1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "gc/g1/g1HeapRegion.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/gcLocker.hpp"
  39 #include "interpreter/bytecode.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logStream.hpp"
  44 #include "memory/oopFactory.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/klass.inline.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "oops/typeArrayOop.inline.hpp"
  50 #include "opto/ad.hpp"
  51 #include "opto/addnode.hpp"
  52 #include "opto/callnode.hpp"
  53 #include "opto/cfgnode.hpp"
  54 #include "opto/graphKit.hpp"
  55 #include "opto/machnode.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/memnode.hpp"
  58 #include "opto/mulnode.hpp"
  59 #include "opto/output.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/subnode.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/frame.inline.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/javaCalls.hpp"
  68 #include "runtime/sharedRuntime.hpp"
  69 #include "runtime/signature.hpp"
  70 #include "runtime/stackWatermarkSet.hpp"
  71 #include "runtime/synchronizer.hpp"
  72 #include "runtime/threadCritical.hpp"
  73 #include "runtime/threadWXSetters.inline.hpp"
  74 #include "runtime/vframe.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "runtime/vframe_hp.hpp"
  77 #include "utilities/copy.hpp"
  78 #include "utilities/preserveException.hpp"
  79 
  80 
  81 // For debugging purposes:
  82 //  To force FullGCALot inside a runtime function, add the following two lines
  83 //
  84 //  Universe::release_fullgc_alot_dummy();
  85 //  Universe::heap()->collect();
  86 //
  87 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  88 
  89 
  90 #define C2_BLOB_FIELD_DEFINE(name, type) \
  91   type OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  92 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  93 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  94   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
  95 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \
  96   address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr;
  97 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE)
  98 #undef C2_BLOB_FIELD_DEFINE
  99 #undef C2_STUB_FIELD_DEFINE
 100 #undef C2_JVMTI_STUB_FIELD_DEFINE
 101 
 102 #define C2_BLOB_NAME_DEFINE(name, type)  "C2 Runtime " # name "_blob",
 103 #define C2_STUB_NAME_DEFINE(name, f, t, r)  "C2 Runtime " # name,
 104 #define C2_JVMTI_STUB_NAME_DEFINE(name)  "C2 Runtime " # name,
 105 const char* OptoRuntime::_stub_names[] = {
 106   C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE)
 107 };
 108 #undef C2_BLOB_NAME_DEFINE
 109 #undef C2_STUB_NAME_DEFINE
 110 #undef C2_JVMTI_STUB_NAME_DEFINE
 111 
 112 // This should be called in an assertion at the start of OptoRuntime routines
 113 // which are entered from compiled code (all of them)
 114 #ifdef ASSERT
 115 static bool check_compiled_frame(JavaThread* thread) {
 116   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 117   RegisterMap map(thread,
 118                   RegisterMap::UpdateMap::skip,
 119                   RegisterMap::ProcessFrames::include,
 120                   RegisterMap::WalkContinuation::skip);
 121   frame caller = thread->last_frame().sender(&map);
 122   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 123   return true;
 124 }
 125 #endif // ASSERT
 126 
 127 /*
 128 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 129   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 130   if (var == nullptr) { return false; }
 131 */
 132 
 133 #define GEN_C2_BLOB(name, type)                    \
 134   generate_ ## name ## _blob();
 135 
 136 // a few helper macros to conjure up generate_stub call arguments
 137 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
 138 #define C2_STUB_TYPEFUNC(name) name ## _Type
 139 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C)
 140 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id)
 141 
 142 // Almost all the C functions targeted from the generated stubs are
 143 // implemented locally to OptoRuntime with names that can be generated
 144 // from the stub name by appending suffix '_C'. However, in two cases
 145 // a common target method also needs to be called from shared runtime
 146 // stubs. In these two cases the opto stubs rely on method
 147 // imlementations defined in class SharedRuntime. The following
 148 // defines temporarily rebind the generated names to reference the
 149 // relevant implementations.
 150 
 151 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 152   C2_STUB_FIELD_NAME(name) =                                          \
 153     generate_stub(env,                                                  \
 154                   C2_STUB_TYPEFUNC(name),                             \
 155                   C2_STUB_C_FUNC(name),                               \
 156                   C2_STUB_NAME(name),                                 \
 157                   fancy_jump,                                           \
 158                   pass_tls,                                             \
 159                   pass_retpc);                                          \
 160   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 161 
 162 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name)
 163 
 164 #define GEN_C2_JVMTI_STUB(name)                                       \
 165   STUB_FIELD_NAME(name) =                                               \
 166     generate_stub(env,                                                  \
 167                   notify_jvmti_vthread_Type,                            \
 168                   C2_JVMTI_STUB_C_FUNC(name),                         \
 169                   C2_STUB_NAME(name),                                 \
 170                   0,                                                    \
 171                   true,                                                 \
 172                   false);                                               \
 173   if (STUB_FIELD_NAME(name) == nullptr) { return false; }               \
 174 
 175 bool OptoRuntime::generate(ciEnv* env) {
 176 
 177   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
 178 
 179   return true;
 180 }
 181 
 182 #undef GEN_C2_BLOB
 183 
 184 #undef C2_STUB_FIELD_NAME
 185 #undef C2_STUB_TYPEFUNC
 186 #undef C2_STUB_C_FUNC
 187 #undef C2_STUB_NAME
 188 #undef GEN_C2_STUB
 189 
 190 #undef C2_JVMTI_STUB_C_FUNC
 191 #undef GEN_C2_JVMTI_STUB
 192 // #undef gen
 193 
 194 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 195 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 196 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 197 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;
 198 const TypeFunc* OptoRuntime::_multianewarray4_Type                = nullptr;
 199 const TypeFunc* OptoRuntime::_multianewarray5_Type                = nullptr;
 200 const TypeFunc* OptoRuntime::_multianewarrayN_Type                = nullptr;
 201 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type         = nullptr;
 202 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type          = nullptr;
 203 const TypeFunc* OptoRuntime::_monitor_notify_Type                 = nullptr;
 204 const TypeFunc* OptoRuntime::_uncommon_trap_Type                  = nullptr;
 205 const TypeFunc* OptoRuntime::_athrow_Type                         = nullptr;
 206 const TypeFunc* OptoRuntime::_rethrow_Type                        = nullptr;
 207 const TypeFunc* OptoRuntime::_Math_D_D_Type                       = nullptr;
 208 const TypeFunc* OptoRuntime::_Math_DD_D_Type                      = nullptr;
 209 const TypeFunc* OptoRuntime::_modf_Type                           = nullptr;
 210 const TypeFunc* OptoRuntime::_l2f_Type                            = nullptr;
 211 const TypeFunc* OptoRuntime::_void_long_Type                      = nullptr;
 212 const TypeFunc* OptoRuntime::_void_void_Type                      = nullptr;
 213 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type           = nullptr;
 214 const TypeFunc* OptoRuntime::_flush_windows_Type                  = nullptr;
 215 const TypeFunc* OptoRuntime::_fast_arraycopy_Type                 = nullptr;
 216 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type            = nullptr;
 217 const TypeFunc* OptoRuntime::_generic_arraycopy_Type              = nullptr;
 218 const TypeFunc* OptoRuntime::_slow_arraycopy_Type                 = nullptr;
 219 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type               = nullptr;
 220 const TypeFunc* OptoRuntime::_array_fill_Type                     = nullptr;
 221 const TypeFunc* OptoRuntime::_array_sort_Type                     = nullptr;
 222 const TypeFunc* OptoRuntime::_array_partition_Type                = nullptr;
 223 const TypeFunc* OptoRuntime::_aescrypt_block_Type                 = nullptr;
 224 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type   = nullptr;
 225 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type    = nullptr;
 226 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type           = nullptr;
 227 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type     = nullptr;
 228 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type      = nullptr;
 229 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type   = nullptr;
 230 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type    = nullptr;
 231 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr;
 232 const TypeFunc* OptoRuntime::_multiplyToLen_Type                  = nullptr;
 233 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type             = nullptr;
 234 const TypeFunc* OptoRuntime::_montgomerySquare_Type               = nullptr;
 235 const TypeFunc* OptoRuntime::_squareToLen_Type                    = nullptr;
 236 const TypeFunc* OptoRuntime::_mulAdd_Type                         = nullptr;
 237 const TypeFunc* OptoRuntime::_bigIntegerShift_Type                = nullptr;
 238 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type             = nullptr;
 239 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type            = nullptr;
 240 const TypeFunc* OptoRuntime::_chacha20Block_Type                  = nullptr;
 241 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type             = nullptr;
 242 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type             = nullptr;
 243 const TypeFunc* OptoRuntime::_string_IndexOf_Type                 = nullptr;
 244 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type         = nullptr;
 245 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type    = nullptr;
 246 const TypeFunc* OptoRuntime::_intpoly_assign_Type                 = nullptr;
 247 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 248 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 249 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 250 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 251 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 252 #if INCLUDE_JFR
 253 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 254 #endif // INCLUDE_JFR
 255 #if INCLUDE_JVMTI
 256 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type           = nullptr;
 257 #endif // INCLUDE_JVMTI
 258 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 259 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 260 
 261 // Helper method to do generation of RunTimeStub's
 262 address OptoRuntime::generate_stub(ciEnv* env,
 263                                    TypeFunc_generator gen, address C_function,
 264                                    const char *name, int is_fancy_jump,
 265                                    bool pass_tls,
 266                                    bool return_pc) {
 267 
 268   // Matching the default directive, we currently have no method to match.
