() && 1017 (wrote_final() || wrote_stable() || 1018 (AlwaysSafeConstructors && wrote_fields()) || 1019 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) { 1020 Node* recorded_alloc = alloc_with_final_or_stable(); 1021 _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease, 1022 recorded_alloc); 1023 1024 // If Memory barrier is created for final fields write 1025 // and allocation node does not escape the initialize method, 1026 // then barrier introduced by allocation node can be removed. 1027 if (DoEscapeAnalysis && (recorded_alloc != nullptr)) { 1028 AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc); 1029 alloc->compute_MemBar_redundancy(method()); 1030 } 1031 if (PrintOpto && (Verbose || WizardMode)) { 1032 method()->print_name(); 1033 tty->print_cr(" writes finals/@Stable and needs a memory barrier"); 1034 } 1035 } 1036 1037 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1038 // transform each slice of the original memphi: 1039 mms.set_memory(_gvn.transform(mms.memory())); 1040 } 1041 // Clean up input MergeMems created by transforming the slices 1042 _gvn.transform(_exits.merged_memory()); 1043 1044 if (tf()->range()->cnt() > TypeFunc::Parms) { 1045 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 1046 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1047 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1048 // If the type we set for the ret_phi in build_exits() is too optimistic and 1049 // the ret_phi is top now, there's an extremely small chance that it may be due to class 1050 // loading. It could also be due to an error, so mark this method as not compilable because 1051 // otherwise this could lead to an infinite compile loop. 1052 // In any case, this code path is rarely (and never in my testing) reached. 1053 C->record_method_not_compilable("Can't determine return type."); 1054 return; 1055 } 1056 if (ret_type->isa_int()) { 1057 BasicType ret_bt = method()->return_type()->basic_type(); 1058 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn); 1059 } 1060 _exits.push_node(ret_type->basic_type(), ret_phi); 1061 } 1062 1063 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1064 1065 // Unlock along the exceptional paths. 1066 // This is done late so that we can common up equivalent exceptions 1067 // (e.g., null checks) arising from multiple points within this method. 1068 // See GraphKit::add_exception_state, which performs the commoning. 1069 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1070 1071 // record exit from a method if compiled while Dtrace is turned on. 1072 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1073 // First move the exception list out of _exits: 1074 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1075 SafePointNode* normal_map = kit.map(); // keep this guy safe 1076 // Now re-collect the exceptions into _exits: 1077 SafePointNode* ex_map; 1078 while ((ex_map = kit.pop_exception_state()) != nullptr) { 1079 Node* ex_oop = kit.use_exception_state(ex_map); 1080 // Force the exiting JVM state to have this method at InvocationEntryBci. 1081 // The exiting JVM state is otherwise a copy of the calling JVMS. 1082 JVMState* caller = kit.jvms(); 1083 JVMState* ex_jvms = caller->clone_shallow(C); 1084 ex_jvms->bind_map(kit.clone_map()); 1085 ex_jvms->set_bci( InvocationEntryBci); 1086 kit.set_jvms(ex_jvms); 1087 if (do_synch) { 1088 // Add on the synchronized-method box/object combo 1089 kit.map()->push_monitor(_synch_lock); 1090 // Unlock! 1091 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1092 } 1093 if (C->env()->dtrace_method_probes()) { 1094 kit.make_dtrace_method_exit(method()); 1095 } 1096 if (_replaced_nodes_for_exceptions) { 1097 kit.map()->apply_replaced_nodes(_new_idx); 1098 } 1099 // Done with exception-path processing. 1100 ex_map = kit.make_exception_state(ex_oop); 1101 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1102 // Pop the last vestige of this method: 1103 caller->clone_shallow(C)->bind_map(ex_map); 1104 _exits.push_exception_state(ex_map); 1105 } 1106 assert(_exits.map() == normal_map, "keep the same return state"); 1107 } 1108 1109 { 1110 // Capture very early exceptions (receiver null checks) from caller JVMS 1111 GraphKit caller(_caller); 1112 SafePointNode* ex_map; 1113 while ((ex_map = caller.pop_exception_state()) != nullptr) { 1114 _exits.add_exception_state(ex_map); 1115 } 1116 } 1117 _exits.map()->apply_replaced_nodes(_new_idx); 1118 } 1119 1120 //-----------------------------create_entry_map------------------------------- 1121 // Initialize our parser map to contain the types at method entry. 1122 // For OSR, the map contains a single RawPtr parameter. 1123 // Initial monitor locking for sync. methods is performed by do_method_entry. 1124 SafePointNode* Parse::create_entry_map() { 1125 // Check for really stupid bail-out cases. 1126 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1127 if (len >= 32760) { 1128 // Bailout expected, this is a very rare edge case. 1129 C->record_method_not_compilable("too many local variables"); 1130 return nullptr; 1131 } 1132 1133 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1134 _caller->map()->delete_replaced_nodes(); 1135 1136 // If this is an inlined method, we may have to do a receiver null check. 1137 if (_caller->has_method() && is_normal_parse()) { 1138 GraphKit kit(_caller); 1139 if (!method()->is_static()) { 1140 kit.null_check_receiver_before_call(method()); 1141 } else if (C->do_clinit_barriers() && C->needs_clinit_barrier(method()->holder(), _caller->method())) { 1142 ciMethod* declared_method = kit.method()->get_method_at_bci(kit.bci()); 1143 const int nargs = declared_method->arg_size(); 1144 kit.inc_sp(nargs); 1145 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces)); 1146 kit.guard_klass_is_initialized(holder); 1147 kit.dec_sp(nargs); 1148 } 1149 _caller = kit.transfer_exceptions_into_jvms(); 1150 if (kit.stopped()) { 1151 _exits.add_exception_states_from(_caller); 1152 _exits.set_jvms(_caller); 1153 return nullptr; 1154 } 1155 } 1156 1157 assert(method() != nullptr, "parser must have a method"); 1158 1159 // Create an initial safepoint to hold JVM state during parsing 1160 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr); 1161 set_map(new SafePointNode(len, jvms)); 1162 jvms->set_map(map()); 1163 record_for_igvn(map()); 1164 assert(jvms->endoff() == len, "correct jvms sizing"); 1165 1166 SafePointNode* inmap = _caller->map(); 1167 assert(inmap != nullptr, "must have inmap"); 1168 // In case of null check on receiver above 1169 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1170 1171 uint i; 1172 1173 // Pass thru the predefined input parameters. 