1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerDefinitions.inline.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/g1HeapRegion.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.hpp"
  41 #include "interpreter/bytecode.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/linkResolver.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/klass.inline.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/typeArrayOop.inline.hpp"
  52 #include "opto/ad.hpp"
  53 #include "opto/addnode.hpp"
  54 #include "opto/callnode.hpp"
  55 #include "opto/cfgnode.hpp"
  56 #include "opto/graphKit.hpp"
  57 #include "opto/machnode.hpp"
  58 #include "opto/matcher.hpp"
  59 #include "opto/memnode.hpp"
  60 #include "opto/mulnode.hpp"
  61 #include "opto/output.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/subnode.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "runtime/atomicAccess.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/perfData.inline.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stackWatermarkSet.hpp"
  75 #include "runtime/synchronizer.hpp"
  76 #include "runtime/threadWXSetters.inline.hpp"
  77 #include "runtime/vframe.hpp"
  78 #include "runtime/vframe_hp.hpp"
  79 #include "runtime/vframeArray.hpp"
  80 #include "services/management.hpp"
  81 #include "utilities/copy.hpp"
  82 #include "utilities/preserveException.hpp"
  83 
  84 
  85 // For debugging purposes:
  86 //  To force FullGCALot inside a runtime function, add the following two lines
  87 //
  88 //  Universe::release_fullgc_alot_dummy();
  89 //  Universe::heap()->collect();
  90 //
  91 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  92 
  93 
  94 #define C2_BLOB_FIELD_DEFINE(name, type) \
  95   type* OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  96 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  97 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  98   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
  99 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \
 100   address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr;
 101 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE)
 102 #undef C2_BLOB_FIELD_DEFINE
 103 #undef C2_STUB_FIELD_DEFINE
 104 #undef C2_JVMTI_STUB_FIELD_DEFINE
 105 
 106 address OptoRuntime::_vtable_must_compile_Java                    = nullptr;
 107 
 108 PerfCounter* _perf_OptoRuntime_class_init_barrier_redundant_count = nullptr;
 109 
 110 // This should be called in an assertion at the start of OptoRuntime routines
 111 // which are entered from compiled code (all of them)
 112 #ifdef ASSERT
 113 static bool check_compiled_frame(JavaThread* thread) {
 114   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 115   RegisterMap map(thread,
 116                   RegisterMap::UpdateMap::skip,
 117                   RegisterMap::ProcessFrames::include,
 118                   RegisterMap::WalkContinuation::skip);
 119   frame caller = thread->last_frame().sender(&map);
 120   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 121   return true;
 122 }
 123 #endif // ASSERT
 124 
 125 /*
 126 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 127   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 128   if (var == nullptr) { return false; }
 129 */
 130 
 131 #define GEN_C2_BLOB(name, type)                    \
 132   BLOB_FIELD_NAME(name) =                       \
 133     generate_ ## name ## _blob();                  \
 134   if (BLOB_FIELD_NAME(name) == nullptr) { return false; }
 135 
 136 // a few helper macros to conjure up generate_stub call arguments
 137 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
 138 #define C2_STUB_TYPEFUNC(name) name ## _Type
 139 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C)
 140 #define C2_STUB_ID(name) StubId:: JOIN3(c2, name, id)
 141 #define C2_STUB_NAME(name) stub_name(C2_STUB_ID(name))
 142 
 143 // Almost all the C functions targeted from the generated stubs are
 144 // implemented locally to OptoRuntime with names that can be generated
 145 // from the stub name by appending suffix '_C'. However, in two cases
 146 // a common target method also needs to be called from shared runtime
 147 // stubs. In these two cases the opto stubs rely on method
 148 // imlementations defined in class SharedRuntime. The following
 149 // defines temporarily rebind the generated names to reference the
 150 // relevant implementations.
 151 
 152 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 153   C2_STUB_FIELD_NAME(name) =                                          \
 154     generate_stub(env,                                                \
 155                   C2_STUB_TYPEFUNC(name),                             \
 156                   C2_STUB_C_FUNC(name),                               \
 157                   C2_STUB_NAME(name),                                 \
 158                   C2_STUB_ID(name),                                   \
 159                   fancy_jump,                                         \
 160                   pass_tls,                                           \
 161                   pass_retpc);                                        \
 162   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 163 
 164 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name)
 165 
 166 #define GEN_C2_JVMTI_STUB(name)                                       \
 167   STUB_FIELD_NAME(name) =                                             \
 168     generate_stub(env,                                                \
 169                   notify_jvmti_vthread_Type,                          \
 170                   C2_JVMTI_STUB_C_FUNC(name),                         \
 171                   C2_STUB_NAME(name),                                 \
 172                   C2_STUB_ID(name),                                   \
 173                   0,                                                  \
 174                   true,                                               \
 175                   false);                                             \
 176   if (STUB_FIELD_NAME(name) == nullptr) { return false; }             \
 177 
 178 bool OptoRuntime::generate(ciEnv* env) {
 179   init_counters();
 180 
 181   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
 182 
 183   return true;
 184 }
 185 
 186 #undef GEN_C2_BLOB
 187 
 188 #undef C2_STUB_FIELD_NAME
 189 #undef C2_STUB_TYPEFUNC
 190 #undef C2_STUB_C_FUNC
 191 #undef C2_STUB_NAME
 192 #undef GEN_C2_STUB
 193 
 194 #undef C2_JVMTI_STUB_C_FUNC
 195 #undef GEN_C2_JVMTI_STUB
 196 // #undef gen
 197 
 198 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 199 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 200 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 201 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;
 202 const TypeFunc* OptoRuntime::_multianewarray4_Type                = nullptr;
 203 const TypeFunc* OptoRuntime::_multianewarray5_Type                = nullptr;
 204 const TypeFunc* OptoRuntime::_multianewarrayN_Type                = nullptr;
 205 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type         = nullptr;
 206 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type          = nullptr;
 207 const TypeFunc* OptoRuntime::_monitor_notify_Type                 = nullptr;
 208 const TypeFunc* OptoRuntime::_uncommon_trap_Type                  = nullptr;
 209 const TypeFunc* OptoRuntime::_athrow_Type                         = nullptr;
 210 const TypeFunc* OptoRuntime::_rethrow_Type                        = nullptr;
 211 const TypeFunc* OptoRuntime::_Math_D_D_Type                       = nullptr;
 212 const TypeFunc* OptoRuntime::_Math_DD_D_Type                      = nullptr;
 213 const TypeFunc* OptoRuntime::_modf_Type                           = nullptr;
 214 const TypeFunc* OptoRuntime::_l2f_Type                            = nullptr;
 215 const TypeFunc* OptoRuntime::_void_long_Type                      = nullptr;
 216 const TypeFunc* OptoRuntime::_void_void_Type                      = nullptr;
 217 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type           = nullptr;
 218 const TypeFunc* OptoRuntime::_flush_windows_Type                  = nullptr;
 219 const TypeFunc* OptoRuntime::_fast_arraycopy_Type                 = nullptr;
 220 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type            = nullptr;
 221 const TypeFunc* OptoRuntime::_generic_arraycopy_Type              = nullptr;
 222 const TypeFunc* OptoRuntime::_slow_arraycopy_Type                 = nullptr;
 223 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type               = nullptr;
 224 const TypeFunc* OptoRuntime::_array_fill_Type                     = nullptr;
 225 const TypeFunc* OptoRuntime::_array_sort_Type                     = nullptr;
 226 const TypeFunc* OptoRuntime::_array_partition_Type                = nullptr;
 227 const TypeFunc* OptoRuntime::_aescrypt_block_Type                 = nullptr;
 228 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type   = nullptr;
 229 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type    = nullptr;
 230 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type           = nullptr;
 231 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type     = nullptr;
 232 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type      = nullptr;
 233 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type   = nullptr;
 234 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type    = nullptr;
 235 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr;
 236 const TypeFunc* OptoRuntime::_double_keccak_Type                  = nullptr;
 237 const TypeFunc* OptoRuntime::_multiplyToLen_Type                  = nullptr;
 238 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type             = nullptr;
 239 const TypeFunc* OptoRuntime::_montgomerySquare_Type               = nullptr;
 240 const TypeFunc* OptoRuntime::_squareToLen_Type                    = nullptr;
 241 const TypeFunc* OptoRuntime::_mulAdd_Type                         = nullptr;
 242 const TypeFunc* OptoRuntime::_bigIntegerShift_Type                = nullptr;
 243 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type             = nullptr;
 244 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type            = nullptr;
 245 const TypeFunc* OptoRuntime::_chacha20Block_Type                  = nullptr;
 246 const TypeFunc* OptoRuntime::_kyberNtt_Type                       = nullptr;
 247 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type                = nullptr;
 248 const TypeFunc* OptoRuntime::_kyberNttMult_Type                   = nullptr;
 249 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type                 = nullptr;
 250 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type                 = nullptr;
 251 const TypeFunc* OptoRuntime::_kyber12To16_Type                    = nullptr;
 252 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type             = nullptr;
 253 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type             = nullptr;
 254 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type      = nullptr;
 255 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type               = nullptr;
 256 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type     = nullptr;
 257 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type         = nullptr;
 258 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type             = nullptr;
 259 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type             = nullptr;
 260 const TypeFunc* OptoRuntime::_string_IndexOf_Type                 = nullptr;
 261 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type         = nullptr;
 262 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type    = nullptr;
 263 const TypeFunc* OptoRuntime::_intpoly_assign_Type                 = nullptr;
 264 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 265 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 266 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 267 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 268 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 269 #if INCLUDE_JFR
 270 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 271 #endif // INCLUDE_JFR
 272 #if INCLUDE_JVMTI
 273 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type           = nullptr;
 274 #endif // INCLUDE_JVMTI
 275 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 276 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 277 
 278 // Helper method to do generation of RunTimeStub's
 279 address OptoRuntime::generate_stub(ciEnv* env,
 280                                    TypeFunc_generator gen, address C_function,
 281                                    const char *name, StubId stub_id,
 282                                    int is_fancy_jump, bool pass_tls,
 283                                    bool return_pc) {
 284 
 285   // Matching the default directive, we currently have no method to match.