 269   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 270   ResourceMark rm;
 271   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 272   DirectivesStack::release(directive);
 273   return  C.stub_entry_point();
 274 }
 275 
 276 const char* OptoRuntime::stub_name(address entry) {
 277 #ifndef PRODUCT
 278   CodeBlob* cb = CodeCache::find_blob(entry);
 279   RuntimeStub* rs =(RuntimeStub *)cb;
 280   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 281   return rs->name();
 282 #else
 283   // Fast implementation for product mode (maybe it should be inlined too)
 284   return "runtime stub";
 285 #endif
 286 }
 287 
 288 // local methods passed as arguments to stub generator that forward
 289 // control to corresponding JRT methods of SharedRuntime
 290 
 291 void OptoRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
 292                                    oopDesc* dest, jint dest_pos,
 293                                    jint length, JavaThread* thread) {
 294   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 295 }
 296 
 297 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 298   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 299 }
 300 
 301 
 302 //=============================================================================
 303 // Opto compiler runtime routines
 304 //=============================================================================
 305 
 306 
 307 //=============================allocation======================================
 308 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 309 // and try allocation again.
 310 
 311 // object allocation
 312 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 313   JRT_BLOCK;
 314 #ifndef PRODUCT
 315   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 316 #endif
 317   assert(check_compiled_frame(current), "incorrect caller");
 318 
 319   // These checks are cheap to make and support reflective allocation.
 320   int lh = klass->layout_helper();
 321   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 322     Handle holder(current, klass->klass_holder()); // keep the klass alive
 323     klass->check_valid_for_instantiation(false, THREAD);
 324     if (!HAS_PENDING_EXCEPTION) {
 325       InstanceKlass::cast(klass)->initialize(THREAD);
 326     }
 327   }
 328 
 329   if (!HAS_PENDING_EXCEPTION) {
 330     // Scavenge and allocate an instance.
 331     Handle holder(current, klass->klass_holder()); // keep the klass alive
 332     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 333     current->set_vm_result(result);
 334 
 335     // Pass oops back through thread local storage.  Our apparent type to Java
 336     // is that we return an oop, but we can block on exit from this routine and
 337     // a GC can trash the oop in C's return register.  The generated stub will
 338     // fetch the oop from TLS after any possible GC.
 339   }
 340 
 341   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 342   JRT_BLOCK_END;
 343 
 344   // inform GC that we won't do card marks for initializing writes.
 345   SharedRuntime::on_slowpath_allocation_exit(current);
 346 JRT_END
 347 
 348 
 349 // array allocation
 350 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 351   JRT_BLOCK;
 352 #ifndef PRODUCT
 353   SharedRuntime::_new_array_ctr++;            // new array requires GC
 354 #endif
 355   assert(check_compiled_frame(current), "incorrect caller");
 356 
 357   // Scavenge and allocate an instance.
 358   oop result;
 359 
 360   if (array_type->is_typeArray_klass()) {
 361     // The oopFactory likes to work with the element type.
 362     // (We could bypass the oopFactory, since it doesn't add much value.)
 363     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 364     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 365   } else {
 366     // Although the oopFactory likes to work with the elem_type,
 367     // the compiler prefers the array_type, since it must already have
 368     // that latter value in hand for the fast path.
 369     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 370     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 371     result = oopFactory::new_objArray(elem_type, len, THREAD);
 372   }
 373 
 374   // Pass oops back through thread local storage.  Our apparent type to Java
 375   // is that we return an oop, but we can block on exit from this routine and
 376   // a GC can trash the oop in C's return register.  The generated stub will
 377   // fetch the oop from TLS after any possible GC.
 378   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 379   current->set_vm_result(result);
 380   JRT_BLOCK_END;
 381 
 382   // inform GC that we won't do card marks for initializing writes.
 383   SharedRuntime::on_slowpath_allocation_exit(current);
 384 JRT_END
 385 
 386 // array allocation without zeroing
 387 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 388   JRT_BLOCK;
 389 #ifndef PRODUCT
 390   SharedRuntime::_new_array_ctr++;            // new array requires GC
 391 #endif
 392   assert(check_compiled_frame(current), "incorrect caller");
 393 
 394   // Scavenge and allocate an instance.
 395   oop result;
 396 
 397   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 398   // The oopFactory likes to work with the element type.
 399   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 400   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 401 
 402   // Pass oops back through thread local storage.  Our apparent type to Java
 403   // is that we return an oop, but we can block on exit from this routine and
 404   // a GC can trash the oop in C's return register.  The generated stub will
 405   // fetch the oop from TLS after any possible GC.
 406   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 407   current->set_vm_result(result);
 408   JRT_BLOCK_END;
 409 
 410 
 411   // inform GC that we won't do card marks for initializing writes.
 412   SharedRuntime::on_slowpath_allocation_exit(current);
 413 
 414   oop result = current->vm_result();
 415   if ((len > 0) && (result != nullptr) &&
 416       is_deoptimized_caller_frame(current)) {
 417     // Zero array here if the caller is deoptimized.
 418     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 419     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 420     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 421     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 422     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 423     if (!is_aligned(hs_bytes, BytesPerLong)) {
 424       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 425       hs_bytes += BytesPerInt;
 426     }
 427 
 428     // Optimized zeroing.
 429     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 430     const size_t aligned_hs = hs_bytes / BytesPerLong;
 431     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 432   }
 433 
 434 JRT_END
 435 
 436 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 437 
 438 // multianewarray for 2 dimensions
 439 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 440 #ifndef PRODUCT
 441   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 442 #endif
 443   assert(check_compiled_frame(current), "incorrect caller");
 444   assert(elem_type->is_klass(), "not a class");
 445   jint dims[2];
 446   dims[0] = len1;
 447   dims[1] = len2;
 448   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 449   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 450   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 451   current->set_vm_result(obj);
 452 JRT_END
 453 
 454 // multianewarray for 3 dimensions
 455 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 456 #ifndef PRODUCT
 457   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 458 #endif
 459   assert(check_compiled_frame(current), "incorrect caller");
 460   assert(elem_type->is_klass(), "not a class");
 461   jint dims[3];
 462   dims[0] = len1;
 463   dims[1] = len2;
 464   dims[2] = len3;
 465   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 466   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 467   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 468   current->set_vm_result(obj);
 469 JRT_END
 470 
 471 // multianewarray for 4 dimensions
 472 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 473 #ifndef PRODUCT
 474   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 475 #endif
 476   assert(check_compiled_frame(current), "incorrect caller");
 477   assert(elem_type->is_klass(), "not a class");
 478   jint dims[4];
 479   dims[0] = len1;
 480   dims[1] = len2;
 481   dims[2] = len3;
 482   dims[3] = len4;
 483   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 484   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 485   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 486   current->set_vm_result(obj);
 487 JRT_END
 488 
 489 // multianewarray for 5 dimensions
 490 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 491 #ifndef PRODUCT
 492   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 493 #endif
 494   assert(check_compiled_frame(current), "incorrect caller");
 495   assert(elem_type->is_klass(), "not a class");
 496   jint dims[5];
 497   dims[0] = len1;
 498   dims[1] = len2;
 499   dims[2] = len3;
 500   dims[3] = len4;
 501   dims[4] = len5;
 502   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 503   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 504   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 505   current->set_vm_result(obj);
 506 JRT_END
 507 
 508 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 509   assert(check_compiled_frame(current), "incorrect caller");
 510   assert(elem_type->is_klass(), "not a class");
 511   assert(oop(dims)->is_typeArray(), "not an array");
 512 
 513   ResourceMark rm;
 514   jint len = dims->length();
 515   assert(len > 0, "Dimensions array should contain data");
 516   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 517   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 518                                        c_dims, len);
 519 
 520   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 521   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 522   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 523   current->set_vm_result(obj);
 524 JRT_END
 525 
 526 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 527 
 528   // Very few notify/notifyAll operations find any threads on the waitset, so
 529   // the dominant fast-path is to simply return.