1174 for (i = 0; i < TypeFunc::Parms; i++) { 1175 map()->init_req(i, inmap->in(i)); 1176 } 1177 1178 if (depth() == 1) { 1179 assert(map()->memory()->Opcode() == Op_Parm, ""); 1180 // Insert the memory aliasing node 1181 set_all_memory(reset_memory()); 1182 } 1183 assert(merged_memory(), ""); 1184 1185 // Now add the locals which are initially bound to arguments: 1186 uint arg_size = tf()->domain()->cnt(); 1187 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1188 for (i = TypeFunc::Parms; i < arg_size; i++) { 1189 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1190 } 1191 1192 // Clear out the rest of the map (locals and stack) 1193 for (i = arg_size; i < len; i++) { 1194 map()->init_req(i, top()); 1195 } 1196 1197 SafePointNode* entry_map = stop(); 1198 return entry_map; 1199 } 1200 1201 //-----------------------------do_method_entry-------------------------------- 1202 // Emit any code needed in the pseudo-block before BCI zero. 1203 // The main thing to do is lock the receiver of a synchronized method. 1204 void Parse::do_method_entry() { 1205 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1206 set_sp(0); // Java Stack Pointer 1207 1208 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1209 1210 if (C->env()->dtrace_method_probes()) { 1211 make_dtrace_method_entry(method()); 1212 } 1213 1214 install_on_method_entry_runtime_upcalls(method()); 1215 1216 #ifdef ASSERT 1217 // Narrow receiver type when it is too broad for the method being parsed. 1218 if (!method()->is_static()) { 1219 ciInstanceKlass* callee_holder = method()->holder(); 1220 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces); 1221 1222 Node* receiver_obj = local(0); 1223 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr(); 1224 1225 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) { 1226 // Receiver should always be a subtype of callee holder. 1227 // But, since C2 type system doesn't properly track interfaces, 1228 // the invariant can't be expressed in the type system for default methods. 1229 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I. 1230 assert(callee_holder->is_interface(), "missing subtype check"); 1231 1232 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure. 1233 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces)); 1234 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass); 1235 assert(!stopped(), "not a subtype"); 1236 1237 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check")); 1238 C->root()->add_req(halt); 1239 } 1240 } 1241 #endif // ASSERT 1242 1243 // If the method is synchronized, we need to construct a lock node, attach 1244 // it to the Start node, and pin it there. 1245 if (method()->is_synchronized()) { 1246 // Insert a FastLockNode right after the Start which takes as arguments 1247 // the current thread pointer, the "this" pointer & the address of the 1248 // stack slot pair used for the lock. The "this" pointer is a projection 1249 // off the start node, but the locking spot has to be constructed by 1250 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1251 // becomes the second argument to the FastLockNode call. The 1252 // FastLockNode becomes the new control parent to pin it to the start. 1253 1254 // Setup Object Pointer 1255 Node *lock_obj = nullptr; 1256 if (method()->is_static()) { 1257 ciInstance* mirror = _method->holder()->java_mirror(); 1258 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1259 lock_obj = makecon(t_lock); 1260 } else { // Else pass the "this" pointer, 1261 lock_obj = local(0); // which is Parm0 from StartNode 1262 } 1263 // Clear out dead values from the debug info. 1264 kill_dead_locals(); 1265 // Build the FastLockNode 1266 _synch_lock = shared_lock(lock_obj); 1267 // Check for bailout in shared_lock 1268 if (failing()) { return; } 1269 } 1270 1271 // Feed profiling data for parameters to the type system so it can 1272 // propagate it as speculative types 1273 record_profiled_parameters_for_speculation(); 1274 } 1275 1276 //------------------------------init_blocks------------------------------------ 1277 // Initialize our parser map to contain the types/monitors at method entry. 1278 void Parse::init_blocks() { 1279 // Create the blocks. 1280 _block_count = flow()->block_count(); 1281 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1282 1283 // Initialize the structs. 1284 for (int rpo = 0; rpo < block_count(); rpo++) { 1285 Block* block = rpo_at(rpo); 1286 new(block) Block(this, rpo); 1287 } 1288 1289 // Collect predecessor and successor information. 1290 for (int rpo = 0; rpo < block_count(); rpo++) { 1291 Block* block = rpo_at(rpo); 1292 block->init_graph(this); 1293 } 1294 } 1295 1296 //-------------------------------init_node------------------------------------- 1297 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() { 1298 _flow = outer->flow()->rpo_at(rpo); 1299 _pred_count = 0; 1300 _preds_parsed = 0; 1301 _count = 0; 1302 _is_parsed = false; 1303 _is_handler = false; 1304 _has_merged_backedge = false; 1305 _start_map = nullptr; 1306 _has_predicates = false; 1307 _num_successors = 0; 1308 _all_successors = 0; 1309 _successors = nullptr; 1310 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1311 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1312 assert(_live_locals.size() == 0, "sanity"); 1313 1314 // entry point has additional predecessor 1315 if (flow()->is_start()) _pred_count++; 1316 assert(flow()->is_start() == (this == outer->start_block()), ""); 1317 } 1318 1319 //-------------------------------init_graph------------------------------------ 1320 void Parse::Block::init_graph(Parse* outer) { 1321 // Create the successor list for this parser block. 1322 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1323 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1324 int ns = tfs->length(); 1325 int ne = tfe->length(); 1326 _num_successors = ns; 1327 _all_successors = ns+ne; 1328 _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1329 int p = 0; 1330 for (int i = 0; i < ns+ne; i++) { 1331 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1332 Block* block2 = outer->rpo_at(tf2->rpo()); 1333 _successors[i] = block2; 1334 1335 // Accumulate pred info for the other block, too. 1336 // Note: We also need to set _pred_count for exception blocks since they could 1337 // also have normal predecessors (reached without athrow by an explicit jump). 