1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "oops/method.hpp" 30 #include "opto/addnode.hpp" 31 #include "opto/c2compiler.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/idealGraphPrinter.hpp" 34 #include "opto/locknode.hpp" 35 #include "opto/memnode.hpp" 36 #include "opto/opaquenode.hpp" 37 #include "opto/parse.hpp" 38 #include "opto/rootnode.hpp" 39 #include "opto/runtime.hpp" 40 #include "opto/type.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/runtimeUpcalls.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "utilities/bitMap.inline.hpp" 46 #include "utilities/copy.hpp" 47 48 // Static array so we can figure out which bytecodes stop us from compiling 49 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 50 // and eventually should be encapsulated in a proper class (gri 8/18/98). 51 52 #ifndef PRODUCT 53 uint nodes_created = 0; 54 uint methods_parsed = 0; 55 uint methods_seen = 0; 56 uint blocks_parsed = 0; 57 uint blocks_seen = 0; 58 59 uint explicit_null_checks_inserted = 0; 60 uint explicit_null_checks_elided = 0; 61 uint all_null_checks_found = 0; 62 uint implicit_null_checks = 0; 63 64 bool Parse::BytecodeParseHistogram::_initialized = false; 65 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 66 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 67 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 68 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 69 70 //------------------------------print_statistics------------------------------- 71 void Parse::print_statistics() { 72 tty->print_cr("--- Compiler Statistics ---"); 73 tty->print("Methods seen: %u Methods parsed: %u", methods_seen, methods_parsed); 74 tty->print(" Nodes created: %u", nodes_created); 75 tty->cr(); 76 if (methods_seen != methods_parsed) { 77 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 78 } 79 tty->print_cr("Blocks parsed: %u Blocks seen: %u", blocks_parsed, blocks_seen); 80 81 if (explicit_null_checks_inserted) { 82 tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,", 83 explicit_null_checks_inserted, explicit_null_checks_elided, 84 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 85 all_null_checks_found); 86 } 87 if (all_null_checks_found) { 88 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks, 89 (100*implicit_null_checks)/all_null_checks_found); 90 } 91 if (SharedRuntime::_implicit_null_throws) { 92 tty->print_cr("%u implicit null exceptions at runtime", 93 SharedRuntime::_implicit_null_throws); 94 } 95 96 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 97 BytecodeParseHistogram::print(); 98 } 99 } 100 #endif 101 102 //------------------------------ON STACK REPLACEMENT--------------------------- 103 104 // Construct a node which can be used to get incoming state for 105 // on stack replacement. 106 Node *Parse::fetch_interpreter_state(int index, 107 BasicType bt, 108 Node *local_addrs, 109 Node *local_addrs_base) { 110 Node *mem = memory(Compile::AliasIdxRaw); 111 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 112 Node *ctl = control(); 113 114 // Very similar to LoadNode::make, except we handle un-aligned longs and 115 // doubles on Sparc. Intel can handle them just fine directly. 116 Node *l = nullptr; 117 switch (bt) { // Signature is flattened 118 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 119 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 120 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 121 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 122 case T_LONG: 123 case T_DOUBLE: { 124 // Since arguments are in reverse order, the argument address 'adr' 125 // refers to the back half of the long/double. Recompute adr. 126 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 127 if (Matcher::misaligned_doubles_ok) { 128 l = (bt == T_DOUBLE) 129 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 130 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 131 } else { 132 l = (bt == T_DOUBLE) 133 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 134 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 135 } 136 break; 137 } 138 default: ShouldNotReachHere(); 139 } 140 return _gvn.transform(l); 141 } 142 143 // Helper routine to prevent the interpreter from handing 144 // unexpected typestate to an OSR method. 145 // The Node l is a value newly dug out of the interpreter frame. 146 // The type is the type predicted by ciTypeFlow. Note that it is 147 // not a general type, but can only come from Type::get_typeflow_type. 148 // The safepoint is a map which will feed an uncommon trap. 149 Node* Parse::check_interpreter_type(Node* l, const Type* type, 150 SafePointNode* &bad_type_exit) { 151 152 const TypeOopPtr* tp = type->isa_oopptr(); 153 154 // TypeFlow may assert null-ness if a type appears unloaded. 155 if (type == TypePtr::NULL_PTR || 156 (tp != nullptr && !tp->is_loaded())) { 157 // Value must be null, not a real oop. 158 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 159 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 160 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 161 set_control(_gvn.transform( new IfTrueNode(iff) )); 162 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 163 bad_type_exit->control()->add_req(bad_type); 164 l = null(); 165 } 166 167 // Typeflow can also cut off paths from the CFG, based on 168 // types which appear unloaded, or call sites which appear unlinked. 169 // When paths are cut off, values at later merge points can rise 170 // toward more specific classes. Make sure these specific classes 171 // are still in effect. 172 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) { 173 // TypeFlow asserted a specific object type. Value must have that type. 174 Node* bad_type_ctrl = nullptr; 175 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl); 176 bad_type_exit->control()->add_req(bad_type_ctrl); 177 } 178 179 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 180 return l; 181 } 182 183 // Helper routine which sets up elements of the initial parser map when 184 // performing a parse for on stack replacement. Add values into map. 185 // The only parameter contains the address of a interpreter arguments. 186 void Parse::load_interpreter_state(Node* osr_buf) { 187 int index; 188 int max_locals = jvms()->loc_size(); 189 int max_stack = jvms()->stk_size(); 190 191 192 // Mismatch between method and jvms can occur since map briefly held 193 // an OSR entry state (which takes up one RawPtr word). 194 assert(max_locals == method()->max_locals(), "sanity"); 195 assert(max_stack >= method()->max_stack(), "sanity"); 196 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 197 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 198 199 // Find the start block. 200 Block* osr_block = start_block(); 201 assert(osr_block->start() == osr_bci(), "sanity"); 202 203 // Set initial BCI. 204 set_parse_bci(osr_block->start()); 205 206 // Set initial stack depth. 207 set_sp(osr_block->start_sp()); 208 209 // Check bailouts. We currently do not perform on stack replacement 210 // of loops in catch blocks or loops which branch with a non-empty stack. 211 if (sp() != 0) { 212 C->record_method_not_compilable("OSR starts with non-empty stack"); 213 return; 214 } 215 // Do not OSR inside finally clauses: 216 if (osr_block->has_trap_at(osr_block->start())) { 217 assert(false, "OSR starts with an immediate trap"); 218 C->record_method_not_compilable("OSR starts with an immediate trap"); 219 return; 220 } 221 222 // Commute monitors from interpreter frame to compiler frame. 223 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 224 int mcnt = osr_block->flow()->monitor_count(); 225 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 226 for (index = 0; index < mcnt; index++) { 227 // Make a BoxLockNode for the monitor. 228 BoxLockNode* osr_box = new BoxLockNode(next_monitor()); 229 // Check for bailout after new BoxLockNode 230 if (failing()) { return; } 231 232 // This OSR locking region is unbalanced because it does not have Lock node: 233 // locking was done in Interpreter. 234 // This is similar to Coarsened case when Lock node is eliminated 235 // and as result the region is marked as Unbalanced. 236 237 // Emulate Coarsened state transition from Regular to Unbalanced. 238 osr_box->set_coarsened(); 239 osr_box->set_unbalanced(); 240 241 Node* box = _gvn.transform(osr_box); 242 243 // Displaced headers and locked objects are interleaved in the 244 // temp OSR buffer. We only copy the locked objects out here. 245 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 246 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf); 247 // Try and copy the displaced header to the BoxNode 248 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf); 249 250 251 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, MemNode::unordered); 252 253 // Build a bogus FastLockNode (no code will be generated) and push the 254 // monitor into our debug info. 255 const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock(); 256 map()->push_monitor(flock); 257 258 // If the lock is our method synchronization lock, tuck it away in 259 // _sync_lock for return and rethrow exit paths. 260 if (index == 0 && method()->is_synchronized()) { 261 _synch_lock = flock; 262 } 263 } 264 265 // Use the raw liveness computation to make sure that unexpected 266 // values don't propagate into the OSR frame. 267 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 268 if (!live_locals.is_valid()) { 269 // Degenerate or breakpointed method. 270 assert(false, "OSR in empty or breakpointed method"); 271 C->record_method_not_compilable("OSR in empty or breakpointed method"); 272 return; 273 } 274 275 // Extract the needed locals from the interpreter frame. 276 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 277 278 // find all the locals that the interpreter thinks contain live oops 279 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 280 for (index = 0; index < max_locals; index++) { 281 282 if (!live_locals.at(index)) { 283 continue; 284 } 285 286 const Type *type = osr_block->local_type_at(index); 287 288 if (type->isa_oopptr() != nullptr) { 289 290 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 291 // else we might load a stale oop if the MethodLiveness disagrees with the 292 // result of the interpreter. If the interpreter says it is dead we agree 293 // by making the value go to top. 294 // 295 296 if (!live_oops.at(index)) { 297 if (C->log() != nullptr) { 298 C->log()->elem("OSR_mismatch local_index='%d'",index); 299 } 300 set_local(index, null()); 301 // and ignore it for the loads 302 continue; 303 } 304 } 305 306 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 307 if (type == Type::TOP || type == Type::HALF) { 308 continue; 309 } 310 // If the type falls to bottom, then this must be a local that 311 // is mixing ints and oops or some such. Forcing it to top 312 // makes it go dead. 313 if (type == Type::BOTTOM) { 314 continue; 315 } 316 // Construct code to access the appropriate local. 