1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmClasses.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "code/codeCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/nmethod.hpp" 30 #include "code/pcDesc.hpp" 31 #include "code/scopeDesc.hpp" 32 #include "code/vtableStubs.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/g1/g1HeapRegion.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gcLocker.hpp" 40 #include "interpreter/bytecode.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "logging/log.hpp" 44 #include "logging/logStream.hpp" 45 #include "memory/oopFactory.hpp" 46 #include "memory/resourceArea.hpp" 47 #include "oops/objArrayKlass.hpp" 48 #include "oops/klass.inline.hpp" 49 #include "oops/oop.inline.hpp" 50 #include "oops/typeArrayOop.inline.hpp" 51 #include "opto/ad.hpp" 52 #include "opto/addnode.hpp" 53 #include "opto/callnode.hpp" 54 #include "opto/cfgnode.hpp" 55 #include "opto/graphKit.hpp" 56 #include "opto/machnode.hpp" 57 #include "opto/matcher.hpp" 58 #include "opto/memnode.hpp" 59 #include "opto/mulnode.hpp" 60 #include "opto/output.hpp" 61 #include "opto/runtime.hpp" 62 #include "opto/subnode.hpp" 63 #include "prims/jvmtiExport.hpp" 64 #include "runtime/atomic.hpp" 65 #include "runtime/frame.inline.hpp" 66 #include "runtime/handles.inline.hpp" 67 #include "runtime/interfaceSupport.inline.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/sharedRuntime.hpp" 70 #include "runtime/signature.hpp" 71 #include "runtime/stackWatermarkSet.hpp" 72 #include "runtime/synchronizer.hpp" 73 #include "runtime/threadWXSetters.inline.hpp" 74 #include "runtime/vframe.hpp" 75 #include "runtime/vframeArray.hpp" 76 #include "runtime/vframe_hp.hpp" 77 #include "utilities/copy.hpp" 78 #include "utilities/preserveException.hpp" 79 80 81 // For debugging purposes: 82 // To force FullGCALot inside a runtime function, add the following two lines 83 // 84 // Universe::release_fullgc_alot_dummy(); 85 // Universe::heap()->collect(); 86 // 87 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 88 89 90 #define C2_BLOB_FIELD_DEFINE(name, type) \ 91 type OptoRuntime:: BLOB_FIELD_NAME(name) = nullptr; 92 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 93 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \ 94 address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr; 95 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \ 96 address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr; 97 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE) 98 #undef C2_BLOB_FIELD_DEFINE 99 #undef C2_STUB_FIELD_DEFINE 100 #undef C2_JVMTI_STUB_FIELD_DEFINE 101 102 #define C2_BLOB_NAME_DEFINE(name, type) "C2 Runtime " # name "_blob", 103 #define C2_STUB_NAME_DEFINE(name, f, t, r) "C2 Runtime " # name, 104 #define C2_JVMTI_STUB_NAME_DEFINE(name) "C2 Runtime " # name, 105 const char* OptoRuntime::_stub_names[] = { 106 C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE) 107 }; 108 #undef C2_BLOB_NAME_DEFINE 109 #undef C2_STUB_NAME_DEFINE 110 #undef C2_JVMTI_STUB_NAME_DEFINE 111 112 // This should be called in an assertion at the start of OptoRuntime routines 113 // which are entered from compiled code (all of them) 114 #ifdef ASSERT 115 static bool check_compiled_frame(JavaThread* thread) { 116 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 117 RegisterMap map(thread, 118 RegisterMap::UpdateMap::skip, 119 RegisterMap::ProcessFrames::include, 120 RegisterMap::WalkContinuation::skip); 121 frame caller = thread->last_frame().sender(&map); 122 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 123 return true; 124 } 125 #endif // ASSERT 126 127 /* 128 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 129 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 130 if (var == nullptr) { return false; } 131 */ 132 133 #define GEN_C2_BLOB(name, type) \ 134 BLOB_FIELD_NAME(name) = \ 135 generate_ ## name ## _blob(); \ 136 if (BLOB_FIELD_NAME(name) == nullptr) { return false; } 137 138 // a few helper macros to conjure up generate_stub call arguments 139 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 140 #define C2_STUB_TYPEFUNC(name) name ## _Type 141 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C) 142 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id) 143 #define C2_STUB_ID(name) OptoStubId::name ## _id 144 145 // Almost all the C functions targeted from the generated stubs are 146 // implemented locally to OptoRuntime with names that can be generated 147 // from the stub name by appending suffix '_C'. However, in two cases 148 // a common target method also needs to be called from shared runtime 149 // stubs. In these two cases the opto stubs rely on method 150 // imlementations defined in class SharedRuntime. The following 151 // defines temporarily rebind the generated names to reference the 152 // relevant implementations. 153 154 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc ) \ 155 C2_STUB_FIELD_NAME(name) = \ 156 generate_stub(env, \ 157 C2_STUB_TYPEFUNC(name), \ 158 C2_STUB_C_FUNC(name), \ 159 C2_STUB_NAME(name), \ 160 (int)C2_STUB_ID(name), \ 161 fancy_jump, \ 162 pass_tls, \ 163 pass_retpc); \ 164 if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; } \ 165 166 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name) 167 168 #define GEN_C2_JVMTI_STUB(name) \ 169 STUB_FIELD_NAME(name) = \ 170 generate_stub(env, \ 171 notify_jvmti_vthread_Type, \ 172 C2_JVMTI_STUB_C_FUNC(name), \ 173 C2_STUB_NAME(name), \ 174 (int)C2_STUB_ID(name), \ 175 0, \ 176 true, \ 177 false); \ 178 if (STUB_FIELD_NAME(name) == nullptr) { return false; } \ 179 180 bool OptoRuntime::generate(ciEnv* env) { 181 182 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB) 183 184 return true; 185 } 186 187 #undef GEN_C2_BLOB 188 189 #undef C2_STUB_FIELD_NAME 190 #undef C2_STUB_TYPEFUNC 191 #undef C2_STUB_C_FUNC 192 #undef C2_STUB_NAME 193 #undef GEN_C2_STUB 194 195 #undef C2_JVMTI_STUB_C_FUNC 196 #undef GEN_C2_JVMTI_STUB 197 // #undef gen 198 199 const TypeFunc* OptoRuntime::_new_instance_Type = nullptr; 200 const TypeFunc* OptoRuntime::_new_array_Type = nullptr; 201 const TypeFunc* OptoRuntime::_multianewarray2_Type = nullptr; 202 const TypeFunc* OptoRuntime::_multianewarray3_Type = nullptr; 203 const TypeFunc* OptoRuntime::_multianewarray4_Type = nullptr; 204 const TypeFunc* OptoRuntime::_multianewarray5_Type = nullptr; 205 const TypeFunc* OptoRuntime::_multianewarrayN_Type = nullptr; 206 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type = nullptr; 207 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type = nullptr; 208 const TypeFunc* OptoRuntime::_monitor_notify_Type = nullptr; 209 const TypeFunc* OptoRuntime::_uncommon_trap_Type = nullptr; 210 const TypeFunc* OptoRuntime::_athrow_Type = nullptr; 211 const TypeFunc* OptoRuntime::_rethrow_Type = nullptr; 212 const TypeFunc* OptoRuntime::_Math_D_D_Type = nullptr; 213 const TypeFunc* OptoRuntime::_Math_DD_D_Type = nullptr; 214 const TypeFunc* OptoRuntime::_modf_Type = nullptr; 215 const TypeFunc* OptoRuntime::_l2f_Type = nullptr; 216 const TypeFunc* OptoRuntime::_void_long_Type = nullptr; 217 const TypeFunc* OptoRuntime::_void_void_Type = nullptr; 218 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type = nullptr; 219 const TypeFunc* OptoRuntime::_flush_windows_Type = nullptr; 220 const TypeFunc* OptoRuntime::_fast_arraycopy_Type = nullptr; 221 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type = nullptr; 222 const TypeFunc* OptoRuntime::_generic_arraycopy_Type = nullptr; 223 const TypeFunc* OptoRuntime::_slow_arraycopy_Type = nullptr; 224 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type = nullptr; 225 const TypeFunc* OptoRuntime::_array_fill_Type = nullptr; 226 const TypeFunc* OptoRuntime::_array_sort_Type = nullptr; 227 const TypeFunc* OptoRuntime::_array_partition_Type = nullptr; 228 const TypeFunc* OptoRuntime::_aescrypt_block_Type = nullptr; 229 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type = nullptr; 230 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type = nullptr; 231 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type = nullptr; 232 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type = nullptr; 233 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type = nullptr; 234 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type = nullptr; 235 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type = nullptr; 236 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr; 237 const TypeFunc* OptoRuntime::_double_keccak_Type = nullptr; 238 const TypeFunc* OptoRuntime::_multiplyToLen_Type = nullptr; 239 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type = nullptr; 240 const TypeFunc* OptoRuntime::_montgomerySquare_Type = nullptr; 241 const TypeFunc* OptoRuntime::_squareToLen_Type = nullptr; 242 const TypeFunc* OptoRuntime::_mulAdd_Type = nullptr; 243 const TypeFunc* OptoRuntime::_bigIntegerShift_Type = nullptr; 244 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type = nullptr; 245 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type = nullptr; 246 const TypeFunc* OptoRuntime::_chacha20Block_Type = nullptr; 247 const TypeFunc* OptoRuntime::_kyberNtt_Type = nullptr; 248 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type = nullptr; 249 const TypeFunc* OptoRuntime::_kyberNttMult_Type = nullptr; 250 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type = nullptr; 251 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type = nullptr; 252 const TypeFunc* OptoRuntime::_kyber12To16_Type = nullptr; 253 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type = nullptr; 254 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type = nullptr; 255 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type = nullptr; 256 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type = nullptr; 257 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type = nullptr; 258 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type = nullptr; 259 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type = nullptr; 260 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type = nullptr; 261 const TypeFunc* OptoRuntime::_string_IndexOf_Type = nullptr; 262 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type = nullptr; 263 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type = nullptr; 264 const TypeFunc* OptoRuntime::_intpoly_assign_Type = nullptr; 265 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type = nullptr; 266 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type = nullptr; 267 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type = nullptr; 268 const TypeFunc* OptoRuntime::_osr_end_Type = nullptr; 269 const TypeFunc* OptoRuntime::_register_finalizer_Type = nullptr; 270 #if INCLUDE_JFR 271 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type = nullptr; 272 #endif // INCLUDE_JFR 273 #if INCLUDE_JVMTI 274 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type = nullptr; 275 #endif // INCLUDE_JVMTI 276 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type = nullptr; 277 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type = nullptr; 278 279 // Helper method to do generation of RunTimeStub's 280 address OptoRuntime::generate_stub(ciEnv* env, 281 TypeFunc_generator gen, address C_function, 282 const char *name, int stub_id, 283 int is_fancy_jump, bool pass_tls, 284 bool return_pc) { 285 286 // Matching the default directive, we currently have no method to match. 