1338 // This also means that next_path_num can be called along exception paths. 1339 block2->_pred_count++; 1340 if (i >= ns) { 1341 block2->_is_handler = true; 1342 } 1343 1344 #ifdef ASSERT 1345 // A block's successors must be distinguishable by BCI. 1346 // That is, no bytecode is allowed to branch to two different 1347 // clones of the same code location. 1348 for (int j = 0; j < i; j++) { 1349 Block* block1 = _successors[j]; 1350 if (block1 == block2) continue; // duplicates are OK 1351 assert(block1->start() != block2->start(), "successors have unique bcis"); 1352 } 1353 #endif 1354 } 1355 } 1356 1357 //---------------------------successor_for_bci--------------------------------- 1358 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1359 for (int i = 0; i < all_successors(); i++) { 1360 Block* block2 = successor_at(i); 1361 if (block2->start() == bci) return block2; 1362 } 1363 // We can actually reach here if ciTypeFlow traps out a block 1364 // due to an unloaded class, and concurrently with compilation the 1365 // class is then loaded, so that a later phase of the parser is 1366 // able to see more of the bytecode CFG. Or, the flow pass and 1367 // the parser can have a minor difference of opinion about executability 1368 // of bytecodes. For example, "obj.field = null" is executable even 1369 // if the field's type is an unloaded class; the flow pass used to 1370 // make a trap for such code. 1371 return nullptr; 1372 } 1373 1374 1375 //-----------------------------stack_type_at----------------------------------- 1376 const Type* Parse::Block::stack_type_at(int i) const { 1377 return get_type(flow()->stack_type_at(i)); 1378 } 1379 1380 1381 //-----------------------------local_type_at----------------------------------- 1382 const Type* Parse::Block::local_type_at(int i) const { 1383 // Make dead locals fall to bottom. 1384 if (_live_locals.size() == 0) { 1385 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1386 // This bitmap can be zero length if we saw a breakpoint. 1387 // In such cases, pretend they are all live. 1388 ((Block*)this)->_live_locals = live_locals; 1389 } 1390 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1391 return Type::BOTTOM; 1392 1393 return get_type(flow()->local_type_at(i)); 1394 } 1395 1396 1397 #ifndef PRODUCT 1398 1399 //----------------------------name_for_bc-------------------------------------- 1400 // helper method for BytecodeParseHistogram 1401 static const char* name_for_bc(int i) { 1402 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1403 } 1404 1405 //----------------------------BytecodeParseHistogram------------------------------------ 1406 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1407 _parser = p; 1408 _compiler = c; 1409 if( ! _initialized ) { _initialized = true; reset(); } 1410 } 1411 1412 //----------------------------current_count------------------------------------ 1413 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1414 switch( bph_type ) { 1415 case BPH_transforms: { return _parser->gvn().made_progress(); } 1416 case BPH_values: { return _parser->gvn().made_new_values(); } 1417 default: { ShouldNotReachHere(); return 0; } 1418 } 1419 } 1420 1421 //----------------------------initialized-------------------------------------- 1422 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1423 1424 //----------------------------reset-------------------------------------------- 1425 void Parse::BytecodeParseHistogram::reset() { 1426 int i = Bytecodes::number_of_codes; 1427 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1428 } 1429 1430 //----------------------------set_initial_state-------------------------------- 1431 // Record info when starting to parse one bytecode 1432 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1433 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1434 _initial_bytecode = bc; 1435 _initial_node_count = _compiler->unique(); 1436 _initial_transforms = current_count(BPH_transforms); 1437 _initial_values = current_count(BPH_values); 1438 } 1439 } 1440 1441 //----------------------------record_change-------------------------------- 1442 // Record results of parsing one bytecode 1443 void Parse::BytecodeParseHistogram::record_change() { 1444 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1445 ++_bytecodes_parsed[_initial_bytecode]; 1446 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1447 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1448 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1449 } 1450 } 1451 1452 1453 //----------------------------print-------------------------------------------- 1454 void Parse::BytecodeParseHistogram::print(float cutoff) { 1455 ResourceMark rm; 1456 // print profile 1457 int total = 0; 1458 int i = 0; 1459 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1460 int abs_sum = 0; 1461 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1462 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1463 if( total == 0 ) { return; } 1464 tty->cr(); 1465 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1466 tty->print_cr("relative: percentage contribution to compiled nodes"); 1467 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1468 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1469 tty->print_cr("transforms: Average amount of transform progress per bytecode compiled"); 1470 tty->print_cr("values : Average number of node values improved per bytecode"); 1471 tty->print_cr("name : Bytecode name"); 1472 tty->cr(); 1473 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1474 tty->print_cr("----------------------------------------------------------------------"); 1475 while (--i > 0) { 1476 int abs = _bytecodes_parsed[i]; 1477 float rel = abs * 100.0F / total; 1478 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1479 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1480 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1481 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1482 if (cutoff <= rel) { 1483 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1484 abs_sum += abs; 1485 } 1486 } 1487 tty->print_cr("----------------------------------------------------------------------"); 1488 float rel_sum = abs_sum * 100.0F / total; 1489 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1490 tty->print_cr("----------------------------------------------------------------------"); 1491 tty->cr(); 1492 } 1493 #endif 1494 1495 //----------------------------load_state_from---------------------------------- 1496 // Load block/map/sp. But not do not touch iter/bci. 1497 void