1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmClasses.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/compiledIC.hpp" 30 #include "code/nmethod.hpp" 31 #include "code/pcDesc.hpp" 32 #include "code/scopeDesc.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/g1/g1HeapRegion.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gcLocker.hpp" 40 #include "interpreter/bytecode.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "logging/log.hpp" 44 #include "logging/logStream.hpp" 45 #include "memory/oopFactory.hpp" 46 #include "memory/resourceArea.hpp" 47 #include "oops/objArrayKlass.hpp" 48 #include "oops/klass.inline.hpp" 49 #include "oops/oop.inline.hpp" 50 #include "oops/typeArrayOop.inline.hpp" 51 #include "opto/ad.hpp" 52 #include "opto/addnode.hpp" 53 #include "opto/callnode.hpp" 54 #include "opto/cfgnode.hpp" 55 #include "opto/graphKit.hpp" 56 #include "opto/machnode.hpp" 57 #include "opto/matcher.hpp" 58 #include "opto/memnode.hpp" 59 #include "opto/mulnode.hpp" 60 #include "opto/output.hpp" 61 #include "opto/runtime.hpp" 62 #include "opto/subnode.hpp" 63 #include "prims/jvmtiExport.hpp" 64 #include "runtime/atomic.hpp" 65 #include "runtime/frame.inline.hpp" 66 #include "runtime/handles.inline.hpp" 67 #include "runtime/interfaceSupport.inline.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/sharedRuntime.hpp" 70 #include "runtime/signature.hpp" 71 #include "runtime/stackWatermarkSet.hpp" 72 #include "runtime/synchronizer.hpp" 73 #include "runtime/threadCritical.hpp" 74 #include "runtime/threadWXSetters.inline.hpp" 75 #include "runtime/vframe.hpp" 76 #include "runtime/vframeArray.hpp" 77 #include "runtime/vframe_hp.hpp" 78 #include "utilities/copy.hpp" 79 #include "utilities/preserveException.hpp" 80 81 82 // For debugging purposes: 83 // To force FullGCALot inside a runtime function, add the following two lines 84 // 85 // Universe::release_fullgc_alot_dummy(); 86 // Universe::heap()->collect(); 87 // 88 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 89 90 91 #define C2_BLOB_FIELD_DEFINE(name, type) \ 92 type OptoRuntime:: BLOB_FIELD_NAME(name) = nullptr; 93 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 94 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \ 95 address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr; 96 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \ 97 address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr; 98 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE) 99 #undef C2_BLOB_FIELD_DEFINE 100 #undef C2_STUB_FIELD_DEFINE 101 #undef C2_JVMTI_STUB_FIELD_DEFINE 102 103 #define C2_BLOB_NAME_DEFINE(name, type) "C2 Runtime " # name "_blob", 104 #define C2_STUB_NAME_DEFINE(name, f, t, r) "C2 Runtime " # name, 105 #define C2_JVMTI_STUB_NAME_DEFINE(name) "C2 Runtime " # name, 106 const char* OptoRuntime::_stub_names[] = { 107 C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE) 108 }; 109 #undef C2_BLOB_NAME_DEFINE 110 #undef C2_STUB_NAME_DEFINE 111 #undef C2_JVMTI_STUB_NAME_DEFINE 112 113 // This should be called in an assertion at the start of OptoRuntime routines 114 // which are entered from compiled code (all of them) 115 #ifdef ASSERT 116 static bool check_compiled_frame(JavaThread* thread) { 117 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 118 RegisterMap map(thread, 119 RegisterMap::UpdateMap::skip, 120 RegisterMap::ProcessFrames::include, 121 RegisterMap::WalkContinuation::skip); 122 frame caller = thread->last_frame().sender(&map); 123 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 124 return true; 125 } 126 #endif // ASSERT 127 128 /* 129 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 130 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 131 if (var == nullptr) { return false; } 132 */ 133 134 #define GEN_C2_BLOB(name, type) \ 135 generate_ ## name ## _blob(); 136 137 // a few helper macros to conjure up generate_stub call arguments 138 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 139 #define C2_STUB_TYPEFUNC(name) name ## _Type 140 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C) 141 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id) 142 143 // Almost all the C functions targeted from the generated stubs are 144 // implemented locally to OptoRuntime with names that can be generated 145 // from the stub name by appending suffix '_C'. However, in two cases 146 // a common target method also needs to be called from shared runtime 147 // stubs. In these two cases the opto stubs rely on method 148 // imlementations defined in class SharedRuntime. The following 149 // defines temporarily rebind the generated names to reference the 150 // relevant implementations. 151 152 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc ) \ 153 C2_STUB_FIELD_NAME(name) = \ 154 generate_stub(env, \ 155 C2_STUB_TYPEFUNC(name), \ 156 C2_STUB_C_FUNC(name), \ 157 C2_STUB_NAME(name), \ 158 fancy_jump, \ 159 pass_tls, \ 160 pass_retpc); \ 161 if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; } \ 162 163 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name) 164 165 #define GEN_C2_JVMTI_STUB(name) \ 166 STUB_FIELD_NAME(name) = \ 167 generate_stub(env, \ 168 notify_jvmti_vthread_Type, \ 169 C2_JVMTI_STUB_C_FUNC(name), \ 170 C2_STUB_NAME(name), \ 171 0, \ 172 true, \ 173 false); \ 174 if (STUB_FIELD_NAME(name) == nullptr) { return false; } \ 175 176 bool OptoRuntime::generate(ciEnv* env) { 177 178 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB) 179 180 return true; 181 } 182 183 #undef GEN_C2_BLOB 184 185 #undef C2_STUB_FIELD_NAME 186 #undef C2_STUB_TYPEFUNC 187 #undef C2_STUB_C_FUNC 188 #undef C2_STUB_NAME 189 #undef GEN_C2_STUB 190 191 #undef C2_JVMTI_STUB_C_FUNC 192 #undef GEN_C2_JVMTI_STUB 193 // #undef gen 194 195 196 // Helper method to do generation of RunTimeStub's 197 address OptoRuntime::generate_stub(ciEnv* env, 198 TypeFunc_generator gen, address C_function, 199 const char *name, int is_fancy_jump, 200 bool pass_tls, 201 bool return_pc) { 202 203 // Matching the default directive, we currently have no method to match. 204 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 205 ResourceMark rm; 206 Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive); 207 DirectivesStack::release(directive); 208 return C.stub_entry_point(); 209 } 210 211 const char* OptoRuntime::stub_name(address entry) { 212 #ifndef PRODUCT 213 CodeBlob* cb = CodeCache::find_blob(entry); 214 RuntimeStub* rs =(RuntimeStub *)cb; 215 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub"); 216 return rs->name(); 217 #else 218 // Fast implementation for product mode (maybe it should be inlined too) 219 return "runtime stub"; 220 #endif 221 } 222 223 // local methods passed as arguments to stub generator that forward 224 // control to corresponding JRT methods of SharedRuntime 225 226 void OptoRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 227 oopDesc* dest, jint dest_pos, 228 jint length, JavaThread* thread) { 229 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread); 230 } 231 232 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) { 233 SharedRuntime::complete_monitor_locking_C(obj, lock, current); 234 } 235 236 237 //============================================================================= 238 // Opto compiler runtime routines 239 //============================================================================= 240 241 242 //=============================allocation====================================== 243 // We failed the fast-path allocation. Now we need to do a scavenge or GC 244 // and try allocation again. 245 246 // object allocation 247 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current)) 248 JRT_BLOCK; 249 #ifndef PRODUCT 250 SharedRuntime::_new_instance_ctr++; // new instance requires GC 251 #endif 252 assert(check_compiled_frame(current), "incorrect caller"); 253 254 // These checks are cheap to make and support reflective allocation. 255 int lh = klass->layout_helper(); 256 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 257 Handle holder(current, klass->klass_holder()); // keep the klass alive 258 klass->check_valid_for_instantiation(false, THREAD); 259 if (!HAS_PENDING_EXCEPTION) { 260 InstanceKlass::cast(klass)->initialize(THREAD); 261 } 262 } 263 264 if (!HAS_PENDING_EXCEPTION) { 265 // Scavenge and allocate an instance. 266 Handle holder(current, klass->klass_holder()); // keep the klass alive 267 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 268 current->set_vm_result(result); 269 270 // Pass oops back through thread local storage. Our apparent type to Java 271 // is that we return an oop, but we can block on exit from this routine and 272 // a GC can trash the oop in C's return register. The generated stub will 273 // fetch the oop from TLS after any possible GC. 274 } 275 276 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 277 JRT_BLOCK_END; 278 279 // inform GC that we won't do card marks for initializing writes. 