287 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 288 CompilationMemoryStatisticMark cmsm(directive); 289 ResourceMark rm; 290 Compile C(env, gen, C_function, name, stub_id, is_fancy_jump, pass_tls, return_pc, directive); 291 DirectivesStack::release(directive); 292 return C.stub_entry_point(); 293 } 294 295 const char* OptoRuntime::stub_name(address entry) { 296 #ifndef PRODUCT 297 CodeBlob* cb = CodeCache::find_blob(entry); 298 RuntimeStub* rs =(RuntimeStub *)cb; 299 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub"); 300 return rs->name(); 301 #else 302 // Fast implementation for product mode (maybe it should be inlined too) 303 return "runtime stub"; 304 #endif 305 } 306 307 // local methods passed as arguments to stub generator that forward 308 // control to corresponding JRT methods of SharedRuntime 309 310 void OptoRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 311 oopDesc* dest, jint dest_pos, 312 jint length, JavaThread* thread) { 313 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread); 314 } 315 316 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) { 317 SharedRuntime::complete_monitor_locking_C(obj, lock, current); 318 } 319 320 321 //============================================================================= 322 // Opto compiler runtime routines 323 //============================================================================= 324 325 326 //=============================allocation====================================== 327 // We failed the fast-path allocation. Now we need to do a scavenge or GC 328 // and try allocation again. 329 330 // object allocation 331 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current)) 332 JRT_BLOCK; 333 #ifndef PRODUCT 334 SharedRuntime::_new_instance_ctr++; // new instance requires GC 335 #endif 336 assert(check_compiled_frame(current), "incorrect caller"); 337 338 // These checks are cheap to make and support reflective allocation. 339 int lh = klass->layout_helper(); 340 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 341 Handle holder(current, klass->klass_holder()); // keep the klass alive 342 klass->check_valid_for_instantiation(false, THREAD); 343 if (!HAS_PENDING_EXCEPTION) { 344 InstanceKlass::cast(klass)->initialize(THREAD); 345 } 346 } 347 348 if (!HAS_PENDING_EXCEPTION) { 349 // Scavenge and allocate an instance. 350 Handle holder(current, klass->klass_holder()); // keep the klass alive 351 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 352 current->set_vm_result_oop(result); 353 354 // Pass oops back through thread local storage. Our apparent type to Java 355 // is that we return an oop, but we can block on exit from this routine and 356 // a GC can trash the oop in C's return register. The generated stub will 357 // fetch the oop from TLS after any possible GC. 358 } 359 360 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 361 JRT_BLOCK_END; 362 363 // inform GC that we won't do card marks for initializing writes. 364 SharedRuntime::on_slowpath_allocation_exit(current); 365 JRT_END 366 367 368 // array allocation 369 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current)) 370 JRT_BLOCK; 371 #ifndef PRODUCT 372 SharedRuntime::_new_array_ctr++; // new array requires GC 373 #endif 374 assert(check_compiled_frame(current), "incorrect caller"); 375 376 // Scavenge and allocate an instance. 377 oop result; 378 379 if (array_type->is_typeArray_klass()) { 380 // The oopFactory likes to work with the element type. 381 // (We could bypass the oopFactory, since it doesn't add much value.) 382 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 383 result = oopFactory::new_typeArray(elem_type, len, THREAD); 384 } else { 385 // Although the oopFactory likes to work with the elem_type, 386 // the compiler prefers the array_type, since it must already have 387 // that latter value in hand for the fast path. 388 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 389 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 390 result = oopFactory::new_objArray(elem_type, len, THREAD); 391 } 392 393 // Pass oops back through thread local storage. Our apparent type to Java 394 // is that we return an oop, but we can block on exit from this routine and 395 // a GC can trash the oop in C's return register. The generated stub will 396 // fetch the oop from TLS after any possible GC. 397 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 398 current->set_vm_result_oop(result); 399 JRT_BLOCK_END; 400 401 // inform GC that we won't do card marks for initializing writes. 402 SharedRuntime::on_slowpath_allocation_exit(current); 403 JRT_END 404 405 // array allocation without zeroing 406 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 407 JRT_BLOCK; 408 #ifndef PRODUCT 409 SharedRuntime::_new_array_ctr++; // new array requires GC 410 #endif 411 assert(check_compiled_frame(current), "incorrect caller"); 412 413 // Scavenge and allocate an instance. 414 oop result; 415 416 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 417 // The oopFactory likes to work with the element type. 418 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 419 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 420 421 // Pass oops back through thread local storage. Our apparent type to Java 422 // is that we return an oop, but we can block on exit from this routine and 423 // a GC can trash the oop in C's return register. The generated stub will 424 // fetch the oop from TLS after any possible GC. 425 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 426 current->set_vm_result_oop(result); 427 JRT_BLOCK_END; 428 429 430 // inform GC that we won't do card marks for initializing writes. 431 SharedRuntime::on_slowpath_allocation_exit(current); 432 433 oop result = current->vm_result_oop(); 434 if ((len > 0) && (result != nullptr) && 435 is_deoptimized_caller_frame(current)) { 436 // Zero array here if the caller is deoptimized. 437 const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result); 438 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 439 size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 440 assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned"); 441 HeapWord* obj = cast_from_oop<HeapWord*>(result); 442 if (!is_aligned(hs_bytes, BytesPerLong)) { 443 *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0; 444 hs_bytes += BytesPerInt; 445 } 446 447 // Optimized zeroing. 448 assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned"); 449 const size_t aligned_hs = hs_bytes / BytesPerLong; 450 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 451 } 452 453 JRT_END 454 455 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 456 457 // multianewarray for 2 dimensions 458 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 459 #ifndef PRODUCT 460 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 461 #endif 462 assert(check_compiled_frame(current), "incorrect caller"); 463 assert(elem_type->is_klass(), "not a class"); 464 jint dims[2]; 465 dims[0] = len1; 466 dims[1] = len2; 467 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 468 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 469 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 470 current->set_vm_result_oop(obj); 471 JRT_END 472 473 // multianewarray for 3 dimensions 474 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 475 #ifndef PRODUCT 476 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 477 #endif 478 assert(check_compiled_frame(current), "incorrect caller"); 479 assert(elem_type->is_klass(), "not a class"); 480 jint dims[3]; 481 dims[0] = len1; 482 dims[1] = len2; 483 dims[2] = len3; 484 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 485 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 486 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 487 current->set_vm_result_oop(obj); 488 JRT_END 489 490 // multianewarray for 4 dimensions 491 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 492 #ifndef PRODUCT 493 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 494 #endif 495 assert(check_compiled_frame(current), "incorrect caller"); 496 assert(elem_type->is_klass(), "not a class"); 497 jint dims[4]; 498 dims[0] = len1; 499 dims[1] = len2; 500 dims[2] = len3; 501 dims[3] = len4; 502 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 503 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 504 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 505 current->set_vm_result_oop(obj); 506 JRT_END 507 508 // multianewarray for 5 dimensions 509 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 510 #ifndef PRODUCT 511 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 512 #endif 513 assert(check_compiled_frame(current), "incorrect caller"); 514 assert(elem_type->is_klass(), "not a class"); 515 jint dims[5]; 516 dims[0] = len1; 517 dims[1] = len2; 518 dims[2] = len3; 519 dims[3] = len4; 520 dims[4] = len5; 521 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 522 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 523 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 524 current->set_vm_result_oop(obj); 525 JRT_END 526 527 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 528 assert(check_compiled_frame(current), "incorrect caller"); 529 assert(elem_type->is_klass(), "not a class"); 530 assert(oop(dims)->is_typeArray(), "not an array"); 531 532 ResourceMark rm; 533 jint len = dims->length(); 534 assert(len > 0, "Dimensions array should contain data"); 535 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 536 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 537 c_dims, len); 538 539 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 540 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 541 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 542 current->set_vm_result_oop(obj); 543 JRT_END 544 545 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 546 547 // Very few notify/notifyAll operations find any threads on the waitset, so 548 // the dominant fast-path is to simply return. 549 // Relatedly, it's critical that notify/notifyAll be fast in order to 550 // reduce lock hold times. 551 if (!SafepointSynchronize::is_synchronizing()) { 552 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 553 return; 554 } 555 } 556 557 // This is the case the fast-path above isn't provisioned to handle. 558 // The fast-path is designed to handle frequently arising cases in an efficient manner. 559 // (The fast-path is just a degenerate variant of the slow-path). 