Parse::load_state_from(Block* block) { 1498 set_block(block); 1499 // load the block's JVM state: 1500 set_map(block->start_map()); 1501 set_sp( block->start_sp()); 1502 } 1503 1504 1505 //-----------------------------record_state------------------------------------ 1506 void Parse::Block::record_state(Parse* p) { 1507 assert(!is_merged(), "can only record state once, on 1st inflow"); 1508 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1509 set_start_map(p->stop()); 1510 } 1511 1512 1513 //------------------------------do_one_block----------------------------------- 1514 void Parse::do_one_block() { 1515 if (TraceOptoParse) { 1516 Block *b = block(); 1517 int ns = b->num_successors(); 1518 int nt = b->all_successors(); 1519 1520 tty->print("Parsing block #%d at bci [%d,%d), successors:", 1521 block()->rpo(), block()->start(), block()->limit()); 1522 for (int i = 0; i < nt; i++) { 1523 tty->print((( i < ns) ? " %d" : " %d(exception block)"), b->successor_at(i)->rpo()); 1524 } 1525 if (b->is_loop_head()) { 1526 tty->print(" loop head"); 1527 } 1528 if (b->is_irreducible_loop_entry()) { 1529 tty->print(" irreducible"); 1530 } 1531 tty->cr(); 1532 } 1533 1534 assert(block()->is_merged(), "must be merged before being parsed"); 1535 block()->mark_parsed(); 1536 1537 // Set iterator to start of block. 1538 iter().reset_to_bci(block()->start()); 1539 1540 if (ProfileExceptionHandlers && block()->is_handler()) { 1541 ciMethodData* methodData = method()->method_data(); 1542 if (methodData->is_mature()) { 1543 ciBitData data = methodData->exception_handler_bci_to_data(block()->start()); 1544 if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) { 1545 // dead catch block 1546 // Emit an uncommon trap instead of processing the block. 1547 set_parse_bci(block()->start()); 1548 uncommon_trap(Deoptimization::Reason_unreached, 1549 Deoptimization::Action_reinterpret, 1550 nullptr, "dead catch block"); 1551 return; 1552 } 1553 } 1554 } 1555 1556 CompileLog* log = C->log(); 1557 1558 // Parse bytecodes 1559 while (!stopped() && !failing()) { 1560 iter().next(); 1561 1562 // Learn the current bci from the iterator: 1563 set_parse_bci(iter().cur_bci()); 1564 1565 if (bci() == block()->limit()) { 1566 // Do not walk into the next block until directed by do_all_blocks. 1567 merge(bci()); 1568 break; 1569 } 1570 assert(bci() < block()->limit(), "bci still in block"); 1571 1572 if (log != nullptr) { 1573 // Output an optional context marker, to help place actions 1574 // that occur during parsing of this BC. If there is no log 1575 // output until the next context string, this context string 1576 // will be silently ignored. 1577 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1578 } 1579 1580 if (block()->has_trap_at(bci())) { 1581 // We must respect the flow pass's traps, because it will refuse 1582 // to produce successors for trapping blocks. 1583 int trap_index = block()->flow()->trap_index(); 1584 assert(trap_index != 0, "trap index must be valid"); 1585 uncommon_trap(trap_index); 1586 break; 1587 } 1588 1589 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1590 1591 #ifdef ASSERT 1592 int pre_bc_sp = sp(); 1593 int inputs, depth; 1594 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1595 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1596 #endif //ASSERT 1597 1598 do_one_bytecode(); 1599 if (failing()) return; 1600 1601 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1602 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1603 1604 do_exceptions(); 1605 1606 NOT_PRODUCT( parse_histogram()->record_change(); ); 1607 1608 if (log != nullptr) 1609 log->clear_context(); // skip marker if nothing was printed 1610 1611 // Fall into next bytecode. Each bytecode normally has 1 sequential 1612 // successor which is typically made ready by visiting this bytecode. 1613 // If the successor has several predecessors, then it is a merge 1614 // point, starts a new basic block, and is handled like other basic blocks. 1615 } 1616 } 1617 1618 1619 //------------------------------merge------------------------------------------ 1620 void Parse::set_parse_bci(int bci) { 1621 set_bci(bci); 1622 Node_Notes* nn = C->default_node_notes(); 1623 if (nn == nullptr) return; 1624 1625 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1626 if (!DebugInlinedCalls && depth() > 1) { 1627 return; 1628 } 1629 1630 // Update the JVMS annotation, if present. 1631 JVMState* jvms = nn->jvms(); 1632 if (jvms != nullptr && jvms->bci() != bci) { 1633 // Update the JVMS. 1634 jvms = jvms->clone_shallow(C); 1635 jvms->set_bci(bci); 1636 nn->set_jvms(jvms); 1637 } 1638 } 1639 1640 //------------------------------merge------------------------------------------ 1641 // Merge the current mapping into the basic block starting at bci 1642 void Parse::merge(int target_bci) { 1643 Block* target = successor_for_bci(target_bci); 1644 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1645 assert(!target->is_ready(), "our arrival must be expected"); 1646 int pnum = target->next_path_num(); 1647 merge_common(target, pnum); 1648 } 1649 1650 //-------------------------merge_new_path-------------------------------------- 1651 // Merge the current mapping into the basic block, using a new path 1652 void Parse::merge_new_path(int target_bci) { 1653 Block* target = successor_for_bci(target_bci); 1654 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1655 assert(!target->is_ready(), "new path into frozen graph"); 1656 int pnum = target->add_new_path(); 1657 merge_common(target, pnum); 1658 } 1659 1660 //-------------------------merge_exception------------------------------------- 1661 // Merge the current mapping into the basic block starting at bci 1662 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1663 void Parse::merge_exception(int target_bci) { 1664 #ifdef ASSERT 1665 if (target_bci <= bci()) { 1666 C->set_exception_backedge(); 1667 } 1668 #endif 1669 assert(sp() == 1, "must have only the throw exception on the stack"); 1670 Block* target = successor_for_bci(target_bci); 1671 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1672 assert(target->is_handler(), "exceptions are handled by special blocks"); 1673 int pnum = target->add_new_path(); 1674 merge_common(target, pnum); 1675 } 1676 1677 //--------------------handle_missing_successor--------------------------------- 1678 void Parse::handle_missing_successor(int target_bci) { 1679 #ifndef PRODUCT 1680 Block* b = block(); 1681 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1682 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1683 #endif 1684 ShouldNotReachHere(); 1685 } 1686 1687 //--------------------------merge_common--------------------------------------- 1688 void Parse::merge_common(Parse::Block* target, int pnum) { 1689 if (TraceOptoParse) { 1690 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1691 } 1692 1693 // Zap extra stack slots to top 1694 assert(sp() == target->start_sp(), ""); 1695 clean_stack(sp()); 1696 1697 if (!target->is_merged()) { // No prior mapping at this bci 1698 if (TraceOptoParse) { tty->print(" with empty state"); } 1699 1700 // If this path is dead, do not bother capturing it as a merge. 