1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciMethodData.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "interpreter/linkResolver.hpp" 29 #include "jvm_io.h" 30 #include "memory/resourceArea.hpp" 31 #include "memory/universe.hpp" 32 #include "oops/oop.inline.hpp" 33 #include "opto/addnode.hpp" 34 #include "opto/castnode.hpp" 35 #include "opto/convertnode.hpp" 36 #include "opto/divnode.hpp" 37 #include "opto/idealGraphPrinter.hpp" 38 #include "opto/matcher.hpp" 39 #include "opto/memnode.hpp" 40 #include "opto/mulnode.hpp" 41 #include "opto/opaquenode.hpp" 42 #include "opto/parse.hpp" 43 #include "opto/runtime.hpp" 44 #include "runtime/deoptimization.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 47 #ifndef PRODUCT 48 extern uint explicit_null_checks_inserted, 49 explicit_null_checks_elided; 50 #endif 51 52 //---------------------------------array_load---------------------------------- 53 void Parse::array_load(BasicType bt) { 54 const Type* elemtype = Type::TOP; 55 bool big_val = bt == T_DOUBLE || bt == T_LONG; 56 Node* adr = array_addressing(bt, 0, elemtype); 57 if (stopped()) return; // guaranteed null or range check 58 59 pop(); // index (already used) 60 Node* array = pop(); // the array itself 61 62 if (elemtype == TypeInt::BOOL) { 63 bt = T_BOOLEAN; 64 } 65 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 66 67 Node* ld = access_load_at(array, adr, adr_type, elemtype, bt, 68 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD); 69 if (big_val) { 70 push_pair(ld); 71 } else { 72 push(ld); 73 } 74 } 75 76 77 //--------------------------------array_store---------------------------------- 78 void Parse::array_store(BasicType bt) { 79 const Type* elemtype = Type::TOP; 80 bool big_val = bt == T_DOUBLE || bt == T_LONG; 81 Node* adr = array_addressing(bt, big_val ? 2 : 1, elemtype); 82 if (stopped()) return; // guaranteed null or range check 83 if (bt == T_OBJECT) { 84 array_store_check(); 85 if (stopped()) { 86 return; 87 } 88 } 89 Node* val; // Oop to store 90 if (big_val) { 91 val = pop_pair(); 92 } else { 93 val = pop(); 94 } 95 pop(); // index (already used) 96 Node* array = pop(); // the array itself 97 98 if (elemtype == TypeInt::BOOL) { 99 bt = T_BOOLEAN; 100 } 101 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 102 103 access_store_at(array, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY); 104 } 105 106 107 //------------------------------array_addressing------------------------------- 108 // Pull array and index from the stack. Compute pointer-to-element. 109 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) { 110 Node *idx = peek(0+vals); // Get from stack without popping 111 Node *ary = peek(1+vals); // in case of exception 112 113 // Null check the array base, with correct stack contents 114 ary = null_check(ary, T_ARRAY); 115 // Compile-time detect of null-exception? 116 if (stopped()) return top(); 117 118 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 119 const TypeInt* sizetype = arytype->size(); 120 elemtype = arytype->elem(); 121 122 if (UseUniqueSubclasses) { 123 const Type* el = elemtype->make_ptr(); 124 if (el && el->isa_instptr()) { 125 const TypeInstPtr* toop = el->is_instptr(); 126 if (toop->instance_klass()->unique_concrete_subklass()) { 127 // If we load from "AbstractClass[]" we must see "ConcreteSubClass". 128 const Type* subklass = Type::get_const_type(toop->instance_klass()); 129 elemtype = subklass->join_speculative(el); 130 } 131 } 132 } 133 134 // Check for big class initializers with all constant offsets 135 // feeding into a known-size array. 136 const TypeInt* idxtype = _gvn.type(idx)->is_int(); 137 // See if the highest idx value is less than the lowest array bound, 138 // and if the idx value cannot be negative: 139 bool need_range_check = true; 140 if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) { 141 need_range_check = false; 142 if (C->log() != nullptr) C->log()->elem("observe that='!need_range_check'"); 143 } 144 145 if (!arytype->is_loaded()) { 146 // Only fails for some -Xcomp runs 147 // The class is unloaded. We have to run this bytecode in the interpreter. 148 ciKlass* klass = arytype->unloaded_klass(); 149 150 uncommon_trap(Deoptimization::Reason_unloaded, 151 Deoptimization::Action_reinterpret, 152 klass, "!loaded array"); 153 return top(); 154 } 155 156 // Do the range check 157 if (need_range_check) { 158 Node* tst; 159 if (sizetype->_hi <= 0) { 160 // The greatest array bound is negative, so we can conclude that we're 161 // compiling unreachable code, but the unsigned compare trick used below 162 // only works with non-negative lengths. Instead, hack "tst" to be zero so 163 // the uncommon_trap path will always be taken. 164 tst = _gvn.intcon(0); 165 } else { 166 // Range is constant in array-oop, so we can use the original state of mem 167 Node* len = load_array_length(ary); 168 169 // Test length vs index (standard trick using unsigned compare) 170 Node* chk = _gvn.transform( new CmpUNode(idx, len) ); 171 BoolTest::mask btest = BoolTest::lt; 172 tst = _gvn.transform( new BoolNode(chk, btest) ); 173 } 174 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN); 175 _gvn.set_type(rc, rc->Value(&_gvn)); 176 if (!tst->is_Con()) { 177 record_for_igvn(rc); 178 } 179 set_control(_gvn.transform(new IfTrueNode(rc))); 180 // Branch to failure if out of bounds 181 { 182 PreserveJVMState pjvms(this); 183 set_control(_gvn.transform(new IfFalseNode(rc))); 184 if (C->allow_range_check_smearing()) { 185 // Do not use builtin_throw, since range checks are sometimes 186 // made more stringent by an optimistic transformation. 187 // This creates "tentative" range checks at this point, 188 // which are not guaranteed to throw exceptions. 189 // See IfNode::Ideal, is_range_check, adjust_check. 190 uncommon_trap(Deoptimization::Reason_range_check, 191 Deoptimization::Action_make_not_entrant, 192 nullptr, "range_check"); 193 } else { 194 // If we have already recompiled with the range-check-widening 195 // heroic optimization turned off, then we must really be throwing 196 // range check exceptions. 197 builtin_throw(Deoptimization::Reason_range_check); 198 } 199 } 200 } 201 // Check for always knowing you are throwing a range-check exception 202 if (stopped()) return top(); 203 204 // Make array address computation control dependent to prevent it 205 // from floating above the range check during loop optimizations. 206 Node* ptr = array_element_address(ary, idx, type, sizetype, control()); 207 assert(ptr != top(), "top should go hand-in-hand with stopped"); 208 209 return ptr; 210 } 211 212 213 // returns IfNode 214 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) { 215 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 216 Node *tst = _gvn.transform(new BoolNode(cmp, mask)); 217 IfNode *iff = create_and_map_if(control(), tst, prob, cnt); 218 return iff; 219 } 220 221 222 // sentinel value for the target bci to mark never taken branches 223 // (according to profiling) 224 static const int never_reached = INT_MAX; 225 226 //------------------------------helper for tableswitch------------------------- 227 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 228 // True branch, use existing map info 229 { PreserveJVMState pjvms(this); 230 Node *iftrue = _gvn.transform( new IfTrueNode (iff) ); 231 set_control( iftrue ); 232 if (unc) { 233 repush_if_args(); 234 uncommon_trap(Deoptimization::Reason_unstable_if, 235 Deoptimization::Action_reinterpret, 236 nullptr, 237 "taken always"); 238 } else { 239 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 240 merge_new_path(dest_bci_if_true); 241 } 242 } 243 244 // False branch 245 Node *iffalse = _gvn.transform( new IfFalseNode(iff) ); 246 set_control( iffalse ); 247 } 248 249 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 250 // True branch, use existing map info 251 { PreserveJVMState pjvms(this); 252 Node *iffalse = _gvn.transform( new IfFalseNode (iff) ); 253 set_control( iffalse ); 254 if (unc) { 255 repush_if_args(); 256 uncommon_trap(Deoptimization::Reason_unstable_if, 257 Deoptimization::Action_reinterpret, 258 nullptr, 259 "taken never"); 260 } else { 261 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 262 merge_new_path(dest_bci_if_true); 263 } 264 } 265 266 // False branch 267 Node *iftrue = _gvn.transform( new IfTrueNode(iff) ); 268 set_control( iftrue ); 269 } 270 271 void Parse::jump_if_always_fork(int dest_bci, bool unc) { 272 // False branch, use existing map and control() 273 if (unc) { 274 repush_if_args(); 275 uncommon_trap(Deoptimization::Reason_unstable_if, 276 Deoptimization::Action_reinterpret, 277 nullptr, 278 "taken never"); 279 } else { 280 assert(dest_bci != never_reached, "inconsistent dest"); 281 merge_new_path(dest_bci); 282 } 283 } 284 285 286 extern "C" { 287 static int jint_cmp(const void *i, const void *j) { 288 int a = *(jint *)i; 289 int b = *(jint *)j; 290 return a > b ? 1 : a < b ? -1 : 0; 291 } 292 } 293 294 295 class SwitchRange : public StackObj { 296 // a range of integers coupled with a bci destination 297 jint _lo; // inclusive lower limit 298 jint _hi; // inclusive upper limit 299 int _dest; 300 float _cnt; // how many times this range was hit according to profiling 301 302 public: 303 jint lo() const { return _lo; } 304 jint hi() const { return _hi; } 305 int dest() const { return _dest; } 306 bool is_singleton() const { return _lo == _hi; } 307 float cnt() const { return _cnt; } 308 309 void setRange(jint lo, jint hi, int dest, float cnt) { 310 assert(lo <= hi, "must be a non-empty range"); 311 _lo = lo, _hi = hi; _dest = dest; _cnt = cnt; 312 assert(_cnt >= 0, ""); 313 } 314 bool adjoinRange(jint lo, jint hi, int dest, float cnt, bool trim_ranges) { 315 assert(lo <= hi, "must be a non-empty range"); 316 if (lo == _hi+1) { 317 // see merge_ranges() comment below 318 if (trim_ranges) { 319 if (cnt == 0) { 320 if (_cnt != 0) { 321 return false; 322 } 323 if (dest != _dest) { 324 _dest = never_reached; 325 } 326 } else { 327 if (_cnt == 0) { 328 return false; 329 } 330 if (dest != _dest) { 331 return false; 332 } 333 } 334 } else { 335 if (dest != _dest) { 336 return false; 337 } 338 } 339 _hi = hi; 340 _cnt += cnt; 341 return true; 342 } 343 return false; 344 } 345 346 void set (jint value, int dest, float cnt) { 347 setRange(value, value, dest, cnt); 348 } 349 bool adjoin(jint value, int dest, float cnt, bool trim_ranges) { 350 return adjoinRange(value, value, dest, cnt, trim_ranges); 351 } 352 bool adjoin(SwitchRange& other) { 353 return adjoinRange(other._lo, other._hi, other._dest, other._cnt, false); 354 } 355 356 void print() { 357 if (is_singleton()) 358 tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt()); 359 else if (lo() == min_jint) 360 tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt()); 361 else if (hi() == max_jint) 362 tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt()); 363 else 364 tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt()); 365 } 366 }; 367 368 // We try to minimize the number of ranges and the size of the taken 369 // ones using profiling data. When ranges are created, 370 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge 371 // if both were never hit or both were hit to build longer unreached 372 // ranges. Here, we now merge adjoining ranges with the same 373 // destination and finally set destination of unreached ranges to the 374 // special value never_reached because it can help minimize the number 375 // of tests that are necessary. 