280 SharedRuntime::on_slowpath_allocation_exit(current); 281 JRT_END 282 283 284 // array allocation 285 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current)) 286 JRT_BLOCK; 287 #ifndef PRODUCT 288 SharedRuntime::_new_array_ctr++; // new array requires GC 289 #endif 290 assert(check_compiled_frame(current), "incorrect caller"); 291 292 // Scavenge and allocate an instance. 293 oop result; 294 295 if (array_type->is_typeArray_klass()) { 296 // The oopFactory likes to work with the element type. 297 // (We could bypass the oopFactory, since it doesn't add much value.) 298 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 299 result = oopFactory::new_typeArray(elem_type, len, THREAD); 300 } else { 301 // Although the oopFactory likes to work with the elem_type, 302 // the compiler prefers the array_type, since it must already have 303 // that latter value in hand for the fast path. 304 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 305 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 306 result = oopFactory::new_objArray(elem_type, len, THREAD); 307 } 308 309 // Pass oops back through thread local storage. Our apparent type to Java 310 // is that we return an oop, but we can block on exit from this routine and 311 // a GC can trash the oop in C's return register. The generated stub will 312 // fetch the oop from TLS after any possible GC. 313 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 314 current->set_vm_result(result); 315 JRT_BLOCK_END; 316 317 // inform GC that we won't do card marks for initializing writes. 318 SharedRuntime::on_slowpath_allocation_exit(current); 319 JRT_END 320 321 // array allocation without zeroing 322 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 323 JRT_BLOCK; 324 #ifndef PRODUCT 325 SharedRuntime::_new_array_ctr++; // new array requires GC 326 #endif 327 assert(check_compiled_frame(current), "incorrect caller"); 328 329 // Scavenge and allocate an instance. 330 oop result; 331 332 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 333 // The oopFactory likes to work with the element type. 334 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 335 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 336 337 // Pass oops back through thread local storage. Our apparent type to Java 338 // is that we return an oop, but we can block on exit from this routine and 339 // a GC can trash the oop in C's return register. The generated stub will 340 // fetch the oop from TLS after any possible GC. 341 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 342 current->set_vm_result(result); 343 JRT_BLOCK_END; 344 345 346 // inform GC that we won't do card marks for initializing writes. 347 SharedRuntime::on_slowpath_allocation_exit(current); 348 349 oop result = current->vm_result(); 350 if ((len > 0) && (result != nullptr) && 351 is_deoptimized_caller_frame(current)) { 352 // Zero array here if the caller is deoptimized. 353 const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result); 354 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 355 size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 356 assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned"); 357 HeapWord* obj = cast_from_oop<HeapWord*>(result); 358 if (!is_aligned(hs_bytes, BytesPerLong)) { 359 *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0; 360 hs_bytes += BytesPerInt; 361 } 362 363 // Optimized zeroing. 364 assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned"); 365 const size_t aligned_hs = hs_bytes / BytesPerLong; 366 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 367 } 368 369 JRT_END 370 371 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 372 373 // multianewarray for 2 dimensions 374 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 375 #ifndef PRODUCT 376 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 377 #endif 378 assert(check_compiled_frame(current), "incorrect caller"); 379 assert(elem_type->is_klass(), "not a class"); 380 jint dims[2]; 381 dims[0] = len1; 382 dims[1] = len2; 383 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 384 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 385 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 386 current->set_vm_result(obj); 387 JRT_END 388 389 // multianewarray for 3 dimensions 390 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 391 #ifndef PRODUCT 392 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 393 #endif 394 assert(check_compiled_frame(current), "incorrect caller"); 395 assert(elem_type->is_klass(), "not a class"); 396 jint dims[3]; 397 dims[0] = len1; 398 dims[1] = len2; 399 dims[2] = len3; 400 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 401 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 402 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 403 current->set_vm_result(obj); 404 JRT_END 405 406 // multianewarray for 4 dimensions 407 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 408 #ifndef PRODUCT 409 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 410 #endif 411 assert(check_compiled_frame(current), "incorrect caller"); 412 assert(elem_type->is_klass(), "not a class"); 413 jint dims[4]; 414 dims[0] = len1; 415 dims[1] = len2; 416 dims[2] = len3; 417 dims[3] = len4; 418 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 419 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 420 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 421 current->set_vm_result(obj); 422 JRT_END 423 424 // multianewarray for 5 dimensions 425 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 426 #ifndef PRODUCT 427 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 428 #endif 429 assert(check_compiled_frame(current), "incorrect caller"); 430 assert(elem_type->is_klass(), "not a class"); 431 jint dims[5]; 432 dims[0] = len1; 433 dims[1] = len2; 434 dims[2] = len3; 435 dims[3] = len4; 436 dims[4] = len5; 437 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 438 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 439 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 440 current->set_vm_result(obj); 441 JRT_END 442 443 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 444 assert(check_compiled_frame(current), "incorrect caller"); 445 assert(elem_type->is_klass(), "not a class"); 446 assert(oop(dims)->is_typeArray(), "not an array"); 447 448 ResourceMark rm; 449 jint len = dims->length(); 450 assert(len > 0, "Dimensions array should contain data"); 451 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 452 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 453 c_dims, len); 454 455 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 456 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 457 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 458 current->set_vm_result(obj); 459 JRT_END 460 461 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 462 463 // Very few notify/notifyAll operations find any threads on the waitset, so 464 // the dominant fast-path is to simply return. 465 // Relatedly, it's critical that notify/notifyAll be fast in order to 466 // reduce lock hold times. 467 if (!SafepointSynchronize::is_synchronizing()) { 468 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 469 return; 470 } 471 } 472 473 // This is the case the fast-path above isn't provisioned to handle. 474 // The fast-path is designed to handle frequently arising cases in an efficient manner. 475 // (The fast-path is just a degenerate variant of the slow-path). 476 // Perform the dreaded state transition and pass control into the slow-path. 477 JRT_BLOCK; 478 Handle h_obj(current, obj); 479 ObjectSynchronizer::notify(h_obj, CHECK); 480 JRT_BLOCK_END; 481 JRT_END 482 483 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 484 485 if (!SafepointSynchronize::is_synchronizing() ) { 486 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 487 return; 488 } 489 } 490 491 // This is the case the fast-path above isn't provisioned to handle. 492 // The fast-path is designed to handle frequently arising cases in an efficient manner. 493 // (The fast-path is just a degenerate variant of the slow-path). 