317 BasicType bt = type->basic_type(); 318 if (type == TypePtr::NULL_PTR) { 319 // Ptr types are mixed together with T_ADDRESS but null is 320 // really for T_OBJECT types so correct it. 321 bt = T_OBJECT; 322 } 323 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf); 324 set_local(index, value); 325 } 326 327 // Extract the needed stack entries from the interpreter frame. 328 for (index = 0; index < sp(); index++) { 329 const Type *type = osr_block->stack_type_at(index); 330 if (type != Type::TOP) { 331 // Currently the compiler bails out when attempting to on stack replace 332 // at a bci with a non-empty stack. We should not reach here. 333 ShouldNotReachHere(); 334 } 335 } 336 337 // End the OSR migration 338 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 339 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 340 "OSR_migration_end", TypeRawPtr::BOTTOM, 341 osr_buf); 342 343 // Now that the interpreter state is loaded, make sure it will match 344 // at execution time what the compiler is expecting now: 345 SafePointNode* bad_type_exit = clone_map(); 346 bad_type_exit->set_control(new RegionNode(1)); 347 348 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 349 for (index = 0; index < max_locals; index++) { 350 if (stopped()) break; 351 Node* l = local(index); 352 if (l->is_top()) continue; // nothing here 353 const Type *type = osr_block->local_type_at(index); 354 if (type->isa_oopptr() != nullptr) { 355 if (!live_oops.at(index)) { 356 // skip type check for dead oops 357 continue; 358 } 359 } 360 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 361 // In our current system it's illegal for jsr addresses to be 362 // live into an OSR entry point because the compiler performs 363 // inlining of jsrs. ciTypeFlow has a bailout that detect this 364 // case and aborts the compile if addresses are live into an OSR 365 // entry point. Because of that we can assume that any address 366 // locals at the OSR entry point are dead. Method liveness 367 // isn't precise enough to figure out that they are dead in all 368 // cases so simply skip checking address locals all 369 // together. Any type check is guaranteed to fail since the 370 // interpreter type is the result of a load which might have any 371 // value and the expected type is a constant. 372 continue; 373 } 374 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 375 } 376 377 for (index = 0; index < sp(); index++) { 378 if (stopped()) break; 379 Node* l = stack(index); 380 if (l->is_top()) continue; // nothing here 381 const Type *type = osr_block->stack_type_at(index); 382 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 383 } 384 385 if (bad_type_exit->control()->req() > 1) { 386 // Build an uncommon trap here, if any inputs can be unexpected. 387 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 388 record_for_igvn(bad_type_exit->control()); 389 SafePointNode* types_are_good = map(); 390 set_map(bad_type_exit); 391 // The unexpected type happens because a new edge is active 392 // in the CFG, which typeflow had previously ignored. 393 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 394 // This x will be typed as Integer if notReached is not yet linked. 395 // It could also happen due to a problem in ciTypeFlow analysis. 396 uncommon_trap(Deoptimization::Reason_constraint, 397 Deoptimization::Action_reinterpret); 398 set_map(types_are_good); 399 } 400 } 401 402 //------------------------------Parse------------------------------------------ 403 // Main parser constructor. 404 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 405 : _exits(caller) 406 { 407 // Init some variables 408 _caller = caller; 409 _method = parse_method; 410 _expected_uses = expected_uses; 411 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 412 _wrote_final = false; 413 _wrote_volatile = false; 414 _wrote_stable = false; 415 _wrote_fields = false; 416 _alloc_with_final_or_stable = nullptr; 417 _block = nullptr; 418 _first_return = true; 419 _replaced_nodes_for_exceptions = false; 420 _new_idx = C->unique(); 421 DEBUG_ONLY(_entry_bci = UnknownBci); 422 DEBUG_ONLY(_block_count = -1); 423 DEBUG_ONLY(_blocks = (Block*)-1); 424 #ifndef PRODUCT 425 if (PrintCompilation || PrintOpto) { 426 // Make sure I have an inline tree, so I can print messages about it. 427 InlineTree::find_subtree_from_root(C->ilt(), caller, parse_method); 428 } 429 _max_switch_depth = 0; 430 _est_switch_depth = 0; 431 #endif 432 433 if (parse_method->has_reserved_stack_access()) { 434 C->set_has_reserved_stack_access(true); 435 } 436 437 if (parse_method->is_synchronized() || parse_method->has_monitor_bytecodes()) { 438 C->set_has_monitors(true); 439 } 440 441 if (parse_method->is_scoped()) { 442 C->set_has_scoped_access(true); 443 } 444 445 _iter.reset_to_method(method()); 446 C->set_has_loops(C->has_loops() || method()->has_loops()); 447 448 if (_expected_uses <= 0) { 449 _prof_factor = 1; 450 } else { 451 float prof_total = parse_method->interpreter_invocation_count(); 452 if (prof_total <= _expected_uses) { 453 _prof_factor = 1; 454 } else { 455 _prof_factor = _expected_uses / prof_total; 456 } 457 } 458 459 CompileLog* log = C->log(); 460 if (log != nullptr) { 461 log->begin_head("parse method='%d' uses='%f'", 462 log->identify(parse_method), expected_uses); 463 if (depth() == 1 && C->is_osr_compilation()) { 464 log->print(" osr_bci='%d'", C->entry_bci()); 465 } 466 log->stamp(); 467 log->end_head(); 468 } 469 470 // Accumulate deoptimization counts. 471 // (The range_check and store_check counts are checked elsewhere.) 472 ciMethodData* md = method()->method_data(); 473 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 474 uint md_count = md->trap_count(reason); 475 if (md_count != 0) { 476 if (md_count >= md->trap_count_limit()) { 477 md_count = md->trap_count_limit() + md->overflow_trap_count(); 478 } 479 uint total_count = C->trap_count(reason); 480 uint old_count = total_count; 481 total_count += md_count; 482 // Saturate the add if it overflows. 483 if (total_count < old_count || total_count < md_count) 484 total_count = (uint)-1; 485 C->set_trap_count(reason, total_count); 486 if (log != nullptr) 487 log->elem("observe trap='%s' count='%d' total='%d'", 488 Deoptimization::trap_reason_name(reason), 489 md_count, total_count); 490 } 491 } 492 // Accumulate total sum of decompilations, also. 493 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 494 495 if (log != nullptr && method()->has_exception_handlers()) { 496 log->elem("observe that='has_exception_handlers'"); 497 } 498 499 assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier"); 500 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 501 502 // Always register dependence if JVMTI is enabled, because 503 // either breakpoint setting or hotswapping of methods may 504 // cause deoptimization. 505 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 506 C->dependencies()->assert_evol_method(method()); 507 } 508 509 NOT_PRODUCT(methods_seen++); 510 511 // Do some special top-level things. 512 if (depth() == 1 && C->is_osr_compilation()) { 513 _tf = C->tf(); // the OSR entry type is different 514 _entry_bci = C->entry_bci(); 515 _flow = method()->get_osr_flow_analysis(osr_bci()); 516 } else { 517 _tf = TypeFunc::make(method()); 518 _entry_bci = InvocationEntryBci; 519 _flow = method()->get_flow_analysis(); 520 } 521 522 if (_flow->failing()) { 523 assert(false, "type flow analysis failed during parsing"); 524 C->record_method_not_compilable(_flow->failure_reason()); 525 #ifndef PRODUCT 526 if (PrintOpto && (Verbose || WizardMode)) { 527 if (is_osr_parse()) { 528 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 529 } else { 530 tty->print_cr("type flow bailout: %s", _flow->failure_reason()); 531 } 532 if (Verbose) { 533 method()->print(); 534 method()->print_codes(); 535 _flow->print(); 536 } 537 } 538 #endif 539 } 540 541 #ifdef ASSERT 542 if (depth() == 1) { 543 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 544 } else { 545 assert(!this->is_osr_parse(), "no recursive OSR"); 546 } 547 #endif 548 549 #ifndef PRODUCT 550 if (_flow->has_irreducible_entry()) { 551 C->set_parsed_irreducible_loop(true); 552 } 553 554 methods_parsed++; 555 // add method size here to guarantee that inlined methods are added too 556 if (CITime) 557 _total_bytes_compiled += method()->code_size(); 558 559 show_parse_info(); 560 #endif 561 562 if (failing()) { 563 if (log) log->done("parse"); 564 return; 565 } 566 567 gvn().transform(top()); 568 569 // Import the results of the ciTypeFlow. 570 init_blocks(); 571 572 // Merge point for all normal exits 573 build_exits(); 574 575 // Setup the initial JVM state map. 576 SafePointNode* entry_map = create_entry_map(); 577 578 // Check for bailouts during map initialization 579 if (failing() || entry_map == nullptr) { 580 if (log) log->done("parse"); 581 return; 582 } 583 584 Node_Notes* caller_nn = C->default_node_notes(); 585 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 586 if (DebugInlinedCalls || depth() == 1) { 587 C->set_default_node_notes(make_node_notes(caller_nn)); 588 } 589 590 if (is_osr_parse()) { 591 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 592 entry_map->set_req(TypeFunc::Parms+0, top()); 593 set_map(entry_map); 594 load_interpreter_state(osr_buf); 595 } else { 596 set_map(entry_map); 597 do_method_entry(); 598 } 599 600 if (depth() == 1 && !failing()) { 601 if (C->clinit_barrier_on_entry()) { 602 // Add check to deoptimize the nmethod once the holder class is fully initialized 603 clinit_deopt(); 604 } 605 } 606 607 // Check for bailouts during method entry. 608 if (failing()) { 609 if (log) log->done("parse"); 610 C->set_default_node_notes(caller_nn); 611 return; 612 } 613 614 entry_map = map(); // capture any changes performed by method setup code 615 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 616 617 // We begin parsing as if we have just encountered a jump to the 618 // method entry. 619 Block* entry_block = start_block(); 620 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 621 set_map_clone(entry_map); 622 merge_common(entry_block, entry_block->next_path_num()); 623 624 #ifndef PRODUCT 625 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 626 set_parse_histogram( parse_histogram_obj ); 627 #endif 628 629 // Parse all the basic blocks. 630 do_all_blocks(); 631 632 // Check for bailouts during conversion to graph 633 if (failing()) { 634 if (log) log->done("parse"); 635 return; 636 } 637 638 // Fix up all exiting control flow. 639 set_map(entry_map); 640 do_exits(); 641 642 // Only reset this now, to make sure that debug information emitted 643 // for exiting control flow still refers to the inlined method. 