 286   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompilerThread::current()->compiler());
 287   CompilationMemoryStatisticMark cmsm(directive);
 288   ResourceMark rm;
 289   Compile C(env, gen, C_function, name, stub_id, is_fancy_jump, pass_tls, return_pc, directive);
 290   DirectivesStack::release(directive);
 291   return  C.stub_entry_point();
 292 }
 293 
 294 const char* OptoRuntime::stub_name(address entry) {
 295 #ifndef PRODUCT
 296   CodeBlob* cb = CodeCache::find_blob(entry);
 297   RuntimeStub* rs =(RuntimeStub *)cb;
 298   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 299   return rs->name();
 300 #else
 301   // Fast implementation for product mode (maybe it should be inlined too)
 302   return "runtime stub";
 303 #endif
 304 }
 305 
 306 // local methods passed as arguments to stub generator that forward
 307 // control to corresponding JRT methods of SharedRuntime
 308 
 309 void OptoRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
 310                                    oopDesc* dest, jint dest_pos,
 311                                    jint length, JavaThread* thread) {
 312   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 313 }
 314 
 315 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 316   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 317 }
 318 
 319 
 320 //=============================================================================
 321 // Opto compiler runtime routines
 322 //=============================================================================
 323 
 324 
 325 //=============================allocation======================================
 326 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 327 // and try allocation again.
 328 
 329 // object allocation
 330 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_instance_C, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 331   JRT_BLOCK;
 332 #ifndef PRODUCT
 333   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 334 #endif
 335   assert(check_compiled_frame(current), "incorrect caller");
 336 
 337   // These checks are cheap to make and support reflective allocation.
 338   int lh = klass->layout_helper();
 339   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 340     Handle holder(current, klass->klass_holder()); // keep the klass alive
 341     klass->check_valid_for_instantiation(false, THREAD);
 342     if (!HAS_PENDING_EXCEPTION) {
 343       InstanceKlass::cast(klass)->initialize(THREAD);
 344     }
 345   }
 346 
 347   if (!HAS_PENDING_EXCEPTION) {
 348     // Scavenge and allocate an instance.
 349     Handle holder(current, klass->klass_holder()); // keep the klass alive
 350     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 351     current->set_vm_result_oop(result);
 352 
 353     // Pass oops back through thread local storage.  Our apparent type to Java
 354     // is that we return an oop, but we can block on exit from this routine and
 355     // a GC can trash the oop in C's return register.  The generated stub will
 356     // fetch the oop from TLS after any possible GC.
 357   }
 358 
 359   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 360   JRT_BLOCK_END;
 361 
 362   // inform GC that we won't do card marks for initializing writes.
 363   SharedRuntime::on_slowpath_allocation_exit(current);
 364 JRT_END
 365 
 366 
 367 // array allocation
 368 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_C, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 369   JRT_BLOCK;
 370 #ifndef PRODUCT
 371   SharedRuntime::_new_array_ctr++;            // new array requires GC
 372 #endif
 373   assert(check_compiled_frame(current), "incorrect caller");
 374 
 375   // Scavenge and allocate an instance.
 376   oop result;
 377 
 378   if (array_type->is_typeArray_klass()) {
 379     // The oopFactory likes to work with the element type.
 380     // (We could bypass the oopFactory, since it doesn't add much value.)
 381     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 382     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 383   } else {
 384     // Although the oopFactory likes to work with the elem_type,
 385     // the compiler prefers the array_type, since it must already have
 386     // that latter value in hand for the fast path.
 387     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 388     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 389     result = oopFactory::new_objArray(elem_type, len, THREAD);
 390   }
 391 
 392   // Pass oops back through thread local storage.  Our apparent type to Java
 393   // is that we return an oop, but we can block on exit from this routine and
 394   // a GC can trash the oop in C's return register.  The generated stub will
 395   // fetch the oop from TLS after any possible GC.
 396   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 397   current->set_vm_result_oop(result);
 398   JRT_BLOCK_END;
 399 
 400   // inform GC that we won't do card marks for initializing writes.
 401   SharedRuntime::on_slowpath_allocation_exit(current);
 402 JRT_END
 403 
 404 // array allocation without zeroing
 405 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_nozero_C, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 406   JRT_BLOCK;
 407 #ifndef PRODUCT
 408   SharedRuntime::_new_array_ctr++;            // new array requires GC
 409 #endif
 410   assert(check_compiled_frame(current), "incorrect caller");
 411 
 412   // Scavenge and allocate an instance.
 413   oop result;
 414 
 415   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 416   // The oopFactory likes to work with the element type.
 417   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 418   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 419 
 420   // Pass oops back through thread local storage.  Our apparent type to Java
 421   // is that we return an oop, but we can block on exit from this routine and
 422   // a GC can trash the oop in C's return register.  The generated stub will
 423   // fetch the oop from TLS after any possible GC.
 424   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 425   current->set_vm_result_oop(result);
 426   JRT_BLOCK_END;
 427 
 428 
 429   // inform GC that we won't do card marks for initializing writes.
 430   SharedRuntime::on_slowpath_allocation_exit(current);
 431 
 432   oop result = current->vm_result_oop();
 433   if ((len > 0) && (result != nullptr) &&
 434       is_deoptimized_caller_frame(current)) {
 435     // Zero array here if the caller is deoptimized.
 436     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 437     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 438     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 439     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 440     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 441     if (!is_aligned(hs_bytes, BytesPerLong)) {
 442       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 443       hs_bytes += BytesPerInt;
 444     }
 445 
 446     // Optimized zeroing.
