1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "oops/method.hpp" 30 #include "opto/addnode.hpp" 31 #include "opto/c2compiler.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/idealGraphPrinter.hpp" 34 #include "opto/locknode.hpp" 35 #include "opto/memnode.hpp" 36 #include "opto/opaquenode.hpp" 37 #include "opto/parse.hpp" 38 #include "opto/rootnode.hpp" 39 #include "opto/runtime.hpp" 40 #include "opto/type.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/bitMap.inline.hpp" 45 #include "utilities/copy.hpp" 46 47 // Static array so we can figure out which bytecodes stop us from compiling 48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 49 // and eventually should be encapsulated in a proper class (gri 8/18/98). 50 51 #ifndef PRODUCT 52 uint nodes_created = 0; 53 uint methods_parsed = 0; 54 uint methods_seen = 0; 55 uint blocks_parsed = 0; 56 uint blocks_seen = 0; 57 58 uint explicit_null_checks_inserted = 0; 59 uint explicit_null_checks_elided = 0; 60 uint all_null_checks_found = 0; 61 uint implicit_null_checks = 0; 62 63 bool Parse::BytecodeParseHistogram::_initialized = false; 64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 67 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 68 69 //------------------------------print_statistics------------------------------- 70 void Parse::print_statistics() { 71 tty->print_cr("--- Compiler Statistics ---"); 72 tty->print("Methods seen: %u Methods parsed: %u", methods_seen, methods_parsed); 73 tty->print(" Nodes created: %u", nodes_created); 74 tty->cr(); 75 if (methods_seen != methods_parsed) { 76 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 77 } 78 tty->print_cr("Blocks parsed: %u Blocks seen: %u", blocks_parsed, blocks_seen); 79 80 if (explicit_null_checks_inserted) { 81 tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,", 82 explicit_null_checks_inserted, explicit_null_checks_elided, 83 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 84 all_null_checks_found); 85 } 86 if (all_null_checks_found) { 87 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks, 88 (100*implicit_null_checks)/all_null_checks_found); 89 } 90 if (SharedRuntime::_implicit_null_throws) { 91 tty->print_cr("%u implicit null exceptions at runtime", 92 SharedRuntime::_implicit_null_throws); 93 } 94 95 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 96 BytecodeParseHistogram::print(); 97 } 98 } 99 #endif 100 101 //------------------------------ON STACK REPLACEMENT--------------------------- 102 103 // Construct a node which can be used to get incoming state for 104 // on stack replacement. 105 Node *Parse::fetch_interpreter_state(int index, 106 BasicType bt, 107 Node *local_addrs, 108 Node *local_addrs_base) { 109 Node *mem = memory(Compile::AliasIdxRaw); 110 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 111 Node *ctl = control(); 112 113 // Very similar to LoadNode::make, except we handle un-aligned longs and 114 // doubles on Sparc. Intel can handle them just fine directly. 115 Node *l = nullptr; 116 switch (bt) { // Signature is flattened 117 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 118 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 119 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 120 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 121 case T_LONG: 122 case T_DOUBLE: { 123 // Since arguments are in reverse order, the argument address 'adr' 124 // refers to the back half of the long/double. Recompute adr. 125 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 126 if (Matcher::misaligned_doubles_ok) { 127 l = (bt == T_DOUBLE) 128 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 129 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 130 } else { 131 l = (bt == T_DOUBLE) 132 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 133 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 134 } 135 break; 136 } 137 default: ShouldNotReachHere(); 138 } 139 return _gvn.transform(l); 140 } 141 142 // Helper routine to prevent the interpreter from handing 143 // unexpected typestate to an OSR method. 144 // The Node l is a value newly dug out of the interpreter frame. 145 // The type is the type predicted by ciTypeFlow. Note that it is 146 // not a general type, but can only come from Type::get_typeflow_type. 147 // The safepoint is a map which will feed an uncommon trap. 148 Node* Parse::check_interpreter_type(Node* l, const Type* type, 149 SafePointNode* &bad_type_exit) { 150 151 const TypeOopPtr* tp = type->isa_oopptr(); 152 153 // TypeFlow may assert null-ness if a type appears unloaded. 154 if (type == TypePtr::NULL_PTR || 155 (tp != nullptr && !tp->is_loaded())) { 156 // Value must be null, not a real oop. 157 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 158 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 159 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 160 set_control(_gvn.transform( new IfTrueNode(iff) )); 161 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 162 bad_type_exit->control()->add_req(bad_type); 163 l = null(); 164 } 165 166 // Typeflow can also cut off paths from the CFG, based on 167 // types which appear unloaded, or call sites which appear unlinked. 168 // When paths are cut off, values at later merge points can rise 169 // toward more specific classes. Make sure these specific classes 170 // are still in effect. 171 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) { 172 // TypeFlow asserted a specific object type. Value must have that type. 173 Node* bad_type_ctrl = nullptr; 174 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl); 175 bad_type_exit->control()->add_req(bad_type_ctrl); 176 } 177 178 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 179 return l; 180 } 181 182 // Helper routine which sets up elements of the initial parser map when 183 // performing a parse for on stack replacement. Add values into map. 184 // The only parameter contains the address of a interpreter arguments. 185 void Parse::load_interpreter_state(Node* osr_buf) { 186 int index; 187 int max_locals = jvms()->loc_size(); 188 int max_stack = jvms()->stk_size(); 189 190 191 // Mismatch between method and jvms can occur since map briefly held 192 // an OSR entry state (which takes up one RawPtr word). 193 assert(max_locals == method()->max_locals(), "sanity"); 194 assert(max_stack >= method()->max_stack(), "sanity"); 195 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 196 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 197 198 // Find the start block. 199 Block* osr_block = start_block(); 200 assert(osr_block->start() == osr_bci(), "sanity"); 201 202 // Set initial BCI. 203 set_parse_bci(osr_block->start()); 204 205 // Set initial stack depth. 206 set_sp(osr_block->start_sp()); 207 208 // Check bailouts. We currently do not perform on stack replacement 209 // of loops in catch blocks or loops which branch with a non-empty stack. 210 if (sp() != 0) { 211 C->record_method_not_compilable("OSR starts with non-empty stack"); 212 return; 213 } 214 // Do not OSR inside finally clauses: 215 if (osr_block->has_trap_at(osr_block->start())) { 216 assert(false, "OSR starts with an immediate trap"); 217 C->record_method_not_compilable("OSR starts with an immediate trap"); 218 return; 219 } 220 221 // Commute monitors from interpreter frame to compiler frame. 222 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 223 int mcnt = osr_block->flow()->monitor_count(); 224 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 225 for (index = 0; index < mcnt; index++) { 226 // Make a BoxLockNode for the monitor. 227 BoxLockNode* osr_box = new BoxLockNode(next_monitor()); 228 // Check for bailout after new BoxLockNode 229 if (failing()) { return; } 230 231 // This OSR locking region is unbalanced because it does not have Lock node: 232 // locking was done in Interpreter. 233 // This is similar to Coarsened case when Lock node is eliminated 234 // and as result the region is marked as Unbalanced. 235 236 // Emulate Coarsened state transition from Regular to Unbalanced. 237 osr_box->set_coarsened(); 238 osr_box->set_unbalanced(); 239 240 Node* box = _gvn.transform(osr_box); 241 242 // Displaced headers and locked objects are interleaved in the 243 // temp OSR buffer. We only copy the locked objects out here. 244 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 245 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf); 246 // Try and copy the displaced header to the BoxNode 247 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf); 248 249 250 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 251 252 // Build a bogus FastLockNode (no code will be generated) and push the 253 // monitor into our debug info. 254 const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock(); 255 map()->push_monitor(flock); 256 257 // If the lock is our method synchronization lock, tuck it away in 258 // _sync_lock for return and rethrow exit paths. 259 if (index == 0 && method()->is_synchronized()) { 260 _synch_lock = flock; 261 } 262 } 263 264 // Use the raw liveness computation to make sure that unexpected 265 // values don't propagate into the OSR frame. 266 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 267 if (!live_locals.is_valid()) { 268 // Degenerate or breakpointed method. 269 assert(false, "OSR in empty or breakpointed method"); 270 C->record_method_not_compilable("OSR in empty or breakpointed method"); 271 return; 272 } 273 274 // Extract the needed locals from the interpreter frame. 275 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 276 277 // find all the locals that the interpreter thinks contain live oops 278 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 279 for (index = 0; index < max_locals; index++) { 280 281 if (!live_locals.at(index)) { 282 continue; 283 } 284 285 const Type *type = osr_block->local_type_at(index); 286 287 if (type->isa_oopptr() != nullptr) { 288 289 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 290 // else we might load a stale oop if the MethodLiveness disagrees with the 291 // result of the interpreter. If the interpreter says it is dead we agree 292 // by making the value go to top. 293 // 294 295 if (!live_oops.at(index)) { 296 if (C->log() != nullptr) { 297 C->log()->elem("OSR_mismatch local_index='%d'",index); 298 } 299 set_local(index, null()); 300 // and ignore it for the loads 301 continue; 302 } 303 } 304 305 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 306 if (type == Type::TOP || type == Type::HALF) { 307 continue; 308 } 309 // If the type falls to bottom, then this must be a local that 310 // is mixing ints and oops or some such. Forcing it to top 311 // makes it go dead. 312 if (type == Type::BOTTOM) { 313 continue; 314 } 315 // Construct code to access the appropriate local. 