1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/g1/g1HeapRegion.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gcLocker.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/klass.inline.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/typeArrayOop.inline.hpp"
  51 #include "opto/ad.hpp"
  52 #include "opto/addnode.hpp"
  53 #include "opto/callnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/graphKit.hpp"
  56 #include "opto/machnode.hpp"
  57 #include "opto/matcher.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/output.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/subnode.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/interfaceSupport.inline.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/signature.hpp"
  71 #include "runtime/stackWatermarkSet.hpp"
  72 #include "runtime/synchronizer.hpp"
  73 #include "runtime/threadCritical.hpp"
  74 #include "runtime/threadWXSetters.inline.hpp"
  75 #include "runtime/vframe.hpp"
  76 #include "runtime/vframeArray.hpp"
  77 #include "runtime/vframe_hp.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/preserveException.hpp"
  80 
  81 
  82 // For debugging purposes:
  83 //  To force FullGCALot inside a runtime function, add the following two lines
  84 //
  85 //  Universe::release_fullgc_alot_dummy();
  86 //  Universe::heap()->collect();
  87 //
  88 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  89 
  90 
  91 #define C2_BLOB_FIELD_DEFINE(name, type) \
  92   type OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  93 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  94 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  95   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
  96 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \
  97   address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr;
  98 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE)
  99 #undef C2_BLOB_FIELD_DEFINE
 100 #undef C2_STUB_FIELD_DEFINE
 101 #undef C2_JVMTI_STUB_FIELD_DEFINE
 102 
 103 #define C2_BLOB_NAME_DEFINE(name, type)  "C2 Runtime " # name "_blob",
 104 #define C2_STUB_NAME_DEFINE(name, f, t, r)  "C2 Runtime " # name,
 105 #define C2_JVMTI_STUB_NAME_DEFINE(name)  "C2 Runtime " # name,
 106 const char* OptoRuntime::_stub_names[] = {
 107   C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE)
 108 };
 109 #undef C2_BLOB_NAME_DEFINE
 110 #undef C2_STUB_NAME_DEFINE
 111 #undef C2_JVMTI_STUB_NAME_DEFINE
 112 
 113 // This should be called in an assertion at the start of OptoRuntime routines
 114 // which are entered from compiled code (all of them)
 115 #ifdef ASSERT
 116 static bool check_compiled_frame(JavaThread* thread) {
 117   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 118   RegisterMap map(thread,
 119                   RegisterMap::UpdateMap::skip,
 120                   RegisterMap::ProcessFrames::include,
 121                   RegisterMap::WalkContinuation::skip);
 122   frame caller = thread->last_frame().sender(&map);
 123   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 124   return true;
 125 }
 126 #endif // ASSERT
 127 
 128 /*
 129 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 130   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 131   if (var == nullptr) { return false; }
 132 */
 133 
 134 #define GEN_C2_BLOB(name, type)                    \
 135   BLOB_FIELD_NAME(name) =                       \
 136     generate_ ## name ## _blob();                  \
 137   if (BLOB_FIELD_NAME(name) == nullptr) { return false; }
 138 
 139 // a few helper macros to conjure up generate_stub call arguments
 140 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
 141 #define C2_STUB_TYPEFUNC(name) name ## _Type
 142 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C)
 143 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id)
 144 
 145 // Almost all the C functions targeted from the generated stubs are
 146 // implemented locally to OptoRuntime with names that can be generated
 147 // from the stub name by appending suffix '_C'. However, in two cases
 148 // a common target method also needs to be called from shared runtime
 149 // stubs. In these two cases the opto stubs rely on method
 150 // imlementations defined in class SharedRuntime. The following
 151 // defines temporarily rebind the generated names to reference the
 152 // relevant implementations.
 153 
 154 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 155   C2_STUB_FIELD_NAME(name) =                                          \
 156     generate_stub(env,                                                  \
 157                   C2_STUB_TYPEFUNC(name),                             \
 158                   C2_STUB_C_FUNC(name),                               \
 159                   C2_STUB_NAME(name),                                 \
 160                   fancy_jump,                                           \
 161                   pass_tls,                                             \
 162                   pass_retpc);                                          \
 163   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 164 
 165 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name)
 166 
 167 #define GEN_C2_JVMTI_STUB(name)                                       \
 168   STUB_FIELD_NAME(name) =                                               \
 169     generate_stub(env,                                                  \
 170                   notify_jvmti_vthread_Type,                            \
 171                   C2_JVMTI_STUB_C_FUNC(name),                         \
 172                   C2_STUB_NAME(name),                                 \
 173                   0,                                                    \
 174                   true,                                                 \
 175                   false);                                               \
 176   if (STUB_FIELD_NAME(name) == nullptr) { return false; }               \
 177 
 178 bool OptoRuntime::generate(ciEnv* env) {
 179 
 180   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
 181 
 182   return true;
 183 }
 184 
 185 #undef GEN_C2_BLOB
 186 
 187 #undef C2_STUB_FIELD_NAME
 188 #undef C2_STUB_TYPEFUNC
 189 #undef C2_STUB_C_FUNC
 190 #undef C2_STUB_NAME
 191 #undef GEN_C2_STUB
 192 
 193 #undef C2_JVMTI_STUB_C_FUNC
 194 #undef GEN_C2_JVMTI_STUB
 195 // #undef gen
 196 
 197 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 198 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 199 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 200 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;
 201 const TypeFunc* OptoRuntime::_multianewarray4_Type                = nullptr;
 202 const TypeFunc* OptoRuntime::_multianewarray5_Type                = nullptr;
 203 const TypeFunc* OptoRuntime::_multianewarrayN_Type                = nullptr;
 204 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type         = nullptr;
 205 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type          = nullptr;
 206 const TypeFunc* OptoRuntime::_monitor_notify_Type                 = nullptr;
 207 const TypeFunc* OptoRuntime::_uncommon_trap_Type                  = nullptr;
 208 const TypeFunc* OptoRuntime::_athrow_Type                         = nullptr;
 209 const TypeFunc* OptoRuntime::_rethrow_Type                        = nullptr;
 210 const TypeFunc* OptoRuntime::_Math_D_D_Type                       = nullptr;
 211 const TypeFunc* OptoRuntime::_Math_DD_D_Type                      = nullptr;
 212 const TypeFunc* OptoRuntime::_modf_Type                           = nullptr;
 213 const TypeFunc* OptoRuntime::_l2f_Type                            = nullptr;
 214 const TypeFunc* OptoRuntime::_void_long_Type                      = nullptr;
 215 const TypeFunc* OptoRuntime::_void_void_Type                      = nullptr;
 216 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type           = nullptr;
 217 const TypeFunc* OptoRuntime::_flush_windows_Type                  = nullptr;
 218 const TypeFunc* OptoRuntime::_fast_arraycopy_Type                 = nullptr;
 219 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type            = nullptr;
 220 const TypeFunc* OptoRuntime::_generic_arraycopy_Type              = nullptr;
 221 const TypeFunc* OptoRuntime::_slow_arraycopy_Type                 = nullptr;
 222 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type               = nullptr;
 223 const TypeFunc* OptoRuntime::_array_fill_Type                     = nullptr;
 224 const TypeFunc* OptoRuntime::_array_sort_Type                     = nullptr;
 225 const TypeFunc* OptoRuntime::_array_partition_Type                = nullptr;
 226 const TypeFunc* OptoRuntime::_aescrypt_block_Type                 = nullptr;
 227 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type   = nullptr;
 228 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type    = nullptr;
 229 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type           = nullptr;
 230 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type     = nullptr;
 231 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type      = nullptr;
 232 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type   = nullptr;
 233 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type    = nullptr;
 234 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr;
 235 const TypeFunc* OptoRuntime::_double_keccak_Type                  = nullptr;
 236 const TypeFunc* OptoRuntime::_multiplyToLen_Type                  = nullptr;
 237 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type             = nullptr;
 238 const TypeFunc* OptoRuntime::_montgomerySquare_Type               = nullptr;
 239 const TypeFunc* OptoRuntime::_squareToLen_Type                    = nullptr;
 240 const TypeFunc* OptoRuntime::_mulAdd_Type                         = nullptr;
 241 const TypeFunc* OptoRuntime::_bigIntegerShift_Type                = nullptr;
 242 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type             = nullptr;
 243 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type            = nullptr;
 244 const TypeFunc* OptoRuntime::_chacha20Block_Type                  = nullptr;
 245 
 246 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type             = nullptr;
 247 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type      = nullptr;
 248 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type               = nullptr;
 249 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type     = nullptr;
 250 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type         = nullptr;
 251 
 252 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type             = nullptr;
 253 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type             = nullptr;
 254 const TypeFunc* OptoRuntime::_string_IndexOf_Type                 = nullptr;
 255 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type         = nullptr;
 256 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type    = nullptr;
 257 const TypeFunc* OptoRuntime::_intpoly_assign_Type                 = nullptr;
 258 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 259 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 260 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 261 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 262 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 263 #if INCLUDE_JFR
 264 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 265 #endif // INCLUDE_JFR
 266 #if INCLUDE_JVMTI
 267 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type           = nullptr;
 268 #endif // INCLUDE_JVMTI
 269 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 270 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 271 
 272 // Helper method to do generation of RunTimeStub's
 273 address OptoRuntime::generate_stub(ciEnv* env,
 274                                    TypeFunc_generator gen, address C_function,
 275                                    const char *name, int is_fancy_jump,
 276                                    bool pass_tls,
 277                                    bool return_pc) {
 278 
 279   // Matching the default directive, we currently have no method to match.