1701 // It is "as if" we had 1 fewer predecessors from the beginning. 1702 if (stopped()) { 1703 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1704 return; 1705 } 1706 1707 // Make a region if we know there are multiple or unpredictable inputs. 1708 // (Also, if this is a plain fall-through, we might see another region, 1709 // which must not be allowed into this block's map.) 1710 if (pnum > PhiNode::Input // Known multiple inputs. 1711 || target->is_handler() // These have unpredictable inputs. 1712 || target->is_loop_head() // Known multiple inputs 1713 || control()->is_Region()) { // We must hide this guy. 1714 1715 int current_bci = bci(); 1716 set_parse_bci(target->start()); // Set target bci 1717 if (target->is_SEL_head()) { 1718 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1719 if (target->start() == 0) { 1720 // Add Parse Predicates for the special case when 1721 // there are backbranches to the method entry. 1722 add_parse_predicates(); 1723 } 1724 } 1725 // Add a Region to start the new basic block. Phis will be added 1726 // later lazily. 1727 int edges = target->pred_count(); 1728 if (edges < pnum) edges = pnum; // might be a new path! 1729 RegionNode *r = new RegionNode(edges+1); 1730 gvn().set_type(r, Type::CONTROL); 1731 record_for_igvn(r); 1732 // zap all inputs to null for debugging (done in Node(uint) constructor) 1733 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); } 1734 r->init_req(pnum, control()); 1735 set_control(r); 1736 target->copy_irreducible_status_to(r, jvms()); 1737 set_parse_bci(current_bci); // Restore bci 1738 } 1739 1740 // Convert the existing Parser mapping into a mapping at this bci. 1741 store_state_to(target); 1742 assert(target->is_merged(), "do not come here twice"); 1743 1744 } else { // Prior mapping at this bci 1745 if (TraceOptoParse) { tty->print(" with previous state"); } 1746 #ifdef ASSERT 1747 if (target->is_SEL_head()) { 1748 target->mark_merged_backedge(block()); 1749 } 1750 #endif 1751 // We must not manufacture more phis if the target is already parsed. 1752 bool nophi = target->is_parsed(); 1753 1754 SafePointNode* newin = map();// Hang on to incoming mapping 1755 Block* save_block = block(); // Hang on to incoming block; 1756 load_state_from(target); // Get prior mapping 1757 1758 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1759 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1760 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1761 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1762 1763 // Iterate over my current mapping and the old mapping. 1764 // Where different, insert Phi functions. 1765 // Use any existing Phi functions. 1766 assert(control()->is_Region(), "must be merging to a region"); 1767 RegionNode* r = control()->as_Region(); 1768 1769 // Compute where to merge into 1770 // Merge incoming control path 1771 r->init_req(pnum, newin->control()); 1772 1773 if (pnum == 1) { // Last merge for this Region? 1774 if (!block()->flow()->is_irreducible_loop_secondary_entry()) { 1775 Node* result = _gvn.transform(r); 1776 if (r != result && TraceOptoParse) { 1777 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1778 } 1779 } 1780 record_for_igvn(r); 1781 } 1782 1783 // Update all the non-control inputs to map: 1784 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1785 bool check_elide_phi = target->is_SEL_backedge(save_block); 1786 for (uint j = 1; j < newin->req(); j++) { 1787 Node* m = map()->in(j); // Current state of target. 1788 Node* n = newin->in(j); // Incoming change to target state. 1789 PhiNode* phi; 1790 if (m->is_Phi() && m->as_Phi()->region() == r) 1791 phi = m->as_Phi(); 1792 else 1793 phi = nullptr; 1794 if (m != n) { // Different; must merge 1795 switch (j) { 1796 // Frame pointer and Return Address never changes 1797 case TypeFunc::FramePtr:// Drop m, use the original value 1798 case TypeFunc::ReturnAdr: 1799 break; 1800 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1801 assert(phi == nullptr, "the merge contains phis, not vice versa"); 1802 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1803 continue; 1804 default: // All normal stuff 1805 if (phi == nullptr) { 1806 const JVMState* jvms = map()->jvms(); 1807 if (EliminateNestedLocks && 1808 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1809 // BoxLock nodes are not commoning when EliminateNestedLocks is on. 1810 // Use old BoxLock node as merged box. 1811 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1812 // This assert also tests that nodes are BoxLock. 1813 assert(BoxLockNode::same_slot(n, m), "sanity"); 1814 BoxLockNode* old_box = m->as_BoxLock(); 1815 if (n->as_BoxLock()->is_unbalanced() && !old_box->is_unbalanced()) { 1816 // Preserve Unbalanced status. 1817 // 1818 // `old_box` can have only Regular or Coarsened status 1819 // because this code is executed only during Parse phase and 1820 // Incremental Inlining before EA and Macro nodes elimination. 1821 // 1822 // Incremental Inlining is executed after IGVN optimizations 1823 // during which BoxLock can be marked as Coarsened. 1824 old_box->set_coarsened(); // Verifies state 1825 old_box->set_unbalanced(); 1826 } 1827 C->gvn_replace_by(n, m); 1828 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1829 phi = ensure_phi(j, nophi); 1830 } 1831 } 1832 break; 1833 } 1834 } 1835 // At this point, n might be top if: 1836 // - there is no phi (because TypeFlow detected a conflict), or 1837 // - the corresponding control edges is top (a dead incoming path) 1838 // It is a bug if we create a phi which sees a garbage value on a live path. 1839 1840 if (phi != nullptr) { 1841 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1842 assert(phi->region() == r, ""); 1843 phi->set_req(pnum, n); // Then add 'n' to the merge 1844 if (pnum == PhiNode::Input) { 1845 // Last merge for this Phi. 1846 // So far, Phis have had a reasonable type from ciTypeFlow. 