316 BasicType bt = type->basic_type(); 317 if (type == TypePtr::NULL_PTR) { 318 // Ptr types are mixed together with T_ADDRESS but null is 319 // really for T_OBJECT types so correct it. 320 bt = T_OBJECT; 321 } 322 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf); 323 set_local(index, value); 324 } 325 326 // Extract the needed stack entries from the interpreter frame. 327 for (index = 0; index < sp(); index++) { 328 const Type *type = osr_block->stack_type_at(index); 329 if (type != Type::TOP) { 330 // Currently the compiler bails out when attempting to on stack replace 331 // at a bci with a non-empty stack. We should not reach here. 332 ShouldNotReachHere(); 333 } 334 } 335 336 // End the OSR migration 337 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 338 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 339 "OSR_migration_end", TypeRawPtr::BOTTOM, 340 osr_buf); 341 342 // Now that the interpreter state is loaded, make sure it will match 343 // at execution time what the compiler is expecting now: 344 SafePointNode* bad_type_exit = clone_map(); 345 bad_type_exit->set_control(new RegionNode(1)); 346 347 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 348 for (index = 0; index < max_locals; index++) { 349 if (stopped()) break; 350 Node* l = local(index); 351 if (l->is_top()) continue; // nothing here 352 const Type *type = osr_block->local_type_at(index); 353 if (type->isa_oopptr() != nullptr) { 354 if (!live_oops.at(index)) { 355 // skip type check for dead oops 356 continue; 357 } 358 } 359 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 360 // In our current system it's illegal for jsr addresses to be 361 // live into an OSR entry point because the compiler performs 362 // inlining of jsrs. ciTypeFlow has a bailout that detect this 363 // case and aborts the compile if addresses are live into an OSR 364 // entry point. Because of that we can assume that any address 365 // locals at the OSR entry point are dead. Method liveness 366 // isn't precise enough to figure out that they are dead in all 367 // cases so simply skip checking address locals all 368 // together. Any type check is guaranteed to fail since the 369 // interpreter type is the result of a load which might have any 370 // value and the expected type is a constant. 371 continue; 372 } 373 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 374 } 375 376 for (index = 0; index < sp(); index++) { 377 if (stopped()) break; 378 Node* l = stack(index); 379 if (l->is_top()) continue; // nothing here 380 const Type *type = osr_block->stack_type_at(index); 381 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 382 } 383 384 if (bad_type_exit->control()->req() > 1) { 385 // Build an uncommon trap here, if any inputs can be unexpected. 386 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 387 record_for_igvn(bad_type_exit->control()); 388 SafePointNode* types_are_good = map(); 389 set_map(bad_type_exit); 390 // The unexpected type happens because a new edge is active 391 // in the CFG, which typeflow had previously ignored. 392 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 393 // This x will be typed as Integer if notReached is not yet linked. 394 // It could also happen due to a problem in ciTypeFlow analysis. 395 uncommon_trap(Deoptimization::Reason_constraint, 396 Deoptimization::Action_reinterpret); 397 set_map(types_are_good); 398 } 399 } 400 401 //------------------------------Parse------------------------------------------ 402 // Main parser constructor. 403 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 404 : _exits(caller) 405 { 406 // Init some variables 407 _caller = caller; 408 _method = parse_method; 409 _expected_uses = expected_uses; 410 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 411 _wrote_final = false; 412 _wrote_volatile = false; 413 _wrote_stable = false; 414 _wrote_fields = false; 415 _alloc_with_final_or_stable = nullptr; 416 _block = nullptr; 417 _first_return = true; 418 _replaced_nodes_for_exceptions = false; 419 _new_idx = C->unique(); 420 DEBUG_ONLY(_entry_bci = UnknownBci); 421 DEBUG_ONLY(_block_count = -1); 422 DEBUG_ONLY(_blocks = (Block*)-1); 423 #ifndef PRODUCT 424 if (PrintCompilation || PrintOpto) { 425 // Make sure I have an inline tree, so I can print messages about it. 426 InlineTree::find_subtree_from_root(C->ilt(), caller, parse_method); 427 } 428 _max_switch_depth = 0; 429 _est_switch_depth = 0; 430 #endif 431 432 if (parse_method->has_reserved_stack_access()) { 433 C->set_has_reserved_stack_access(true); 434 } 435 436 if (parse_method->is_synchronized() || parse_method->has_monitor_bytecodes()) { 437 C->set_has_monitors(true); 438 } 439 440 if (parse_method->is_scoped()) { 441 C->set_has_scoped_access(true); 442 } 443 444 _iter.reset_to_method(method()); 445 C->set_has_loops(C->has_loops() || method()->has_loops()); 446 447 if (_expected_uses <= 0) { 448 _prof_factor = 1; 449 } else { 450 float prof_total = parse_method->interpreter_invocation_count(); 451 if (prof_total <= _expected_uses) { 452 _prof_factor = 1; 453 } else { 454 _prof_factor = _expected_uses / prof_total; 455 } 456 } 457 458 CompileLog* log = C->log(); 459 if (log != nullptr) { 460 log->begin_head("parse method='%d' uses='%f'", 461 log->identify(parse_method), expected_uses); 462 if (depth() == 1 && C->is_osr_compilation()) { 463 log->print(" osr_bci='%d'", C->entry_bci()); 464 } 465 log->stamp(); 466 log->end_head(); 467 } 468 469 // Accumulate deoptimization counts. 470 // (The range_check and store_check counts are checked elsewhere.) 471 ciMethodData* md = method()->method_data(); 472 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 473 uint md_count = md->trap_count(reason); 474 if (md_count != 0) { 475 if (md_count >= md->trap_count_limit()) { 476 md_count = md->trap_count_limit() + md->overflow_trap_count(); 477 } 478 uint total_count = C->trap_count(reason); 479 uint old_count = total_count; 480 total_count += md_count; 481 // Saturate the add if it overflows. 482 if (total_count < old_count || total_count < md_count) 483 total_count = (uint)-1; 484 C->set_trap_count(reason, total_count); 485 if (log != nullptr) 486 log->elem("observe trap='%s' count='%d' total='%d'", 487 Deoptimization::trap_reason_name(reason), 488 md_count, total_count); 489 } 490 } 491 // Accumulate total sum of decompilations, also. 492 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 493 494 if (log != nullptr && method()->has_exception_handlers()) { 495 log->elem("observe that='has_exception_handlers'"); 496 } 497 498 assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier"); 499 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 500 501 // Always register dependence if JVMTI is enabled, because 502 // either breakpoint setting or hotswapping of methods may 503 // cause deoptimization. 504 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 505 C->dependencies()->assert_evol_method(method()); 506 } 507 508 NOT_PRODUCT(methods_seen++); 509 510 // Do some special top-level things. 511 if (depth() == 1 && C->is_osr_compilation()) { 512 _tf = C->tf(); // the OSR entry type is different 513 _entry_bci = C->entry_bci(); 514 _flow = method()->get_osr_flow_analysis(osr_bci()); 515 } else { 516 _tf = TypeFunc::make(method()); 517 _entry_bci = InvocationEntryBci; 518 _flow = method()->get_flow_analysis(); 519 } 520 521 if (_flow->failing()) { 522 assert(false, "type flow analysis failed during parsing"); 523 C->record_method_not_compilable(_flow->failure_reason()); 524 #ifndef PRODUCT 525 if (PrintOpto && (Verbose || WizardMode)) { 526 if (is_osr_parse()) { 527 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 528 } else { 529 tty->print_cr("type flow bailout: %s", _flow->failure_reason()); 530 } 531 if (Verbose) { 532 method()->print(); 533 method()->print_codes(); 534 _flow->print(); 535 } 536 } 537 #endif 538 } 539 540 #ifdef ASSERT 541 if (depth() == 1) { 542 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 543 } else { 544 assert(!this->is_osr_parse(), "no recursive OSR"); 545 } 546 #endif 547 548 #ifndef PRODUCT 549 if (_flow->has_irreducible_entry()) { 550 C->set_parsed_irreducible_loop(true); 551 } 552 553 methods_parsed++; 554 // add method size here to guarantee that inlined methods are added too 555 if (CITime) 556 _total_bytes_compiled += method()->code_size(); 557 558 show_parse_info(); 559 #endif 560 561 if (failing()) { 562 if (log) log->done("parse"); 563 return; 564 } 565 566 gvn().transform(top()); 567 568 // Import the results of the ciTypeFlow. 569 init_blocks(); 570 571 // Merge point for all normal exits 572 build_exits(); 573 574 // Setup the initial JVM state map. 575 SafePointNode* entry_map = create_entry_map(); 576 577 // Check for bailouts during map initialization 578 if (failing() || entry_map == nullptr) { 579 if (log) log->done("parse"); 580 return; 581 } 582 583 Node_Notes* caller_nn = C->default_node_notes(); 584 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 585 if (DebugInlinedCalls || depth() == 1) { 586 C->set_default_node_notes(make_node_notes(caller_nn)); 587 } 588 589 if (is_osr_parse()) { 590 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 591 entry_map->set_req(TypeFunc::Parms+0, top()); 592 set_map(entry_map); 593 load_interpreter_state(osr_buf); 594 } else { 595 set_map(entry_map); 596 do_method_entry(); 597 } 598 599 if (depth() == 1 && !failing()) { 600 if (C->clinit_barrier_on_entry()) { 601 // Add check to deoptimize the nmethod once the holder class is fully initialized 602 clinit_deopt(); 603 } 604 } 605 606 // Check for bailouts during method entry. 607 if (failing()) { 608 if (log) log->done("parse"); 609 C->set_default_node_notes(caller_nn); 610 return; 611 } 612 613 entry_map = map(); // capture any changes performed by method setup code 614 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 615 616 // We begin parsing as if we have just encountered a jump to the 617 // method entry. 618 Block* entry_block = start_block(); 619 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 620 set_map_clone(entry_map); 621 merge_common(entry_block, entry_block->next_path_num()); 622 623 #ifndef PRODUCT 624 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 625 set_parse_histogram( parse_histogram_obj ); 626 #endif 627 628 // Parse all the basic blocks. 629 do_all_blocks(); 630 631 // Check for bailouts during conversion to graph 632 if (failing()) { 633 if (log) log->done("parse"); 634 return; 635 } 636 637 // Fix up all exiting control flow. 638 set_map(entry_map); 639 do_exits(); 640 641 // Only reset this now, to make sure that debug information emitted 642 // for exiting control flow still refers to the inlined method. 643 C->set_default_node_notes(caller_nn); 644 645 if (log) log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'", 646 C->unique(), C->live_nodes(), C->node_arena()->used()); 647 } 648 649 //---------------------------do_all_blocks------------------------------------- 650 void Parse::do_all_blocks() { 651 bool has_irreducible = flow()->has_irreducible_entry(); 652 653 // Walk over all blocks in Reverse Post-Order. 