 280   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 281   CompilationMemoryStatisticMark cmsm(directive);
 282   ResourceMark rm;
 283   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 284   DirectivesStack::release(directive);
 285   return  C.stub_entry_point();
 286 }
 287 
 288 const char* OptoRuntime::stub_name(address entry) {
 289 #ifndef PRODUCT
 290   CodeBlob* cb = CodeCache::find_blob(entry);
 291   RuntimeStub* rs =(RuntimeStub *)cb;
 292   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 293   return rs->name();
 294 #else
 295   // Fast implementation for product mode (maybe it should be inlined too)
 296   return "runtime stub";
 297 #endif
 298 }
 299 
 300 // local methods passed as arguments to stub generator that forward
 301 // control to corresponding JRT methods of SharedRuntime
 302 
 303 void OptoRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
 304                                    oopDesc* dest, jint dest_pos,
 305                                    jint length, JavaThread* thread) {
 306   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 307 }
 308 
 309 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 310   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 311 }
 312 
 313 
 314 //=============================================================================
 315 // Opto compiler runtime routines
 316 //=============================================================================
 317 
 318 
 319 //=============================allocation======================================
 320 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 321 // and try allocation again.
 322 
 323 // object allocation
 324 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 325   JRT_BLOCK;
 326 #ifndef PRODUCT
 327   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 328 #endif
 329   assert(check_compiled_frame(current), "incorrect caller");
 330 
 331   // These checks are cheap to make and support reflective allocation.
 332   int lh = klass->layout_helper();
 333   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 334     Handle holder(current, klass->klass_holder()); // keep the klass alive
 335     klass->check_valid_for_instantiation(false, THREAD);
 336     if (!HAS_PENDING_EXCEPTION) {
 337       InstanceKlass::cast(klass)->initialize(THREAD);
 338     }
 339   }
 340 
 341   if (!HAS_PENDING_EXCEPTION) {
 342     // Scavenge and allocate an instance.
 343     Handle holder(current, klass->klass_holder()); // keep the klass alive
 344     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 345     current->set_vm_result(result);
 346 
 347     // Pass oops back through thread local storage.  Our apparent type to Java
 348     // is that we return an oop, but we can block on exit from this routine and
 349     // a GC can trash the oop in C's return register.  The generated stub will
 350     // fetch the oop from TLS after any possible GC.
 351   }
 352 
 353   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 354   JRT_BLOCK_END;
 355 
 356   // inform GC that we won't do card marks for initializing writes.
 357   SharedRuntime::on_slowpath_allocation_exit(current);
 358 JRT_END
 359 
 360 
 361 // array allocation
 362 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 363   JRT_BLOCK;
 364 #ifndef PRODUCT
 365   SharedRuntime::_new_array_ctr++;            // new array requires GC
 366 #endif
 367   assert(check_compiled_frame(current), "incorrect caller");
 368 
 369   // Scavenge and allocate an instance.
 370   oop result;
 371 
 372   if (array_type->is_typeArray_klass()) {
 373     // The oopFactory likes to work with the element type.
 374     // (We could bypass the oopFactory, since it doesn't add much value.)
 375     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 376     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 377   } else {
 378     // Although the oopFactory likes to work with the elem_type,
 379     // the compiler prefers the array_type, since it must already have
 380     // that latter value in hand for the fast path.
 381     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 382     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 383     result = oopFactory::new_objArray(elem_type, len, THREAD);
 384   }
 385 
 386   // Pass oops back through thread local storage.  Our apparent type to Java
 387   // is that we return an oop, but we can block on exit from this routine and
 388   // a GC can trash the oop in C's return register.  The generated stub will
 389   // fetch the oop from TLS after any possible GC.
 390   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 391   current->set_vm_result(result);
 392   JRT_BLOCK_END;
 393 
 394   // inform GC that we won't do card marks for initializing writes.
 395   SharedRuntime::on_slowpath_allocation_exit(current);
 396 JRT_END
 397 
 398 // array allocation without zeroing
 399 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 400   JRT_BLOCK;
 401 #ifndef PRODUCT
 402   SharedRuntime::_new_array_ctr++;            // new array requires GC
 403 #endif
 404   assert(check_compiled_frame(current), "incorrect caller");
 405 
 406   // Scavenge and allocate an instance.
 407   oop result;
 408 
 409   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 410   // The oopFactory likes to work with the element type.
 411   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 412   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 413 
 414   // Pass oops back through thread local storage.  Our apparent type to Java
 415   // is that we return an oop, but we can block on exit from this routine and
 416   // a GC can trash the oop in C's return register.  The generated stub will
 417   // fetch the oop from TLS after any possible GC.
 418   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 419   current->set_vm_result(result);
 420   JRT_BLOCK_END;
 421 
 422 
 423   // inform GC that we won't do card marks for initializing writes.
 424   SharedRuntime::on_slowpath_allocation_exit(current);
 425 
 426   oop result = current->vm_result();
 427   if ((len > 0) && (result != nullptr) &&
 428       is_deoptimized_caller_frame(current)) {
 429     // Zero array here if the caller is deoptimized.
 430     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 431     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 432     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 433     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 434     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 435     if (!is_aligned(hs_bytes, BytesPerLong)) {
 436       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 437       hs_bytes += BytesPerInt;
 438     }
 439 
 440     // Optimized zeroing.
 441     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 442     const size_t aligned_hs = hs_bytes / BytesPerLong;
 443     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 444   }
 445 
 446 JRT_END
 447 
 448 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 449 
 450 // multianewarray for 2 dimensions
 451 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 452 #ifndef PRODUCT
 453   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 454 #endif
 455   assert(check_compiled_frame(current), "incorrect caller");
 456   assert(elem_type->is_klass(), "not a class");
 457   jint dims[2];
 458   dims[0] = len1;
 459   dims[1] = len2;
 460   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 461   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 462   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 463   current->set_vm_result(obj);
 464 JRT_END
 465 
 466 // multianewarray for 3 dimensions
 467 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 468 #ifndef PRODUCT
 469   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 470 #endif
 471   assert(check_compiled_frame(current), "incorrect caller");
 472   assert(elem_type->is_klass(), "not a class");
 473   jint dims[3];
 474   dims[0] = len1;
 475   dims[1] = len2;
 476   dims[2] = len3;
 477   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 478   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 479   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 480   current->set_vm_result(obj);
 481 JRT_END
 482 
 483 // multianewarray for 4 dimensions
 484 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 485 #ifndef PRODUCT
 486   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 487 #endif
 488   assert(check_compiled_frame(current), "incorrect caller");
 489   assert(elem_type->is_klass(), "not a class");
 490   jint dims[4];
 491   dims[0] = len1;
 492   dims[1] = len2;
 493   dims[2] = len3;
 494   dims[3] = len4;
 495   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 496   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 497   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 498   current->set_vm_result(obj);
 499 JRT_END
 500 
 501 // multianewarray for 5 dimensions
 502 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 503 #ifndef PRODUCT
 504   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 505 #endif
 506   assert(check_compiled_frame(current), "incorrect caller");
 507   assert(elem_type->is_klass(), "not a class");
 508   jint dims[5];
 509   dims[0] = len1;
 510   dims[1] = len2;
 511   dims[2] = len3;
 512   dims[3] = len4;
 513   dims[4] = len5;
 514   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 515   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 516   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 517   current->set_vm_result(obj);
 518 JRT_END
 519 
 520 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 521   assert(check_compiled_frame(current), "incorrect caller");
 522   assert(elem_type->is_klass(), "not a class");
 523   assert(oop(dims)->is_typeArray(), "not an array");
 524 
 525   ResourceMark rm;
 526   jint len = dims->length();
 527   assert(len > 0, "Dimensions array should contain data");
 528   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 529   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 530                                        c_dims, len);
 531 
 532   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 533   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 534   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 535   current->set_vm_result(obj);
 536 JRT_END
 537 
 538 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 539 
 540   // Very few notify/notifyAll operations find any threads on the waitset, so
 541   // the dominant fast-path is to simply return.
 542   // Relatedly, it's critical that notify/notifyAll be fast in order to
 543   // reduce lock hold times.
 544   if (!SafepointSynchronize::is_synchronizing()) {
 545     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 546       return;
 547     }
 548   }
 549 
 550   // This is the case the fast-path above isn't provisioned to handle.
 551   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 552   // (The fast-path is just a degenerate variant of the slow-path).
 553   // Perform the dreaded state transition and pass control into the slow-path.
 554   JRT_BLOCK;
 555   Handle h_obj(current, obj);
 556   ObjectSynchronizer::notify(h_obj, CHECK);
 557   JRT_BLOCK_END;
 558 JRT_END
 559 
 560 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 561 
 562   if (!SafepointSynchronize::is_synchronizing() ) {
 563     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 564       return;
 565     }
 566   }
 567 
 568   // This is the case the fast-path above isn't provisioned to handle.