644 C->set_default_node_notes(caller_nn); 645 646 if (log) log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'", 647 C->unique(), C->live_nodes(), C->node_arena()->used()); 648 } 649 650 //---------------------------do_all_blocks------------------------------------- 651 void Parse::do_all_blocks() { 652 bool has_irreducible = flow()->has_irreducible_entry(); 653 654 // Walk over all blocks in Reverse Post-Order. 655 while (true) { 656 bool progress = false; 657 for (int rpo = 0; rpo < block_count(); rpo++) { 658 Block* block = rpo_at(rpo); 659 660 if (block->is_parsed()) continue; 661 662 if (!block->is_merged()) { 663 // Dead block, no state reaches this block 664 continue; 665 } 666 667 // Prepare to parse this block. 668 load_state_from(block); 669 670 if (stopped()) { 671 // Block is dead. 672 continue; 673 } 674 675 NOT_PRODUCT(blocks_parsed++); 676 677 progress = true; 678 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) { 679 // Not all preds have been parsed. We must build phis everywhere. 680 // (Note that dead locals do not get phis built, ever.) 681 ensure_phis_everywhere(); 682 683 if (block->is_SEL_head()) { 684 // Add predicate to single entry (not irreducible) loop head. 685 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 686 // Predicates may have been added after a dominating if 687 if (!block->has_predicates()) { 688 // Need correct bci for predicate. 689 // It is fine to set it here since do_one_block() will set it anyway. 690 set_parse_bci(block->start()); 691 add_parse_predicates(); 692 } 693 // Add new region for back branches. 694 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 695 RegionNode *r = new RegionNode(edges+1); 696 _gvn.set_type(r, Type::CONTROL); 697 record_for_igvn(r); 698 r->init_req(edges, control()); 699 set_control(r); 700 block->copy_irreducible_status_to(r, jvms()); 701 // Add new phis. 702 ensure_phis_everywhere(); 703 } 704 705 // Leave behind an undisturbed copy of the map, for future merges. 706 set_map(clone_map()); 707 } 708 709 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 710 // In the absence of irreducible loops, the Region and Phis 711 // associated with a merge that doesn't involve a backedge can 712 // be simplified now since the RPO parsing order guarantees 713 // that any path which was supposed to reach here has already 714 // been parsed or must be dead. 715 Node* c = control(); 716 Node* result = _gvn.transform(control()); 717 if (c != result && TraceOptoParse) { 718 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 719 } 720 if (result != top()) { 721 record_for_igvn(result); 722 } 723 } 724 725 // Parse the block. 726 do_one_block(); 727 728 // Check for bailouts. 729 if (failing()) return; 730 } 731 732 // with irreducible loops multiple passes might be necessary to parse everything 733 if (!has_irreducible || !progress) { 734 break; 735 } 736 } 737 738 #ifndef PRODUCT 739 blocks_seen += block_count(); 740 741 // Make sure there are no half-processed blocks remaining. 742 // Every remaining unprocessed block is dead and may be ignored now. 743 for (int rpo = 0; rpo < block_count(); rpo++) { 744 Block* block = rpo_at(rpo); 745 if (!block->is_parsed()) { 746 if (TraceOptoParse) { 747 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 748 } 749 assert(!block->is_merged(), "no half-processed blocks"); 750 } 751 } 752 #endif 753 } 754 755 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) { 756 switch (bt) { 757 case T_BYTE: 758 v = gvn->transform(new LShiftINode(v, gvn->intcon(24))); 759 v = gvn->transform(new RShiftINode(v, gvn->intcon(24))); 760 break; 761 case T_SHORT: 762 v = gvn->transform(new LShiftINode(v, gvn->intcon(16))); 763 v = gvn->transform(new RShiftINode(v, gvn->intcon(16))); 764 break; 765 case T_CHAR: 766 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF))); 767 break; 768 case T_BOOLEAN: 769 v = gvn->transform(new AndINode(v, gvn->intcon(0x1))); 770 break; 771 default: 772 break; 773 } 774 return v; 775 } 776 777 //-------------------------------build_exits---------------------------------- 778 // Build normal and exceptional exit merge points. 779 void Parse::build_exits() { 780 // make a clone of caller to prevent sharing of side-effects 781 _exits.set_map(_exits.clone_map()); 782 _exits.clean_stack(_exits.sp()); 783 _exits.sync_jvms(); 784 785 RegionNode* region = new RegionNode(1); 786 record_for_igvn(region); 787 gvn().set_type_bottom(region); 788 _exits.set_control(region); 789 790 // Note: iophi and memphi are not transformed until do_exits. 791 Node* iophi = new PhiNode(region, Type::ABIO); 792 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 793 gvn().set_type_bottom(iophi); 794 gvn().set_type_bottom(memphi); 795 _exits.set_i_o(iophi); 796 _exits.set_all_memory(memphi); 797 798 // Add a return value to the exit state. (Do not push it yet.) 799 if (tf()->range()->cnt() > TypeFunc::Parms) { 800 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 801 if (ret_type->isa_int()) { 802 BasicType ret_bt = method()->return_type()->basic_type(); 803 if (ret_bt == T_BOOLEAN || 804 ret_bt == T_CHAR || 805 ret_bt == T_BYTE || 806 ret_bt == T_SHORT) { 807 ret_type = TypeInt::INT; 808 } 809 } 810 811 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 812 // becomes loaded during the subsequent parsing, the loaded and unloaded 813 // types will not join when we transform and push in do_exits(). 814 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 815 if (ret_oop_type && !ret_oop_type->is_loaded()) { 816 ret_type = TypeOopPtr::BOTTOM; 817 } 818 int ret_size = type2size[ret_type->basic_type()]; 819 Node* ret_phi = new PhiNode(region, ret_type); 820 gvn().set_type_bottom(ret_phi); 821 _exits.ensure_stack(ret_size); 822 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 823 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 824 _exits.set_argument(0, ret_phi); // here is where the parser finds it 825 // Note: ret_phi is not yet pushed, until do_exits. 826 } 827 } 828 829 830 //----------------------------build_start_state------------------------------- 831 // Construct a state which contains only the incoming arguments from an 832 // unknown caller. The method & bci will be null & InvocationEntryBci. 833 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 834 int arg_size = tf->domain()->cnt(); 835 int max_size = MAX2(arg_size, (int)tf->range()->cnt()); 836 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 837 SafePointNode* map = new SafePointNode(max_size, jvms); 838 record_for_igvn(map); 839 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 840 Node_Notes* old_nn = default_node_notes(); 841 if (old_nn != nullptr && has_method()) { 842 Node_Notes* entry_nn = old_nn->clone(this); 843 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 844 entry_jvms->set_offsets(0); 845 entry_jvms->set_bci(entry_bci()); 846 entry_nn->set_jvms(entry_jvms); 847 set_default_node_notes(entry_nn); 848 } 849 uint i; 850 for (i = 0; i < (uint)arg_size; i++) { 851 Node* parm = initial_gvn()->transform(new ParmNode(start, i)); 852 map->init_req(i, parm); 853 // Record all these guys for later GVN. 854 record_for_igvn(parm); 855 } 856 for (; i < map->req(); i++) { 857 map->init_req(i, top()); 858 } 859 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 860 set_default_node_notes(old_nn); 861 jvms->set_map(map); 862 return jvms; 863 } 864 865 //-----------------------------make_node_notes--------------------------------- 866 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 867 if (caller_nn == nullptr) return nullptr; 868 Node_Notes* nn = caller_nn->clone(C); 869 JVMState* caller_jvms = nn->jvms(); 870 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 871 jvms->set_offsets(0); 872 jvms->set_bci(_entry_bci); 873 nn->set_jvms(jvms); 874 return nn; 875 } 876 877 878 //--------------------------return_values-------------------------------------- 879 void Compile::return_values(JVMState* jvms) { 880 GraphKit kit(jvms); 881 Node* ret = new ReturnNode(TypeFunc::Parms, 882 kit.control(), 883 kit.i_o(), 884 kit.reset_memory(), 885 kit.frameptr(), 886 kit.returnadr()); 887 // Add zero or 1 return values 888 int ret_size = tf()->range()->cnt() - TypeFunc::Parms; 889 if (ret_size > 0) { 890 kit.inc_sp(-ret_size); // pop the return value(s) 891 kit.sync_jvms(); 892 ret->add_req(kit.argument(0)); 893 // Note: The second dummy edge is not needed by a ReturnNode. 894 } 895 // bind it to root 896 root()->add_req(ret); 897 record_for_igvn(ret); 898 initial_gvn()->transform(ret); 899 } 900 901 //------------------------rethrow_exceptions----------------------------------- 902 // Bind all exception states in the list into a single RethrowNode. 903 void Compile::rethrow_exceptions(JVMState* jvms) { 904 GraphKit kit(jvms); 905 if (!kit.has_exceptions()) return; // nothing to generate 906 // Load my combined exception state into the kit, with all phis transformed: 907 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 908 Node* ex_oop = kit.use_exception_state(ex_map); 909 RethrowNode* exit = new RethrowNode(kit.control(), 910 kit.i_o(), kit.reset_memory(), 911 kit.frameptr(), kit.returnadr(), 912 // like a return but with exception input 913 ex_oop); 914 // bind to root 915 root()->add_req(exit); 916 record_for_igvn(exit); 917 initial_gvn()->transform(exit); 918 } 919 920 //---------------------------do_exceptions------------------------------------- 921 // Process exceptions arising from the current bytecode. 922 // Send caught exceptions to the proper handler within this method. 923 // Unhandled exceptions feed into _exit. 924 void Parse::do_exceptions() { 925 if (!has_exceptions()) return; 926 927 if (failing()) { 928 // Pop them all off and throw them away. 929 while (pop_exception_state() != nullptr) ; 930 return; 931 } 932 933 PreserveJVMState pjvms(this, false); 934 935 SafePointNode* ex_map; 936 while ((ex_map = pop_exception_state()) != nullptr) { 937 if (!method()->has_exception_handlers()) { 938 // Common case: Transfer control outward. 939 // Doing it this early allows the exceptions to common up 940 // even between adjacent method calls. 941 throw_to_exit(ex_map); 942 } else { 943 // Have to look at the exception first. 944 assert(stopped(), "catch_inline_exceptions trashes the map"); 945 catch_inline_exceptions(ex_map); 946 stop_and_kill_map(); // we used up this exception state; kill it 947 } 948 } 949 950 // We now return to our regularly scheduled program: 951 } 952 953 //---------------------------throw_to_exit------------------------------------- 954 // Merge the given map into an exception exit from this method. 955 // The exception exit will handle any unlocking of receiver. 956 // The ex_oop must be saved within the ex_map, unlike merge_exception. 957 void Parse::throw_to_exit(SafePointNode* ex_map) { 958 // Pop the JVMS to (a copy of) the caller. 