376 // 377 // For instance: 378 // [0, 1] to target1 sometimes taken 379 // [1, 2] to target1 never taken 380 // [2, 3] to target2 never taken 381 // would lead to: 382 // [0, 1] to target1 sometimes taken 383 // [1, 3] never taken 384 // 385 // (first 2 ranges to target1 are not merged) 386 static void merge_ranges(SwitchRange* ranges, int& rp) { 387 if (rp == 0) { 388 return; 389 } 390 int shift = 0; 391 for (int j = 0; j < rp; j++) { 392 SwitchRange& r1 = ranges[j-shift]; 393 SwitchRange& r2 = ranges[j+1]; 394 if (r1.adjoin(r2)) { 395 shift++; 396 } else if (shift > 0) { 397 ranges[j+1-shift] = r2; 398 } 399 } 400 rp -= shift; 401 for (int j = 0; j <= rp; j++) { 402 SwitchRange& r = ranges[j]; 403 if (r.cnt() == 0 && r.dest() != never_reached) { 404 r.setRange(r.lo(), r.hi(), never_reached, r.cnt()); 405 } 406 } 407 } 408 409 //-------------------------------do_tableswitch-------------------------------- 410 void Parse::do_tableswitch() { 411 // Get information about tableswitch 412 int default_dest = iter().get_dest_table(0); 413 jint lo_index = iter().get_int_table(1); 414 jint hi_index = iter().get_int_table(2); 415 int len = hi_index - lo_index + 1; 416 417 if (len < 1) { 418 // If this is a backward branch, add safepoint 419 maybe_add_safepoint(default_dest); 420 pop(); // the effect of the instruction execution on the operand stack 421 merge(default_dest); 422 return; 423 } 424 425 ciMethodData* methodData = method()->method_data(); 426 ciMultiBranchData* profile = nullptr; 427 if (methodData->is_mature() && UseSwitchProfiling) { 428 ciProfileData* data = methodData->bci_to_data(bci()); 429 if (data != nullptr && data->is_MultiBranchData()) { 430 profile = (ciMultiBranchData*)data; 431 } 432 } 433 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 434 435 // generate decision tree, using trichotomy when possible 436 int rnum = len+2; 437 bool makes_backward_branch = (default_dest <= bci()); 438 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 439 int rp = -1; 440 if (lo_index != min_jint) { 441 float cnt = 1.0F; 442 if (profile != nullptr) { 443 cnt = (float)profile->default_count() / (hi_index != max_jint ? 2.0F : 1.0F); 444 } 445 ranges[++rp].setRange(min_jint, lo_index-1, default_dest, cnt); 446 } 447 for (int j = 0; j < len; j++) { 448 jint match_int = lo_index+j; 449 int dest = iter().get_dest_table(j+3); 450 makes_backward_branch |= (dest <= bci()); 451 float cnt = 1.0F; 452 if (profile != nullptr) { 453 cnt = (float)profile->count_at(j); 454 } 455 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, cnt, trim_ranges)) { 456 ranges[++rp].set(match_int, dest, cnt); 457 } 458 } 459 jint highest = lo_index+(len-1); 460 assert(ranges[rp].hi() == highest, ""); 461 if (highest != max_jint) { 462 float cnt = 1.0F; 463 if (profile != nullptr) { 464 cnt = (float)profile->default_count() / (lo_index != min_jint ? 2.0F : 1.0F); 465 } 466 if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, cnt, trim_ranges)) { 467 ranges[++rp].setRange(highest+1, max_jint, default_dest, cnt); 468 } 469 } 470 assert(rp < len+2, "not too many ranges"); 471 472 if (trim_ranges) { 473 merge_ranges(ranges, rp); 474 } 475 476 // Safepoint in case if backward branch observed 477 if (makes_backward_branch) { 478 add_safepoint(); 479 } 480 481 Node* lookup = pop(); // lookup value 482 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 483 } 484 485 486 //------------------------------do_lookupswitch-------------------------------- 487 void Parse::do_lookupswitch() { 488 // Get information about lookupswitch 489 int default_dest = iter().get_dest_table(0); 490 jint len = iter().get_int_table(1); 491 492 if (len < 1) { // If this is a backward branch, add safepoint 493 maybe_add_safepoint(default_dest); 494 pop(); // the effect of the instruction execution on the operand stack 495 merge(default_dest); 496 return; 497 } 498 499 ciMethodData* methodData = method()->method_data(); 500 ciMultiBranchData* profile = nullptr; 501 if (methodData->is_mature() && UseSwitchProfiling) { 502 ciProfileData* data = methodData->bci_to_data(bci()); 503 if (data != nullptr && data->is_MultiBranchData()) { 504 profile = (ciMultiBranchData*)data; 505 } 506 } 507 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 508 509 // generate decision tree, using trichotomy when possible 510 jint* table = NEW_RESOURCE_ARRAY(jint, len*3); 511 { 512 for (int j = 0; j < len; j++) { 513 table[3*j+0] = iter().get_int_table(2+2*j); 514 table[3*j+1] = iter().get_dest_table(2+2*j+1); 515 // Handle overflow when converting from uint to jint 516 table[3*j+2] = (profile == nullptr) ? 1 : (jint)MIN2<uint>((uint)max_jint, profile->count_at(j)); 517 } 518 qsort(table, len, 3*sizeof(table[0]), jint_cmp); 519 } 520 521 float default_cnt = 1.0F; 522 if (profile != nullptr) { 523 juint defaults = max_juint - len; 524 default_cnt = (float)profile->default_count()/(float)defaults; 525 } 526 527 int rnum = len*2+1; 528 bool makes_backward_branch = (default_dest <= bci()); 529 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 530 int rp = -1; 531 for (int j = 0; j < len; j++) { 532 jint match_int = table[3*j+0]; 533 jint dest = table[3*j+1]; 534 jint cnt = table[3*j+2]; 535 jint next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; 536 makes_backward_branch |= (dest <= bci()); 537 float c = default_cnt * ((float)match_int - (float)next_lo); 538 if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, c, trim_ranges))) { 539 assert(default_dest != never_reached, "sentinel value for dead destinations"); 540 ranges[++rp].setRange(next_lo, match_int-1, default_dest, c); 541 } 542 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, (float)cnt, trim_ranges)) { 543 assert(dest != never_reached, "sentinel value for dead destinations"); 544 ranges[++rp].set(match_int, dest, (float)cnt); 545 } 546 } 547 jint highest = table[3*(len-1)]; 548 assert(ranges[rp].hi() == highest, ""); 549 if (highest != max_jint && 550 !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest), trim_ranges)) { 551 ranges[++rp].setRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest)); 552 } 553 assert(rp < rnum, "not too many ranges"); 554 555 if (trim_ranges) { 556 merge_ranges(ranges, rp); 557 } 558 559 // Safepoint in case backward branch observed 560 if (makes_backward_branch) { 561 add_safepoint(); 562 } 563 564 Node *lookup = pop(); // lookup value 565 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 566 } 567 568 static float if_prob(float taken_cnt, float total_cnt) { 569 assert(taken_cnt <= total_cnt, ""); 570 if (total_cnt == 0) { 571 return PROB_FAIR; 572 } 573 float p = taken_cnt / total_cnt; 574 return clamp(p, PROB_MIN, PROB_MAX); 575 } 576 577 static float if_cnt(float cnt) { 578 if (cnt == 0) { 579 return COUNT_UNKNOWN; 580 } 581 return cnt; 582 } 583 584 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) { 585 float total_cnt = 0; 586 for (SwitchRange* sr = lo; sr <= hi; sr++) { 587 total_cnt += sr->cnt(); 588 } 589 return total_cnt; 590 } 591 592 class SwitchRanges : public ResourceObj { 593 public: 594 SwitchRange* _lo; 595 SwitchRange* _hi; 596 SwitchRange* _mid; 597 float _cost; 598 599 enum { 600 Start, 601 LeftDone, 602 RightDone, 603 Done 604 } _state; 605 606 SwitchRanges(SwitchRange *lo, SwitchRange *hi) 607 : _lo(lo), _hi(hi), _mid(nullptr), 608 _cost(0), _state(Start) { 609 } 610 611 SwitchRanges() 612 : _lo(nullptr), _hi(nullptr), _mid(nullptr), 613 _cost(0), _state(Start) {} 614 }; 615 616 // Estimate cost of performing a binary search on lo..hi 617 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) { 618 GrowableArray<SwitchRanges> tree; 619 SwitchRanges root(lo, hi); 620 tree.push(root); 621 622 float cost = 0; 623 do { 624 SwitchRanges& r = *tree.adr_at(tree.length()-1); 625 if (r._hi != r._lo) { 626 if (r._mid == nullptr) { 627 float r_cnt = sum_of_cnts(r._lo, r._hi); 628 629 if (r_cnt == 0) { 630 tree.pop(); 631 cost = 0; 632 continue; 633 } 634 635 SwitchRange* mid = nullptr; 636 mid = r._lo; 637 for (float cnt = 0; ; ) { 638 assert(mid <= r._hi, "out of bounds"); 639 cnt += mid->cnt(); 640 if (cnt > r_cnt / 2) { 641 break; 642 } 643 mid++; 644 } 645 assert(mid <= r._hi, "out of bounds"); 646 r._mid = mid; 647 r._cost = r_cnt / total_cnt; 648 } 649 r._cost += cost; 650 if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) { 651 cost = 0; 652 r._state = SwitchRanges::LeftDone; 653 tree.push(SwitchRanges(r._lo, r._mid-1)); 654 } else if (r._state < SwitchRanges::RightDone) { 655 cost = 0; 656 r._state = SwitchRanges::RightDone; 657 tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi)); 658 } else { 659 tree.pop(); 660 cost = r._cost; 661 } 662 } else { 663 tree.pop(); 664 cost = r._cost; 665 } 666 } while (tree.length() > 0); 667 668 669 return cost; 670 } 671 672 // It sometimes pays off to test most common ranges before the binary search 673 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) { 674 uint nr = hi - lo + 1; 675 float total_cnt = sum_of_cnts(lo, hi); 676 677 float min = compute_tree_cost(lo, hi, total_cnt); 678 float extra = 1; 679 float sub = 0; 680 681 SwitchRange* array1 = lo; 682 SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr); 683 684 SwitchRange* ranges = nullptr; 685 686 while (nr >= 2) { 687 assert(lo == array1 || lo == array2, "one the 2 already allocated arrays"); 688 ranges = (lo == array1) ? array2 : array1; 689 690 // Find highest frequency range 691 SwitchRange* candidate = lo; 692 for (SwitchRange* sr = lo+1; sr <= hi; sr++) { 693 if (sr->cnt() > candidate->cnt()) { 694 candidate = sr; 695 } 696 } 697 SwitchRange most_freq = *candidate; 698 if (most_freq.cnt() == 0) { 699 break; 700 } 701 702 // Copy remaining ranges into another array 703 int shift = 0; 704 for (uint i = 0; i < nr; i++) { 705 SwitchRange* sr = &lo[i]; 706 if (sr != candidate) { 707 ranges[i-shift] = *sr; 708 } else { 709 shift++; 710 if (i > 0 && i < nr-1) { 711 SwitchRange prev = lo[i-1]; 712 prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.cnt()); 713 if (prev.adjoin(lo[i+1])) { 714 shift++; 715 i++; 716 } 717 ranges[i-shift] = prev; 718 } 719 } 720 } 721 nr -= shift; 722 723 // Evaluate cost of testing the most common range and performing a 724 // binary search on the other ranges 725 float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt); 726 if (cost >= min) { 727 break; 728 } 729 // swap arrays 730 lo = &ranges[0]; 731 hi = &ranges[nr-1]; 732 733 // It pays off: emit the test for the most common range 734 assert(most_freq.cnt() > 0, "must be taken"); 735 Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo()))); 736 Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(java_subtract(most_freq.hi(), most_freq.lo())))); 737 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 738 IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt())); 739 jump_if_true_fork(iff, most_freq.dest(), false); 740 741 sub += most_freq.cnt() / total_cnt; 742 extra += 1 - sub; 743 min = cost; 744 } 745 } 746 747 //----------------------------create_jump_tables------------------------------- 748 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { 749 // Are jumptables enabled 750 if (!UseJumpTables) return false; 751 752 // Are jumptables supported 753 if (!Matcher::has_match_rule(Op_Jump)) return false; 754 755 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 756 757 // Decide if a guard is needed to lop off big ranges at either (or 758 // both) end(s) of the input set. We'll call this the default target 759 // even though we can't be sure that it is the true "default". 