 569   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 570   // (The fast-path is just a degenerate variant of the slow-path).
 571   // Perform the dreaded state transition and pass control into the slow-path.
 572   JRT_BLOCK;
 573   Handle h_obj(current, obj);
 574   ObjectSynchronizer::notifyall(h_obj, CHECK);
 575   JRT_BLOCK_END;
 576 JRT_END
 577 
 578 static const TypeFunc* make_new_instance_Type() {
 579   // create input type (domain)
 580   const Type **fields = TypeTuple::fields(1);
 581   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 582   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 583 
 584   // create result type (range)
 585   fields = TypeTuple::fields(1);
 586   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 587 
 588   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 589 
 590   return TypeFunc::make(domain, range);
 591 }
 592 
 593 #if INCLUDE_JVMTI
 594 static const TypeFunc* make_notify_jvmti_vthread_Type() {
 595   // create input type (domain)
 596   const Type **fields = TypeTuple::fields(2);
 597   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 598   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 599   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 600 
 601   // no result type needed
 602   fields = TypeTuple::fields(1);
 603   fields[TypeFunc::Parms+0] = nullptr; // void
 604   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 605 
 606   return TypeFunc::make(domain,range);
 607 }
 608 #endif
 609 
 610 static const TypeFunc* make_athrow_Type() {
 611   // create input type (domain)
 612   const Type **fields = TypeTuple::fields(1);
 613   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 614   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 615 
 616   // create result type (range)
 617   fields = TypeTuple::fields(0);
 618 
 619   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 620 
 621   return TypeFunc::make(domain, range);
 622 }
 623 
 624 static const TypeFunc* make_new_array_Type() {
 625   // create input type (domain)
 626   const Type **fields = TypeTuple::fields(2);
 627   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 628   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 629   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 630 
 631   // create result type (range)
 632   fields = TypeTuple::fields(1);
 633   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 634 
 635   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 636 
 637   return TypeFunc::make(domain, range);
 638 }
 639 
 640 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
 641   // create input type (domain)
 642   const int nargs = ndim + 1;
 643   const Type **fields = TypeTuple::fields(nargs);
 644   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 645   for( int i = 1; i < nargs; i++ )
 646     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 647   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 648 
 649   // create result type (range)
 650   fields = TypeTuple::fields(1);
 651   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 652   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 653 
 654   return TypeFunc::make(domain, range);
 655 }
 656 
 657 static const TypeFunc* make_multianewarrayN_Type() {
 658   // create input type (domain)
 659   const Type **fields = TypeTuple::fields(2);
 660   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 661   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 662   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 663 
 664   // create result type (range)
 665   fields = TypeTuple::fields(1);
 666   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 667   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 668 
 669   return TypeFunc::make(domain, range);
 670 }
 671 
 672 static const TypeFunc* make_uncommon_trap_Type() {
 673   // create input type (domain)
 674   const Type **fields = TypeTuple::fields(1);
 675   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 676   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 677 
 678   // create result type (range)
 679   fields = TypeTuple::fields(0);
 680   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 681 
 682   return TypeFunc::make(domain, range);
 683 }
 684 
 685 //-----------------------------------------------------------------------------
 686 // Monitor Handling
 687 
 688 static const TypeFunc* make_complete_monitor_enter_Type() {
 689   // create input type (domain)
 690   const Type **fields = TypeTuple::fields(2);
 691   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 692   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 693   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 694 
 695   // create result type (range)
 696   fields = TypeTuple::fields(0);
 697 
 698   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 699 
 700   return TypeFunc::make(domain,range);
 701 }
 702 
 703 //-----------------------------------------------------------------------------
 704 
 705 static const TypeFunc* make_complete_monitor_exit_Type() {
 706   // create input type (domain)
 707   const Type **fields = TypeTuple::fields(3);
 708   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 709   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 710   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 711   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 712 
 713   // create result type (range)
 714   fields = TypeTuple::fields(0);
 715 
 716   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 717 
 718   return TypeFunc::make(domain, range);
 719 }
 720 
 721 static const TypeFunc* make_monitor_notify_Type() {
 722   // create input type (domain)
 723   const Type **fields = TypeTuple::fields(1);
 724   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 725   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 726 
 727   // create result type (range)
 728   fields = TypeTuple::fields(0);
 729   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 730   return TypeFunc::make(domain, range);
 731 }
 732 
 733 static const TypeFunc* make_flush_windows_Type() {
 734   // create input type (domain)
 735   const Type** fields = TypeTuple::fields(1);
 736   fields[TypeFunc::Parms+0] = nullptr; // void
 737   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 738 
 739   // create result type
 740   fields = TypeTuple::fields(1);
 741   fields[TypeFunc::Parms+0] = nullptr; // void
 742   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 743 
 744   return TypeFunc::make(domain, range);
 745 }
 746 
 747 static const TypeFunc* make_l2f_Type() {
 748   // create input type (domain)
 749   const Type **fields = TypeTuple::fields(2);
 750   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 751   fields[TypeFunc::Parms+1] = Type::HALF;
 752   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 753 
 754   // create result type (range)
 755   fields = TypeTuple::fields(1);
 756   fields[TypeFunc::Parms+0] = Type::FLOAT;
 757   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 758 
 759   return TypeFunc::make(domain, range);
 760 }
 761 
 762 static const TypeFunc* make_modf_Type() {
 763   const Type **fields = TypeTuple::fields(2);
 764   fields[TypeFunc::Parms+0] = Type::FLOAT;
 765   fields[TypeFunc::Parms+1] = Type::FLOAT;
 766   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 767 
 768   // create result type (range)
 769   fields = TypeTuple::fields(1);
 770   fields[TypeFunc::Parms+0] = Type::FLOAT;
 771 
 772   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 773 
 774   return TypeFunc::make(domain, range);
 775 }
 776 
 777 static const TypeFunc* make_Math_D_D_Type() {
 778   // create input type (domain)
 779   const Type **fields = TypeTuple::fields(2);
 780   // Symbol* name of class to be loaded
 781   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 782   fields[TypeFunc::Parms+1] = Type::HALF;
 783   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 784 
 785   // create result type (range)
 786   fields = TypeTuple::fields(2);
 787   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 788   fields[TypeFunc::Parms+1] = Type::HALF;
 789   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 790 
 791   return TypeFunc::make(domain, range);
 792 }
 793 
 794 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 795   // create input type (domain)
 796   const Type **fields = TypeTuple::fields(num_arg);
 797   // Symbol* name of class to be loaded
 798   assert(num_arg > 0, "must have at least 1 input");
 799   for (uint i = 0; i < num_arg; i++) {
 800     fields[TypeFunc::Parms+i] = in_type;
 801   }
 802   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 803 
 804   // create result type (range)
 805   const uint num_ret = 1;
 806   fields = TypeTuple::fields(num_ret);
 807   fields[TypeFunc::Parms+0] = out_type;
 808   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 809 
 810   return TypeFunc::make(domain, range);
 811 }
 812 
 813 static const TypeFunc* make_Math_DD_D_Type() {
 814   const Type **fields = TypeTuple::fields(4);
 815   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 816   fields[TypeFunc::Parms+1] = Type::HALF;
 817   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 818   fields[TypeFunc::Parms+3] = Type::HALF;
 819   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 820 
 821   // create result type (range)
 822   fields = TypeTuple::fields(2);
 823   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 824   fields[TypeFunc::Parms+1] = Type::HALF;
 825   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 826 
 827   return TypeFunc::make(domain, range);
 828 }
 829 
 830 //-------------- currentTimeMillis, currentTimeNanos, etc
 831 
 832 static const TypeFunc* make_void_long_Type() {
 833   // create input type (domain)
 834   const Type **fields = TypeTuple::fields(0);
 835   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 836 
 837   // create result type (range)
 838   fields = TypeTuple::fields(2);
 839   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 840   fields[TypeFunc::Parms+1] = Type::HALF;
 841   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 842 
 843   return TypeFunc::make(domain, range);
 844 }
 845 
 846 static const TypeFunc* make_void_void_Type() {
 847   // create input type (domain)
 848   const Type **fields = TypeTuple::fields(0);
 849   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 850 
 851   // create result type (range)
 852   fields = TypeTuple::fields(0);
 853   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 854   return TypeFunc::make(domain, range);
 855 }
 856 
 857 static const TypeFunc* make_jfr_write_checkpoint_Type() {
 858   // create input type (domain)
 859   const Type **fields = TypeTuple::fields(0);
 860   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 861 
 862   // create result type (range)
 863   fields = TypeTuple::fields(0);
 864   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 865   return TypeFunc::make(domain, range);
 866 }
 867 
 868 
 869 // Takes as parameters:
 870 // void *dest
 871 // long size
 872 // uchar byte
 873 
 874 static const TypeFunc* make_setmemory_Type() {
 875   // create input type (domain)
 876   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 877   const Type** fields = TypeTuple::fields(argcnt);
 878   int argp = TypeFunc::Parms;
 879   fields[argp++] = TypePtr::NOTNULL;        // dest
 880   fields[argp++] = TypeX_X;                 // size
 881   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 882   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 883   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 884   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 885 
 886   // no result type needed
 887   fields = TypeTuple::fields(1);
 888   fields[TypeFunc::Parms+0] = nullptr; // void
 889   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 890   return TypeFunc::make(domain, range);
 891 }
 892 
 893 // arraycopy stub variations:
 894 enum ArrayCopyType {
 895   ac_fast,                      // void(ptr, ptr, size_t)
 896   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 897   ac_slow,                      // void(ptr, int, ptr, int, int)
 898   ac_generic                    //  int(ptr, int, ptr, int, int)
 899 };
 900 
 901 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 902   // create input type (domain)
 903   int num_args      = (act == ac_fast ? 3 : 5);
 904   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 905   int argcnt = num_args;
 906   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 907   const Type** fields = TypeTuple::fields(argcnt);
 908   int argp = TypeFunc::Parms;
 909   fields[argp++] = TypePtr::NOTNULL;    // src
 910   if (num_size_args == 0) {
 911     fields[argp++] = TypeInt::INT;      // src_pos
 912   }
 913   fields[argp++] = TypePtr::NOTNULL;    // dest
 914   if (num_size_args == 0) {
 915     fields[argp++] = TypeInt::INT;      // dest_pos
 916     fields[argp++] = TypeInt::INT;      // length
 917   }
 918   while (num_size_args-- > 0) {
 919     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 920     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 921   }
 922   if (act == ac_checkcast) {
 923     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 924   }
 925   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 926   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 927 
 928   // create result type if needed
 929   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 930   fields = TypeTuple::fields(1);
 931   if (retcnt == 0)
 932     fields[TypeFunc::Parms+0] = nullptr; // void
 933   else
 934     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 935   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 936   return TypeFunc::make(domain, range);
 937 }
 938 
 939 static const TypeFunc* make_array_fill_Type() {
 940   const Type** fields;
 941   int argp = TypeFunc::Parms;
 942   // create input type (domain): pointer, int, size_t
 943   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 944   fields[argp++] = TypePtr::NOTNULL;
 945   fields[argp++] = TypeInt::INT;
 946   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 947   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 948   const TypeTuple *domain = TypeTuple::make(argp, fields);
 949 
 950   // create result type
 951   fields = TypeTuple::fields(1);
 952   fields[TypeFunc::Parms+0] = nullptr; // void
 953   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 954 
 955   return TypeFunc::make(domain, range);
 956 }
 957 
 958 static const TypeFunc* make_array_partition_Type() {
 959   // create input type (domain)
 960   int num_args = 7;
 961   int argcnt = num_args;
 962   const Type** fields = TypeTuple::fields(argcnt);
 963   int argp = TypeFunc::Parms;
 964   fields[argp++] = TypePtr::NOTNULL;  // array
 965   fields[argp++] = TypeInt::INT;      // element type
 966   fields[argp++] = TypeInt::INT;      // low
 967   fields[argp++] = TypeInt::INT;      // end
 968   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 969   fields[argp++] = TypeInt::INT;      // indexPivot1
 970   fields[argp++] = TypeInt::INT;      // indexPivot2
 971   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 972   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 973 
 974   // no result type needed
 975   fields = TypeTuple::fields(1);
 976   fields[TypeFunc::Parms+0] = nullptr; // void
 977   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 978   return TypeFunc::make(domain, range);
 979 }
 980 
 981 static const TypeFunc* make_array_sort_Type() {
 982   // create input type (domain)
 983   int num_args      = 4;
 984   int argcnt = num_args;
 985   const Type** fields = TypeTuple::fields(argcnt);
 986   int argp = TypeFunc::Parms;
 987   fields[argp++] = TypePtr::NOTNULL;    // array
 988   fields[argp++] = TypeInt::INT;    // element type
 989   fields[argp++] = TypeInt::INT;    // fromIndex
 990   fields[argp++] = TypeInt::INT;    // toIndex
 991   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 992   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 993 
 994   // no result type needed
 995   fields = TypeTuple::fields(1);
 996   fields[TypeFunc::Parms+0] = nullptr; // void
 997   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 998   return TypeFunc::make(domain, range);
 999 }
1000 
1001 static const TypeFunc* make_aescrypt_block_Type() {
1002   // create input type (domain)
1003   int num_args      = 3;
1004   int argcnt = num_args;
1005   const Type** fields = TypeTuple::fields(argcnt);
1006   int argp = TypeFunc::Parms;
1007   fields[argp++] = TypePtr::NOTNULL;    // src
1008   fields[argp++] = TypePtr::NOTNULL;    // dest
1009   fields[argp++] = TypePtr::NOTNULL;    // k array
1010   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1011   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1012 
1013   // no result type needed
1014   fields = TypeTuple::fields(1);
1015   fields[TypeFunc::Parms+0] = nullptr; // void
1016   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1017   return TypeFunc::make(domain, range);
1018 }
1019 
1020 static const TypeFunc* make_updateBytesCRC32_Type() {
1021   // create input type (domain)
1022   int num_args      = 3;
1023   int argcnt = num_args;
1024   const Type** fields = TypeTuple::fields(argcnt);
1025   int argp = TypeFunc::Parms;
1026   fields[argp++] = TypeInt::INT;        // crc
1027   fields[argp++] = TypePtr::NOTNULL;    // src
1028   fields[argp++] = TypeInt::INT;        // len
1029   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1030   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1031 
1032   // result type needed
1033   fields = TypeTuple::fields(1);
1034   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1035   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1036   return TypeFunc::make(domain, range);
1037 }
1038 
1039 static const TypeFunc* make_updateBytesCRC32C_Type() {
1040   // create input type (domain)
1041   int num_args      = 4;
1042   int argcnt = num_args;
1043   const Type** fields = TypeTuple::fields(argcnt);
1044   int argp = TypeFunc::Parms;
1045   fields[argp++] = TypeInt::INT;        // crc
1046   fields[argp++] = TypePtr::NOTNULL;    // buf
1047   fields[argp++] = TypeInt::INT;        // len
1048   fields[argp++] = TypePtr::NOTNULL;    // table
1049   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1050   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1051 
1052   // result type needed
1053   fields = TypeTuple::fields(1);
1054   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1055   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1056   return TypeFunc::make(domain, range);
1057 }
1058 
1059 static const TypeFunc* make_updateBytesAdler32_Type() {
1060   // create input type (domain)
1061   int num_args      = 3;
1062   int argcnt = num_args;
1063   const Type** fields = TypeTuple::fields(argcnt);
1064   int argp = TypeFunc::Parms;
1065   fields[argp++] = TypeInt::INT;        // crc
1066   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1067   fields[argp++] = TypeInt::INT;        // len
1068   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1069   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1070 
1071   // result type needed
1072   fields = TypeTuple::fields(1);
1073   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1074   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1075   return TypeFunc::make(domain, range);
1076 }
1077 
1078 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() {
1079   // create input type (domain)
1080   int num_args      = 5;
1081   int argcnt = num_args;
1082   const Type** fields = TypeTuple::fields(argcnt);
1083   int argp = TypeFunc::Parms;
1084   fields[argp++] = TypePtr::NOTNULL;    // src
1085   fields[argp++] = TypePtr::NOTNULL;    // dest
1086   fields[argp++] = TypePtr::NOTNULL;    // k array
1087   fields[argp++] = TypePtr::NOTNULL;    // r array
1088   fields[argp++] = TypeInt::INT;        // src len
1089   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1090   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1091 
1092   // returning cipher len (int)
1093   fields = TypeTuple::fields(1);
1094   fields[TypeFunc::Parms+0] = TypeInt::INT;
1095   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1096   return TypeFunc::make(domain, range);
1097 }
1098 
1099 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() {
1100   // create input type (domain)
1101   int num_args = 4;
1102   int argcnt = num_args;
1103   const Type** fields = TypeTuple::fields(argcnt);
1104   int argp = TypeFunc::Parms;
1105   fields[argp++] = TypePtr::NOTNULL;    // src
1106   fields[argp++] = TypePtr::NOTNULL;    // dest
1107   fields[argp++] = TypePtr::NOTNULL;    // k array
1108   fields[argp++] = TypeInt::INT;        // src len
1109   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1110   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1111 
1112   // returning cipher len (int)
1113   fields = TypeTuple::fields(1);
1114   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1115   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1116   return TypeFunc::make(domain, range);
1117 }
1118 
1119 static const TypeFunc* make_counterMode_aescrypt_Type() {
1120   // create input type (domain)
1121   int num_args = 7;
1122   int argcnt = num_args;
1123   const Type** fields = TypeTuple::fields(argcnt);
1124   int argp = TypeFunc::Parms;
1125   fields[argp++] = TypePtr::NOTNULL; // src
1126   fields[argp++] = TypePtr::NOTNULL; // dest
1127   fields[argp++] = TypePtr::NOTNULL; // k array
1128   fields[argp++] = TypePtr::NOTNULL; // counter array
1129   fields[argp++] = TypeInt::INT; // src len
1130   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1131   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1132   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1133   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1134   // returning cipher len (int)
1135   fields = TypeTuple::fields(1);
1136   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1137   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1138   return TypeFunc::make(domain, range);