654 while (true) { 655 bool progress = false; 656 for (int rpo = 0; rpo < block_count(); rpo++) { 657 Block* block = rpo_at(rpo); 658 659 if (block->is_parsed()) continue; 660 661 if (!block->is_merged()) { 662 // Dead block, no state reaches this block 663 continue; 664 } 665 666 // Prepare to parse this block. 667 load_state_from(block); 668 669 if (stopped()) { 670 // Block is dead. 671 continue; 672 } 673 674 NOT_PRODUCT(blocks_parsed++); 675 676 progress = true; 677 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) { 678 // Not all preds have been parsed. We must build phis everywhere. 679 // (Note that dead locals do not get phis built, ever.) 680 ensure_phis_everywhere(); 681 682 if (block->is_SEL_head()) { 683 // Add predicate to single entry (not irreducible) loop head. 684 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 685 // Predicates may have been added after a dominating if 686 if (!block->has_predicates()) { 687 // Need correct bci for predicate. 688 // It is fine to set it here since do_one_block() will set it anyway. 689 set_parse_bci(block->start()); 690 add_parse_predicates(); 691 } 692 // Add new region for back branches. 693 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 694 RegionNode *r = new RegionNode(edges+1); 695 _gvn.set_type(r, Type::CONTROL); 696 record_for_igvn(r); 697 r->init_req(edges, control()); 698 set_control(r); 699 block->copy_irreducible_status_to(r, jvms()); 700 // Add new phis. 701 ensure_phis_everywhere(); 702 } 703 704 // Leave behind an undisturbed copy of the map, for future merges. 705 set_map(clone_map()); 706 } 707 708 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 709 // In the absence of irreducible loops, the Region and Phis 710 // associated with a merge that doesn't involve a backedge can 711 // be simplified now since the RPO parsing order guarantees 712 // that any path which was supposed to reach here has already 713 // been parsed or must be dead. 714 Node* c = control(); 715 Node* result = _gvn.transform(control()); 716 if (c != result && TraceOptoParse) { 717 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 718 } 719 if (result != top()) { 720 record_for_igvn(result); 721 } 722 } 723 724 // Parse the block. 725 do_one_block(); 726 727 // Check for bailouts. 728 if (failing()) return; 729 } 730 731 // with irreducible loops multiple passes might be necessary to parse everything 732 if (!has_irreducible || !progress) { 733 break; 734 } 735 } 736 737 #ifndef PRODUCT 738 blocks_seen += block_count(); 739 740 // Make sure there are no half-processed blocks remaining. 741 // Every remaining unprocessed block is dead and may be ignored now. 742 for (int rpo = 0; rpo < block_count(); rpo++) { 743 Block* block = rpo_at(rpo); 744 if (!block->is_parsed()) { 745 if (TraceOptoParse) { 746 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 747 } 748 assert(!block->is_merged(), "no half-processed blocks"); 749 } 750 } 751 #endif 752 } 753 754 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) { 755 switch (bt) { 756 case T_BYTE: 757 v = gvn->transform(new LShiftINode(v, gvn->intcon(24))); 758 v = gvn->transform(new RShiftINode(v, gvn->intcon(24))); 759 break; 760 case T_SHORT: 761 v = gvn->transform(new LShiftINode(v, gvn->intcon(16))); 762 v = gvn->transform(new RShiftINode(v, gvn->intcon(16))); 763 break; 764 case T_CHAR: 765 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF))); 766 break; 767 case T_BOOLEAN: 768 v = gvn->transform(new AndINode(v, gvn->intcon(0x1))); 769 break; 770 default: 771 break; 772 } 773 return v; 774 } 775 776 //-------------------------------build_exits---------------------------------- 777 // Build normal and exceptional exit merge points. 778 void Parse::build_exits() { 779 // make a clone of caller to prevent sharing of side-effects 780 _exits.set_map(_exits.clone_map()); 781 _exits.clean_stack(_exits.sp()); 782 _exits.sync_jvms(); 783 784 RegionNode* region = new RegionNode(1); 785 record_for_igvn(region); 786 gvn().set_type_bottom(region); 787 _exits.set_control(region); 788 789 // Note: iophi and memphi are not transformed until do_exits. 790 Node* iophi = new PhiNode(region, Type::ABIO); 791 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 792 gvn().set_type_bottom(iophi); 793 gvn().set_type_bottom(memphi); 794 _exits.set_i_o(iophi); 795 _exits.set_all_memory(memphi); 796 797 // Add a return value to the exit state. (Do not push it yet.) 798 if (tf()->range()->cnt() > TypeFunc::Parms) { 799 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 800 if (ret_type->isa_int()) { 801 BasicType ret_bt = method()->return_type()->basic_type(); 802 if (ret_bt == T_BOOLEAN || 803 ret_bt == T_CHAR || 804 ret_bt == T_BYTE || 805 ret_bt == T_SHORT) { 806 ret_type = TypeInt::INT; 807 } 808 } 809 810 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 811 // becomes loaded during the subsequent parsing, the loaded and unloaded 812 // types will not join when we transform and push in do_exits(). 813 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 814 if (ret_oop_type && !ret_oop_type->is_loaded()) { 815 ret_type = TypeOopPtr::BOTTOM; 816 } 817 int ret_size = type2size[ret_type->basic_type()]; 818 Node* ret_phi = new PhiNode(region, ret_type); 819 gvn().set_type_bottom(ret_phi); 820 _exits.ensure_stack(ret_size); 821 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 822 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 823 _exits.set_argument(0, ret_phi); // here is where the parser finds it 824 // Note: ret_phi is not yet pushed, until do_exits. 825 } 826 } 827 828 829 //----------------------------build_start_state------------------------------- 830 // Construct a state which contains only the incoming arguments from an 831 // unknown caller. The method & bci will be null & InvocationEntryBci. 832 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 833 int arg_size = tf->domain()->cnt(); 834 int max_size = MAX2(arg_size, (int)tf->range()->cnt()); 835 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 836 SafePointNode* map = new SafePointNode(max_size, jvms); 837 record_for_igvn(map); 838 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 839 Node_Notes* old_nn = default_node_notes(); 840 if (old_nn != nullptr && has_method()) { 841 Node_Notes* entry_nn = old_nn->clone(this); 842 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 843 entry_jvms->set_offsets(0); 844 entry_jvms->set_bci(entry_bci()); 845 entry_nn->set_jvms(entry_jvms); 846 set_default_node_notes(entry_nn); 847 } 848 uint i; 849 for (i = 0; i < (uint)arg_size; i++) { 850 Node* parm = initial_gvn()->transform(new ParmNode(start, i)); 851 map->init_req(i, parm); 852 // Record all these guys for later GVN. 853 record_for_igvn(parm); 854 } 855 for (; i < map->req(); i++) { 856 map->init_req(i, top()); 857 } 858 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 859 set_default_node_notes(old_nn); 860 jvms->set_map(map); 861 return jvms; 862 } 863 864 //-----------------------------make_node_notes--------------------------------- 865 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 866 if (caller_nn == nullptr) return nullptr; 867 Node_Notes* nn = caller_nn->clone(C); 868 JVMState* caller_jvms = nn->jvms(); 869 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 870 jvms->set_offsets(0); 871 jvms->set_bci(_entry_bci); 872 nn->set_jvms(jvms); 873 return nn; 874 } 875 876 877 //--------------------------return_values-------------------------------------- 878 void Compile::return_values(JVMState* jvms) { 879 GraphKit kit(jvms); 880 Node* ret = new ReturnNode(TypeFunc::Parms, 881 kit.control(), 882 kit.i_o(), 883 kit.reset_memory(), 884 kit.frameptr(), 885 kit.returnadr()); 886 // Add zero or 1 return values 887 int ret_size = tf()->range()->cnt() - TypeFunc::Parms; 888 if (ret_size > 0) { 889 kit.inc_sp(-ret_size); // pop the return value(s) 890 kit.sync_jvms(); 891 ret->add_req(kit.argument(0)); 892 // Note: The second dummy edge is not needed by a ReturnNode. 893 } 894 // bind it to root 895 root()->add_req(ret); 896 record_for_igvn(ret); 897 initial_gvn()->transform(ret); 898 } 899 900 //------------------------rethrow_exceptions----------------------------------- 901 // Bind all exception states in the list into a single RethrowNode. 902 void Compile::rethrow_exceptions(JVMState* jvms) { 903 GraphKit kit(jvms); 904 if (!kit.has_exceptions()) return; // nothing to generate 905 // Load my combined exception state into the kit, with all phis transformed: 906 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 907 Node* ex_oop = kit.use_exception_state(ex_map); 908 RethrowNode* exit = new RethrowNode(kit.control(), 909 kit.i_o(), kit.reset_memory(), 910 kit.frameptr(), kit.returnadr(), 911 // like a return but with exception input 912 ex_oop); 913 // bind to root 914 root()->add_req(exit); 915 record_for_igvn(exit); 916 initial_gvn()->transform(exit); 917 } 918 919 //---------------------------do_exceptions------------------------------------- 920 // Process exceptions arising from the current bytecode. 921 // Send caught exceptions to the proper handler within this method. 922 // Unhandled exceptions feed into _exit. 923 void Parse::do_exceptions() { 924 if (!has_exceptions()) return; 925 926 if (failing()) { 927 // Pop them all off and throw them away. 928 while (pop_exception_state() != nullptr) ; 929 return; 930 } 931 932 PreserveJVMState pjvms(this, false); 933 934 SafePointNode* ex_map; 935 while ((ex_map = pop_exception_state()) != nullptr) { 936 if (!method()->has_exception_handlers()) { 937 // Common case: Transfer control outward. 938 // Doing it this early allows the exceptions to common up 939 // even between adjacent method calls. 940 throw_to_exit(ex_map); 941 } else { 942 // Have to look at the exception first. 943 assert(stopped(), "catch_inline_exceptions trashes the map"); 944 catch_inline_exceptions(ex_map); 945 stop_and_kill_map(); // we used up this exception state; kill it 946 } 947 } 948 949 // We now return to our regularly scheduled program: 950 } 951 952 //---------------------------throw_to_exit------------------------------------- 953 // Merge the given map into an exception exit from this method. 954 // The exception exit will handle any unlocking of receiver. 955 // The ex_oop must be saved within the ex_map, unlike merge_exception. 956 void Parse::throw_to_exit(SafePointNode* ex_map) { 957 // Pop the JVMS to (a copy of) the caller. 