1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "compiler/compileLog.hpp"
26 #include "interpreter/linkResolver.hpp"
27 #include "memory/resourceArea.hpp"
28 #include "oops/method.hpp"
29 #include "opto/addnode.hpp"
30 #include "opto/c2compiler.hpp"
31 #include "opto/castnode.hpp"
32 #include "opto/idealGraphPrinter.hpp"
33 #include "opto/locknode.hpp"
34 #include "opto/memnode.hpp"
35 #include "opto/opaquenode.hpp"
36 #include "opto/parse.hpp"
37 #include "opto/rootnode.hpp"
38 #include "opto/runtime.hpp"
39 #include "opto/type.hpp"
40 #include "runtime/handles.inline.hpp"
41 #include "runtime/runtimeUpcalls.hpp"
42 #include "runtime/safepointMechanism.hpp"
43 #include "runtime/sharedRuntime.hpp"
44 #include "utilities/bitMap.inline.hpp"
45 #include "utilities/copy.hpp"
46
47 // Static array so we can figure out which bytecodes stop us from compiling
48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
49 // and eventually should be encapsulated in a proper class (gri 8/18/98).
50
51 #ifndef PRODUCT
52 uint nodes_created = 0;
53 uint methods_parsed = 0;
54 uint methods_seen = 0;
55 uint blocks_parsed = 0;
56 uint blocks_seen = 0;
57
58 uint explicit_null_checks_inserted = 0;
59 uint explicit_null_checks_elided = 0;
60 uint all_null_checks_found = 0;
61 uint implicit_null_checks = 0;
62
63 bool Parse::BytecodeParseHistogram::_initialized = false;
64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
67 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes];
68
69 //------------------------------print_statistics-------------------------------
70 void Parse::print_statistics() {
71 tty->print_cr("--- Compiler Statistics ---");
72 tty->print("Methods seen: %u Methods parsed: %u", methods_seen, methods_parsed);
73 tty->print(" Nodes created: %u", nodes_created);
74 tty->cr();
75 if (methods_seen != methods_parsed) {
76 tty->print_cr("Reasons for parse failures (NOT cumulative):");
77 }
78 tty->print_cr("Blocks parsed: %u Blocks seen: %u", blocks_parsed, blocks_seen);
79
80 if (explicit_null_checks_inserted) {
81 tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,",
82 explicit_null_checks_inserted, explicit_null_checks_elided,
83 (100*explicit_null_checks_elided)/explicit_null_checks_inserted,
84 all_null_checks_found);
85 }
86 if (all_null_checks_found) {
87 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
88 (100*implicit_null_checks)/all_null_checks_found);
89 }
90 if (SharedRuntime::_implicit_null_throws) {
91 tty->print_cr("%u implicit null exceptions at runtime",
92 SharedRuntime::_implicit_null_throws);
93 }
94
95 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
96 BytecodeParseHistogram::print();
97 }
98 }
99 #endif
100
101 //------------------------------ON STACK REPLACEMENT---------------------------
102
103 // Construct a node which can be used to get incoming state for
104 // on stack replacement.
105 Node *Parse::fetch_interpreter_state(int index,
106 BasicType bt,
107 Node *local_addrs,
108 Node *local_addrs_base) {
109 Node *mem = memory(Compile::AliasIdxRaw);
110 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
111 Node *ctl = control();
112
113 // Very similar to LoadNode::make, except we handle un-aligned longs and
114 // doubles on Sparc. Intel can handle them just fine directly.
115 Node *l = nullptr;
116 switch (bt) { // Signature is flattened
117 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break;
118 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break;
119 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break;
120 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
121 case T_LONG:
122 case T_DOUBLE: {
123 // Since arguments are in reverse order, the argument address 'adr'
124 // refers to the back half of the long/double. Recompute adr.
125 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
126 if (Matcher::misaligned_doubles_ok) {
127 l = (bt == T_DOUBLE)
128 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
129 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
130 } else {
131 l = (bt == T_DOUBLE)
132 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
133 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
134 }
135 break;
136 }
137 default: ShouldNotReachHere();
138 }
139 return _gvn.transform(l);
140 }
141
142 // Helper routine to prevent the interpreter from handing
143 // unexpected typestate to an OSR method.
144 // The Node l is a value newly dug out of the interpreter frame.
145 // The type is the type predicted by ciTypeFlow. Note that it is
146 // not a general type, but can only come from Type::get_typeflow_type.
147 // The safepoint is a map which will feed an uncommon trap.
148 Node* Parse::check_interpreter_type(Node* l, const Type* type,
149 SafePointNode* &bad_type_exit) {
150
151 const TypeOopPtr* tp = type->isa_oopptr();
152
153 // TypeFlow may assert null-ness if a type appears unloaded.
154 if (type == TypePtr::NULL_PTR ||
155 (tp != nullptr && !tp->is_loaded())) {
156 // Value must be null, not a real oop.
157 Node* chk = _gvn.transform( new CmpPNode(l, null()) );
158 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
159 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
160 set_control(_gvn.transform( new IfTrueNode(iff) ));
161 Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
162 bad_type_exit->control()->add_req(bad_type);
163 l = null();
164 }
165
166 // Typeflow can also cut off paths from the CFG, based on
167 // types which appear unloaded, or call sites which appear unlinked.
168 // When paths are cut off, values at later merge points can rise
169 // toward more specific classes. Make sure these specific classes
170 // are still in effect.
171 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
172 // TypeFlow asserted a specific object type. Value must have that type.
173 Node* bad_type_ctrl = nullptr;
174 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl);
175 bad_type_exit->control()->add_req(bad_type_ctrl);
176 }
177
178 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
179 return l;
180 }
181
182 // Helper routine which sets up elements of the initial parser map when
183 // performing a parse for on stack replacement. Add values into map.
184 // The only parameter contains the address of a interpreter arguments.
185 void Parse::load_interpreter_state(Node* osr_buf) {
186 int index;
187 int max_locals = jvms()->loc_size();
188 int max_stack = jvms()->stk_size();
189
190
191 // Mismatch between method and jvms can occur since map briefly held
192 // an OSR entry state (which takes up one RawPtr word).
193 assert(max_locals == method()->max_locals(), "sanity");
194 assert(max_stack >= method()->max_stack(), "sanity");
195 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
196 assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
197
198 // Find the start block.
199 Block* osr_block = start_block();
200 assert(osr_block->start() == osr_bci(), "sanity");
201
202 // Set initial BCI.
203 set_parse_bci(osr_block->start());
204
205 // Set initial stack depth.
206 set_sp(osr_block->start_sp());
207
208 // Check bailouts. We currently do not perform on stack replacement
209 // of loops in catch blocks or loops which branch with a non-empty stack.
210 if (sp() != 0) {
211 C->record_method_not_compilable("OSR starts with non-empty stack");
212 return;
213 }
214 // Do not OSR inside finally clauses:
215 if (osr_block->has_trap_at(osr_block->start())) {
216 assert(false, "OSR starts with an immediate trap");
217 C->record_method_not_compilable("OSR starts with an immediate trap");
218 return;
219 }
220
221 // Commute monitors from interpreter frame to compiler frame.
222 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
223 int mcnt = osr_block->flow()->monitor_count();
224 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
225 for (index = 0; index < mcnt; index++) {
226 // Make a BoxLockNode for the monitor.
227 BoxLockNode* osr_box = new BoxLockNode(next_monitor());
228 // Check for bailout after new BoxLockNode
229 if (failing()) { return; }
230
231 // This OSR locking region is unbalanced because it does not have Lock node:
232 // locking was done in Interpreter.
233 // This is similar to Coarsened case when Lock node is eliminated
234 // and as result the region is marked as Unbalanced.
235
236 // Emulate Coarsened state transition from Regular to Unbalanced.
237 osr_box->set_coarsened();
238 osr_box->set_unbalanced();
239
240 Node* box = _gvn.transform(osr_box);
241
242 // Displaced headers and locked objects are interleaved in the
243 // temp OSR buffer. We only copy the locked objects out here.
244 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
245 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
246 // Try and copy the displaced header to the BoxNode
247 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
248
249
250 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, MemNode::unordered);
251
252 // Build a bogus FastLockNode (no code will be generated) and push the
253 // monitor into our debug info.
254 const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock();
255 map()->push_monitor(flock);
256
257 // If the lock is our method synchronization lock, tuck it away in
258 // _sync_lock for return and rethrow exit paths.
259 if (index == 0 && method()->is_synchronized()) {
260 _synch_lock = flock;
261 }
262 }
263
264 // Use the raw liveness computation to make sure that unexpected
265 // values don't propagate into the OSR frame.
266 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
267 if (!live_locals.is_valid()) {
268 // Degenerate or breakpointed method.
269 assert(false, "OSR in empty or breakpointed method");
270 C->record_method_not_compilable("OSR in empty or breakpointed method");
271 return;
272 }
273
274 // Extract the needed locals from the interpreter frame.
275 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
276
277 // find all the locals that the interpreter thinks contain live oops
278 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
279 for (index = 0; index < max_locals; index++) {
280
281 if (!live_locals.at(index)) {
282 continue;
283 }
284
285 const Type *type = osr_block->local_type_at(index);
286
287 if (type->isa_oopptr() != nullptr) {
288
289 // 6403625: Verify that the interpreter oopMap thinks that the oop is live
290 // else we might load a stale oop if the MethodLiveness disagrees with the
291 // result of the interpreter. If the interpreter says it is dead we agree
292 // by making the value go to top.
293 //
294
295 if (!live_oops.at(index)) {
296 if (C->log() != nullptr) {
297 C->log()->elem("OSR_mismatch local_index='%d'",index);
298 }
299 set_local(index, null());
300 // and ignore it for the loads
301 continue;
302 }
303 }
304
305 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.)
306 if (type == Type::TOP || type == Type::HALF) {
307 continue;
308 }
309 // If the type falls to bottom, then this must be a local that
310 // is mixing ints and oops or some such. Forcing it to top
311 // makes it go dead.
312 if (type == Type::BOTTOM) {
313 continue;
314 }
315 // Construct code to access the appropriate local.
316 BasicType bt = type->basic_type();
317 if (type == TypePtr::NULL_PTR) {
318 // Ptr types are mixed together with T_ADDRESS but null is
319 // really for T_OBJECT types so correct it.
320 bt = T_OBJECT;
321 }
322 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
323 set_local(index, value);
324 }
325
326 // Extract the needed stack entries from the interpreter frame.