760 761 bool needs_guard = false; 762 int default_dest; 763 int64_t total_outlier_size = 0; 764 int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1; 765 int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1; 766 767 if (lo->dest() == hi->dest()) { 768 total_outlier_size = hi_size + lo_size; 769 default_dest = lo->dest(); 770 } else if (lo_size > hi_size) { 771 total_outlier_size = lo_size; 772 default_dest = lo->dest(); 773 } else { 774 total_outlier_size = hi_size; 775 default_dest = hi->dest(); 776 } 777 778 float total = sum_of_cnts(lo, hi); 779 float cost = compute_tree_cost(lo, hi, total); 780 781 // If a guard test will eliminate very sparse end ranges, then 782 // it is worth the cost of an extra jump. 783 float trimmed_cnt = 0; 784 if (total_outlier_size > (MaxJumpTableSparseness * 4)) { 785 needs_guard = true; 786 if (default_dest == lo->dest()) { 787 trimmed_cnt += lo->cnt(); 788 lo++; 789 } 790 if (default_dest == hi->dest()) { 791 trimmed_cnt += hi->cnt(); 792 hi--; 793 } 794 } 795 796 // Find the total number of cases and ranges 797 int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1; 798 int num_range = hi - lo + 1; 799 800 // Don't create table if: too large, too small, or too sparse. 801 if (num_cases > MaxJumpTableSize) 802 return false; 803 if (UseSwitchProfiling) { 804 // MinJumpTableSize is set so with a well balanced binary tree, 805 // when the number of ranges is MinJumpTableSize, it's cheaper to 806 // go through a JumpNode that a tree of IfNodes. Average cost of a 807 // tree of IfNodes with MinJumpTableSize is 808 // log2f(MinJumpTableSize) comparisons. So if the cost computed 809 // from profile data is less than log2f(MinJumpTableSize) then 810 // going with the binary search is cheaper. 811 if (cost < log2f(MinJumpTableSize)) { 812 return false; 813 } 814 } else { 815 if (num_cases < MinJumpTableSize) 816 return false; 817 } 818 if (num_cases > (MaxJumpTableSparseness * num_range)) 819 return false; 820 821 // Normalize table lookups to zero 822 int lowval = lo->lo(); 823 key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) ); 824 825 // Generate a guard to protect against input keyvals that aren't 826 // in the switch domain. 827 if (needs_guard) { 828 Node* size = _gvn.intcon(num_cases); 829 Node* cmp = _gvn.transform(new CmpUNode(key_val, size)); 830 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge)); 831 IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt)); 832 jump_if_true_fork(iff, default_dest, trim_ranges && trimmed_cnt == 0); 833 834 total -= trimmed_cnt; 835 } 836 837 // Create an ideal node JumpTable that has projections 838 // of all possible ranges for a switch statement 839 // The key_val input must be converted to a pointer offset and scaled. 840 // Compare Parse::array_addressing above. 841 842 // Clean the 32-bit int into a real 64-bit offset. 843 // Otherwise, the jint value 0 might turn into an offset of 0x0800000000. 844 // Make I2L conversion control dependent to prevent it from 845 // floating above the range check during loop optimizations. 846 // Do not use a narrow int type here to prevent the data path from dying 847 // while the control path is not removed. This can happen if the type of key_val 848 // is later known to be out of bounds of [0, num_cases] and therefore a narrow cast 849 // would be replaced by TOP while C2 is not able to fold the corresponding range checks. 850 // Set _carry_dependency for the cast to avoid being removed by IGVN. 851 #ifdef _LP64 852 key_val = C->constrained_convI2L(&_gvn, key_val, TypeInt::INT, control(), true /* carry_dependency */); 853 #endif 854 855 // Shift the value by wordsize so we have an index into the table, rather 856 // than a switch value 857 Node *shiftWord = _gvn.MakeConX(wordSize); 858 key_val = _gvn.transform( new MulXNode( key_val, shiftWord)); 859 860 // Create the JumpNode 861 Arena* arena = C->comp_arena(); 862 float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases); 863 int i = 0; 864 if (total == 0) { 865 for (SwitchRange* r = lo; r <= hi; r++) { 866 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 867 probs[i] = 1.0F / num_cases; 868 } 869 } 870 } else { 871 for (SwitchRange* r = lo; r <= hi; r++) { 872 float prob = r->cnt()/total; 873 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 874 probs[i] = prob / (r->hi() - r->lo() + 1); 875 } 876 } 877 } 878 879 ciMethodData* methodData = method()->method_data(); 880 ciMultiBranchData* profile = nullptr; 881 if (methodData->is_mature()) { 882 ciProfileData* data = methodData->bci_to_data(bci()); 883 if (data != nullptr && data->is_MultiBranchData()) { 884 profile = (ciMultiBranchData*)data; 885 } 886 } 887 888 Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == nullptr ? COUNT_UNKNOWN : total)); 889 890 // These are the switch destinations hanging off the jumpnode 891 i = 0; 892 for (SwitchRange* r = lo; r <= hi; r++) { 893 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 894 Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); 895 { 896 PreserveJVMState pjvms(this); 897 set_control(input); 898 jump_if_always_fork(r->dest(), trim_ranges && r->cnt() == 0); 899 } 900 } 901 } 902 assert(i == num_cases, "miscount of cases"); 903 stop_and_kill_map(); // no more uses for this JVMS 904 return true; 905 } 906 907 //----------------------------jump_switch_ranges------------------------------- 908 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) { 909 Block* switch_block = block(); 910 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 911 912 if (switch_depth == 0) { 913 // Do special processing for the top-level call. 914 assert(lo->lo() == min_jint, "initial range must exhaust Type::INT"); 915 assert(hi->hi() == max_jint, "initial range must exhaust Type::INT"); 916 917 // Decrement pred-numbers for the unique set of nodes. 918 #ifdef ASSERT 919 if (!trim_ranges) { 920 // Ensure that the block's successors are a (duplicate-free) set. 921 int successors_counted = 0; // block occurrences in [hi..lo] 922 int unique_successors = switch_block->num_successors(); 923 for (int i = 0; i < unique_successors; i++) { 924 Block* target = switch_block->successor_at(i); 925 926 // Check that the set of successors is the same in both places. 927 int successors_found = 0; 928 for (SwitchRange* p = lo; p <= hi; p++) { 929 if (p->dest() == target->start()) successors_found++; 930 } 931 assert(successors_found > 0, "successor must be known"); 932 successors_counted += successors_found; 933 } 934 assert(successors_counted == (hi-lo)+1, "no unexpected successors"); 935 } 936 #endif 937 938 // Maybe prune the inputs, based on the type of key_val. 939 jint min_val = min_jint; 940 jint max_val = max_jint; 941 const TypeInt* ti = key_val->bottom_type()->isa_int(); 942 if (ti != nullptr) { 943 min_val = ti->_lo; 944 max_val = ti->_hi; 945 assert(min_val <= max_val, "invalid int type"); 946 } 947 while (lo->hi() < min_val) { 948 lo++; 949 } 950 if (lo->lo() < min_val) { 951 lo->setRange(min_val, lo->hi(), lo->dest(), lo->cnt()); 952 } 953 while (hi->lo() > max_val) { 954 hi--; 955 } 956 if (hi->hi() > max_val) { 957 hi->setRange(hi->lo(), max_val, hi->dest(), hi->cnt()); 958 } 959 960 linear_search_switch_ranges(key_val, lo, hi); 961 } 962 963 #ifndef PRODUCT 964 if (switch_depth == 0) { 965 _max_switch_depth = 0; 966 _est_switch_depth = log2i_graceful((hi - lo + 1) - 1) + 1; 967 } 968 #endif 969 970 assert(lo <= hi, "must be a non-empty set of ranges"); 971 if (lo == hi) { 972 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 973 } else { 974 assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); 975 assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); 976 977 if (create_jump_tables(key_val, lo, hi)) return; 978 979 SwitchRange* mid = nullptr; 980 float total_cnt = sum_of_cnts(lo, hi); 981 982 int nr = hi - lo + 1; 983 if (UseSwitchProfiling) { 984 // Don't keep the binary search tree balanced: pick up mid point 985 // that split frequencies in half. 986 float cnt = 0; 987 for (SwitchRange* sr = lo; sr <= hi; sr++) { 988 cnt += sr->cnt(); 989 if (cnt >= total_cnt / 2) { 990 mid = sr; 991 break; 992 } 993 } 994 } else { 995 mid = lo + nr/2; 996 997 // if there is an easy choice, pivot at a singleton: 998 if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; 999 1000 assert(lo < mid && mid <= hi, "good pivot choice"); 1001 assert(nr != 2 || mid == hi, "should pick higher of 2"); 1002 assert(nr != 3 || mid == hi-1, "should pick middle of 3"); 1003 } 1004 1005 1006 Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo()); 1007 1008 if (mid->is_singleton()) { 1009 IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt())); 1010 jump_if_false_fork(iff_ne, mid->dest(), trim_ranges && mid->cnt() == 0); 1011 1012 // Special Case: If there are exactly three ranges, and the high 1013 // and low range each go to the same place, omit the "gt" test, 1014 // since it will not discriminate anything. 1015 bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo; 1016 1017 // if there is a higher range, test for it and process it: 1018 if (mid < hi && !eq_test_only) { 1019 // two comparisons of same values--should enable 1 test for 2 branches 1020 // Use BoolTest::lt instead of BoolTest::gt 1021 float cnt = sum_of_cnts(lo, mid-1); 1022 IfNode *iff_lt = jump_if_fork_int(key_val, test_val, BoolTest::lt, if_prob(cnt, total_cnt), if_cnt(cnt)); 1023 Node *iftrue = _gvn.transform( new IfTrueNode(iff_lt) ); 1024 Node *iffalse = _gvn.transform( new IfFalseNode(iff_lt) ); 1025 { PreserveJVMState pjvms(this); 1026 set_control(iffalse); 1027 jump_switch_ranges(key_val, mid+1, hi, switch_depth+1); 1028 } 1029 set_control(iftrue); 1030 } 1031 1032 } else { 1033 // mid is a range, not a singleton, so treat mid..hi as a unit 1034 float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi); 1035 IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt)); 1036 1037 // if there is a higher range, test for it and process it: 1038 if (mid == hi) { 1039 jump_if_true_fork(iff_ge, mid->dest(), trim_ranges && cnt == 0); 1040 } else { 1041 Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) ); 1042 Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) ); 1043 { PreserveJVMState pjvms(this); 1044 set_control(iftrue); 1045 jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1); 1046 } 1047 set_control(iffalse); 1048 } 1049 } 1050 1051 // in any case, process the lower range 1052 if (mid == lo) { 1053 if (mid->is_singleton()) { 1054 jump_switch_ranges(key_val, lo+1, hi, switch_depth+1); 1055 } else { 1056 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1057 } 1058 } else { 1059 jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); 1060 } 1061 } 1062 1063 // Decrease pred_count for each successor after all is done. 1064 if (switch_depth == 0) { 1065 int unique_successors = switch_block->num_successors(); 1066 for (int i = 0; i < unique_successors; i++) { 1067 Block* target = switch_block->successor_at(i); 1068 // Throw away the pre-allocated path for each unique successor. 