958 GraphKit caller; 959 caller.set_map_clone(_caller->map()); 960 caller.set_bci(_caller->bci()); 961 caller.set_sp(_caller->sp()); 962 // Copy out the standard machine state: 963 for (uint i = 0; i < TypeFunc::Parms; i++) { 964 caller.map()->set_req(i, ex_map->in(i)); 965 } 966 if (ex_map->has_replaced_nodes()) { 967 _replaced_nodes_for_exceptions = true; 968 } 969 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 970 // ...and the exception: 971 Node* ex_oop = saved_ex_oop(ex_map); 972 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 973 // Finally, collect the new exception state in my exits: 974 _exits.add_exception_state(caller_ex_map); 975 } 976 977 //------------------------------do_exits--------------------------------------- 978 void Parse::do_exits() { 979 set_parse_bci(InvocationEntryBci); 980 981 // Now peephole on the return bits 982 Node* region = _exits.control(); 983 _exits.set_control(gvn().transform(region)); 984 985 Node* iophi = _exits.i_o(); 986 _exits.set_i_o(gvn().transform(iophi)); 987 988 // Figure out if we need to emit the trailing barrier. The barrier is only 989 // needed in the constructors, and only in three cases: 990 // 991 // 1. The constructor wrote a final or a @Stable field. All these 992 // initializations must be ordered before any code after the constructor 993 // publishes the reference to the newly constructed object. Rather 994 // than wait for the publication, we simply block the writes here. 995 // Rather than put a barrier on only those writes which are required 996 // to complete, we force all writes to complete. 997 // 998 // 2. Experimental VM option is used to force the barrier if any field 999 // was written out in the constructor. 1000 // 1001 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64), 1002 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that 1003 // MemBarVolatile is used before volatile load instead of after volatile 1004 // store, so there's no barrier after the store. 1005 // We want to guarantee the same behavior as on platforms with total store 1006 // order, although this is not required by the Java memory model. 1007 // In this case, we want to enforce visibility of volatile field 1008 // initializations which are performed in constructors. 1009 // So as with finals, we add a barrier here. 1010 // 1011 // "All bets are off" unless the first publication occurs after a 1012 // normal return from the constructor. We do not attempt to detect 1013 // such unusual early publications. But no barrier is needed on 1014 // exceptional returns, since they cannot publish normally. 1015 // 1016 if (method()->is_object_initializer() && 1017 (wrote_final() || wrote_stable() || 1018 (AlwaysSafeConstructors && wrote_fields()) || 1019 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) { 1020 Node* recorded_alloc = alloc_with_final_or_stable(); 1021 _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease, 1022 recorded_alloc); 1023 1024 // If Memory barrier is created for final fields write 1025 // and allocation node does not escape the initialize method, 1026 // then barrier introduced by allocation node can be removed. 1027 if (DoEscapeAnalysis && (recorded_alloc != nullptr)) { 1028 AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc); 1029 alloc->compute_MemBar_redundancy(method()); 1030 } 1031 if (PrintOpto && (Verbose || WizardMode)) { 1032 method()->print_name(); 1033 tty->print_cr(" writes finals/@Stable and needs a memory barrier"); 1034 } 1035 } 1036 1037 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1038 // transform each slice of the original memphi: 1039 mms.set_memory(_gvn.transform(mms.memory())); 1040 } 1041 // Clean up input MergeMems created by transforming the slices 1042 _gvn.transform(_exits.merged_memory()); 1043 1044 if (tf()->range()->cnt() > TypeFunc::Parms) { 1045 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 1046 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1047 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1048 // If the type we set for the ret_phi in build_exits() is too optimistic and 1049 // the ret_phi is top now, there's an extremely small chance that it may be due to class 1050 // loading. It could also be due to an error, so mark this method as not compilable because 1051 // otherwise this could lead to an infinite compile loop. 1052 // In any case, this code path is rarely (and never in my testing) reached. 1053 C->record_method_not_compilable("Can't determine return type."); 1054 return; 1055 } 1056 if (ret_type->isa_int()) { 1057 BasicType ret_bt = method()->return_type()->basic_type(); 1058 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn); 1059 } 1060 _exits.push_node(ret_type->basic_type(), ret_phi); 1061 } 1062 1063 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1064 1065 // Unlock along the exceptional paths. 1066 // This is done late so that we can common up equivalent exceptions 1067 // (e.g., null checks) arising from multiple points within this method. 1068 // See GraphKit::add_exception_state, which performs the commoning. 1069 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1070 1071 // record exit from a method if compiled while Dtrace is turned on. 1072 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1073 // First move the exception list out of _exits: 1074 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1075 SafePointNode* normal_map = kit.map(); // keep this guy safe 1076 // Now re-collect the exceptions into _exits: 1077 SafePointNode* ex_map; 1078 while ((ex_map = kit.pop_exception_state()) != nullptr) { 1079 Node* ex_oop = kit.use_exception_state(ex_map); 1080 // Force the exiting JVM state to have this method at InvocationEntryBci. 1081 // The exiting JVM state is otherwise a copy of the calling JVMS. 1082 JVMState* caller = kit.jvms(); 1083 JVMState* ex_jvms = caller->clone_shallow(C); 1084 ex_jvms->bind_map(kit.clone_map()); 1085 ex_jvms->set_bci( InvocationEntryBci); 1086 kit.set_jvms(ex_jvms); 1087 if (do_synch) { 1088 // Add on the synchronized-method box/object combo 1089 kit.map()->push_monitor(_synch_lock); 1090 // Unlock! 1091 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1092 } 1093 if (C->env()->dtrace_method_probes()) { 1094 kit.make_dtrace_method_exit(method()); 1095 } 1096 if (_replaced_nodes_for_exceptions) { 1097 kit.map()->apply_replaced_nodes(_new_idx); 1098 } 1099 // Done with exception-path processing. 1100 ex_map = kit.make_exception_state(ex_oop); 1101 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1102 // Pop the last vestige of this method: 1103 caller->clone_shallow(C)->bind_map(ex_map); 1104 _exits.push_exception_state(ex_map); 1105 } 1106 assert(_exits.map() == normal_map, "keep the same return state"); 1107 } 1108 1109 { 1110 // Capture very early exceptions (receiver null checks) from caller JVMS 1111 GraphKit caller(_caller); 1112 SafePointNode* ex_map; 1113 while ((ex_map = caller.pop_exception_state()) != nullptr) { 1114 _exits.add_exception_state(ex_map); 1115 } 1116 } 1117 _exits.map()->apply_replaced_nodes(_new_idx); 1118 } 1119 1120 //-----------------------------create_entry_map------------------------------- 1121 // Initialize our parser map to contain the types at method entry. 1122 // For OSR, the map contains a single RawPtr parameter. 1123 // Initial monitor locking for sync. methods is performed by do_method_entry. 1124 SafePointNode* Parse::create_entry_map() { 1125 // Check for really stupid bail-out cases. 1126 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1127 if (len >= 32760) { 1128 // Bailout expected, this is a very rare edge case. 1129 C->record_method_not_compilable("too many local variables"); 1130 return nullptr; 1131 } 1132 1133 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1134 _caller->map()->delete_replaced_nodes(); 1135 1136 // If this is an inlined method, we may have to do a receiver null check. 1137 if (_caller->has_method() && is_normal_parse()) { 1138 GraphKit kit(_caller); 1139 if (!method()->is_static()) { 1140 kit.null_check_receiver_before_call(method()); 1141 } else if (C->do_clinit_barriers() && C->needs_clinit_barrier(method()->holder(), _caller->method())) { 1142 ciMethod* declared_method = kit.method()->get_method_at_bci(kit.bci()); 1143 const int nargs = declared_method->arg_size(); 1144 kit.inc_sp(nargs); 1145 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces)); 1146 kit.guard_klass_is_initialized(holder); 1147 kit.dec_sp(nargs); 1148 } 1149 _caller = kit.transfer_exceptions_into_jvms(); 1150 if (kit.stopped()) { 1151 _exits.add_exception_states_from(_caller); 1152 _exits.set_jvms(_caller); 1153 return nullptr; 1154 } 1155 } 1156 1157 assert(method() != nullptr, "parser must have a method"); 1158 1159 // Create an initial safepoint to hold JVM state during parsing 1160 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr); 1161 set_map(new SafePointNode(len, jvms)); 1162 jvms->set_map(map()); 1163 record_for_igvn(map()); 1164 assert(jvms->endoff() == len, "correct jvms sizing"); 1165 1166 SafePointNode* inmap = _caller->map(); 1167 assert(inmap != nullptr, "must have inmap"); 1168 // In case of null check on receiver above 1169 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1170 1171 uint i; 1172 1173 // Pass thru the predefined input parameters. 1174 for (i = 0; i < TypeFunc::Parms; i++) { 1175 map()->init_req(i, inmap->in(i)); 1176 } 1177 1178 if (depth() == 1) { 1179 assert(map()->memory()->Opcode() == Op_Parm, ""); 1180 // Insert the memory aliasing node 1181 set_all_memory(reset_memory()); 1182 } 1183 assert(merged_memory(), ""); 1184 1185 // Now add the locals which are initially bound to arguments: 1186 uint arg_size = tf()->domain()->cnt(); 1187 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1188 for (i = TypeFunc::Parms; i < arg_size; i++) { 1189 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1190 } 1191 1192 // Clear out the rest of the map (locals and stack) 1193 for (i = arg_size; i < len; i++) { 1194 map()->init_req(i, top()); 1195 } 1196 1197 SafePointNode* entry_map = stop(); 1198 return entry_map; 1199 } 1200 1201 //-----------------------------do_method_entry-------------------------------- 1202 // Emit any code needed in the pseudo-block before BCI zero. 1203 // The main thing to do is lock the receiver of a synchronized method. 1204 void Parse::do_method_entry() { 1205 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1206 set_sp(0); // Java Stack Pointer 1207 1208 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1209 1210 if (C->env()->dtrace_method_probes()) { 1211 make_dtrace_method_entry(method()); 1212 } 1213 1214 #ifdef ASSERT 1215 // Narrow receiver type when it is too broad for the method being parsed. 1216 if (!method()->is_static()) { 1217 ciInstanceKlass* callee_holder = method()->holder(); 1218 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces); 1219 1220 Node* receiver_obj = local(0); 1221 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr(); 1222 1223 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) { 1224 // Receiver should always be a subtype of callee holder. 1225 // But, since C2 type system doesn't properly track interfaces, 1226 // the invariant can't be expressed in the type system for default methods. 