327 for (index = 0; index < sp(); index++) {
328 const Type *type = osr_block->stack_type_at(index);
329 if (type != Type::TOP) {
330 // Currently the compiler bails out when attempting to on stack replace
331 // at a bci with a non-empty stack. We should not reach here.
332 ShouldNotReachHere();
333 }
334 }
335
336 // End the OSR migration
337 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
338 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
339 "OSR_migration_end", TypeRawPtr::BOTTOM,
340 osr_buf);
341
342 // Now that the interpreter state is loaded, make sure it will match
343 // at execution time what the compiler is expecting now:
344 SafePointNode* bad_type_exit = clone_map();
345 bad_type_exit->set_control(new RegionNode(1));
346
347 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
348 for (index = 0; index < max_locals; index++) {
349 if (stopped()) break;
350 Node* l = local(index);
351 if (l->is_top()) continue; // nothing here
352 const Type *type = osr_block->local_type_at(index);
353 if (type->isa_oopptr() != nullptr) {
354 if (!live_oops.at(index)) {
355 // skip type check for dead oops
356 continue;
357 }
358 }
359 if (osr_block->flow()->local_type_at(index)->is_return_address()) {
360 // In our current system it's illegal for jsr addresses to be
361 // live into an OSR entry point because the compiler performs
362 // inlining of jsrs. ciTypeFlow has a bailout that detect this
363 // case and aborts the compile if addresses are live into an OSR
364 // entry point. Because of that we can assume that any address
365 // locals at the OSR entry point are dead. Method liveness
366 // isn't precise enough to figure out that they are dead in all
367 // cases so simply skip checking address locals all
368 // together. Any type check is guaranteed to fail since the
369 // interpreter type is the result of a load which might have any
370 // value and the expected type is a constant.
371 continue;
372 }
373 set_local(index, check_interpreter_type(l, type, bad_type_exit));
374 }
375
376 for (index = 0; index < sp(); index++) {
377 if (stopped()) break;
378 Node* l = stack(index);
379 if (l->is_top()) continue; // nothing here
380 const Type *type = osr_block->stack_type_at(index);
381 set_stack(index, check_interpreter_type(l, type, bad_type_exit));
382 }
383
384 if (bad_type_exit->control()->req() > 1) {
385 // Build an uncommon trap here, if any inputs can be unexpected.
386 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
387 record_for_igvn(bad_type_exit->control());
388 SafePointNode* types_are_good = map();
389 set_map(bad_type_exit);
390 // The unexpected type happens because a new edge is active
391 // in the CFG, which typeflow had previously ignored.
392 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
393 // This x will be typed as Integer if notReached is not yet linked.
394 // It could also happen due to a problem in ciTypeFlow analysis.
395 uncommon_trap(Deoptimization::Reason_constraint,
396 Deoptimization::Action_reinterpret);
397 set_map(types_are_good);
398 }
399 }
400
401 //------------------------------Parse------------------------------------------
402 // Main parser constructor.
403 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
404 : _exits(caller)
405 {
406 // Init some variables
407 _caller = caller;
408 _method = parse_method;
409 _expected_uses = expected_uses;
410 _depth = 1 + (caller->has_method() ? caller->depth() : 0);
411 _wrote_final = false;
412 _wrote_volatile = false;
413 _wrote_stable = false;
414 _wrote_fields = false;
415 _alloc_with_final_or_stable = nullptr;
416 _block = nullptr;
417 _first_return = true;
418 _replaced_nodes_for_exceptions = false;
419 _new_idx = C->unique();
420 DEBUG_ONLY(_entry_bci = UnknownBci);
421 DEBUG_ONLY(_block_count = -1);
422 DEBUG_ONLY(_blocks = (Block*)-1);
423 #ifndef PRODUCT
424 if (PrintCompilation || PrintOpto) {
425 // Make sure I have an inline tree, so I can print messages about it.
426 InlineTree::find_subtree_from_root(C->ilt(), caller, parse_method);
427 }
428 _max_switch_depth = 0;
429 _est_switch_depth = 0;
430 #endif
431
432 if (parse_method->has_reserved_stack_access()) {
433 C->set_has_reserved_stack_access(true);
434 }
435
436 if (parse_method->is_synchronized() || parse_method->has_monitor_bytecodes()) {
437 C->set_has_monitors(true);
438 }
439
440 if (parse_method->is_scoped()) {
441 C->set_has_scoped_access(true);
442 }
443
444 _iter.reset_to_method(method());
445 C->set_has_loops(C->has_loops() || method()->has_loops());
446
447 if (_expected_uses <= 0) {
448 _prof_factor = 1;
449 } else {
450 float prof_total = parse_method->interpreter_invocation_count();
451 if (prof_total <= _expected_uses) {
452 _prof_factor = 1;
453 } else {
454 _prof_factor = _expected_uses / prof_total;
455 }
456 }
457
458 CompileLog* log = C->log();
459 if (log != nullptr) {
460 log->begin_head("parse method='%d' uses='%f'",
461 log->identify(parse_method), expected_uses);
462 if (depth() == 1 && C->is_osr_compilation()) {
463 log->print(" osr_bci='%d'", C->entry_bci());
464 }
465 log->stamp();
466 log->end_head();
467 }
468
469 // Accumulate deoptimization counts.
470 // (The range_check and store_check counts are checked elsewhere.)
471 ciMethodData* md = method()->method_data();
472 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
473 uint md_count = md->trap_count(reason);
474 if (md_count != 0) {
475 if (md_count >= md->trap_count_limit()) {
476 md_count = md->trap_count_limit() + md->overflow_trap_count();
477 }
478 uint total_count = C->trap_count(reason);
479 uint old_count = total_count;
480 total_count += md_count;
481 // Saturate the add if it overflows.
482 if (total_count < old_count || total_count < md_count)
483 total_count = (uint)-1;
484 C->set_trap_count(reason, total_count);
485 if (log != nullptr)
486 log->elem("observe trap='%s' count='%d' total='%d'",
487 Deoptimization::trap_reason_name(reason),
488 md_count, total_count);
489 }
490 }
491 // Accumulate total sum of decompilations, also.
492 C->set_decompile_count(C->decompile_count() + md->decompile_count());
493
494 if (log != nullptr && method()->has_exception_handlers()) {
495 log->elem("observe that='has_exception_handlers'");
496 }
497
498 assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier");
499 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
500
501 // Always register dependence if JVMTI is enabled, because
502 // either breakpoint setting or hotswapping of methods may
503 // cause deoptimization.
504 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
505 C->dependencies()->assert_evol_method(method());
506 }
507
508 NOT_PRODUCT(methods_seen++);
509
510 // Do some special top-level things.
511 if (depth() == 1 && C->is_osr_compilation()) {
512 _tf = C->tf(); // the OSR entry type is different
513 _entry_bci = C->entry_bci();
514 _flow = method()->get_osr_flow_analysis(osr_bci());
515 } else {
516 _tf = TypeFunc::make(method());
517 _entry_bci = InvocationEntryBci;
518 _flow = method()->get_flow_analysis();
519 }
520
521 if (_flow->failing()) {
522 assert(false, "type flow analysis failed during parsing");
523 C->record_method_not_compilable(_flow->failure_reason());
524 #ifndef PRODUCT
525 if (PrintOpto && (Verbose || WizardMode)) {
526 if (is_osr_parse()) {
527 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
528 } else {
529 tty->print_cr("type flow bailout: %s", _flow->failure_reason());
530 }
531 if (Verbose) {
532 method()->print();
533 method()->print_codes();
534 _flow->print();
535 }
536 }
537 #endif
538 }
539
540 #ifdef ASSERT
541 if (depth() == 1) {
542 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
543 } else {
544 assert(!this->is_osr_parse(), "no recursive OSR");
545 }
546 #endif
547
548 #ifndef PRODUCT
549 if (_flow->has_irreducible_entry()) {
550 C->set_parsed_irreducible_loop(true);
551 }
552
553 methods_parsed++;
554 // add method size here to guarantee that inlined methods are added too
555 if (CITime)
556 _total_bytes_compiled += method()->code_size();
557
558 show_parse_info();
559 #endif
560
561 if (failing()) {
562 if (log) log->done("parse");
563 return;
564 }
565
566 gvn().transform(top());
567
568 // Import the results of the ciTypeFlow.
569 init_blocks();
570
571 // Merge point for all normal exits
572 build_exits();
573
574 // Setup the initial JVM state map.
575 SafePointNode* entry_map = create_entry_map();
576
577 // Check for bailouts during map initialization
578 if (failing() || entry_map == nullptr) {
579 if (log) log->done("parse");
580 return;
581 }
582
583 Node_Notes* caller_nn = C->default_node_notes();
584 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
585 if (DebugInlinedCalls || depth() == 1) {
586 C->set_default_node_notes(make_node_notes(caller_nn));
587 }
588
589 if (is_osr_parse()) {
590 Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
591 entry_map->set_req(TypeFunc::Parms+0, top());
592 set_map(entry_map);
593 load_interpreter_state(osr_buf);
594 } else {
595 set_map(entry_map);
596 do_method_entry();
597 }
598
599 if (depth() == 1 && !failing()) {
600 if (C->clinit_barrier_on_entry()) {
601 // Add check to deoptimize the nmethod once the holder class is fully initialized
602 clinit_deopt();
603 }
604 }
605
606 // Check for bailouts during method entry.
607 if (failing()) {
608 if (log) log->done("parse");
609 C->set_default_node_notes(caller_nn);
610 return;
611 }
612
613 entry_map = map(); // capture any changes performed by method setup code
614 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
615
616 // We begin parsing as if we have just encountered a jump to the
617 // method entry.
618 Block* entry_block = start_block();
619 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
620 set_map_clone(entry_map);
621 merge_common(entry_block, entry_block->next_path_num());
622
623 #ifndef PRODUCT
624 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
625 set_parse_histogram( parse_histogram_obj );
626 #endif
627
628 // Parse all the basic blocks.
629 do_all_blocks();
630
631 // Check for bailouts during conversion to graph
632 if (failing()) {
633 if (log) log->done("parse");
634 return;
635 }
636
637 // Fix up all exiting control flow.
638 set_map(entry_map);
639 do_exits();
640
641 // Only reset this now, to make sure that debug information emitted
642 // for exiting control flow still refers to the inlined method.
643 C->set_default_node_notes(caller_nn);
644
645 if (log) log->done("parse nodes='%d' live='%d' memory='%zu'",
646 C->unique(), C->live_nodes(), C->node_arena()->used());
647 }
648
649 //---------------------------do_all_blocks-------------------------------------
650 void Parse::do_all_blocks() {
651 bool has_irreducible = flow()->has_irreducible_entry();
652
653 // Walk over all blocks in Reverse Post-Order.