 530   // Relatedly, it's critical that notify/notifyAll be fast in order to
 531   // reduce lock hold times.
 532   if (!SafepointSynchronize::is_synchronizing()) {
 533     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 534       return;
 535     }
 536   }
 537 
 538   // This is the case the fast-path above isn't provisioned to handle.
 539   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 540   // (The fast-path is just a degenerate variant of the slow-path).
 541   // Perform the dreaded state transition and pass control into the slow-path.
 542   JRT_BLOCK;
 543   Handle h_obj(current, obj);
 544   ObjectSynchronizer::notify(h_obj, CHECK);
 545   JRT_BLOCK_END;
 546 JRT_END
 547 
 548 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 549 
 550   if (!SafepointSynchronize::is_synchronizing() ) {
 551     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 552       return;
 553     }
 554   }
 555 
 556   // This is the case the fast-path above isn't provisioned to handle.
 557   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 558   // (The fast-path is just a degenerate variant of the slow-path).
 559   // Perform the dreaded state transition and pass control into the slow-path.
 560   JRT_BLOCK;
 561   Handle h_obj(current, obj);
 562   ObjectSynchronizer::notifyall(h_obj, CHECK);
 563   JRT_BLOCK_END;
 564 JRT_END
 565 
 566 static const TypeFunc* make_new_instance_Type() {
 567   // create input type (domain)
 568   const Type **fields = TypeTuple::fields(1);
 569   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 570   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 571 
 572   // create result type (range)
 573   fields = TypeTuple::fields(1);
 574   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 575 
 576   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 577 
 578   return TypeFunc::make(domain, range);
 579 }
 580 
 581 #if INCLUDE_JVMTI
 582 static const TypeFunc* make_notify_jvmti_vthread_Type() {
 583   // create input type (domain)
 584   const Type **fields = TypeTuple::fields(2);
 585   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 586   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 587   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 588 
 589   // no result type needed
 590   fields = TypeTuple::fields(1);
 591   fields[TypeFunc::Parms+0] = nullptr; // void
 592   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 593 
 594   return TypeFunc::make(domain,range);
 595 }
 596 #endif
 597 
 598 static const TypeFunc* make_athrow_Type() {
 599   // create input type (domain)
 600   const Type **fields = TypeTuple::fields(1);
 601   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 602   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 603 
 604   // create result type (range)
 605   fields = TypeTuple::fields(0);
 606 
 607   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 608 
 609   return TypeFunc::make(domain, range);
 610 }
 611 
 612 static const TypeFunc* make_new_array_Type() {
 613   // create input type (domain)
 614   const Type **fields = TypeTuple::fields(2);
 615   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 616   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 617   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 618 
 619   // create result type (range)
 620   fields = TypeTuple::fields(1);
 621   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 622 
 623   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 624 
 625   return TypeFunc::make(domain, range);
 626 }
 627 
 628 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
 629   // create input type (domain)
 630   const int nargs = ndim + 1;
 631   const Type **fields = TypeTuple::fields(nargs);
 632   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 633   for( int i = 1; i < nargs; i++ )
 634     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 635   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 636 
 637   // create result type (range)
 638   fields = TypeTuple::fields(1);
 639   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 640   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 641 
 642   return TypeFunc::make(domain, range);
 643 }
 644 
 645 static const TypeFunc* make_multianewarrayN_Type() {
 646   // create input type (domain)
 647   const Type **fields = TypeTuple::fields(2);
 648   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 649   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 650   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 651 
 652   // create result type (range)
 653   fields = TypeTuple::fields(1);
 654   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 655   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 656 
 657   return TypeFunc::make(domain, range);
 658 }
 659 
 660 static const TypeFunc* make_uncommon_trap_Type() {
 661   // create input type (domain)
 662   const Type **fields = TypeTuple::fields(1);
 663   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 664   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 665 
 666   // create result type (range)
 667   fields = TypeTuple::fields(0);
 668   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 669 
 670   return TypeFunc::make(domain, range);
 671 }
 672 
 673 //-----------------------------------------------------------------------------
 674 // Monitor Handling
 675 
 676 static const TypeFunc* make_complete_monitor_enter_Type() {
 677   // create input type (domain)
 678   const Type **fields = TypeTuple::fields(2);
 679   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 680   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 681   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 682 
 683   // create result type (range)
 684   fields = TypeTuple::fields(0);
 685 
 686   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 687 
 688   return TypeFunc::make(domain,range);
 689 }
 690 
 691 //-----------------------------------------------------------------------------
 692 
 693 static const TypeFunc* make_complete_monitor_exit_Type() {
 694   // create input type (domain)
 695   const Type **fields = TypeTuple::fields(3);
 696   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 697   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 698   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 699   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 700 
 701   // create result type (range)
 702   fields = TypeTuple::fields(0);
 703 
 704   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 705 
 706   return TypeFunc::make(domain, range);
 707 }
 708 
 709 static const TypeFunc* make_monitor_notify_Type() {
 710   // create input type (domain)
 711   const Type **fields = TypeTuple::fields(1);
 712   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 713   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 714 
 715   // create result type (range)
 716   fields = TypeTuple::fields(0);
 717   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 718   return TypeFunc::make(domain, range);
 719 }
 720 
 721 static const TypeFunc* make_flush_windows_Type() {
 722   // create input type (domain)
 723   const Type** fields = TypeTuple::fields(1);
 724   fields[TypeFunc::Parms+0] = nullptr; // void
 725   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 726 
 727   // create result type
 728   fields = TypeTuple::fields(1);
 729   fields[TypeFunc::Parms+0] = nullptr; // void
 730   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 731 
 732   return TypeFunc::make(domain, range);
 733 }
 734 
 735 static const TypeFunc* make_l2f_Type() {
 736   // create input type (domain)
 737   const Type **fields = TypeTuple::fields(2);
 738   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 739   fields[TypeFunc::Parms+1] = Type::HALF;
 740   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 741 
 742   // create result type (range)
 743   fields = TypeTuple::fields(1);
 744   fields[TypeFunc::Parms+0] = Type::FLOAT;
 745   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 746 
 747   return TypeFunc::make(domain, range);
 748 }
 749 
 750 static const TypeFunc* make_modf_Type() {
 751   const Type **fields = TypeTuple::fields(2);
 752   fields[TypeFunc::Parms+0] = Type::FLOAT;
 753   fields[TypeFunc::Parms+1] = Type::FLOAT;
 754   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 755 
 756   // create result type (range)
 757   fields = TypeTuple::fields(1);
 758   fields[TypeFunc::Parms+0] = Type::FLOAT;
 759 
 760   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 761 
 762   return TypeFunc::make(domain, range);
 763 }
 764 
 765 static const TypeFunc* make_Math_D_D_Type() {
 766   // create input type (domain)
 767   const Type **fields = TypeTuple::fields(2);
 768   // Symbol* name of class to be loaded
 769   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 770   fields[TypeFunc::Parms+1] = Type::HALF;
 771   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 772 
 773   // create result type (range)
 774   fields = TypeTuple::fields(2);
 775   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 776   fields[TypeFunc::Parms+1] = Type::HALF;
 777   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 778 
 779   return TypeFunc::make(domain, range);
 780 }
 781 
 782 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 783   // create input type (domain)
 784   const Type **fields = TypeTuple::fields(num_arg);
 785   // Symbol* name of class to be loaded
 786   assert(num_arg > 0, "must have at least 1 input");
 787   for (uint i = 0; i < num_arg; i++) {
 788     fields[TypeFunc::Parms+i] = in_type;
 789   }
 790   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 791 
 792   // create result type (range)
 793   const uint num_ret = 1;
 794   fields = TypeTuple::fields(num_ret);
 795   fields[TypeFunc::Parms+0] = out_type;
 796   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 797 
 798   return TypeFunc::make(domain, range);
 799 }
 800 
 801 static const TypeFunc* make_Math_DD_D_Type() {
 802   const Type **fields = TypeTuple::fields(4);
 803   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 804   fields[TypeFunc::Parms+1] = Type::HALF;