959 GraphKit caller; 960 caller.set_map_clone(_caller->map()); 961 caller.set_bci(_caller->bci()); 962 caller.set_sp(_caller->sp()); 963 // Copy out the standard machine state: 964 for (uint i = 0; i < TypeFunc::Parms; i++) { 965 caller.map()->set_req(i, ex_map->in(i)); 966 } 967 if (ex_map->has_replaced_nodes()) { 968 _replaced_nodes_for_exceptions = true; 969 } 970 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 971 // ...and the exception: 972 Node* ex_oop = saved_ex_oop(ex_map); 973 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 974 // Finally, collect the new exception state in my exits: 975 _exits.add_exception_state(caller_ex_map); 976 } 977 978 //------------------------------do_exits--------------------------------------- 979 void Parse::do_exits() { 980 set_parse_bci(InvocationEntryBci); 981 982 // Now peephole on the return bits 983 Node* region = _exits.control(); 984 _exits.set_control(gvn().transform(region)); 985 986 Node* iophi = _exits.i_o(); 987 _exits.set_i_o(gvn().transform(iophi)); 988 989 // Figure out if we need to emit the trailing barrier. The barrier is only 990 // needed in the constructors, and only in three cases: 991 // 992 // 1. The constructor wrote a final or a @Stable field. All these 993 // initializations must be ordered before any code after the constructor 994 // publishes the reference to the newly constructed object. Rather 995 // than wait for the publication, we simply block the writes here. 996 // Rather than put a barrier on only those writes which are required 997 // to complete, we force all writes to complete. 998 // 999 // 2. Experimental VM option is used to force the barrier if any field 1000 // was written out in the constructor. 1001 // 1002 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64), 1003 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that 1004 // MemBarVolatile is used before volatile load instead of after volatile 1005 // store, so there's no barrier after the store. 1006 // We want to guarantee the same behavior as on platforms with total store 1007 // order, although this is not required by the Java memory model. 1008 // In this case, we want to enforce visibility of volatile field 1009 // initializations which are performed in constructors. 1010 // So as with finals, we add a barrier here. 1011 // 1012 // "All bets are off" unless the first publication occurs after a 1013 // normal return from the constructor. We do not attempt to detect 1014 // such unusual early publications. But no barrier is needed on 1015 // exceptional returns, since they cannot publish normally. 1016 // 1017 if (method()->is_object_initializer() && 1018 (wrote_final() || wrote_stable() || 1019 (AlwaysSafeConstructors && wrote_fields()) || 1020 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) { 1021 Node* recorded_alloc = alloc_with_final_or_stable(); 1022 _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease, 1023 recorded_alloc); 1024 1025 // If Memory barrier is created for final fields write 1026 // and allocation node does not escape the initialize method, 1027 // then barrier introduced by allocation node can be removed. 1028 if (DoEscapeAnalysis && (recorded_alloc != nullptr)) { 1029 AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc); 1030 alloc->compute_MemBar_redundancy(method()); 1031 } 1032 if (PrintOpto && (Verbose || WizardMode)) { 1033 method()->print_name(); 1034 tty->print_cr(" writes finals/@Stable and needs a memory barrier"); 1035 } 1036 } 1037 1038 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1039 // transform each slice of the original memphi: 1040 mms.set_memory(_gvn.transform(mms.memory())); 1041 } 1042 // Clean up input MergeMems created by transforming the slices 1043 _gvn.transform(_exits.merged_memory()); 1044 1045 if (tf()->range()->cnt() > TypeFunc::Parms) { 1046 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 1047 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1048 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1049 // If the type we set for the ret_phi in build_exits() is too optimistic and 1050 // the ret_phi is top now, there's an extremely small chance that it may be due to class 1051 // loading. It could also be due to an error, so mark this method as not compilable because 1052 // otherwise this could lead to an infinite compile loop. 1053 // In any case, this code path is rarely (and never in my testing) reached. 1054 C->record_method_not_compilable("Can't determine return type."); 1055 return; 1056 } 1057 if (ret_type->isa_int()) { 1058 BasicType ret_bt = method()->return_type()->basic_type(); 1059 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn); 1060 } 1061 _exits.push_node(ret_type->basic_type(), ret_phi); 1062 } 1063 1064 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1065 1066 // Unlock along the exceptional paths. 1067 // This is done late so that we can common up equivalent exceptions 1068 // (e.g., null checks) arising from multiple points within this method. 1069 // See GraphKit::add_exception_state, which performs the commoning. 1070 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1071 1072 // record exit from a method if compiled while Dtrace is turned on. 1073 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1074 // First move the exception list out of _exits: 1075 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1076 SafePointNode* normal_map = kit.map(); // keep this guy safe 1077 // Now re-collect the exceptions into _exits: 1078 SafePointNode* ex_map; 1079 while ((ex_map = kit.pop_exception_state()) != nullptr) { 1080 Node* ex_oop = kit.use_exception_state(ex_map); 1081 // Force the exiting JVM state to have this method at InvocationEntryBci. 1082 // The exiting JVM state is otherwise a copy of the calling JVMS. 1083 JVMState* caller = kit.jvms(); 1084 JVMState* ex_jvms = caller->clone_shallow(C); 1085 ex_jvms->bind_map(kit.clone_map()); 1086 ex_jvms->set_bci( InvocationEntryBci); 1087 kit.set_jvms(ex_jvms); 1088 if (do_synch) { 1089 // Add on the synchronized-method box/object combo 1090 kit.map()->push_monitor(_synch_lock); 1091 // Unlock! 1092 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1093 } 1094 if (C->env()->dtrace_method_probes()) { 1095 kit.make_dtrace_method_exit(method()); 1096 } 1097 if (_replaced_nodes_for_exceptions) { 1098 kit.map()->apply_replaced_nodes(_new_idx); 1099 } 1100 // Done with exception-path processing. 1101 ex_map = kit.make_exception_state(ex_oop); 1102 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1103 // Pop the last vestige of this method: 1104 caller->clone_shallow(C)->bind_map(ex_map); 1105 _exits.push_exception_state(ex_map); 1106 } 1107 assert(_exits.map() == normal_map, "keep the same return state"); 1108 } 1109 1110 { 1111 // Capture very early exceptions (receiver null checks) from caller JVMS 1112 GraphKit caller(_caller); 1113 SafePointNode* ex_map; 1114 while ((ex_map = caller.pop_exception_state()) != nullptr) { 1115 _exits.add_exception_state(ex_map); 1116 } 1117 } 1118 _exits.map()->apply_replaced_nodes(_new_idx); 1119 } 1120 1121 //-----------------------------create_entry_map------------------------------- 1122 // Initialize our parser map to contain the types at method entry. 1123 // For OSR, the map contains a single RawPtr parameter. 1124 // Initial monitor locking for sync. methods is performed by do_method_entry. 1125 SafePointNode* Parse::create_entry_map() { 1126 // Check for really stupid bail-out cases. 1127 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1128 if (len >= 32760) { 1129 // Bailout expected, this is a very rare edge case. 1130 C->record_method_not_compilable("too many local variables"); 1131 return nullptr; 1132 } 1133 1134 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1135 _caller->map()->delete_replaced_nodes(); 1136 1137 // If this is an inlined method, we may have to do a receiver null check. 1138 if (_caller->has_method() && is_normal_parse()) { 1139 GraphKit kit(_caller); 1140 if (!method()->is_static()) { 1141 kit.null_check_receiver_before_call(method()); 1142 } else if (C->do_clinit_barriers() && C->needs_clinit_barrier(method()->holder(), _caller->method())) { 1143 ciMethod* declared_method = kit.method()->get_method_at_bci(kit.bci()); 1144 const int nargs = declared_method->arg_size(); 1145 kit.inc_sp(nargs); 1146 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces)); 1147 kit.guard_klass_is_initialized(holder); 1148 kit.dec_sp(nargs); 1149 } 1150 _caller = kit.transfer_exceptions_into_jvms(); 1151 if (kit.stopped()) { 1152 _exits.add_exception_states_from(_caller); 1153 _exits.set_jvms(_caller); 1154 return nullptr; 1155 } 1156 } 1157 1158 assert(method() != nullptr, "parser must have a method"); 1159 1160 // Create an initial safepoint to hold JVM state during parsing 1161 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr); 1162 set_map(new SafePointNode(len, jvms)); 1163 jvms->set_map(map()); 1164 record_for_igvn(map()); 1165 assert(jvms->endoff() == len, "correct jvms sizing"); 1166 1167 SafePointNode* inmap = _caller->map(); 1168 assert(inmap != nullptr, "must have inmap"); 1169 // In case of null check on receiver above 1170 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1171 1172 uint i; 1173 1174 // Pass thru the predefined input parameters. 1175 for (i = 0; i < TypeFunc::Parms; i++) { 1176 map()->init_req(i, inmap->in(i)); 1177 } 1178 1179 if (depth() == 1) { 1180 assert(map()->memory()->Opcode() == Op_Parm, ""); 1181 // Insert the memory aliasing node 1182 set_all_memory(reset_memory()); 1183 } 1184 assert(merged_memory(), ""); 1185 1186 // Now add the locals which are initially bound to arguments: 1187 uint arg_size = tf()->domain()->cnt(); 1188 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1189 for (i = TypeFunc::Parms; i < arg_size; i++) { 1190 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1191 } 1192 1193 // Clear out the rest of the map (locals and stack) 1194 for (i = arg_size; i < len; i++) { 1195 map()->init_req(i, top()); 1196 } 1197 1198 SafePointNode* entry_map = stop(); 1199 return entry_map; 1200 } 1201 1202 //-----------------------------do_method_entry-------------------------------- 1203 // Emit any code needed in the pseudo-block before BCI zero. 1204 // The main thing to do is lock the receiver of a synchronized method. 1205 void Parse::do_method_entry() { 1206 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1207 set_sp(0); // Java Stack Pointer 1208 1209 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1210 1211 if (C->env()->dtrace_method_probes()) { 1212 make_dtrace_method_entry(method()); 1213 } 1214 1215 install_on_method_entry_runtime_upcalls(method()); 1216 1217 #ifdef ASSERT 1218 // Narrow receiver type when it is too broad for the method being parsed. 1219 if (!method()->is_static()) { 1220 ciInstanceKlass* callee_holder = method()->holder(); 1221 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces); 1222 1223 Node* receiver_obj = local(0); 1224 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr(); 1225 1226 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) { 1227 // Receiver should always be a subtype of callee holder. 