654 while (true) {
655 bool progress = false;
656 for (int rpo = 0; rpo < block_count(); rpo++) {
657 Block* block = rpo_at(rpo);
658
659 if (block->is_parsed()) continue;
660
661 if (!block->is_merged()) {
662 // Dead block, no state reaches this block
663 continue;
664 }
665
666 // Prepare to parse this block.
667 load_state_from(block);
668
669 if (stopped()) {
670 // Block is dead.
671 continue;
672 }
673
674 NOT_PRODUCT(blocks_parsed++);
675
676 progress = true;
677 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) {
678 // Not all preds have been parsed. We must build phis everywhere.
679 // (Note that dead locals do not get phis built, ever.)
680 ensure_phis_everywhere();
681
682 if (block->is_SEL_head()) {
683 // Add predicate to single entry (not irreducible) loop head.
684 assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
685 // Predicates may have been added after a dominating if
686 if (!block->has_predicates()) {
687 // Need correct bci for predicate.
688 // It is fine to set it here since do_one_block() will set it anyway.
689 set_parse_bci(block->start());
690 add_parse_predicates();
691 }
692 // Add new region for back branches.
693 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
694 RegionNode *r = new RegionNode(edges+1);
695 _gvn.set_type(r, Type::CONTROL);
696 record_for_igvn(r);
697 r->init_req(edges, control());
698 set_control(r);
699 block->copy_irreducible_status_to(r, jvms());
700 // Add new phis.
701 ensure_phis_everywhere();
702 }
703
704 // Leave behind an undisturbed copy of the map, for future merges.
705 set_map(clone_map());
706 }
707
708 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
709 // In the absence of irreducible loops, the Region and Phis
710 // associated with a merge that doesn't involve a backedge can
711 // be simplified now since the RPO parsing order guarantees
712 // that any path which was supposed to reach here has already
713 // been parsed or must be dead.
714 Node* c = control();
715 Node* result = _gvn.transform(control());
716 if (c != result && TraceOptoParse) {
717 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
718 }
719 if (result != top()) {
720 record_for_igvn(result);
721 }
722 }
723
724 // Parse the block.
725 do_one_block();
726
727 // Check for bailouts.
728 if (failing()) return;
729 }
730
731 // with irreducible loops multiple passes might be necessary to parse everything
732 if (!has_irreducible || !progress) {
733 break;
734 }
735 }
736
737 #ifndef PRODUCT
738 blocks_seen += block_count();
739
740 // Make sure there are no half-processed blocks remaining.
741 // Every remaining unprocessed block is dead and may be ignored now.
742 for (int rpo = 0; rpo < block_count(); rpo++) {
743 Block* block = rpo_at(rpo);
744 if (!block->is_parsed()) {
745 if (TraceOptoParse) {
746 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
747 }
748 assert(!block->is_merged(), "no half-processed blocks");
749 }
750 }
751 #endif
752 }
753
754 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
755 switch (bt) {
756 case T_BYTE:
757 v = gvn->transform(new LShiftINode(v, gvn->intcon(24)));
758 v = gvn->transform(new RShiftINode(v, gvn->intcon(24)));
759 break;
760 case T_SHORT:
761 v = gvn->transform(new LShiftINode(v, gvn->intcon(16)));
762 v = gvn->transform(new RShiftINode(v, gvn->intcon(16)));
763 break;
764 case T_CHAR:
765 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF)));
766 break;
767 case T_BOOLEAN:
768 v = gvn->transform(new AndINode(v, gvn->intcon(0x1)));
769 break;
770 default:
771 break;
772 }
773 return v;
774 }
775
776 //-------------------------------build_exits----------------------------------
777 // Build normal and exceptional exit merge points.
778 void Parse::build_exits() {
779 // make a clone of caller to prevent sharing of side-effects
780 _exits.set_map(_exits.clone_map());
781 _exits.clean_stack(_exits.sp());
782 _exits.sync_jvms();
783
784 RegionNode* region = new RegionNode(1);
785 record_for_igvn(region);
786 gvn().set_type_bottom(region);
787 _exits.set_control(region);
788
789 // Note: iophi and memphi are not transformed until do_exits.
790 Node* iophi = new PhiNode(region, Type::ABIO);
791 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
792 gvn().set_type_bottom(iophi);
793 gvn().set_type_bottom(memphi);
794 _exits.set_i_o(iophi);
795 _exits.set_all_memory(memphi);
796
797 // Add a return value to the exit state. (Do not push it yet.)
798 if (tf()->range()->cnt() > TypeFunc::Parms) {
799 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
800 if (ret_type->isa_int()) {
801 BasicType ret_bt = method()->return_type()->basic_type();
802 if (ret_bt == T_BOOLEAN ||
803 ret_bt == T_CHAR ||
804 ret_bt == T_BYTE ||
805 ret_bt == T_SHORT) {
806 ret_type = TypeInt::INT;
807 }
808 }
809
810 // Don't "bind" an unloaded return klass to the ret_phi. If the klass
811 // becomes loaded during the subsequent parsing, the loaded and unloaded
812 // types will not join when we transform and push in do_exits().
813 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
814 if (ret_oop_type && !ret_oop_type->is_loaded()) {
815 ret_type = TypeOopPtr::BOTTOM;
816 }
817 int ret_size = type2size[ret_type->basic_type()];
818 Node* ret_phi = new PhiNode(region, ret_type);
819 gvn().set_type_bottom(ret_phi);
820 _exits.ensure_stack(ret_size);
821 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
822 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
823 _exits.set_argument(0, ret_phi); // here is where the parser finds it
824 // Note: ret_phi is not yet pushed, until do_exits.
825 }
826 }
827
828
829 //----------------------------build_start_state-------------------------------
830 // Construct a state which contains only the incoming arguments from an
831 // unknown caller. The method & bci will be null & InvocationEntryBci.
832 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
833 int arg_size = tf->domain()->cnt();
834 int max_size = MAX2(arg_size, (int)tf->range()->cnt());
835 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms);
836 SafePointNode* map = new SafePointNode(max_size, jvms);
837 record_for_igvn(map);
838 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
839 Node_Notes* old_nn = default_node_notes();
840 if (old_nn != nullptr && has_method()) {
841 Node_Notes* entry_nn = old_nn->clone(this);
842 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
843 entry_jvms->set_offsets(0);
844 entry_jvms->set_bci(entry_bci());
845 entry_nn->set_jvms(entry_jvms);
846 set_default_node_notes(entry_nn);
847 }
848 uint i;
849 for (i = 0; i < (uint)arg_size; i++) {
850 Node* parm = initial_gvn()->transform(new ParmNode(start, i));
851 map->init_req(i, parm);
852 // Record all these guys for later GVN.
853 record_for_igvn(parm);
854 }
855 for (; i < map->req(); i++) {
856 map->init_req(i, top());
857 }
858 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
859 set_default_node_notes(old_nn);
860 jvms->set_map(map);
861 return jvms;
862 }
863
864 //-----------------------------make_node_notes---------------------------------
865 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
866 if (caller_nn == nullptr) return nullptr;
867 Node_Notes* nn = caller_nn->clone(C);
868 JVMState* caller_jvms = nn->jvms();
869 JVMState* jvms = new (C) JVMState(method(), caller_jvms);
870 jvms->set_offsets(0);
871 jvms->set_bci(_entry_bci);
872 nn->set_jvms(jvms);
873 return nn;
874 }
875
876
877 //--------------------------return_values--------------------------------------
878 void Compile::return_values(JVMState* jvms) {
879 GraphKit kit(jvms);
880 Node* ret = new ReturnNode(TypeFunc::Parms,
881 kit.control(),
882 kit.i_o(),
883 kit.reset_memory(),
884 kit.frameptr(),
885 kit.returnadr());
886 // Add zero or 1 return values
887 int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
888 if (ret_size > 0) {
889 kit.inc_sp(-ret_size); // pop the return value(s)
890 kit.sync_jvms();
891 ret->add_req(kit.argument(0));
892 // Note: The second dummy edge is not needed by a ReturnNode.
893 }
894 // bind it to root
895 root()->add_req(ret);
896 record_for_igvn(ret);
897 initial_gvn()->transform(ret);
898 }
899
900 //------------------------rethrow_exceptions-----------------------------------
901 // Bind all exception states in the list into a single RethrowNode.
902 void Compile::rethrow_exceptions(JVMState* jvms) {
903 GraphKit kit(jvms);
904 if (!kit.has_exceptions()) return; // nothing to generate
905 // Load my combined exception state into the kit, with all phis transformed:
906 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
907 Node* ex_oop = kit.use_exception_state(ex_map);
908 RethrowNode* exit = new RethrowNode(kit.control(),
909 kit.i_o(), kit.reset_memory(),
910 kit.frameptr(), kit.returnadr(),
911 // like a return but with exception input
912 ex_oop);
913 // bind to root
914 root()->add_req(exit);
915 record_for_igvn(exit);
916 initial_gvn()->transform(exit);
917 }
918
919 //---------------------------do_exceptions-------------------------------------
920 // Process exceptions arising from the current bytecode.
921 // Send caught exceptions to the proper handler within this method.
922 // Unhandled exceptions feed into _exit.
923 void Parse::do_exceptions() {
924 if (!has_exceptions()) return;
925
926 if (failing()) {
927 // Pop them all off and throw them away.
928 while (pop_exception_state() != nullptr) ;
929 return;
930 }
931
932 PreserveJVMState pjvms(this, false);
933
934 SafePointNode* ex_map;
935 while ((ex_map = pop_exception_state()) != nullptr) {
936 if (!method()->has_exception_handlers()) {
937 // Common case: Transfer control outward.
938 // Doing it this early allows the exceptions to common up
939 // even between adjacent method calls.
940 throw_to_exit(ex_map);
941 } else {
942 // Have to look at the exception first.
943 assert(stopped(), "catch_inline_exceptions trashes the map");
944 catch_inline_exceptions(ex_map);
945 stop_and_kill_map(); // we used up this exception state; kill it
946 }
947 }
948
949 // We now return to our regularly scheduled program:
950 }
951
952 //---------------------------throw_to_exit-------------------------------------
953 // Merge the given map into an exception exit from this method.
954 // The exception exit will handle any unlocking of receiver.
955 // The ex_oop must be saved within the ex_map, unlike merge_exception.
956 void Parse::throw_to_exit(SafePointNode* ex_map) {
957 // Pop the JVMS to (a copy of) the caller.