 805   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 806   fields[TypeFunc::Parms+3] = Type::HALF;
 807   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 808 
 809   // create result type (range)
 810   fields = TypeTuple::fields(2);
 811   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 812   fields[TypeFunc::Parms+1] = Type::HALF;
 813   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 814 
 815   return TypeFunc::make(domain, range);
 816 }
 817 
 818 //-------------- currentTimeMillis, currentTimeNanos, etc
 819 
 820 static const TypeFunc* make_void_long_Type() {
 821   // create input type (domain)
 822   const Type **fields = TypeTuple::fields(0);
 823   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 824 
 825   // create result type (range)
 826   fields = TypeTuple::fields(2);
 827   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 828   fields[TypeFunc::Parms+1] = Type::HALF;
 829   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 830 
 831   return TypeFunc::make(domain, range);
 832 }
 833 
 834 static const TypeFunc* make_void_void_Type() {
 835   // create input type (domain)
 836   const Type **fields = TypeTuple::fields(0);
 837   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 838 
 839   // create result type (range)
 840   fields = TypeTuple::fields(0);
 841   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 842   return TypeFunc::make(domain, range);
 843 }
 844 
 845 static const TypeFunc* make_jfr_write_checkpoint_Type() {
 846   // create input type (domain)
 847   const Type **fields = TypeTuple::fields(0);
 848   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 849 
 850   // create result type (range)
 851   fields = TypeTuple::fields(0);
 852   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 853   return TypeFunc::make(domain, range);
 854 }
 855 
 856 
 857 // Takes as parameters:
 858 // void *dest
 859 // long size
 860 // uchar byte
 861 
 862 static const TypeFunc* make_setmemory_Type() {
 863   // create input type (domain)
 864   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 865   const Type** fields = TypeTuple::fields(argcnt);
 866   int argp = TypeFunc::Parms;
 867   fields[argp++] = TypePtr::NOTNULL;        // dest
 868   fields[argp++] = TypeX_X;                 // size
 869   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 870   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 871   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 872   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 873 
 874   // no result type needed
 875   fields = TypeTuple::fields(1);
 876   fields[TypeFunc::Parms+0] = nullptr; // void
 877   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 878   return TypeFunc::make(domain, range);
 879 }
 880 
 881 // arraycopy stub variations:
 882 enum ArrayCopyType {
 883   ac_fast,                      // void(ptr, ptr, size_t)
 884   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 885   ac_slow,                      // void(ptr, int, ptr, int, int)
 886   ac_generic                    //  int(ptr, int, ptr, int, int)
 887 };
 888 
 889 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 890   // create input type (domain)
 891   int num_args      = (act == ac_fast ? 3 : 5);
 892   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 893   int argcnt = num_args;
 894   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 895   const Type** fields = TypeTuple::fields(argcnt);
 896   int argp = TypeFunc::Parms;
 897   fields[argp++] = TypePtr::NOTNULL;    // src
 898   if (num_size_args == 0) {
 899     fields[argp++] = TypeInt::INT;      // src_pos
 900   }
 901   fields[argp++] = TypePtr::NOTNULL;    // dest
 902   if (num_size_args == 0) {
 903     fields[argp++] = TypeInt::INT;      // dest_pos
 904     fields[argp++] = TypeInt::INT;      // length
 905   }
 906   while (num_size_args-- > 0) {
 907     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 908     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 909   }
 910   if (act == ac_checkcast) {
 911     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 912   }
 913   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 914   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 915 
 916   // create result type if needed
 917   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 918   fields = TypeTuple::fields(1);
 919   if (retcnt == 0)
 920     fields[TypeFunc::Parms+0] = nullptr; // void
 921   else
 922     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 923   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 924   return TypeFunc::make(domain, range);
 925 }
 926 
 927 static const TypeFunc* make_array_fill_Type() {
 928   const Type** fields;
 929   int argp = TypeFunc::Parms;
 930   // create input type (domain): pointer, int, size_t
 931   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 932   fields[argp++] = TypePtr::NOTNULL;
 933   fields[argp++] = TypeInt::INT;
 934   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 935   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 936   const TypeTuple *domain = TypeTuple::make(argp, fields);
 937 
 938   // create result type
 939   fields = TypeTuple::fields(1);
 940   fields[TypeFunc::Parms+0] = nullptr; // void
 941   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 942 
 943   return TypeFunc::make(domain, range);
 944 }
 945 
 946 static const TypeFunc* make_array_partition_Type() {
 947   // create input type (domain)
 948   int num_args = 7;
 949   int argcnt = num_args;
 950   const Type** fields = TypeTuple::fields(argcnt);
 951   int argp = TypeFunc::Parms;
 952   fields[argp++] = TypePtr::NOTNULL;  // array
 953   fields[argp++] = TypeInt::INT;      // element type
 954   fields[argp++] = TypeInt::INT;      // low
 955   fields[argp++] = TypeInt::INT;      // end
 956   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 957   fields[argp++] = TypeInt::INT;      // indexPivot1
 958   fields[argp++] = TypeInt::INT;      // indexPivot2
 959   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 960   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 961 
 962   // no result type needed
 963   fields = TypeTuple::fields(1);
 964   fields[TypeFunc::Parms+0] = nullptr; // void
 965   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 966   return TypeFunc::make(domain, range);
 967 }
 968 
 969 static const TypeFunc* make_array_sort_Type() {
 970   // create input type (domain)
 971   int num_args      = 4;
 972   int argcnt = num_args;
 973   const Type** fields = TypeTuple::fields(argcnt);
 974   int argp = TypeFunc::Parms;
 975   fields[argp++] = TypePtr::NOTNULL;    // array
 976   fields[argp++] = TypeInt::INT;    // element type
 977   fields[argp++] = TypeInt::INT;    // fromIndex
 978   fields[argp++] = TypeInt::INT;    // toIndex
 979   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 980   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 981 
 982   // no result type needed
 983   fields = TypeTuple::fields(1);
 984   fields[TypeFunc::Parms+0] = nullptr; // void
 985   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 986   return TypeFunc::make(domain, range);
 987 }
 988 
 989 static const TypeFunc* make_aescrypt_block_Type() {
 990   // create input type (domain)
 991   int num_args      = 3;
 992   int argcnt = num_args;
 993   const Type** fields = TypeTuple::fields(argcnt);
 994   int argp = TypeFunc::Parms;
 995   fields[argp++] = TypePtr::NOTNULL;    // src
 996   fields[argp++] = TypePtr::NOTNULL;    // dest
 997   fields[argp++] = TypePtr::NOTNULL;    // k array
 998   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 999   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1000 
1001   // no result type needed
1002   fields = TypeTuple::fields(1);
1003   fields[TypeFunc::Parms+0] = nullptr; // void
1004   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1005   return TypeFunc::make(domain, range);
1006 }
1007 
1008 static const TypeFunc* make_updateBytesCRC32_Type() {
1009   // create input type (domain)
1010   int num_args      = 3;
1011   int argcnt = num_args;
1012   const Type** fields = TypeTuple::fields(argcnt);
1013   int argp = TypeFunc::Parms;
1014   fields[argp++] = TypeInt::INT;        // crc
1015   fields[argp++] = TypePtr::NOTNULL;    // src
1016   fields[argp++] = TypeInt::INT;        // len
1017   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1018   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1019 
1020   // result type needed
1021   fields = TypeTuple::fields(1);
1022   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1023   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1024   return TypeFunc::make(domain, range);
1025 }
1026 
1027 static const TypeFunc* make_updateBytesCRC32C_Type() {
1028   // create input type (domain)
1029   int num_args      = 4;
1030   int argcnt = num_args;
1031   const Type** fields = TypeTuple::fields(argcnt);
1032   int argp = TypeFunc::Parms;
1033   fields[argp++] = TypeInt::INT;        // crc
1034   fields[argp++] = TypePtr::NOTNULL;    // buf
1035   fields[argp++] = TypeInt::INT;        // len
1036   fields[argp++] = TypePtr::NOTNULL;    // table
1037   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1038   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1039 
1040   // result type needed
1041   fields = TypeTuple::fields(1);
1042   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1043   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1044   return TypeFunc::make(domain, range);
1045 }
1046 
1047 static const TypeFunc* make_updateBytesAdler32_Type() {
1048   // create input type (domain)
1049   int num_args      = 3;
1050   int argcnt = num_args;
1051   const Type** fields = TypeTuple::fields(argcnt);
1052   int argp = TypeFunc::Parms;
1053   fields[argp++] = TypeInt::INT;        // crc
1054   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1055   fields[argp++] = TypeInt::INT;        // len
1056   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1057   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1058 
1059   // result type needed
1060   fields = TypeTuple::fields(1);
1061   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1062   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1063   return TypeFunc::make(domain, range);