 447     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 448     const size_t aligned_hs = hs_bytes / BytesPerLong;
 449     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 450   }
 451 
 452 JRT_END
 453 
 454 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 455 
 456 // multianewarray for 2 dimensions
 457 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray2_C, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 458 #ifndef PRODUCT
 459   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 460 #endif
 461   assert(check_compiled_frame(current), "incorrect caller");
 462   assert(elem_type->is_klass(), "not a class");
 463   jint dims[2];
 464   dims[0] = len1;
 465   dims[1] = len2;
 466   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 467   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 468   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 469   current->set_vm_result_oop(obj);
 470 JRT_END
 471 
 472 // multianewarray for 3 dimensions
 473 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray3_C, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 474 #ifndef PRODUCT
 475   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 476 #endif
 477   assert(check_compiled_frame(current), "incorrect caller");
 478   assert(elem_type->is_klass(), "not a class");
 479   jint dims[3];
 480   dims[0] = len1;
 481   dims[1] = len2;
 482   dims[2] = len3;
 483   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 484   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 485   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 486   current->set_vm_result_oop(obj);
 487 JRT_END
 488 
 489 // multianewarray for 4 dimensions
 490 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray4_C, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 491 #ifndef PRODUCT
 492   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 493 #endif
 494   assert(check_compiled_frame(current), "incorrect caller");
 495   assert(elem_type->is_klass(), "not a class");
 496   jint dims[4];
 497   dims[0] = len1;
 498   dims[1] = len2;
 499   dims[2] = len3;
 500   dims[3] = len4;
 501   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 502   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 503   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 504   current->set_vm_result_oop(obj);
 505 JRT_END
 506 
 507 // multianewarray for 5 dimensions
 508 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 509 #ifndef PRODUCT
 510   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 511 #endif
 512   assert(check_compiled_frame(current), "incorrect caller");
 513   assert(elem_type->is_klass(), "not a class");
 514   jint dims[5];
 515   dims[0] = len1;
 516   dims[1] = len2;
 517   dims[2] = len3;
 518   dims[3] = len4;
 519   dims[4] = len5;
 520   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 521   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 522   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 523   current->set_vm_result_oop(obj);
 524 JRT_END
 525 
 526 JRT_ENTRY_PROF(void, OptoRuntime, multianewarrayN_C, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 527   assert(check_compiled_frame(current), "incorrect caller");
 528   assert(elem_type->is_klass(), "not a class");
 529   assert(oop(dims)->is_typeArray(), "not an array");
 530 
 531   ResourceMark rm;
 532   jint len = dims->length();
 533   assert(len > 0, "Dimensions array should contain data");
 534   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 535   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 536                                        c_dims, len);
 537 
 538   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 539   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 540   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 541   current->set_vm_result_oop(obj);
 542 JRT_END
 543 
 544 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notify_C, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 545 
 546   // Very few notify/notifyAll operations find any threads on the waitset, so
 547   // the dominant fast-path is to simply return.
 548   // Relatedly, it's critical that notify/notifyAll be fast in order to
 549   // reduce lock hold times.
 550   if (!SafepointSynchronize::is_synchronizing()) {
 551     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 552       return;
 553     }
 554   }
 555 
 556   // This is the case the fast-path above isn't provisioned to handle.
 557   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 558   // (The fast-path is just a degenerate variant of the slow-path).
 559   // Perform the dreaded state transition and pass control into the slow-path.
 560   JRT_BLOCK;
 561   Handle h_obj(current, obj);
 562   ObjectSynchronizer::notify(h_obj, CHECK);
 563   JRT_BLOCK_END;
 564 JRT_END
 565 
 566 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notifyAll_C, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 567 
 568   if (!SafepointSynchronize::is_synchronizing() ) {
 569     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 570       return;
 571     }
 572   }
 573 
 574   // This is the case the fast-path above isn't provisioned to handle.
 575   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 576   // (The fast-path is just a degenerate variant of the slow-path).
 577   // Perform the dreaded state transition and pass control into the slow-path.
 578   JRT_BLOCK;
 579   Handle h_obj(current, obj);
 580   ObjectSynchronizer::notifyall(h_obj, CHECK);
 581   JRT_BLOCK_END;
 582 JRT_END
 583 
 584 static const TypeFunc* make_new_instance_Type() {
 585   // create input type (domain)
 586   const Type **fields = TypeTuple::fields(1);
 587   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 588   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 589 
 590   // create result type (range)
 591   fields = TypeTuple::fields(1);
 592   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 593 
 594   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 595 
 596   return TypeFunc::make(domain, range);
 597 }
 598 
 599 #if INCLUDE_JVMTI
 600 static const TypeFunc* make_notify_jvmti_vthread_Type() {
 601   // create input type (domain)
 602   const Type **fields = TypeTuple::fields(2);
 603   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 604   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 605   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 606 
 607   // no result type needed
 608   fields = TypeTuple::fields(1);
 609   fields[TypeFunc::Parms+0] = nullptr; // void
 610   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 611 
 612   return TypeFunc::make(domain,range);
 613 }
 614 #endif
 615 
 616 static const TypeFunc* make_athrow_Type() {
 617   // create input type (domain)
 618   const Type **fields = TypeTuple::fields(1);
 619   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 620   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 621 
 622   // create result type (range)
 623   fields = TypeTuple::fields(0);
 624 
 625   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 626 
 627   return TypeFunc::make(domain, range);
 628 }
 629 
 630 static const TypeFunc* make_new_array_Type() {
 631   // create input type (domain)
 632   const Type **fields = TypeTuple::fields(2);
 633   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 634   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 635   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 636 
 637   // create result type (range)
 638   fields = TypeTuple::fields(1);
 639   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 640 
 641   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 642 
 643   return TypeFunc::make(domain, range);
 644 }
 645 
 646 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
 647   // create input type (domain)
 648   const int nargs = ndim + 1;
 649   const Type **fields = TypeTuple::fields(nargs);
 650   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 651   for( int i = 1; i < nargs; i++ )
 652     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 653   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 654 
 655   // create result type (range)
 656   fields = TypeTuple::fields(1);
 657   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 658   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 659 
 660   return TypeFunc::make(domain, range);
 661 }
 662 
 663 static const TypeFunc* make_multianewarrayN_Type() {
 664   // create input type (domain)
 665   const Type **fields = TypeTuple::fields(2);
 666   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 667   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 668   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 669 
 670   // create result type (range)
 671   fields = TypeTuple::fields(1);
 672   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 673   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 674 
 675   return TypeFunc::make(domain, range);
 676 }
 677 
 678 static const TypeFunc* make_uncommon_trap_Type() {
 679   // create input type (domain)
 680   const Type **fields = TypeTuple::fields(1);
 681   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 682   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 683 
 684   // create result type (range)
 685   fields = TypeTuple::fields(0);
 686   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 687 
 688   return TypeFunc::make(domain, range);
 689 }
 690 
 691 //-----------------------------------------------------------------------------
 692 // Monitor Handling
 693 
 694 static const TypeFunc* make_complete_monitor_enter_Type() {
 695   // create input type (domain)
 696   const Type **fields = TypeTuple::fields(2);
 697   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 698   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 699   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 700 