958 GraphKit caller;
959 caller.set_map_clone(_caller->map());
960 caller.set_bci(_caller->bci());
961 caller.set_sp(_caller->sp());
962 // Copy out the standard machine state:
963 for (uint i = 0; i < TypeFunc::Parms; i++) {
964 caller.map()->set_req(i, ex_map->in(i));
965 }
966 if (ex_map->has_replaced_nodes()) {
967 _replaced_nodes_for_exceptions = true;
968 }
969 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
970 // ...and the exception:
971 Node* ex_oop = saved_ex_oop(ex_map);
972 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
973 // Finally, collect the new exception state in my exits:
974 _exits.add_exception_state(caller_ex_map);
975 }
976
977 //------------------------------do_exits---------------------------------------
978 void Parse::do_exits() {
979 set_parse_bci(InvocationEntryBci);
980
981 // Now peephole on the return bits
982 Node* region = _exits.control();
983 _exits.set_control(gvn().transform(region));
984
985 Node* iophi = _exits.i_o();
986 _exits.set_i_o(gvn().transform(iophi));
987
988 // Figure out if we need to emit the trailing barrier. The barrier is only
989 // needed in the constructors, and only in three cases:
990 //
991 // 1. The constructor wrote a final or a @Stable field. All these
992 // initializations must be ordered before any code after the constructor
993 // publishes the reference to the newly constructed object. Rather
994 // than wait for the publication, we simply block the writes here.
995 // Rather than put a barrier on only those writes which are required
996 // to complete, we force all writes to complete.
997 //
998 // 2. Experimental VM option is used to force the barrier if any field
999 // was written out in the constructor.
1000 //
1001 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
1002 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that
1003 // MemBarVolatile is used before volatile load instead of after volatile
1004 // store, so there's no barrier after the store.
1005 // We want to guarantee the same behavior as on platforms with total store
1006 // order, although this is not required by the Java memory model.
1007 // In this case, we want to enforce visibility of volatile field
1008 // initializations which are performed in constructors.
1009 // So as with finals, we add a barrier here.
1010 //
1011 // "All bets are off" unless the first publication occurs after a
1012 // normal return from the constructor. We do not attempt to detect
1013 // such unusual early publications. But no barrier is needed on
1014 // exceptional returns, since they cannot publish normally.
1015 //
1016 if (method()->is_object_initializer() &&
1017 (wrote_final() || wrote_stable() ||
1018 (AlwaysSafeConstructors && wrote_fields()) ||
1019 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1020 Node* recorded_alloc = alloc_with_final_or_stable();
1021 _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease,
1022 recorded_alloc);
1023
1024 // If Memory barrier is created for final fields write
1025 // and allocation node does not escape the initialize method,
1026 // then barrier introduced by allocation node can be removed.
1027 if (DoEscapeAnalysis && (recorded_alloc != nullptr)) {
1028 AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc);
1029 alloc->compute_MemBar_redundancy(method());
1030 }
1031 if (PrintOpto && (Verbose || WizardMode)) {
1032 method()->print_name();
1033 tty->print_cr(" writes finals/@Stable and needs a memory barrier");
1034 }
1035 }
1036
1037 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1038 // transform each slice of the original memphi:
1039 mms.set_memory(_gvn.transform(mms.memory()));
1040 }
1041 // Clean up input MergeMems created by transforming the slices
1042 _gvn.transform(_exits.merged_memory());
1043
1044 if (tf()->range()->cnt() > TypeFunc::Parms) {
1045 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1046 Node* ret_phi = _gvn.transform( _exits.argument(0) );
1047 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1048 // If the type we set for the ret_phi in build_exits() is too optimistic and
1049 // the ret_phi is top now, there's an extremely small chance that it may be due to class
1050 // loading. It could also be due to an error, so mark this method as not compilable because
1051 // otherwise this could lead to an infinite compile loop.
1052 // In any case, this code path is rarely (and never in my testing) reached.
1053 C->record_method_not_compilable("Can't determine return type.");
1054 return;
1055 }
1056 if (ret_type->isa_int()) {
1057 BasicType ret_bt = method()->return_type()->basic_type();
1058 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1059 }
1060 _exits.push_node(ret_type->basic_type(), ret_phi);
1061 }
1062
1063 // Note: Logic for creating and optimizing the ReturnNode is in Compile.
1064
1065 // Unlock along the exceptional paths.
1066 // This is done late so that we can common up equivalent exceptions
1067 // (e.g., null checks) arising from multiple points within this method.
1068 // See GraphKit::add_exception_state, which performs the commoning.
1069 bool do_synch = method()->is_synchronized();
1070
1071 // record exit from a method if compiled while Dtrace is turned on.
1072 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1073 // First move the exception list out of _exits:
1074 GraphKit kit(_exits.transfer_exceptions_into_jvms());
1075 SafePointNode* normal_map = kit.map(); // keep this guy safe
1076 // Now re-collect the exceptions into _exits:
1077 SafePointNode* ex_map;
1078 while ((ex_map = kit.pop_exception_state()) != nullptr) {
1079 Node* ex_oop = kit.use_exception_state(ex_map);
1080 // Force the exiting JVM state to have this method at InvocationEntryBci.
1081 // The exiting JVM state is otherwise a copy of the calling JVMS.
1082 JVMState* caller = kit.jvms();
1083 JVMState* ex_jvms = caller->clone_shallow(C);
1084 ex_jvms->bind_map(kit.clone_map());
1085 ex_jvms->set_bci( InvocationEntryBci);
1086 kit.set_jvms(ex_jvms);
1087 if (do_synch) {
1088 // Add on the synchronized-method box/object combo
1089 kit.map()->push_monitor(_synch_lock);
1090 // Unlock!
1091 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1092 }
1093 if (C->env()->dtrace_method_probes()) {
1094 kit.make_dtrace_method_exit(method());
1095 }
1096 if (_replaced_nodes_for_exceptions) {
1097 kit.map()->apply_replaced_nodes(_new_idx);
1098 }
1099 // Done with exception-path processing.
1100 ex_map = kit.make_exception_state(ex_oop);
1101 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1102 // Pop the last vestige of this method:
1103 caller->clone_shallow(C)->bind_map(ex_map);
1104 _exits.push_exception_state(ex_map);
1105 }
1106 assert(_exits.map() == normal_map, "keep the same return state");
1107 }
1108
1109 {
1110 // Capture very early exceptions (receiver null checks) from caller JVMS
1111 GraphKit caller(_caller);
1112 SafePointNode* ex_map;
1113 while ((ex_map = caller.pop_exception_state()) != nullptr) {
1114 _exits.add_exception_state(ex_map);
1115 }
1116 }
1117 _exits.map()->apply_replaced_nodes(_new_idx);
1118 }
1119
1120 //-----------------------------create_entry_map-------------------------------
1121 // Initialize our parser map to contain the types at method entry.
1122 // For OSR, the map contains a single RawPtr parameter.
1123 // Initial monitor locking for sync. methods is performed by do_method_entry.
1124 SafePointNode* Parse::create_entry_map() {
1125 // Check for really stupid bail-out cases.
1126 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1127 if (len >= 32760) {
1128 // Bailout expected, this is a very rare edge case.
1129 C->record_method_not_compilable("too many local variables");
1130 return nullptr;
1131 }
1132
1133 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1134 _caller->map()->delete_replaced_nodes();
1135
1136 // If this is an inlined method, we may have to do a receiver null check.
1137 if (_caller->has_method() && is_normal_parse()) {
1138 GraphKit kit(_caller);
1139 if (!method()->is_static()) {
1140 kit.null_check_receiver_before_call(method());
1141 } else if (C->do_clinit_barriers() && C->needs_clinit_barrier(method()->holder(), _caller->method())) {
1142 ciMethod* declared_method = kit.method()->get_method_at_bci(kit.bci());
1143 const int nargs = declared_method->arg_size();
1144 kit.inc_sp(nargs);
1145 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces));
1146 kit.guard_klass_is_initialized(holder);
1147 kit.dec_sp(nargs);
1148 }
1149 _caller = kit.transfer_exceptions_into_jvms();
1150 if (kit.stopped()) {
1151 _exits.add_exception_states_from(_caller);
1152 _exits.set_jvms(_caller);
1153 return nullptr;
1154 }
1155 }
1156
1157 assert(method() != nullptr, "parser must have a method");
1158
1159 // Create an initial safepoint to hold JVM state during parsing
1160 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1161 set_map(new SafePointNode(len, jvms));
1162
1163 // Capture receiver info for compiled lambda forms.
1164 if (method()->is_compiled_lambda_form()) {
1165 ciInstance* recv_info = _caller->compute_receiver_info(method());
1166 jvms->set_receiver_info(recv_info);
1167 }
1168
1169 jvms->set_map(map());
1170 record_for_igvn(map());
1171 assert(jvms->endoff() == len, "correct jvms sizing");
1172
1173 SafePointNode* inmap = _caller->map();
1174 assert(inmap != nullptr, "must have inmap");
1175 // In case of null check on receiver above
1176 map()->transfer_replaced_nodes_from(inmap, _new_idx);
1177
1178 uint i;
1179
1180 // Pass thru the predefined input parameters.
1181 for (i = 0; i < TypeFunc::Parms; i++) {
1182 map()->init_req(i, inmap->in(i));
1183 }
1184
1185 if (depth() == 1) {
1186 assert(map()->memory()->Opcode() == Op_Parm, "");
1187 // Insert the memory aliasing node
1188 set_all_memory(reset_memory());
1189 }
1190 assert(merged_memory(), "");
1191
1192 // Now add the locals which are initially bound to arguments:
1193 uint arg_size = tf()->domain()->cnt();
1194 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args
1195 for (i = TypeFunc::Parms; i < arg_size; i++) {
1196 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1197 }
1198
1199 // Clear out the rest of the map (locals and stack)
1200 for (i = arg_size; i < len; i++) {
1201 map()->init_req(i, top());
1202 }
1203
1204 SafePointNode* entry_map = stop();
1205 return entry_map;
1206 }
1207
1208 //-----------------------------do_method_entry--------------------------------
1209 // Emit any code needed in the pseudo-block before BCI zero.
1210 // The main thing to do is lock the receiver of a synchronized method.
1211 void Parse::do_method_entry() {
1212 set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1213 set_sp(0); // Java Stack Pointer
1214
1215 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1216
1217 if (C->env()->dtrace_method_probes()) {
1218 make_dtrace_method_entry(method());
1219 }
1220
1221 install_on_method_entry_runtime_upcalls(method());
1222
1223 #ifdef ASSERT
1224 // Narrow receiver type when it is too broad for the method being parsed.