1064 }
1065 
1066 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() {
1067   // create input type (domain)
1068   int num_args      = 5;
1069   int argcnt = num_args;
1070   const Type** fields = TypeTuple::fields(argcnt);
1071   int argp = TypeFunc::Parms;
1072   fields[argp++] = TypePtr::NOTNULL;    // src
1073   fields[argp++] = TypePtr::NOTNULL;    // dest
1074   fields[argp++] = TypePtr::NOTNULL;    // k array
1075   fields[argp++] = TypePtr::NOTNULL;    // r array
1076   fields[argp++] = TypeInt::INT;        // src len
1077   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1078   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1079 
1080   // returning cipher len (int)
1081   fields = TypeTuple::fields(1);
1082   fields[TypeFunc::Parms+0] = TypeInt::INT;
1083   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1084   return TypeFunc::make(domain, range);
1085 }
1086 
1087 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() {
1088   // create input type (domain)
1089   int num_args = 4;
1090   int argcnt = num_args;
1091   const Type** fields = TypeTuple::fields(argcnt);
1092   int argp = TypeFunc::Parms;
1093   fields[argp++] = TypePtr::NOTNULL;    // src
1094   fields[argp++] = TypePtr::NOTNULL;    // dest
1095   fields[argp++] = TypePtr::NOTNULL;    // k array
1096   fields[argp++] = TypeInt::INT;        // src len
1097   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1098   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1099 
1100   // returning cipher len (int)
1101   fields = TypeTuple::fields(1);
1102   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1103   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1104   return TypeFunc::make(domain, range);
1105 }
1106 
1107 static const TypeFunc* make_counterMode_aescrypt_Type() {
1108   // create input type (domain)
1109   int num_args = 7;
1110   int argcnt = num_args;
1111   const Type** fields = TypeTuple::fields(argcnt);
1112   int argp = TypeFunc::Parms;
1113   fields[argp++] = TypePtr::NOTNULL; // src
1114   fields[argp++] = TypePtr::NOTNULL; // dest
1115   fields[argp++] = TypePtr::NOTNULL; // k array
1116   fields[argp++] = TypePtr::NOTNULL; // counter array
1117   fields[argp++] = TypeInt::INT; // src len
1118   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1119   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1120   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1121   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1122   // returning cipher len (int)
1123   fields = TypeTuple::fields(1);
1124   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1125   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1126   return TypeFunc::make(domain, range);
1127 }
1128 
1129 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() {
1130   // create input type (domain)
1131   int num_args = 8;
1132   int argcnt = num_args;
1133   const Type** fields = TypeTuple::fields(argcnt);
1134   int argp = TypeFunc::Parms;
1135   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1136   fields[argp++] = TypeInt::INT;     // int len
1137   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1138   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1139   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1140   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1141   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1142   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1143 
1144   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1145   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1146   // returning cipher len (int)
1147   fields = TypeTuple::fields(1);
1148   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1149   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1150   return TypeFunc::make(domain, range);
1151 }
1152 
1153 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) {
1154   // create input type (domain)
1155   int num_args = is_sha3 ? 3 : 2;
1156   int argcnt = num_args;
1157   const Type** fields = TypeTuple::fields(argcnt);
1158   int argp = TypeFunc::Parms;
1159   fields[argp++] = TypePtr::NOTNULL; // buf
1160   fields[argp++] = TypePtr::NOTNULL; // state
1161   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1162   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1163   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1164 
1165   // no result type needed
1166   fields = TypeTuple::fields(1);
1167   fields[TypeFunc::Parms+0] = nullptr; // void
1168   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1169   return TypeFunc::make(domain, range);
1170 }
1171 
1172 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) {
1173   // create input type (domain)
1174   int num_args = is_sha3 ? 5 : 4;
1175   int argcnt = num_args;
1176   const Type** fields = TypeTuple::fields(argcnt);
1177   int argp = TypeFunc::Parms;
1178   fields[argp++] = TypePtr::NOTNULL; // buf
1179   fields[argp++] = TypePtr::NOTNULL; // state
1180   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1181   fields[argp++] = TypeInt::INT;     // ofs
1182   fields[argp++] = TypeInt::INT;     // limit
1183   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1184   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1185 
1186   // returning ofs (int)
1187   fields = TypeTuple::fields(1);
1188   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1189   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1190   return TypeFunc::make(domain, range);
1191 }
1192 
1193 static const TypeFunc* make_multiplyToLen_Type() {
1194   // create input type (domain)
1195   int num_args      = 5;
1196   int argcnt = num_args;
1197   const Type** fields = TypeTuple::fields(argcnt);
1198   int argp = TypeFunc::Parms;
1199   fields[argp++] = TypePtr::NOTNULL;    // x
1200   fields[argp++] = TypeInt::INT;        // xlen
1201   fields[argp++] = TypePtr::NOTNULL;    // y
1202   fields[argp++] = TypeInt::INT;        // ylen
1203   fields[argp++] = TypePtr::NOTNULL;    // z
1204   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1205   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1206 
1207   // no result type needed
1208   fields = TypeTuple::fields(1);
1209   fields[TypeFunc::Parms+0] = nullptr;
1210   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1211   return TypeFunc::make(domain, range);
1212 }
1213 
1214 static const TypeFunc* make_squareToLen_Type() {
1215   // create input type (domain)
1216   int num_args      = 4;
1217   int argcnt = num_args;
1218   const Type** fields = TypeTuple::fields(argcnt);
1219   int argp = TypeFunc::Parms;
1220   fields[argp++] = TypePtr::NOTNULL;    // x
1221   fields[argp++] = TypeInt::INT;        // len
1222   fields[argp++] = TypePtr::NOTNULL;    // z
1223   fields[argp++] = TypeInt::INT;        // zlen
1224   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1225   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1226 
1227   // no result type needed
1228   fields = TypeTuple::fields(1);
1229   fields[TypeFunc::Parms+0] = nullptr;
1230   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1231   return TypeFunc::make(domain, range);
1232 }
1233 
1234 static const TypeFunc* make_mulAdd_Type() {
1235   // create input type (domain)
1236   int num_args      = 5;
1237   int argcnt = num_args;
1238   const Type** fields = TypeTuple::fields(argcnt);
1239   int argp = TypeFunc::Parms;
1240   fields[argp++] = TypePtr::NOTNULL;    // out
1241   fields[argp++] = TypePtr::NOTNULL;    // in
1242   fields[argp++] = TypeInt::INT;        // offset
1243   fields[argp++] = TypeInt::INT;        // len
1244   fields[argp++] = TypeInt::INT;        // k
1245   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1246   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1247 
1248   // returning carry (int)
1249   fields = TypeTuple::fields(1);
1250   fields[TypeFunc::Parms+0] = TypeInt::INT;
1251   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1252   return TypeFunc::make(domain, range);
1253 }
1254 
1255 static const TypeFunc* make_montgomeryMultiply_Type() {
1256   // create input type (domain)
1257   int num_args      = 7;
1258   int argcnt = num_args;
1259   const Type** fields = TypeTuple::fields(argcnt);
1260   int argp = TypeFunc::Parms;
1261   fields[argp++] = TypePtr::NOTNULL;    // a
1262   fields[argp++] = TypePtr::NOTNULL;    // b
1263   fields[argp++] = TypePtr::NOTNULL;    // n
1264   fields[argp++] = TypeInt::INT;        // len
1265   fields[argp++] = TypeLong::LONG;      // inv
1266   fields[argp++] = Type::HALF;
1267   fields[argp++] = TypePtr::NOTNULL;    // result
1268   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1269   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1270 
1271   // result type needed
1272   fields = TypeTuple::fields(1);
1273   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1274 
1275   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1276   return TypeFunc::make(domain, range);
1277 }
1278 
1279 static const TypeFunc* make_montgomerySquare_Type() {
1280   // create input type (domain)
1281   int num_args      = 6;
1282   int argcnt = num_args;
1283   const Type** fields = TypeTuple::fields(argcnt);
1284   int argp = TypeFunc::Parms;
1285   fields[argp++] = TypePtr::NOTNULL;    // a
1286   fields[argp++] = TypePtr::NOTNULL;    // n
1287   fields[argp++] = TypeInt::INT;        // len
1288   fields[argp++] = TypeLong::LONG;      // inv
1289   fields[argp++] = Type::HALF;
1290   fields[argp++] = TypePtr::NOTNULL;    // result
1291   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1292   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1293 
1294   // result type needed
1295   fields = TypeTuple::fields(1);
1296   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1297 
1298   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1299   return TypeFunc::make(domain, range);
1300 }
1301 
1302 static const TypeFunc* make_bigIntegerShift_Type() {
1303   int argcnt = 5;
1304   const Type** fields = TypeTuple::fields(argcnt);
1305   int argp = TypeFunc::Parms;
1306   fields[argp++] = TypePtr::NOTNULL;    // newArr
1307   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1308   fields[argp++] = TypeInt::INT;        // newIdx