1847 // Now _gvn will join that with the meet of current inputs. 1848 // BOTTOM is never permissible here, 'cause pessimistically 1849 // Phis of pointers cannot lose the basic pointer type. 1850 debug_only(const Type* bt1 = phi->bottom_type()); 1851 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1852 map()->set_req(j, _gvn.transform(phi)); 1853 debug_only(const Type* bt2 = phi->bottom_type()); 1854 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1855 record_for_igvn(phi); 1856 } 1857 } 1858 } // End of for all values to be merged 1859 1860 if (pnum == PhiNode::Input && 1861 !r->in(0)) { // The occasional useless Region 1862 assert(control() == r, ""); 1863 set_control(r->nonnull_req()); 1864 } 1865 1866 map()->merge_replaced_nodes_with(newin); 1867 1868 // newin has been subsumed into the lazy merge, and is now dead. 1869 set_block(save_block); 1870 1871 stop(); // done with this guy, for now 1872 } 1873 1874 if (TraceOptoParse) { 1875 tty->print_cr(" on path %d", pnum); 1876 } 1877 1878 // Done with this parser state. 1879 assert(stopped(), ""); 1880 } 1881 1882 1883 //--------------------------merge_memory_edges--------------------------------- 1884 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 1885 // (nophi means we must not create phis, because we already parsed here) 1886 assert(n != nullptr, ""); 1887 // Merge the inputs to the MergeMems 1888 MergeMemNode* m = merged_memory(); 1889 1890 assert(control()->is_Region(), "must be merging to a region"); 1891 RegionNode* r = control()->as_Region(); 1892 1893 PhiNode* base = nullptr; 1894 MergeMemNode* remerge = nullptr; 1895 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 1896 Node *p = mms.force_memory(); 1897 Node *q = mms.memory2(); 1898 if (mms.is_empty() && nophi) { 1899 // Trouble: No new splits allowed after a loop body is parsed. 1900 // Instead, wire the new split into a MergeMem on the backedge. 1901 // The optimizer will sort it out, slicing the phi. 1902 if (remerge == nullptr) { 1903 guarantee(base != nullptr, ""); 1904 assert(base->in(0) != nullptr, "should not be xformed away"); 1905 remerge = MergeMemNode::make(base->in(pnum)); 1906 gvn().set_type(remerge, Type::MEMORY); 1907 base->set_req(pnum, remerge); 1908 } 1909 remerge->set_memory_at(mms.alias_idx(), q); 1910 continue; 1911 } 1912 assert(!q->is_MergeMem(), ""); 1913 PhiNode* phi; 1914 if (p != q) { 1915 phi = ensure_memory_phi(mms.alias_idx(), nophi); 1916 } else { 1917 if (p->is_Phi() && p->as_Phi()->region() == r) 1918 phi = p->as_Phi(); 1919 else 1920 phi = nullptr; 1921 } 1922 // Insert q into local phi 1923 if (phi != nullptr) { 1924 assert(phi->region() == r, ""); 1925 p = phi; 1926 phi->set_req(pnum, q); 1927 if (mms.at_base_memory()) { 1928 base = phi; // delay transforming it 1929 } else if (pnum == 1) { 1930 record_for_igvn(phi); 1931 p = _gvn.transform(phi); 1932 } 1933 mms.set_memory(p);// store back through the iterator 1934 } 1935 } 1936 // Transform base last, in case we must fiddle with remerging. 1937 if (base != nullptr && pnum == 1) { 1938 record_for_igvn(base); 1939 m->set_base_memory(_gvn.transform(base)); 1940 } 1941 } 1942 1943 1944 //------------------------ensure_phis_everywhere------------------------------- 1945 void Parse::ensure_phis_everywhere() { 1946 ensure_phi(TypeFunc::I_O); 1947 1948 // Ensure a phi on all currently known memories. 1949 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 1950 ensure_memory_phi(mms.alias_idx()); 1951 debug_only(mms.set_memory()); // keep the iterator happy 1952 } 1953 1954 // Note: This is our only chance to create phis for memory slices. 1955 // If we miss a slice that crops up later, it will have to be 1956 // merged into the base-memory phi that we are building here. 1957 // Later, the optimizer will comb out the knot, and build separate 1958 // phi-loops for each memory slice that matters. 1959 1960 // Monitors must nest nicely and not get confused amongst themselves. 1961 // Phi-ify everything up to the monitors, though. 1962 uint monoff = map()->jvms()->monoff(); 1963 uint nof_monitors = map()->jvms()->nof_monitors(); 1964 1965 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 1966 bool check_elide_phi = block()->is_SEL_head(); 1967 for (uint i = TypeFunc::Parms; i < monoff; i++) { 1968 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 1969 ensure_phi(i); 1970 } 1971 } 1972 1973 // Even monitors need Phis, though they are well-structured. 1974 // This is true for OSR methods, and also for the rare cases where 1975 // a monitor object is the subject of a replace_in_map operation. 1976 // See bugs 4426707 and 5043395. 1977 for (uint m = 0; m < nof_monitors; m++) { 1978 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 1979 } 1980 } 1981 1982 1983 //-----------------------------add_new_path------------------------------------ 1984 // Add a previously unaccounted predecessor to this block. 1985 int Parse::Block::add_new_path() { 1986 // If there is no map, return the lowest unused path number. 1987 if (!is_merged()) return pred_count()+1; // there will be a map shortly 1988 1989 SafePointNode* map = start_map(); 1990 if (!map->control()->is_Region()) 1991 return pred_count()+1; // there may be a region some day 1992 RegionNode* r = map->control()->as_Region(); 1993 1994 // Add new path to the region. 1995 uint pnum = r->req(); 1996 r->add_req(nullptr); 1997 1998 for (uint i = 1; i < map->req(); i++) { 1999 Node* n = map->in(i); 2000 if (i == TypeFunc::Memory) { 2001 // Ensure a phi on all currently known memories. 2002 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 2003 Node* phi = mms.memory(); 2004 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 2005 assert(phi->req() == pnum, "must be same size as region"); 2006 phi->add_req(nullptr); 2007 } 2008 } 2009 } else { 2010 if (n->is_Phi() && n->as_Phi()->region() == r) { 2011 assert(n->req() == pnum, "must be same size as region"); 2012 n->add_req(nullptr); 2013 } 2014 } 2015 } 2016 2017 return pnum; 2018 } 2019 2020 //------------------------------ensure_phi------------------------------------- 2021 // Turn the idx'th entry of the current map into a Phi 2022 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 2023 SafePointNode* map = this->map(); 2024 Node* region = map->control(); 2025 assert(region->is_Region(), ""); 2026 2027 Node* o = map->in(idx); 2028 assert(o != nullptr, ""); 2029 2030 if (o == top()) return nullptr; // TOP always merges into TOP 2031 2032 if (o->is_Phi() && o->as_Phi()->region() == region) { 2033 return o->as_Phi(); 2034 } 2035 