1225 if (!method()->is_static()) {
1226 ciInstanceKlass* callee_holder = method()->holder();
1227 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces);
1228
1229 Node* receiver_obj = local(0);
1230 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr();
1231
1232 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) {
1233 // Receiver should always be a subtype of callee holder.
1234 // But, since C2 type system doesn't properly track interfaces,
1235 // the invariant can't be expressed in the type system for default methods.
1236 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I.
1237 assert(callee_holder->is_interface(), "missing subtype check");
1238
1239 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure.
1240 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces));
1241 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass);
1242 assert(!stopped(), "not a subtype");
1243
1244 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check"));
1245 C->root()->add_req(halt);
1246 }
1247 }
1248 #endif // ASSERT
1249
1250 // If the method is synchronized, we need to construct a lock node, attach
1251 // it to the Start node, and pin it there.
1252 if (method()->is_synchronized()) {
1253 // Insert a FastLockNode right after the Start which takes as arguments
1254 // the current thread pointer, the "this" pointer & the address of the
1255 // stack slot pair used for the lock. The "this" pointer is a projection
1256 // off the start node, but the locking spot has to be constructed by
1257 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode
1258 // becomes the second argument to the FastLockNode call. The
1259 // FastLockNode becomes the new control parent to pin it to the start.
1260
1261 // Setup Object Pointer
1262 Node *lock_obj = nullptr;
1263 if (method()->is_static()) {
1264 ciInstance* mirror = _method->holder()->java_mirror();
1265 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1266 lock_obj = makecon(t_lock);
1267 } else { // Else pass the "this" pointer,
1268 lock_obj = local(0); // which is Parm0 from StartNode
1269 }
1270 // Clear out dead values from the debug info.
1271 kill_dead_locals();
1272 // Build the FastLockNode
1273 _synch_lock = shared_lock(lock_obj);
1274 // Check for bailout in shared_lock
1275 if (failing()) { return; }
1276 }
1277
1278 // Feed profiling data for parameters to the type system so it can
1279 // propagate it as speculative types
1280 record_profiled_parameters_for_speculation();
1281 }
1282
1283 //------------------------------init_blocks------------------------------------
1284 // Initialize our parser map to contain the types/monitors at method entry.
1285 void Parse::init_blocks() {
1286 // Create the blocks.
1287 _block_count = flow()->block_count();
1288 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1289
1290 // Initialize the structs.
1291 for (int rpo = 0; rpo < block_count(); rpo++) {
1292 Block* block = rpo_at(rpo);
1293 new(block) Block(this, rpo);
1294 }
1295
1296 // Collect predecessor and successor information.
1297 for (int rpo = 0; rpo < block_count(); rpo++) {
1298 Block* block = rpo_at(rpo);
1299 block->init_graph(this);
1300 }
1301 }
1302
1303 //-------------------------------init_node-------------------------------------
1304 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() {
1305 _flow = outer->flow()->rpo_at(rpo);
1306 _pred_count = 0;
1307 _preds_parsed = 0;
1308 _count = 0;
1309 _is_parsed = false;
1310 _is_handler = false;
1311 _has_merged_backedge = false;
1312 _start_map = nullptr;
1313 _has_predicates = false;
1314 _num_successors = 0;
1315 _all_successors = 0;
1316 _successors = nullptr;
1317 assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1318 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1319 assert(_live_locals.size() == 0, "sanity");
1320
1321 // entry point has additional predecessor
1322 if (flow()->is_start()) _pred_count++;
1323 assert(flow()->is_start() == (this == outer->start_block()), "");
1324 }
1325
1326 //-------------------------------init_graph------------------------------------
1327 void Parse::Block::init_graph(Parse* outer) {
1328 // Create the successor list for this parser block.
1329 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1330 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1331 int ns = tfs->length();
1332 int ne = tfe->length();
1333 _num_successors = ns;
1334 _all_successors = ns+ne;
1335 _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1336 int p = 0;
1337 for (int i = 0; i < ns+ne; i++) {
1338 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1339 Block* block2 = outer->rpo_at(tf2->rpo());
1340 _successors[i] = block2;
1341
1342 // Accumulate pred info for the other block, too.
1343 // Note: We also need to set _pred_count for exception blocks since they could
1344 // also have normal predecessors (reached without athrow by an explicit jump).
1345 // This also means that next_path_num can be called along exception paths.
1346 block2->_pred_count++;
1347 if (i >= ns) {
1348 block2->_is_handler = true;
1349 }
1350
1351 #ifdef ASSERT
1352 // A block's successors must be distinguishable by BCI.
1353 // That is, no bytecode is allowed to branch to two different
1354 // clones of the same code location.
1355 for (int j = 0; j < i; j++) {
1356 Block* block1 = _successors[j];
1357 if (block1 == block2) continue; // duplicates are OK
1358 assert(block1->start() != block2->start(), "successors have unique bcis");
1359 }
1360 #endif
1361 }
1362 }
1363
1364 //---------------------------successor_for_bci---------------------------------
1365 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1366 for (int i = 0; i < all_successors(); i++) {
1367 Block* block2 = successor_at(i);
1368 if (block2->start() == bci) return block2;
1369 }
1370 // We can actually reach here if ciTypeFlow traps out a block
1371 // due to an unloaded class, and concurrently with compilation the
1372 // class is then loaded, so that a later phase of the parser is
1373 // able to see more of the bytecode CFG. Or, the flow pass and
1374 // the parser can have a minor difference of opinion about executability
1375 // of bytecodes. For example, "obj.field = null" is executable even
1376 // if the field's type is an unloaded class; the flow pass used to
1377 // make a trap for such code.
1378 return nullptr;
1379 }
1380
1381
1382 //-----------------------------stack_type_at-----------------------------------
1383 const Type* Parse::Block::stack_type_at(int i) const {
1384 return get_type(flow()->stack_type_at(i));
1385 }
1386
1387
1388 //-----------------------------local_type_at-----------------------------------
1389 const Type* Parse::Block::local_type_at(int i) const {
1390 // Make dead locals fall to bottom.
1391 if (_live_locals.size() == 0) {
1392 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1393 // This bitmap can be zero length if we saw a breakpoint.
1394 // In such cases, pretend they are all live.
1395 ((Block*)this)->_live_locals = live_locals;
1396 }
1397 if (_live_locals.size() > 0 && !_live_locals.at(i))
1398 return Type::BOTTOM;
1399
1400 return get_type(flow()->local_type_at(i));
1401 }
1402
1403
1404 #ifndef PRODUCT
1405
1406 //----------------------------name_for_bc--------------------------------------
1407 // helper method for BytecodeParseHistogram
1408 static const char* name_for_bc(int i) {
1409 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1410 }
1411
1412 //----------------------------BytecodeParseHistogram------------------------------------
1413 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1414 _parser = p;
1415 _compiler = c;
1416 if( ! _initialized ) { _initialized = true; reset(); }
1417 }
1418
1419 //----------------------------current_count------------------------------------
1420 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1421 switch( bph_type ) {
1422 case BPH_transforms: { return _parser->gvn().made_progress(); }
1423 case BPH_values: { return _parser->gvn().made_new_values(); }
1424 default: { ShouldNotReachHere(); return 0; }
1425 }
1426 }
1427
1428 //----------------------------initialized--------------------------------------
1429 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1430
1431 //----------------------------reset--------------------------------------------
1432 void Parse::BytecodeParseHistogram::reset() {
1433 int i = Bytecodes::number_of_codes;
1434 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1435 }
1436
1437 //----------------------------set_initial_state--------------------------------
1438 // Record info when starting to parse one bytecode
1439 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1440 if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1441 _initial_bytecode = bc;
1442 _initial_node_count = _compiler->unique();
1443 _initial_transforms = current_count(BPH_transforms);
1444 _initial_values = current_count(BPH_values);
1445 }
1446 }
1447
1448 //----------------------------record_change--------------------------------
1449 // Record results of parsing one bytecode
1450 void Parse::BytecodeParseHistogram::record_change() {
1451 if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1452 ++_bytecodes_parsed[_initial_bytecode];
1453 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1454 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1455 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values);
1456 }
1457 }
1458
1459
1460 //----------------------------print--------------------------------------------
1461 void Parse::BytecodeParseHistogram::print(float cutoff) {
1462 ResourceMark rm;
1463 // print profile
1464 int total = 0;
1465 int i = 0;
1466 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1467 int abs_sum = 0;
1468 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789
1469 tty->print_cr("Histogram of %d parsed bytecodes:", total);
1470 if( total == 0 ) { return; }
1471 tty->cr();
1472 tty->print_cr("absolute: count of compiled bytecodes of this type");
1473 tty->print_cr("relative: percentage contribution to compiled nodes");
1474 tty->print_cr("nodes : Average number of nodes constructed per bytecode");
1475 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)");
1476 tty->print_cr("transforms: Average amount of transform progress per bytecode compiled");
1477 tty->print_cr("values : Average number of node values improved per bytecode");
1478 tty->print_cr("name : Bytecode name");
1479 tty->cr();
1480 tty->print_cr(" absolute relative nodes rnodes transforms values name");
1481 tty->print_cr("----------------------------------------------------------------------");
1482 while (--i > 0) {
1483 int abs = _bytecodes_parsed[i];
1484 float rel = abs * 100.0F / total;
1485 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1486 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes;
1487 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1488 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i];
1489 if (cutoff <= rel) {
1490 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1491 abs_sum += abs;
1492 }
1493 }
1494 tty->print_cr("----------------------------------------------------------------------");
1495 float rel_sum = abs_sum * 100.0F / total;
1496 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1497 tty->print_cr("----------------------------------------------------------------------");
1498 tty->cr();
1499 }
1500 #endif
1501
1502 //----------------------------load_state_from----------------------------------
1503 // Load block/map/sp. But not do not touch iter/bci.
1504 void Parse::load_state_from(Block* block) {
1505 set_block(block);
1506 // load the block's JVM state:
1507 set_map(block->start_map());
1508 set_sp( block->start_sp());
1509 }
1510
1511
1512 //-----------------------------record_state------------------------------------
1513 void Parse::Block::record_state(Parse* p) {
1514 assert(!is_merged(), "can only record state once, on 1st inflow");
1515 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1516 set_start_map(p->stop());
1517 }
1518
1519
1520 //------------------------------do_one_block-----------------------------------
1521 void Parse::do_one_block() {
1522 if (TraceOptoParse) {
1523 Block *b = block();
1524 int ns = b->num_successors();
1525 int nt = b->all_successors();
1526
1527 tty->print("Parsing block #%d at bci [%d,%d), successors:",
1528 block()->rpo(), block()->start(), block()->limit());
1529 for (int i = 0; i < nt; i++) {
1530 tty->print((( i < ns) ? " %d" : " %d(exception block)"), b->successor_at(i)->rpo());
1531 }
1532 if (b->is_loop_head()) {
1533 tty->print(" loop head");
1534 }
1535 if (b->is_irreducible_loop_entry()) {
1536 tty->print(" irreducible");
1537 }
1538 tty->cr();
1539 }
1540
1541 assert(block()->is_merged(), "must be merged before being parsed");
1542 block()->mark_parsed();
1543
1544 // Set iterator to start of block.