1228 // But, since C2 type system doesn't properly track interfaces, 1229 // the invariant can't be expressed in the type system for default methods. 1230 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I. 1231 assert(callee_holder->is_interface(), "missing subtype check"); 1232 1233 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure. 1234 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces)); 1235 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass); 1236 assert(!stopped(), "not a subtype"); 1237 1238 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check")); 1239 C->root()->add_req(halt); 1240 } 1241 } 1242 #endif // ASSERT 1243 1244 // If the method is synchronized, we need to construct a lock node, attach 1245 // it to the Start node, and pin it there. 1246 if (method()->is_synchronized()) { 1247 // Insert a FastLockNode right after the Start which takes as arguments 1248 // the current thread pointer, the "this" pointer & the address of the 1249 // stack slot pair used for the lock. The "this" pointer is a projection 1250 // off the start node, but the locking spot has to be constructed by 1251 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1252 // becomes the second argument to the FastLockNode call. The 1253 // FastLockNode becomes the new control parent to pin it to the start. 1254 1255 // Setup Object Pointer 1256 Node *lock_obj = nullptr; 1257 if (method()->is_static()) { 1258 ciInstance* mirror = _method->holder()->java_mirror(); 1259 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1260 lock_obj = makecon(t_lock); 1261 } else { // Else pass the "this" pointer, 1262 lock_obj = local(0); // which is Parm0 from StartNode 1263 } 1264 // Clear out dead values from the debug info. 1265 kill_dead_locals(); 1266 // Build the FastLockNode 1267 _synch_lock = shared_lock(lock_obj); 1268 // Check for bailout in shared_lock 1269 if (failing()) { return; } 1270 } 1271 1272 // Feed profiling data for parameters to the type system so it can 1273 // propagate it as speculative types 1274 record_profiled_parameters_for_speculation(); 1275 } 1276 1277 //------------------------------init_blocks------------------------------------ 1278 // Initialize our parser map to contain the types/monitors at method entry. 1279 void Parse::init_blocks() { 1280 // Create the blocks. 1281 _block_count = flow()->block_count(); 1282 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1283 1284 // Initialize the structs. 1285 for (int rpo = 0; rpo < block_count(); rpo++) { 1286 Block* block = rpo_at(rpo); 1287 new(block) Block(this, rpo); 1288 } 1289 1290 // Collect predecessor and successor information. 1291 for (int rpo = 0; rpo < block_count(); rpo++) { 1292 Block* block = rpo_at(rpo); 1293 block->init_graph(this); 1294 } 1295 } 1296 1297 //-------------------------------init_node------------------------------------- 1298 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() { 1299 _flow = outer->flow()->rpo_at(rpo); 1300 _pred_count = 0; 1301 _preds_parsed = 0; 1302 _count = 0; 1303 _is_parsed = false; 1304 _is_handler = false; 1305 _has_merged_backedge = false; 1306 _start_map = nullptr; 1307 _has_predicates = false; 1308 _num_successors = 0; 1309 _all_successors = 0; 1310 _successors = nullptr; 1311 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1312 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1313 assert(_live_locals.size() == 0, "sanity"); 1314 1315 // entry point has additional predecessor 1316 if (flow()->is_start()) _pred_count++; 1317 assert(flow()->is_start() == (this == outer->start_block()), ""); 1318 } 1319 1320 //-------------------------------init_graph------------------------------------ 1321 void Parse::Block::init_graph(Parse* outer) { 1322 // Create the successor list for this parser block. 1323 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1324 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1325 int ns = tfs->length(); 1326 int ne = tfe->length(); 1327 _num_successors = ns; 1328 _all_successors = ns+ne; 1329 _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1330 int p = 0; 1331 for (int i = 0; i < ns+ne; i++) { 1332 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1333 Block* block2 = outer->rpo_at(tf2->rpo()); 1334 _successors[i] = block2; 1335 1336 // Accumulate pred info for the other block, too. 1337 // Note: We also need to set _pred_count for exception blocks since they could 1338 // also have normal predecessors (reached without athrow by an explicit jump). 1339 // This also means that next_path_num can be called along exception paths. 1340 block2->_pred_count++; 1341 if (i >= ns) { 1342 block2->_is_handler = true; 1343 } 1344 1345 #ifdef ASSERT 1346 // A block's successors must be distinguishable by BCI. 1347 // That is, no bytecode is allowed to branch to two different 1348 // clones of the same code location. 1349 for (int j = 0; j < i; j++) { 1350 Block* block1 = _successors[j]; 1351 if (block1 == block2) continue; // duplicates are OK 1352 assert(block1->start() != block2->start(), "successors have unique bcis"); 1353 } 1354 #endif 1355 } 1356 } 1357 1358 //---------------------------successor_for_bci--------------------------------- 1359 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1360 for (int i = 0; i < all_successors(); i++) { 1361 Block* block2 = successor_at(i); 1362 if (block2->start() == bci) return block2; 1363 } 1364 // We can actually reach here if ciTypeFlow traps out a block 1365 // due to an unloaded class, and concurrently with compilation the 1366 // class is then loaded, so that a later phase of the parser is 1367 // able to see more of the bytecode CFG. Or, the flow pass and 1368 // the parser can have a minor difference of opinion about executability 1369 // of bytecodes. For example, "obj.field = null" is executable even 1370 // if the field's type is an unloaded class; the flow pass used to 1371 // make a trap for such code. 1372 return nullptr; 1373 } 1374 1375 1376 //-----------------------------stack_type_at----------------------------------- 1377 const Type* Parse::Block::stack_type_at(int i) const { 1378 return get_type(flow()->stack_type_at(i)); 1379 } 1380 1381 1382 //-----------------------------local_type_at----------------------------------- 1383 const Type* Parse::Block::local_type_at(int i) const { 1384 // Make dead locals fall to bottom. 1385 if (_live_locals.size() == 0) { 1386 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1387 // This bitmap can be zero length if we saw a breakpoint. 1388 // In such cases, pretend they are all live. 1389 ((Block*)this)->_live_locals = live_locals; 1390 } 1391 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1392 return Type::BOTTOM; 1393 1394 return get_type(flow()->local_type_at(i)); 1395 } 1396 1397 1398 #ifndef PRODUCT 1399 1400 //----------------------------name_for_bc-------------------------------------- 1401 // helper method for BytecodeParseHistogram 1402 static const char* name_for_bc(int i) { 1403 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1404 } 1405 1406 //----------------------------BytecodeParseHistogram------------------------------------ 1407 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1408 _parser = p; 1409 _compiler = c; 1410 if( ! _initialized ) { _initialized = true; reset(); } 1411 } 1412 1413 //----------------------------current_count------------------------------------ 1414 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1415 switch( bph_type ) { 1416 case BPH_transforms: { return _parser->gvn().made_progress(); } 1417 case BPH_values: { return _parser->gvn().made_new_values(); } 1418 default: { ShouldNotReachHere(); return 0; } 1419 } 1420 } 1421 1422 //----------------------------initialized-------------------------------------- 1423 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1424 1425 //----------------------------reset-------------------------------------------- 1426 void Parse::BytecodeParseHistogram::reset() { 1427 int i = Bytecodes::number_of_codes; 1428 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1429 } 1430 1431 //----------------------------set_initial_state-------------------------------- 1432 // Record info when starting to parse one bytecode 1433 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1434 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1435 _initial_bytecode = bc; 1436 _initial_node_count = _compiler->unique(); 1437 _initial_transforms = current_count(BPH_transforms); 1438 _initial_values = current_count(BPH_values); 1439 } 1440 } 1441 1442 //----------------------------record_change-------------------------------- 1443 // Record results of parsing one bytecode 1444 void Parse::BytecodeParseHistogram::record_change() { 1445 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1446 ++_bytecodes_parsed[_initial_bytecode]; 1447 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1448 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1449 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1450 } 1451 } 1452 1453 1454 //----------------------------print-------------------------------------------- 1455 void Parse::BytecodeParseHistogram::print(float cutoff) { 1456 ResourceMark rm; 1457 // print profile 1458 int total = 0; 1459 int i = 0; 1460 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1461 int abs_sum = 0; 1462 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1463 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1464 if( total == 0 ) { return; } 1465 tty->cr(); 1466 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1467 tty->print_cr("relative: percentage contribution to compiled nodes"); 1468 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1469 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1470 tty->print_cr("transforms: Average amount of transform progress per bytecode compiled"); 1471 tty->print_cr("values : Average number of node values improved per bytecode"); 1472 tty->print_cr("name : Bytecode name"); 1473 tty->cr(); 1474 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1475 tty->print_cr("----------------------------------------------------------------------"); 1476 while (--i > 0) { 1477 int abs = _bytecodes_parsed[i]; 1478 float rel = abs * 100.0F / total; 1479 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1480 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1481 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1482 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1483 if (cutoff <= rel) { 1484 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1485 abs_sum += abs; 1486 } 1487 } 1488 tty->print_cr("----------------------------------------------------------------------"); 1489 float rel_sum = abs_sum * 100.0F / total; 1490 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1491 tty->print_cr("----------------------------------------------------------------------"); 1492 tty->cr(); 1493 } 1494 #endif 1495 1496 //----------------------------load_state_from---------------------------------- 1497 // Load block/map/sp. But not do not touch iter/bci. 1498 void Parse::load_state_from(Block* block) { 1499 set_block(block); 1500 // load the block's JVM state: 1501 set_map(block->start_map()); 1502 set_sp( block->start_sp()); 1503 } 1504 1505 1506 //-----------------------------record_state------------------------------------ 1507 void Parse::Block::record_state(Parse* p) { 1508 assert(!is_merged(), "can only record state once, on 1st inflow"); 1509 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1510 set_start_map(p->stop()); 1511 } 1512 1513 1514 //------------------------------do_one_block----------------------------------- 1515 void Parse::do_one_block() { 1516 if (TraceOptoParse) { 1517 Block *b = block(); 1518 int ns = b->num_successors(); 1519 int nt = b->all_successors(); 1520 1521 tty->print("Parsing block #%d at bci [%d,%d), successors:", 1522 block()->rpo(), block()->start(), block()->limit()); 1523 for (int i = 0; i < nt; i++) { 1524 tty->print((( i < ns) ? " %d" : " %d(exception block)"), b->successor_at(i)->rpo()); 1525 } 1526 if (b->is_loop_head()) { 1527 tty->print(" loop head"); 1528 } 1529 if (b->is_irreducible_loop_entry()) { 1530 tty->print(" irreducible"); 1531 } 1532 tty->cr(); 1533 } 1534 1535 assert(block()->is_merged(), "must be merged before being parsed"); 1536 block()->mark_parsed(); 1537 1538 // Set iterator to start of block. 