560 // Perform the dreaded state transition and pass control into the slow-path. 561 JRT_BLOCK; 562 Handle h_obj(current, obj); 563 ObjectSynchronizer::notify(h_obj, CHECK); 564 JRT_BLOCK_END; 565 JRT_END 566 567 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 568 569 if (!SafepointSynchronize::is_synchronizing() ) { 570 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 571 return; 572 } 573 } 574 575 // This is the case the fast-path above isn't provisioned to handle. 576 // The fast-path is designed to handle frequently arising cases in an efficient manner. 577 // (The fast-path is just a degenerate variant of the slow-path). 578 // Perform the dreaded state transition and pass control into the slow-path. 579 JRT_BLOCK; 580 Handle h_obj(current, obj); 581 ObjectSynchronizer::notifyall(h_obj, CHECK); 582 JRT_BLOCK_END; 583 JRT_END 584 585 static const TypeFunc* make_new_instance_Type() { 586 // create input type (domain) 587 const Type **fields = TypeTuple::fields(1); 588 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 589 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 590 591 // create result type (range) 592 fields = TypeTuple::fields(1); 593 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 594 595 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 596 597 return TypeFunc::make(domain, range); 598 } 599 600 #if INCLUDE_JVMTI 601 static const TypeFunc* make_notify_jvmti_vthread_Type() { 602 // create input type (domain) 603 const Type **fields = TypeTuple::fields(2); 604 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop 605 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean 606 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 607 608 // no result type needed 609 fields = TypeTuple::fields(1); 610 fields[TypeFunc::Parms+0] = nullptr; // void 611 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 612 613 return TypeFunc::make(domain,range); 614 } 615 #endif 616 617 static const TypeFunc* make_athrow_Type() { 618 // create input type (domain) 619 const Type **fields = TypeTuple::fields(1); 620 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 621 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 622 623 // create result type (range) 624 fields = TypeTuple::fields(0); 625 626 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 627 628 return TypeFunc::make(domain, range); 629 } 630 631 static const TypeFunc* make_new_array_Type() { 632 // create input type (domain) 633 const Type **fields = TypeTuple::fields(2); 634 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 635 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 636 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 637 638 // create result type (range) 639 fields = TypeTuple::fields(1); 640 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 641 642 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 643 644 return TypeFunc::make(domain, range); 645 } 646 647 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) { 648 // create input type (domain) 649 const int nargs = ndim + 1; 650 const Type **fields = TypeTuple::fields(nargs); 651 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 652 for( int i = 1; i < nargs; i++ ) 653 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 654 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 655 656 // create result type (range) 657 fields = TypeTuple::fields(1); 658 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 659 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 660 661 return TypeFunc::make(domain, range); 662 } 663 664 static const TypeFunc* make_multianewarrayN_Type() { 665 // create input type (domain) 666 const Type **fields = TypeTuple::fields(2); 667 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 668 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 669 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 670 671 // create result type (range) 672 fields = TypeTuple::fields(1); 673 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 674 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 675 676 return TypeFunc::make(domain, range); 677 } 678 679 static const TypeFunc* make_uncommon_trap_Type() { 680 // create input type (domain) 681 const Type **fields = TypeTuple::fields(1); 682 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 683 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 684 685 // create result type (range) 686 fields = TypeTuple::fields(0); 687 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 688 689 return TypeFunc::make(domain, range); 690 } 691 692 //----------------------------------------------------------------------------- 693 // Monitor Handling 694 695 static const TypeFunc* make_complete_monitor_enter_Type() { 696 // create input type (domain) 697 const Type **fields = TypeTuple::fields(2); 698 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 699 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 700 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 701 702 // create result type (range) 703 fields = TypeTuple::fields(0); 704 705 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 706 707 return TypeFunc::make(domain,range); 708 } 709 710 //----------------------------------------------------------------------------- 711 712 static const TypeFunc* make_complete_monitor_exit_Type() { 713 // create input type (domain) 714 const Type **fields = TypeTuple::fields(3); 715 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 716 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 717 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 718 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 719 720 // create result type (range) 721 fields = TypeTuple::fields(0); 722 723 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 724 725 return TypeFunc::make(domain, range); 726 } 727 728 static const TypeFunc* make_monitor_notify_Type() { 729 // create input type (domain) 730 const Type **fields = TypeTuple::fields(1); 731 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 732 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 733 734 // create result type (range) 735 fields = TypeTuple::fields(0); 736 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 737 return TypeFunc::make(domain, range); 738 } 739 740 static const TypeFunc* make_flush_windows_Type() { 741 // create input type (domain) 742 const Type** fields = TypeTuple::fields(1); 743 fields[TypeFunc::Parms+0] = nullptr; // void 744 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 745 746 // create result type 747 fields = TypeTuple::fields(1); 748 fields[TypeFunc::Parms+0] = nullptr; // void 749 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 750 751 return TypeFunc::make(domain, range); 752 } 753 754 static const TypeFunc* make_l2f_Type() { 755 // create input type (domain) 756 const Type **fields = TypeTuple::fields(2); 757 fields[TypeFunc::Parms+0] = TypeLong::LONG; 758 fields[TypeFunc::Parms+1] = Type::HALF; 759 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 760 761 // create result type (range) 762 fields = TypeTuple::fields(1); 763 fields[TypeFunc::Parms+0] = Type::FLOAT; 764 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 765 766 return TypeFunc::make(domain, range); 767 } 768 769 static const TypeFunc* make_modf_Type() { 770 const Type **fields = TypeTuple::fields(2); 771 fields[TypeFunc::Parms+0] = Type::FLOAT; 772 fields[TypeFunc::Parms+1] = Type::FLOAT; 773 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 774 775 // create result type (range) 776 fields = TypeTuple::fields(1); 777 fields[TypeFunc::Parms+0] = Type::FLOAT; 778 779 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 780 781 return TypeFunc::make(domain, range); 782 } 783 784 static const TypeFunc* make_Math_D_D_Type() { 785 // create input type (domain) 786 const Type **fields = TypeTuple::fields(2); 787 // Symbol* name of class to be loaded 788 fields[TypeFunc::Parms+0] = Type::DOUBLE; 789 fields[TypeFunc::Parms+1] = Type::HALF; 790 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 791 792 // create result type (range) 793 fields = TypeTuple::fields(2); 794 fields[TypeFunc::Parms+0] = Type::DOUBLE; 795 fields[TypeFunc::Parms+1] = Type::HALF; 796 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 797 798 return TypeFunc::make(domain, range); 799 } 800 801 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 802 // create input type (domain) 803 const Type **fields = TypeTuple::fields(num_arg); 804 // Symbol* name of class to be loaded 805 assert(num_arg > 0, "must have at least 1 input"); 806 for (uint i = 0; i < num_arg; i++) { 807 fields[TypeFunc::Parms+i] = in_type; 808 } 809 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 810 811 // create result type (range) 812 const uint num_ret = 1; 813 fields = TypeTuple::fields(num_ret); 814 fields[TypeFunc::Parms+0] = out_type; 815 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 816 817 return TypeFunc::make(domain, range); 818 } 819 820 static const TypeFunc* make_Math_DD_D_Type() { 821 const Type **fields = TypeTuple::fields(4); 822 fields[TypeFunc::Parms+0] = Type::DOUBLE; 823 fields[TypeFunc::Parms+1] = Type::HALF; 824 fields[TypeFunc::Parms+2] = Type::DOUBLE; 825 fields[TypeFunc::Parms+3] = Type::HALF; 826 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 827 828 // create result type (range) 829 fields = TypeTuple::fields(2); 830 fields[TypeFunc::Parms+0] = Type::DOUBLE; 831 fields[TypeFunc::Parms+1] = Type::HALF; 832 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 833 834 return TypeFunc::make(domain, range); 835 } 836 837 //-------------- currentTimeMillis, currentTimeNanos, etc 838 839 static const TypeFunc* make_void_long_Type() { 840 // create input type (domain) 841 const Type **fields = TypeTuple::fields(0); 842 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 843 844 // create result type (range) 845 fields = TypeTuple::fields(2); 846 fields[TypeFunc::Parms+0] = TypeLong::LONG; 847 fields[TypeFunc::Parms+1] = Type::HALF; 848 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 849 850 return TypeFunc::make(domain, range); 851 } 852 853 static const TypeFunc* make_void_void_Type() { 854 // create input type (domain) 855 const Type **fields = TypeTuple::fields(0); 856 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 857 858 // create result type (range) 859 fields = TypeTuple::fields(0); 860 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 861 return TypeFunc::make(domain, range); 862 } 863 864 static const TypeFunc* make_jfr_write_checkpoint_Type() { 865 // create input type (domain) 866 const Type **fields = TypeTuple::fields(0); 867 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 868 869 // create result type (range) 870 fields = TypeTuple::fields(0); 871 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 872 return TypeFunc::make(domain, range); 873 } 874 875 876 // Takes as parameters: 877 // void *dest 878 // long size 879 // uchar byte 880 881 static const TypeFunc* make_setmemory_Type() { 882 // create input type (domain) 883 int argcnt = NOT_LP64(3) LP64_ONLY(4); 884 const Type** fields = TypeTuple::fields(argcnt); 885 int argp = TypeFunc::Parms; 886 fields[argp++] = TypePtr::NOTNULL; // dest 887 fields[argp++] = TypeX_X; // size 888 LP64_ONLY(fields[argp++] = Type::HALF); // size 889 fields[argp++] = TypeInt::UBYTE; // bytevalue 890 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 891 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 892 893 // no result type needed 894 fields = TypeTuple::fields(1); 895 fields[TypeFunc::Parms+0] = nullptr; // void 896 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 897 return TypeFunc::make(domain, range); 898 } 899 900 // arraycopy stub variations: 901 enum ArrayCopyType { 902 ac_fast, // void(ptr, ptr, size_t) 903 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 904 ac_slow, // void(ptr, int, ptr, int, int) 905 ac_generic // int(ptr, int, ptr, int, int) 906 }; 907 908 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 909 // create input type (domain) 910 int num_args = (act == ac_fast ? 