494 // Perform the dreaded state transition and pass control into the slow-path. 495 JRT_BLOCK; 496 Handle h_obj(current, obj); 497 ObjectSynchronizer::notifyall(h_obj, CHECK); 498 JRT_BLOCK_END; 499 JRT_END 500 501 const TypeFunc *OptoRuntime::new_instance_Type() { 502 // create input type (domain) 503 const Type **fields = TypeTuple::fields(1); 504 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 505 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 506 507 // create result type (range) 508 fields = TypeTuple::fields(1); 509 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 510 511 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 512 513 return TypeFunc::make(domain, range); 514 } 515 516 #if INCLUDE_JVMTI 517 const TypeFunc *OptoRuntime::notify_jvmti_vthread_Type() { 518 // create input type (domain) 519 const Type **fields = TypeTuple::fields(2); 520 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop 521 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean 522 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 523 524 // no result type needed 525 fields = TypeTuple::fields(1); 526 fields[TypeFunc::Parms+0] = nullptr; // void 527 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 528 529 return TypeFunc::make(domain,range); 530 } 531 #endif 532 533 const TypeFunc *OptoRuntime::athrow_Type() { 534 // create input type (domain) 535 const Type **fields = TypeTuple::fields(1); 536 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 537 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 538 539 // create result type (range) 540 fields = TypeTuple::fields(0); 541 542 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 543 544 return TypeFunc::make(domain, range); 545 } 546 547 548 const TypeFunc *OptoRuntime::new_array_Type() { 549 // create input type (domain) 550 const Type **fields = TypeTuple::fields(2); 551 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 552 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 553 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 554 555 // create result type (range) 556 fields = TypeTuple::fields(1); 557 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 558 559 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 560 561 return TypeFunc::make(domain, range); 562 } 563 564 const TypeFunc *OptoRuntime::new_array_nozero_Type() { 565 return new_array_Type(); 566 } 567 568 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { 569 // create input type (domain) 570 const int nargs = ndim + 1; 571 const Type **fields = TypeTuple::fields(nargs); 572 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 573 for( int i = 1; i < nargs; i++ ) 574 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 575 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 576 577 // create result type (range) 578 fields = TypeTuple::fields(1); 579 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 580 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 581 582 return TypeFunc::make(domain, range); 583 } 584 585 const TypeFunc *OptoRuntime::multianewarray2_Type() { 586 return multianewarray_Type(2); 587 } 588 589 const TypeFunc *OptoRuntime::multianewarray3_Type() { 590 return multianewarray_Type(3); 591 } 592 593 const TypeFunc *OptoRuntime::multianewarray4_Type() { 594 return multianewarray_Type(4); 595 } 596 597 const TypeFunc *OptoRuntime::multianewarray5_Type() { 598 return multianewarray_Type(5); 599 } 600 601 const TypeFunc *OptoRuntime::multianewarrayN_Type() { 602 // create input type (domain) 603 const Type **fields = TypeTuple::fields(2); 604 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 605 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 606 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 607 608 // create result type (range) 609 fields = TypeTuple::fields(1); 610 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 611 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 612 613 return TypeFunc::make(domain, range); 614 } 615 616 const TypeFunc *OptoRuntime::uncommon_trap_Type() { 617 // create input type (domain) 618 const Type **fields = TypeTuple::fields(1); 619 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 620 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 621 622 // create result type (range) 623 fields = TypeTuple::fields(0); 624 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 625 626 return TypeFunc::make(domain, range); 627 } 628 629 //----------------------------------------------------------------------------- 630 // Monitor Handling 631 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { 632 // create input type (domain) 633 const Type **fields = TypeTuple::fields(2); 634 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 635 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 636 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 637 638 // create result type (range) 639 fields = TypeTuple::fields(0); 640 641 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 642 643 return TypeFunc::make(domain,range); 644 } 645 646 const TypeFunc *OptoRuntime::complete_monitor_locking_Type() { 647 return complete_monitor_enter_Type(); 648 } 649 650 //----------------------------------------------------------------------------- 651 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { 652 // create input type (domain) 653 const Type **fields = TypeTuple::fields(3); 654 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 655 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 656 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 657 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 658 659 // create result type (range) 660 fields = TypeTuple::fields(0); 661 662 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 663 664 return TypeFunc::make(domain, range); 665 } 666 667 const TypeFunc *OptoRuntime::monitor_notify_Type() { 668 // create input type (domain) 669 const Type **fields = TypeTuple::fields(1); 670 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 671 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 672 673 // create result type (range) 674 fields = TypeTuple::fields(0); 675 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 676 return TypeFunc::make(domain, range); 677 } 678 679 const TypeFunc *OptoRuntime::monitor_notifyAll_Type() { 680 return monitor_notify_Type(); 681 } 682 683 const TypeFunc* OptoRuntime::flush_windows_Type() { 684 // create input type (domain) 685 const Type** fields = TypeTuple::fields(1); 686 fields[TypeFunc::Parms+0] = nullptr; // void 687 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 688 689 // create result type 690 fields = TypeTuple::fields(1); 691 fields[TypeFunc::Parms+0] = nullptr; // void 692 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 693 694 return TypeFunc::make(domain, range); 695 } 696 697 const TypeFunc* OptoRuntime::l2f_Type() { 698 // create input type (domain) 699 const Type **fields = TypeTuple::fields(2); 700 fields[TypeFunc::Parms+0] = TypeLong::LONG; 701 fields[TypeFunc::Parms+1] = Type::HALF; 702 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 703 704 // create result type (range) 705 fields = TypeTuple::fields(1); 706 fields[TypeFunc::Parms+0] = Type::FLOAT; 707 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 708 709 return TypeFunc::make(domain, range); 710 } 711 712 const TypeFunc* OptoRuntime::modf_Type() { 713 const Type **fields = TypeTuple::fields(2); 714 fields[TypeFunc::Parms+0] = Type::FLOAT; 715 fields[TypeFunc::Parms+1] = Type::FLOAT; 716 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 717 718 // create result type (range) 719 fields = TypeTuple::fields(1); 720 fields[TypeFunc::Parms+0] = Type::FLOAT; 721 722 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 723 724 return TypeFunc::make(domain, range); 725 } 726 727 const TypeFunc *OptoRuntime::Math_D_D_Type() { 728 // create input type (domain) 729 const Type **fields = TypeTuple::fields(2); 730 // Symbol* name of class to be loaded 731 fields[TypeFunc::Parms+0] = Type::DOUBLE; 732 fields[TypeFunc::Parms+1] = Type::HALF; 733 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 734 735 // create result type (range) 736 fields = TypeTuple::fields(2); 737 fields[TypeFunc::Parms+0] = Type::DOUBLE; 738 fields[TypeFunc::Parms+1] = Type::HALF; 739 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 740 741 return TypeFunc::make(domain, range); 742 } 743 744 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 745 // create input type (domain) 746 const Type **fields = TypeTuple::fields(num_arg); 747 // Symbol* name of class to be loaded 748 assert(num_arg > 0, "must have at least 1 input"); 749 for (uint i = 0; i < num_arg; i++) { 750 fields[TypeFunc::Parms+i] = in_type; 751 } 752 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 753 754 // create result type (range) 755 const uint num_ret = 1; 756 fields = TypeTuple::fields(num_ret); 757 fields[TypeFunc::Parms+0] = out_type; 758 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 759 760 return TypeFunc::make(domain, range); 761 } 762 763 const TypeFunc* OptoRuntime::Math_DD_D_Type() { 764 const Type **fields = TypeTuple::fields(4); 765 fields[TypeFunc::Parms+0] = Type::DOUBLE; 766 fields[TypeFunc::Parms+1] = Type::HALF; 767 fields[TypeFunc::Parms+2] = Type::DOUBLE; 768 fields[TypeFunc::Parms+3] = Type::HALF; 769 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 770 771 // create result type (range) 772 fields = TypeTuple::fields(2); 773 fields[TypeFunc::Parms+0] = Type::DOUBLE; 774 fields[TypeFunc::Parms+1] = Type::HALF; 775 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 776 777 return TypeFunc::make(domain, range); 778 } 779 780 //-------------- currentTimeMillis, currentTimeNanos, etc 781 782 const TypeFunc* OptoRuntime::void_long_Type() { 783 // create input type (domain) 784 const Type **fields = TypeTuple::fields(0); 785 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 786 787 // create result type (range) 788 fields = TypeTuple::fields(2); 789 fields[TypeFunc::Parms+0] = TypeLong::LONG; 790 fields[TypeFunc::Parms+1] = Type::HALF; 791 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 792 793 return TypeFunc::make(domain, range); 794 } 795 796 const TypeFunc* OptoRuntime::void_void_Type() { 797 // create input type (domain) 798 const Type **fields = TypeTuple::fields(0); 799 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 800 801 // create result type (range) 802 fields = TypeTuple::fields(0); 803 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 804 return TypeFunc::make(domain, range); 805 } 806 807 const TypeFunc* OptoRuntime::jfr_write_checkpoint_Type() { 808 // create input type (domain) 809 const Type **fields = TypeTuple::fields(0); 810 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 811 812 // create result type (range) 813 fields = TypeTuple::fields(0); 814 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 815 return TypeFunc::make(domain, range); 816 } 817 818 819 // Takes as parameters: 820 // void *dest 821 // long size 822 // uchar byte 823 const TypeFunc* OptoRuntime::make_setmemory_Type() { 824 // create input type (domain) 825 int argcnt = NOT_LP64(3) LP64_ONLY(4); 826 const Type** fields = TypeTuple::fields(argcnt); 827 int argp = TypeFunc::Parms; 828 fields[argp++] = TypePtr::NOTNULL; // dest 829 fields[argp++] = TypeX_X; // size 830 LP64_ONLY(fields[argp++] = Type::HALF); // size 831 fields[argp++] = TypeInt::UBYTE; // bytevalue 832 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 833 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 834 835 // no result type needed 836 fields = TypeTuple::fields(1); 837 fields[TypeFunc::Parms+0] = nullptr; // void 838 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 839 return TypeFunc::make(domain, range); 840 } 841 842 // arraycopy stub variations: 843 enum ArrayCopyType { 844 ac_fast, // void(ptr, ptr, size_t) 845 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 846 ac_slow, // void(ptr, int, ptr, int, int) 847 ac_generic // int(ptr, int, ptr, int, int) 848 }; 849 850 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 851 // create input type (domain) 852 int num_args = (act == ac_fast ? 3 : 5); 853 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 854 int argcnt = num_args; 855 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 856 const Type** fields = TypeTuple::fields(argcnt); 857 int argp = TypeFunc::Parms; 858 fields[argp++] = TypePtr::NOTNULL; // src 859 if (num_size_args == 0) { 860 fields[argp++] = TypeInt::INT; // src_pos 861 } 862 fields[argp++] = TypePtr::NOTNULL; // dest 863 if (num_size_args == 0) { 864 fields[argp++] = TypeInt::INT; // dest_pos 865 fields[argp++] = TypeInt::INT; // length 866 } 867 while (num_size_args-- > 0) { 868 fields[argp++] = TypeX_X; // size in whatevers (size_t) 869 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 870 } 871 if (act == ac_checkcast) { 872 fields[argp++] = TypePtr::NOTNULL; // super_klass 873 } 874 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 875 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 876 877 // create result type if needed 878 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 879 fields = TypeTuple::fields(1); 880 if (retcnt == 0) 881 fields[TypeFunc::Parms+0] = nullptr; // void 882 else 883 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 884 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 885 return TypeFunc::make(domain, range); 886 } 887 888 const TypeFunc* OptoRuntime::fast_arraycopy_Type() { 889 // This signature is simple: Two base pointers and a size_t. 890 return make_arraycopy_Type(ac_fast); 891 } 892 893 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { 894 // An extension of fast_arraycopy_Type which adds type checking. 895 return make_arraycopy_Type(ac_checkcast); 896 } 897 898 const TypeFunc* OptoRuntime::slow_arraycopy_Type() { 899 // This signature is exactly the same as System.arraycopy. 900 // There are no intptr_t (int/long) arguments. 901 return make_arraycopy_Type(ac_slow); 902 } 903 904 const TypeFunc* OptoRuntime::generic_arraycopy_Type() { 905 // This signature is like System.arraycopy, except that it returns status. 906 return make_arraycopy_Type(ac_generic); 907 } 908 909 910 const TypeFunc* OptoRuntime::array_fill_Type() { 911 const Type** fields; 912 int argp = TypeFunc::Parms; 913 // create input type (domain): pointer, int, size_t 914 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 915 fields[argp++] = TypePtr::NOTNULL; 916 fields[argp++] = TypeInt::INT; 917 fields[argp++] = TypeX_X; // size in whatevers (size_t) 918 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 919 const TypeTuple *domain = TypeTuple::make(argp, fields); 920 921 // create result type 922 fields = TypeTuple::fields(1); 923 fields[TypeFunc::Parms+0] = nullptr; // void 924 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 925 926 return TypeFunc::make(domain, range); 927 } 928 929 const TypeFunc* OptoRuntime::array_partition_Type() { 930 // create input type (domain) 931 int num_args = 7; 932 int argcnt = num_args; 933 const Type** fields = TypeTuple::fields(argcnt); 934 int argp = TypeFunc::Parms; 935 fields[argp++] = TypePtr::NOTNULL; // array 936 fields[argp++] = TypeInt::INT; // element type 937 fields[argp++] = TypeInt::INT; // low 938 fields[argp++] = TypeInt::INT; // end 939 fields[argp++] = TypePtr::NOTNULL; // pivot_indices (int array) 940 fields[argp++] = TypeInt::INT; // indexPivot1 941 fields[argp++] = TypeInt::INT; // indexPivot2 942 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 943 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 944 945 // no result type needed 946 fields = TypeTuple::fields(1); 947 fields[TypeFunc::Parms+0] = nullptr; // void 948 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 949 return TypeFunc::make(domain, range); 950 } 951 952 const TypeFunc* OptoRuntime::array_sort_Type() { 953 // create input type (domain) 954 int num_args = 4; 955 int argcnt = num_args; 956 const Type** fields = TypeTuple::fields(argcnt); 957 int argp = TypeFunc::Parms; 958 fields[argp++] = TypePtr::NOTNULL; // array 959 fields[argp++] = TypeInt::INT; // element type 960 fields[argp++] = TypeInt::INT; // fromIndex 961 fields[argp++] = TypeInt::INT; // toIndex 962 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 963 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 964 965 // no result type needed 966 fields = TypeTuple::fields(1); 967 fields[TypeFunc::Parms+0] = nullptr; // void 968 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 969 return TypeFunc::make(domain, range); 970 } 971 972 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant) 973 const TypeFunc* OptoRuntime::aescrypt_block_Type() { 974 // create input type (domain) 975 int num_args = 3; 976 int argcnt = num_args; 977 const Type** fields = TypeTuple::fields(argcnt); 978 int argp = TypeFunc::Parms; 979 fields[argp++] = TypePtr::NOTNULL; // src 980 fields[argp++] = TypePtr::NOTNULL; // dest 981 fields[argp++] = TypePtr::NOTNULL; // k array 982 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 983 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 984 985 // no result type needed 986 fields = TypeTuple::fields(1); 987 fields[TypeFunc::Parms+0] = nullptr; // void 988 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 989 return TypeFunc::make(domain, range); 990 } 991 992 /** 993 * int updateBytesCRC32(int crc, byte* b, int len) 994 */ 995 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() { 996 // create input type (domain) 997 int num_args = 3; 998 int argcnt = num_args; 999 const Type** fields = TypeTuple::fields(argcnt); 1000 int argp = TypeFunc::Parms; 1001 fields[argp++] = TypeInt::INT; // crc 1002 fields[argp++] = TypePtr::NOTNULL; // src 1003 fields[argp++] = TypeInt::INT; // len 1004 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1005 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1006 1007 // result type needed 1008 fields = TypeTuple::fields(1); 1009 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1010 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1011 return TypeFunc::make(domain, range); 1012 } 1013 1014 /** 1015 * int updateBytesCRC32C(int crc, byte* buf, int len, int* table) 1016 */ 1017 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() { 1018 // create input type (domain) 1019 int num_args = 4; 1020 int argcnt = num_args; 1021 const Type** fields = TypeTuple::fields(argcnt); 1022 int argp = TypeFunc::Parms; 1023 fields[argp++] = TypeInt::INT; // crc 1024 fields[argp++] = TypePtr::NOTNULL; // buf 1025 fields[argp++] = TypeInt::INT; // len 1026 fields[argp++] = TypePtr::NOTNULL; // table 1027 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1028 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1029 