 701   // create result type (range)
 702   fields = TypeTuple::fields(0);
 703 
 704   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 705 
 706   return TypeFunc::make(domain,range);
 707 }
 708 
 709 //-----------------------------------------------------------------------------
 710 
 711 static const TypeFunc* make_complete_monitor_exit_Type() {
 712   // create input type (domain)
 713   const Type **fields = TypeTuple::fields(3);
 714   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 715   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 716   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 717   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 718 
 719   // create result type (range)
 720   fields = TypeTuple::fields(0);
 721 
 722   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 723 
 724   return TypeFunc::make(domain, range);
 725 }
 726 
 727 static const TypeFunc* make_monitor_notify_Type() {
 728   // create input type (domain)
 729   const Type **fields = TypeTuple::fields(1);
 730   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 731   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 732 
 733   // create result type (range)
 734   fields = TypeTuple::fields(0);
 735   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 736   return TypeFunc::make(domain, range);
 737 }
 738 
 739 static const TypeFunc* make_flush_windows_Type() {
 740   // create input type (domain)
 741   const Type** fields = TypeTuple::fields(1);
 742   fields[TypeFunc::Parms+0] = nullptr; // void
 743   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 744 
 745   // create result type
 746   fields = TypeTuple::fields(1);
 747   fields[TypeFunc::Parms+0] = nullptr; // void
 748   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 749 
 750   return TypeFunc::make(domain, range);
 751 }
 752 
 753 static const TypeFunc* make_l2f_Type() {
 754   // create input type (domain)
 755   const Type **fields = TypeTuple::fields(2);
 756   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 757   fields[TypeFunc::Parms+1] = Type::HALF;
 758   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 759 
 760   // create result type (range)
 761   fields = TypeTuple::fields(1);
 762   fields[TypeFunc::Parms+0] = Type::FLOAT;
 763   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 764 
 765   return TypeFunc::make(domain, range);
 766 }
 767 
 768 static const TypeFunc* make_modf_Type() {
 769   const Type **fields = TypeTuple::fields(2);
 770   fields[TypeFunc::Parms+0] = Type::FLOAT;
 771   fields[TypeFunc::Parms+1] = Type::FLOAT;
 772   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 773 
 774   // create result type (range)
 775   fields = TypeTuple::fields(1);
 776   fields[TypeFunc::Parms+0] = Type::FLOAT;
 777 
 778   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 779 
 780   return TypeFunc::make(domain, range);
 781 }
 782 
 783 static const TypeFunc* make_Math_D_D_Type() {
 784   // create input type (domain)
 785   const Type **fields = TypeTuple::fields(2);
 786   // Symbol* name of class to be loaded
 787   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 788   fields[TypeFunc::Parms+1] = Type::HALF;
 789   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 790 
 791   // create result type (range)
 792   fields = TypeTuple::fields(2);
 793   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 794   fields[TypeFunc::Parms+1] = Type::HALF;
 795   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 796 
 797   return TypeFunc::make(domain, range);
 798 }
 799 
 800 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 801   // create input type (domain)
 802   const Type **fields = TypeTuple::fields(num_arg);
 803   // Symbol* name of class to be loaded
 804   assert(num_arg > 0, "must have at least 1 input");
 805   for (uint i = 0; i < num_arg; i++) {
 806     fields[TypeFunc::Parms+i] = in_type;
 807   }
 808   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 809 
 810   // create result type (range)
 811   const uint num_ret = 1;
 812   fields = TypeTuple::fields(num_ret);
 813   fields[TypeFunc::Parms+0] = out_type;
 814   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 815 
 816   return TypeFunc::make(domain, range);
 817 }
 818 
 819 static const TypeFunc* make_Math_DD_D_Type() {
 820   const Type **fields = TypeTuple::fields(4);
 821   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 822   fields[TypeFunc::Parms+1] = Type::HALF;
 823   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 824   fields[TypeFunc::Parms+3] = Type::HALF;
 825   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 826 
 827   // create result type (range)
 828   fields = TypeTuple::fields(2);
 829   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 830   fields[TypeFunc::Parms+1] = Type::HALF;
 831   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 832 
 833   return TypeFunc::make(domain, range);
 834 }
 835 
 836 //-------------- currentTimeMillis, currentTimeNanos, etc
 837 
 838 static const TypeFunc* make_void_long_Type() {
 839   // create input type (domain)
 840   const Type **fields = TypeTuple::fields(0);
 841   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 842 
 843   // create result type (range)
 844   fields = TypeTuple::fields(2);
 845   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 846   fields[TypeFunc::Parms+1] = Type::HALF;
 847   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 848 
 849   return TypeFunc::make(domain, range);
 850 }
 851 
 852 static const TypeFunc* make_void_void_Type() {
 853   // create input type (domain)
 854   const Type **fields = TypeTuple::fields(0);
 855   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 856 
 857   // create result type (range)
 858   fields = TypeTuple::fields(0);
 859   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 860   return TypeFunc::make(domain, range);
 861 }
 862 
 863 static const TypeFunc* make_jfr_write_checkpoint_Type() {
 864   // create input type (domain)
 865   const Type **fields = TypeTuple::fields(0);
 866   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 867 
 868   // create result type (range)
 869   fields = TypeTuple::fields(1);
 870   fields[TypeFunc::Parms] = TypeInstPtr::BOTTOM;
 871   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 872   return TypeFunc::make(domain, range);
 873 }
 874 
 875 
 876 // Takes as parameters:
 877 // void *dest
 878 // long size
 879 // uchar byte
 880 
 881 static const TypeFunc* make_setmemory_Type() {
 882   // create input type (domain)
 883   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 884   const Type** fields = TypeTuple::fields(argcnt);
 885   int argp = TypeFunc::Parms;
 886   fields[argp++] = TypePtr::NOTNULL;        // dest
 887   fields[argp++] = TypeX_X;                 // size
 888   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 889   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 890   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 891   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 892 
 893   // no result type needed
 894   fields = TypeTuple::fields(1);
 895   fields[TypeFunc::Parms+0] = nullptr; // void
 896   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 897   return TypeFunc::make(domain, range);
 898 }
 899 
 900 // arraycopy stub variations:
 901 enum ArrayCopyType {
 902   ac_fast,                      // void(ptr, ptr, size_t)
 903   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 904   ac_slow,                      // void(ptr, int, ptr, int, int)
 905   ac_generic                    //  int(ptr, int, ptr, int, int)
 906 };
 907 
 908 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 909   // create input type (domain)
 910   int num_args      = (act == ac_fast ? 3 : 5);
 911   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 912   int argcnt = num_args;
 913   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 914   const Type** fields = TypeTuple::fields(argcnt);
 915   int argp = TypeFunc::Parms;
 916   fields[argp++] = TypePtr::NOTNULL;    // src
 917   if (num_size_args == 0) {
 918     fields[argp++] = TypeInt::INT;      // src_pos
 919   }
 920   fields[argp++] = TypePtr::NOTNULL;    // dest
 921   if (num_size_args == 0) {
 922     fields[argp++] = TypeInt::INT;      // dest_pos
 923     fields[argp++] = TypeInt::INT;      // length
 924   }
 925   while (num_size_args-- > 0) {
 926     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 927     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 928   }
 929   if (act == ac_checkcast) {
 930     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 931   }
 932   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 933   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 934 
 935   // create result type if needed
 936   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 937   fields = TypeTuple::fields(1);
 938   if (retcnt == 0)
 939     fields[TypeFunc::Parms+0] = nullptr; // void
 940   else
 941     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 942   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 943   return TypeFunc::make(domain, range);
 944 }
 945 
 946 static const TypeFunc* make_array_fill_Type() {
 947   const Type** fields;
 948   int argp = TypeFunc::Parms;
 949   // create input type (domain): pointer, int, size_t
 950   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 951   fields[argp++] = TypePtr::NOTNULL;
 952   fields[argp++] = TypeInt::INT;
 953   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 954   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 955   const TypeTuple *domain = TypeTuple::make(argp, fields);
 956 
 957   // create result type
 958   fields = TypeTuple::fields(1);