1545 iter().reset_to_bci(block()->start());
1546
1547 if (ProfileExceptionHandlers && block()->is_handler()) {
1548 ciMethodData* methodData = method()->method_data();
1549 if (methodData->is_mature()) {
1550 ciBitData data = methodData->exception_handler_bci_to_data(block()->start());
1551 if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) {
1552 // dead catch block
1553 // Emit an uncommon trap instead of processing the block.
1554 set_parse_bci(block()->start());
1555 uncommon_trap(Deoptimization::Reason_unreached,
1556 Deoptimization::Action_reinterpret,
1557 nullptr, "dead catch block");
1558 return;
1559 }
1560 }
1561 }
1562
1563 CompileLog* log = C->log();
1564
1565 // Parse bytecodes
1566 while (!stopped() && !failing()) {
1567 iter().next();
1568
1569 // Learn the current bci from the iterator:
1570 set_parse_bci(iter().cur_bci());
1571
1572 if (bci() == block()->limit()) {
1573 // Do not walk into the next block until directed by do_all_blocks.
1574 merge(bci());
1575 break;
1576 }
1577 assert(bci() < block()->limit(), "bci still in block");
1578
1579 if (log != nullptr) {
1580 // Output an optional context marker, to help place actions
1581 // that occur during parsing of this BC. If there is no log
1582 // output until the next context string, this context string
1583 // will be silently ignored.
1584 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1585 }
1586
1587 if (block()->has_trap_at(bci())) {
1588 // We must respect the flow pass's traps, because it will refuse
1589 // to produce successors for trapping blocks.
1590 int trap_index = block()->flow()->trap_index();
1591 assert(trap_index != 0, "trap index must be valid");
1592 uncommon_trap(trap_index);
1593 break;
1594 }
1595
1596 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1597
1598 #ifdef ASSERT
1599 int pre_bc_sp = sp();
1600 int inputs, depth;
1601 bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1602 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1603 #endif //ASSERT
1604
1605 do_one_bytecode();
1606 if (failing()) return;
1607
1608 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1609 "incorrect depth prediction: bc=%s bci=%d, sp=%d, pre_bc_sp=%d, depth=%d", Bytecodes::name(bc()), bci(), sp(), pre_bc_sp, depth);
1610
1611 do_exceptions();
1612
1613 NOT_PRODUCT( parse_histogram()->record_change(); );
1614
1615 if (log != nullptr)
1616 log->clear_context(); // skip marker if nothing was printed
1617
1618 // Fall into next bytecode. Each bytecode normally has 1 sequential
1619 // successor which is typically made ready by visiting this bytecode.
1620 // If the successor has several predecessors, then it is a merge
1621 // point, starts a new basic block, and is handled like other basic blocks.
1622 }
1623 }
1624
1625
1626 //------------------------------merge------------------------------------------
1627 void Parse::set_parse_bci(int bci) {
1628 set_bci(bci);
1629 Node_Notes* nn = C->default_node_notes();
1630 if (nn == nullptr) return;
1631
1632 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1633 if (!DebugInlinedCalls && depth() > 1) {
1634 return;
1635 }
1636
1637 // Update the JVMS annotation, if present.
1638 JVMState* jvms = nn->jvms();
1639 if (jvms != nullptr && jvms->bci() != bci) {
1640 // Update the JVMS.
1641 jvms = jvms->clone_shallow(C);
1642 jvms->set_bci(bci);
1643 nn->set_jvms(jvms);
1644 }
1645 }
1646
1647 //------------------------------merge------------------------------------------
1648 // Merge the current mapping into the basic block starting at bci
1649 void Parse::merge(int target_bci) {
1650 Block* target = successor_for_bci(target_bci);
1651 if (target == nullptr) { handle_missing_successor(target_bci); return; }
1652 assert(!target->is_ready(), "our arrival must be expected");
1653 int pnum = target->next_path_num();
1654 merge_common(target, pnum);
1655 }
1656
1657 //-------------------------merge_new_path--------------------------------------
1658 // Merge the current mapping into the basic block, using a new path
1659 void Parse::merge_new_path(int target_bci) {
1660 Block* target = successor_for_bci(target_bci);
1661 if (target == nullptr) { handle_missing_successor(target_bci); return; }
1662 assert(!target->is_ready(), "new path into frozen graph");
1663 int pnum = target->add_new_path();
1664 merge_common(target, pnum);
1665 }
1666
1667 //-------------------------merge_exception-------------------------------------
1668 // Merge the current mapping into the basic block starting at bci
1669 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1670 void Parse::merge_exception(int target_bci) {
1671 #ifdef ASSERT
1672 if (target_bci <= bci()) {
1673 C->set_exception_backedge();
1674 }
1675 #endif
1676 assert(sp() == 1, "must have only the throw exception on the stack");
1677 Block* target = successor_for_bci(target_bci);
1678 if (target == nullptr) { handle_missing_successor(target_bci); return; }
1679 assert(target->is_handler(), "exceptions are handled by special blocks");
1680 int pnum = target->add_new_path();
1681 merge_common(target, pnum);
1682 }
1683
1684 //--------------------handle_missing_successor---------------------------------
1685 void Parse::handle_missing_successor(int target_bci) {
1686 #ifndef PRODUCT
1687 Block* b = block();
1688 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1689 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1690 #endif
1691 ShouldNotReachHere();
1692 }
1693
1694 //--------------------------merge_common---------------------------------------
1695 void Parse::merge_common(Parse::Block* target, int pnum) {
1696 if (TraceOptoParse) {
1697 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1698 }
1699
1700 // Zap extra stack slots to top
1701 assert(sp() == target->start_sp(), "");
1702 clean_stack(sp());
1703
1704 if (!target->is_merged()) { // No prior mapping at this bci
1705 if (TraceOptoParse) { tty->print(" with empty state"); }
1706
1707 // If this path is dead, do not bother capturing it as a merge.
1708 // It is "as if" we had 1 fewer predecessors from the beginning.
1709 if (stopped()) {
1710 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count");
1711 return;
1712 }
1713
1714 // Make a region if we know there are multiple or unpredictable inputs.
1715 // (Also, if this is a plain fall-through, we might see another region,
1716 // which must not be allowed into this block's map.)
1717 if (pnum > PhiNode::Input // Known multiple inputs.
1718 || target->is_handler() // These have unpredictable inputs.
1719 || target->is_loop_head() // Known multiple inputs
1720 || control()->is_Region()) { // We must hide this guy.
1721
1722 int current_bci = bci();
1723 set_parse_bci(target->start()); // Set target bci
1724 if (target->is_SEL_head()) {
1725 DEBUG_ONLY( target->mark_merged_backedge(block()); )
1726 if (target->start() == 0) {
1727 // Add Parse Predicates for the special case when
1728 // there are backbranches to the method entry.
1729 add_parse_predicates();
1730 }
1731 }
1732 // Add a Region to start the new basic block. Phis will be added
1733 // later lazily.
1734 int edges = target->pred_count();
1735 if (edges < pnum) edges = pnum; // might be a new path!
1736 RegionNode *r = new RegionNode(edges+1);
1737 gvn().set_type(r, Type::CONTROL);
1738 record_for_igvn(r);
1739 // zap all inputs to null for debugging (done in Node(uint) constructor)
1740 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1741 r->init_req(pnum, control());
1742 set_control(r);
1743 target->copy_irreducible_status_to(r, jvms());
1744 set_parse_bci(current_bci); // Restore bci
1745 }
1746
1747 // Convert the existing Parser mapping into a mapping at this bci.
1748 store_state_to(target);
1749 assert(target->is_merged(), "do not come here twice");
1750
1751 } else { // Prior mapping at this bci
1752 if (TraceOptoParse) { tty->print(" with previous state"); }
1753 #ifdef ASSERT
1754 if (target->is_SEL_head()) {
1755 target->mark_merged_backedge(block());
1756 }
1757 #endif
1758 // We must not manufacture more phis if the target is already parsed.
1759 bool nophi = target->is_parsed();
1760
1761 SafePointNode* newin = map();// Hang on to incoming mapping
1762 Block* save_block = block(); // Hang on to incoming block;
1763 load_state_from(target); // Get prior mapping
1764
1765 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1766 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1767 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1768 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1769
1770 // Iterate over my current mapping and the old mapping.
1771 // Where different, insert Phi functions.
1772 // Use any existing Phi functions.
1773 assert(control()->is_Region(), "must be merging to a region");
1774 RegionNode* r = control()->as_Region();
1775
1776 // Compute where to merge into
1777 // Merge incoming control path
1778 r->init_req(pnum, newin->control());
1779
1780 if (pnum == 1) { // Last merge for this Region?
1781 if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1782 Node* result = _gvn.transform(r);
1783 if (r != result && TraceOptoParse) {
1784 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1785 }
1786 }
1787 record_for_igvn(r);
1788 }
1789
1790 // Update all the non-control inputs to map:
1791 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1792 bool check_elide_phi = target->is_SEL_backedge(save_block);
1793 for (uint j = 1; j < newin->req(); j++) {
1794 Node* m = map()->in(j); // Current state of target.
1795 Node* n = newin->in(j); // Incoming change to target state.
1796 PhiNode* phi;
1797 if (m->is_Phi() && m->as_Phi()->region() == r)
1798 phi = m->as_Phi();
1799 else
1800 phi = nullptr;
1801 if (m != n) { // Different; must merge
1802 switch (j) {
1803 // Frame pointer and Return Address never changes
1804 case TypeFunc::FramePtr:// Drop m, use the original value
1805 case TypeFunc::ReturnAdr:
1806 break;
1807 case TypeFunc::Memory: // Merge inputs to the MergeMem node
1808 assert(phi == nullptr, "the merge contains phis, not vice versa");
1809 merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1810 continue;
1811 default: // All normal stuff
1812 if (phi == nullptr) {
1813 const JVMState* jvms = map()->jvms();
1814 if (EliminateNestedLocks &&
1815 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1816 // BoxLock nodes are not commoning when EliminateNestedLocks is on.