1139 }
1140 
1141 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() {
1142   // create input type (domain)
1143   int num_args = 8;
1144   int argcnt = num_args;
1145   const Type** fields = TypeTuple::fields(argcnt);
1146   int argp = TypeFunc::Parms;
1147   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1148   fields[argp++] = TypeInt::INT;     // int len
1149   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1150   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1151   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1152   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1153   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1154   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1155 
1156   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1157   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1158   // returning cipher len (int)
1159   fields = TypeTuple::fields(1);
1160   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1161   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1162   return TypeFunc::make(domain, range);
1163 }
1164 
1165 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) {
1166   // create input type (domain)
1167   int num_args = is_sha3 ? 3 : 2;
1168   int argcnt = num_args;
1169   const Type** fields = TypeTuple::fields(argcnt);
1170   int argp = TypeFunc::Parms;
1171   fields[argp++] = TypePtr::NOTNULL; // buf
1172   fields[argp++] = TypePtr::NOTNULL; // state
1173   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1174   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1175   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1176 
1177   // no result type needed
1178   fields = TypeTuple::fields(1);
1179   fields[TypeFunc::Parms+0] = nullptr; // void
1180   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1181   return TypeFunc::make(domain, range);
1182 }
1183 
1184 /*
1185  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1186  */
1187 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) {
1188   // create input type (domain)
1189   int num_args = is_sha3 ? 5 : 4;
1190   int argcnt = num_args;
1191   const Type** fields = TypeTuple::fields(argcnt);
1192   int argp = TypeFunc::Parms;
1193   fields[argp++] = TypePtr::NOTNULL; // buf
1194   fields[argp++] = TypePtr::NOTNULL; // state
1195   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1196   fields[argp++] = TypeInt::INT;     // ofs
1197   fields[argp++] = TypeInt::INT;     // limit
1198   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1199   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1200 
1201   // returning ofs (int)
1202   fields = TypeTuple::fields(1);
1203   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1204   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1205   return TypeFunc::make(domain, range);
1206 }
1207 
1208 // SHAKE128Parallel doubleKeccak function
1209 static const TypeFunc* make_double_keccak_Type() {
1210     int argcnt = 2;
1211 
1212     const Type** fields = TypeTuple::fields(argcnt);
1213     int argp = TypeFunc::Parms;
1214     fields[argp++] = TypePtr::NOTNULL;      // status0
1215     fields[argp++] = TypePtr::NOTNULL;      // status1
1216 
1217     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1218     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1219 
1220     // result type needed
1221     fields = TypeTuple::fields(1);
1222     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1223     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1224     return TypeFunc::make(domain, range);
1225 }
1226 
1227 static const TypeFunc* make_multiplyToLen_Type() {
1228   // create input type (domain)
1229   int num_args      = 5;
1230   int argcnt = num_args;
1231   const Type** fields = TypeTuple::fields(argcnt);
1232   int argp = TypeFunc::Parms;
1233   fields[argp++] = TypePtr::NOTNULL;    // x
1234   fields[argp++] = TypeInt::INT;        // xlen
1235   fields[argp++] = TypePtr::NOTNULL;    // y
1236   fields[argp++] = TypeInt::INT;        // ylen
1237   fields[argp++] = TypePtr::NOTNULL;    // z
1238   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1239   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1240 
1241   // no result type needed
1242   fields = TypeTuple::fields(1);
1243   fields[TypeFunc::Parms+0] = nullptr;
1244   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1245   return TypeFunc::make(domain, range);
1246 }
1247 
1248 static const TypeFunc* make_squareToLen_Type() {
1249   // create input type (domain)
1250   int num_args      = 4;
1251   int argcnt = num_args;
1252   const Type** fields = TypeTuple::fields(argcnt);
1253   int argp = TypeFunc::Parms;
1254   fields[argp++] = TypePtr::NOTNULL;    // x
1255   fields[argp++] = TypeInt::INT;        // len
1256   fields[argp++] = TypePtr::NOTNULL;    // z
1257   fields[argp++] = TypeInt::INT;        // zlen
1258   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1259   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1260 
1261   // no result type needed
1262   fields = TypeTuple::fields(1);
1263   fields[TypeFunc::Parms+0] = nullptr;
1264   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1265   return TypeFunc::make(domain, range);
1266 }
1267 
1268 static const TypeFunc* make_mulAdd_Type() {
1269   // create input type (domain)
1270   int num_args      = 5;
1271   int argcnt = num_args;
1272   const Type** fields = TypeTuple::fields(argcnt);
1273   int argp = TypeFunc::Parms;
1274   fields[argp++] = TypePtr::NOTNULL;    // out
1275   fields[argp++] = TypePtr::NOTNULL;    // in
1276   fields[argp++] = TypeInt::INT;        // offset
1277   fields[argp++] = TypeInt::INT;        // len
1278   fields[argp++] = TypeInt::INT;        // k
1279   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1280   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1281 
1282   // returning carry (int)
1283   fields = TypeTuple::fields(1);
1284   fields[TypeFunc::Parms+0] = TypeInt::INT;
1285   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1286   return TypeFunc::make(domain, range);
1287 }
1288 
1289 static const TypeFunc* make_montgomeryMultiply_Type() {
1290   // create input type (domain)
1291   int num_args      = 7;
1292   int argcnt = num_args;
1293   const Type** fields = TypeTuple::fields(argcnt);
1294   int argp = TypeFunc::Parms;
1295   fields[argp++] = TypePtr::NOTNULL;    // a
1296   fields[argp++] = TypePtr::NOTNULL;    // b
1297   fields[argp++] = TypePtr::NOTNULL;    // n
1298   fields[argp++] = TypeInt::INT;        // len
1299   fields[argp++] = TypeLong::LONG;      // inv
1300   fields[argp++] = Type::HALF;
1301   fields[argp++] = TypePtr::NOTNULL;    // result
1302   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1303   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1304 
1305   // result type needed
1306   fields = TypeTuple::fields(1);
1307   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1308 
1309   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1310   return TypeFunc::make(domain, range);
1311 }
1312 
1313 static const TypeFunc* make_montgomerySquare_Type() {
1314   // create input type (domain)
1315   int num_args      = 6;
1316   int argcnt = num_args;
1317   const Type** fields = TypeTuple::fields(argcnt);
1318   int argp = TypeFunc::Parms;
1319   fields[argp++] = TypePtr::NOTNULL;    // a
1320   fields[argp++] = TypePtr::NOTNULL;    // n
1321   fields[argp++] = TypeInt::INT;        // len
1322   fields[argp++] = TypeLong::LONG;      // inv
1323   fields[argp++] = Type::HALF;
1324   fields[argp++] = TypePtr::NOTNULL;    // result
1325   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1326   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1327 
1328   // result type needed
1329   fields = TypeTuple::fields(1);
1330   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1331 
1332   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1333   return TypeFunc::make(domain, range);
1334 }
1335 
1336 static const TypeFunc* make_bigIntegerShift_Type() {
1337   int argcnt = 5;
1338   const Type** fields = TypeTuple::fields(argcnt);
1339   int argp = TypeFunc::Parms;
1340   fields[argp++] = TypePtr::NOTNULL;    // newArr
1341   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1342   fields[argp++] = TypeInt::INT;        // newIdx
1343   fields[argp++] = TypeInt::INT;        // shiftCount
1344   fields[argp++] = TypeInt::INT;        // numIter
1345   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1346   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1347 
1348   // no result type needed
1349   fields = TypeTuple::fields(1);
1350   fields[TypeFunc::Parms + 0] = nullptr;
1351   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1352   return TypeFunc::make(domain, range);
1353 }
1354 
1355 static const TypeFunc* make_vectorizedMismatch_Type() {
1356   // create input type (domain)
1357   int num_args = 4;
1358   int argcnt = num_args;
1359   const Type** fields = TypeTuple::fields(argcnt);
1360   int argp = TypeFunc::Parms;
1361   fields[argp++] = TypePtr::NOTNULL;    // obja
1362   fields[argp++] = TypePtr::NOTNULL;    // objb
1363   fields[argp++] = TypeInt::INT;        // length, number of elements
1364   fields[argp++] = TypeInt::INT;        // log2scale, element size
1365   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1366   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1367 
1368   //return mismatch index (int)
1369   fields = TypeTuple::fields(1);
1370   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1371   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1372   return TypeFunc::make(domain, range);
1373 }
1374 
1375 static const TypeFunc* make_ghash_processBlocks_Type() {
1376   int argcnt = 4;
1377 
1378   const Type** fields = TypeTuple::fields(argcnt);
1379   int argp = TypeFunc::Parms;
1380   fields[argp++] = TypePtr::NOTNULL;    // state
1381   fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1382   fields[argp++] = TypePtr::NOTNULL;    // data
1383   fields[argp++] = TypeInt::INT;        // blocks
1384   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1385   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1386 
1387   // result type needed
1388   fields = TypeTuple::fields(1);
1389   fields[TypeFunc::Parms+0] = nullptr; // void
1390   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1391   return TypeFunc::make(domain, range);
1392 }
1393 
1394 static const TypeFunc* make_chacha20Block_Type() {
1395   int argcnt = 2;
1396 
1397   const Type** fields = TypeTuple::fields(argcnt);
1398   int argp = TypeFunc::Parms;
1399   fields[argp++] = TypePtr::NOTNULL;      // state
1400   fields[argp++] = TypePtr::NOTNULL;      // result
1401 
1402   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1403   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1404 
1405   // result type needed
1406   fields = TypeTuple::fields(1);
1407   fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1408   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1409   return TypeFunc::make(domain, range);