1309   fields[argp++] = TypeInt::INT;        // shiftCount
1310   fields[argp++] = TypeInt::INT;        // numIter
1311   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1312   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1313 
1314   // no result type needed
1315   fields = TypeTuple::fields(1);
1316   fields[TypeFunc::Parms + 0] = nullptr;
1317   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1318   return TypeFunc::make(domain, range);
1319 }
1320 
1321 static const TypeFunc* make_vectorizedMismatch_Type() {
1322   // create input type (domain)
1323   int num_args = 4;
1324   int argcnt = num_args;
1325   const Type** fields = TypeTuple::fields(argcnt);
1326   int argp = TypeFunc::Parms;
1327   fields[argp++] = TypePtr::NOTNULL;    // obja
1328   fields[argp++] = TypePtr::NOTNULL;    // objb
1329   fields[argp++] = TypeInt::INT;        // length, number of elements
1330   fields[argp++] = TypeInt::INT;        // log2scale, element size
1331   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1332   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1333 
1334   //return mismatch index (int)
1335   fields = TypeTuple::fields(1);
1336   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1337   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1338   return TypeFunc::make(domain, range);
1339 }
1340 
1341 static const TypeFunc* make_ghash_processBlocks_Type() {
1342   int argcnt = 4;
1343 
1344   const Type** fields = TypeTuple::fields(argcnt);
1345   int argp = TypeFunc::Parms;
1346   fields[argp++] = TypePtr::NOTNULL;    // state
1347   fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1348   fields[argp++] = TypePtr::NOTNULL;    // data
1349   fields[argp++] = TypeInt::INT;        // blocks
1350   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1351   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1352 
1353   // result type needed
1354   fields = TypeTuple::fields(1);
1355   fields[TypeFunc::Parms+0] = nullptr; // void
1356   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1357   return TypeFunc::make(domain, range);
1358 }
1359 
1360 static const TypeFunc* make_chacha20Block_Type() {
1361   int argcnt = 2;
1362 
1363   const Type** fields = TypeTuple::fields(argcnt);
1364   int argp = TypeFunc::Parms;
1365   fields[argp++] = TypePtr::NOTNULL;      // state
1366   fields[argp++] = TypePtr::NOTNULL;      // result
1367 
1368   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1369   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1370 
1371   // result type needed
1372   fields = TypeTuple::fields(1);
1373   fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1374   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1375   return TypeFunc::make(domain, range);
1376 }
1377 
1378 static const TypeFunc* make_base64_encodeBlock_Type() {
1379   int argcnt = 6;
1380 
1381   const Type** fields = TypeTuple::fields(argcnt);
1382   int argp = TypeFunc::Parms;
1383   fields[argp++] = TypePtr::NOTNULL;    // src array
1384   fields[argp++] = TypeInt::INT;        // offset
1385   fields[argp++] = TypeInt::INT;        // length
1386   fields[argp++] = TypePtr::NOTNULL;    // dest array
1387   fields[argp++] = TypeInt::INT;       // dp
1388   fields[argp++] = TypeInt::BOOL;       // isURL
1389   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1390   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1391 
1392   // result type needed
1393   fields = TypeTuple::fields(1);
1394   fields[TypeFunc::Parms + 0] = nullptr; // void
1395   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1396   return TypeFunc::make(domain, range);
1397 }
1398 
1399 static const TypeFunc* make_string_IndexOf_Type() {
1400   int argcnt = 4;
1401 
1402   const Type** fields = TypeTuple::fields(argcnt);
1403   int argp = TypeFunc::Parms;
1404   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1405   fields[argp++] = TypeInt::INT;        // haystack length
1406   fields[argp++] = TypePtr::NOTNULL;    // needle array
1407   fields[argp++] = TypeInt::INT;        // needle length
1408   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1409   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1410 
1411   // result type needed
1412   fields = TypeTuple::fields(1);
1413   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1414   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1415   return TypeFunc::make(domain, range);
1416 }
1417 
1418 static const TypeFunc* make_base64_decodeBlock_Type() {
1419   int argcnt = 7;
1420 
1421   const Type** fields = TypeTuple::fields(argcnt);
1422   int argp = TypeFunc::Parms;
1423   fields[argp++] = TypePtr::NOTNULL;    // src array
1424   fields[argp++] = TypeInt::INT;        // src offset
1425   fields[argp++] = TypeInt::INT;        // src length
1426   fields[argp++] = TypePtr::NOTNULL;    // dest array
1427   fields[argp++] = TypeInt::INT;        // dest offset
1428   fields[argp++] = TypeInt::BOOL;       // isURL
1429   fields[argp++] = TypeInt::BOOL;       // isMIME
1430   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1431   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1432 
1433   // result type needed
1434   fields = TypeTuple::fields(1);
1435   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1436   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1437   return TypeFunc::make(domain, range);
1438 }
1439 
1440 static const TypeFunc* make_poly1305_processBlocks_Type() {
1441   int argcnt = 4;
1442 
1443   const Type** fields = TypeTuple::fields(argcnt);
1444   int argp = TypeFunc::Parms;
1445   fields[argp++] = TypePtr::NOTNULL;    // input array
1446   fields[argp++] = TypeInt::INT;        // input length
1447   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1448   fields[argp++] = TypePtr::NOTNULL;    // r array
1449   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1450   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1451 
1452   // result type needed
1453   fields = TypeTuple::fields(1);
1454   fields[TypeFunc::Parms + 0] = nullptr; // void
1455   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1456   return TypeFunc::make(domain, range);
1457 }
1458 
1459 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() {
1460   int argcnt = 3;
1461 
1462   const Type** fields = TypeTuple::fields(argcnt);
1463   int argp = TypeFunc::Parms;
1464   fields[argp++] = TypePtr::NOTNULL;    // a array
1465   fields[argp++] = TypePtr::NOTNULL;    // b array
1466   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1467   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1468   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1469 
1470   // result type needed
1471   fields = TypeTuple::fields(1);
1472   fields[TypeFunc::Parms + 0] = nullptr; // void
1473   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1474   return TypeFunc::make(domain, range);
1475 }
1476 
1477 static const TypeFunc* make_intpoly_assign_Type() {
1478   int argcnt = 4;
1479 
1480   const Type** fields = TypeTuple::fields(argcnt);
1481   int argp = TypeFunc::Parms;
1482   fields[argp++] = TypeInt::INT;        // set flag
1483   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1484   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1485   fields[argp++] = TypeInt::INT;        // array length
1486   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1487   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1488 
1489   // result type needed
1490   fields = TypeTuple::fields(1);
1491   fields[TypeFunc::Parms + 0] = nullptr; // void
1492   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1493   return TypeFunc::make(domain, range);
1494 }
1495 
1496 //------------- Interpreter state for on stack replacement
1497 static const TypeFunc* make_osr_end_Type() {
1498   // create input type (domain)
1499   const Type **fields = TypeTuple::fields(1);
1500   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1501   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1502 
1503   // create result type
1504   fields = TypeTuple::fields(1);
1505   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1506   fields[TypeFunc::Parms+0] = nullptr; // void
1507   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1508   return TypeFunc::make(domain, range);
1509 }
1510 
1511 //-------------------------------------------------------------------------------------
1512 // register policy
1513 
1514 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1515   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1516   switch (register_save_policy[reg]) {
1517     case 'C': return false; //SOC
1518     case 'E': return true ; //SOE
1519     case 'N': return false; //NS
1520     case 'A': return false; //AS
1521   }
1522   ShouldNotReachHere();
1523   return false;
1524 }
1525 
1526 //-----------------------------------------------------------------------
1527 // Exceptions
1528 //
1529 
1530 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1531 
1532 // The method is an entry that is always called by a C++ method not
1533 // directly from compiled code. Compiled code will call the C++ method following.
1534 // We can't allow async exception to be installed during  exception processing.
1535 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1536   // The frame we rethrow the exception to might not have been processed by the GC yet.
1537   // The stack watermark barrier takes care of detecting that and ensuring the frame
1538   // has updated oops.
1539   StackWatermarkSet::after_unwind(current);
1540 
1541   // Do not confuse exception_oop with pending_exception. The exception_oop
1542   // is only used to pass arguments into the method. Not for general
1543   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1544   // the runtime stubs checks this on exit.
1545   assert(current->exception_oop() != nullptr, "exception oop is found");
1546   address handler_address = nullptr;
1547 
1548   Handle exception(current, current->exception_oop());
1549   address pc = current->exception_pc();
1550 
1551   // Clear out the exception oop and pc since looking up an
1552   // exception handler can cause class loading, which might throw an
1553   // exception and those fields are expected to be clear during
1554   // normal bytecode execution.