3 : 5); 911 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 912 int argcnt = num_args; 913 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 914 const Type** fields = TypeTuple::fields(argcnt); 915 int argp = TypeFunc::Parms; 916 fields[argp++] = TypePtr::NOTNULL; // src 917 if (num_size_args == 0) { 918 fields[argp++] = TypeInt::INT; // src_pos 919 } 920 fields[argp++] = TypePtr::NOTNULL; // dest 921 if (num_size_args == 0) { 922 fields[argp++] = TypeInt::INT; // dest_pos 923 fields[argp++] = TypeInt::INT; // length 924 } 925 while (num_size_args-- > 0) { 926 fields[argp++] = TypeX_X; // size in whatevers (size_t) 927 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 928 } 929 if (act == ac_checkcast) { 930 fields[argp++] = TypePtr::NOTNULL; // super_klass 931 } 932 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 933 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 934 935 // create result type if needed 936 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 937 fields = TypeTuple::fields(1); 938 if (retcnt == 0) 939 fields[TypeFunc::Parms+0] = nullptr; // void 940 else 941 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 942 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 943 return TypeFunc::make(domain, range); 944 } 945 946 static const TypeFunc* make_array_fill_Type() { 947 const Type** fields; 948 int argp = TypeFunc::Parms; 949 // create input type (domain): pointer, int, size_t 950 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 951 fields[argp++] = TypePtr::NOTNULL; 952 fields[argp++] = TypeInt::INT; 953 fields[argp++] = TypeX_X; // size in whatevers (size_t) 954 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 955 const TypeTuple *domain = TypeTuple::make(argp, fields); 956 957 // create result type 958 fields = TypeTuple::fields(1); 959 fields[TypeFunc::Parms+0] = nullptr; // void 960 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 961 962 return TypeFunc::make(domain, range); 963 } 964 965 static const TypeFunc* make_array_partition_Type() { 966 // create input type (domain) 967 int num_args = 7; 968 int argcnt = num_args; 969 const Type** fields = TypeTuple::fields(argcnt); 970 int argp = TypeFunc::Parms; 971 fields[argp++] = TypePtr::NOTNULL; // array 972 fields[argp++] = TypeInt::INT; // element type 973 fields[argp++] = TypeInt::INT; // low 974 fields[argp++] = TypeInt::INT; // end 975 fields[argp++] = TypePtr::NOTNULL; // pivot_indices (int array) 976 fields[argp++] = TypeInt::INT; // indexPivot1 977 fields[argp++] = TypeInt::INT; // indexPivot2 978 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 979 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 980 981 // no result type needed 982 fields = TypeTuple::fields(1); 983 fields[TypeFunc::Parms+0] = nullptr; // void 984 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 985 return TypeFunc::make(domain, range); 986 } 987 988 static const TypeFunc* make_array_sort_Type() { 989 // create input type (domain) 990 int num_args = 4; 991 int argcnt = num_args; 992 const Type** fields = TypeTuple::fields(argcnt); 993 int argp = TypeFunc::Parms; 994 fields[argp++] = TypePtr::NOTNULL; // array 995 fields[argp++] = TypeInt::INT; // element type 996 fields[argp++] = TypeInt::INT; // fromIndex 997 fields[argp++] = TypeInt::INT; // toIndex 998 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 999 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1000 1001 // no result type needed 1002 fields = TypeTuple::fields(1); 1003 fields[TypeFunc::Parms+0] = nullptr; // void 1004 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1005 return TypeFunc::make(domain, range); 1006 } 1007 1008 static const TypeFunc* make_aescrypt_block_Type() { 1009 // create input type (domain) 1010 int num_args = 3; 1011 int argcnt = num_args; 1012 const Type** fields = TypeTuple::fields(argcnt); 1013 int argp = TypeFunc::Parms; 1014 fields[argp++] = TypePtr::NOTNULL; // src 1015 fields[argp++] = TypePtr::NOTNULL; // dest 1016 fields[argp++] = TypePtr::NOTNULL; // k array 1017 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1018 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1019 1020 // no result type needed 1021 fields = TypeTuple::fields(1); 1022 fields[TypeFunc::Parms+0] = nullptr; // void 1023 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1024 return TypeFunc::make(domain, range); 1025 } 1026 1027 static const TypeFunc* make_updateBytesCRC32_Type() { 1028 // create input type (domain) 1029 int num_args = 3; 1030 int argcnt = num_args; 1031 const Type** fields = TypeTuple::fields(argcnt); 1032 int argp = TypeFunc::Parms; 1033 fields[argp++] = TypeInt::INT; // crc 1034 fields[argp++] = TypePtr::NOTNULL; // src 1035 fields[argp++] = TypeInt::INT; // len 1036 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1037 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1038 1039 // result type needed 1040 fields = TypeTuple::fields(1); 1041 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1042 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1043 return TypeFunc::make(domain, range); 1044 } 1045 1046 static const TypeFunc* make_updateBytesCRC32C_Type() { 1047 // create input type (domain) 1048 int num_args = 4; 1049 int argcnt = num_args; 1050 const Type** fields = TypeTuple::fields(argcnt); 1051 int argp = TypeFunc::Parms; 1052 fields[argp++] = TypeInt::INT; // crc 1053 fields[argp++] = TypePtr::NOTNULL; // buf 1054 fields[argp++] = TypeInt::INT; // len 1055 fields[argp++] = TypePtr::NOTNULL; // table 1056 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1057 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1058 1059 // result type needed 1060 fields = TypeTuple::fields(1); 1061 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1062 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1063 return TypeFunc::make(domain, range); 1064 } 1065 1066 static const TypeFunc* make_updateBytesAdler32_Type() { 1067 // create input type (domain) 1068 int num_args = 3; 1069 int argcnt = num_args; 1070 const Type** fields = TypeTuple::fields(argcnt); 1071 int argp = TypeFunc::Parms; 1072 fields[argp++] = TypeInt::INT; // crc 1073 fields[argp++] = TypePtr::NOTNULL; // src + offset 1074 fields[argp++] = TypeInt::INT; // len 1075 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1076 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1077 1078 // result type needed 1079 fields = TypeTuple::fields(1); 1080 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1081 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1082 return TypeFunc::make(domain, range); 1083 } 1084 1085 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() { 1086 // create input type (domain) 1087 int num_args = 5; 1088 int argcnt = num_args; 1089 const Type** fields = TypeTuple::fields(argcnt); 1090 int argp = TypeFunc::Parms; 1091 fields[argp++] = TypePtr::NOTNULL; // src 1092 fields[argp++] = TypePtr::NOTNULL; // dest 1093 fields[argp++] = TypePtr::NOTNULL; // k array 1094 fields[argp++] = TypePtr::NOTNULL; // r array 1095 fields[argp++] = TypeInt::INT; // src len 1096 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1097 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1098 1099 // returning cipher len (int) 1100 fields = TypeTuple::fields(1); 1101 fields[TypeFunc::Parms+0] = TypeInt::INT; 1102 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1103 return TypeFunc::make(domain, range); 1104 } 1105 1106 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() { 1107 // create input type (domain) 1108 int num_args = 4; 1109 int argcnt = num_args; 1110 const Type** fields = TypeTuple::fields(argcnt); 1111 int argp = TypeFunc::Parms; 1112 fields[argp++] = TypePtr::NOTNULL; // src 1113 fields[argp++] = TypePtr::NOTNULL; // dest 1114 fields[argp++] = TypePtr::NOTNULL; // k array 1115 fields[argp++] = TypeInt::INT; // src len 1116 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1117 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1118 1119 // returning cipher len (int) 1120 fields = TypeTuple::fields(1); 1121 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1122 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1123 return TypeFunc::make(domain, range); 1124 } 1125 1126 static const TypeFunc* make_counterMode_aescrypt_Type() { 1127 // create input type (domain) 1128 int num_args = 7; 1129 int argcnt = num_args; 1130 const Type** fields = TypeTuple::fields(argcnt); 1131 int argp = TypeFunc::Parms; 1132 fields[argp++] = TypePtr::NOTNULL; // src 1133 fields[argp++] = TypePtr::NOTNULL; // dest 1134 fields[argp++] = TypePtr::NOTNULL; // k array 1135 fields[argp++] = TypePtr::NOTNULL; // counter array 1136 fields[argp++] = TypeInt::INT; // src len 1137 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 1138 fields[argp++] = TypePtr::NOTNULL; // saved used addr 1139 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1140 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1141 // returning cipher len (int) 1142 fields = TypeTuple::fields(1); 1143 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1144 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1145 return TypeFunc::make(domain, range); 1146 } 1147 1148 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() { 1149 // create input type (domain) 1150 int num_args = 8; 1151 int argcnt = num_args; 1152 const Type** fields = TypeTuple::fields(argcnt); 1153 int argp = TypeFunc::Parms; 1154 fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs 1155 fields[argp++] = TypeInt::INT; // int len 1156 fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs 1157 fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs 1158 fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj 1159 fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj 1160 fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj 1161 fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj 1162 1163 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1164 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1165 // returning cipher len (int) 1166 fields = TypeTuple::fields(1); 1167 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1168 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1169 return TypeFunc::make(domain, range); 1170 } 1171 1172 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) { 1173 // create input type (domain) 1174 int num_args = is_sha3 ? 