1410 }
1411 
1412 // Dilithium NTT function except for the final "normalization" to |coeff| < Q
1413 static const TypeFunc* make_dilithiumAlmostNtt_Type() {
1414     int argcnt = 2;
1415 
1416     const Type** fields = TypeTuple::fields(argcnt);
1417     int argp = TypeFunc::Parms;
1418     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1419     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1420 
1421     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1422     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1423 
1424     // result type needed
1425     fields = TypeTuple::fields(1);
1426     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1427     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1428     return TypeFunc::make(domain, range);
1429 }
1430 
1431 // Dilithium inverse NTT function except the final mod Q division by 2^256
1432 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() {
1433     int argcnt = 2;
1434 
1435     const Type** fields = TypeTuple::fields(argcnt);
1436     int argp = TypeFunc::Parms;
1437     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1438     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1439 
1440     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1441     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1442 
1443     // result type needed
1444     fields = TypeTuple::fields(1);
1445     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1446     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1447     return TypeFunc::make(domain, range);
1448 }
1449 
1450 // Dilithium NTT multiply function
1451 static const TypeFunc* make_dilithiumNttMult_Type() {
1452     int argcnt = 3;
1453 
1454     const Type** fields = TypeTuple::fields(argcnt);
1455     int argp = TypeFunc::Parms;
1456     fields[argp++] = TypePtr::NOTNULL;      // result
1457     fields[argp++] = TypePtr::NOTNULL;      // ntta
1458     fields[argp++] = TypePtr::NOTNULL;      // nttb
1459 
1460     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1461     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1462 
1463     // result type needed
1464     fields = TypeTuple::fields(1);
1465     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1466     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1467     return TypeFunc::make(domain, range);
1468 }
1469 
1470 // Dilithium Montgomery multiply a polynome coefficient array by a constant
1471 static const TypeFunc* make_dilithiumMontMulByConstant_Type() {
1472     int argcnt = 2;
1473 
1474     const Type** fields = TypeTuple::fields(argcnt);
1475     int argp = TypeFunc::Parms;
1476     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1477     fields[argp++] = TypeInt::INT;          // constant multiplier
1478 
1479     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1480     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1481 
1482     // result type needed
1483     fields = TypeTuple::fields(1);
1484     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1485     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1486     return TypeFunc::make(domain, range);
1487 }
1488 
1489 // Dilithium decompose polynomial
1490 static const TypeFunc* make_dilithiumDecomposePoly_Type() {
1491     int argcnt = 5;
1492 
1493     const Type** fields = TypeTuple::fields(argcnt);
1494     int argp = TypeFunc::Parms;
1495     fields[argp++] = TypePtr::NOTNULL;      // input
1496     fields[argp++] = TypePtr::NOTNULL;      // lowPart
1497     fields[argp++] = TypePtr::NOTNULL;      // highPart
1498     fields[argp++] = TypeInt::INT;          // 2 * gamma2
1499     fields[argp++] = TypeInt::INT;          // multiplier
1500 
1501     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1502     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1503 
1504     // result type needed
1505     fields = TypeTuple::fields(1);
1506     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1507     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1508     return TypeFunc::make(domain, range);
1509 }
1510 
1511 static const TypeFunc* make_base64_encodeBlock_Type() {
1512   int argcnt = 6;
1513 
1514   const Type** fields = TypeTuple::fields(argcnt);
1515   int argp = TypeFunc::Parms;
1516   fields[argp++] = TypePtr::NOTNULL;    // src array
1517   fields[argp++] = TypeInt::INT;        // offset
1518   fields[argp++] = TypeInt::INT;        // length
1519   fields[argp++] = TypePtr::NOTNULL;    // dest array
1520   fields[argp++] = TypeInt::INT;       // dp
1521   fields[argp++] = TypeInt::BOOL;       // isURL
1522   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1523   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1524 
1525   // result type needed
1526   fields = TypeTuple::fields(1);
1527   fields[TypeFunc::Parms + 0] = nullptr; // void
1528   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1529   return TypeFunc::make(domain, range);
1530 }
1531 
1532 static const TypeFunc* make_string_IndexOf_Type() {
1533   int argcnt = 4;
1534 
1535   const Type** fields = TypeTuple::fields(argcnt);
1536   int argp = TypeFunc::Parms;
1537   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1538   fields[argp++] = TypeInt::INT;        // haystack length
1539   fields[argp++] = TypePtr::NOTNULL;    // needle array
1540   fields[argp++] = TypeInt::INT;        // needle length
1541   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1542   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1543 
1544   // result type needed
1545   fields = TypeTuple::fields(1);
1546   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1547   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1548   return TypeFunc::make(domain, range);
1549 }
1550 
1551 static const TypeFunc* make_base64_decodeBlock_Type() {
1552   int argcnt = 7;
1553 
1554   const Type** fields = TypeTuple::fields(argcnt);
1555   int argp = TypeFunc::Parms;
1556   fields[argp++] = TypePtr::NOTNULL;    // src array
1557   fields[argp++] = TypeInt::INT;        // src offset
1558   fields[argp++] = TypeInt::INT;        // src length
1559   fields[argp++] = TypePtr::NOTNULL;    // dest array
1560   fields[argp++] = TypeInt::INT;        // dest offset
1561   fields[argp++] = TypeInt::BOOL;       // isURL
1562   fields[argp++] = TypeInt::BOOL;       // isMIME
1563   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1564   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1565 
1566   // result type needed
1567   fields = TypeTuple::fields(1);
1568   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1569   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1570   return TypeFunc::make(domain, range);
1571 }
1572 
1573 static const TypeFunc* make_poly1305_processBlocks_Type() {
1574   int argcnt = 4;
1575 
1576   const Type** fields = TypeTuple::fields(argcnt);
1577   int argp = TypeFunc::Parms;
1578   fields[argp++] = TypePtr::NOTNULL;    // input array
1579   fields[argp++] = TypeInt::INT;        // input length
1580   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1581   fields[argp++] = TypePtr::NOTNULL;    // r array
1582   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1583   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1584 
1585   // result type needed
1586   fields = TypeTuple::fields(1);
1587   fields[TypeFunc::Parms + 0] = nullptr; // void
1588   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1589   return TypeFunc::make(domain, range);
1590 }
1591 
1592 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() {
1593   int argcnt = 3;
1594 
1595   const Type** fields = TypeTuple::fields(argcnt);
1596   int argp = TypeFunc::Parms;
1597   fields[argp++] = TypePtr::NOTNULL;    // a array
1598   fields[argp++] = TypePtr::NOTNULL;    // b array
1599   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1600   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1601   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1602 
1603   // result type needed
1604   fields = TypeTuple::fields(1);
1605   fields[TypeFunc::Parms + 0] = nullptr; // void
1606   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1607   return TypeFunc::make(domain, range);
1608 }
1609 
1610 static const TypeFunc* make_intpoly_assign_Type() {
1611   int argcnt = 4;
1612 
1613   const Type** fields = TypeTuple::fields(argcnt);
1614   int argp = TypeFunc::Parms;
1615   fields[argp++] = TypeInt::INT;        // set flag
1616   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1617   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1618   fields[argp++] = TypeInt::INT;        // array length
1619   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1620   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1621 
1622   // result type needed
1623   fields = TypeTuple::fields(1);
1624   fields[TypeFunc::Parms + 0] = nullptr; // void
1625   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1626   return TypeFunc::make(domain, range);
1627 }
1628 
1629 //------------- Interpreter state for on stack replacement
1630 static const TypeFunc* make_osr_end_Type() {
1631   // create input type (domain)
1632   const Type **fields = TypeTuple::fields(1);
1633   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1634   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1635 
1636   // create result type
1637   fields = TypeTuple::fields(1);
1638   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1639   fields[TypeFunc::Parms+0] = nullptr; // void
1640   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1641   return TypeFunc::make(domain, range);
1642 }
1643 
1644 //-------------------------------------------------------------------------------------
1645 // register policy
1646 
1647 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1648   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1649   switch (register_save_policy[reg]) {
1650     case 'C': return false; //SOC
1651     case 'E': return true ; //SOE
1652     case 'N': return false; //NS
1653     case 'A': return false; //AS
1654   }
1655   ShouldNotReachHere();
1656   return false;
1657 }
1658 
1659 //-----------------------------------------------------------------------
1660 // Exceptions
1661 //
1662 
1663 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1664 
1665 // The method is an entry that is always called by a C++ method not
1666 // directly from compiled code. Compiled code will call the C++ method following.
1667 // We can't allow async exception to be installed during  exception processing.
1668 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1669   // The frame we rethrow the exception to might not have been processed by the GC yet.
1670   // The stack watermark barrier takes care of detecting that and ensuring the frame
1671   // has updated oops.
1672   StackWatermarkSet::after_unwind(current);
1673 
1674   // Do not confuse exception_oop with pending_exception. The exception_oop
1675   // is only used to pass arguments into the method. Not for general
1676   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1677   // the runtime stubs checks this on exit.