1030 // result type needed 1031 fields = TypeTuple::fields(1); 1032 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1033 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1034 return TypeFunc::make(domain, range); 1035 } 1036 1037 /** 1038 * int updateBytesAdler32(int adler, bytes* b, int off, int len) 1039 */ 1040 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() { 1041 // create input type (domain) 1042 int num_args = 3; 1043 int argcnt = num_args; 1044 const Type** fields = TypeTuple::fields(argcnt); 1045 int argp = TypeFunc::Parms; 1046 fields[argp++] = TypeInt::INT; // crc 1047 fields[argp++] = TypePtr::NOTNULL; // src + offset 1048 fields[argp++] = TypeInt::INT; // len 1049 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1050 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1051 1052 // result type needed 1053 fields = TypeTuple::fields(1); 1054 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1055 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1056 return TypeFunc::make(domain, range); 1057 } 1058 1059 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 1060 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() { 1061 // create input type (domain) 1062 int num_args = 5; 1063 int argcnt = num_args; 1064 const Type** fields = TypeTuple::fields(argcnt); 1065 int argp = TypeFunc::Parms; 1066 fields[argp++] = TypePtr::NOTNULL; // src 1067 fields[argp++] = TypePtr::NOTNULL; // dest 1068 fields[argp++] = TypePtr::NOTNULL; // k array 1069 fields[argp++] = TypePtr::NOTNULL; // r array 1070 fields[argp++] = TypeInt::INT; // src len 1071 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1072 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1073 1074 // returning cipher len (int) 1075 fields = TypeTuple::fields(1); 1076 fields[TypeFunc::Parms+0] = TypeInt::INT; 1077 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1078 return TypeFunc::make(domain, range); 1079 } 1080 1081 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int 1082 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() { 1083 // create input type (domain) 1084 int num_args = 4; 1085 int argcnt = num_args; 1086 const Type** fields = TypeTuple::fields(argcnt); 1087 int argp = TypeFunc::Parms; 1088 fields[argp++] = TypePtr::NOTNULL; // src 1089 fields[argp++] = TypePtr::NOTNULL; // dest 1090 fields[argp++] = TypePtr::NOTNULL; // k array 1091 fields[argp++] = TypeInt::INT; // src len 1092 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1093 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1094 1095 // returning cipher len (int) 1096 fields = TypeTuple::fields(1); 1097 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1098 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1099 return TypeFunc::make(domain, range); 1100 } 1101 1102 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 1103 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() { 1104 // create input type (domain) 1105 int num_args = 7; 1106 int argcnt = num_args; 1107 const Type** fields = TypeTuple::fields(argcnt); 1108 int argp = TypeFunc::Parms; 1109 fields[argp++] = TypePtr::NOTNULL; // src 1110 fields[argp++] = TypePtr::NOTNULL; // dest 1111 fields[argp++] = TypePtr::NOTNULL; // k array 1112 fields[argp++] = TypePtr::NOTNULL; // counter array 1113 fields[argp++] = TypeInt::INT; // src len 1114 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 1115 fields[argp++] = TypePtr::NOTNULL; // saved used addr 1116 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1117 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1118 // returning cipher len (int) 1119 fields = TypeTuple::fields(1); 1120 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1121 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1122 return TypeFunc::make(domain, range); 1123 } 1124 1125 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 1126 const TypeFunc* OptoRuntime::galoisCounterMode_aescrypt_Type() { 1127 // create input type (domain) 1128 int num_args = 8; 1129 int argcnt = num_args; 1130 const Type** fields = TypeTuple::fields(argcnt); 1131 int argp = TypeFunc::Parms; 1132 fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs 1133 fields[argp++] = TypeInt::INT; // int len 1134 fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs 1135 fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs 1136 fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj 1137 fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj 1138 fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj 1139 fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj 1140 1141 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1142 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1143 // returning cipher len (int) 1144 fields = TypeTuple::fields(1); 1145 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1146 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1147 return TypeFunc::make(domain, range); 1148 } 1149 1150 /* 1151 * void implCompress(byte[] buf, int ofs) 1152 */ 1153 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) { 1154 // create input type (domain) 1155 int num_args = is_sha3 ? 3 : 2; 1156 int argcnt = num_args; 1157 const Type** fields = TypeTuple::fields(argcnt); 1158 int argp = TypeFunc::Parms; 1159 fields[argp++] = TypePtr::NOTNULL; // buf 1160 fields[argp++] = TypePtr::NOTNULL; // state 1161 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1162 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1163 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1164 1165 // no result type needed 1166 fields = TypeTuple::fields(1); 1167 fields[TypeFunc::Parms+0] = nullptr; // void 1168 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1169 return TypeFunc::make(domain, range); 1170 } 1171 1172 /* 1173 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1174 */ 1175 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) { 1176 // create input type (domain) 1177 int num_args = is_sha3 ? 5 : 4; 1178 int argcnt = num_args; 1179 const Type** fields = TypeTuple::fields(argcnt); 1180 int argp = TypeFunc::Parms; 1181 fields[argp++] = TypePtr::NOTNULL; // buf 1182 fields[argp++] = TypePtr::NOTNULL; // state 1183 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1184 fields[argp++] = TypeInt::INT; // ofs 1185 fields[argp++] = TypeInt::INT; // limit 1186 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1187 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1188 1189 // returning ofs (int) 1190 fields = TypeTuple::fields(1); 1191 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1192 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1193 return TypeFunc::make(domain, range); 1194 } 1195 1196 const TypeFunc* OptoRuntime::multiplyToLen_Type() { 1197 // create input type (domain) 1198 int num_args = 5; 1199 int argcnt = num_args; 1200 const Type** fields = TypeTuple::fields(argcnt); 1201 int argp = TypeFunc::Parms; 1202 fields[argp++] = TypePtr::NOTNULL; // x 1203 fields[argp++] = TypeInt::INT; // xlen 1204 fields[argp++] = TypePtr::NOTNULL; // y 1205 fields[argp++] = TypeInt::INT; // ylen 1206 fields[argp++] = TypePtr::NOTNULL; // z 1207 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1208 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1209 1210 // no result type needed 1211 fields = TypeTuple::fields(1); 1212 fields[TypeFunc::Parms+0] = nullptr; 1213 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1214 return TypeFunc::make(domain, range); 1215 } 1216 1217 const TypeFunc* OptoRuntime::squareToLen_Type() { 1218 // create input type (domain) 1219 int num_args = 4; 1220 int argcnt = num_args; 1221 const Type** fields = TypeTuple::fields(argcnt); 1222 int argp = TypeFunc::Parms; 1223 fields[argp++] = TypePtr::NOTNULL; // x 1224 fields[argp++] = TypeInt::INT; // len 1225 fields[argp++] = TypePtr::NOTNULL; // z 1226 fields[argp++] = TypeInt::INT; // zlen 1227 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1228 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1229 1230 // no result type needed 1231 fields = TypeTuple::fields(1); 1232 fields[TypeFunc::Parms+0] = nullptr; 1233 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1234 return TypeFunc::make(domain, range); 1235 } 1236 1237 // for mulAdd calls, 2 pointers and 3 ints, returning int 1238 const TypeFunc* OptoRuntime::mulAdd_Type() { 1239 // create input type (domain) 1240 int num_args = 5; 1241 int argcnt = num_args; 1242 const Type** fields = TypeTuple::fields(argcnt); 1243 int argp = TypeFunc::Parms; 1244 fields[argp++] = TypePtr::NOTNULL; // out 1245 fields[argp++] = TypePtr::NOTNULL; // in 1246 fields[argp++] = TypeInt::INT; // offset 1247 fields[argp++] = TypeInt::INT; // len 1248 fields[argp++] = TypeInt::INT; // k 1249 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1250 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1251 1252 // returning carry (int) 1253 fields = TypeTuple::fields(1); 1254 fields[TypeFunc::Parms+0] = TypeInt::INT; 