1069 target->next_path_num(); 1070 } 1071 } 1072 1073 #ifndef PRODUCT 1074 _max_switch_depth = MAX2(switch_depth, _max_switch_depth); 1075 if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) { 1076 SwitchRange* r; 1077 int nsing = 0; 1078 for( r = lo; r <= hi; r++ ) { 1079 if( r->is_singleton() ) nsing++; 1080 } 1081 tty->print(">>> "); 1082 _method->print_short_name(); 1083 tty->print_cr(" switch decision tree"); 1084 tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d", 1085 (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth); 1086 if (_max_switch_depth > _est_switch_depth) { 1087 tty->print_cr("******** BAD SWITCH DEPTH ********"); 1088 } 1089 tty->print(" "); 1090 for( r = lo; r <= hi; r++ ) { 1091 r->print(); 1092 } 1093 tty->cr(); 1094 } 1095 #endif 1096 } 1097 1098 Node* Parse::floating_point_mod(Node* a, Node* b, BasicType type) { 1099 assert(type == BasicType::T_FLOAT || type == BasicType::T_DOUBLE, "only float and double are floating points"); 1100 CallNode* mod = type == BasicType::T_DOUBLE ? static_cast<CallNode*>(new ModDNode(C, a, b)) : new ModFNode(C, a, b); 1101 1102 Node* prev_mem = set_predefined_input_for_runtime_call(mod); 1103 mod = _gvn.transform(mod)->as_Call(); 1104 set_predefined_output_for_runtime_call(mod, prev_mem, TypeRawPtr::BOTTOM); 1105 Node* result = _gvn.transform(new ProjNode(mod, TypeFunc::Parms + 0)); 1106 record_for_igvn(mod); 1107 return result; 1108 } 1109 1110 void Parse::l2f() { 1111 Node* f2 = pop(); 1112 Node* f1 = pop(); 1113 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(), 1114 CAST_FROM_FN_PTR(address, SharedRuntime::l2f), 1115 "l2f", nullptr, //no memory effects 1116 f1, f2); 1117 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1118 1119 push(res); 1120 } 1121 1122 // Handle jsr and jsr_w bytecode 1123 void Parse::do_jsr() { 1124 assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode"); 1125 1126 // Store information about current state, tagged with new _jsr_bci 1127 int return_bci = iter().next_bci(); 1128 int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest(); 1129 1130 // The way we do things now, there is only one successor block 1131 // for the jsr, because the target code is cloned by ciTypeFlow. 1132 Block* target = successor_for_bci(jsr_bci); 1133 1134 // What got pushed? 1135 const Type* ret_addr = target->peek(); 1136 assert(ret_addr->singleton(), "must be a constant (cloned jsr body)"); 1137 1138 // Effect on jsr on stack 1139 push(_gvn.makecon(ret_addr)); 1140 1141 // Flow to the jsr. 1142 merge(jsr_bci); 1143 } 1144 1145 // Handle ret bytecode 1146 void Parse::do_ret() { 1147 // Find to whom we return. 1148 assert(block()->num_successors() == 1, "a ret can only go one place now"); 1149 Block* target = block()->successor_at(0); 1150 assert(!target->is_ready(), "our arrival must be expected"); 1151 int pnum = target->next_path_num(); 1152 merge_common(target, pnum); 1153 } 1154 1155 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) { 1156 if (btest != BoolTest::eq && btest != BoolTest::ne) { 1157 // Only ::eq and ::ne are supported for profile injection. 1158 return false; 1159 } 1160 if (test->is_Cmp() && 1161 test->in(1)->Opcode() == Op_ProfileBoolean) { 1162 ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1); 1163 int false_cnt = profile->false_count(); 1164 int true_cnt = profile->true_count(); 1165 1166 // Counts matching depends on the actual test operation (::eq or ::ne). 1167 // No need to scale the counts because profile injection was designed 1168 // to feed exact counts into VM. 1169 taken = (btest == BoolTest::eq) ? false_cnt : true_cnt; 1170 not_taken = (btest == BoolTest::eq) ? true_cnt : false_cnt; 1171 1172 profile->consume(); 1173 return true; 1174 } 1175 return false; 1176 } 1177 1178 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1179 // We also check that individual counters are positive first, otherwise the sum can become positive. 1180 // (check for saturation, integer overflow, and immature counts) 1181 static bool counters_are_meaningful(int counter1, int counter2, int min) { 1182 // check for saturation, including "uint" values too big to fit in "int" 1183 if (counter1 < 0 || counter2 < 0) { 1184 return false; 1185 } 1186 // check for integer overflow of the sum 1187 int64_t sum = (int64_t)counter1 + (int64_t)counter2; 1188 STATIC_ASSERT(sizeof(counter1) < sizeof(sum)); 1189 if (sum > INT_MAX) { 1190 return false; 1191 } 1192 // check if mature 1193 return (counter1 + counter2) >= min; 1194 } 1195 1196 //--------------------------dynamic_branch_prediction-------------------------- 1197 // Try to gather dynamic branch prediction behavior. Return a probability 1198 // of the branch being taken and set the "cnt" field. Returns a -1.0 1199 // if we need to use static prediction for some reason. 1200 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) { 1201 ResourceMark rm; 1202 1203 cnt = COUNT_UNKNOWN; 1204 1205 int taken = 0; 1206 int not_taken = 0; 1207 1208 bool use_mdo = !has_injected_profile(btest, test, taken, not_taken); 1209 1210 if (use_mdo) { 1211 // Use MethodData information if it is available 1212 // FIXME: free the ProfileData structure 1213 ciMethodData* methodData = method()->method_data(); 1214 if (!methodData->is_mature()) return PROB_UNKNOWN; 1215 ciProfileData* data = methodData->bci_to_data(bci()); 1216 if (data == nullptr) { 1217 return PROB_UNKNOWN; 1218 } 1219 if (!data->is_JumpData()) return PROB_UNKNOWN; 1220 1221 // get taken and not taken values 1222 // NOTE: saturated UINT_MAX values become negative, 1223 // as do counts above INT_MAX. 1224 taken = data->as_JumpData()->taken(); 1225 not_taken = 0; 1226 if (data->is_BranchData()) { 1227 not_taken = data->as_BranchData()->not_taken(); 1228 } 1229 1230 // scale the counts to be commensurate with invocation counts: 1231 // NOTE: overflow for positive values is clamped at INT_MAX 1232 taken = method()->scale_count(taken); 1233 not_taken = method()->scale_count(not_taken); 1234 } 1235 // At this point, saturation or overflow is indicated by INT_MAX 1236 // or a negative value. 1237 1238 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1239 // We also check that individual counters are positive first, otherwise the sum can become positive. 1240 if (!counters_are_meaningful(taken, not_taken, 40)) { 1241 if (C->log() != nullptr) { 1242 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken); 1243 } 1244 return PROB_UNKNOWN; 1245 } 1246 1247 // Compute frequency that we arrive here 1248 float sum = taken + not_taken; 1249 // Adjust, if this block is a cloned private block but the 1250 // Jump counts are shared. Taken the private counts for 1251 // just this path instead of the shared counts. 1252 if( block()->count() > 0 ) 1253 sum = block()->count(); 1254 cnt = sum / FreqCountInvocations; 1255 1256 // Pin probability to sane limits 1257 float prob; 1258 if( !taken ) 1259 prob = (0+PROB_MIN) / 2; 1260 else if( !not_taken ) 1261 prob = (1+PROB_MAX) / 2; 1262 else { // Compute probability of true path 1263 prob = (float)taken / (float)(taken + not_taken); 1264 if (prob > PROB_MAX) prob = PROB_MAX; 1265 if (prob < PROB_MIN) prob = PROB_MIN; 1266 } 1267 1268 assert((cnt > 0.0f) && (prob > 0.0f), 1269 "Bad frequency assignment in if cnt=%g prob=%g taken=%d not_taken=%d", cnt, prob, taken, not_taken); 1270 1271 if (C->log() != nullptr) { 1272 const char* prob_str = nullptr; 1273 if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always"; 1274 if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never"; 1275 char prob_str_buf[30]; 1276 if (prob_str == nullptr) { 1277 jio_snprintf(prob_str_buf, sizeof(prob_str_buf), "%20.2f", prob); 1278 prob_str = prob_str_buf; 1279 } 1280 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'", 1281 iter().get_dest(), taken, not_taken, cnt, prob_str); 1282 } 1283 return prob; 1284 } 1285 1286 //-----------------------------branch_prediction------------------------------- 1287 float Parse::branch_prediction(float& cnt, 1288 BoolTest::mask btest, 1289 int target_bci, 1290 Node* test) { 1291 float prob = dynamic_branch_prediction(cnt, btest, test); 1292 // If prob is unknown, switch to static prediction 1293 if (prob != PROB_UNKNOWN) return prob; 1294 1295 prob = PROB_FAIR; // Set default value 1296 if (btest == BoolTest::eq) // Exactly equal test? 1297 prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent 1298 else if (btest == BoolTest::ne) 1299 prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent 1300 1301 // If this is a conditional test guarding a backwards branch, 1302 // assume its a loop-back edge. Make it a likely taken branch. 1303 if (target_bci < bci()) { 1304 if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt 1305 // Since it's an OSR, we probably have profile data, but since 1306 // branch_prediction returned PROB_UNKNOWN, the counts are too small. 1307 // Let's make a special check here for completely zero counts. 1308 ciMethodData* methodData = method()->method_data(); 1309 if (!methodData->is_empty()) { 1310 ciProfileData* data = methodData->bci_to_data(bci()); 1311 // Only stop for truly zero counts, which mean an unknown part 1312 // of the OSR-ed method, and we want to deopt to gather more stats. 1313 // If you have ANY counts, then this loop is simply 'cold' relative 1314 // to the OSR loop. 1315 if (data == nullptr || 1316 (data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0)) { 1317 // This is the only way to return PROB_UNKNOWN: 1318 return PROB_UNKNOWN; 1319 } 1320 } 1321 } 1322 prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch 1323 } 1324 1325 assert(prob != PROB_UNKNOWN, "must have some guess at this point"); 1326 return prob; 1327 } 1328 1329 // The magic constants are chosen so as to match the output of 1330 // branch_prediction() when the profile reports a zero taken count. 1331 // It is important to distinguish zero counts unambiguously, because 1332 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce 1333 // very small but nonzero probabilities, which if confused with zero 1334 // counts would keep the program recompiling indefinitely. 