1817 // Use old BoxLock node as merged box.
1818 assert(newin->jvms()->is_monitor_box(j), "sanity");
1819 // This assert also tests that nodes are BoxLock.
1820 assert(BoxLockNode::same_slot(n, m), "sanity");
1821 BoxLockNode* old_box = m->as_BoxLock();
1822 if (n->as_BoxLock()->is_unbalanced() && !old_box->is_unbalanced()) {
1823 // Preserve Unbalanced status.
1824 //
1825 // `old_box` can have only Regular or Coarsened status
1826 // because this code is executed only during Parse phase and
1827 // Incremental Inlining before EA and Macro nodes elimination.
1828 //
1829 // Incremental Inlining is executed after IGVN optimizations
1830 // during which BoxLock can be marked as Coarsened.
1831 old_box->set_coarsened(); // Verifies state
1832 old_box->set_unbalanced();
1833 }
1834 C->gvn_replace_by(n, m);
1835 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1836 phi = ensure_phi(j, nophi);
1837 }
1838 }
1839 break;
1840 }
1841 }
1842 // At this point, n might be top if:
1843 // - there is no phi (because TypeFlow detected a conflict), or
1844 // - the corresponding control edges is top (a dead incoming path)
1845 // It is a bug if we create a phi which sees a garbage value on a live path.
1846
1847 if (phi != nullptr) {
1848 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1849 assert(phi->region() == r, "");
1850 phi->set_req(pnum, n); // Then add 'n' to the merge
1851 if (pnum == PhiNode::Input) {
1852 // Last merge for this Phi.
1853 // So far, Phis have had a reasonable type from ciTypeFlow.
1854 // Now _gvn will join that with the meet of current inputs.
1855 // BOTTOM is never permissible here, 'cause pessimistically
1856 // Phis of pointers cannot lose the basic pointer type.
1857 DEBUG_ONLY(const Type* bt1 = phi->bottom_type());
1858 assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1859 map()->set_req(j, _gvn.transform(phi));
1860 DEBUG_ONLY(const Type* bt2 = phi->bottom_type());
1861 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1862 record_for_igvn(phi);
1863 }
1864 }
1865 } // End of for all values to be merged
1866
1867 if (pnum == PhiNode::Input &&
1868 !r->in(0)) { // The occasional useless Region
1869 assert(control() == r, "");
1870 set_control(r->nonnull_req());
1871 }
1872
1873 map()->merge_replaced_nodes_with(newin);
1874
1875 // newin has been subsumed into the lazy merge, and is now dead.
1876 set_block(save_block);
1877
1878 stop(); // done with this guy, for now
1879 }
1880
1881 if (TraceOptoParse) {
1882 tty->print_cr(" on path %d", pnum);
1883 }
1884
1885 // Done with this parser state.
1886 assert(stopped(), "");
1887 }
1888
1889
1890 //--------------------------merge_memory_edges---------------------------------
1891 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1892 // (nophi means we must not create phis, because we already parsed here)
1893 assert(n != nullptr, "");
1894 // Merge the inputs to the MergeMems
1895 MergeMemNode* m = merged_memory();
1896
1897 assert(control()->is_Region(), "must be merging to a region");
1898 RegionNode* r = control()->as_Region();
1899
1900 PhiNode* base = nullptr;
1901 MergeMemNode* remerge = nullptr;
1902 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1903 Node *p = mms.force_memory();
1904 Node *q = mms.memory2();
1905 if (mms.is_empty() && nophi) {
1906 // Trouble: No new splits allowed after a loop body is parsed.
1907 // Instead, wire the new split into a MergeMem on the backedge.
1908 // The optimizer will sort it out, slicing the phi.
1909 if (remerge == nullptr) {
1910 guarantee(base != nullptr, "");
1911 assert(base->in(0) != nullptr, "should not be xformed away");
1912 remerge = MergeMemNode::make(base->in(pnum));
1913 gvn().set_type(remerge, Type::MEMORY);
1914 base->set_req(pnum, remerge);
1915 }
1916 remerge->set_memory_at(mms.alias_idx(), q);
1917 continue;
1918 }
1919 assert(!q->is_MergeMem(), "");
1920 PhiNode* phi;
1921 if (p != q) {
1922 phi = ensure_memory_phi(mms.alias_idx(), nophi);
1923 } else {
1924 if (p->is_Phi() && p->as_Phi()->region() == r)
1925 phi = p->as_Phi();
1926 else
1927 phi = nullptr;
1928 }
1929 // Insert q into local phi
1930 if (phi != nullptr) {
1931 assert(phi->region() == r, "");
1932 p = phi;
1933 phi->set_req(pnum, q);
1934 if (mms.at_base_memory()) {
1935 base = phi; // delay transforming it
1936 } else if (pnum == 1) {
1937 record_for_igvn(phi);
1938 p = _gvn.transform(phi);
1939 }
1940 mms.set_memory(p);// store back through the iterator
1941 }
1942 }
1943 // Transform base last, in case we must fiddle with remerging.
1944 if (base != nullptr && pnum == 1) {
1945 record_for_igvn(base);
1946 m->set_base_memory(_gvn.transform(base));
1947 }
1948 }
1949
1950
1951 //------------------------ensure_phis_everywhere-------------------------------
1952 void Parse::ensure_phis_everywhere() {
1953 ensure_phi(TypeFunc::I_O);
1954
1955 // Ensure a phi on all currently known memories.
1956 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1957 ensure_memory_phi(mms.alias_idx());
1958 DEBUG_ONLY(mms.set_memory()); // keep the iterator happy
1959 }
1960
1961 // Note: This is our only chance to create phis for memory slices.
1962 // If we miss a slice that crops up later, it will have to be
1963 // merged into the base-memory phi that we are building here.
1964 // Later, the optimizer will comb out the knot, and build separate
1965 // phi-loops for each memory slice that matters.
1966
1967 // Monitors must nest nicely and not get confused amongst themselves.
1968 // Phi-ify everything up to the monitors, though.
1969 uint monoff = map()->jvms()->monoff();
1970 uint nof_monitors = map()->jvms()->nof_monitors();
1971
1972 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1973 bool check_elide_phi = block()->is_SEL_head();
1974 for (uint i = TypeFunc::Parms; i < monoff; i++) {
1975 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1976 ensure_phi(i);
1977 }
1978 }
1979
1980 // Even monitors need Phis, though they are well-structured.
1981 // This is true for OSR methods, and also for the rare cases where
1982 // a monitor object is the subject of a replace_in_map operation.
1983 // See bugs 4426707 and 5043395.
1984 for (uint m = 0; m < nof_monitors; m++) {
1985 ensure_phi(map()->jvms()->monitor_obj_offset(m));
1986 }
1987 }
1988
1989
1990 //-----------------------------add_new_path------------------------------------
1991 // Add a previously unaccounted predecessor to this block.
1992 int Parse::Block::add_new_path() {
1993 // If there is no map, return the lowest unused path number.
1994 if (!is_merged()) return pred_count()+1; // there will be a map shortly
1995
1996 SafePointNode* map = start_map();
1997 if (!map->control()->is_Region())
1998 return pred_count()+1; // there may be a region some day
1999 RegionNode* r = map->control()->as_Region();
2000
2001 // Add new path to the region.
2002 uint pnum = r->req();
2003 r->add_req(nullptr);
2004
2005 for (uint i = 1; i < map->req(); i++) {
2006 Node* n = map->in(i);
2007 if (i == TypeFunc::Memory) {
2008 // Ensure a phi on all currently known memories.
2009 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
2010 Node* phi = mms.memory();
2011 if (phi->is_Phi() && phi->as_Phi()->region() == r) {
2012 assert(phi->req() == pnum, "must be same size as region");
2013 phi->add_req(nullptr);
2014 }
2015 }
2016 } else {
2017 if (n->is_Phi() && n->as_Phi()->region() == r) {
2018 assert(n->req() == pnum, "must be same size as region");
2019 n->add_req(nullptr);
2020 }
2021 }
2022 }
2023
2024 return pnum;
2025 }
2026
2027 //------------------------------ensure_phi-------------------------------------
2028 // Turn the idx'th entry of the current map into a Phi
2029 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2030 SafePointNode* map = this->map();
2031 Node* region = map->control();
2032 assert(region->is_Region(), "");
2033
2034 Node* o = map->in(idx);
2035 assert(o != nullptr, "");
2036
2037 if (o == top()) return nullptr; // TOP always merges into TOP
2038
2039 if (o->is_Phi() && o->as_Phi()->region() == region) {
2040 return o->as_Phi();
2041 }
2042
2043 // Now use a Phi here for merging
2044 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2045 const JVMState* jvms = map->jvms();
2046 const Type* t = nullptr;
2047 if (jvms->is_loc(idx)) {
2048 t = block()->local_type_at(idx - jvms->locoff());
2049 } else if (jvms->is_stk(idx)) {
2050 t = block()->stack_type_at(idx - jvms->stkoff());
2051 } else if (jvms->is_mon(idx)) {
2052 assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2053 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2054 } else if ((uint)idx < TypeFunc::Parms) {
2055 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like.
2056 } else {
2057 assert(false, "no type information for this phi");
2058 }
2059
2060 // If the type falls to bottom, then this must be a local that
2061 // is mixing ints and oops or some such. Forcing it to top
2062 // makes it go dead.
2063 if (t == Type::BOTTOM) {
2064 map->set_req(idx, top());
2065 return nullptr;
2066 }
2067
2068 // Do not create phis for top either.
2069 // A top on a non-null control flow must be an unused even after the.phi.
2070 if (t == Type::TOP || t == Type::HALF) {
2071 map->set_req(idx, top());
2072 return nullptr;
2073 }
2074
2075 PhiNode* phi = PhiNode::make(region, o, t);
2076 gvn().set_type(phi, t);
2077 if (C->do_escape_analysis()) record_for_igvn(phi);
2078 map->set_req(idx, phi);
2079 return phi;
2080 }
2081
2082 //--------------------------ensure_memory_phi----------------------------------
2083 // Turn the idx'th slice of the current memory into a Phi
2084 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2085 MergeMemNode* mem = merged_memory();
2086 Node* region = control();
2087 assert(region->is_Region(), "");
2088
2089 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2090 assert(o != nullptr && o != top(), "");
2091
2092 PhiNode* phi;
2093 if (o->is_Phi() && o->as_Phi()->region() == region) {
2094 phi = o->as_Phi();
2095 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2096 // clone the shared base memory phi to make a new memory split
2097 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2098 const Type* t = phi->bottom_type();
2099 const TypePtr* adr_type = C->get_adr_type(idx);
2100 phi = phi->slice_memory(adr_type);
2101 gvn().set_type(phi, t);
2102 }
2103 return phi;
2104 }
2105
2106 // Now use a Phi here for merging
2107 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2108 const Type* t = o->bottom_type();
2109 const TypePtr* adr_type = C->get_adr_type(idx);
2110 phi = PhiNode::make(region, o, t, adr_type);
2111 gvn().set_type(phi, t);
2112 if (idx == Compile::AliasIdxBot)
2113 mem->set_base_memory(phi);
2114 else
2115 mem->set_memory_at(idx, phi);
2116 return phi;
2117 }
2118
2119 //------------------------------call_register_finalizer-----------------------
2120 // Check the klass of the receiver and call register_finalizer if the
2121 // class need finalization.