1255 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1256 return TypeFunc::make(domain, range); 1257 } 1258 1259 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() { 1260 // create input type (domain) 1261 int num_args = 7; 1262 int argcnt = num_args; 1263 const Type** fields = TypeTuple::fields(argcnt); 1264 int argp = TypeFunc::Parms; 1265 fields[argp++] = TypePtr::NOTNULL; // a 1266 fields[argp++] = TypePtr::NOTNULL; // b 1267 fields[argp++] = TypePtr::NOTNULL; // n 1268 fields[argp++] = TypeInt::INT; // len 1269 fields[argp++] = TypeLong::LONG; // inv 1270 fields[argp++] = Type::HALF; 1271 fields[argp++] = TypePtr::NOTNULL; // result 1272 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1273 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1274 1275 // result type needed 1276 fields = TypeTuple::fields(1); 1277 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1278 1279 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1280 return TypeFunc::make(domain, range); 1281 } 1282 1283 const TypeFunc* OptoRuntime::montgomerySquare_Type() { 1284 // create input type (domain) 1285 int num_args = 6; 1286 int argcnt = num_args; 1287 const Type** fields = TypeTuple::fields(argcnt); 1288 int argp = TypeFunc::Parms; 1289 fields[argp++] = TypePtr::NOTNULL; // a 1290 fields[argp++] = TypePtr::NOTNULL; // n 1291 fields[argp++] = TypeInt::INT; // len 1292 fields[argp++] = TypeLong::LONG; // inv 1293 fields[argp++] = Type::HALF; 1294 fields[argp++] = TypePtr::NOTNULL; // result 1295 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1296 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1297 1298 // result type needed 1299 fields = TypeTuple::fields(1); 1300 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1301 1302 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1303 return TypeFunc::make(domain, range); 1304 } 1305 1306 const TypeFunc * OptoRuntime::bigIntegerShift_Type() { 1307 int argcnt = 5; 1308 const Type** fields = TypeTuple::fields(argcnt); 1309 int argp = TypeFunc::Parms; 1310 fields[argp++] = TypePtr::NOTNULL; // newArr 1311 fields[argp++] = TypePtr::NOTNULL; // oldArr 1312 fields[argp++] = TypeInt::INT; // newIdx 1313 fields[argp++] = TypeInt::INT; // shiftCount 1314 fields[argp++] = TypeInt::INT; // numIter 1315 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1316 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1317 1318 // no result type needed 1319 fields = TypeTuple::fields(1); 1320 fields[TypeFunc::Parms + 0] = nullptr; 1321 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1322 return TypeFunc::make(domain, range); 1323 } 1324 1325 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() { 1326 // create input type (domain) 1327 int num_args = 4; 1328 int argcnt = num_args; 1329 const Type** fields = TypeTuple::fields(argcnt); 1330 int argp = TypeFunc::Parms; 1331 fields[argp++] = TypePtr::NOTNULL; // obja 1332 fields[argp++] = TypePtr::NOTNULL; // objb 1333 fields[argp++] = TypeInt::INT; // length, number of elements 1334 fields[argp++] = TypeInt::INT; // log2scale, element size 1335 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1336 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1337 1338 //return mismatch index (int) 1339 fields = TypeTuple::fields(1); 1340 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1341 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1342 return TypeFunc::make(domain, range); 1343 } 1344 1345 // GHASH block processing 1346 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() { 1347 int argcnt = 4; 1348 1349 const Type** fields = TypeTuple::fields(argcnt); 1350 int argp = TypeFunc::Parms; 1351 fields[argp++] = TypePtr::NOTNULL; // state 1352 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1353 fields[argp++] = TypePtr::NOTNULL; // data 1354 fields[argp++] = TypeInt::INT; // blocks 1355 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1356 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1357 1358 // result type needed 1359 fields = TypeTuple::fields(1); 1360 fields[TypeFunc::Parms+0] = nullptr; // void 1361 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1362 return TypeFunc::make(domain, range); 1363 } 1364 1365 // ChaCha20 Block function 1366 const TypeFunc* OptoRuntime::chacha20Block_Type() { 1367 int argcnt = 2; 1368 1369 const Type** fields = TypeTuple::fields(argcnt); 1370 int argp = TypeFunc::Parms; 1371 fields[argp++] = TypePtr::NOTNULL; // state 1372 fields[argp++] = TypePtr::NOTNULL; // result 1373 1374 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1375 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1376 1377 // result type needed 1378 fields = TypeTuple::fields(1); 1379 fields[TypeFunc::Parms + 0] = TypeInt::INT; // key stream outlen as int 1380 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1381 return TypeFunc::make(domain, range); 1382 } 1383 1384 // Base64 encode function 1385 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() { 1386 int argcnt = 6; 1387 1388 const Type** fields = TypeTuple::fields(argcnt); 1389 int argp = TypeFunc::Parms; 1390 fields[argp++] = TypePtr::NOTNULL; // src array 1391 fields[argp++] = TypeInt::INT; // offset 1392 fields[argp++] = TypeInt::INT; // length 1393 fields[argp++] = TypePtr::NOTNULL; // dest array 1394 fields[argp++] = TypeInt::INT; // dp 1395 fields[argp++] = TypeInt::BOOL; // isURL 1396 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1397 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1398 1399 // result type needed 1400 fields = TypeTuple::fields(1); 1401 fields[TypeFunc::Parms + 0] = nullptr; // void 1402 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1403 return TypeFunc::make(domain, range); 1404 } 1405 1406 // String IndexOf function 1407 const TypeFunc* OptoRuntime::string_IndexOf_Type() { 1408 int argcnt = 4; 1409 1410 const Type** fields = TypeTuple::fields(argcnt); 1411 int argp = TypeFunc::Parms; 1412 fields[argp++] = TypePtr::NOTNULL; // haystack array 1413 fields[argp++] = TypeInt::INT; // haystack length 1414 fields[argp++] = TypePtr::NOTNULL; // needle array 1415 fields[argp++] = TypeInt::INT; // needle length 1416 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1417 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1418 1419 // result type needed 1420 fields = TypeTuple::fields(1); 1421 fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack 1422 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1423 return TypeFunc::make(domain, range); 1424 } 1425 1426 // Base64 decode function 1427 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() { 1428 int argcnt = 7; 1429 1430 const Type** fields = TypeTuple::fields(argcnt); 1431 int argp = TypeFunc::Parms; 1432 fields[argp++] = TypePtr::NOTNULL; // src array 1433 fields[argp++] = TypeInt::INT; // src offset 1434 fields[argp++] = TypeInt::INT; // src length 1435 fields[argp++] = TypePtr::NOTNULL; // dest array 1436 fields[argp++] = TypeInt::INT; // dest offset 1437 fields[argp++] = TypeInt::BOOL; // isURL 1438 fields[argp++] = TypeInt::BOOL; // isMIME 1439 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1440 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1441 1442 // result type needed 1443 fields = TypeTuple::fields(1); 1444 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1445 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1446 return TypeFunc::make(domain, range); 1447 } 1448 1449 // Poly1305 processMultipleBlocks function 1450 const TypeFunc* OptoRuntime::poly1305_processBlocks_Type() { 1451 int argcnt = 4; 1452 1453 const Type** fields = TypeTuple::fields(argcnt); 1454 int argp = TypeFunc::Parms; 1455 fields[argp++] = TypePtr::NOTNULL; // input array 1456 fields[argp++] = TypeInt::INT; // input length 1457 fields[argp++] = TypePtr::NOTNULL; // accumulator array 1458 fields[argp++] = TypePtr::NOTNULL; // r array 1459 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1460 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1461 1462 // result type needed 1463 fields = TypeTuple::fields(1); 1464 fields[TypeFunc::Parms + 0] = nullptr; // void 1465 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1466 return TypeFunc::make(domain, range); 1467 } 1468 1469 // MontgomeryIntegerPolynomialP256 multiply function 1470 const TypeFunc* OptoRuntime::intpoly_montgomeryMult_P256_Type() { 1471 int argcnt = 3; 1472 1473 const Type** fields = TypeTuple::fields(argcnt); 1474 int argp = TypeFunc::Parms; 1475 fields[argp++] = TypePtr::NOTNULL; // a array 1476 fields[argp++] = TypePtr::NOTNULL; // b array 1477 fields[argp++] = TypePtr::NOTNULL; // r(esult) array 1478 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1479 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1480 1481 // result type needed 1482 fields = TypeTuple::fields(1); 1483 fields[TypeFunc::Parms + 0] = nullptr; // void 1484 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1485 return TypeFunc::make(domain, range); 1486 } 1487 