1555   current->clear_exception_oop_and_pc();
1556 
1557   LogTarget(Info, exceptions) lt;
1558   if (lt.is_enabled()) {
1559     ResourceMark rm;
1560     LogStream ls(lt);
1561     trace_exception(&ls, exception(), pc, "");
1562   }
1563 
1564   // for AbortVMOnException flag
1565   Exceptions::debug_check_abort(exception);
1566 
1567 #ifdef ASSERT
1568   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1569     // should throw an exception here
1570     ShouldNotReachHere();
1571   }
1572 #endif
1573 
1574   // new exception handling: this method is entered only from adapters
1575   // exceptions from compiled java methods are handled in compiled code
1576   // using rethrow node
1577 
1578   nm = CodeCache::find_nmethod(pc);
1579   assert(nm != nullptr, "No NMethod found");
1580   if (nm->is_native_method()) {
1581     fatal("Native method should not have path to exception handling");
1582   } else {
1583     // we are switching to old paradigm: search for exception handler in caller_frame
1584     // instead in exception handler of caller_frame.sender()
1585 
1586     if (JvmtiExport::can_post_on_exceptions()) {
1587       // "Full-speed catching" is not necessary here,
1588       // since we're notifying the VM on every catch.
1589       // Force deoptimization and the rest of the lookup
1590       // will be fine.
1591       deoptimize_caller_frame(current);
1592     }
1593 
1594     // Check the stack guard pages.  If enabled, look for handler in this frame;
1595     // otherwise, forcibly unwind the frame.
1596     //
1597     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1598     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1599     bool deopting = false;
1600     if (nm->is_deopt_pc(pc)) {
1601       deopting = true;
1602       RegisterMap map(current,
1603                       RegisterMap::UpdateMap::skip,
1604                       RegisterMap::ProcessFrames::include,
1605                       RegisterMap::WalkContinuation::skip);
1606       frame deoptee = current->last_frame().sender(&map);
1607       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1608       // Adjust the pc back to the original throwing pc
1609       pc = deoptee.pc();
1610     }
1611 
1612     // If we are forcing an unwind because of stack overflow then deopt is
1613     // irrelevant since we are throwing the frame away anyway.
1614 
1615     if (deopting && !force_unwind) {
1616       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1617     } else {
1618 
1619       handler_address =
1620         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1621 
1622       if (handler_address == nullptr) {
1623         bool recursive_exception = false;
1624         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1625         assert (handler_address != nullptr, "must have compiled handler");
1626         // Update the exception cache only when the unwind was not forced
1627         // and there didn't happen another exception during the computation of the
1628         // compiled exception handler. Checking for exception oop equality is not
1629         // sufficient because some exceptions are pre-allocated and reused.
1630         if (!force_unwind && !recursive_exception) {
1631           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1632         }
1633       } else {
1634 #ifdef ASSERT
1635         bool recursive_exception = false;
1636         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1637         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1638                  p2i(handler_address), p2i(computed_address));
1639 #endif
1640       }
1641     }
1642 
1643     current->set_exception_pc(pc);
1644     current->set_exception_handler_pc(handler_address);
1645 
1646     // Check if the exception PC is a MethodHandle call site.
1647     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1648   }
1649 
1650   // Restore correct return pc.  Was saved above.
1651   current->set_exception_oop(exception());
1652   return handler_address;
1653 
1654 JRT_END
1655 
1656 // We are entering here from exception_blob
1657 // If there is a compiled exception handler in this method, we will continue there;
1658 // otherwise we will unwind the stack and continue at the caller of top frame method
1659 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1660 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1661 // we looked up the handler for has been deoptimized in the meantime. If it has been
1662 // we must not use the handler and instead return the deopt blob.
1663 address OptoRuntime::handle_exception_C(JavaThread* current) {
1664 //
1665 // We are in Java not VM and in debug mode we have a NoHandleMark
1666 //
1667 #ifndef PRODUCT
1668   SharedRuntime::_find_handler_ctr++;          // find exception handler
1669 #endif
1670   debug_only(NoHandleMark __hm;)
1671   nmethod* nm = nullptr;
1672   address handler_address = nullptr;
1673   {
1674     // Enter the VM
1675 
1676     ResetNoHandleMark rnhm;
1677     handler_address = handle_exception_C_helper(current, nm);
1678   }
1679 
1680   // Back in java: Use no oops, DON'T safepoint
1681 
1682   // Now check to see if the handler we are returning is in a now
1683   // deoptimized frame
1684 
1685   if (nm != nullptr) {
1686     RegisterMap map(current,
1687                     RegisterMap::UpdateMap::skip,
1688                     RegisterMap::ProcessFrames::skip,
1689                     RegisterMap::WalkContinuation::skip);
1690     frame caller = current->last_frame().sender(&map);
1691 #ifdef ASSERT
1692     assert(caller.is_compiled_frame(), "must be");
1693 #endif // ASSERT
1694     if (caller.is_deoptimized_frame()) {
1695       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1696     }
1697   }
1698   return handler_address;
1699 }
1700 
1701 //------------------------------rethrow----------------------------------------
1702 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1703 // is either throwing or rethrowing an exception.  The callee-save registers
1704 // have been restored, synchronized objects have been unlocked and the callee
1705 // stack frame has been removed.  The return address was passed in.
1706 // Exception oop is passed as the 1st argument.  This routine is then called
1707 // from the stub.  On exit, we know where to jump in the caller's code.
1708 // After this C code exits, the stub will pop his frame and end in a jump
1709 // (instead of a return).  We enter the caller's default handler.
1710 //
1711 // This must be JRT_LEAF:
1712 //     - caller will not change its state as we cannot block on exit,
1713 //       therefore raw_exception_handler_for_return_address is all it takes
1714 //       to handle deoptimized blobs
1715 //
1716 // However, there needs to be a safepoint check in the middle!  So compiled
1717 // safepoints are completely watertight.
1718 //
1719 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1720 //
1721 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1722 //
1723 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1724   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
1725   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
1726 
1727 #ifndef PRODUCT
1728   SharedRuntime::_rethrow_ctr++;               // count rethrows
1729 #endif
1730   assert (exception != nullptr, "should have thrown a NullPointerException");
1731 #ifdef ASSERT
1732   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1733     // should throw an exception here
1734     ShouldNotReachHere();
1735   }
1736 #endif
1737 
1738   thread->set_vm_result(exception);
1739   // Frame not compiled (handles deoptimization blob)
1740   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1741 }
1742 
1743 static const TypeFunc* make_rethrow_Type() {
1744   // create input type (domain)
1745   const Type **fields = TypeTuple::fields(1);
1746   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1747   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1748 
1749   // create result type (range)
1750   fields = TypeTuple::fields(1);
1751   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1752   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1753 
1754   return TypeFunc::make(domain, range);
1755 }
1756 
1757 
1758 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1759   // Deoptimize the caller before continuing, as the compiled
1760   // exception handler table may not be valid.
1761   if (!StressCompiledExceptionHandlers && doit) {
1762     deoptimize_caller_frame(thread);
1763   }
1764 }
1765 
1766 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1767   // Called from within the owner thread, so no need for safepoint
1768   RegisterMap reg_map(thread,
1769                       RegisterMap::UpdateMap::include,
1770                       RegisterMap::ProcessFrames::include,
1771                       RegisterMap::WalkContinuation::skip);
1772   frame stub_frame = thread->last_frame();
1773   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1774   frame caller_frame = stub_frame.sender(&reg_map);
1775 
1776   // Deoptimize the caller frame.
1777   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1778 }
1779 
1780 
1781 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1782   // Called from within the owner thread, so no need for safepoint
1783   RegisterMap reg_map(thread,
1784                       RegisterMap::UpdateMap::include,
1785                       RegisterMap::ProcessFrames::include,
1786                       RegisterMap::WalkContinuation::skip);
1787   frame stub_frame = thread->last_frame();
1788   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1789   frame caller_frame = stub_frame.sender(&reg_map);
1790   return caller_frame.is_deoptimized_frame();
1791 }
1792 
1793 static const TypeFunc* make_register_finalizer_Type() {
1794   // create input type (domain)
1795   const Type **fields = TypeTuple::fields(1);
1796   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1797   // // The JavaThread* is passed to each routine as the last argument
1798   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1799   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1800 
1801   // create result type (range)
1802   fields = TypeTuple::fields(0);
1803 
1804   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1805 
1806   return TypeFunc::make(domain,range);
1807 }
1808 
1809 #if INCLUDE_JFR
1810 static const TypeFunc* make_class_id_load_barrier_Type() {
1811   // create input type (domain)
1812   const Type **fields = TypeTuple::fields(1);
1813   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1814   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1815 
1816   // create result type (range)
1817   fields = TypeTuple::fields(0);
1818 
1819   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1820 
1821   return TypeFunc::make(domain,range);
1822 }
1823 #endif // INCLUDE_JFR
1824 
1825 //-----------------------------------------------------------------------------
1826 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
1827   // create input type (domain)
1828   const Type **fields = TypeTuple::fields(2);
1829   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1830   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1831   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1832 
1833   // create result type (range)
1834   fields = TypeTuple::fields(0);
1835 
1836   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1837 
1838   return TypeFunc::make(domain,range);
1839 }
1840 
1841 static const TypeFunc* make_dtrace_object_alloc_Type() {
1842   // create input type (domain)
1843   const Type **fields = TypeTuple::fields(2);
1844   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1845   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1846 
1847   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1848 
1849   // create result type (range)
1850   fields = TypeTuple::fields(0);
1851 
1852   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1853 
1854   return TypeFunc::make(domain,range);
1855 }
1856 
1857 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
1858   assert(oopDesc::is_oop(obj), "must be a valid oop");
1859   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1860   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1861 JRT_END
1862 
1863 //-----------------------------------------------------------------------------
1864 
1865 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
1866 
1867 //
1868 // dump the collected NamedCounters.