1539 iter().reset_to_bci(block()->start()); 1540 1541 if (ProfileExceptionHandlers && block()->is_handler()) { 1542 ciMethodData* methodData = method()->method_data(); 1543 if (methodData->is_mature()) { 1544 ciBitData data = methodData->exception_handler_bci_to_data(block()->start()); 1545 if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) { 1546 // dead catch block 1547 // Emit an uncommon trap instead of processing the block. 1548 set_parse_bci(block()->start()); 1549 uncommon_trap(Deoptimization::Reason_unreached, 1550 Deoptimization::Action_reinterpret, 1551 nullptr, "dead catch block"); 1552 return; 1553 } 1554 } 1555 } 1556 1557 CompileLog* log = C->log(); 1558 1559 // Parse bytecodes 1560 while (!stopped() && !failing()) { 1561 iter().next(); 1562 1563 // Learn the current bci from the iterator: 1564 set_parse_bci(iter().cur_bci()); 1565 1566 if (bci() == block()->limit()) { 1567 // Do not walk into the next block until directed by do_all_blocks. 1568 merge(bci()); 1569 break; 1570 } 1571 assert(bci() < block()->limit(), "bci still in block"); 1572 1573 if (log != nullptr) { 1574 // Output an optional context marker, to help place actions 1575 // that occur during parsing of this BC. If there is no log 1576 // output until the next context string, this context string 1577 // will be silently ignored. 1578 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1579 } 1580 1581 if (block()->has_trap_at(bci())) { 1582 // We must respect the flow pass's traps, because it will refuse 1583 // to produce successors for trapping blocks. 1584 int trap_index = block()->flow()->trap_index(); 1585 assert(trap_index != 0, "trap index must be valid"); 1586 uncommon_trap(trap_index); 1587 break; 1588 } 1589 1590 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1591 1592 #ifdef ASSERT 1593 int pre_bc_sp = sp(); 1594 int inputs, depth; 1595 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1596 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1597 #endif //ASSERT 1598 1599 do_one_bytecode(); 1600 if (failing()) return; 1601 1602 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1603 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1604 1605 do_exceptions(); 1606 1607 NOT_PRODUCT( parse_histogram()->record_change(); ); 1608 1609 if (log != nullptr) 1610 log->clear_context(); // skip marker if nothing was printed 1611 1612 // Fall into next bytecode. Each bytecode normally has 1 sequential 1613 // successor which is typically made ready by visiting this bytecode. 1614 // If the successor has several predecessors, then it is a merge 1615 // point, starts a new basic block, and is handled like other basic blocks. 1616 } 1617 } 1618 1619 1620 //------------------------------merge------------------------------------------ 1621 void Parse::set_parse_bci(int bci) { 1622 set_bci(bci); 1623 Node_Notes* nn = C->default_node_notes(); 1624 if (nn == nullptr) return; 1625 1626 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1627 if (!DebugInlinedCalls && depth() > 1) { 1628 return; 1629 } 1630 1631 // Update the JVMS annotation, if present. 1632 JVMState* jvms = nn->jvms(); 1633 if (jvms != nullptr && jvms->bci() != bci) { 1634 // Update the JVMS. 1635 jvms = jvms->clone_shallow(C); 1636 jvms->set_bci(bci); 1637 nn->set_jvms(jvms); 1638 } 1639 } 1640 1641 //------------------------------merge------------------------------------------ 1642 // Merge the current mapping into the basic block starting at bci 1643 void Parse::merge(int target_bci) { 1644 Block* target = successor_for_bci(target_bci); 1645 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1646 assert(!target->is_ready(), "our arrival must be expected"); 1647 int pnum = target->next_path_num(); 1648 merge_common(target, pnum); 1649 } 1650 1651 //-------------------------merge_new_path-------------------------------------- 1652 // Merge the current mapping into the basic block, using a new path 1653 void Parse::merge_new_path(int target_bci) { 1654 Block* target = successor_for_bci(target_bci); 1655 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1656 assert(!target->is_ready(), "new path into frozen graph"); 1657 int pnum = target->add_new_path(); 1658 merge_common(target, pnum); 1659 } 1660 1661 //-------------------------merge_exception------------------------------------- 1662 // Merge the current mapping into the basic block starting at bci 1663 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1664 void Parse::merge_exception(int target_bci) { 1665 #ifdef ASSERT 1666 if (target_bci <= bci()) { 1667 C->set_exception_backedge(); 1668 } 1669 #endif 1670 assert(sp() == 1, "must have only the throw exception on the stack"); 1671 Block* target = successor_for_bci(target_bci); 1672 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1673 assert(target->is_handler(), "exceptions are handled by special blocks"); 1674 int pnum = target->add_new_path(); 1675 merge_common(target, pnum); 1676 } 1677 1678 //--------------------handle_missing_successor--------------------------------- 1679 void Parse::handle_missing_successor(int target_bci) { 1680 #ifndef PRODUCT 1681 Block* b = block(); 1682 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1683 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1684 #endif 1685 ShouldNotReachHere(); 1686 } 1687 1688 //--------------------------merge_common--------------------------------------- 1689 void Parse::merge_common(Parse::Block* target, int pnum) { 1690 if (TraceOptoParse) { 1691 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1692 } 1693 1694 // Zap extra stack slots to top 1695 assert(sp() == target->start_sp(), ""); 1696 clean_stack(sp()); 1697 1698 if (!target->is_merged()) { // No prior mapping at this bci 1699 if (TraceOptoParse) { tty->print(" with empty state"); } 1700 1701 // If this path is dead, do not bother capturing it as a merge. 1702 // It is "as if" we had 1 fewer predecessors from the beginning. 1703 if (stopped()) { 1704 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1705 return; 1706 } 1707 1708 // Make a region if we know there are multiple or unpredictable inputs. 1709 // (Also, if this is a plain fall-through, we might see another region, 1710 // which must not be allowed into this block's map.) 1711 if (pnum > PhiNode::Input // Known multiple inputs. 1712 || target->is_handler() // These have unpredictable inputs. 1713 || target->is_loop_head() // Known multiple inputs 1714 || control()->is_Region()) { // We must hide this guy. 1715 1716 int current_bci = bci(); 1717 set_parse_bci(target->start()); // Set target bci 1718 if (target->is_SEL_head()) { 1719 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1720 if (target->start() == 0) { 1721 // Add Parse Predicates for the special case when 1722 // there are backbranches to the method entry. 1723 add_parse_predicates(); 1724 } 1725 } 1726 // Add a Region to start the new basic block. Phis will be added 1727 // later lazily. 1728 int edges = target->pred_count(); 1729 if (edges < pnum) edges = pnum; // might be a new path! 1730 RegionNode *r = new RegionNode(edges+1); 1731 gvn().set_type(r, Type::CONTROL); 1732 record_for_igvn(r); 1733 // zap all inputs to null for debugging (done in Node(uint) constructor) 1734 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); } 1735 r->init_req(pnum, control()); 1736 set_control(r); 1737 target->copy_irreducible_status_to(r, jvms()); 1738 set_parse_bci(current_bci); // Restore bci 1739 } 1740 1741 // Convert the existing Parser mapping into a mapping at this bci. 1742 store_state_to(target); 1743 assert(target->is_merged(), "do not come here twice"); 1744 1745 } else { // Prior mapping at this bci 1746 if (TraceOptoParse) { tty->print(" with previous state"); } 1747 #ifdef ASSERT 1748 if (target->is_SEL_head()) { 1749 target->mark_merged_backedge(block()); 1750 } 1751 #endif 1752 // We must not manufacture more phis if the target is already parsed. 1753 bool nophi = target->is_parsed(); 1754 1755 SafePointNode* newin = map();// Hang on to incoming mapping 1756 Block* save_block = block(); // Hang on to incoming block; 1757 load_state_from(target); // Get prior mapping 1758 1759 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1760 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1761 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1762 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1763 1764 // Iterate over my current mapping and the old mapping. 1765 // Where different, insert Phi functions. 1766 // Use any existing Phi functions. 1767 assert(control()->is_Region(), "must be merging to a region"); 1768 RegionNode* r = control()->as_Region(); 1769 1770 // Compute where to merge into 1771 // Merge incoming control path 1772 r->init_req(pnum, newin->control()); 1773 1774 if (pnum == 1) { // Last merge for this Region? 1775 if (!block()->flow()->is_irreducible_loop_secondary_entry()) { 1776 Node* result = _gvn.transform(r); 1777 if (r != result && TraceOptoParse) { 1778 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1779 } 1780 } 1781 record_for_igvn(r); 1782 } 1783 1784 // Update all the non-control inputs to map: 1785 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1786 bool check_elide_phi = target->is_SEL_backedge(save_block); 1787 for (uint j = 1; j < newin->req(); j++) { 1788 Node* m = map()->in(j); // Current state of target. 1789 Node* n = newin->in(j); // Incoming change to target state. 