3 : 2; 1175 int argcnt = num_args; 1176 const Type** fields = TypeTuple::fields(argcnt); 1177 int argp = TypeFunc::Parms; 1178 fields[argp++] = TypePtr::NOTNULL; // buf 1179 fields[argp++] = TypePtr::NOTNULL; // state 1180 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1181 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1182 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1183 1184 // no result type needed 1185 fields = TypeTuple::fields(1); 1186 fields[TypeFunc::Parms+0] = nullptr; // void 1187 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1188 return TypeFunc::make(domain, range); 1189 } 1190 1191 /* 1192 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1193 */ 1194 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) { 1195 // create input type (domain) 1196 int num_args = is_sha3 ? 5 : 4; 1197 int argcnt = num_args; 1198 const Type** fields = TypeTuple::fields(argcnt); 1199 int argp = TypeFunc::Parms; 1200 fields[argp++] = TypePtr::NOTNULL; // buf 1201 fields[argp++] = TypePtr::NOTNULL; // state 1202 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1203 fields[argp++] = TypeInt::INT; // ofs 1204 fields[argp++] = TypeInt::INT; // limit 1205 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1206 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1207 1208 // returning ofs (int) 1209 fields = TypeTuple::fields(1); 1210 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1211 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1212 return TypeFunc::make(domain, range); 1213 } 1214 1215 // SHAKE128Parallel doubleKeccak function 1216 static const TypeFunc* make_double_keccak_Type() { 1217 int argcnt = 2; 1218 1219 const Type** fields = TypeTuple::fields(argcnt); 1220 int argp = TypeFunc::Parms; 1221 fields[argp++] = TypePtr::NOTNULL; // status0 1222 fields[argp++] = TypePtr::NOTNULL; // status1 1223 1224 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1225 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1226 1227 // result type needed 1228 fields = TypeTuple::fields(1); 1229 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1230 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1231 return TypeFunc::make(domain, range); 1232 } 1233 1234 static const TypeFunc* make_multiplyToLen_Type() { 1235 // create input type (domain) 1236 int num_args = 5; 1237 int argcnt = num_args; 1238 const Type** fields = TypeTuple::fields(argcnt); 1239 int argp = TypeFunc::Parms; 1240 fields[argp++] = TypePtr::NOTNULL; // x 1241 fields[argp++] = TypeInt::INT; // xlen 1242 fields[argp++] = TypePtr::NOTNULL; // y 1243 fields[argp++] = TypeInt::INT; // ylen 1244 fields[argp++] = TypePtr::NOTNULL; // z 1245 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1246 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1247 1248 // no result type needed 1249 fields = TypeTuple::fields(1); 1250 fields[TypeFunc::Parms+0] = nullptr; 1251 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1252 return TypeFunc::make(domain, range); 1253 } 1254 1255 static const TypeFunc* make_squareToLen_Type() { 1256 // create input type (domain) 1257 int num_args = 4; 1258 int argcnt = num_args; 1259 const Type** fields = TypeTuple::fields(argcnt); 1260 int argp = TypeFunc::Parms; 1261 fields[argp++] = TypePtr::NOTNULL; // x 1262 fields[argp++] = TypeInt::INT; // len 1263 fields[argp++] = TypePtr::NOTNULL; // z 1264 fields[argp++] = TypeInt::INT; // zlen 1265 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1266 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1267 1268 // no result type needed 1269 fields = TypeTuple::fields(1); 1270 fields[TypeFunc::Parms+0] = nullptr; 1271 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1272 return TypeFunc::make(domain, range); 1273 } 1274 1275 static const TypeFunc* make_mulAdd_Type() { 1276 // create input type (domain) 1277 int num_args = 5; 1278 int argcnt = num_args; 1279 const Type** fields = TypeTuple::fields(argcnt); 1280 int argp = TypeFunc::Parms; 1281 fields[argp++] = TypePtr::NOTNULL; // out 1282 fields[argp++] = TypePtr::NOTNULL; // in 1283 fields[argp++] = TypeInt::INT; // offset 1284 fields[argp++] = TypeInt::INT; // len 1285 fields[argp++] = TypeInt::INT; // k 1286 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1287 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1288 1289 // returning carry (int) 1290 fields = TypeTuple::fields(1); 1291 fields[TypeFunc::Parms+0] = TypeInt::INT; 1292 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1293 return TypeFunc::make(domain, range); 1294 } 1295 1296 static const TypeFunc* make_montgomeryMultiply_Type() { 1297 // create input type (domain) 1298 int num_args = 7; 1299 int argcnt = num_args; 1300 const Type** fields = TypeTuple::fields(argcnt); 1301 int argp = TypeFunc::Parms; 1302 fields[argp++] = TypePtr::NOTNULL; // a 1303 fields[argp++] = TypePtr::NOTNULL; // b 1304 fields[argp++] = TypePtr::NOTNULL; // n 1305 fields[argp++] = TypeInt::INT; // len 1306 fields[argp++] = TypeLong::LONG; // inv 1307 fields[argp++] = Type::HALF; 1308 fields[argp++] = TypePtr::NOTNULL; // result 1309 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1310 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1311 1312 // result type needed 1313 fields = TypeTuple::fields(1); 1314 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1315 1316 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1317 return TypeFunc::make(domain, range); 1318 } 1319 1320 static const TypeFunc* make_montgomerySquare_Type() { 1321 // create input type (domain) 1322 int num_args = 6; 1323 int argcnt = num_args; 1324 const Type** fields = TypeTuple::fields(argcnt); 1325 int argp = TypeFunc::Parms; 1326 fields[argp++] = TypePtr::NOTNULL; // a 1327 fields[argp++] = TypePtr::NOTNULL; // n 1328 fields[argp++] = TypeInt::INT; // len 1329 fields[argp++] = TypeLong::LONG; // inv 1330 fields[argp++] = Type::HALF; 1331 fields[argp++] = TypePtr::NOTNULL; // result 1332 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1333 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1334 1335 // result type needed 1336 fields = TypeTuple::fields(1); 1337 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1338 1339 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1340 return TypeFunc::make(domain, range); 1341 } 1342 1343 static const TypeFunc* make_bigIntegerShift_Type() { 1344 int argcnt = 5; 1345 const Type** fields = TypeTuple::fields(argcnt); 1346 int argp = TypeFunc::Parms; 1347 fields[argp++] = TypePtr::NOTNULL; // newArr 1348 fields[argp++] = TypePtr::NOTNULL; // oldArr 1349 fields[argp++] = TypeInt::INT; // newIdx 1350 fields[argp++] = TypeInt::INT; // shiftCount 1351 fields[argp++] = TypeInt::INT; // numIter 1352 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1353 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1354 1355 // no result type needed 1356 fields = TypeTuple::fields(1); 1357 fields[TypeFunc::Parms + 0] = nullptr; 1358 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1359 return TypeFunc::make(domain, range); 1360 } 1361 1362 static const TypeFunc* make_vectorizedMismatch_Type() { 1363 // create input type (domain) 1364 int num_args = 4; 1365 int argcnt = num_args; 1366 const Type** fields = TypeTuple::fields(argcnt); 1367 int argp = TypeFunc::Parms; 1368 fields[argp++] = TypePtr::NOTNULL; // obja 1369 fields[argp++] = TypePtr::NOTNULL; // objb 1370 fields[argp++] = TypeInt::INT; // length, number of elements 1371 fields[argp++] = TypeInt::INT; // log2scale, element size 1372 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1373 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1374 1375 //return mismatch index (int) 1376 fields = TypeTuple::fields(1); 1377 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1378 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1379 return TypeFunc::make(domain, range); 1380 } 1381 1382 static const TypeFunc* make_ghash_processBlocks_Type() { 1383 int argcnt = 4; 1384 1385 const Type** fields = TypeTuple::fields(argcnt); 1386 int argp = TypeFunc::Parms; 1387 fields[argp++] = TypePtr::NOTNULL; // state 1388 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1389 fields[argp++] = TypePtr::NOTNULL; // data 1390 fields[argp++] = TypeInt::INT; // blocks 1391 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1392 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1393 1394 // result type needed 1395 fields = TypeTuple::fields(1); 1396 fields[TypeFunc::Parms+0] = nullptr; // void 1397 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1398 return TypeFunc::make(domain, range); 1399 } 1400 1401 static const TypeFunc* make_chacha20Block_Type() { 1402 int argcnt = 2; 1403 1404 const Type** fields = TypeTuple::fields(argcnt); 1405 int argp = TypeFunc::Parms; 1406 fields[argp++] = TypePtr::NOTNULL; // state 1407 fields[argp++] = TypePtr::NOTNULL; // result 1408 1409 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1410 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1411 1412 // result type needed 1413 fields = TypeTuple::fields(1); 1414 fields[TypeFunc::Parms + 0] = TypeInt::INT; // key stream outlen as int 1415 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1416 return TypeFunc::make(domain, range); 1417 } 1418 1419 // Kyber NTT function 1420 static const TypeFunc* make_kyberNtt_Type() { 1421 int argcnt = 2; 1422 1423 const Type** fields = TypeTuple::fields(argcnt); 1424 int argp = TypeFunc::Parms; 1425 fields[argp++] = TypePtr::NOTNULL; // coeffs 1426 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1427 1428 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1429 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1430 1431 // result type needed 1432 fields = TypeTuple::fields(1); 1433 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1434 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1435 return TypeFunc::make(domain, range); 1436 } 1437 1438 // Kyber inverse NTT function 1439 static const TypeFunc* make_kyberInverseNtt_Type() { 1440 int argcnt = 2; 1441 1442 const Type** fields = TypeTuple::fields(argcnt); 1443 int argp = TypeFunc::Parms; 1444 fields[argp++] = TypePtr::NOTNULL; // coeffs 1445 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1446 1447 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1448 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1449 1450 // result type needed 1451 fields = TypeTuple::fields(1); 1452 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1453 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1454 return TypeFunc::make(domain, range); 1455 } 1456 1457 // Kyber NTT multiply function 1458 static const TypeFunc* make_kyberNttMult_Type() { 1459 int argcnt = 4; 1460 1461 const Type** fields = TypeTuple::fields(argcnt); 1462 int argp = TypeFunc::Parms; 1463 fields[argp++] = TypePtr::NOTNULL; // result 1464 fields[argp++] = TypePtr::NOTNULL; // ntta 1465 fields[argp++] = TypePtr::NOTNULL; // nttb 1466 fields[argp++] = TypePtr::NOTNULL; // NTT multiply zetas 1467 1468 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1469 