1335 bool Parse::seems_never_taken(float prob) const { 1336 return prob < PROB_MIN; 1337 } 1338 1339 //-------------------------------repush_if_args-------------------------------- 1340 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp. 1341 inline int Parse::repush_if_args() { 1342 if (PrintOpto && WizardMode) { 1343 tty->print("defending against excessive implicit null exceptions on %s @%d in ", 1344 Bytecodes::name(iter().cur_bc()), iter().cur_bci()); 1345 method()->print_name(); tty->cr(); 1346 } 1347 int bc_depth = - Bytecodes::depth(iter().cur_bc()); 1348 assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches"); 1349 DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms 1350 assert(argument(0) != nullptr, "must exist"); 1351 assert(bc_depth == 1 || argument(1) != nullptr, "two must exist"); 1352 inc_sp(bc_depth); 1353 return bc_depth; 1354 } 1355 1356 // Used by StressUnstableIfTraps 1357 static volatile int _trap_stress_counter = 0; 1358 1359 void Parse::increment_trap_stress_counter(Node*& counter, Node*& incr_store) { 1360 Node* counter_addr = makecon(TypeRawPtr::make((address)&_trap_stress_counter)); 1361 counter = make_load(control(), counter_addr, TypeInt::INT, T_INT, MemNode::unordered); 1362 counter = _gvn.transform(new AddINode(counter, intcon(1))); 1363 incr_store = store_to_memory(control(), counter_addr, counter, T_INT, MemNode::unordered); 1364 } 1365 1366 //----------------------------------do_ifnull---------------------------------- 1367 void Parse::do_ifnull(BoolTest::mask btest, Node *c) { 1368 int target_bci = iter().get_dest(); 1369 1370 Node* counter = nullptr; 1371 Node* incr_store = nullptr; 1372 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0); 1373 if (do_stress_trap) { 1374 increment_trap_stress_counter(counter, incr_store); 1375 } 1376 1377 Block* branch_block = successor_for_bci(target_bci); 1378 Block* next_block = successor_for_bci(iter().next_bci()); 1379 1380 float cnt; 1381 float prob = branch_prediction(cnt, btest, target_bci, c); 1382 if (prob == PROB_UNKNOWN) { 1383 // (An earlier version of do_ifnull omitted this trap for OSR methods.) 1384 if (PrintOpto && Verbose) { 1385 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1386 } 1387 repush_if_args(); // to gather stats on loop 1388 uncommon_trap(Deoptimization::Reason_unreached, 1389 Deoptimization::Action_reinterpret, 1390 nullptr, "cold"); 1391 if (C->eliminate_boxing()) { 1392 // Mark the successor blocks as parsed 1393 branch_block->next_path_num(); 1394 next_block->next_path_num(); 1395 } 1396 return; 1397 } 1398 1399 NOT_PRODUCT(explicit_null_checks_inserted++); 1400 1401 // Generate real control flow 1402 Node *tst = _gvn.transform( new BoolNode( c, btest ) ); 1403 1404 // Sanity check the probability value 1405 assert(prob > 0.0f,"Bad probability in Parser"); 1406 // Need xform to put node in hash table 1407 IfNode *iff = create_and_xform_if( control(), tst, prob, cnt ); 1408 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1409 // True branch 1410 { PreserveJVMState pjvms(this); 1411 Node* iftrue = _gvn.transform( new IfTrueNode (iff) ); 1412 set_control(iftrue); 1413 1414 if (stopped()) { // Path is dead? 1415 NOT_PRODUCT(explicit_null_checks_elided++); 1416 if (C->eliminate_boxing()) { 1417 // Mark the successor block as parsed 1418 branch_block->next_path_num(); 1419 } 1420 } else { // Path is live. 1421 adjust_map_after_if(btest, c, prob, branch_block); 1422 if (!stopped()) { 1423 merge(target_bci); 1424 } 1425 } 1426 } 1427 1428 // False branch 1429 Node* iffalse = _gvn.transform( new IfFalseNode(iff) ); 1430 set_control(iffalse); 1431 1432 if (stopped()) { // Path is dead? 1433 NOT_PRODUCT(explicit_null_checks_elided++); 1434 if (C->eliminate_boxing()) { 1435 // Mark the successor block as parsed 1436 next_block->next_path_num(); 1437 } 1438 } else { // Path is live. 1439 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block); 1440 } 1441 1442 if (do_stress_trap) { 1443 stress_trap(iff, counter, incr_store); 1444 } 1445 } 1446 1447 //------------------------------------do_if------------------------------------ 1448 void Parse::do_if(BoolTest::mask btest, Node* c) { 1449 int target_bci = iter().get_dest(); 1450 1451 Block* branch_block = successor_for_bci(target_bci); 1452 Block* next_block = successor_for_bci(iter().next_bci()); 1453 1454 float cnt; 1455 float prob = branch_prediction(cnt, btest, target_bci, c); 1456 float untaken_prob = 1.0 - prob; 1457 1458 if (prob == PROB_UNKNOWN) { 1459 if (PrintOpto && Verbose) { 1460 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1461 } 1462 repush_if_args(); // to gather stats on loop 1463 uncommon_trap(Deoptimization::Reason_unreached, 1464 Deoptimization::Action_reinterpret, 1465 nullptr, "cold"); 1466 if (C->eliminate_boxing()) { 1467 // Mark the successor blocks as parsed 1468 branch_block->next_path_num(); 1469 next_block->next_path_num(); 1470 } 1471 return; 1472 } 1473 1474 Node* counter = nullptr; 1475 Node* incr_store = nullptr; 1476 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0); 1477 if (do_stress_trap) { 1478 increment_trap_stress_counter(counter, incr_store); 1479 } 1480 1481 // Sanity check the probability value 1482 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser"); 1483 1484 bool taken_if_true = true; 1485 // Convert BoolTest to canonical form: 1486 if (!BoolTest(btest).is_canonical()) { 1487 btest = BoolTest(btest).negate(); 1488 taken_if_true = false; 1489 // prob is NOT updated here; it remains the probability of the taken 1490 // path (as opposed to the prob of the path guarded by an 'IfTrueNode'). 1491 } 1492 assert(btest != BoolTest::eq, "!= is the only canonical exact test"); 1493 1494 Node* tst0 = new BoolNode(c, btest); 1495 Node* tst = _gvn.transform(tst0); 1496 BoolTest::mask taken_btest = BoolTest::illegal; 1497 BoolTest::mask untaken_btest = BoolTest::illegal; 1498 1499 if (tst->is_Bool()) { 1500 // Refresh c from the transformed bool node, since it may be 1501 // simpler than the original c. Also re-canonicalize btest. 1502 // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p null)). 1503 // That can arise from statements like: if (x instanceof C) ... 1504 if (tst != tst0) { 1505 // Canonicalize one more time since transform can change it. 1506 btest = tst->as_Bool()->_test._test; 1507 if (!BoolTest(btest).is_canonical()) { 1508 // Reverse edges one more time... 1509 tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) ); 1510 btest = tst->as_Bool()->_test._test; 1511 assert(BoolTest(btest).is_canonical(), "sanity"); 1512 taken_if_true = !taken_if_true; 1513 } 1514 c = tst->in(1); 1515 } 1516 BoolTest::mask neg_btest = BoolTest(btest).negate(); 1517 taken_btest = taken_if_true ? btest : neg_btest; 1518 untaken_btest = taken_if_true ? neg_btest : btest; 1519 } 1520 1521 // Generate real control flow 1522 float true_prob = (taken_if_true ? prob : untaken_prob); 1523 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt); 1524 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1525 Node* taken_branch = new IfTrueNode(iff); 1526 Node* untaken_branch = new IfFalseNode(iff); 1527 if (!taken_if_true) { // Finish conversion to canonical form 1528 Node* tmp = taken_branch; 1529 taken_branch = untaken_branch; 1530 untaken_branch = tmp; 1531 } 1532 1533 // Branch is taken: 1534 { PreserveJVMState pjvms(this); 1535 taken_branch = _gvn.transform(taken_branch); 1536 set_control(taken_branch); 1537 1538 if (stopped()) { 1539 if (C->eliminate_boxing()) { 1540 // Mark the successor block as parsed 1541 branch_block->next_path_num(); 1542 } 1543 } else { 1544 adjust_map_after_if(taken_btest, c, prob, branch_block); 1545 if (!stopped()) { 1546 merge(target_bci); 1547 } 1548 } 1549 } 1550 1551 untaken_branch = _gvn.transform(untaken_branch); 1552 set_control(untaken_branch); 1553 1554 // Branch not taken. 1555 if (stopped()) { 1556 if (C->eliminate_boxing()) { 1557 // Mark the successor block as parsed 1558 next_block->next_path_num(); 1559 } 1560 } else { 1561 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block); 1562 } 1563 1564 if (do_stress_trap) { 1565 stress_trap(iff, counter, incr_store); 1566 } 1567 } 1568 1569 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information. 1570 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and 1571 // then either takes the trap or executes the original, unstable if. 1572 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) { 1573 // Search for an unstable if trap 1574 CallStaticJavaNode* trap = nullptr; 1575 assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if"); 1576 ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if); 1577 if (trap == nullptr || !trap->jvms()->should_reexecute()) { 1578 // No suitable trap found. Remove unused counter load and increment. 1579 C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory)); 1580 return; 1581 } 1582 1583 // Remove trap from optimization list since we add another path to the trap. 1584 bool success = C->remove_unstable_if_trap(trap, true); 1585 assert(success, "Trap already modified"); 1586 1587 // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise 1588 int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31] 1589 Node* mask = intcon(right_n_bits(freq_log)); 1590 counter = _gvn.transform(new AndINode(counter, mask)); 1591 Node* cmp = _gvn.transform(new CmpINode(counter, intcon(0))); 1592 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::mask::eq)); 1593 IfNode* iff = _gvn.transform(new IfNode(orig_iff->in(0), bol, orig_iff->_prob, orig_iff->_fcnt))->as_If(); 1594 Node* if_true = _gvn.transform(new IfTrueNode(iff)); 1595 Node* if_false = _gvn.transform(new IfFalseNode(iff)); 1596 assert(!if_true->is_top() && !if_false->is_top(), "trap always / never taken"); 1597 1598 // Trap 1599 assert(trap_proj->outcnt() == 1, "some other nodes are dependent on the trap projection"); 1600 1601 Node* trap_region = new RegionNode(3); 1602 trap_region->set_req(1, trap_proj); 1603 trap_region->set_req(2, if_true); 1604 trap->set_req(0, _gvn.transform(trap_region)); 1605 1606 // Don't trap, execute original if 1607 orig_iff->set_req(0, if_false); 1608 } 1609 1610 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const { 1611 // Randomly skip emitting an uncommon trap 1612 if (StressUnstableIfTraps && ((C->random() % 2) == 0)) { 1613 return false; 1614 } 1615 // Don't want to speculate on uncommon traps when running with -Xcomp 1616 if (!UseInterpreter) { 1617 return false; 1618 } 1619 return seems_never_taken(prob) && 1620 !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1621 } 1622 1623 void Parse::maybe_add_predicate_after_if(Block* path) { 1624 if (path->is_SEL_head() && path->preds_parsed() == 0) { 1625 // Add predicates at bci of if dominating the loop so traps can be 1626 // recorded on the if's profile data 1627 int bc_depth = repush_if_args(); 1628 add_parse_predicates(); 1629 dec_sp(bc_depth); 1630 path->set_has_predicates(); 1631 } 1632 } 1633 1634 1635 //----------------------------adjust_map_after_if------------------------------ 1636 // Adjust the JVM state to reflect the result of taking this path. 1637 // Basically, it means inspecting the CmpNode controlling this 1638 // branch, seeing how it constrains a tested value, and then 1639 // deciding if it's worth our while to encode this constraint 1640 // as graph nodes in the current abstract interpretation map. 1641 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path) { 1642 if (!c->is_Cmp()) { 1643 maybe_add_predicate_after_if(path); 1644 return; 1645 } 1646 1647 if (stopped() || btest == BoolTest::illegal) { 1648 return; // nothing to do 1649 } 1650 1651 bool is_fallthrough = (path == successor_for_bci(iter().next_bci())); 1652 1653 if (path_is_suitable_for_uncommon_trap(prob)) { 1654 repush_if_args(); 1655 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if, 1656 Deoptimization::Action_reinterpret, 1657 nullptr, 1658 (is_fallthrough ? "taken always" : "taken never")); 1659 1660 if (call != nullptr) { 1661 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path)); 1662 } 1663 return; 1664 } 1665 1666 Node* val = c->in(1); 1667 Node* con = c->in(2); 1668 const Type* tcon = _gvn.type(con); 1669 const Type* tval = _gvn.type(val); 1670 bool have_con = tcon->singleton(); 1671 if (tval->singleton()) { 1672 if (!have_con) { 1673 // Swap, so constant is in con. 1674 con = val; 1675 tcon = tval; 1676 val = c->in(2); 1677 tval = _gvn.type(val); 1678 btest = BoolTest(btest).commute(); 1679 have_con = true; 1680 } else { 1681 // Do we have two constants? Then leave well enough alone. 