1790 PhiNode* phi; 1791 if (m->is_Phi() && m->as_Phi()->region() == r) 1792 phi = m->as_Phi(); 1793 else 1794 phi = nullptr; 1795 if (m != n) { // Different; must merge 1796 switch (j) { 1797 // Frame pointer and Return Address never changes 1798 case TypeFunc::FramePtr:// Drop m, use the original value 1799 case TypeFunc::ReturnAdr: 1800 break; 1801 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1802 assert(phi == nullptr, "the merge contains phis, not vice versa"); 1803 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1804 continue; 1805 default: // All normal stuff 1806 if (phi == nullptr) { 1807 const JVMState* jvms = map()->jvms(); 1808 if (EliminateNestedLocks && 1809 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1810 // BoxLock nodes are not commoning when EliminateNestedLocks is on. 1811 // Use old BoxLock node as merged box. 1812 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1813 // This assert also tests that nodes are BoxLock. 1814 assert(BoxLockNode::same_slot(n, m), "sanity"); 1815 BoxLockNode* old_box = m->as_BoxLock(); 1816 if (n->as_BoxLock()->is_unbalanced() && !old_box->is_unbalanced()) { 1817 // Preserve Unbalanced status. 1818 // 1819 // `old_box` can have only Regular or Coarsened status 1820 // because this code is executed only during Parse phase and 1821 // Incremental Inlining before EA and Macro nodes elimination. 1822 // 1823 // Incremental Inlining is executed after IGVN optimizations 1824 // during which BoxLock can be marked as Coarsened. 1825 old_box->set_coarsened(); // Verifies state 1826 old_box->set_unbalanced(); 1827 } 1828 C->gvn_replace_by(n, m); 1829 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1830 phi = ensure_phi(j, nophi); 1831 } 1832 } 1833 break; 1834 } 1835 } 1836 // At this point, n might be top if: 1837 // - there is no phi (because TypeFlow detected a conflict), or 1838 // - the corresponding control edges is top (a dead incoming path) 1839 // It is a bug if we create a phi which sees a garbage value on a live path. 1840 1841 if (phi != nullptr) { 1842 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1843 assert(phi->region() == r, ""); 1844 phi->set_req(pnum, n); // Then add 'n' to the merge 1845 if (pnum == PhiNode::Input) { 1846 // Last merge for this Phi. 1847 // So far, Phis have had a reasonable type from ciTypeFlow. 1848 // Now _gvn will join that with the meet of current inputs. 1849 // BOTTOM is never permissible here, 'cause pessimistically 1850 // Phis of pointers cannot lose the basic pointer type. 1851 debug_only(const Type* bt1 = phi->bottom_type()); 1852 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1853 map()->set_req(j, _gvn.transform(phi)); 1854 debug_only(const Type* bt2 = phi->bottom_type()); 1855 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1856 record_for_igvn(phi); 1857 } 1858 } 1859 } // End of for all values to be merged 1860 1861 if (pnum == PhiNode::Input && 1862 !r->in(0)) { // The occasional useless Region 1863 assert(control() == r, ""); 1864 set_control(r->nonnull_req()); 1865 } 1866 1867 map()->merge_replaced_nodes_with(newin); 1868 1869 // newin has been subsumed into the lazy merge, and is now dead. 1870 set_block(save_block); 1871 1872 stop(); // done with this guy, for now 1873 } 1874 1875 if (TraceOptoParse) { 1876 tty->print_cr(" on path %d", pnum); 1877 } 1878 1879 // Done with this parser state. 1880 assert(stopped(), ""); 1881 } 1882 1883 1884 //--------------------------merge_memory_edges--------------------------------- 1885 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 1886 // (nophi means we must not create phis, because we already parsed here) 1887 assert(n != nullptr, ""); 1888 // Merge the inputs to the MergeMems 1889 MergeMemNode* m = merged_memory(); 1890 1891 assert(control()->is_Region(), "must be merging to a region"); 1892 RegionNode* r = control()->as_Region(); 1893 1894 PhiNode* base = nullptr; 1895 MergeMemNode* remerge = nullptr; 1896 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 1897 Node *p = mms.force_memory(); 1898 Node *q = mms.memory2(); 1899 if (mms.is_empty() && nophi) { 1900 // Trouble: No new splits allowed after a loop body is parsed. 1901 // Instead, wire the new split into a MergeMem on the backedge. 1902 // The optimizer will sort it out, slicing the phi. 1903 if (remerge == nullptr) { 1904 guarantee(base != nullptr, ""); 1905 assert(base->in(0) != nullptr, "should not be xformed away"); 1906 remerge = MergeMemNode::make(base->in(pnum)); 1907 gvn().set_type(remerge, Type::MEMORY); 1908 base->set_req(pnum, remerge); 1909 } 1910 remerge->set_memory_at(mms.alias_idx(), q); 1911 continue; 1912 } 1913 assert(!q->is_MergeMem(), ""); 1914 PhiNode* phi; 1915 if (p != q) { 1916 phi = ensure_memory_phi(mms.alias_idx(), nophi); 1917 } else { 1918 if (p->is_Phi() && p->as_Phi()->region() == r) 1919 phi = p->as_Phi(); 1920 else 1921 phi = nullptr; 1922 } 1923 // Insert q into local phi 1924 if (phi != nullptr) { 1925 assert(phi->region() == r, ""); 1926 p = phi; 1927 phi->set_req(pnum, q); 1928 if (mms.at_base_memory()) { 1929 base = phi; // delay transforming it 1930 } else if (pnum == 1) { 1931 record_for_igvn(phi); 1932 p = _gvn.transform(phi); 1933 } 1934 mms.set_memory(p);// store back through the iterator 1935 } 1936 } 1937 // Transform base last, in case we must fiddle with remerging. 1938 if (base != nullptr && pnum == 1) { 1939 record_for_igvn(base); 1940 m->set_base_memory(_gvn.transform(base)); 1941 } 1942 } 1943 1944 1945 //------------------------ensure_phis_everywhere------------------------------- 1946 void Parse::ensure_phis_everywhere() { 1947 ensure_phi(TypeFunc::I_O); 1948 1949 // Ensure a phi on all currently known memories. 1950 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 1951 ensure_memory_phi(mms.alias_idx()); 1952 debug_only(mms.set_memory()); // keep the iterator happy 1953 } 1954 1955 // Note: This is our only chance to create phis for memory slices. 1956 // If we miss a slice that crops up later, it will have to be 1957 // merged into the base-memory phi that we are building here. 1958 // Later, the optimizer will comb out the knot, and build separate 1959 // phi-loops for each memory slice that matters. 1960 1961 // Monitors must nest nicely and not get confused amongst themselves. 1962 // Phi-ify everything up to the monitors, though. 1963 uint monoff = map()->jvms()->monoff(); 1964 uint nof_monitors = map()->jvms()->nof_monitors(); 1965 1966 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 1967 bool check_elide_phi = block()->is_SEL_head(); 1968 for (uint i = TypeFunc::Parms; i < monoff; i++) { 1969 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 1970 ensure_phi(i); 1971 } 1972 } 1973 1974 // Even monitors need Phis, though they are well-structured. 1975 // This is true for OSR methods, and also for the rare cases where 1976 // a monitor object is the subject of a replace_in_map operation. 1977 // See bugs 4426707 and 5043395. 1978 for (uint m = 0; m < nof_monitors; m++) { 1979 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 1980 } 1981 } 1982 1983 1984 //-----------------------------add_new_path------------------------------------ 1985 // Add a previously unaccounted predecessor to this block. 1986 int Parse::Block::add_new_path() { 1987 // If there is no map, return the lowest unused path number. 1988 if (!is_merged()) return pred_count()+1; // there will be a map shortly 1989 1990 SafePointNode* map = start_map(); 1991 if (!map->control()->is_Region()) 1992 return pred_count()+1; // there may be a region some day 1993 RegionNode* r = map->control()->as_Region(); 1994 1995 // Add new path to the region. 1996 uint pnum = r->req(); 1997 r->add_req(nullptr); 1998 1999 for (uint i = 1; i < map->req(); i++) { 2000 Node* n = map->in(i); 2001 if (i == TypeFunc::Memory) { 2002 // Ensure a phi on all currently known memories. 2003 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 2004 Node* phi = mms.memory(); 2005 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 2006 assert(phi->req() == pnum, "must be same size as region"); 2007 phi->add_req(nullptr); 2008 } 2009 } 2010 } else { 2011 if (n->is_Phi() && n->as_Phi()->region() == r) { 2012 assert(n->req() == pnum, "must be same size as region"); 2013 n->add_req(nullptr); 2014 } 2015 } 2016 } 2017 2018 return pnum; 2019 } 2020 2021 //------------------------------ensure_phi------------------------------------- 2022 // Turn the idx'th entry of the current map into a Phi 2023 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 2024 SafePointNode* map = this->map(); 2025 Node* region = map->control(); 2026 assert(region->is_Region(), ""); 2027 2028 Node* o = map->in(idx); 2029 assert(o != nullptr, ""); 2030 2031 if (o == top()) return nullptr; // TOP always merges into TOP 2032 2033 if (o->is_Phi() && o->as_Phi()->region() == region) { 2034 return o->as_Phi(); 2035 } 2036 2037 // Now use a Phi here for merging 2038 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2039 const JVMState* jvms = map->jvms(); 2040 const Type* t = nullptr; 2041 if (jvms->is_loc(idx)) { 2042 t = block()->local_type_at(idx - jvms->locoff()); 2043 } else if (jvms->is_stk(idx)) { 2044 t = block()->stack_type_at(idx - jvms->stkoff()); 2045 } else if (jvms->is_mon(idx)) { 2046 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 2047 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 2048 } else if ((uint)idx < TypeFunc::Parms) { 2049 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 2050 } else { 2051 assert(false, "no type information for this phi"); 2052 } 2053 2054 // If the type falls to bottom, then this must be a local that 2055 // is mixing ints and oops or some such. Forcing it to top 2056 // makes it go dead. 2057 if (t == Type::BOTTOM) { 2058 map->set_req(idx, top()); 2059 return nullptr; 2060 } 2061 2062 // Do not create phis for top either. 2063 // A top on a non-null control flow must be an unused even after the.phi. 2064 if (t == Type::TOP || t == Type::HALF) { 2065 map->set_req(idx, top()); 2066 return nullptr; 2067 } 2068 2069 PhiNode* phi = PhiNode::make(region, o, t); 2070 gvn().set_type(phi, t); 2071 if (C->do_escape_analysis()) record_for_igvn(phi); 2072 map->set_req(idx, phi); 2073 return phi; 2074 } 2075 2076 //--------------------------ensure_memory_phi---------------------------------- 2077 // Turn the idx'th slice of the current memory into a Phi 2078 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2079 MergeMemNode* mem = merged_memory(); 2080 Node* region = control(); 2081 assert(region->is_Region(), ""); 2082 2083 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2084 assert(o != nullptr && o != top(), ""); 2085 2086 PhiNode* phi; 2087 if (o->is_Phi() && o->as_Phi()->region() == region) { 2088 phi = o->as_Phi(); 2089 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2090 // clone the shared base memory phi to make a new memory split 2091 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2092 const Type* t = phi->bottom_type(); 2093 const TypePtr* adr_type = C->get_adr_type(idx); 2094 phi = phi->slice_memory(adr_type); 2095 gvn().set_type(phi, t); 2096 } 2097 return phi; 2098 } 2099 2100 // Now use a Phi here for merging 2101 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2102 const Type* t = o->bottom_type(); 2103 const TypePtr* adr_type = C->get_adr_type(idx); 2104 phi = PhiNode::make(region, o, t, adr_type); 2105 gvn().set_type(phi, t); 2106 if (idx == Compile::AliasIdxBot) 2107 mem->set_base_memory(phi); 2108 else 2109 mem->set_memory_at(idx, phi); 2110 return phi; 2111 } 2112 2113 //------------------------------call_register_finalizer----------------------- 2114 // Check the klass of the receiver and call register_finalizer if the 2115 // class need finalization. 