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1470 1471 // result type needed 1472 fields = TypeTuple::fields(1); 1473 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1474 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1475 return TypeFunc::make(domain, range); 1476 } 1477 1478 // Kyber add 2 polynomials function 1479 static const TypeFunc* make_kyberAddPoly_2_Type() { 1480 int argcnt = 3; 1481 1482 const Type** fields = TypeTuple::fields(argcnt); 1483 int argp = TypeFunc::Parms; 1484 fields[argp++] = TypePtr::NOTNULL; // result 1485 fields[argp++] = TypePtr::NOTNULL; // a 1486 fields[argp++] = TypePtr::NOTNULL; // b 1487 1488 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1489 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1490 1491 // result type needed 1492 fields = TypeTuple::fields(1); 1493 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1494 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1495 return TypeFunc::make(domain, range); 1496 } 1497 1498 1499 // Kyber add 3 polynomials function 1500 static const TypeFunc* make_kyberAddPoly_3_Type() { 1501 int argcnt = 4; 1502 1503 const Type** fields = TypeTuple::fields(argcnt); 1504 int argp = TypeFunc::Parms; 1505 fields[argp++] = TypePtr::NOTNULL; // result 1506 fields[argp++] = TypePtr::NOTNULL; // a 1507 fields[argp++] = TypePtr::NOTNULL; // b 1508 fields[argp++] = TypePtr::NOTNULL; // c 1509 1510 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1511 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1512 1513 // result type needed 1514 fields = TypeTuple::fields(1); 1515 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1516 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1517 return TypeFunc::make(domain, range); 1518 } 1519 1520 1521 // Kyber XOF output parsing into polynomial coefficients candidates 1522 // or decompress(12,...) function 1523 static const TypeFunc* make_kyber12To16_Type() { 1524 int argcnt = 4; 1525 1526 const Type** fields = TypeTuple::fields(argcnt); 1527 int argp = TypeFunc::Parms; 1528 fields[argp++] = TypePtr::NOTNULL; // condensed 1529 fields[argp++] = TypeInt::INT; // condensedOffs 1530 fields[argp++] = TypePtr::NOTNULL; // parsed 1531 fields[argp++] = TypeInt::INT; // parsedLength 1532 1533 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1534 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1535 1536 // result type needed 1537 fields = TypeTuple::fields(1); 1538 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1539 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1540 return TypeFunc::make(domain, range); 1541 } 1542 1543 // Kyber Barrett reduce function 1544 static const TypeFunc* make_kyberBarrettReduce_Type() { 1545 int argcnt = 1; 1546 1547 const Type** fields = TypeTuple::fields(argcnt); 1548 int argp = TypeFunc::Parms; 1549 fields[argp++] = TypePtr::NOTNULL; // coeffs 1550 1551 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1552 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1553 1554 // result type needed 1555 fields = TypeTuple::fields(1); 1556 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1557 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1558 return TypeFunc::make(domain, range); 1559 } 1560 1561 // Dilithium NTT function except for the final "normalization" to |coeff| < Q 1562 static const TypeFunc* make_dilithiumAlmostNtt_Type() { 1563 int argcnt = 2; 1564 1565 const Type** fields = TypeTuple::fields(argcnt); 1566 int argp = TypeFunc::Parms; 1567 fields[argp++] = TypePtr::NOTNULL; // coeffs 1568 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1569 1570 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1571 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1572 1573 // result type needed 1574 fields = TypeTuple::fields(1); 1575 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1576 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1577 return TypeFunc::make(domain, range); 1578 } 1579 1580 // Dilithium inverse NTT function except the final mod Q division by 2^256 1581 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() { 1582 int argcnt = 2; 1583 1584 const Type** fields = TypeTuple::fields(argcnt); 1585 int argp = TypeFunc::Parms; 1586 fields[argp++] = TypePtr::NOTNULL; // coeffs 1587 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1588 1589 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1590 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1591 1592 // result type needed 1593 fields = TypeTuple::fields(1); 1594 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1595 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1596 return TypeFunc::make(domain, range); 1597 } 1598 1599 // Dilithium NTT multiply function 1600 static const TypeFunc* make_dilithiumNttMult_Type() { 1601 int argcnt = 3; 1602 1603 const Type** fields = TypeTuple::fields(argcnt); 1604 int argp = TypeFunc::Parms; 1605 fields[argp++] = TypePtr::NOTNULL; // result 1606 fields[argp++] = TypePtr::NOTNULL; // ntta 1607 fields[argp++] = TypePtr::NOTNULL; // nttb 1608 1609 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1610 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1611 1612 // result type needed 1613 fields = TypeTuple::fields(1); 1614 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1615 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1616 return TypeFunc::make(domain, range); 1617 } 1618 1619 // Dilithium Montgomery multiply a polynome coefficient array by a constant 1620 static const TypeFunc* make_dilithiumMontMulByConstant_Type() { 1621 int argcnt = 2; 1622 1623 const Type** fields = TypeTuple::fields(argcnt); 1624 int argp = TypeFunc::Parms; 1625 fields[argp++] = TypePtr::NOTNULL; // coeffs 1626 fields[argp++] = TypeInt::INT; // constant multiplier 1627 1628 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1629 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1630 1631 // result type needed 1632 fields = TypeTuple::fields(1); 1633 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1634 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1635 return TypeFunc::make(domain, range); 1636 } 1637 1638 // Dilithium decompose polynomial 1639 static const TypeFunc* make_dilithiumDecomposePoly_Type() { 1640 int argcnt = 5; 1641 1642 const Type** fields = TypeTuple::fields(argcnt); 1643 int argp = TypeFunc::Parms; 1644 fields[argp++] = TypePtr::NOTNULL; // input 1645 fields[argp++] = TypePtr::NOTNULL; // lowPart 1646 fields[argp++] = TypePtr::NOTNULL; // highPart 1647 fields[argp++] = TypeInt::INT; // 2 * gamma2 1648 fields[argp++] = TypeInt::INT; // multiplier 1649 1650 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1651 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1652 1653 // result type needed 1654 fields = TypeTuple::fields(1); 1655 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1656 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1657 return TypeFunc::make(domain, range); 1658 } 1659 1660 static const TypeFunc* make_base64_encodeBlock_Type() { 1661 int argcnt = 6; 1662 1663 const Type** fields = TypeTuple::fields(argcnt); 1664 int argp = TypeFunc::Parms; 1665 fields[argp++] = TypePtr::NOTNULL; // src array 1666 fields[argp++] = TypeInt::INT; // offset 1667 fields[argp++] = TypeInt::INT; // length 1668 fields[argp++] = TypePtr::NOTNULL; // dest array 1669 fields[argp++] = TypeInt::INT; // dp 1670 fields[argp++] = TypeInt::BOOL; // isURL 1671 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1672 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1673 1674 // result type needed 1675 fields = TypeTuple::fields(1); 1676 fields[TypeFunc::Parms + 0] = nullptr; // void 1677 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1678 return TypeFunc::make(domain, range); 1679 } 1680 1681 static const TypeFunc* make_string_IndexOf_Type() { 1682 int argcnt = 4; 1683 1684 const Type** fields = TypeTuple::fields(argcnt); 1685 int argp = TypeFunc::Parms; 1686 fields[argp++] = TypePtr::NOTNULL; // haystack array 1687 fields[argp++] = TypeInt::INT; // haystack length 1688 fields[argp++] = TypePtr::NOTNULL; // needle array 1689 fields[argp++] = TypeInt::INT; // needle length 1690 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1691 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1692 1693 // result type needed 1694 fields = TypeTuple::fields(1); 1695 fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack 1696 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1697 return TypeFunc::make(domain, range); 1698 } 1699 1700 static const TypeFunc* make_base64_decodeBlock_Type() { 1701 int argcnt = 7; 1702 1703 const Type** fields = TypeTuple::fields(argcnt); 1704 int argp = TypeFunc::Parms; 1705 fields[argp++] = TypePtr::NOTNULL; // src array 1706 fields[argp++] = TypeInt::INT; // src offset 1707 fields[argp++] = TypeInt::INT; // src length 1708 fields[argp++] = TypePtr::NOTNULL; // dest array 1709 fields[argp++] = TypeInt::INT; // dest offset 1710 fields[argp++] = TypeInt::BOOL; // isURL 1711 fields[argp++] = TypeInt::BOOL; // isMIME 1712 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1713 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1714 1715 // result type needed 1716 fields = TypeTuple::fields(1); 1717 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1718 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1719 return TypeFunc::make(domain, range); 1720 } 1721 1722 static const TypeFunc* make_poly1305_processBlocks_Type() { 1723 int argcnt = 4; 1724 1725 const Type** fields = TypeTuple::fields(argcnt); 1726 int argp = TypeFunc::Parms; 1727 fields[argp++] = TypePtr::NOTNULL; // input array 1728 fields[argp++] = TypeInt::INT; // input length 1729 fields[argp++] = TypePtr::NOTNULL; // accumulator array 1730 fields[argp++] = TypePtr::NOTNULL; // r array 1731 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1732 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1733 1734 // result type needed 1735 fields = TypeTuple::fields(1); 1736 fields[TypeFunc::Parms + 0] = nullptr; // void 1737 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1738 return TypeFunc::make(domain, range); 1739 } 1740 1741 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() { 1742 int argcnt = 3; 1743 1744 const Type** fields = TypeTuple::fields(argcnt); 1745 int argp = TypeFunc::Parms; 1746 fields[argp++] = TypePtr::NOTNULL; // a array 1747 fields[argp++] = TypePtr::NOTNULL; // b array 1748 fields[argp++] = TypePtr::NOTNULL; // r(esult) array 1749 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1750 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1751 1752 // result type needed 1753 fields = TypeTuple::fields(1); 1754 fields[TypeFunc::Parms + 0] = nullptr; // void 1755 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1756 return TypeFunc::make(domain, range); 1757 } 1758 1759 static const TypeFunc* make_intpoly_assign_Type() { 1760 int argcnt = 4; 1761 1762 const Type** fields = TypeTuple::fields(argcnt); 1763 int argp = TypeFunc::Parms; 1764 fields[argp++] = TypeInt::INT; // set flag 1765 fields[argp++] = TypePtr::NOTNULL; // a