 959   fields[TypeFunc::Parms+0] = nullptr; // void
 960   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 961 
 962   return TypeFunc::make(domain, range);
 963 }
 964 
 965 static const TypeFunc* make_array_partition_Type() {
 966   // create input type (domain)
 967   int num_args = 7;
 968   int argcnt = num_args;
 969   const Type** fields = TypeTuple::fields(argcnt);
 970   int argp = TypeFunc::Parms;
 971   fields[argp++] = TypePtr::NOTNULL;  // array
 972   fields[argp++] = TypeInt::INT;      // element type
 973   fields[argp++] = TypeInt::INT;      // low
 974   fields[argp++] = TypeInt::INT;      // end
 975   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 976   fields[argp++] = TypeInt::INT;      // indexPivot1
 977   fields[argp++] = TypeInt::INT;      // indexPivot2
 978   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 979   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 980 
 981   // no result type needed
 982   fields = TypeTuple::fields(1);
 983   fields[TypeFunc::Parms+0] = nullptr; // void
 984   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 985   return TypeFunc::make(domain, range);
 986 }
 987 
 988 static const TypeFunc* make_array_sort_Type() {
 989   // create input type (domain)
 990   int num_args      = 4;
 991   int argcnt = num_args;
 992   const Type** fields = TypeTuple::fields(argcnt);
 993   int argp = TypeFunc::Parms;
 994   fields[argp++] = TypePtr::NOTNULL;    // array
 995   fields[argp++] = TypeInt::INT;    // element type
 996   fields[argp++] = TypeInt::INT;    // fromIndex
 997   fields[argp++] = TypeInt::INT;    // toIndex
 998   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 999   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1000 
1001   // no result type needed
1002   fields = TypeTuple::fields(1);
1003   fields[TypeFunc::Parms+0] = nullptr; // void
1004   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1005   return TypeFunc::make(domain, range);
1006 }
1007 
1008 static const TypeFunc* make_aescrypt_block_Type() {
1009   // create input type (domain)
1010   int num_args      = 3;
1011   int argcnt = num_args;
1012   const Type** fields = TypeTuple::fields(argcnt);
1013   int argp = TypeFunc::Parms;
1014   fields[argp++] = TypePtr::NOTNULL;    // src
1015   fields[argp++] = TypePtr::NOTNULL;    // dest
1016   fields[argp++] = TypePtr::NOTNULL;    // k array
1017   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1018   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1019 
1020   // no result type needed
1021   fields = TypeTuple::fields(1);
1022   fields[TypeFunc::Parms+0] = nullptr; // void
1023   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1024   return TypeFunc::make(domain, range);
1025 }
1026 
1027 static const TypeFunc* make_updateBytesCRC32_Type() {
1028   // create input type (domain)
1029   int num_args      = 3;
1030   int argcnt = num_args;
1031   const Type** fields = TypeTuple::fields(argcnt);
1032   int argp = TypeFunc::Parms;
1033   fields[argp++] = TypeInt::INT;        // crc
1034   fields[argp++] = TypePtr::NOTNULL;    // src
1035   fields[argp++] = TypeInt::INT;        // len
1036   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1037   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1038 
1039   // result type needed
1040   fields = TypeTuple::fields(1);
1041   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1042   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1043   return TypeFunc::make(domain, range);
1044 }
1045 
1046 static const TypeFunc* make_updateBytesCRC32C_Type() {
1047   // create input type (domain)
1048   int num_args      = 4;
1049   int argcnt = num_args;
1050   const Type** fields = TypeTuple::fields(argcnt);
1051   int argp = TypeFunc::Parms;
1052   fields[argp++] = TypeInt::INT;        // crc
1053   fields[argp++] = TypePtr::NOTNULL;    // buf
1054   fields[argp++] = TypeInt::INT;        // len
1055   fields[argp++] = TypePtr::NOTNULL;    // table
1056   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1057   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1058 
1059   // result type needed
1060   fields = TypeTuple::fields(1);
1061   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1062   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1063   return TypeFunc::make(domain, range);
1064 }
1065 
1066 static const TypeFunc* make_updateBytesAdler32_Type() {
1067   // create input type (domain)
1068   int num_args      = 3;
1069   int argcnt = num_args;
1070   const Type** fields = TypeTuple::fields(argcnt);
1071   int argp = TypeFunc::Parms;
1072   fields[argp++] = TypeInt::INT;        // crc
1073   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1074   fields[argp++] = TypeInt::INT;        // len
1075   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1076   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1077 
1078   // result type needed
1079   fields = TypeTuple::fields(1);
1080   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1081   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1082   return TypeFunc::make(domain, range);
1083 }
1084 
1085 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() {
1086   // create input type (domain)
1087   int num_args      = 5;
1088   int argcnt = num_args;
1089   const Type** fields = TypeTuple::fields(argcnt);
1090   int argp = TypeFunc::Parms;
1091   fields[argp++] = TypePtr::NOTNULL;    // src
1092   fields[argp++] = TypePtr::NOTNULL;    // dest
1093   fields[argp++] = TypePtr::NOTNULL;    // k array
1094   fields[argp++] = TypePtr::NOTNULL;    // r array
1095   fields[argp++] = TypeInt::INT;        // src len
1096   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1097   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1098 
1099   // returning cipher len (int)
1100   fields = TypeTuple::fields(1);
1101   fields[TypeFunc::Parms+0] = TypeInt::INT;
1102   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1103   return TypeFunc::make(domain, range);
1104 }
1105 
1106 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() {
1107   // create input type (domain)
1108   int num_args = 4;
1109   int argcnt = num_args;
1110   const Type** fields = TypeTuple::fields(argcnt);
1111   int argp = TypeFunc::Parms;
1112   fields[argp++] = TypePtr::NOTNULL;    // src
1113   fields[argp++] = TypePtr::NOTNULL;    // dest
1114   fields[argp++] = TypePtr::NOTNULL;    // k array
1115   fields[argp++] = TypeInt::INT;        // src len
1116   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1117   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1118 
1119   // returning cipher len (int)
1120   fields = TypeTuple::fields(1);
1121   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1122   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1123   return TypeFunc::make(domain, range);
1124 }
1125 
1126 static const TypeFunc* make_counterMode_aescrypt_Type() {
1127   // create input type (domain)
1128   int num_args = 7;
1129   int argcnt = num_args;
1130   const Type** fields = TypeTuple::fields(argcnt);
1131   int argp = TypeFunc::Parms;
1132   fields[argp++] = TypePtr::NOTNULL; // src
1133   fields[argp++] = TypePtr::NOTNULL; // dest
1134   fields[argp++] = TypePtr::NOTNULL; // k array
1135   fields[argp++] = TypePtr::NOTNULL; // counter array
1136   fields[argp++] = TypeInt::INT; // src len
1137   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1138   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1139   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1140   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1141   // returning cipher len (int)
1142   fields = TypeTuple::fields(1);
1143   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1144   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1145   return TypeFunc::make(domain, range);
1146 }
1147 
1148 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() {
1149   // create input type (domain)
1150   int num_args = 8;
1151   int argcnt = num_args;
1152   const Type** fields = TypeTuple::fields(argcnt);
1153   int argp = TypeFunc::Parms;
1154   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1155   fields[argp++] = TypeInt::INT;     // int len
1156   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1157   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1158   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1159   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1160   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1161   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1162 
1163   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1164   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1165   // returning cipher len (int)
1166   fields = TypeTuple::fields(1);
1167   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1168   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1169   return TypeFunc::make(domain, range);
1170 }
1171 
1172 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) {
1173   // create input type (domain)
1174   int num_args = is_sha3 ? 3 : 2;
1175   int argcnt = num_args;
1176   const Type** fields = TypeTuple::fields(argcnt);
1177   int argp = TypeFunc::Parms;
1178   fields[argp++] = TypePtr::NOTNULL; // buf
1179   fields[argp++] = TypePtr::NOTNULL; // state
1180   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1181   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1182   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1183 
1184   // no result type needed
1185   fields = TypeTuple::fields(1);
1186   fields[TypeFunc::Parms+0] = nullptr; // void
1187   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1188   return TypeFunc::make(domain, range);
1189 }
1190 
1191 /*
1192  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1193  */
1194 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) {
1195   // create input type (domain)