1227 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I. 1228 assert(callee_holder->is_interface(), "missing subtype check"); 1229 1230 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure. 1231 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces)); 1232 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass); 1233 assert(!stopped(), "not a subtype"); 1234 1235 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check")); 1236 C->root()->add_req(halt); 1237 } 1238 } 1239 #endif // ASSERT 1240 1241 // If the method is synchronized, we need to construct a lock node, attach 1242 // it to the Start node, and pin it there. 1243 if (method()->is_synchronized()) { 1244 // Insert a FastLockNode right after the Start which takes as arguments 1245 // the current thread pointer, the "this" pointer & the address of the 1246 // stack slot pair used for the lock. The "this" pointer is a projection 1247 // off the start node, but the locking spot has to be constructed by 1248 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1249 // becomes the second argument to the FastLockNode call. The 1250 // FastLockNode becomes the new control parent to pin it to the start. 1251 1252 // Setup Object Pointer 1253 Node *lock_obj = nullptr; 1254 if (method()->is_static()) { 1255 ciInstance* mirror = _method->holder()->java_mirror(); 1256 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1257 lock_obj = makecon(t_lock); 1258 } else { // Else pass the "this" pointer, 1259 lock_obj = local(0); // which is Parm0 from StartNode 1260 } 1261 // Clear out dead values from the debug info. 1262 kill_dead_locals(); 1263 // Build the FastLockNode 1264 _synch_lock = shared_lock(lock_obj); 1265 // Check for bailout in shared_lock 1266 if (failing()) { return; } 1267 } 1268 1269 // Feed profiling data for parameters to the type system so it can 1270 // propagate it as speculative types 1271 record_profiled_parameters_for_speculation(); 1272 } 1273 1274 //------------------------------init_blocks------------------------------------ 1275 // Initialize our parser map to contain the types/monitors at method entry. 1276 void Parse::init_blocks() { 1277 // Create the blocks. 1278 _block_count = flow()->block_count(); 1279 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1280 1281 // Initialize the structs. 1282 for (int rpo = 0; rpo < block_count(); rpo++) { 1283 Block* block = rpo_at(rpo); 1284 new(block) Block(this, rpo); 1285 } 1286 1287 // Collect predecessor and successor information. 1288 for (int rpo = 0; rpo < block_count(); rpo++) { 1289 Block* block = rpo_at(rpo); 1290 block->init_graph(this); 1291 } 1292 } 1293 1294 //-------------------------------init_node------------------------------------- 1295 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() { 1296 _flow = outer->flow()->rpo_at(rpo); 1297 _pred_count = 0; 1298 _preds_parsed = 0; 1299 _count = 0; 1300 _is_parsed = false; 1301 _is_handler = false; 1302 _has_merged_backedge = false; 1303 _start_map = nullptr; 1304 _has_predicates = false; 1305 _num_successors = 0; 1306 _all_successors = 0; 1307 _successors = nullptr; 1308 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1309 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1310 assert(_live_locals.size() == 0, "sanity"); 1311 1312 // entry point has additional predecessor 1313 if (flow()->is_start()) _pred_count++; 1314 assert(flow()->is_start() == (this == outer->start_block()), ""); 1315 } 1316 1317 //-------------------------------init_graph------------------------------------ 1318 void Parse::Block::init_graph(Parse* outer) { 1319 // Create the successor list for this parser block. 1320 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1321 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1322 int ns = tfs->length(); 1323 int ne = tfe->length(); 1324 _num_successors = ns; 1325 _all_successors = ns+ne; 1326 _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1327 int p = 0; 1328 for (int i = 0; i < ns+ne; i++) { 1329 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1330 Block* block2 = outer->rpo_at(tf2->rpo()); 1331 _successors[i] = block2; 1332 1333 // Accumulate pred info for the other block, too. 1334 // Note: We also need to set _pred_count for exception blocks since they could 1335 // also have normal predecessors (reached without athrow by an explicit jump). 1336 // This also means that next_path_num can be called along exception paths. 1337 block2->_pred_count++; 1338 if (i >= ns) { 1339 block2->_is_handler = true; 1340 } 1341 1342 #ifdef ASSERT 1343 // A block's successors must be distinguishable by BCI. 1344 // That is, no bytecode is allowed to branch to two different 1345 // clones of the same code location. 1346 for (int j = 0; j < i; j++) { 1347 Block* block1 = _successors[j]; 1348 if (block1 == block2) continue; // duplicates are OK 1349 assert(block1->start() != block2->start(), "successors have unique bcis"); 1350 } 1351 #endif 1352 } 1353 } 1354 1355 //---------------------------successor_for_bci--------------------------------- 1356 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1357 for (int i = 0; i < all_successors(); i++) { 1358 Block* block2 = successor_at(i); 1359 if (block2->start() == bci) return block2; 1360 } 1361 // We can actually reach here if ciTypeFlow traps out a block 1362 // due to an unloaded class, and concurrently with compilation the 1363 // class is then loaded, so that a later phase of the parser is 1364 // able to see more of the bytecode CFG. Or, the flow pass and 1365 // the parser can have a minor difference of opinion about executability 1366 // of bytecodes. For example, "obj.field = null" is executable even 1367 // if the field's type is an unloaded class; the flow pass used to 1368 // make a trap for such code. 1369 return nullptr; 1370 } 1371 1372 1373 //-----------------------------stack_type_at----------------------------------- 1374 const Type* Parse::Block::stack_type_at(int i) const { 1375 return get_type(flow()->stack_type_at(i)); 1376 } 1377 1378 1379 //-----------------------------local_type_at----------------------------------- 1380 const Type* Parse::Block::local_type_at(int i) const { 1381 // Make dead locals fall to bottom. 1382 if (_live_locals.size() == 0) { 1383 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1384 // This bitmap can be zero length if we saw a breakpoint. 1385 // In such cases, pretend they are all live. 1386 ((Block*)this)->_live_locals = live_locals; 1387 } 1388 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1389 return Type::BOTTOM; 1390 1391 return get_type(flow()->local_type_at(i)); 1392 } 1393 1394 1395 #ifndef PRODUCT 1396 1397 //----------------------------name_for_bc-------------------------------------- 1398 // helper method for BytecodeParseHistogram 1399 static const char* name_for_bc(int i) { 1400 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1401 } 1402 1403 //----------------------------BytecodeParseHistogram------------------------------------ 1404 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1405 _parser = p; 1406 _compiler = c; 1407 if( ! _initialized ) { _initialized = true; reset(); } 1408 } 1409 1410 //----------------------------current_count------------------------------------ 1411 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1412 switch( bph_type ) { 1413 case BPH_transforms: { return _parser->gvn().made_progress(); } 1414 case BPH_values: { return _parser->gvn().made_new_values(); } 1415 default: { ShouldNotReachHere(); return 0; } 1416 } 1417 } 1418 1419 //----------------------------initialized-------------------------------------- 1420 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1421 1422 //----------------------------reset-------------------------------------------- 1423 void Parse::BytecodeParseHistogram::reset() { 1424 int i = Bytecodes::number_of_codes; 1425 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1426 } 1427 1428 //----------------------------set_initial_state-------------------------------- 1429 // Record info when starting to parse one bytecode 1430 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1431 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1432 _initial_bytecode = bc; 1433 _initial_node_count = _compiler->unique(); 1434 _initial_transforms = current_count(BPH_transforms); 1435 _initial_values = current_count(BPH_values); 1436 } 1437 } 1438 1439 //----------------------------record_change-------------------------------- 1440 // Record results of parsing one bytecode 1441 void Parse::BytecodeParseHistogram::record_change() { 1442 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1443 ++_bytecodes_parsed[_initial_bytecode]; 1444 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1445 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1446 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1447 } 1448 } 1449 1450 1451 //----------------------------print-------------------------------------------- 1452 void Parse::BytecodeParseHistogram::print(float cutoff) { 1453 ResourceMark rm; 1454 // print profile 1455 int total = 0; 1456 int i = 0; 1457 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1458 int abs_sum = 0; 1459 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1460 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1461 if( total == 0 ) { return; } 1462 tty->cr(); 1463 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1464 tty->print_cr("relative: percentage contribution to compiled nodes"); 1465 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1466 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1467 tty->print_cr("transforms: Average amount of transform progress per bytecode compiled"); 1468 tty->print_cr("values : Average number of node values improved per bytecode"); 1469 tty->print_cr("name : Bytecode name"); 1470 tty->cr(); 1471 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1472 tty->print_cr("----------------------------------------------------------------------"); 1473 while (--i > 0) { 1474 int abs = _bytecodes_parsed[i]; 1475 float rel = abs * 100.0F / total; 1476 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1477 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1478 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1479 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1480 if (cutoff <= rel) { 1481 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1482 abs_sum += abs; 1483 } 1484 } 1485 tty->print_cr("----------------------------------------------------------------------"); 1486 float rel_sum = abs_sum * 100.0F / total; 1487 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1488 tty->print_cr("----------------------------------------------------------------------"); 1489 tty->cr(); 1490 } 1491 #endif 1492 1493 //----------------------------load_state_from---------------------------------- 1494 // Load block/map/sp. But not do not touch iter/bci. 1495 void Parse::load_state_from(Block* block) { 1496 set_block(block); 1497 // load the block's JVM state: 1498 set_map(block->start_map()); 1499 set_sp( block->start_sp()); 1500 } 1501 1502 1503 //-----------------------------record_state------------------------------------ 1504 void Parse::Block::record_state(Parse* p) { 1505 assert(!is_merged(), "can only record state once, on 1st inflow"); 1506 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1507 set_start_map(p->stop()); 1508 } 1509 1510 1511 //------------------------------do_one_block----------------------------------- 1512 void Parse::do_one_block() { 1513 if (TraceOptoParse) { 1514 Block *b = block(); 1515 int ns = b->num_successors(); 1516 int nt = b->all_successors(); 1517 1518 tty->print("Parsing block #%d at bci [%d,%d), successors:", 1519 block()->rpo(), block()->start(), block()->limit()); 1520 for (int i = 0; i < nt; i++) { 1521 tty->print((( i < ns) ? " %d" : " %d(exception block)"), b->successor_at(i)->rpo()); 1522 } 1523 if (b->is_loop_head()) { 1524 tty->print(" loop head"); 1525 } 1526 if (b->is_irreducible_loop_entry()) { 1527 tty->print(" irreducible"); 1528 } 1529 tty->cr(); 1530 } 1531 1532 assert(block()->is_merged(), "must be merged before being parsed"); 1533 block()->mark_parsed(); 1534 1535 // Set iterator to start of block. 