1678   assert(current->exception_oop() != nullptr, "exception oop is found");
1679   address handler_address = nullptr;
1680 
1681   Handle exception(current, current->exception_oop());
1682   address pc = current->exception_pc();
1683 
1684   // Clear out the exception oop and pc since looking up an
1685   // exception handler can cause class loading, which might throw an
1686   // exception and those fields are expected to be clear during
1687   // normal bytecode execution.
1688   current->clear_exception_oop_and_pc();
1689 
1690   LogTarget(Info, exceptions) lt;
1691   if (lt.is_enabled()) {
1692     LogStream ls(lt);
1693     trace_exception(&ls, exception(), pc, "");
1694   }
1695 
1696   // for AbortVMOnException flag
1697   Exceptions::debug_check_abort(exception);
1698 
1699 #ifdef ASSERT
1700   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1701     // should throw an exception here
1702     ShouldNotReachHere();
1703   }
1704 #endif
1705 
1706   // new exception handling: this method is entered only from adapters
1707   // exceptions from compiled java methods are handled in compiled code
1708   // using rethrow node
1709 
1710   nm = CodeCache::find_nmethod(pc);
1711   assert(nm != nullptr, "No NMethod found");
1712   if (nm->is_native_method()) {
1713     fatal("Native method should not have path to exception handling");
1714   } else {
1715     // we are switching to old paradigm: search for exception handler in caller_frame
1716     // instead in exception handler of caller_frame.sender()
1717 
1718     if (JvmtiExport::can_post_on_exceptions()) {
1719       // "Full-speed catching" is not necessary here,
1720       // since we're notifying the VM on every catch.
1721       // Force deoptimization and the rest of the lookup
1722       // will be fine.
1723       deoptimize_caller_frame(current);
1724     }
1725 
1726     // Check the stack guard pages.  If enabled, look for handler in this frame;
1727     // otherwise, forcibly unwind the frame.
1728     //
1729     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1730     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1731     bool deopting = false;
1732     if (nm->is_deopt_pc(pc)) {
1733       deopting = true;
1734       RegisterMap map(current,
1735                       RegisterMap::UpdateMap::skip,
1736                       RegisterMap::ProcessFrames::include,
1737                       RegisterMap::WalkContinuation::skip);
1738       frame deoptee = current->last_frame().sender(&map);
1739       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1740       // Adjust the pc back to the original throwing pc
1741       pc = deoptee.pc();
1742     }
1743 
1744     // If we are forcing an unwind because of stack overflow then deopt is
1745     // irrelevant since we are throwing the frame away anyway.
1746 
1747     if (deopting && !force_unwind) {
1748       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1749     } else {
1750 
1751       handler_address =
1752         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1753 
1754       if (handler_address == nullptr) {
1755         bool recursive_exception = false;
1756         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1757         assert (handler_address != nullptr, "must have compiled handler");
1758         // Update the exception cache only when the unwind was not forced
1759         // and there didn't happen another exception during the computation of the
1760         // compiled exception handler. Checking for exception oop equality is not
1761         // sufficient because some exceptions are pre-allocated and reused.
1762         if (!force_unwind && !recursive_exception) {
1763           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1764         }
1765       } else {
1766 #ifdef ASSERT
1767         bool recursive_exception = false;
1768         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1769         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1770                  p2i(handler_address), p2i(computed_address));
1771 #endif
1772       }
1773     }
1774 
1775     current->set_exception_pc(pc);
1776     current->set_exception_handler_pc(handler_address);
1777 
1778     // Check if the exception PC is a MethodHandle call site.
1779     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1780   }
1781 
1782   // Restore correct return pc.  Was saved above.
1783   current->set_exception_oop(exception());
1784   return handler_address;
1785 
1786 JRT_END
1787 
1788 // We are entering here from exception_blob
1789 // If there is a compiled exception handler in this method, we will continue there;
1790 // otherwise we will unwind the stack and continue at the caller of top frame method
1791 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1792 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1793 // we looked up the handler for has been deoptimized in the meantime. If it has been
1794 // we must not use the handler and instead return the deopt blob.
1795 address OptoRuntime::handle_exception_C(JavaThread* current) {
1796 //
1797 // We are in Java not VM and in debug mode we have a NoHandleMark
1798 //
1799 #ifndef PRODUCT
1800   SharedRuntime::_find_handler_ctr++;          // find exception handler
1801 #endif
1802   debug_only(NoHandleMark __hm;)
1803   nmethod* nm = nullptr;
1804   address handler_address = nullptr;
1805   {
1806     // Enter the VM
1807 
1808     ResetNoHandleMark rnhm;
1809     handler_address = handle_exception_C_helper(current, nm);
1810   }
1811 
1812   // Back in java: Use no oops, DON'T safepoint
1813 
1814   // Now check to see if the handler we are returning is in a now
1815   // deoptimized frame
1816 
1817   if (nm != nullptr) {
1818     RegisterMap map(current,
1819                     RegisterMap::UpdateMap::skip,
1820                     RegisterMap::ProcessFrames::skip,
1821                     RegisterMap::WalkContinuation::skip);
1822     frame caller = current->last_frame().sender(&map);
1823 #ifdef ASSERT
1824     assert(caller.is_compiled_frame(), "must be");
1825 #endif // ASSERT
1826     if (caller.is_deoptimized_frame()) {
1827       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1828     }
1829   }
1830   return handler_address;
1831 }
1832 
1833 //------------------------------rethrow----------------------------------------
1834 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1835 // is either throwing or rethrowing an exception.  The callee-save registers
1836 // have been restored, synchronized objects have been unlocked and the callee
1837 // stack frame has been removed.  The return address was passed in.
1838 // Exception oop is passed as the 1st argument.  This routine is then called
1839 // from the stub.  On exit, we know where to jump in the caller's code.
1840 // After this C code exits, the stub will pop his frame and end in a jump
1841 // (instead of a return).  We enter the caller's default handler.
1842 //
1843 // This must be JRT_LEAF:
1844 //     - caller will not change its state as we cannot block on exit,
1845 //       therefore raw_exception_handler_for_return_address is all it takes
1846 //       to handle deoptimized blobs
1847 //
1848 // However, there needs to be a safepoint check in the middle!  So compiled
1849 // safepoints are completely watertight.
1850 //
1851 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1852 //
1853 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1854 //
1855 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1856   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
1857   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
1858 
1859 #ifndef PRODUCT
1860   SharedRuntime::_rethrow_ctr++;               // count rethrows
1861 #endif
1862   assert (exception != nullptr, "should have thrown a NullPointerException");
1863 #ifdef ASSERT
1864   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1865     // should throw an exception here
1866     ShouldNotReachHere();
1867   }
1868 #endif
1869 
1870   thread->set_vm_result(exception);
1871   // Frame not compiled (handles deoptimization blob)
1872   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1873 }
1874 
1875 static const TypeFunc* make_rethrow_Type() {
1876   // create input type (domain)
1877   const Type **fields = TypeTuple::fields(1);
1878   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1879   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1880 
1881   // create result type (range)
1882   fields = TypeTuple::fields(1);
1883   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1884   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1885 
1886   return TypeFunc::make(domain, range);
1887 }
1888 
1889 
1890 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1891   // Deoptimize the caller before continuing, as the compiled
1892   // exception handler table may not be valid.
1893   if (!StressCompiledExceptionHandlers && doit) {
1894     deoptimize_caller_frame(thread);
1895   }
1896 }
1897 
1898 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1899   // Called from within the owner thread, so no need for safepoint
1900   RegisterMap reg_map(thread,
1901                       RegisterMap::UpdateMap::include,
1902                       RegisterMap::ProcessFrames::include,
1903                       RegisterMap::WalkContinuation::skip);
1904   frame stub_frame = thread->last_frame();
1905   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1906   frame caller_frame = stub_frame.sender(&reg_map);
1907 
1908   // Deoptimize the caller frame.
1909   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1910 }
1911 
1912 
1913 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1914   // Called from within the owner thread, so no need for safepoint
1915   RegisterMap reg_map(thread,
1916                       RegisterMap::UpdateMap::include,
1917                       RegisterMap::ProcessFrames::include,
1918                       RegisterMap::WalkContinuation::skip);
1919   frame stub_frame = thread->last_frame();
1920   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1921   frame caller_frame = stub_frame.sender(&reg_map);
1922   return caller_frame.is_deoptimized_frame();
1923 }
1924 
1925 static const TypeFunc* make_register_finalizer_Type() {
1926   // create input type (domain)
1927   const Type **fields = TypeTuple::fields(1);
1928   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1929   // // The JavaThread* is passed to each routine as the last argument
1930   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1931   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1932 
1933   // create result type (range)
1934   fields = TypeTuple::fields(0);
1935 
1936   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1937 
1938   return TypeFunc::make(domain,range);
1939 }
1940 
1941 #if INCLUDE_JFR
1942 static const TypeFunc* make_class_id_load_barrier_Type() {
1943   // create input type (domain)
1944   const Type **fields = TypeTuple::fields(1);
1945   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1946   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1947 
1948   // create result type (range)
1949   fields = TypeTuple::fields(0);
1950 
1951   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1952 
1953   return TypeFunc::make(domain,range);
1954 }
1955 #endif // INCLUDE_JFR
1956 
1957 //-----------------------------------------------------------------------------
1958 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
1959   // create input type (domain)
1960   const Type **fields = TypeTuple::fields(2);
1961   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1962   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1963   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1964 
1965   // create result type (range)
1966   fields = TypeTuple::fields(0);
1967 
1968   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1969 
1970   return TypeFunc::make(domain,range);
1971 }
1972 
1973 static const TypeFunc* make_dtrace_object_alloc_Type() {
1974   // create input type (domain)
1975   const Type **fields = TypeTuple::fields(2);
1976   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1977   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1978 
1979   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1980 
1981   // create result type (range)
1982   fields = TypeTuple::fields(0);
1983 
1984   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1985 
1986   return TypeFunc::make(domain,range);
1987 }
1988 
1989 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
1990   assert(oopDesc::is_oop(obj), "must be a valid oop");
1991   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1992   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1993 JRT_END
1994 
1995 //-----------------------------------------------------------------------------
1996 
1997 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
1998 
1999 //
2000 // dump the collected NamedCounters.