2036 // Now use a Phi here for merging 2037 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2038 const JVMState* jvms = map->jvms(); 2039 const Type* t = nullptr; 2040 if (jvms->is_loc(idx)) { 2041 t = block()->local_type_at(idx - jvms->locoff()); 2042 } else if (jvms->is_stk(idx)) { 2043 t = block()->stack_type_at(idx - jvms->stkoff()); 2044 } else if (jvms->is_mon(idx)) { 2045 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 2046 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 2047 } else if ((uint)idx < TypeFunc::Parms) { 2048 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 2049 } else { 2050 assert(false, "no type information for this phi"); 2051 } 2052 2053 // If the type falls to bottom, then this must be a local that 2054 // is mixing ints and oops or some such. Forcing it to top 2055 // makes it go dead. 2056 if (t == Type::BOTTOM) { 2057 map->set_req(idx, top()); 2058 return nullptr; 2059 } 2060 2061 // Do not create phis for top either. 2062 // A top on a non-null control flow must be an unused even after the.phi. 2063 if (t == Type::TOP || t == Type::HALF) { 2064 map->set_req(idx, top()); 2065 return nullptr; 2066 } 2067 2068 PhiNode* phi = PhiNode::make(region, o, t); 2069 gvn().set_type(phi, t); 2070 if (C->do_escape_analysis()) record_for_igvn(phi); 2071 map->set_req(idx, phi); 2072 return phi; 2073 } 2074 2075 //--------------------------ensure_memory_phi---------------------------------- 2076 // Turn the idx'th slice of the current memory into a Phi 2077 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2078 MergeMemNode* mem = merged_memory(); 2079 Node* region = control(); 2080 assert(region->is_Region(), ""); 2081 2082 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2083 assert(o != nullptr && o != top(), ""); 2084 2085 PhiNode* phi; 2086 if (o->is_Phi() && o->as_Phi()->region() == region) { 2087 phi = o->as_Phi(); 2088 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2089 // clone the shared base memory phi to make a new memory split 2090 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2091 const Type* t = phi->bottom_type(); 2092 const TypePtr* adr_type = C->get_adr_type(idx); 2093 phi = phi->slice_memory(adr_type); 2094 gvn().set_type(phi, t); 2095 } 2096 return phi; 2097 } 2098 2099 // Now use a Phi here for merging 2100 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2101 const Type* t = o->bottom_type(); 2102 const TypePtr* adr_type = C->get_adr_type(idx); 2103 phi = PhiNode::make(region, o, t, adr_type); 2104 gvn().set_type(phi, t); 2105 if (idx == Compile::AliasIdxBot) 2106 mem->set_base_memory(phi); 2107 else 2108 mem->set_memory_at(idx, phi); 2109 return phi; 2110 } 2111 2112 //------------------------------call_register_finalizer----------------------- 2113 // Check the klass of the receiver and call register_finalizer if the 2114 // class need finalization. 2115 void Parse::call_register_finalizer() { 2116 Node* receiver = local(0); 2117 assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr, 2118 "must have non-null instance type"); 2119 2120 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2121 if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) { 2122 // The type isn't known exactly so see if CHA tells us anything. 2123 ciInstanceKlass* ik = tinst->instance_klass(); 2124 if (!Dependencies::has_finalizable_subclass(ik)) { 2125 // No finalizable subclasses so skip the dynamic check. 2126 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2127 return; 2128 } 2129 } 2130 2131 // Insert a dynamic test for whether the instance needs 2132 // finalization. In general this will fold up since the concrete 2133 // class is often visible so the access flags are constant. 2134 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2135 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2136 2137 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::misc_flags_offset())); 2138 Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2139 2140 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(KlassFlags::_misc_has_finalizer))); 2141 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2142 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2143 2144 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2145 2146 RegionNode* result_rgn = new RegionNode(3); 2147 record_for_igvn(result_rgn); 2148 2149 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2150 result_rgn->init_req(1, skip_register); 2151 2152 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2153 set_control(needs_register); 2154 if (stopped()) { 2155 // There is no slow path. 2156 result_rgn->init_req(2, top()); 2157 } else { 2158 Node *call = make_runtime_call(RC_NO_LEAF, 2159 OptoRuntime::register_finalizer_Type(), 2160 OptoRuntime::register_finalizer_Java(), 2161 nullptr, TypePtr::BOTTOM, 2162 receiver); 2163 make_slow_call_ex(call, env()->Throwable_klass(), true); 2164 2165 Node* fast_io = call->in(TypeFunc::I_O); 2166 Node* fast_mem = call->in(TypeFunc::Memory); 2167 // These two phis are pre-filled with copies of of the fast IO and Memory 2168 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2169 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2170 2171 result_rgn->init_req(2, control()); 2172 io_phi ->init_req(2, i_o()); 2173 mem_phi ->init_req(2, reset_memory()); 2174 2175 set_all_memory( _gvn.transform(mem_phi) ); 2176 set_i_o( _gvn.transform(io_phi) ); 2177 } 2178 2179 set_control( _gvn.transform(result_rgn) ); 2180 } 2181 2182 // Add check to deoptimize once holder klass is fully initialized. 2183 void Parse::clinit_deopt() { 2184 if (method()->holder()->is_initialized()) { 2185 return; // in case do_clinit_barriers() is true 2186 } 2187 assert(C->has_method(), "only for normal compilations"); 2188 assert(depth() == 1, "only for main compiled method"); 2189 assert(is_normal_parse(), "no barrier needed on osr entry"); 2190 assert(!method()->holder()->is_not_initialized(), "initialization should have been started"); 2191 2192 set_parse_bci(0); 2193 2194 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces)); 2195 guard_klass_being_initialized(holder); 2196 } 2197 2198 //------------------------------return_current--------------------------------- 2199 // Append current _map to _exit_return 2200 void Parse::return_current(Node* value) { 2201 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2202 call_register_finalizer(); 2203 } 2204 2205 // Do not set_parse_bci, so that return goo is credited to the return insn. 2206 set_bci(InvocationEntryBci); 2207 