1536 iter().reset_to_bci(block()->start()); 1537 1538 if (ProfileExceptionHandlers && block()->is_handler()) { 1539 ciMethodData* methodData = method()->method_data(); 1540 if (methodData->is_mature()) { 1541 ciBitData data = methodData->exception_handler_bci_to_data(block()->start()); 1542 if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) { 1543 // dead catch block 1544 // Emit an uncommon trap instead of processing the block. 1545 set_parse_bci(block()->start()); 1546 uncommon_trap(Deoptimization::Reason_unreached, 1547 Deoptimization::Action_reinterpret, 1548 nullptr, "dead catch block"); 1549 return; 1550 } 1551 } 1552 } 1553 1554 CompileLog* log = C->log(); 1555 1556 // Parse bytecodes 1557 while (!stopped() && !failing()) { 1558 iter().next(); 1559 1560 // Learn the current bci from the iterator: 1561 set_parse_bci(iter().cur_bci()); 1562 1563 if (bci() == block()->limit()) { 1564 // Do not walk into the next block until directed by do_all_blocks. 1565 merge(bci()); 1566 break; 1567 } 1568 assert(bci() < block()->limit(), "bci still in block"); 1569 1570 if (log != nullptr) { 1571 // Output an optional context marker, to help place actions 1572 // that occur during parsing of this BC. If there is no log 1573 // output until the next context string, this context string 1574 // will be silently ignored. 1575 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1576 } 1577 1578 if (block()->has_trap_at(bci())) { 1579 // We must respect the flow pass's traps, because it will refuse 1580 // to produce successors for trapping blocks. 1581 int trap_index = block()->flow()->trap_index(); 1582 assert(trap_index != 0, "trap index must be valid"); 1583 uncommon_trap(trap_index); 1584 break; 1585 } 1586 1587 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1588 1589 #ifdef ASSERT 1590 int pre_bc_sp = sp(); 1591 int inputs, depth; 1592 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1593 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1594 #endif //ASSERT 1595 1596 do_one_bytecode(); 1597 if (failing()) return; 1598 1599 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1600 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1601 1602 do_exceptions(); 1603 1604 NOT_PRODUCT( parse_histogram()->record_change(); ); 1605 1606 if (log != nullptr) 1607 log->clear_context(); // skip marker if nothing was printed 1608 1609 // Fall into next bytecode. Each bytecode normally has 1 sequential 1610 // successor which is typically made ready by visiting this bytecode. 1611 // If the successor has several predecessors, then it is a merge 1612 // point, starts a new basic block, and is handled like other basic blocks. 1613 } 1614 } 1615 1616 1617 //------------------------------merge------------------------------------------ 1618 void Parse::set_parse_bci(int bci) { 1619 set_bci(bci); 1620 Node_Notes* nn = C->default_node_notes(); 1621 if (nn == nullptr) return; 1622 1623 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1624 if (!DebugInlinedCalls && depth() > 1) { 1625 return; 1626 } 1627 1628 // Update the JVMS annotation, if present. 1629 JVMState* jvms = nn->jvms(); 1630 if (jvms != nullptr && jvms->bci() != bci) { 1631 // Update the JVMS. 1632 jvms = jvms->clone_shallow(C); 1633 jvms->set_bci(bci); 1634 nn->set_jvms(jvms); 1635 } 1636 } 1637 1638 //------------------------------merge------------------------------------------ 1639 // Merge the current mapping into the basic block starting at bci 1640 void Parse::merge(int target_bci) { 1641 Block* target = successor_for_bci(target_bci); 1642 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1643 assert(!target->is_ready(), "our arrival must be expected"); 1644 int pnum = target->next_path_num(); 1645 merge_common(target, pnum); 1646 } 1647 1648 //-------------------------merge_new_path-------------------------------------- 1649 // Merge the current mapping into the basic block, using a new path 1650 void Parse::merge_new_path(int target_bci) { 1651 Block* target = successor_for_bci(target_bci); 1652 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1653 assert(!target->is_ready(), "new path into frozen graph"); 1654 int pnum = target->add_new_path(); 1655 merge_common(target, pnum); 1656 } 1657 1658 //-------------------------merge_exception------------------------------------- 1659 // Merge the current mapping into the basic block starting at bci 1660 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1661 void Parse::merge_exception(int target_bci) { 1662 #ifdef ASSERT 1663 if (target_bci <= bci()) { 1664 C->set_exception_backedge(); 1665 } 1666 #endif 1667 assert(sp() == 1, "must have only the throw exception on the stack"); 1668 Block* target = successor_for_bci(target_bci); 1669 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1670 assert(target->is_handler(), "exceptions are handled by special blocks"); 1671 int pnum = target->add_new_path(); 1672 merge_common(target, pnum); 1673 } 1674 1675 //--------------------handle_missing_successor--------------------------------- 1676 void Parse::handle_missing_successor(int target_bci) { 1677 #ifndef PRODUCT 1678 Block* b = block(); 1679 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1680 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1681 #endif 1682 ShouldNotReachHere(); 1683 } 1684 1685 //--------------------------merge_common--------------------------------------- 1686 void Parse::merge_common(Parse::Block* target, int pnum) { 1687 if (TraceOptoParse) { 1688 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1689 } 1690 1691 // Zap extra stack slots to top 1692 assert(sp() == target->start_sp(), ""); 1693 clean_stack(sp()); 1694 1695 if (!target->is_merged()) { // No prior mapping at this bci 1696 if (TraceOptoParse) { tty->print(" with empty state"); } 1697 1698 // If this path is dead, do not bother capturing it as a merge. 1699 // It is "as if" we had 1 fewer predecessors from the beginning. 1700 if (stopped()) { 1701 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1702 return; 1703 } 1704 1705 // Make a region if we know there are multiple or unpredictable inputs. 1706 // (Also, if this is a plain fall-through, we might see another region, 1707 // which must not be allowed into this block's map.) 1708 if (pnum > PhiNode::Input // Known multiple inputs. 1709 || target->is_handler() // These have unpredictable inputs. 1710 || target->is_loop_head() // Known multiple inputs 1711 || control()->is_Region()) { // We must hide this guy. 1712 1713 int current_bci = bci(); 1714 set_parse_bci(target->start()); // Set target bci 1715 if (target->is_SEL_head()) { 1716 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1717 if (target->start() == 0) { 1718 // Add Parse Predicates for the special case when 1719 // there are backbranches to the method entry. 1720 add_parse_predicates(); 1721 } 1722 } 1723 // Add a Region to start the new basic block. Phis will be added 1724 // later lazily. 1725 int edges = target->pred_count(); 1726 if (edges < pnum) edges = pnum; // might be a new path! 1727 RegionNode *r = new RegionNode(edges+1); 1728 gvn().set_type(r, Type::CONTROL); 1729 record_for_igvn(r); 1730 // zap all inputs to null for debugging (done in Node(uint) constructor) 1731 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); } 1732 r->init_req(pnum, control()); 1733 set_control(r); 1734 target->copy_irreducible_status_to(r, jvms()); 1735 set_parse_bci(current_bci); // Restore bci 1736 } 1737 1738 // Convert the existing Parser mapping into a mapping at this bci. 1739 store_state_to(target); 1740 assert(target->is_merged(), "do not come here twice"); 1741 1742 } else { // Prior mapping at this bci 1743 if (TraceOptoParse) { tty->print(" with previous state"); } 1744 #ifdef ASSERT 1745 if (target->is_SEL_head()) { 1746 target->mark_merged_backedge(block()); 1747 } 1748 #endif 1749 // We must not manufacture more phis if the target is already parsed. 1750 bool nophi = target->is_parsed(); 1751 1752 SafePointNode* newin = map();// Hang on to incoming mapping 1753 Block* save_block = block(); // Hang on to incoming block; 1754 load_state_from(target); // Get prior mapping 1755 1756 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1757 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1758 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1759 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1760 1761 // Iterate over my current mapping and the old mapping. 1762 // Where different, insert Phi functions. 1763 // Use any existing Phi functions. 1764 assert(control()->is_Region(), "must be merging to a region"); 1765 RegionNode* r = control()->as_Region(); 1766 1767 // Compute where to merge into 1768 // Merge incoming control path 1769 r->init_req(pnum, newin->control()); 1770 1771 if (pnum == 1) { // Last merge for this Region? 1772 if (!block()->flow()->is_irreducible_loop_secondary_entry()) { 1773 Node* result = _gvn.transform(r); 1774 if (r != result && TraceOptoParse) { 1775 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1776 } 1777 } 1778 record_for_igvn(r); 1779 } 1780 1781 // Update all the non-control inputs to map: 1782 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1783 bool check_elide_phi = target->is_SEL_backedge(save_block); 1784 for (uint j = 1; j < newin->req(); j++) { 1785 Node* m = map()->in(j); // Current state of target. 1786 Node* n = newin->in(j); // Incoming change to target state. 