2122 void Parse::call_register_finalizer() {
2123 Node* receiver = local(0);
2124 assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr,
2125 "must have non-null instance type");
2126
2127 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
2128 if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) {
2129 // The type isn't known exactly so see if CHA tells us anything.
2130 ciInstanceKlass* ik = tinst->instance_klass();
2131 if (!Dependencies::has_finalizable_subclass(ik)) {
2132 // No finalizable subclasses so skip the dynamic check.
2133 C->dependencies()->assert_has_no_finalizable_subclasses(ik);
2134 return;
2135 }
2136 }
2137
2138 // Insert a dynamic test for whether the instance needs
2139 // finalization. In general this will fold up since the concrete
2140 // class is often visible so the access flags are constant.
2141 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2142 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2143
2144 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::misc_flags_offset()));
2145 Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2146
2147 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(KlassFlags::_misc_has_finalizer)));
2148 Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2149 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne));
2150
2151 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2152
2153 RegionNode* result_rgn = new RegionNode(3);
2154 record_for_igvn(result_rgn);
2155
2156 Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2157 result_rgn->init_req(1, skip_register);
2158
2159 Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2160 set_control(needs_register);
2161 if (stopped()) {
2162 // There is no slow path.
2163 result_rgn->init_req(2, top());
2164 } else {
2165 Node *call = make_runtime_call(RC_NO_LEAF,
2166 OptoRuntime::register_finalizer_Type(),
2167 OptoRuntime::register_finalizer_Java(),
2168 nullptr, TypePtr::BOTTOM,
2169 receiver);
2170 make_slow_call_ex(call, env()->Throwable_klass(), true);
2171
2172 Node* fast_io = call->in(TypeFunc::I_O);
2173 Node* fast_mem = call->in(TypeFunc::Memory);
2174 // These two phis are pre-filled with copies of of the fast IO and Memory
2175 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
2176 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2177
2178 result_rgn->init_req(2, control());
2179 io_phi ->init_req(2, i_o());
2180 mem_phi ->init_req(2, reset_memory());
2181
2182 set_all_memory( _gvn.transform(mem_phi) );
2183 set_i_o( _gvn.transform(io_phi) );
2184 }
2185
2186 set_control( _gvn.transform(result_rgn) );
2187 }
2188
2189 // Add check to deoptimize once holder klass is fully initialized.
2190 void Parse::clinit_deopt() {
2191 if (method()->holder()->is_initialized()) {
2192 return; // in case do_clinit_barriers() is true
2193 }
2194 assert(C->has_method(), "only for normal compilations");
2195 assert(depth() == 1, "only for main compiled method");
2196 assert(is_normal_parse(), "no barrier needed on osr entry");
2197 assert(!method()->holder()->is_not_initialized(), "initialization should have been started");
2198
2199 set_parse_bci(0);
2200
2201 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces));
2202 guard_klass_being_initialized(holder);
2203 }
2204
2205 //------------------------------return_current---------------------------------
2206 // Append current _map to _exit_return
2207 void Parse::return_current(Node* value) {
2208 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2209 call_register_finalizer();
2210 }
2211
2212 // Do not set_parse_bci, so that return goo is credited to the return insn.
2213 set_bci(InvocationEntryBci);
2214 if (method()->is_synchronized()) {
2215 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2216 }
2217 if (C->env()->dtrace_method_probes()) {
2218 make_dtrace_method_exit(method());
2219 }
2220 SafePointNode* exit_return = _exits.map();
2221 exit_return->in( TypeFunc::Control )->add_req( control() );
2222 exit_return->in( TypeFunc::I_O )->add_req( i_o () );
2223 Node *mem = exit_return->in( TypeFunc::Memory );
2224 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2225 if (mms.is_empty()) {
2226 // get a copy of the base memory, and patch just this one input
2227 const TypePtr* adr_type = mms.adr_type(C);
2228 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2229 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2230 gvn().set_type_bottom(phi);
2231 phi->del_req(phi->req()-1); // prepare to re-patch
2232 mms.set_memory(phi);
2233 }
2234 mms.memory()->add_req(mms.memory2());
2235 }
2236
2237 // frame pointer is always same, already captured
2238 if (value != nullptr) {
2239 // If returning oops to an interface-return, there is a silent free
2240 // cast from oop to interface allowed by the Verifier. Make it explicit
2241 // here.
2242 Node* phi = _exits.argument(0);
2243 phi->add_req(value);
2244 }
2245
2246 if (_first_return) {
2247 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2248 _first_return = false;
2249 } else {
2250 _exits.map()->merge_replaced_nodes_with(map());
2251 }
2252
2253 stop_and_kill_map(); // This CFG path dies here
2254 }
2255
2256
2257 //------------------------------add_safepoint----------------------------------
2258 void Parse::add_safepoint() {
2259 uint parms = TypeFunc::Parms+1;
2260
2261 // Clear out dead values from the debug info.
2262 kill_dead_locals();
2263
2264 // Clone the JVM State
2265 SafePointNode *sfpnt = new SafePointNode(parms, nullptr);
2266
2267 // Capture memory state BEFORE a SafePoint. Since we can block at a
2268 // SafePoint we need our GC state to be safe; i.e. we need all our current
2269 // write barriers (card marks) to not float down after the SafePoint so we
2270 // must read raw memory. Likewise we need all oop stores to match the card
2271 // marks. If deopt can happen, we need ALL stores (we need the correct JVM
2272 // state on a deopt).
2273
2274 // We do not need to WRITE the memory state after a SafePoint. The control
2275 // edge will keep card-marks and oop-stores from floating up from below a
2276 // SafePoint and our true dependency added here will keep them from floating
2277 // down below a SafePoint.
2278
2279 // Clone the current memory state
2280 Node* mem = MergeMemNode::make(map()->memory());
2281
2282 mem = _gvn.transform(mem);
2283
2284 // Pass control through the safepoint
2285 sfpnt->init_req(TypeFunc::Control , control());
2286 // Fix edges normally used by a call
2287 sfpnt->init_req(TypeFunc::I_O , top() );
2288 sfpnt->init_req(TypeFunc::Memory , mem );
2289 sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2290 sfpnt->init_req(TypeFunc::FramePtr , top() );
2291
2292 // Create a node for the polling address
2293 Node *polladr;
2294 Node *thread = _gvn.transform(new ThreadLocalNode());
2295 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset())));
2296 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
2297 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2298
2299 // Fix up the JVM State edges
2300 add_safepoint_edges(sfpnt);
2301 Node *transformed_sfpnt = _gvn.transform(sfpnt);
2302 set_control(transformed_sfpnt);
2303
2304 // Provide an edge from root to safepoint. This makes the safepoint
2305 // appear useful until the parse has completed.
2306 if (transformed_sfpnt->is_SafePoint()) {
2307 assert(C->root() != nullptr, "Expect parse is still valid");
2308 C->root()->add_prec(transformed_sfpnt);
2309 }
2310 }
2311
2312 #ifndef PRODUCT
2313 //------------------------show_parse_info--------------------------------------
2314 void Parse::show_parse_info() {
2315 InlineTree* ilt = nullptr;
2316 if (C->ilt() != nullptr) {
2317 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2318 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2319 }
2320 if (PrintCompilation && Verbose) {
2321 if (depth() == 1) {
2322 if( ilt->count_inlines() ) {
2323 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2324 ilt->count_inline_bcs());
2325 tty->cr();
2326 }
2327 } else {
2328 if (method()->is_synchronized()) tty->print("s");
2329 if (method()->has_exception_handlers()) tty->print("!");
2330 // Check this is not the final compiled version
2331 if (C->trap_can_recompile()) {
2332 tty->print("-");
2333 } else {
2334 tty->print(" ");
2335 }
2336 method()->print_short_name();
2337 if (is_osr_parse()) {
2338 tty->print(" @ %d", osr_bci());
2339 }
2340 tty->print(" (%d bytes)",method()->code_size());
2341 if (ilt->count_inlines()) {
2342 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2343 ilt->count_inline_bcs());
2344 }
2345 tty->cr();
2346 }
2347 }
2348 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2349 // Print that we succeeded; suppress this message on the first osr parse.
2350
2351 if (method()->is_synchronized()) tty->print("s");
2352 if (method()->has_exception_handlers()) tty->print("!");
2353 // Check this is not the final compiled version
2354 if (C->trap_can_recompile() && depth() == 1) {
2355 tty->print("-");
2356 } else {
2357 tty->print(" ");
2358 }
2359 if( depth() != 1 ) { tty->print(" "); } // missing compile count
2360 for (int i = 1; i < depth(); ++i) { tty->print(" "); }
2361 method()->print_short_name();
2362 if (is_osr_parse()) {
2363 tty->print(" @ %d", osr_bci());
2364 }
2365 if (ilt->caller_bci() != -1) {
2366 tty->print(" @ %d", ilt->caller_bci());
2367 }
2368 tty->print(" (%d bytes)",method()->code_size());
2369 if (ilt->count_inlines()) {
2370 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2371 ilt->count_inline_bcs());
2372 }
2373 tty->cr();
2374 }
2375 }
2376
2377
2378 //------------------------------dump-------------------------------------------
2379 // Dump information associated with the bytecodes of current _method
2380 void Parse::dump() {
2381 if( method() != nullptr ) {
2382 // Iterate over bytecodes
2383 ciBytecodeStream iter(method());
2384 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2385 dump_bci( iter.cur_bci() );
2386 tty->cr();
2387 }
2388 }
2389 }
2390
2391 // Dump information associated with a byte code index, 'bci'
2392 void Parse::dump_bci(int bci) {
2393 // Output info on merge-points, cloning, and within _jsr..._ret
2394 // NYI
2395 tty->print(" bci:%d", bci);
2396 }
2397
2398 #endif