1869 //
1870 void OptoRuntime::print_named_counters() {
1871   int total_lock_count = 0;
1872   int eliminated_lock_count = 0;
1873 
1874   NamedCounter* c = _named_counters;
1875   while (c) {
1876     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1877       int count = c->count();
1878       if (count > 0) {
1879         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1880         if (Verbose) {
1881           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1882         }
1883         total_lock_count += count;
1884         if (eliminated) {
1885           eliminated_lock_count += count;
1886         }
1887       }
1888     }
1889     c = c->next();
1890   }
1891   if (total_lock_count > 0) {
1892     tty->print_cr("dynamic locks: %d", total_lock_count);
1893     if (eliminated_lock_count) {
1894       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1895                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1896     }
1897   }
1898 }
1899 
1900 //
1901 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1902 //  name which consists of method@line for the inlining tree.
1903 //
1904 
1905 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1906   int max_depth = youngest_jvms->depth();
1907 
1908   // Visit scopes from youngest to oldest.
1909   bool first = true;
1910   stringStream st;
1911   for (int depth = max_depth; depth >= 1; depth--) {
1912     JVMState* jvms = youngest_jvms->of_depth(depth);
1913     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
1914     if (!first) {
1915       st.print(" ");
1916     } else {
1917       first = false;
1918     }
1919     int bci = jvms->bci();
1920     if (bci < 0) bci = 0;
1921     if (m != nullptr) {
1922       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1923     } else {
1924       st.print("no method");
1925     }
1926     st.print("@%d", bci);
1927     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1928   }
1929   NamedCounter* c = new NamedCounter(st.freeze(), tag);
1930 
1931   // atomically add the new counter to the head of the list.  We only
1932   // add counters so this is safe.
1933   NamedCounter* head;
1934   do {
1935     c->set_next(nullptr);
1936     head = _named_counters;
1937     c->set_next(head);
1938   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1939   return c;
1940 }
1941 
1942 void OptoRuntime::initialize_types() {
1943   _new_instance_Type                  = make_new_instance_Type();
1944   _new_array_Type                     = make_new_array_Type();
1945   _multianewarray2_Type               = multianewarray_Type(2);
1946   _multianewarray3_Type               = multianewarray_Type(3);
1947   _multianewarray4_Type               = multianewarray_Type(4);
1948   _multianewarray5_Type               = multianewarray_Type(5);
1949   _multianewarrayN_Type               = make_multianewarrayN_Type();
1950   _complete_monitor_enter_Type        = make_complete_monitor_enter_Type();
1951   _complete_monitor_exit_Type         = make_complete_monitor_exit_Type();
1952   _monitor_notify_Type                = make_monitor_notify_Type();
1953   _uncommon_trap_Type                 = make_uncommon_trap_Type();
1954   _athrow_Type                        = make_athrow_Type();
1955   _rethrow_Type                       = make_rethrow_Type();
1956   _Math_D_D_Type                      = make_Math_D_D_Type();
1957   _Math_DD_D_Type                     = make_Math_DD_D_Type();
1958   _modf_Type                          = make_modf_Type();
1959   _l2f_Type                           = make_l2f_Type();
1960   _void_long_Type                     = make_void_long_Type();
1961   _void_void_Type                     = make_void_void_Type();
1962   _jfr_write_checkpoint_Type          = make_jfr_write_checkpoint_Type();
1963   _flush_windows_Type                 = make_flush_windows_Type();
1964   _fast_arraycopy_Type                = make_arraycopy_Type(ac_fast);
1965   _checkcast_arraycopy_Type           = make_arraycopy_Type(ac_checkcast);
1966   _generic_arraycopy_Type             = make_arraycopy_Type(ac_generic);
1967   _slow_arraycopy_Type                = make_arraycopy_Type(ac_slow);
1968   _unsafe_setmemory_Type              = make_setmemory_Type();
1969   _array_fill_Type                    = make_array_fill_Type();
1970   _array_sort_Type                    = make_array_sort_Type();
1971   _array_partition_Type               = make_array_partition_Type();
1972   _aescrypt_block_Type                = make_aescrypt_block_Type();
1973   _cipherBlockChaining_aescrypt_Type  = make_cipherBlockChaining_aescrypt_Type();
1974   _electronicCodeBook_aescrypt_Type   = make_electronicCodeBook_aescrypt_Type();
1975   _counterMode_aescrypt_Type          = make_counterMode_aescrypt_Type();
1976   _galoisCounterMode_aescrypt_Type    = make_galoisCounterMode_aescrypt_Type();
1977   _digestBase_implCompress_with_sha3_Type      = make_digestBase_implCompress_Type(  /* is_sha3= */ true);
1978   _digestBase_implCompress_without_sha3_Type   = make_digestBase_implCompress_Type(  /* is_sha3= */ false);;
1979   _digestBase_implCompressMB_with_sha3_Type    = make_digestBase_implCompressMB_Type(/* is_sha3= */ true);
1980   _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false);
1981   _multiplyToLen_Type                 = make_multiplyToLen_Type();
1982   _montgomeryMultiply_Type            = make_montgomeryMultiply_Type();
1983   _montgomerySquare_Type              = make_montgomerySquare_Type();
1984   _squareToLen_Type                   = make_squareToLen_Type();
1985   _mulAdd_Type                        = make_mulAdd_Type();
1986   _bigIntegerShift_Type               = make_bigIntegerShift_Type();
1987   _vectorizedMismatch_Type            = make_vectorizedMismatch_Type();
1988   _ghash_processBlocks_Type           = make_ghash_processBlocks_Type();
1989   _chacha20Block_Type                 = make_chacha20Block_Type();
1990   _base64_encodeBlock_Type            = make_base64_encodeBlock_Type();
1991   _base64_decodeBlock_Type            = make_base64_decodeBlock_Type();
1992   _string_IndexOf_Type                = make_string_IndexOf_Type();
1993   _poly1305_processBlocks_Type        = make_poly1305_processBlocks_Type();
1994   _intpoly_montgomeryMult_P256_Type   = make_intpoly_montgomeryMult_P256_Type();
1995   _intpoly_assign_Type                = make_intpoly_assign_Type();
1996   _updateBytesCRC32_Type              = make_updateBytesCRC32_Type();
1997   _updateBytesCRC32C_Type             = make_updateBytesCRC32C_Type();
1998   _updateBytesAdler32_Type            = make_updateBytesAdler32_Type();
1999   _osr_end_Type                       = make_osr_end_Type();
2000   _register_finalizer_Type            = make_register_finalizer_Type();
2001   JFR_ONLY(
2002     _class_id_load_barrier_Type       = make_class_id_load_barrier_Type();
2003   )
2004 #if INCLUDE_JVMTI
2005   _notify_jvmti_vthread_Type          = make_notify_jvmti_vthread_Type();
2006 #endif // INCLUDE_JVMTI
2007   _dtrace_method_entry_exit_Type      = make_dtrace_method_entry_exit_Type();
2008   _dtrace_object_alloc_Type           = make_dtrace_object_alloc_Type();
2009 }
2010 
2011 int trace_exception_counter = 0;
2012 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2013   trace_exception_counter++;
2014   stringStream tempst;
2015 
2016   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2017   exception_oop->print_value_on(&tempst);
2018   tempst.print(" in ");
2019   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2020   if (blob->is_nmethod()) {
2021     blob->as_nmethod()->method()->print_value_on(&tempst);
2022   } else if (blob->is_runtime_stub()) {
2023     tempst.print("<runtime-stub>");
2024   } else {
2025     tempst.print("<unknown>");
2026   }
2027   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2028   tempst.print("]");
2029 
2030   st->print_raw_cr(tempst.freeze());
2031 }