1787 PhiNode* phi; 1788 if (m->is_Phi() && m->as_Phi()->region() == r) 1789 phi = m->as_Phi(); 1790 else 1791 phi = nullptr; 1792 if (m != n) { // Different; must merge 1793 switch (j) { 1794 // Frame pointer and Return Address never changes 1795 case TypeFunc::FramePtr:// Drop m, use the original value 1796 case TypeFunc::ReturnAdr: 1797 break; 1798 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1799 assert(phi == nullptr, "the merge contains phis, not vice versa"); 1800 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1801 continue; 1802 default: // All normal stuff 1803 if (phi == nullptr) { 1804 const JVMState* jvms = map()->jvms(); 1805 if (EliminateNestedLocks && 1806 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1807 // BoxLock nodes are not commoning when EliminateNestedLocks is on. 1808 // Use old BoxLock node as merged box. 1809 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1810 // This assert also tests that nodes are BoxLock. 1811 assert(BoxLockNode::same_slot(n, m), "sanity"); 1812 BoxLockNode* old_box = m->as_BoxLock(); 1813 if (n->as_BoxLock()->is_unbalanced() && !old_box->is_unbalanced()) { 1814 // Preserve Unbalanced status. 1815 // 1816 // `old_box` can have only Regular or Coarsened status 1817 // because this code is executed only during Parse phase and 1818 // Incremental Inlining before EA and Macro nodes elimination. 1819 // 1820 // Incremental Inlining is executed after IGVN optimizations 1821 // during which BoxLock can be marked as Coarsened. 1822 old_box->set_coarsened(); // Verifies state 1823 old_box->set_unbalanced(); 1824 } 1825 C->gvn_replace_by(n, m); 1826 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1827 phi = ensure_phi(j, nophi); 1828 } 1829 } 1830 break; 1831 } 1832 } 1833 // At this point, n might be top if: 1834 // - there is no phi (because TypeFlow detected a conflict), or 1835 // - the corresponding control edges is top (a dead incoming path) 1836 // It is a bug if we create a phi which sees a garbage value on a live path. 1837 1838 if (phi != nullptr) { 1839 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1840 assert(phi->region() == r, ""); 1841 phi->set_req(pnum, n); // Then add 'n' to the merge 1842 if (pnum == PhiNode::Input) { 1843 // Last merge for this Phi. 1844 // So far, Phis have had a reasonable type from ciTypeFlow. 1845 // Now _gvn will join that with the meet of current inputs. 1846 // BOTTOM is never permissible here, 'cause pessimistically 1847 // Phis of pointers cannot lose the basic pointer type. 1848 debug_only(const Type* bt1 = phi->bottom_type()); 1849 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1850 map()->set_req(j, _gvn.transform(phi)); 1851 debug_only(const Type* bt2 = phi->bottom_type()); 1852 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1853 record_for_igvn(phi); 1854 } 1855 } 1856 } // End of for all values to be merged 1857 1858 if (pnum == PhiNode::Input && 1859 !r->in(0)) { // The occasional useless Region 1860 assert(control() == r, ""); 1861 set_control(r->nonnull_req()); 1862 } 1863 1864 map()->merge_replaced_nodes_with(newin); 1865 1866 // newin has been subsumed into the lazy merge, and is now dead. 1867 set_block(save_block); 1868 1869 stop(); // done with this guy, for now 1870 } 1871 1872 if (TraceOptoParse) { 1873 tty->print_cr(" on path %d", pnum); 1874 } 1875 1876 // Done with this parser state. 1877 assert(stopped(), ""); 1878 } 1879 1880 1881 //--------------------------merge_memory_edges--------------------------------- 1882 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 1883 // (nophi means we must not create phis, because we already parsed here) 1884 assert(n != nullptr, ""); 1885 // Merge the inputs to the MergeMems 1886 MergeMemNode* m = merged_memory(); 1887 1888 assert(control()->is_Region(), "must be merging to a region"); 1889 RegionNode* r = control()->as_Region(); 1890 1891 PhiNode* base = nullptr; 1892 MergeMemNode* remerge = nullptr; 1893 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 1894 Node *p = mms.force_memory(); 1895 Node *q = mms.memory2(); 1896 if (mms.is_empty() && nophi) { 1897 // Trouble: No new splits allowed after a loop body is parsed. 1898 // Instead, wire the new split into a MergeMem on the backedge. 1899 // The optimizer will sort it out, slicing the phi. 1900 if (remerge == nullptr) { 1901 guarantee(base != nullptr, ""); 1902 assert(base->in(0) != nullptr, "should not be xformed away"); 1903 remerge = MergeMemNode::make(base->in(pnum)); 1904 gvn().set_type(remerge, Type::MEMORY); 1905 base->set_req(pnum, remerge); 1906 } 1907 remerge->set_memory_at(mms.alias_idx(), q); 1908 continue; 1909 } 1910 assert(!q->is_MergeMem(), ""); 1911 PhiNode* phi; 1912 if (p != q) { 1913 phi = ensure_memory_phi(mms.alias_idx(), nophi); 1914 } else { 1915 if (p->is_Phi() && p->as_Phi()->region() == r) 1916 phi = p->as_Phi(); 1917 else 1918 phi = nullptr; 1919 } 1920 // Insert q into local phi 1921 if (phi != nullptr) { 1922 assert(phi->region() == r, ""); 1923 p = phi; 1924 phi->set_req(pnum, q); 1925 if (mms.at_base_memory()) { 1926 base = phi; // delay transforming it 1927 } else if (pnum == 1) { 1928 record_for_igvn(phi); 1929 p = _gvn.transform(phi); 1930 } 1931 mms.set_memory(p);// store back through the iterator 1932 } 1933 } 1934 // Transform base last, in case we must fiddle with remerging. 1935 if (base != nullptr && pnum == 1) { 1936 record_for_igvn(base); 1937 m->set_base_memory(_gvn.transform(base)); 1938 } 1939 } 1940 1941 1942 //------------------------ensure_phis_everywhere------------------------------- 1943 void Parse::ensure_phis_everywhere() { 1944 ensure_phi(TypeFunc::I_O); 1945 1946 // Ensure a phi on all currently known memories. 1947 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 1948 ensure_memory_phi(mms.alias_idx()); 1949 debug_only(mms.set_memory()); // keep the iterator happy 1950 } 1951 1952 // Note: This is our only chance to create phis for memory slices. 1953 // If we miss a slice that crops up later, it will have to be 1954 // merged into the base-memory phi that we are building here. 1955 // Later, the optimizer will comb out the knot, and build separate 1956 // phi-loops for each memory slice that matters. 1957 1958 // Monitors must nest nicely and not get confused amongst themselves. 1959 // Phi-ify everything up to the monitors, though. 1960 uint monoff = map()->jvms()->monoff(); 1961 uint nof_monitors = map()->jvms()->nof_monitors(); 1962 1963 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 1964 bool check_elide_phi = block()->is_SEL_head(); 1965 for (uint i = TypeFunc::Parms; i < monoff; i++) { 1966 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 1967 ensure_phi(i); 1968 } 1969 } 1970 1971 // Even monitors need Phis, though they are well-structured. 1972 // This is true for OSR methods, and also for the rare cases where 1973 // a monitor object is the subject of a replace_in_map operation. 1974 // See bugs 4426707 and 5043395. 1975 for (uint m = 0; m < nof_monitors; m++) { 1976 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 1977 } 1978 } 1979 1980 1981 //-----------------------------add_new_path------------------------------------ 1982 // Add a previously unaccounted predecessor to this block. 1983 int Parse::Block::add_new_path() { 1984 // If there is no map, return the lowest unused path number. 1985 if (!is_merged()) return pred_count()+1; // there will be a map shortly 1986 1987 SafePointNode* map = start_map(); 1988 if (!map->control()->is_Region()) 1989 return pred_count()+1; // there may be a region some day 1990 RegionNode* r = map->control()->as_Region(); 1991 1992 // Add new path to the region. 1993 uint pnum = r->req(); 1994 r->add_req(nullptr); 1995 1996 for (uint i = 1; i < map->req(); i++) { 1997 Node* n = map->in(i); 1998 if (i == TypeFunc::Memory) { 1999 // Ensure a phi on all currently known memories. 2000 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 2001 Node* phi = mms.memory(); 2002 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 2003 assert(phi->req() == pnum, "must be same size as region"); 2004 phi->add_req(nullptr); 2005 } 2006 } 2007 } else { 2008 if (n->is_Phi() && n->as_Phi()->region() == r) { 2009 assert(n->req() == pnum, "must be same size as region"); 2010 n->add_req(nullptr); 2011 } 2012 } 2013 } 2014 2015 return pnum; 2016 } 2017 2018 //------------------------------ensure_phi------------------------------------- 2019 // Turn the idx'th entry of the current map into a Phi 2020 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 2021 SafePointNode* map = this->map(); 2022 Node* region = map->control(); 2023 assert(region->is_Region(), ""); 2024 2025 Node* o = map->in(idx); 2026 assert(o != nullptr, ""); 2027 2028 if (o == top()) return nullptr; // TOP always merges into TOP 2029 2030 if (o->is_Phi() && o->as_Phi()->region() == region) { 2031 return o->as_Phi(); 2032 } 2033 2034 // Now use a Phi here for merging 2035 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2036 const JVMState* jvms = map->jvms(); 2037 const Type* t = nullptr; 2038 if (jvms->is_loc(idx)) { 2039 t = block()->local_type_at(idx - jvms->locoff()); 2040 } else if (jvms->is_stk(idx)) { 2041 t = block()->stack_type_at(idx - jvms->stkoff()); 2042 } else if (jvms->is_mon(idx)) { 2043 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 2044 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 2045 } else if ((uint)idx < TypeFunc::Parms) { 2046 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 2047 } else { 2048 assert(false, "no type information for this phi"); 2049 } 2050 2051 // If the type falls to bottom, then this must be a local that 2052 // is mixing ints and oops or some such. Forcing it to top 2053 // makes it go dead. 2054 if (t == Type::BOTTOM) { 2055 map->set_req(idx, top()); 2056 return nullptr; 2057 } 2058 2059 // Do not create phis for top either. 2060 // A top on a non-null control flow must be an unused even after the.phi. 2061 if (t == Type::TOP || t == Type::HALF) { 2062 map->set_req(idx, top()); 2063 return nullptr; 2064 } 2065 2066 PhiNode* phi = PhiNode::make(region, o, t); 2067 gvn().set_type(phi, t); 2068 if (C->do_escape_analysis()) record_for_igvn(phi); 2069 map->set_req(idx, phi); 2070 return phi; 2071 } 2072 2073 //--------------------------ensure_memory_phi---------------------------------- 2074 // Turn the idx'th slice of the current memory into a Phi 2075 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2076 MergeMemNode* mem = merged_memory(); 2077 Node* region = control(); 2078 assert(region->is_Region(), ""); 2079 2080 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2081 assert(o != nullptr && o != top(), ""); 2082 2083 PhiNode* phi; 2084 if (o->is_Phi() && o->as_Phi()->region() == region) { 2085 phi = o->as_Phi(); 2086 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2087 // clone the shared base memory phi to make a new memory split 2088 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2089 const Type* t = phi->bottom_type(); 2090 const TypePtr* adr_type = C->get_adr_type(idx); 2091 phi = phi->slice_memory(adr_type); 2092 gvn().set_type(phi, t); 2093 } 2094 return phi; 2095 } 2096 2097 // Now use a Phi here for merging 2098 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2099 const Type* t = o->bottom_type(); 2100 const TypePtr* adr_type = C->get_adr_type(idx); 2101 phi = PhiNode::make(region, o, t, adr_type); 2102 gvn().set_type(phi, t); 2103 if (idx == Compile::AliasIdxBot) 2104 mem->set_base_memory(phi); 2105 else 2106 mem->set_memory_at(idx, phi); 2107 return phi; 2108 } 2109 2110 //------------------------------call_register_finalizer----------------------- 2111 // Check the klass of the receiver and call register_finalizer if the 2112 // class need finalization. 