1196   int num_args = is_sha3 ? 5 : 4;
1197   int argcnt = num_args;
1198   const Type** fields = TypeTuple::fields(argcnt);
1199   int argp = TypeFunc::Parms;
1200   fields[argp++] = TypePtr::NOTNULL; // buf
1201   fields[argp++] = TypePtr::NOTNULL; // state
1202   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1203   fields[argp++] = TypeInt::INT;     // ofs
1204   fields[argp++] = TypeInt::INT;     // limit
1205   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1206   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1207 
1208   // returning ofs (int)
1209   fields = TypeTuple::fields(1);
1210   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1211   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1212   return TypeFunc::make(domain, range);
1213 }
1214 
1215 // SHAKE128Parallel doubleKeccak function
1216 static const TypeFunc* make_double_keccak_Type() {
1217     int argcnt = 2;
1218 
1219     const Type** fields = TypeTuple::fields(argcnt);
1220     int argp = TypeFunc::Parms;
1221     fields[argp++] = TypePtr::NOTNULL;      // status0
1222     fields[argp++] = TypePtr::NOTNULL;      // status1
1223 
1224     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1225     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1226 
1227     // result type needed
1228     fields = TypeTuple::fields(1);
1229     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1230     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1231     return TypeFunc::make(domain, range);
1232 }
1233 
1234 static const TypeFunc* make_multiplyToLen_Type() {
1235   // create input type (domain)
1236   int num_args      = 5;
1237   int argcnt = num_args;
1238   const Type** fields = TypeTuple::fields(argcnt);
1239   int argp = TypeFunc::Parms;
1240   fields[argp++] = TypePtr::NOTNULL;    // x
1241   fields[argp++] = TypeInt::INT;        // xlen
1242   fields[argp++] = TypePtr::NOTNULL;    // y
1243   fields[argp++] = TypeInt::INT;        // ylen
1244   fields[argp++] = TypePtr::NOTNULL;    // z
1245   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1246   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1247 
1248   // no result type needed
1249   fields = TypeTuple::fields(1);
1250   fields[TypeFunc::Parms+0] = nullptr;
1251   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1252   return TypeFunc::make(domain, range);
1253 }
1254 
1255 static const TypeFunc* make_squareToLen_Type() {
1256   // create input type (domain)
1257   int num_args      = 4;
1258   int argcnt = num_args;
1259   const Type** fields = TypeTuple::fields(argcnt);
1260   int argp = TypeFunc::Parms;
1261   fields[argp++] = TypePtr::NOTNULL;    // x
1262   fields[argp++] = TypeInt::INT;        // len
1263   fields[argp++] = TypePtr::NOTNULL;    // z
1264   fields[argp++] = TypeInt::INT;        // zlen
1265   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1266   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1267 
1268   // no result type needed
1269   fields = TypeTuple::fields(1);
1270   fields[TypeFunc::Parms+0] = nullptr;
1271   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1272   return TypeFunc::make(domain, range);
1273 }
1274 
1275 static const TypeFunc* make_mulAdd_Type() {
1276   // create input type (domain)
1277   int num_args      = 5;
1278   int argcnt = num_args;
1279   const Type** fields = TypeTuple::fields(argcnt);
1280   int argp = TypeFunc::Parms;
1281   fields[argp++] = TypePtr::NOTNULL;    // out
1282   fields[argp++] = TypePtr::NOTNULL;    // in
1283   fields[argp++] = TypeInt::INT;        // offset
1284   fields[argp++] = TypeInt::INT;        // len
1285   fields[argp++] = TypeInt::INT;        // k
1286   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1287   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1288 
1289   // returning carry (int)
1290   fields = TypeTuple::fields(1);
1291   fields[TypeFunc::Parms+0] = TypeInt::INT;
1292   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1293   return TypeFunc::make(domain, range);
1294 }
1295 
1296 static const TypeFunc* make_montgomeryMultiply_Type() {
1297   // create input type (domain)
1298   int num_args      = 7;
1299   int argcnt = num_args;
1300   const Type** fields = TypeTuple::fields(argcnt);
1301   int argp = TypeFunc::Parms;
1302   fields[argp++] = TypePtr::NOTNULL;    // a
1303   fields[argp++] = TypePtr::NOTNULL;    // b
1304   fields[argp++] = TypePtr::NOTNULL;    // n
1305   fields[argp++] = TypeInt::INT;        // len
1306   fields[argp++] = TypeLong::LONG;      // inv
1307   fields[argp++] = Type::HALF;
1308   fields[argp++] = TypePtr::NOTNULL;    // result
1309   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1310   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1311 
1312   // result type needed
1313   fields = TypeTuple::fields(1);
1314   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1315 
1316   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1317   return TypeFunc::make(domain, range);
1318 }
1319 
1320 static const TypeFunc* make_montgomerySquare_Type() {
1321   // create input type (domain)
1322   int num_args      = 6;
1323   int argcnt = num_args;
1324   const Type** fields = TypeTuple::fields(argcnt);
1325   int argp = TypeFunc::Parms;
1326   fields[argp++] = TypePtr::NOTNULL;    // a
1327   fields[argp++] = TypePtr::NOTNULL;    // n
1328   fields[argp++] = TypeInt::INT;        // len
1329   fields[argp++] = TypeLong::LONG;      // inv
1330   fields[argp++] = Type::HALF;
1331   fields[argp++] = TypePtr::NOTNULL;    // result
1332   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1333   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1334 
1335   // result type needed
1336   fields = TypeTuple::fields(1);
1337   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1338 
1339   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1340   return TypeFunc::make(domain, range);
1341 }
1342 
1343 static const TypeFunc* make_bigIntegerShift_Type() {
1344   int argcnt = 5;
1345   const Type** fields = TypeTuple::fields(argcnt);
1346   int argp = TypeFunc::Parms;
1347   fields[argp++] = TypePtr::NOTNULL;    // newArr
1348   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1349   fields[argp++] = TypeInt::INT;        // newIdx
1350   fields[argp++] = TypeInt::INT;        // shiftCount
1351   fields[argp++] = TypeInt::INT;        // numIter
1352   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1353   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1354 
1355   // no result type needed
1356   fields = TypeTuple::fields(1);
1357   fields[TypeFunc::Parms + 0] = nullptr;
1358   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1359   return TypeFunc::make(domain, range);
1360 }
1361 
1362 static const TypeFunc* make_vectorizedMismatch_Type() {
1363   // create input type (domain)
1364   int num_args = 4;
1365   int argcnt = num_args;
1366   const Type** fields = TypeTuple::fields(argcnt);
1367   int argp = TypeFunc::Parms;
1368   fields[argp++] = TypePtr::NOTNULL;    // obja
1369   fields[argp++] = TypePtr::NOTNULL;    // objb
1370   fields[argp++] = TypeInt::INT;        // length, number of elements
1371   fields[argp++] = TypeInt::INT;        // log2scale, element size
1372   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1373   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1374 
1375   //return mismatch index (int)
1376   fields = TypeTuple::fields(1);
1377   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1378   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1379   return TypeFunc::make(domain, range);
1380 }
1381 
1382 static const TypeFunc* make_ghash_processBlocks_Type() {
1383   int argcnt = 4;
1384 
1385   const Type** fields = TypeTuple::fields(argcnt);
1386   int argp = TypeFunc::Parms;
1387   fields[argp++] = TypePtr::NOTNULL;    // state
1388   fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1389   fields[argp++] = TypePtr::NOTNULL;    // data
1390   fields[argp++] = TypeInt::INT;        // blocks
1391   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1392   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1393 
1394   // result type needed
1395   fields = TypeTuple::fields(1);
1396   fields[TypeFunc::Parms+0] = nullptr; // void
1397   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1398   return TypeFunc::make(domain, range);
1399 }
1400 
1401 static const TypeFunc* make_chacha20Block_Type() {
1402   int argcnt = 2;
1403 
1404   const Type** fields = TypeTuple::fields(argcnt);
1405   int argp = TypeFunc::Parms;
1406   fields[argp++] = TypePtr::NOTNULL;      // state
1407   fields[argp++] = TypePtr::NOTNULL;      // result
1408 
1409   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1410   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1411 
1412   // result type needed
1413   fields = TypeTuple::fields(1);
1414   fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1415   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1416   return TypeFunc::make(domain, range);
1417 }
1418 
1419 // Kyber NTT function
1420 static const TypeFunc* make_kyberNtt_Type() {
1421     int argcnt = 2;
1422 
1423     const Type** fields = TypeTuple::fields(argcnt);
1424     int argp = TypeFunc::Parms;
1425     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1426     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1427 
1428     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1429     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1430 
1431     // result type needed
1432     fields = TypeTuple::fields(1);
1433     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1434     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1435     return TypeFunc::make(domain, range);
1436 }
1437 
1438 // Kyber inverse NTT function
1439 static const TypeFunc* make_kyberInverseNtt_Type() {
1440     int argcnt = 2;
1441 