array (result) 1766 fields[argp++] = TypePtr::NOTNULL; // b array (if set is set) 1767 fields[argp++] = TypeInt::INT; // array length 1768 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1769 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1770 1771 // result type needed 1772 fields = TypeTuple::fields(1); 1773 fields[TypeFunc::Parms + 0] = nullptr; // void 1774 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1775 return TypeFunc::make(domain, range); 1776 } 1777 1778 //------------- Interpreter state for on stack replacement 1779 static const TypeFunc* make_osr_end_Type() { 1780 // create input type (domain) 1781 const Type **fields = TypeTuple::fields(1); 1782 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1783 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1784 1785 // create result type 1786 fields = TypeTuple::fields(1); 1787 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1788 fields[TypeFunc::Parms+0] = nullptr; // void 1789 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1790 return TypeFunc::make(domain, range); 1791 } 1792 1793 //------------------------------------------------------------------------------------- 1794 // register policy 1795 1796 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1797 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1798 switch (register_save_policy[reg]) { 1799 case 'C': return false; //SOC 1800 case 'E': return true ; //SOE 1801 case 'N': return false; //NS 1802 case 'A': return false; //AS 1803 } 1804 ShouldNotReachHere(); 1805 return false; 1806 } 1807 1808 //----------------------------------------------------------------------- 1809 // Exceptions 1810 // 1811 1812 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1813 1814 // The method is an entry that is always called by a C++ method not 1815 // directly from compiled code. Compiled code will call the C++ method following. 1816 // We can't allow async exception to be installed during exception processing. 1817 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1818 // The frame we rethrow the exception to might not have been processed by the GC yet. 1819 // The stack watermark barrier takes care of detecting that and ensuring the frame 1820 // has updated oops. 1821 StackWatermarkSet::after_unwind(current); 1822 1823 // Do not confuse exception_oop with pending_exception. The exception_oop 1824 // is only used to pass arguments into the method. Not for general 1825 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1826 // the runtime stubs checks this on exit. 1827 assert(current->exception_oop() != nullptr, "exception oop is found"); 1828 address handler_address = nullptr; 1829 1830 Handle exception(current, current->exception_oop()); 1831 address pc = current->exception_pc(); 1832 1833 // Clear out the exception oop and pc since looking up an 1834 // exception handler can cause class loading, which might throw an 1835 // exception and those fields are expected to be clear during 1836 // normal bytecode execution. 1837 current->clear_exception_oop_and_pc(); 1838 1839 LogTarget(Info, exceptions) lt; 1840 if (lt.is_enabled()) { 1841 LogStream ls(lt); 1842 trace_exception(&ls, exception(), pc, ""); 1843 } 1844 1845 // for AbortVMOnException flag 1846 Exceptions::debug_check_abort(exception); 1847 1848 #ifdef ASSERT 1849 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1850 // should throw an exception here 1851 ShouldNotReachHere(); 1852 } 1853 #endif 1854 1855 // new exception handling: this method is entered only from adapters 1856 // exceptions from compiled java methods are handled in compiled code 1857 // using rethrow node 1858 1859 nm = CodeCache::find_nmethod(pc); 1860 assert(nm != nullptr, "No NMethod found"); 1861 if (nm->is_native_method()) { 1862 fatal("Native method should not have path to exception handling"); 1863 } else { 1864 // we are switching to old paradigm: search for exception handler in caller_frame 1865 // instead in exception handler of caller_frame.sender() 1866 1867 if (JvmtiExport::can_post_on_exceptions()) { 1868 // "Full-speed catching" is not necessary here, 1869 // since we're notifying the VM on every catch. 1870 // Force deoptimization and the rest of the lookup 1871 // will be fine. 1872 deoptimize_caller_frame(current); 1873 } 1874 1875 // Check the stack guard pages. If enabled, look for handler in this frame; 1876 // otherwise, forcibly unwind the frame. 1877 // 1878 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1879 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1880 bool deopting = false; 1881 if (nm->is_deopt_pc(pc)) { 1882 deopting = true; 1883 RegisterMap map(current, 1884 RegisterMap::UpdateMap::skip, 1885 RegisterMap::ProcessFrames::include, 1886 RegisterMap::WalkContinuation::skip); 1887 frame deoptee = current->last_frame().sender(&map); 1888 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1889 // Adjust the pc back to the original throwing pc 1890 pc = deoptee.pc(); 1891 } 1892 1893 // If we are forcing an unwind because of stack overflow then deopt is 1894 // irrelevant since we are throwing the frame away anyway. 1895 1896 if (deopting && !force_unwind) { 1897 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1898 } else { 1899 1900 handler_address = 1901 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc); 1902 1903 if (handler_address == nullptr) { 1904 bool recursive_exception = false; 1905 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1906 assert (handler_address != nullptr, "must have compiled handler"); 1907 // Update the exception cache only when the unwind was not forced 1908 // and there didn't happen another exception during the computation of the 1909 // compiled exception handler. Checking for exception oop equality is not 1910 // sufficient because some exceptions are pre-allocated and reused. 1911 if (!force_unwind && !recursive_exception) { 1912 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1913 } 1914 } else { 1915 #ifdef ASSERT 1916 bool recursive_exception = false; 1917 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1918 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1919 p2i(handler_address), p2i(computed_address)); 1920 #endif 1921 } 1922 } 1923 1924 current->set_exception_pc(pc); 1925 current->set_exception_handler_pc(handler_address); 1926 1927 // Check if the exception PC is a MethodHandle call site. 1928 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1929 } 1930 1931 // Restore correct return pc. Was saved above. 1932 current->set_exception_oop(exception()); 1933 return handler_address; 1934 1935 JRT_END 1936 1937 // We are entering here from exception_blob 1938 // If there is a compiled exception handler in this method, we will continue there; 1939 // otherwise we will unwind the stack and continue at the caller of top frame method 1940 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1941 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1942 // we looked up the handler for has been deoptimized in the meantime. If it has been 1943 // we must not use the handler and instead return the deopt blob. 1944 address OptoRuntime::handle_exception_C(JavaThread* current) { 1945 // 1946 // We are in Java not VM and in debug mode we have a NoHandleMark 1947 // 1948 #ifndef PRODUCT 1949 SharedRuntime::_find_handler_ctr++; // find exception handler 1950 #endif 1951 DEBUG_ONLY(NoHandleMark __hm;) 1952 nmethod* nm = nullptr; 1953 address handler_address = nullptr; 1954 { 1955 // Enter the VM 1956 1957 ResetNoHandleMark rnhm; 1958 handler_address = handle_exception_C_helper(current, nm); 1959 } 1960 1961 // Back in java: Use no oops, DON'T safepoint 1962 1963 // Now check to see if the handler we are returning is in a now 1964 // deoptimized frame 1965 1966 if (nm != nullptr) { 1967 RegisterMap map(current, 1968 RegisterMap::UpdateMap::skip, 1969 RegisterMap::ProcessFrames::skip, 1970 RegisterMap::WalkContinuation::skip); 1971 frame caller = current->last_frame().sender(&map); 1972 #ifdef ASSERT 1973 assert(caller.is_compiled_frame(), "must be"); 1974 #endif // ASSERT 1975 if (caller.is_deoptimized_frame()) { 1976 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1977 } 1978 } 1979 return handler_address; 1980 } 1981 1982 //------------------------------rethrow---------------------------------------- 1983 // We get here after compiled code has executed a 'RethrowNode'. The callee 1984 // is either throwing or rethrowing an exception. The callee-save registers 1985 // have been restored, synchronized objects have been unlocked and the callee 1986 // stack frame has been removed. The return address was passed in. 1987 // Exception oop is passed as the 1st argument. This routine is then called 1988 // from the stub. On exit, we know where to jump in the caller's code. 1989 // After this C code exits, the stub will pop his frame and end in a jump 1990 // (instead of a return). We enter the caller's default handler. 1991 // 1992 // This must be JRT_LEAF: 1993 // - caller will not change its state as we cannot block on exit, 1994 // therefore raw_exception_handler_for_return_address is all it takes 1995 // to handle deoptimized blobs 1996 // 1997 // However, there needs to be a safepoint check in the middle! So compiled 1998 // safepoints are completely watertight. 1999 // 2000 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 2001 // 2002 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 2003 // 2004 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 2005 // ret_pc will have been loaded from the stack, so for AArch64 will be signed. 2006 AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc)); 2007 2008 #ifndef PRODUCT 2009 SharedRuntime::_rethrow_ctr++; // count rethrows 2010 #endif 2011 assert (exception != nullptr, "should have thrown a NullPointerException"); 2012 #ifdef ASSERT 2013 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 2014 // should throw an exception here 2015 ShouldNotReachHere(); 2016 } 2017 #endif 2018 2019 thread->set_vm_result_oop(exception); 2020 // Frame not compiled (handles deoptimization blob) 2021 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 2022 } 2023 2024 static const TypeFunc* make_rethrow_Type() { 2025 // create input type (domain) 2026 const Type **fields = TypeTuple::fields(1); 2027 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 2028 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2029 2030 // create result type (range) 2031 fields = TypeTuple::fields(1); 2032 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 2033 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 2034 2035 return TypeFunc::make(domain, range); 2036 } 2037 2038 2039 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 2040 // Deoptimize the caller before continuing, as the compiled 2041 // exception handler table may not be valid. 