2116 void Parse::call_register_finalizer() { 2117 Node* receiver = local(0); 2118 assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr, 2119 "must have non-null instance type"); 2120 2121 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2122 if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) { 2123 // The type isn't known exactly so see if CHA tells us anything. 2124 ciInstanceKlass* ik = tinst->instance_klass(); 2125 if (!Dependencies::has_finalizable_subclass(ik)) { 2126 // No finalizable subclasses so skip the dynamic check. 2127 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2128 return; 2129 } 2130 } 2131 2132 // Insert a dynamic test for whether the instance needs 2133 // finalization. In general this will fold up since the concrete 2134 // class is often visible so the access flags are constant. 2135 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2136 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2137 2138 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::misc_flags_offset())); 2139 Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2140 2141 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(KlassFlags::_misc_has_finalizer))); 2142 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2143 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2144 2145 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2146 2147 RegionNode* result_rgn = new RegionNode(3); 2148 record_for_igvn(result_rgn); 2149 2150 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2151 result_rgn->init_req(1, skip_register); 2152 2153 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2154 set_control(needs_register); 2155 if (stopped()) { 2156 // There is no slow path. 2157 result_rgn->init_req(2, top()); 2158 } else { 2159 Node *call = make_runtime_call(RC_NO_LEAF, 2160 OptoRuntime::register_finalizer_Type(), 2161 OptoRuntime::register_finalizer_Java(), 2162 nullptr, TypePtr::BOTTOM, 2163 receiver); 2164 make_slow_call_ex(call, env()->Throwable_klass(), true); 2165 2166 Node* fast_io = call->in(TypeFunc::I_O); 2167 Node* fast_mem = call->in(TypeFunc::Memory); 2168 // These two phis are pre-filled with copies of of the fast IO and Memory 2169 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2170 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2171 2172 result_rgn->init_req(2, control()); 2173 io_phi ->init_req(2, i_o()); 2174 mem_phi ->init_req(2, reset_memory()); 2175 2176 set_all_memory( _gvn.transform(mem_phi) ); 2177 set_i_o( _gvn.transform(io_phi) ); 2178 } 2179 2180 set_control( _gvn.transform(result_rgn) ); 2181 } 2182 2183 // Add check to deoptimize once holder klass is fully initialized. 2184 void Parse::clinit_deopt() { 2185 if (method()->holder()->is_initialized()) { 2186 return; // in case do_clinit_barriers() is true 2187 } 2188 assert(C->has_method(), "only for normal compilations"); 2189 assert(depth() == 1, "only for main compiled method"); 2190 assert(is_normal_parse(), "no barrier needed on osr entry"); 2191 assert(!method()->holder()->is_not_initialized(), "initialization should have been started"); 2192 2193 set_parse_bci(0); 2194 2195 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces)); 2196 guard_klass_being_initialized(holder); 2197 } 2198 2199 //------------------------------return_current--------------------------------- 2200 // Append current _map to _exit_return 2201 void Parse::return_current(Node* value) { 2202 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2203 call_register_finalizer(); 2204 } 2205 2206 // Do not set_parse_bci, so that return goo is credited to the return insn. 2207 set_bci(InvocationEntryBci); 2208 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2209 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2210 } 2211 if (C->env()->dtrace_method_probes()) { 2212 make_dtrace_method_exit(method()); 2213 } 2214 SafePointNode* exit_return = _exits.map(); 2215 exit_return->in( TypeFunc::Control )->add_req( control() ); 2216 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2217 Node *mem = exit_return->in( TypeFunc::Memory ); 2218 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2219 if (mms.is_empty()) { 2220 // get a copy of the base memory, and patch just this one input 2221 const TypePtr* adr_type = mms.adr_type(C); 2222 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2223 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2224 gvn().set_type_bottom(phi); 2225 phi->del_req(phi->req()-1); // prepare to re-patch 2226 mms.set_memory(phi); 2227 } 2228 mms.memory()->add_req(mms.memory2()); 2229 } 2230 2231 // frame pointer is always same, already captured 2232 if (value != nullptr) { 2233 // If returning oops to an interface-return, there is a silent free 2234 // cast from oop to interface allowed by the Verifier. Make it explicit 2235 // here. 2236 Node* phi = _exits.argument(0); 2237 phi->add_req(value); 2238 } 2239 2240 if (_first_return) { 2241 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2242 _first_return = false; 2243 } else { 2244 _exits.map()->merge_replaced_nodes_with(map()); 2245 } 2246 2247 stop_and_kill_map(); // This CFG path dies here 2248 } 2249 2250 2251 //------------------------------add_safepoint---------------------------------- 2252 void Parse::add_safepoint() { 2253 uint parms = TypeFunc::Parms+1; 2254 2255 // Clear out dead values from the debug info. 2256 kill_dead_locals(); 2257 2258 // Clone the JVM State 2259 SafePointNode *sfpnt = new SafePointNode(parms, nullptr); 2260 2261 // Capture memory state BEFORE a SafePoint. Since we can block at a 2262 // SafePoint we need our GC state to be safe; i.e. we need all our current 2263 // write barriers (card marks) to not float down after the SafePoint so we 2264 // must read raw memory. Likewise we need all oop stores to match the card 2265 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2266 // state on a deopt). 2267 2268 // We do not need to WRITE the memory state after a SafePoint. The control 2269 // edge will keep card-marks and oop-stores from floating up from below a 2270 // SafePoint and our true dependency added here will keep them from floating 2271 // down below a SafePoint. 2272 2273 // Clone the current memory state 2274 Node* mem = MergeMemNode::make(map()->memory()); 2275 2276 mem = _gvn.transform(mem); 2277 2278 // Pass control through the safepoint 2279 sfpnt->init_req(TypeFunc::Control , control()); 2280 // Fix edges normally used by a call 2281 sfpnt->init_req(TypeFunc::I_O , top() ); 2282 sfpnt->init_req(TypeFunc::Memory , mem ); 2283 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2284 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2285 2286 // Create a node for the polling address 2287 Node *polladr; 2288 Node *thread = _gvn.transform(new ThreadLocalNode()); 2289 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset()))); 2290 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 2291 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2292 2293 // Fix up the JVM State edges 2294 add_safepoint_edges(sfpnt); 2295 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2296 set_control(transformed_sfpnt); 2297 2298 // Provide an edge from root to safepoint. This makes the safepoint 2299 // appear useful until the parse has completed. 2300 if (transformed_sfpnt->is_SafePoint()) { 2301 assert(C->root() != nullptr, "Expect parse is still valid"); 2302 C->root()->add_prec(transformed_sfpnt); 2303 } 2304 } 2305 2306 #ifndef PRODUCT 2307 //------------------------show_parse_info-------------------------------------- 2308 void Parse::show_parse_info() { 2309 InlineTree* ilt = nullptr; 2310 if (C->ilt() != nullptr) { 2311 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2312 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2313 } 2314 if (PrintCompilation && Verbose) { 2315 if (depth() == 1) { 2316 if( ilt->count_inlines() ) { 2317 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2318 ilt->count_inline_bcs()); 2319 tty->cr(); 2320 } 2321 } else { 2322 if (method()->is_synchronized()) tty->print("s"); 2323 if (method()->has_exception_handlers()) tty->print("!"); 2324 // Check this is not the final compiled version 2325 if (C->trap_can_recompile()) { 2326 tty->print("-"); 2327 } else { 2328 tty->print(" "); 2329 } 2330 method()->print_short_name(); 2331 if (is_osr_parse()) { 2332 tty->print(" @ %d", osr_bci()); 2333 } 2334 tty->print(" (%d bytes)",method()->code_size()); 2335 if (ilt->count_inlines()) { 2336 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2337 ilt->count_inline_bcs()); 2338 } 2339 tty->cr(); 2340 } 2341 } 2342 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2343 // Print that we succeeded; suppress this message on the first osr parse. 2344 2345 if (method()->is_synchronized()) tty->print("s"); 2346 if (method()->has_exception_handlers()) tty->print("!"); 2347 // Check this is not the final compiled version 2348 if (C->trap_can_recompile() && depth() == 1) { 2349 tty->print("-"); 2350 } else { 2351 tty->print(" "); 2352 } 2353 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2354 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2355 method()->print_short_name(); 2356 if (is_osr_parse()) { 2357 tty->print(" @ %d", osr_bci()); 2358 } 2359 if (ilt->caller_bci() != -1) { 2360 tty->print(" @ %d", ilt->caller_bci()); 2361 } 2362 tty->print(" (%d bytes)",method()->code_size()); 2363 if (ilt->count_inlines()) { 2364 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2365 ilt->count_inline_bcs()); 2366 } 2367 tty->cr(); 2368 } 2369 } 2370 2371 2372 //------------------------------dump------------------------------------------- 2373 // Dump information associated with the bytecodes of current _method 2374 void Parse::dump() { 2375 if( method() != nullptr ) { 2376 // Iterate over bytecodes 2377 ciBytecodeStream iter(method()); 2378 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2379 dump_bci( iter.cur_bci() ); 2380 tty->cr(); 2381 } 2382 } 2383 } 2384 2385 // Dump information associated with a byte code index, 'bci' 2386 void Parse::dump_bci(int bci) { 2387 // Output info on merge-points, cloning, and within _jsr..._ret 2388 // NYI 2389 tty->print(" bci:%d", bci); 2390 } 2391 2392 #endif