1442     const Type** fields = TypeTuple::fields(argcnt);
1443     int argp = TypeFunc::Parms;
1444     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1445     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1446 
1447     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1448     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1449 
1450     // result type needed
1451     fields = TypeTuple::fields(1);
1452     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1453     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1454     return TypeFunc::make(domain, range);
1455 }
1456 
1457 // Kyber NTT multiply function
1458 static const TypeFunc* make_kyberNttMult_Type() {
1459     int argcnt = 4;
1460 
1461     const Type** fields = TypeTuple::fields(argcnt);
1462     int argp = TypeFunc::Parms;
1463     fields[argp++] = TypePtr::NOTNULL;      // result
1464     fields[argp++] = TypePtr::NOTNULL;      // ntta
1465     fields[argp++] = TypePtr::NOTNULL;      // nttb
1466     fields[argp++] = TypePtr::NOTNULL;      // NTT multiply zetas
1467 
1468     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1469     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1470 
1471     // result type needed
1472     fields = TypeTuple::fields(1);
1473     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1474     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1475     return TypeFunc::make(domain, range);
1476 }
1477 
1478 // Kyber add 2 polynomials function
1479 static const TypeFunc* make_kyberAddPoly_2_Type() {
1480     int argcnt = 3;
1481 
1482     const Type** fields = TypeTuple::fields(argcnt);
1483     int argp = TypeFunc::Parms;
1484     fields[argp++] = TypePtr::NOTNULL;      // result
1485     fields[argp++] = TypePtr::NOTNULL;      // a
1486     fields[argp++] = TypePtr::NOTNULL;      // b
1487 
1488     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1489     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1490 
1491     // result type needed
1492     fields = TypeTuple::fields(1);
1493     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1494     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1495     return TypeFunc::make(domain, range);
1496 }
1497 
1498 
1499 // Kyber add 3 polynomials function
1500 static const TypeFunc* make_kyberAddPoly_3_Type() {
1501     int argcnt = 4;
1502 
1503     const Type** fields = TypeTuple::fields(argcnt);
1504     int argp = TypeFunc::Parms;
1505     fields[argp++] = TypePtr::NOTNULL;      // result
1506     fields[argp++] = TypePtr::NOTNULL;      // a
1507     fields[argp++] = TypePtr::NOTNULL;      // b
1508     fields[argp++] = TypePtr::NOTNULL;      // c
1509 
1510     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1511     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1512 
1513     // result type needed
1514     fields = TypeTuple::fields(1);
1515     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1516     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1517     return TypeFunc::make(domain, range);
1518 }
1519 
1520 
1521 // Kyber XOF output parsing into polynomial coefficients candidates
1522 // or decompress(12,...) function
1523 static const TypeFunc* make_kyber12To16_Type() {
1524     int argcnt = 4;
1525 
1526     const Type** fields = TypeTuple::fields(argcnt);
1527     int argp = TypeFunc::Parms;
1528     fields[argp++] = TypePtr::NOTNULL;      // condensed
1529     fields[argp++] = TypeInt::INT;          // condensedOffs
1530     fields[argp++] = TypePtr::NOTNULL;      // parsed
1531     fields[argp++] = TypeInt::INT;          // parsedLength
1532 
1533     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1534     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1535 
1536     // result type needed
1537     fields = TypeTuple::fields(1);
1538     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1539     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1540     return TypeFunc::make(domain, range);
1541 }
1542 
1543 // Kyber Barrett reduce function
1544 static const TypeFunc* make_kyberBarrettReduce_Type() {
1545     int argcnt = 1;
1546 
1547     const Type** fields = TypeTuple::fields(argcnt);
1548     int argp = TypeFunc::Parms;
1549     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1550 
1551     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1552     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1553 
1554     // result type needed
1555     fields = TypeTuple::fields(1);
1556     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1557     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1558     return TypeFunc::make(domain, range);
1559 }
1560 
1561 // Dilithium NTT function except for the final "normalization" to |coeff| < Q
1562 static const TypeFunc* make_dilithiumAlmostNtt_Type() {
1563     int argcnt = 2;
1564 
1565     const Type** fields = TypeTuple::fields(argcnt);
1566     int argp = TypeFunc::Parms;
1567     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1568     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1569 
1570     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1571     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1572 
1573     // result type needed
1574     fields = TypeTuple::fields(1);
1575     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1576     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1577     return TypeFunc::make(domain, range);
1578 }
1579 
1580 // Dilithium inverse NTT function except the final mod Q division by 2^256
1581 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() {
1582     int argcnt = 2;
1583 
1584     const Type** fields = TypeTuple::fields(argcnt);
1585     int argp = TypeFunc::Parms;
1586     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1587     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1588 
1589     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1590     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1591 
1592     // result type needed
1593     fields = TypeTuple::fields(1);
1594     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1595     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1596     return TypeFunc::make(domain, range);
1597 }
1598 
1599 // Dilithium NTT multiply function
1600 static const TypeFunc* make_dilithiumNttMult_Type() {
1601     int argcnt = 3;
1602 
1603     const Type** fields = TypeTuple::fields(argcnt);
1604     int argp = TypeFunc::Parms;
1605     fields[argp++] = TypePtr::NOTNULL;      // result
1606     fields[argp++] = TypePtr::NOTNULL;      // ntta
1607     fields[argp++] = TypePtr::NOTNULL;      // nttb
1608 
1609     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1610     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1611 
1612     // result type needed
1613     fields = TypeTuple::fields(1);
1614     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1615     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1616     return TypeFunc::make(domain, range);
1617 }
1618 
1619 // Dilithium Montgomery multiply a polynome coefficient array by a constant
1620 static const TypeFunc* make_dilithiumMontMulByConstant_Type() {
1621     int argcnt = 2;
1622 
1623     const Type** fields = TypeTuple::fields(argcnt);
1624     int argp = TypeFunc::Parms;
1625     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1626     fields[argp++] = TypeInt::INT;          // constant multiplier
1627 
1628     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1629     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1630 
1631     // result type needed
1632     fields = TypeTuple::fields(1);
1633     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1634     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1635     return TypeFunc::make(domain, range);
1636 }
1637 
1638 // Dilithium decompose polynomial
1639 static const TypeFunc* make_dilithiumDecomposePoly_Type() {
1640     int argcnt = 5;
1641 
1642     const Type** fields = TypeTuple::fields(argcnt);
1643     int argp = TypeFunc::Parms;
1644     fields[argp++] = TypePtr::NOTNULL;      // input
1645     fields[argp++] = TypePtr::NOTNULL;      // lowPart
1646     fields[argp++] = TypePtr::NOTNULL;      // highPart
1647     fields[argp++] = TypeInt::INT;          // 2 * gamma2
1648     fields[argp++] = TypeInt::INT;          // multiplier
1649 
1650     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1651     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1652 
1653     // result type needed
1654     fields = TypeTuple::fields(1);
1655     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1656     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1657     return TypeFunc::make(domain, range);
1658 }
1659 
1660 static const TypeFunc* make_base64_encodeBlock_Type() {
1661   int argcnt = 6;
1662 
1663   const Type** fields = TypeTuple::fields(argcnt);
1664   int argp = TypeFunc::Parms;
1665   fields[argp++] = TypePtr::NOTNULL;    // src array
1666   fields[argp++] = TypeInt::INT;        // offset
1667   fields[argp++] = TypeInt::INT;        // length
1668   fields[argp++] = TypePtr::NOTNULL;    // dest array
1669   fields[argp++] = TypeInt::INT;       // dp
1670   fields[argp++] = TypeInt::BOOL;       // isURL
1671   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1672   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1673 
1674   // result type needed
1675   fields = TypeTuple::fields(1);
1676   fields[TypeFunc::Parms + 0] = nullptr; // void
1677   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1678   return TypeFunc::make(domain, range);
1679 }
1680 
1681 static const TypeFunc* make_string_IndexOf_Type() {
1682   int argcnt = 4;
1683 
1684   const Type** fields = TypeTuple::fields(argcnt);
1685   int argp = TypeFunc::Parms;
1686   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1687   fields[argp++] = TypeInt::INT;        // haystack length