2042 if (DeoptimizeOnAllocationException && doit) { 2043 deoptimize_caller_frame(thread); 2044 } 2045 } 2046 2047 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 2048 // Called from within the owner thread, so no need for safepoint 2049 RegisterMap reg_map(thread, 2050 RegisterMap::UpdateMap::include, 2051 RegisterMap::ProcessFrames::include, 2052 RegisterMap::WalkContinuation::skip); 2053 frame stub_frame = thread->last_frame(); 2054 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 2055 frame caller_frame = stub_frame.sender(®_map); 2056 2057 // Deoptimize the caller frame. 2058 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 2059 } 2060 2061 2062 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 2063 // Called from within the owner thread, so no need for safepoint 2064 RegisterMap reg_map(thread, 2065 RegisterMap::UpdateMap::include, 2066 RegisterMap::ProcessFrames::include, 2067 RegisterMap::WalkContinuation::skip); 2068 frame stub_frame = thread->last_frame(); 2069 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 2070 frame caller_frame = stub_frame.sender(®_map); 2071 return caller_frame.is_deoptimized_frame(); 2072 } 2073 2074 static const TypeFunc* make_register_finalizer_Type() { 2075 // create input type (domain) 2076 const Type **fields = TypeTuple::fields(1); 2077 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 2078 // // The JavaThread* is passed to each routine as the last argument 2079 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 2080 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2081 2082 // create result type (range) 2083 fields = TypeTuple::fields(0); 2084 2085 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2086 2087 return TypeFunc::make(domain,range); 2088 } 2089 2090 #if INCLUDE_JFR 2091 static const TypeFunc* make_class_id_load_barrier_Type() { 2092 // create input type (domain) 2093 const Type **fields = TypeTuple::fields(1); 2094 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 2095 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 2096 2097 // create result type (range) 2098 fields = TypeTuple::fields(0); 2099 2100 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 2101 2102 return TypeFunc::make(domain,range); 2103 } 2104 #endif // INCLUDE_JFR 2105 2106 //----------------------------------------------------------------------------- 2107 static const TypeFunc* make_dtrace_method_entry_exit_Type() { 2108 // create input type (domain) 2109 const Type **fields = TypeTuple::fields(2); 2110 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2111 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 2112 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2113 2114 // create result type (range) 2115 fields = TypeTuple::fields(0); 2116 2117 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2118 2119 return TypeFunc::make(domain,range); 2120 } 2121 2122 static const TypeFunc* make_dtrace_object_alloc_Type() { 2123 // create input type (domain) 2124 const Type **fields = TypeTuple::fields(2); 2125 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2126 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 2127 2128 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2129 2130 // create result type (range) 2131 fields = TypeTuple::fields(0); 2132 2133 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2134 2135 return TypeFunc::make(domain,range); 2136 } 2137 2138 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current)) 2139 assert(oopDesc::is_oop(obj), "must be a valid oop"); 2140 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 2141 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 2142 JRT_END 2143 2144 //----------------------------------------------------------------------------- 2145 2146 NamedCounter * volatile OptoRuntime::_named_counters = nullptr; 2147 2148 // 2149 // dump the collected NamedCounters. 2150 // 2151 void OptoRuntime::print_named_counters() { 2152 int total_lock_count = 0; 2153 int eliminated_lock_count = 0; 2154 2155 NamedCounter* c = _named_counters; 2156 while (c) { 2157 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 2158 int count = c->count(); 2159 if (count > 0) { 2160 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 2161 if (Verbose) { 2162 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 2163 } 2164 total_lock_count += count; 2165 if (eliminated) { 2166 eliminated_lock_count += count; 2167 } 2168 } 2169 } 2170 c = c->next(); 2171 } 2172 if (total_lock_count > 0) { 2173 tty->print_cr("dynamic locks: %d", total_lock_count); 2174 if (eliminated_lock_count) { 2175 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 2176 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 2177 } 2178 } 2179 } 2180 2181 // 2182 // Allocate a new NamedCounter. The JVMState is used to generate the 2183 // name which consists of method@line for the inlining tree. 2184 // 2185 2186 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 2187 int max_depth = youngest_jvms->depth(); 2188 2189 // Visit scopes from youngest to oldest. 2190 bool first = true; 2191 stringStream st; 2192 for (int depth = max_depth; depth >= 1; depth--) { 2193 JVMState* jvms = youngest_jvms->of_depth(depth); 2194 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr; 2195 if (!first) { 2196 st.print(" "); 2197 } else { 2198 first = false; 2199 } 2200 int bci = jvms->bci(); 2201 if (bci < 0) bci = 0; 2202 if (m != nullptr) { 2203 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 2204 } else { 2205 st.print("no method"); 2206 } 2207 st.print("@%d", bci); 2208 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 2209 } 2210 NamedCounter* c = new NamedCounter(st.freeze(), tag); 2211 2212 // atomically add the new counter to the head of the list. We only 2213 // add counters so this is safe. 2214 NamedCounter* head; 2215 do { 2216 c->set_next(nullptr); 2217 head = _named_counters; 2218 c->set_next(head); 2219 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 2220 return c; 2221 } 2222 2223 void OptoRuntime::initialize_types() { 2224 _new_instance_Type = make_new_instance_Type(); 2225 _new_array_Type = make_new_array_Type(); 2226 _multianewarray2_Type = multianewarray_Type(2); 2227 _multianewarray3_Type = multianewarray_Type(3); 2228 _multianewarray4_Type = multianewarray_Type(4); 2229 _multianewarray5_Type = multianewarray_Type(5); 2230 _multianewarrayN_Type = make_multianewarrayN_Type(); 2231 _complete_monitor_enter_Type = make_complete_monitor_enter_Type(); 2232 _complete_monitor_exit_Type = make_complete_monitor_exit_Type(); 2233 _monitor_notify_Type = make_monitor_notify_Type(); 2234 _uncommon_trap_Type = make_uncommon_trap_Type(); 2235 _athrow_Type = make_athrow_Type(); 2236 _rethrow_Type = make_rethrow_Type(); 2237 _Math_D_D_Type = make_Math_D_D_Type(); 2238 _Math_DD_D_Type = make_Math_DD_D_Type(); 2239 _modf_Type = make_modf_Type(); 2240 _l2f_Type = make_l2f_Type(); 2241 _void_long_Type = make_void_long_Type(); 2242 _void_void_Type = make_void_void_Type(); 2243 _jfr_write_checkpoint_Type = make_jfr_write_checkpoint_Type(); 2244 _flush_windows_Type = make_flush_windows_Type(); 2245 _fast_arraycopy_Type = make_arraycopy_Type(ac_fast); 2246 _checkcast_arraycopy_Type = make_arraycopy_Type(ac_checkcast); 2247 _generic_arraycopy_Type = make_arraycopy_Type(ac_generic); 2248 _slow_arraycopy_Type = make_arraycopy_Type(ac_slow); 2249 _unsafe_setmemory_Type = make_setmemory_Type(); 2250 _array_fill_Type = make_array_fill_Type(); 2251 _array_sort_Type = make_array_sort_Type(); 2252 _array_partition_Type = make_array_partition_Type(); 2253 _aescrypt_block_Type = make_aescrypt_block_Type(); 2254 _cipherBlockChaining_aescrypt_Type = make_cipherBlockChaining_aescrypt_Type(); 2255 _electronicCodeBook_aescrypt_Type = make_electronicCodeBook_aescrypt_Type(); 2256 _counterMode_aescrypt_Type = make_counterMode_aescrypt_Type(); 2257 _galoisCounterMode_aescrypt_Type = make_galoisCounterMode_aescrypt_Type(); 2258 _digestBase_implCompress_with_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ true); 2259 _digestBase_implCompress_without_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ false);; 2260 _digestBase_implCompressMB_with_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ true); 2261 _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false); 2262 _double_keccak_Type = make_double_keccak_Type(); 2263 _multiplyToLen_Type = make_multiplyToLen_Type(); 2264 _montgomeryMultiply_Type = make_montgomeryMultiply_Type(); 2265 _montgomerySquare_Type = make_montgomerySquare_Type(); 2266 _squareToLen_Type = make_squareToLen_Type(); 2267 _mulAdd_Type = make_mulAdd_Type(); 2268 _bigIntegerShift_Type = make_bigIntegerShift_Type(); 2269 _vectorizedMismatch_Type = make_vectorizedMismatch_Type(); 2270 _ghash_processBlocks_Type = make_ghash_processBlocks_Type(); 2271 _chacha20Block_Type = make_chacha20Block_Type(); 2272 _kyberNtt_Type = make_kyberNtt_Type(); 2273 _kyberInverseNtt_Type = make_kyberInverseNtt_Type(); 2274 _kyberNttMult_Type = make_kyberNttMult_Type(); 2275 _kyberAddPoly_2_Type = make_kyberAddPoly_2_Type(); 2276 _kyberAddPoly_3_Type = make_kyberAddPoly_3_Type(); 2277 _kyber12To16_Type = make_kyber12To16_Type(); 2278 _kyberBarrettReduce_Type = make_kyberBarrettReduce_Type(); 2279 _dilithiumAlmostNtt_Type = make_dilithiumAlmostNtt_Type(); 2280 _dilithiumAlmostInverseNtt_Type = make_dilithiumAlmostInverseNtt_Type(); 2281 _dilithiumNttMult_Type = make_dilithiumNttMult_Type(); 2282 _dilithiumMontMulByConstant_Type = make_dilithiumMontMulByConstant_Type(); 2283 _dilithiumDecomposePoly_Type = make_dilithiumDecomposePoly_Type(); 2284 _base64_encodeBlock_Type = make_base64_encodeBlock_Type(); 2285 _base64_decodeBlock_Type = make_base64_decodeBlock_Type(); 2286 _string_IndexOf_Type = make_string_IndexOf_Type(); 2287 _poly1305_processBlocks_Type = make_poly1305_processBlocks_Type(); 2288 _intpoly_montgomeryMult_P256_Type = make_intpoly_montgomeryMult_P256_Type(); 2289 _intpoly_assign_Type = make_intpoly_assign_Type(); 2290 _updateBytesCRC32_Type = make_updateBytesCRC32_Type(); 2291 _updateBytesCRC32C_Type = make_updateBytesCRC32C_Type(); 2292 _updateBytesAdler32_Type = make_updateBytesAdler32_Type(); 2293 _osr_end_Type = make_osr_end_Type(); 2294 _register_finalizer_Type = make_register_finalizer_Type(); 2295 JFR_ONLY( 2296 _class_id_load_barrier_Type = make_class_id_load_barrier_Type(); 2297 ) 2298 #if INCLUDE_JVMTI 2299 _notify_jvmti_vthread_Type = make_notify_jvmti_vthread_Type(); 2300 #endif // INCLUDE_JVMTI 2301 _dtrace_method_entry_exit_Type = make_dtrace_method_entry_exit_Type(); 2302 _dtrace_object_alloc_Type = make_dtrace_object_alloc_Type(); 2303 } 2304 2305 int trace_exception_counter = 0; 2306 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 2307 trace_exception_counter++; 2308 stringStream tempst; 2309 2310 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 2311 exception_oop->print_value_on(&tempst); 2312 tempst.print(" in "); 2313 CodeBlob* blob = CodeCache::find_blob(exception_pc); 2314 if (blob->is_nmethod()) { 2315 blob->as_nmethod()->method()->print_value_on(&tempst); 2316 } else if (blob->is_runtime_stub()) { 2317 tempst.print("<runtime-stub>"); 2318 } else { 2319 tempst.print("<unknown>"); 2320 } 2321 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 2322 tempst.print("]"); 2323 2324 st->print_raw_cr(tempst.freeze()); 2325 }