2113 void Parse::call_register_finalizer() { 2114 Node* receiver = local(0); 2115 assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr, 2116 "must have non-null instance type"); 2117 2118 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2119 if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) { 2120 // The type isn't known exactly so see if CHA tells us anything. 2121 ciInstanceKlass* ik = tinst->instance_klass(); 2122 if (!Dependencies::has_finalizable_subclass(ik)) { 2123 // No finalizable subclasses so skip the dynamic check. 2124 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2125 return; 2126 } 2127 } 2128 2129 // Insert a dynamic test for whether the instance needs 2130 // finalization. In general this will fold up since the concrete 2131 // class is often visible so the access flags are constant. 2132 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2133 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2134 2135 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::misc_flags_offset())); 2136 Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2137 2138 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(KlassFlags::_misc_has_finalizer))); 2139 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2140 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2141 2142 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2143 2144 RegionNode* result_rgn = new RegionNode(3); 2145 record_for_igvn(result_rgn); 2146 2147 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2148 result_rgn->init_req(1, skip_register); 2149 2150 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2151 set_control(needs_register); 2152 if (stopped()) { 2153 // There is no slow path. 2154 result_rgn->init_req(2, top()); 2155 } else { 2156 Node *call = make_runtime_call(RC_NO_LEAF, 2157 OptoRuntime::register_finalizer_Type(), 2158 OptoRuntime::register_finalizer_Java(), 2159 nullptr, TypePtr::BOTTOM, 2160 receiver); 2161 make_slow_call_ex(call, env()->Throwable_klass(), true); 2162 2163 Node* fast_io = call->in(TypeFunc::I_O); 2164 Node* fast_mem = call->in(TypeFunc::Memory); 2165 // These two phis are pre-filled with copies of of the fast IO and Memory 2166 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2167 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2168 2169 result_rgn->init_req(2, control()); 2170 io_phi ->init_req(2, i_o()); 2171 mem_phi ->init_req(2, reset_memory()); 2172 2173 set_all_memory( _gvn.transform(mem_phi) ); 2174 set_i_o( _gvn.transform(io_phi) ); 2175 } 2176 2177 set_control( _gvn.transform(result_rgn) ); 2178 } 2179 2180 // Add check to deoptimize once holder klass is fully initialized. 2181 void Parse::clinit_deopt() { 2182 if (method()->holder()->is_initialized()) { 2183 return; // in case do_clinit_barriers() is true 2184 } 2185 assert(C->has_method(), "only for normal compilations"); 2186 assert(depth() == 1, "only for main compiled method"); 2187 assert(is_normal_parse(), "no barrier needed on osr entry"); 2188 assert(!method()->holder()->is_not_initialized(), "initialization should have been started"); 2189 2190 set_parse_bci(0); 2191 2192 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces)); 2193 guard_klass_being_initialized(holder); 2194 } 2195 2196 //------------------------------return_current--------------------------------- 2197 // Append current _map to _exit_return 2198 void Parse::return_current(Node* value) { 2199 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2200 call_register_finalizer(); 2201 } 2202 2203 // Do not set_parse_bci, so that return goo is credited to the return insn. 2204 set_bci(InvocationEntryBci); 2205 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2206 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2207 } 2208 if (C->env()->dtrace_method_probes()) { 2209 make_dtrace_method_exit(method()); 2210 } 2211 SafePointNode* exit_return = _exits.map(); 2212 exit_return->in( TypeFunc::Control )->add_req( control() ); 2213 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2214 Node *mem = exit_return->in( TypeFunc::Memory ); 2215 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2216 if (mms.is_empty()) { 2217 // get a copy of the base memory, and patch just this one input 2218 const TypePtr* adr_type = mms.adr_type(C); 2219 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2220 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2221 gvn().set_type_bottom(phi); 2222 phi->del_req(phi->req()-1); // prepare to re-patch 2223 mms.set_memory(phi); 2224 } 2225 mms.memory()->add_req(mms.memory2()); 2226 } 2227 2228 // frame pointer is always same, already captured 2229 if (value != nullptr) { 2230 // If returning oops to an interface-return, there is a silent free 2231 // cast from oop to interface allowed by the Verifier. Make it explicit 2232 // here. 2233 Node* phi = _exits.argument(0); 2234 phi->add_req(value); 2235 } 2236 2237 if (_first_return) { 2238 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2239 _first_return = false; 2240 } else { 2241 _exits.map()->merge_replaced_nodes_with(map()); 2242 } 2243 2244 stop_and_kill_map(); // This CFG path dies here 2245 } 2246 2247 2248 //------------------------------add_safepoint---------------------------------- 2249 void Parse::add_safepoint() { 2250 uint parms = TypeFunc::Parms+1; 2251 2252 // Clear out dead values from the debug info. 2253 kill_dead_locals(); 2254 2255 // Clone the JVM State 2256 SafePointNode *sfpnt = new SafePointNode(parms, nullptr); 2257 2258 // Capture memory state BEFORE a SafePoint. Since we can block at a 2259 // SafePoint we need our GC state to be safe; i.e. we need all our current 2260 // write barriers (card marks) to not float down after the SafePoint so we 2261 // must read raw memory. Likewise we need all oop stores to match the card 2262 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2263 // state on a deopt). 2264 2265 // We do not need to WRITE the memory state after a SafePoint. The control 2266 // edge will keep card-marks and oop-stores from floating up from below a 2267 // SafePoint and our true dependency added here will keep them from floating 2268 // down below a SafePoint. 2269 2270 // Clone the current memory state 2271 Node* mem = MergeMemNode::make(map()->memory()); 2272 2273 mem = _gvn.transform(mem); 2274 2275 // Pass control through the safepoint 2276 sfpnt->init_req(TypeFunc::Control , control()); 2277 // Fix edges normally used by a call 2278 sfpnt->init_req(TypeFunc::I_O , top() ); 2279 sfpnt->init_req(TypeFunc::Memory , mem ); 2280 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2281 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2282 2283 // Create a node for the polling address 2284 Node *polladr; 2285 Node *thread = _gvn.transform(new ThreadLocalNode()); 2286 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset()))); 2287 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 2288 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2289 2290 // Fix up the JVM State edges 2291 add_safepoint_edges(sfpnt); 2292 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2293 set_control(transformed_sfpnt); 2294 2295 // Provide an edge from root to safepoint. This makes the safepoint 2296 // appear useful until the parse has completed. 2297 if (transformed_sfpnt->is_SafePoint()) { 2298 assert(C->root() != nullptr, "Expect parse is still valid"); 2299 C->root()->add_prec(transformed_sfpnt); 2300 } 2301 } 2302 2303 #ifndef PRODUCT 2304 //------------------------show_parse_info-------------------------------------- 2305 void Parse::show_parse_info() { 2306 InlineTree* ilt = nullptr; 2307 if (C->ilt() != nullptr) { 2308 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2309 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2310 } 2311 if (PrintCompilation && Verbose) { 2312 if (depth() == 1) { 2313 if( ilt->count_inlines() ) { 2314 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2315 ilt->count_inline_bcs()); 2316 tty->cr(); 2317 } 2318 } else { 2319 if (method()->is_synchronized()) tty->print("s"); 2320 if (method()->has_exception_handlers()) tty->print("!"); 2321 // Check this is not the final compiled version 2322 if (C->trap_can_recompile()) { 2323 tty->print("-"); 2324 } else { 2325 tty->print(" "); 2326 } 2327 method()->print_short_name(); 2328 if (is_osr_parse()) { 2329 tty->print(" @ %d", osr_bci()); 2330 } 2331 tty->print(" (%d bytes)",method()->code_size()); 2332 if (ilt->count_inlines()) { 2333 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2334 ilt->count_inline_bcs()); 2335 } 2336 tty->cr(); 2337 } 2338 } 2339 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2340 // Print that we succeeded; suppress this message on the first osr parse. 2341 2342 if (method()->is_synchronized()) tty->print("s"); 2343 if (method()->has_exception_handlers()) tty->print("!"); 2344 // Check this is not the final compiled version 2345 if (C->trap_can_recompile() && depth() == 1) { 2346 tty->print("-"); 2347 } else { 2348 tty->print(" "); 2349 } 2350 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2351 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2352 method()->print_short_name(); 2353 if (is_osr_parse()) { 2354 tty->print(" @ %d", osr_bci()); 2355 } 2356 if (ilt->caller_bci() != -1) { 2357 tty->print(" @ %d", ilt->caller_bci()); 2358 } 2359 tty->print(" (%d bytes)",method()->code_size()); 2360 if (ilt->count_inlines()) { 2361 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2362 ilt->count_inline_bcs()); 2363 } 2364 tty->cr(); 2365 } 2366 } 2367 2368 2369 //------------------------------dump------------------------------------------- 2370 // Dump information associated with the bytecodes of current _method 2371 void Parse::dump() { 2372 if( method() != nullptr ) { 2373 // Iterate over bytecodes 2374 ciBytecodeStream iter(method()); 2375 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2376 dump_bci( iter.cur_bci() ); 2377 tty->cr(); 2378 } 2379 } 2380 } 2381 2382 // Dump information associated with a byte code index, 'bci' 2383 void Parse::dump_bci(int bci) { 2384 // Output info on merge-points, cloning, and within _jsr..._ret 2385 // NYI 2386 tty->print(" bci:%d", bci); 2387 } 2388 2389 #endif