1488 // IntegerPolynomial constant time assignment function 1489 const TypeFunc* OptoRuntime::intpoly_assign_Type() { 1490 int argcnt = 4; 1491 1492 const Type** fields = TypeTuple::fields(argcnt); 1493 int argp = TypeFunc::Parms; 1494 fields[argp++] = TypeInt::INT; // set flag 1495 fields[argp++] = TypePtr::NOTNULL; // a array (result) 1496 fields[argp++] = TypePtr::NOTNULL; // b array (if set is set) 1497 fields[argp++] = TypeInt::INT; // array length 1498 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1499 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1500 1501 // result type needed 1502 fields = TypeTuple::fields(1); 1503 fields[TypeFunc::Parms + 0] = nullptr; // void 1504 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1505 return TypeFunc::make(domain, range); 1506 } 1507 1508 //------------- Interpreter state access for on stack replacement 1509 const TypeFunc* OptoRuntime::osr_end_Type() { 1510 // create input type (domain) 1511 const Type **fields = TypeTuple::fields(1); 1512 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1513 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1514 1515 // create result type 1516 fields = TypeTuple::fields(1); 1517 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1518 fields[TypeFunc::Parms+0] = nullptr; // void 1519 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1520 return TypeFunc::make(domain, range); 1521 } 1522 1523 //------------------------------------------------------------------------------------- 1524 // register policy 1525 1526 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1527 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1528 switch (register_save_policy[reg]) { 1529 case 'C': return false; //SOC 1530 case 'E': return true ; //SOE 1531 case 'N': return false; //NS 1532 case 'A': return false; //AS 1533 } 1534 ShouldNotReachHere(); 1535 return false; 1536 } 1537 1538 //----------------------------------------------------------------------- 1539 // Exceptions 1540 // 1541 1542 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1543 1544 // The method is an entry that is always called by a C++ method not 1545 // directly from compiled code. Compiled code will call the C++ method following. 1546 // We can't allow async exception to be installed during exception processing. 1547 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1548 // The frame we rethrow the exception to might not have been processed by the GC yet. 1549 // The stack watermark barrier takes care of detecting that and ensuring the frame 1550 // has updated oops. 1551 StackWatermarkSet::after_unwind(current); 1552 1553 // Do not confuse exception_oop with pending_exception. The exception_oop 1554 // is only used to pass arguments into the method. Not for general 1555 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1556 // the runtime stubs checks this on exit. 1557 assert(current->exception_oop() != nullptr, "exception oop is found"); 1558 address handler_address = nullptr; 1559 1560 Handle exception(current, current->exception_oop()); 1561 address pc = current->exception_pc(); 1562 1563 // Clear out the exception oop and pc since looking up an 1564 // exception handler can cause class loading, which might throw an 1565 // exception and those fields are expected to be clear during 1566 // normal bytecode execution. 1567 current->clear_exception_oop_and_pc(); 1568 1569 LogTarget(Info, exceptions) lt; 1570 if (lt.is_enabled()) { 1571 ResourceMark rm; 1572 LogStream ls(lt); 1573 trace_exception(&ls, exception(), pc, ""); 1574 } 1575 1576 // for AbortVMOnException flag 1577 Exceptions::debug_check_abort(exception); 1578 1579 #ifdef ASSERT 1580 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1581 // should throw an exception here 1582 ShouldNotReachHere(); 1583 } 1584 #endif 1585 1586 // new exception handling: this method is entered only from adapters 1587 // exceptions from compiled java methods are handled in compiled code 1588 // using rethrow node 1589 1590 nm = CodeCache::find_nmethod(pc); 1591 assert(nm != nullptr, "No NMethod found"); 1592 if (nm->is_native_method()) { 1593 fatal("Native method should not have path to exception handling"); 1594 } else { 1595 // we are switching to old paradigm: search for exception handler in caller_frame 1596 // instead in exception handler of caller_frame.sender() 1597 1598 if (JvmtiExport::can_post_on_exceptions()) { 1599 // "Full-speed catching" is not necessary here, 1600 // since we're notifying the VM on every catch. 1601 // Force deoptimization and the rest of the lookup 1602 // will be fine. 1603 deoptimize_caller_frame(current); 1604 } 1605 1606 // Check the stack guard pages. If enabled, look for handler in this frame; 1607 // otherwise, forcibly unwind the frame. 1608 // 1609 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1610 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1611 bool deopting = false; 1612 if (nm->is_deopt_pc(pc)) { 1613 deopting = true; 1614 RegisterMap map(current, 1615 RegisterMap::UpdateMap::skip, 1616 RegisterMap::ProcessFrames::include, 1617 RegisterMap::WalkContinuation::skip); 1618 frame deoptee = current->last_frame().sender(&map); 1619 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1620 // Adjust the pc back to the original throwing pc 1621 pc = deoptee.pc(); 1622 } 1623 1624 // If we are forcing an unwind because of stack overflow then deopt is 1625 // irrelevant since we are throwing the frame away anyway. 1626 1627 if (deopting && !force_unwind) { 1628 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1629 } else { 1630 1631 handler_address = 1632 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc); 1633 1634 if (handler_address == nullptr) { 1635 bool recursive_exception = false; 1636 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1637 assert (handler_address != nullptr, "must have compiled handler"); 1638 // Update the exception cache only when the unwind was not forced 1639 // and there didn't happen another exception during the computation of the 1640 // compiled exception handler. Checking for exception oop equality is not 1641 // sufficient because some exceptions are pre-allocated and reused. 1642 if (!force_unwind && !recursive_exception) { 1643 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1644 } 1645 } else { 1646 #ifdef ASSERT 1647 bool recursive_exception = false; 1648 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1649 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1650 p2i(handler_address), p2i(computed_address)); 1651 #endif 1652 } 1653 } 1654 1655 current->set_exception_pc(pc); 1656 current->set_exception_handler_pc(handler_address); 1657 1658 // Check if the exception PC is a MethodHandle call site. 1659 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1660 } 1661 1662 // Restore correct return pc. Was saved above. 1663 current->set_exception_oop(exception()); 1664 return handler_address; 1665 1666 JRT_END 1667 1668 // We are entering here from exception_blob 1669 // If there is a compiled exception handler in this method, we will continue there; 1670 // otherwise we will unwind the stack and continue at the caller of top frame method 1671 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1672 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1673 // we looked up the handler for has been deoptimized in the meantime. If it has been 1674 // we must not use the handler and instead return the deopt blob. 1675 address OptoRuntime::handle_exception_C(JavaThread* current) { 1676 // 1677 // We are in Java not VM and in debug mode we have a NoHandleMark 1678 // 1679 #ifndef PRODUCT 1680 SharedRuntime::_find_handler_ctr++; // find exception handler 1681 #endif 1682 debug_only(NoHandleMark __hm;) 1683 nmethod* nm = nullptr; 1684 address handler_address = nullptr; 1685 { 1686 // Enter the VM 1687 1688 ResetNoHandleMark rnhm; 1689 handler_address = handle_exception_C_helper(current, nm); 1690 } 1691 1692 // Back in java: Use no oops, DON'T safepoint 1693 1694 // Now check to see if the handler we are returning is in a now 1695 // deoptimized frame 1696 1697 if (nm != nullptr) { 1698 RegisterMap map(current, 1699 RegisterMap::UpdateMap::skip, 1700 RegisterMap::ProcessFrames::skip, 1701 RegisterMap::WalkContinuation::skip); 1702 frame caller = current->last_frame().sender(&map); 1703 #ifdef ASSERT 1704 assert(caller.is_compiled_frame(), "must be"); 1705 #endif // ASSERT 1706 if (caller.is_deoptimized_frame()) { 1707 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1708 } 1709 } 1710 return handler_address; 1711 } 1712 1713 //------------------------------rethrow---------------------------------------- 1714 // We get here after compiled code has executed a 'RethrowNode'. The callee 1715 // is either throwing or rethrowing an exception. The callee-save registers 1716 // have been restored, synchronized objects have been unlocked and the callee 1717 // stack frame has been removed. The return address was passed in. 1718 // Exception oop is passed as the 1st argument. This routine is then called 1719 // from the stub. On exit, we know where to jump in the caller's code. 1720 // After this C code exits, the stub will pop his frame and end in a jump 1721 // (instead of a return). We enter the caller's default handler. 