2001 //
2002 void OptoRuntime::print_named_counters() {
2003   int total_lock_count = 0;
2004   int eliminated_lock_count = 0;
2005 
2006   NamedCounter* c = _named_counters;
2007   while (c) {
2008     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
2009       int count = c->count();
2010       if (count > 0) {
2011         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
2012         if (Verbose) {
2013           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
2014         }
2015         total_lock_count += count;
2016         if (eliminated) {
2017           eliminated_lock_count += count;
2018         }
2019       }
2020     }
2021     c = c->next();
2022   }
2023   if (total_lock_count > 0) {
2024     tty->print_cr("dynamic locks: %d", total_lock_count);
2025     if (eliminated_lock_count) {
2026       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
2027                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
2028     }
2029   }
2030 }
2031 
2032 //
2033 //  Allocate a new NamedCounter.  The JVMState is used to generate the
2034 //  name which consists of method@line for the inlining tree.
2035 //
2036 
2037 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
2038   int max_depth = youngest_jvms->depth();
2039 
2040   // Visit scopes from youngest to oldest.
2041   bool first = true;
2042   stringStream st;
2043   for (int depth = max_depth; depth >= 1; depth--) {
2044     JVMState* jvms = youngest_jvms->of_depth(depth);
2045     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
2046     if (!first) {
2047       st.print(" ");
2048     } else {
2049       first = false;
2050     }
2051     int bci = jvms->bci();
2052     if (bci < 0) bci = 0;
2053     if (m != nullptr) {
2054       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
2055     } else {
2056       st.print("no method");
2057     }
2058     st.print("@%d", bci);
2059     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2060   }
2061   NamedCounter* c = new NamedCounter(st.freeze(), tag);
2062 
2063   // atomically add the new counter to the head of the list.  We only
2064   // add counters so this is safe.
2065   NamedCounter* head;
2066   do {
2067     c->set_next(nullptr);
2068     head = _named_counters;
2069     c->set_next(head);
2070   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
2071   return c;
2072 }
2073 
2074 void OptoRuntime::initialize_types() {
2075   _new_instance_Type                  = make_new_instance_Type();
2076   _new_array_Type                     = make_new_array_Type();
2077   _multianewarray2_Type               = multianewarray_Type(2);
2078   _multianewarray3_Type               = multianewarray_Type(3);
2079   _multianewarray4_Type               = multianewarray_Type(4);
2080   _multianewarray5_Type               = multianewarray_Type(5);
2081   _multianewarrayN_Type               = make_multianewarrayN_Type();
2082   _complete_monitor_enter_Type        = make_complete_monitor_enter_Type();
2083   _complete_monitor_exit_Type         = make_complete_monitor_exit_Type();
2084   _monitor_notify_Type                = make_monitor_notify_Type();
2085   _uncommon_trap_Type                 = make_uncommon_trap_Type();
2086   _athrow_Type                        = make_athrow_Type();
2087   _rethrow_Type                       = make_rethrow_Type();
2088   _Math_D_D_Type                      = make_Math_D_D_Type();
2089   _Math_DD_D_Type                     = make_Math_DD_D_Type();
2090   _modf_Type                          = make_modf_Type();
2091   _l2f_Type                           = make_l2f_Type();
2092   _void_long_Type                     = make_void_long_Type();
2093   _void_void_Type                     = make_void_void_Type();
2094   _jfr_write_checkpoint_Type          = make_jfr_write_checkpoint_Type();
2095   _flush_windows_Type                 = make_flush_windows_Type();
2096   _fast_arraycopy_Type                = make_arraycopy_Type(ac_fast);
2097   _checkcast_arraycopy_Type           = make_arraycopy_Type(ac_checkcast);
2098   _generic_arraycopy_Type             = make_arraycopy_Type(ac_generic);
2099   _slow_arraycopy_Type                = make_arraycopy_Type(ac_slow);
2100   _unsafe_setmemory_Type              = make_setmemory_Type();
2101   _array_fill_Type                    = make_array_fill_Type();
2102   _array_sort_Type                    = make_array_sort_Type();
2103   _array_partition_Type               = make_array_partition_Type();
2104   _aescrypt_block_Type                = make_aescrypt_block_Type();
2105   _cipherBlockChaining_aescrypt_Type  = make_cipherBlockChaining_aescrypt_Type();
2106   _electronicCodeBook_aescrypt_Type   = make_electronicCodeBook_aescrypt_Type();
2107   _counterMode_aescrypt_Type          = make_counterMode_aescrypt_Type();
2108   _galoisCounterMode_aescrypt_Type    = make_galoisCounterMode_aescrypt_Type();
2109   _digestBase_implCompress_with_sha3_Type      = make_digestBase_implCompress_Type(  /* is_sha3= */ true);
2110   _digestBase_implCompress_without_sha3_Type   = make_digestBase_implCompress_Type(  /* is_sha3= */ false);;
2111   _digestBase_implCompressMB_with_sha3_Type    = make_digestBase_implCompressMB_Type(/* is_sha3= */ true);
2112   _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false);
2113   _double_keccak_Type                 = make_double_keccak_Type();
2114   _multiplyToLen_Type                 = make_multiplyToLen_Type();
2115   _montgomeryMultiply_Type            = make_montgomeryMultiply_Type();
2116   _montgomerySquare_Type              = make_montgomerySquare_Type();
2117   _squareToLen_Type                   = make_squareToLen_Type();
2118   _mulAdd_Type                        = make_mulAdd_Type();
2119   _bigIntegerShift_Type               = make_bigIntegerShift_Type();
2120   _vectorizedMismatch_Type            = make_vectorizedMismatch_Type();
2121   _ghash_processBlocks_Type           = make_ghash_processBlocks_Type();
2122   _chacha20Block_Type                 = make_chacha20Block_Type();
2123 
2124   _dilithiumAlmostNtt_Type            = make_dilithiumAlmostNtt_Type();
2125   _dilithiumAlmostInverseNtt_Type     = make_dilithiumAlmostInverseNtt_Type();
2126   _dilithiumNttMult_Type              = make_dilithiumNttMult_Type();
2127   _dilithiumMontMulByConstant_Type    = make_dilithiumMontMulByConstant_Type();
2128   _dilithiumDecomposePoly_Type        = make_dilithiumDecomposePoly_Type();
2129 
2130   _base64_encodeBlock_Type            = make_base64_encodeBlock_Type();
2131   _base64_decodeBlock_Type            = make_base64_decodeBlock_Type();
2132   _string_IndexOf_Type                = make_string_IndexOf_Type();
2133   _poly1305_processBlocks_Type        = make_poly1305_processBlocks_Type();
2134   _intpoly_montgomeryMult_P256_Type   = make_intpoly_montgomeryMult_P256_Type();
2135   _intpoly_assign_Type                = make_intpoly_assign_Type();
2136   _updateBytesCRC32_Type              = make_updateBytesCRC32_Type();
2137   _updateBytesCRC32C_Type             = make_updateBytesCRC32C_Type();
2138   _updateBytesAdler32_Type            = make_updateBytesAdler32_Type();
2139   _osr_end_Type                       = make_osr_end_Type();
2140   _register_finalizer_Type            = make_register_finalizer_Type();
2141   JFR_ONLY(
2142     _class_id_load_barrier_Type       = make_class_id_load_barrier_Type();
2143   )
2144 #if INCLUDE_JVMTI
2145   _notify_jvmti_vthread_Type          = make_notify_jvmti_vthread_Type();
2146 #endif // INCLUDE_JVMTI
2147   _dtrace_method_entry_exit_Type      = make_dtrace_method_entry_exit_Type();
2148   _dtrace_object_alloc_Type           = make_dtrace_object_alloc_Type();
2149 }
2150 
2151 int trace_exception_counter = 0;
2152 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2153   trace_exception_counter++;
2154   stringStream tempst;
2155 
2156   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2157   exception_oop->print_value_on(&tempst);
2158   tempst.print(" in ");
2159   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2160   if (blob->is_nmethod()) {
2161     blob->as_nmethod()->method()->print_value_on(&tempst);
2162   } else if (blob->is_runtime_stub()) {
2163     tempst.print("<runtime-stub>");
2164   } else {
2165     tempst.print("<unknown>");
2166   }
2167   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2168   tempst.print("]");
2169 
2170   st->print_raw_cr(tempst.freeze());
2171 }