1682 have_con = false; 1683 } 1684 } 1685 if (!have_con) { // remaining adjustments need a con 1686 maybe_add_predicate_after_if(path); 1687 return; 1688 } 1689 1690 sharpen_type_after_if(btest, con, tcon, val, tval); 1691 maybe_add_predicate_after_if(path); 1692 } 1693 1694 1695 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) { 1696 Node* ldk; 1697 if (n->is_DecodeNKlass()) { 1698 if (n->in(1)->Opcode() != Op_LoadNKlass) { 1699 return nullptr; 1700 } else { 1701 ldk = n->in(1); 1702 } 1703 } else if (n->Opcode() != Op_LoadKlass) { 1704 return nullptr; 1705 } else { 1706 ldk = n; 1707 } 1708 assert(ldk != nullptr && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node"); 1709 1710 Node* adr = ldk->in(MemNode::Address); 1711 intptr_t off = 0; 1712 Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off); 1713 if (obj == nullptr || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass? 1714 return nullptr; 1715 const TypePtr* tp = gvn->type(obj)->is_ptr(); 1716 if (tp == nullptr || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr? 1717 return nullptr; 1718 1719 return obj; 1720 } 1721 1722 void Parse::sharpen_type_after_if(BoolTest::mask btest, 1723 Node* con, const Type* tcon, 1724 Node* val, const Type* tval) { 1725 // Look for opportunities to sharpen the type of a node 1726 // whose klass is compared with a constant klass. 1727 if (btest == BoolTest::eq && tcon->isa_klassptr()) { 1728 Node* obj = extract_obj_from_klass_load(&_gvn, val); 1729 const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type(); 1730 if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) { 1731 // Found: 1732 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq]) 1733 // or the narrowOop equivalent. 1734 const Type* obj_type = _gvn.type(obj); 1735 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr(); 1736 if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type && 1737 tboth->higher_equal(obj_type)) { 1738 // obj has to be of the exact type Foo if the CmpP succeeds. 1739 int obj_in_map = map()->find_edge(obj); 1740 JVMState* jvms = this->jvms(); 1741 if (obj_in_map >= 0 && 1742 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) { 1743 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth); 1744 const Type* tcc = ccast->as_Type()->type(); 1745 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve"); 1746 // Delay transform() call to allow recovery of pre-cast value 1747 // at the control merge. 1748 _gvn.set_type_bottom(ccast); 1749 record_for_igvn(ccast); 1750 // Here's the payoff. 1751 replace_in_map(obj, ccast); 1752 } 1753 } 1754 } 1755 } 1756 1757 int val_in_map = map()->find_edge(val); 1758 if (val_in_map < 0) return; // replace_in_map would be useless 1759 { 1760 JVMState* jvms = this->jvms(); 1761 if (!(jvms->is_loc(val_in_map) || 1762 jvms->is_stk(val_in_map))) 1763 return; // again, it would be useless 1764 } 1765 1766 // Check for a comparison to a constant, and "know" that the compared 1767 // value is constrained on this path. 1768 assert(tcon->singleton(), ""); 1769 ConstraintCastNode* ccast = nullptr; 1770 Node* cast = nullptr; 1771 1772 switch (btest) { 1773 case BoolTest::eq: // Constant test? 1774 { 1775 const Type* tboth = tcon->join_speculative(tval); 1776 if (tboth == tval) break; // Nothing to gain. 1777 if (tcon->isa_int()) { 1778 ccast = new CastIINode(control(), val, tboth); 1779 } else if (tcon == TypePtr::NULL_PTR) { 1780 // Cast to null, but keep the pointer identity temporarily live. 1781 ccast = new CastPPNode(control(), val, tboth); 1782 } else { 1783 const TypeF* tf = tcon->isa_float_constant(); 1784 const TypeD* td = tcon->isa_double_constant(); 1785 // Exclude tests vs float/double 0 as these could be 1786 // either +0 or -0. Just because you are equal to +0 1787 // doesn't mean you ARE +0! 1788 // Note, following code also replaces Long and Oop values. 1789 if ((!tf || tf->_f != 0.0) && 1790 (!td || td->_d != 0.0)) 1791 cast = con; // Replace non-constant val by con. 1792 } 1793 } 1794 break; 1795 1796 case BoolTest::ne: 1797 if (tcon == TypePtr::NULL_PTR) { 1798 cast = cast_not_null(val, false); 1799 } 1800 break; 1801 1802 default: 1803 // (At this point we could record int range types with CastII.) 1804 break; 1805 } 1806 1807 if (ccast != nullptr) { 1808 const Type* tcc = ccast->as_Type()->type(); 1809 assert(tcc != tval && tcc->higher_equal(tval), "must improve"); 1810 // Delay transform() call to allow recovery of pre-cast value 1811 // at the control merge. 1812 _gvn.set_type_bottom(ccast); 1813 record_for_igvn(ccast); 1814 cast = ccast; 1815 } 1816 1817 if (cast != nullptr) { // Here's the payoff. 1818 replace_in_map(val, cast); 1819 } 1820 } 1821 1822 /** 1823 * Use speculative type to optimize CmpP node: if comparison is 1824 * against the low level class, cast the object to the speculative 1825 * type if any. CmpP should then go away. 1826 * 1827 * @param c expected CmpP node 1828 * @return result of CmpP on object casted to speculative type 1829 * 1830 */ 1831 Node* Parse::optimize_cmp_with_klass(Node* c) { 1832 // If this is transformed by the _gvn to a comparison with the low 1833 // level klass then we may be able to use speculation 1834 if (c->Opcode() == Op_CmpP && 1835 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) && 1836 c->in(2)->is_Con()) { 1837 Node* load_klass = nullptr; 1838 Node* decode = nullptr; 1839 if (c->in(1)->Opcode() == Op_DecodeNKlass) { 1840 decode = c->in(1); 1841 load_klass = c->in(1)->in(1); 1842 } else { 1843 load_klass = c->in(1); 1844 } 1845 if (load_klass->in(2)->is_AddP()) { 1846 Node* addp = load_klass->in(2); 1847 Node* obj = addp->in(AddPNode::Address); 1848 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 1849 if (obj_type->speculative_type_not_null() != nullptr) { 1850 ciKlass* k = obj_type->speculative_type(); 1851 inc_sp(2); 1852 obj = maybe_cast_profiled_obj(obj, k); 1853 dec_sp(2); 1854 // Make the CmpP use the casted obj 1855 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset)); 1856 load_klass = load_klass->clone(); 1857 load_klass->set_req(2, addp); 1858 load_klass = _gvn.transform(load_klass); 1859 if (decode != nullptr) { 1860 decode = decode->clone(); 1861 decode->set_req(1, load_klass); 1862 load_klass = _gvn.transform(decode); 1863 } 1864 c = c->clone(); 1865 c->set_req(1, load_klass); 1866 c = _gvn.transform(c); 1867 } 1868 } 1869 } 1870 return c; 1871 } 1872 1873 //------------------------------do_one_bytecode-------------------------------- 1874 // Parse this bytecode, and alter the Parsers JVM->Node mapping 1875 void Parse::do_one_bytecode() { 1876 Node *a, *b, *c, *d; // Handy temps 1877 BoolTest::mask btest; 1878 int i; 1879 1880 assert(!has_exceptions(), "bytecode entry state must be clear of throws"); 1881 1882 if (C->check_node_count(NodeLimitFudgeFactor * 5, 1883 "out of nodes parsing method")) { 1884 return; 1885 } 1886 1887 #ifdef ASSERT 1888 // for setting breakpoints 1889 if (TraceOptoParse) { 1890 tty->print(" @"); 1891 dump_bci(bci()); 1892 tty->print(" %s", Bytecodes::name(bc())); 1893 tty->cr(); 1894 } 1895 #endif 1896 1897 switch (bc()) { 1898 case Bytecodes::_nop: 1899 // do nothing 1900 break; 1901 case Bytecodes::_lconst_0: 1902 push_pair(longcon(0)); 1903 break; 1904 1905 case Bytecodes::_lconst_1: 1906 push_pair(longcon(1)); 1907 break; 1908 1909 case Bytecodes::_fconst_0: 1910 push(zerocon(T_FLOAT)); 1911 break; 1912 1913 case Bytecodes::_fconst_1: 1914 push(makecon(TypeF::ONE)); 1915 break; 1916 1917 case Bytecodes::_fconst_2: 1918 push(makecon(TypeF::make(2.0f))); 1919 break; 1920 1921 case Bytecodes::_dconst_0: 1922 push_pair(zerocon(T_DOUBLE)); 1923 break; 1924 1925 case Bytecodes::_dconst_1: 1926 push_pair(makecon(TypeD::ONE)); 1927 break; 1928 1929 case Bytecodes::_iconst_m1:push(intcon(-1)); break; 1930 case Bytecodes::_iconst_0: push(intcon( 0)); break; 1931 case Bytecodes::_iconst_1: push(intcon( 1)); break; 1932 case Bytecodes::_iconst_2: push(intcon( 2)); break; 1933 case Bytecodes::_iconst_3: push(intcon( 3)); break; 1934 case Bytecodes::_iconst_4: push(intcon( 4)); break; 1935 case Bytecodes::_iconst_5: push(intcon( 5)); break; 1936 case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break; 1937 case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break; 1938 case Bytecodes::_aconst_null: push(null()); break; 1939 1940 case Bytecodes::_ldc: 1941 case Bytecodes::_ldc_w: 1942 case Bytecodes::_ldc2_w: { 1943 // ciTypeFlow should trap if the ldc is in error state or if the constant is not loaded 1944 assert(!iter().is_in_error(), "ldc is in error state"); 1945 ciConstant constant = iter().get_constant(); 1946 assert(constant.is_loaded(), "constant is not loaded"); 1947 const Type* con_type = Type::make_from_constant(constant); 1948 if (con_type != nullptr) { 1949 push_node(con_type->basic_type(), makecon(con_type)); 1950 } 1951 break; 1952 } 1953 1954 case Bytecodes::_aload_0: 1955 push( local(0) ); 1956 break; 1957 case Bytecodes::_aload_1: 1958 push( local(1) ); 1959 break; 1960 case Bytecodes::_aload_2: 1961 push( local(2) ); 1962 break; 1963 case Bytecodes::_aload_3: 1964 push( local(3) ); 1965 break; 1966 case Bytecodes::_aload: 1967 push( local(iter().get_index()) ); 1968 break; 1969 1970 case Bytecodes::_fload_0: 1971 case Bytecodes::_iload_0: 1972 push( local(0) ); 1973 break; 1974 case Bytecodes::_fload_1: 1975 case Bytecodes::_iload_1: 1976 push( local(1) ); 1977 break; 1978 case Bytecodes::_fload_2: 1979 case Bytecodes::_iload_2: 1980 push( local(2) ); 1981 break; 1982 case Bytecodes::_fload_3: 1983 case Bytecodes::_iload_3: 1984 push( local(3) ); 1985 break; 1986 case Bytecodes::_fload: 1987 case Bytecodes::_iload: 1988 push( local(iter().get_index()) ); 1989 break; 1990 case Bytecodes::_lload_0: 1991 push_pair_local( 0 ); 1992 break; 1993 case Bytecodes::_lload_1: 1994 push_pair_local( 1 ); 1995 break; 1996 case Bytecodes::_lload_2: 1997 push_pair_local( 2 ); 1998 break; 1999 case Bytecodes::_lload_3: 2000 push_pair_local( 3 ); 2001 break; 2002 case Bytecodes::_lload: 2003 push_pair_local( iter().get_index() ); 2004 break; 2005 2006 case Bytecodes::_dload_0: 2007 push_pair_local(0); 2008 break; 2009 case Bytecodes::_dload_1: 2010 push_pair_local(1); 2011 break; 2012 case Bytecodes::_dload_2: 2013 push_pair_local(2); 2014 break; 2015 case Bytecodes::_dload_3: 2016 push_pair_local(3); 2017 break; 2018 case Bytecodes::_dload: 2019 push_pair_local(iter().get_index()); 2020 break; 2021 case Bytecodes::_fstore_0: 2022 case Bytecodes::_istore_0: 2023 case Bytecodes::_astore_0: 2024 set_local( 0, pop() ); 2025 break; 2026 case Bytecodes::_fstore_1: 2027 case Bytecodes::_istore_1: 2028 case Bytecodes::_astore_1: 2029 set_local( 1, pop() ); 2030 break; 2031 case Bytecodes::_fstore_2: 2032 case Bytecodes::_istore_2: 2033 case Bytecodes::_astore_2: 2034 