1722 // 1723 // This must be JRT_LEAF: 1724 // - caller will not change its state as we cannot block on exit, 1725 // therefore raw_exception_handler_for_return_address is all it takes 1726 // to handle deoptimized blobs 1727 // 1728 // However, there needs to be a safepoint check in the middle! So compiled 1729 // safepoints are completely watertight. 1730 // 1731 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 1732 // 1733 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1734 // 1735 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1736 // ret_pc will have been loaded from the stack, so for AArch64 will be signed. 1737 AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc)); 1738 1739 #ifndef PRODUCT 1740 SharedRuntime::_rethrow_ctr++; // count rethrows 1741 #endif 1742 assert (exception != nullptr, "should have thrown a NullPointerException"); 1743 #ifdef ASSERT 1744 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1745 // should throw an exception here 1746 ShouldNotReachHere(); 1747 } 1748 #endif 1749 1750 thread->set_vm_result(exception); 1751 // Frame not compiled (handles deoptimization blob) 1752 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1753 } 1754 1755 1756 const TypeFunc *OptoRuntime::rethrow_Type() { 1757 // create input type (domain) 1758 const Type **fields = TypeTuple::fields(1); 1759 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1760 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1761 1762 // create result type (range) 1763 fields = TypeTuple::fields(1); 1764 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1765 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1766 1767 return TypeFunc::make(domain, range); 1768 } 1769 1770 1771 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1772 // Deoptimize the caller before continuing, as the compiled 1773 // exception handler table may not be valid. 1774 if (!StressCompiledExceptionHandlers && doit) { 1775 deoptimize_caller_frame(thread); 1776 } 1777 } 1778 1779 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1780 // Called from within the owner thread, so no need for safepoint 1781 RegisterMap reg_map(thread, 1782 RegisterMap::UpdateMap::include, 1783 RegisterMap::ProcessFrames::include, 1784 RegisterMap::WalkContinuation::skip); 1785 frame stub_frame = thread->last_frame(); 1786 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1787 frame caller_frame = stub_frame.sender(®_map); 1788 1789 // Deoptimize the caller frame. 1790 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1791 } 1792 1793 1794 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1795 // Called from within the owner thread, so no need for safepoint 1796 RegisterMap reg_map(thread, 1797 RegisterMap::UpdateMap::include, 1798 RegisterMap::ProcessFrames::include, 1799 RegisterMap::WalkContinuation::skip); 1800 frame stub_frame = thread->last_frame(); 1801 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1802 frame caller_frame = stub_frame.sender(®_map); 1803 return caller_frame.is_deoptimized_frame(); 1804 } 1805 1806 1807 const TypeFunc *OptoRuntime::register_finalizer_Type() { 1808 // create input type (domain) 1809 const Type **fields = TypeTuple::fields(1); 1810 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1811 // // The JavaThread* is passed to each routine as the last argument 1812 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1813 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1814 1815 // create result type (range) 1816 fields = TypeTuple::fields(0); 1817 1818 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1819 1820 return TypeFunc::make(domain,range); 1821 } 1822 1823 #if INCLUDE_JFR 1824 const TypeFunc *OptoRuntime::class_id_load_barrier_Type() { 1825 // create input type (domain) 1826 const Type **fields = TypeTuple::fields(1); 1827 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 1828 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 1829 1830 // create result type (range) 1831 fields = TypeTuple::fields(0); 1832 1833 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 1834 1835 return TypeFunc::make(domain,range); 1836 } 1837 #endif 1838 1839 //----------------------------------------------------------------------------- 1840 // Dtrace support. entry and exit probes have the same signature 1841 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { 1842 // create input type (domain) 1843 const Type **fields = TypeTuple::fields(2); 1844 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1845 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 1846 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1847 1848 // create result type (range) 1849 fields = TypeTuple::fields(0); 1850 1851 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1852 1853 return TypeFunc::make(domain,range); 1854 } 1855 1856 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { 1857 // create input type (domain) 1858 const Type **fields = TypeTuple::fields(2); 1859 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1860 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 1861 1862 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1863 1864 // create result type (range) 1865 fields = TypeTuple::fields(0); 1866 1867 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1868 1869 return TypeFunc::make(domain,range); 1870 } 1871 1872 1873 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current)) 1874 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1875 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1876 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1877 JRT_END 1878 1879 //----------------------------------------------------------------------------- 1880 1881 NamedCounter * volatile OptoRuntime::_named_counters = nullptr; 1882 1883 // 1884 // dump the collected NamedCounters. 1885 // 1886 void OptoRuntime::print_named_counters() { 1887 int total_lock_count = 0; 1888 int eliminated_lock_count = 0; 1889 1890 NamedCounter* c = _named_counters; 1891 while (c) { 1892 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 1893 int count = c->count(); 1894 if (count > 0) { 1895 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 1896 if (Verbose) { 1897 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 1898 } 1899 total_lock_count += count; 1900 if (eliminated) { 1901 eliminated_lock_count += count; 1902 } 1903 } 1904 } 1905 c = c->next(); 1906 } 1907 if (total_lock_count > 0) { 1908 tty->print_cr("dynamic locks: %d", total_lock_count); 1909 if (eliminated_lock_count) { 1910 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 1911 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 1912 } 1913 } 1914 } 1915 1916 // 1917 // Allocate a new NamedCounter. The JVMState is used to generate the 1918 // name which consists of method@line for the inlining tree. 1919 // 1920 1921 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 1922 int max_depth = youngest_jvms->depth(); 1923 1924 // Visit scopes from youngest to oldest. 1925 bool first = true; 1926 stringStream st; 1927 for (int depth = max_depth; depth >= 1; depth--) { 1928 JVMState* jvms = youngest_jvms->of_depth(depth); 1929 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr; 1930 if (!first) { 1931 st.print(" "); 1932 } else { 1933 first = false; 1934 } 1935 int bci = jvms->bci(); 1936 if (bci < 0) bci = 0; 1937 if (m != nullptr) { 1938 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 1939 } else { 1940 st.print("no method"); 1941 } 1942 st.print("@%d", bci); 1943 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 1944 } 1945 NamedCounter* c = new NamedCounter(st.freeze(), tag); 1946 1947 // atomically add the new counter to the head of the list. We only 1948 // add counters so this is safe. 1949 NamedCounter* head; 1950 do { 1951 c->set_next(nullptr); 1952 head = _named_counters; 1953 c->set_next(head); 1954 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 1955 return c; 1956 } 1957 1958 int trace_exception_counter = 0; 1959 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 1960 trace_exception_counter++; 1961 stringStream tempst; 1962 1963 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 1964 exception_oop->print_value_on(&tempst); 1965 tempst.print(" in "); 1966 CodeBlob* blob = CodeCache::find_blob(exception_pc); 1967 if (blob->is_nmethod()) { 1968 blob->as_nmethod()->method()->print_value_on(&tempst); 1969 } else if (blob->is_runtime_stub()) { 1970 tempst.print("<runtime-stub>"); 1971 } else { 1972 tempst.print("<unknown>"); 1973 } 1974 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 1975 tempst.print("]"); 1976 1977 st->print_raw_cr(tempst.freeze()); 1978 }