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2208 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2209 } 2210 if (C->env()->dtrace_method_probes()) { 2211 make_dtrace_method_exit(method()); 2212 } 2213 SafePointNode* exit_return = _exits.map(); 2214 exit_return->in( TypeFunc::Control )->add_req( control() ); 2215 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2216 Node *mem = exit_return->in( TypeFunc::Memory ); 2217 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2218 if (mms.is_empty()) { 2219 // get a copy of the base memory, and patch just this one input 2220 const TypePtr* adr_type = mms.adr_type(C); 2221 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2222 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2223 gvn().set_type_bottom(phi); 2224 phi->del_req(phi->req()-1); // prepare to re-patch 2225 mms.set_memory(phi); 2226 } 2227 mms.memory()->add_req(mms.memory2()); 2228 } 2229 2230 // frame pointer is always same, already captured 2231 if (value != nullptr) { 2232 // If returning oops to an interface-return, there is a silent free 2233 // cast from oop to interface allowed by the Verifier. Make it explicit 2234 // here. 2235 Node* phi = _exits.argument(0); 2236 phi->add_req(value); 2237 } 2238 2239 if (_first_return) { 2240 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2241 _first_return = false; 2242 } else { 2243 _exits.map()->merge_replaced_nodes_with(map()); 2244 } 2245 2246 stop_and_kill_map(); // This CFG path dies here 2247 } 2248 2249 2250 //------------------------------add_safepoint---------------------------------- 2251 void Parse::add_safepoint() { 2252 uint parms = TypeFunc::Parms+1; 2253 2254 // Clear out dead values from the debug info. 2255 kill_dead_locals(); 2256 2257 // Clone the JVM State 2258 SafePointNode *sfpnt = new SafePointNode(parms, nullptr); 2259 2260 // Capture memory state BEFORE a SafePoint. Since we can block at a 2261 // SafePoint we need our GC state to be safe; i.e. we need all our current 2262 // write barriers (card marks) to not float down after the SafePoint so we 2263 // must read raw memory. Likewise we need all oop stores to match the card 2264 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2265 // state on a deopt). 2266 2267 // We do not need to WRITE the memory state after a SafePoint. The control 2268 // edge will keep card-marks and oop-stores from floating up from below a 2269 // SafePoint and our true dependency added here will keep them from floating 2270 // down below a SafePoint. 2271 2272 // Clone the current memory state 2273 Node* mem = MergeMemNode::make(map()->memory()); 2274 2275 mem = _gvn.transform(mem); 2276 2277 // Pass control through the safepoint 2278 sfpnt->init_req(TypeFunc::Control , control()); 2279 // Fix edges normally used by a call 2280 sfpnt->init_req(TypeFunc::I_O , top() ); 2281 sfpnt->init_req(TypeFunc::Memory , mem ); 2282 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2283 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2284 2285 // Create a node for the polling address 2286 Node *polladr; 2287 Node *thread = _gvn.transform(new ThreadLocalNode()); 2288 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset()))); 2289 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 2290 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2291 2292 // Fix up the JVM State edges 2293 add_safepoint_edges(sfpnt); 2294 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2295 set_control(transformed_sfpnt); 2296 2297 // Provide an edge from root to safepoint. This makes the safepoint 2298 // appear useful until the parse has completed. 2299 if (transformed_sfpnt->is_SafePoint()) { 2300 assert(C->root() != nullptr, "Expect parse is still valid"); 2301 C->root()->add_prec(transformed_sfpnt); 2302 } 2303 } 2304 2305 #ifndef PRODUCT 2306 //------------------------show_parse_info-------------------------------------- 2307 void Parse::show_parse_info() { 2308 InlineTree* ilt = nullptr; 2309 if (C->ilt() != nullptr) { 2310 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2311 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2312 } 2313 if (PrintCompilation && Verbose) { 2314 if (depth() == 1) { 2315 if( ilt->count_inlines() ) { 2316 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2317 ilt->count_inline_bcs()); 2318 tty->cr(); 2319 } 2320 } else { 2321 if (method()->is_synchronized()) tty->print("s"); 2322 if (method()->has_exception_handlers()) tty->print("!"); 2323 // Check this is not the final compiled version 2324 if (C->trap_can_recompile()) { 2325 tty->print("-"); 2326 } else { 2327 tty->print(" "); 2328 } 2329 method()->print_short_name(); 2330 if (is_osr_parse()) { 2331 tty->print(" @ %d", osr_bci()); 2332 } 2333 tty->print(" (%d bytes)",method()->code_size()); 2334 if (ilt->count_inlines()) { 2335 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2336 ilt->count_inline_bcs()); 2337 } 2338 tty->cr(); 2339 } 2340 } 2341 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2342 // Print that we succeeded; suppress this message on the first osr parse. 2343 2344 if (method()->is_synchronized()) tty->print("s"); 2345 if (method()->has_exception_handlers()) tty->print("!"); 2346 // Check this is not the final compiled version 2347 if (C->trap_can_recompile() && depth() == 1) { 2348 tty->print("-"); 2349 } else { 2350 tty->print(" "); 2351 } 2352 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2353 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2354 method()->print_short_name(); 2355 if (is_osr_parse()) { 2356 tty->print(" @ %d", osr_bci()); 2357 } 2358 if (ilt->caller_bci() != -1) { 2359 tty->print(" @ %d", ilt->caller_bci()); 2360 } 2361 tty->print(" (%d bytes)",method()->code_size()); 2362 if (ilt->count_inlines()) { 2363 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2364 ilt->count_inline_bcs()); 2365 } 2366 tty->cr(); 2367 } 2368 } 2369 2370 2371 //------------------------------dump------------------------------------------- 2372 // Dump information associated with the bytecodes of current _method 2373 void Parse::dump() { 2374 if( method() != nullptr ) { 2375 // Iterate over bytecodes 2376 ciBytecodeStream iter(method()); 2377 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2378 dump_bci( iter.cur_bci() ); 2379 tty->cr(); 2380 } 2381 } 2382 } 2383 2384 // Dump information associated with a byte code index, 'bci' 2385 void Parse::dump_bci(int bci) { 2386 // Output info on merge-points, cloning, and within _jsr..._ret 2387 // NYI 2388 tty->print(" bci:%d", bci); 2389 } 2390 2391 #endif