set_local( 2, pop() ); 2035 break; 2036 case Bytecodes::_fstore_3: 2037 case Bytecodes::_istore_3: 2038 case Bytecodes::_astore_3: 2039 set_local( 3, pop() ); 2040 break; 2041 case Bytecodes::_fstore: 2042 case Bytecodes::_istore: 2043 case Bytecodes::_astore: 2044 set_local( iter().get_index(), pop() ); 2045 break; 2046 // long stores 2047 case Bytecodes::_lstore_0: 2048 set_pair_local( 0, pop_pair() ); 2049 break; 2050 case Bytecodes::_lstore_1: 2051 set_pair_local( 1, pop_pair() ); 2052 break; 2053 case Bytecodes::_lstore_2: 2054 set_pair_local( 2, pop_pair() ); 2055 break; 2056 case Bytecodes::_lstore_3: 2057 set_pair_local( 3, pop_pair() ); 2058 break; 2059 case Bytecodes::_lstore: 2060 set_pair_local( iter().get_index(), pop_pair() ); 2061 break; 2062 2063 // double stores 2064 case Bytecodes::_dstore_0: 2065 set_pair_local( 0, dprecision_rounding(pop_pair()) ); 2066 break; 2067 case Bytecodes::_dstore_1: 2068 set_pair_local( 1, dprecision_rounding(pop_pair()) ); 2069 break; 2070 case Bytecodes::_dstore_2: 2071 set_pair_local( 2, dprecision_rounding(pop_pair()) ); 2072 break; 2073 case Bytecodes::_dstore_3: 2074 set_pair_local( 3, dprecision_rounding(pop_pair()) ); 2075 break; 2076 case Bytecodes::_dstore: 2077 set_pair_local( iter().get_index(), dprecision_rounding(pop_pair()) ); 2078 break; 2079 2080 case Bytecodes::_pop: dec_sp(1); break; 2081 case Bytecodes::_pop2: dec_sp(2); break; 2082 case Bytecodes::_swap: 2083 a = pop(); 2084 b = pop(); 2085 push(a); 2086 push(b); 2087 break; 2088 case Bytecodes::_dup: 2089 a = pop(); 2090 push(a); 2091 push(a); 2092 break; 2093 case Bytecodes::_dup_x1: 2094 a = pop(); 2095 b = pop(); 2096 push( a ); 2097 push( b ); 2098 push( a ); 2099 break; 2100 case Bytecodes::_dup_x2: 2101 a = pop(); 2102 b = pop(); 2103 c = pop(); 2104 push( a ); 2105 push( c ); 2106 push( b ); 2107 push( a ); 2108 break; 2109 case Bytecodes::_dup2: 2110 a = pop(); 2111 b = pop(); 2112 push( b ); 2113 push( a ); 2114 push( b ); 2115 push( a ); 2116 break; 2117 2118 case Bytecodes::_dup2_x1: 2119 // before: .. c, b, a 2120 // after: .. b, a, c, b, a 2121 // not tested 2122 a = pop(); 2123 b = pop(); 2124 c = pop(); 2125 push( b ); 2126 push( a ); 2127 push( c ); 2128 push( b ); 2129 push( a ); 2130 break; 2131 case Bytecodes::_dup2_x2: 2132 // before: .. d, c, b, a 2133 // after: .. b, a, d, c, b, a 2134 // not tested 2135 a = pop(); 2136 b = pop(); 2137 c = pop(); 2138 d = pop(); 2139 push( b ); 2140 push( a ); 2141 push( d ); 2142 push( c ); 2143 push( b ); 2144 push( a ); 2145 break; 2146 2147 case Bytecodes::_arraylength: { 2148 // Must do null-check with value on expression stack 2149 Node *ary = null_check(peek(), T_ARRAY); 2150 // Compile-time detect of null-exception? 2151 if (stopped()) return; 2152 a = pop(); 2153 push(load_array_length(a)); 2154 break; 2155 } 2156 2157 case Bytecodes::_baload: array_load(T_BYTE); break; 2158 case Bytecodes::_caload: array_load(T_CHAR); break; 2159 case Bytecodes::_iaload: array_load(T_INT); break; 2160 case Bytecodes::_saload: array_load(T_SHORT); break; 2161 case Bytecodes::_faload: array_load(T_FLOAT); break; 2162 case Bytecodes::_aaload: array_load(T_OBJECT); break; 2163 case Bytecodes::_laload: array_load(T_LONG); break; 2164 case Bytecodes::_daload: array_load(T_DOUBLE); break; 2165 case Bytecodes::_bastore: array_store(T_BYTE); break; 2166 case Bytecodes::_castore: array_store(T_CHAR); break; 2167 case Bytecodes::_iastore: array_store(T_INT); break; 2168 case Bytecodes::_sastore: array_store(T_SHORT); break; 2169 case Bytecodes::_fastore: array_store(T_FLOAT); break; 2170 case Bytecodes::_aastore: array_store(T_OBJECT); break; 2171 case Bytecodes::_lastore: array_store(T_LONG); break; 2172 case Bytecodes::_dastore: array_store(T_DOUBLE); break; 2173 2174 case Bytecodes::_getfield: 2175 do_getfield(); 2176 break; 2177 2178 case Bytecodes::_getstatic: 2179 do_getstatic(); 2180 break; 2181 2182 case Bytecodes::_putfield: 2183 do_putfield(); 2184 break; 2185 2186 case Bytecodes::_putstatic: 2187 do_putstatic(); 2188 break; 2189 2190 case Bytecodes::_irem: 2191 // Must keep both values on the expression-stack during null-check 2192 zero_check_int(peek()); 2193 // Compile-time detect of null-exception? 2194 if (stopped()) return; 2195 b = pop(); 2196 a = pop(); 2197 push(_gvn.transform(new ModINode(control(), a, b))); 2198 break; 2199 case Bytecodes::_idiv: 2200 // Must keep both values on the expression-stack during null-check 2201 zero_check_int(peek()); 2202 // Compile-time detect of null-exception? 2203 if (stopped()) return; 2204 b = pop(); 2205 a = pop(); 2206 push( _gvn.transform( new DivINode(control(),a,b) ) ); 2207 break; 2208 case Bytecodes::_imul: 2209 b = pop(); a = pop(); 2210 push( _gvn.transform( new MulINode(a,b) ) ); 2211 break; 2212 case Bytecodes::_iadd: 2213 b = pop(); a = pop(); 2214 push( _gvn.transform( new AddINode(a,b) ) ); 2215 break; 2216 case Bytecodes::_ineg: 2217 a = pop(); 2218 push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) ); 2219 break; 2220 case Bytecodes::_isub: 2221 b = pop(); a = pop(); 2222 push( _gvn.transform( new SubINode(a,b) ) ); 2223 break; 2224 case Bytecodes::_iand: 2225 b = pop(); a = pop(); 2226 push( _gvn.transform( new AndINode(a,b) ) ); 2227 break; 2228 case Bytecodes::_ior: 2229 b = pop(); a = pop(); 2230 push( _gvn.transform( new OrINode(a,b) ) ); 2231 break; 2232 case Bytecodes::_ixor: 2233 b = pop(); a = pop(); 2234 push( _gvn.transform( new XorINode(a,b) ) ); 2235 break; 2236 case Bytecodes::_ishl: 2237 b = pop(); a = pop(); 2238 push( _gvn.transform( new LShiftINode(a,b) ) ); 2239 break; 2240 case Bytecodes::_ishr: 2241 b = pop(); a = pop(); 2242 push( _gvn.transform( new RShiftINode(a,b) ) ); 2243 break; 2244 case Bytecodes::_iushr: 2245 b = pop(); a = pop(); 2246 push( _gvn.transform( new URShiftINode(a,b) ) ); 2247 break; 2248 2249 case Bytecodes::_fneg: 2250 a = pop(); 2251 b = _gvn.transform(new NegFNode (a)); 2252 push(b); 2253 break; 2254 2255 case Bytecodes::_fsub: 2256 b = pop(); 2257 a = pop(); 2258 c = _gvn.transform( new SubFNode(a,b) ); 2259 d = precision_rounding(c); 2260 push( d ); 2261 break; 2262 2263 case Bytecodes::_fadd: 2264 b = pop(); 2265 a = pop(); 2266 c = _gvn.transform( new AddFNode(a,b) ); 2267 d = precision_rounding(c); 2268 push( d ); 2269 break; 2270 2271 case Bytecodes::_fmul: 2272 b = pop(); 2273 a = pop(); 2274 c = _gvn.transform( new MulFNode(a,b) ); 2275 d = precision_rounding(c); 2276 push( d ); 2277 break; 2278 2279 case Bytecodes::_fdiv: 2280 b = pop(); 2281 a = pop(); 2282 c = _gvn.transform( new DivFNode(nullptr,a,b) ); 2283 d = precision_rounding(c); 2284 push( d ); 2285 break; 2286 2287 case Bytecodes::_frem: 2288 // Generate a ModF node. 2289 b = pop(); 2290 a = pop(); 2291 push(floating_point_mod(a, b, BasicType::T_FLOAT)); 2292 break; 2293 2294 case Bytecodes::_fcmpl: 2295 b = pop(); 2296 a = pop(); 2297 c = _gvn.transform( new CmpF3Node( a, b)); 2298 push(c); 2299 break; 2300 case Bytecodes::_fcmpg: 2301 b = pop(); 2302 a = pop(); 2303 2304 // Same as fcmpl but need to flip the unordered case. Swap the inputs, 2305 // which negates the result sign except for unordered. Flip the unordered 2306 // as well by using CmpF3 which implements unordered-lesser instead of 2307 // unordered-greater semantics. Finally, commute the result bits. Result 2308 // is same as using a CmpF3Greater except we did it with CmpF3 alone. 2309 c = _gvn.transform( new CmpF3Node( b, a)); 2310 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 2311 push(c); 2312 break; 2313 2314 case Bytecodes::_f2i: 2315 a = pop(); 2316 push(_gvn.transform(new ConvF2INode(a))); 2317 break; 2318 2319 case Bytecodes::_d2i: 2320 a = pop_pair(); 2321 b = _gvn.transform(new ConvD2INode(a)); 2322 push( b ); 2323 break; 2324 2325 case Bytecodes::_f2d: 2326 a = pop(); 2327 b = _gvn.transform( new ConvF2DNode(a)); 2328 push_pair( b ); 2329 break; 2330 2331 case Bytecodes::_d2f: 2332 a = pop_pair(); 2333 b = _gvn.transform( new ConvD2FNode(a)); 2334 // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed) 2335 //b = _gvn.transform(new RoundFloatNode(nullptr, b) ); 2336 push( b ); 2337 break; 2338 2339 case Bytecodes::_l2f: 2340 if (Matcher::convL2FSupported()) { 2341 a = pop_pair(); 2342 b = _gvn.transform( new ConvL2FNode(a)); 2343 // For x86_32.ad, FILD doesn't restrict precision to 24 or 53 bits. 2344 // Rather than storing the result into an FP register then pushing 2345 // out to memory to round, the machine instruction that implements 2346 // ConvL2D is responsible for rounding. 2347 // c = precision_rounding(b); 2348 push(b); 2349 } else { 2350 l2f(); 2351 } 2352 break; 2353 2354 case Bytecodes::_l2d: 2355 a = pop_pair(); 2356 b = _gvn.transform( new ConvL2DNode(a)); 2357 // For x86_32.ad, rounding is always necessary (see _l2f above). 2358 // c = dprecision_rounding(b); 2359 push_pair(b); 2360 break; 2361 2362 case Bytecodes::_f2l: 2363 a = pop(); 2364 b = _gvn.transform( new ConvF2LNode(a)); 2365 push_pair(b); 2366 break; 2367 2368 case Bytecodes::_d2l: 2369 a = pop_pair(); 2370 b = _gvn.transform( new ConvD2LNode(a)); 2371 push_pair(b); 2372 break; 2373 2374 case Bytecodes::_dsub: 2375 b = pop_pair(); 2376 a = pop_pair(); 2377 c = _gvn.transform( new SubDNode(a,b) ); 2378 d = dprecision_rounding(c); 2379 push_pair( d ); 2380 break; 2381 2382 case Bytecodes::_dadd: 2383 b = pop_pair(); 2384 a = pop_pair(); 2385 c = _gvn.transform( new AddDNode(a,b) ); 2386 d = dprecision_rounding(c); 2387 push_pair( d ); 2388 break; 2389 2390 case Bytecodes::_dmul: 2391 b = pop_pair(); 2392 a = pop_pair(); 2393 c = _gvn.transform( new MulDNode(a,b) ); 2394 d = dprecision_rounding(c); 2395 push_pair( d ); 2396 break; 2397 2398 case Bytecodes::_ddiv: 2399 b = pop_pair(); 2400 a = pop_pair(); 2401 c = _gvn.transform( new DivDNode(nullptr,a,b) ); 2402 d = dprecision_rounding(c); 2403 push_pair( d ); 2404 break; 2405 2406 case Bytecodes::_dneg: 2407 a = pop_pair(); 2408 b = _gvn.transform(new NegDNode (a)); 2409 push_pair(b); 2410 break; 2411 2412 case Bytecodes::_drem: 2413 // Generate a ModD node. 2414 b = pop_pair(); 2415 a = pop_pair(); 2416 push_pair(floating_point_mod(a, b, BasicType::T_DOUBLE)); 2417 break; 2418 2419 case Bytecodes::_dcmpl: 2420 b = pop_pair(); 2421 a = pop_pair(); 2422 c = _gvn.transform( new CmpD3Node( a, b)); 2423 push(c); 2424 break; 2425 2426 case Bytecodes::_dcmpg: 2427 b = pop_pair(); 2428 a = pop_pair(); 2429 // Same as dcmpl but need to flip the unordered case. 2430 // Commute the inputs, which negates the result sign except for unordered. 2431 // Flip the unordered as well by using CmpD3 which implements 2432 // unordered-lesser instead of unordered-greater semantics. 2433 // Finally, negate the result bits. Result is same as using a 2434 // CmpD3Greater except we did it with CmpD3 alone. 2435 c = _gvn.transform( new CmpD3Node( b, a)); 2436 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 2437 push(c); 2438 break; 2439 2440 2441 // Note for longs -> lo word is on TOS, hi word is on TOS - 1 2442 case Bytecodes::_land: 2443 b = pop_pair(); 2444 a = pop_pair(); 2445 c = _gvn.transform( new AndLNode(a,b) ); 2446 push_pair(c); 2447 break; 2448 case Bytecodes::_lor: 2449 b = pop_pair(); 2450 a = pop_pair(); 2451 c = _gvn.transform( new OrLNode(a,b) ); 2452 push_pair(c); 2453 break; 2454 case Bytecodes::_lxor: 2455 b = pop_pair(); 2456 a = pop_pair(); 2457 c = _gvn.transform( new XorLNode(a,b) ); 2458 push_pair(c); 2459 break; 2460 2461 case Bytecodes::_lshl: 2462 b = pop(); // the shift count 2463 a = pop_pair(); // value to be shifted 2464 c = _gvn.transform( new LShiftLNode(a,b) ); 2465 push_pair(c); 2466 break; 2467 case Bytecodes::_lshr: 2468 b = pop(); // the shift count 2469 a = pop_pair(); // value to be shifted 2470 c = _gvn.transform( new RShiftLNode(a,b) ); 2471 push_pair(c); 2472 break; 2473 case Bytecodes::_lushr: 2474 b = pop(); // the shift count 2475 a = pop_pair(); // value to be shifted 2476 c = _gvn.transform( new URShiftLNode(a,b) ); 2477 push_pair(c); 2478 break; 2479 case Bytecodes::_lmul: 2480 b = pop_pair(); 2481 a = pop_pair(); 2482 c = _gvn.transform( new MulLNode(a,b) ); 2483 push_pair(c); 2484 break; 2485 2486 case Bytecodes::_lrem: 2487 // Must keep both values on the expression-stack during null-check 2488 assert(peek(0) == top(), "long word order"); 2489 zero_check_long(peek(1)); 2490 // Compile-time detect of null-exception? 2491 if (stopped()) return; 2492 b = pop_pair(); 2493 a = pop_pair(); 2494 c = _gvn.transform( new ModLNode(control(),a,b) ); 2495 push_pair(c); 2496 break; 2497 2498 case Bytecodes::_ldiv: 2499 // Must keep both values on the expression-stack during null-check 2500 assert(peek(0) == top(), "long word order"); 2501 zero_check_long(peek(1)); 2502 // Compile-time detect of null-exception? 2503 if (stopped()) return; 2504 b = pop_pair(); 2505 a = pop_pair(); 2506 c = _gvn.transform( new DivLNode(control(),a,b) ); 2507 push_pair(c); 2508 break; 2509 2510 case Bytecodes::_ladd: 2511 b = pop_pair(); 2512 a = pop_pair(); 2513 c = _gvn.transform( new AddLNode(a,b) ); 2514 push_pair(c); 2515 break; 2516 case Bytecodes::_lsub: 2517 b = pop_pair(); 2518 a = pop_pair(); 2519 c = _gvn.transform( new SubLNode(a,b) ); 2520 push_pair(c); 2521 break; 2522 case Bytecodes::_lcmp: 2523 // Safepoints are now inserted _before_ branches. The long-compare 2524 // bytecode painfully produces a 3-way value (-1,0,+1) which requires a 2525 // slew of control flow. These are usually followed by a CmpI vs zero and 2526 // a branch; this pattern then optimizes to the obvious long-compare and 2527 // branch. However, if the branch is backwards there's a Safepoint 2528 // inserted. The inserted Safepoint captures the JVM state at the 2529 // pre-branch point, i.e. it captures the 3-way value. Thus if a 2530 // long-compare is used to control a loop the debug info will force 2531 // computation of the 3-way value, even though the generated code uses a 2532 // long-compare and branch. We try to rectify the situation by inserting 2533 // a SafePoint here and have it dominate and kill the safepoint added at a 2534 // following backwards branch. At this point the JVM state merely holds 2 2535 // longs but not the 3-way value. 2536 switch (iter().next_bc()) { 2537 case Bytecodes::_ifgt: 2538 case Bytecodes::_iflt: 2539 case Bytecodes::_ifge: 2540 case Bytecodes::_ifle: 2541 case Bytecodes::_ifne: 2542 case Bytecodes::_ifeq: 2543 // If this is a backwards branch in the bytecodes, add Safepoint 2544 maybe_add_safepoint(iter().next_get_dest()); 2545 default: 2546 break; 2547 } 2548 b = pop_pair(); 2549 a = pop_pair(); 2550 c = _gvn.transform( new CmpL3Node( a, b )); 2551 push(c); 2552 break; 2553 2554 case Bytecodes::_lneg: 2555 a = pop_pair(); 2556 b = _gvn.transform( new SubLNode(longcon(0),a)); 2557 push_pair(b); 2558 break; 2559 case Bytecodes::_l2i: 2560 a = pop_pair(); 2561 push( _gvn.transform( new ConvL2INode(a))); 2562 break; 2563 case Bytecodes::_i2l: 2564 a = pop(); 2565 b = _gvn.transform( new ConvI2LNode(a)); 2566 push_pair(b); 2567 break; 2568 case Bytecodes::_i2b: 2569 // Sign extend 2570 a = pop(); 2571 a = Compile::narrow_value(T_BYTE, a, nullptr, &_gvn, true); 2572 push(a); 2573 break; 2574 case Bytecodes::_i2s: 2575 a = pop(); 2576 a = Compile::narrow_value(T_SHORT, a, nullptr, &_gvn, true); 2577 push(a); 2578 break; 2579 case Bytecodes::_i2c: 2580 a = pop(); 2581 a = Compile::narrow_value(T_CHAR, a, nullptr, &_gvn, true); 2582 push(a); 2583 break; 2584 2585 case Bytecodes::_i2f: 2586 a = pop(); 2587 b = _gvn.transform( new ConvI2FNode(a) ) ; 2588 c = precision_rounding(b); 2589 push (b); 2590 break; 2591 2592 case Bytecodes::_i2d: 2593 a = pop(); 2594 b = _gvn.transform( new ConvI2DNode(a)); 2595 push_pair(b); 2596 break; 2597 2598 case Bytecodes::_iinc: // Increment local 2599 i = iter().get_index(); // Get local index 2600 set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) ); 2601 break; 2602 2603 // Exit points of synchronized methods must have an unlock node 2604 case Bytecodes::_return: 2605 return_current(nullptr); 2606 break; 2607 2608 case Bytecodes::_ireturn: 2609 case Bytecodes::_areturn: 2610 case Bytecodes::_freturn: 2611 return_current(pop()); 2612 break; 2613 case Bytecodes::_lreturn: 2614 return_current(pop_pair()); 2615 break; 2616 case Bytecodes::_dreturn: 2617 return_current(pop_pair()); 2618 break; 2619 2620 case Bytecodes::_athrow: 2621 // null exception oop throws null pointer exception 2622 null_check(peek()); 2623 if (stopped()) return; 2624 // Hook the thrown exception directly to subsequent handlers. 2625 if (BailoutToInterpreterForThrows) { 2626 // Keep method interpreted from now on. 2627 uncommon_trap(Deoptimization::Reason_unhandled, 2628 Deoptimization::Action_make_not_compilable); 2629 return; 2630 } 2631 if (env()->jvmti_can_post_on_exceptions()) { 2632 // check if we must post exception events, take uncommon trap if so (with must_throw = false) 2633 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false); 2634 } 2635 // Here if either can_post_on_exceptions or should_post_on_exceptions is false 2636 add_exception_state(make_exception_state(peek())); 2637 break; 2638 2639 case Bytecodes::_goto: // fall through 2640 case Bytecodes::_goto_w: { 2641 int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest(); 2642 2643 // If this is a backwards branch in the bytecodes, add Safepoint 2644 maybe_add_safepoint(target_bci); 2645 2646 // Merge the current control into the target basic block 2647 merge(target_bci); 2648 2649 // See if we can get some profile data and hand it off to the next block 2650 Block *target_block = block()->successor_for_bci(target_bci); 2651 if (target_block->pred_count() != 1) break; 2652 ciMethodData* methodData = method()->method_data(); 2653 if (!methodData->is_mature()) break; 2654 ciProfileData* data = methodData->bci_to_data(bci()); 2655 assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch"); 2656 int taken = ((ciJumpData*)data)->taken(); 2657 taken = method()->scale_count(taken); 2658 target_block->set_count(taken); 2659 break; 2660 } 2661 2662 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null; 2663 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null; 2664 handle_if_null: 2665 // If this is a backwards branch in the bytecodes, add Safepoint 2666 maybe_add_safepoint(iter().get_dest()); 2667 a = null(); 2668 b = pop(); 2669 if (!_gvn.type(b)->speculative_maybe_null() && 2670 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2671 inc_sp(1); 2672 Node* null_ctl = top(); 2673 b = null_check_oop(b, &null_ctl, true, true, true); 2674 assert(null_ctl->is_top(), "no null control here"); 2675 dec_sp(1); 2676 } else if (_gvn.type(b)->speculative_always_null() && 2677 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2678 inc_sp(1); 2679 b = null_assert(b); 2680 dec_sp(1); 2681 } 2682 c = _gvn.transform( new CmpPNode(b, a) ); 2683 do_ifnull(btest, c); 2684 break; 2685 2686 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp; 2687 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp; 2688 handle_if_acmp: 2689 // If this is a backwards branch in the bytecodes, add Safepoint 2690 maybe_add_safepoint(iter().get_dest()); 2691 a = pop(); 2692 b = pop(); 2693 c = _gvn.transform( new CmpPNode(b, a) ); 2694 c = optimize_cmp_with_klass(c); 2695 do_if(btest, c); 2696 break; 2697 2698 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx; 2699 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx; 2700 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx; 2701 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx; 2702 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx; 2703 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx; 2704 handle_ifxx: 2705 // If this is a backwards branch in the bytecodes, add Safepoint 2706 maybe_add_safepoint(iter().get_dest()); 2707 a = _gvn.intcon(0); 2708 b = pop(); 2709 c = _gvn.transform( new CmpINode(b, a) ); 2710 do_if(btest, c); 2711 break; 2712 2713 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp; 2714 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp; 2715 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp; 2716 case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp; 2717 case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp; 2718 case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp; 2719 handle_if_icmp: 2720 // If this is a backwards branch in the bytecodes, add Safepoint 2721 maybe_add_safepoint(iter().get_dest()); 2722 a = pop(); 2723 b = pop(); 2724 c = _gvn.transform( new CmpINode( b, a ) ); 2725 do_if(btest, c); 2726 break; 2727 2728 case Bytecodes::_tableswitch: 2729 do_tableswitch(); 2730 break; 2731 2732 case Bytecodes::_lookupswitch: 2733 do_lookupswitch(); 2734 break; 2735 2736 case Bytecodes::_invokestatic: 2737 case Bytecodes::_invokedynamic: 2738 case Bytecodes::_invokespecial: 2739 case Bytecodes::_invokevirtual: 2740 case Bytecodes::_invokeinterface: 2741 do_call(); 2742 break; 2743 case Bytecodes::_checkcast: 2744 do_checkcast(); 2745 break; 2746 case Bytecodes::_instanceof: 2747 do_instanceof(); 2748 break; 2749 case Bytecodes::_anewarray: 2750 do_anewarray(); 2751 break; 2752 case Bytecodes::_newarray: 2753 do_newarray((BasicType)iter().get_index()); 2754 break; 2755 case Bytecodes::_multianewarray: 2756 do_multianewarray(); 2757 break; 2758 case Bytecodes::_new: 2759 do_new(); 2760 break; 2761 2762 case Bytecodes::_jsr: 2763 case Bytecodes::_jsr_w: 2764 do_jsr(); 2765 break; 2766 2767 case Bytecodes::_ret: 2768 do_ret(); 2769 break; 2770 2771 2772 case Bytecodes::_monitorenter: 2773 do_monitor_enter(); 2774 break; 2775 2776 case Bytecodes::_monitorexit: 2777 do_monitor_exit(); 2778 break; 2779 2780 case Bytecodes::_breakpoint: 2781 // Breakpoint set concurrently to compile 2782 // %%% use an uncommon trap? 2783 C->record_failure("breakpoint in method"); 2784 return; 2785 2786 default: 2787 #ifndef PRODUCT 2788 map()->dump(99); 2789 #endif 2790 tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) ); 2791 ShouldNotReachHere(); 2792 } 2793 2794 #ifndef PRODUCT 2795 if (failing()) { return; } 2796 constexpr int perBytecode = 6; 2797 if (C->should_print_igv(perBytecode)) { 2798 IdealGraphPrinter* printer = C->igv_printer(); 2799 char buffer[256]; 2800 jio_snprintf(buffer, sizeof(buffer), "Bytecode %d: %s", bci(), Bytecodes::name(bc())); 2801 bool old = printer->traverse_outs(); 2802 printer->set_traverse_outs(true); 2803 printer->print_graph(buffer); 2804 printer->set_traverse_outs(old); 2805 } 2806 #endif 2807 }