1688   fields[argp++] = TypePtr::NOTNULL;    // needle array
1689   fields[argp++] = TypeInt::INT;        // needle length
1690   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1691   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1692 
1693   // result type needed
1694   fields = TypeTuple::fields(1);
1695   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1696   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1697   return TypeFunc::make(domain, range);
1698 }
1699 
1700 static const TypeFunc* make_base64_decodeBlock_Type() {
1701   int argcnt = 7;
1702 
1703   const Type** fields = TypeTuple::fields(argcnt);
1704   int argp = TypeFunc::Parms;
1705   fields[argp++] = TypePtr::NOTNULL;    // src array
1706   fields[argp++] = TypeInt::INT;        // src offset
1707   fields[argp++] = TypeInt::INT;        // src length
1708   fields[argp++] = TypePtr::NOTNULL;    // dest array
1709   fields[argp++] = TypeInt::INT;        // dest offset
1710   fields[argp++] = TypeInt::BOOL;       // isURL
1711   fields[argp++] = TypeInt::BOOL;       // isMIME
1712   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1713   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1714 
1715   // result type needed
1716   fields = TypeTuple::fields(1);
1717   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1718   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1719   return TypeFunc::make(domain, range);
1720 }
1721 
1722 static const TypeFunc* make_poly1305_processBlocks_Type() {
1723   int argcnt = 4;
1724 
1725   const Type** fields = TypeTuple::fields(argcnt);
1726   int argp = TypeFunc::Parms;
1727   fields[argp++] = TypePtr::NOTNULL;    // input array
1728   fields[argp++] = TypeInt::INT;        // input length
1729   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1730   fields[argp++] = TypePtr::NOTNULL;    // r array
1731   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1732   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1733 
1734   // result type needed
1735   fields = TypeTuple::fields(1);
1736   fields[TypeFunc::Parms + 0] = nullptr; // void
1737   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1738   return TypeFunc::make(domain, range);
1739 }
1740 
1741 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() {
1742   int argcnt = 3;
1743 
1744   const Type** fields = TypeTuple::fields(argcnt);
1745   int argp = TypeFunc::Parms;
1746   fields[argp++] = TypePtr::NOTNULL;    // a array
1747   fields[argp++] = TypePtr::NOTNULL;    // b array
1748   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1749   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1750   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1751 
1752   // result type needed
1753   fields = TypeTuple::fields(1);
1754   fields[TypeFunc::Parms + 0] = nullptr; // void
1755   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1756   return TypeFunc::make(domain, range);
1757 }
1758 
1759 static const TypeFunc* make_intpoly_assign_Type() {
1760   int argcnt = 4;
1761 
1762   const Type** fields = TypeTuple::fields(argcnt);
1763   int argp = TypeFunc::Parms;
1764   fields[argp++] = TypeInt::INT;        // set flag
1765   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1766   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1767   fields[argp++] = TypeInt::INT;        // array length
1768   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1769   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1770 
1771   // result type needed
1772   fields = TypeTuple::fields(1);
1773   fields[TypeFunc::Parms + 0] = nullptr; // void
1774   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1775   return TypeFunc::make(domain, range);
1776 }
1777 
1778 //------------- Interpreter state for on stack replacement
1779 static const TypeFunc* make_osr_end_Type() {
1780   // create input type (domain)
1781   const Type **fields = TypeTuple::fields(1);
1782   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1783   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1784 
1785   // create result type
1786   fields = TypeTuple::fields(1);
1787   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1788   fields[TypeFunc::Parms+0] = nullptr; // void
1789   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1790   return TypeFunc::make(domain, range);
1791 }
1792 
1793 #ifndef PRODUCT
1794 static void debug_print_convert_type(const Type** fields, int* argp, Node *parm) {
1795   const BasicType bt = parm->bottom_type()->basic_type();
1796   fields[(*argp)++] = Type::get_const_basic_type(bt);
1797   if (bt == T_LONG || bt == T_DOUBLE) {
1798     fields[(*argp)++] = Type::HALF;
1799   }
1800 }
1801 
1802 static void update_arg_cnt(const Node* parm, int* arg_cnt) {
1803   (*arg_cnt)++;
1804   const BasicType bt = parm->bottom_type()->basic_type();
1805   if (bt == T_LONG || bt == T_DOUBLE) {
1806     (*arg_cnt)++;
1807   }
1808 }
1809 
1810 const TypeFunc* OptoRuntime::debug_print_Type(Node* parm0, Node* parm1,
1811                                         Node* parm2, Node* parm3,
1812                                         Node* parm4, Node* parm5,
1813                                         Node* parm6) {
1814   int argcnt = 1;
1815   if (parm0 != nullptr) { update_arg_cnt(parm0, &argcnt);
1816   if (parm1 != nullptr) { update_arg_cnt(parm1, &argcnt);
1817   if (parm2 != nullptr) { update_arg_cnt(parm2, &argcnt);
1818   if (parm3 != nullptr) { update_arg_cnt(parm3, &argcnt);
1819   if (parm4 != nullptr) { update_arg_cnt(parm4, &argcnt);
1820   if (parm5 != nullptr) { update_arg_cnt(parm5, &argcnt);
1821   if (parm6 != nullptr) { update_arg_cnt(parm6, &argcnt);
1822   /* close each nested if ===> */  } } } } } } }
1823 
1824   // create input type (domain)
1825   const Type** fields = TypeTuple::fields(argcnt);
1826   int argp = TypeFunc::Parms;
1827   fields[argp++] = TypePtr::NOTNULL;    // static string pointer
1828 
1829   if (parm0 != nullptr) { debug_print_convert_type(fields, &argp, parm0);
1830   if (parm1 != nullptr) { debug_print_convert_type(fields, &argp, parm1);
1831   if (parm2 != nullptr) { debug_print_convert_type(fields, &argp, parm2);
1832   if (parm3 != nullptr) { debug_print_convert_type(fields, &argp, parm3);
1833   if (parm4 != nullptr) { debug_print_convert_type(fields, &argp, parm4);
1834   if (parm5 != nullptr) { debug_print_convert_type(fields, &argp, parm5);
1835   if (parm6 != nullptr) { debug_print_convert_type(fields, &argp, parm6);
1836   /* close each nested if ===> */  } } } } } } }
1837 
1838   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1839   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1840 
1841   // no result type needed
1842   fields = TypeTuple::fields(1);
1843   fields[TypeFunc::Parms+0] = nullptr; // void
1844   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1845   return TypeFunc::make(domain, range);
1846 }
1847 #endif // PRODUCT
1848 
1849 //-------------------------------------------------------------------------------------
1850 // register policy
1851 
1852 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1853   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1854   switch (register_save_policy[reg]) {
1855     case 'C': return false; //SOC
1856     case 'E': return true ; //SOE
1857     case 'N': return false; //NS
1858     case 'A': return false; //AS
1859   }
1860   ShouldNotReachHere();
1861   return false;
1862 }
1863 
1864 //-----------------------------------------------------------------------
1865 // Exceptions
1866 //
1867 
1868 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1869 
1870 // The method is an entry that is always called by a C++ method not
1871 // directly from compiled code. Compiled code will call the C++ method following.
1872 // We can't allow async exception to be installed during  exception processing.
1873 JRT_ENTRY_NO_ASYNC_PROF(address, OptoRuntime, handle_exception_C_helper, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1874   // The frame we rethrow the exception to might not have been processed by the GC yet.
1875   // The stack watermark barrier takes care of detecting that and ensuring the frame
1876   // has updated oops.
1877   StackWatermarkSet::after_unwind(current);
1878 
1879   // Do not confuse exception_oop with pending_exception. The exception_oop
1880   // is only used to pass arguments into the method. Not for general
1881   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1882   // the runtime stubs checks this on exit.
1883   assert(current->exception_oop() != nullptr, "exception oop is found");
1884   address handler_address = nullptr;
1885 
1886   Handle exception(current, current->exception_oop());
1887   address pc = current->exception_pc();
1888 
1889   // Clear out the exception oop and pc since looking up an
1890   // exception handler can cause class loading, which might throw an
1891   // exception and those fields are expected to be clear during
1892   // normal bytecode execution.
1893   current->clear_exception_oop_and_pc();
1894 
1895   LogTarget(Info, exceptions) lt;
1896   if (lt.is_enabled()) {
1897     LogStream ls(lt);
1898     trace_exception(&ls, exception(), pc, "");
1899   }
1900 
1901   // for AbortVMOnException flag
1902   Exceptions::debug_check_abort(exception);
1903 
1904 #ifdef ASSERT
1905   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1906     // should throw an exception here
1907     ShouldNotReachHere();
1908   }
1909 #endif
1910 
1911   // new exception handling: this method is entered only from adapters
1912   // exceptions from compiled java methods are handled in compiled code
1913   // using rethrow node
1914 
1915   nm = CodeCache::find_nmethod(pc);
1916   assert(nm != nullptr, "No NMethod found");
1917   if (nm->is_native_method()) {
1918     fatal("Native method should not have path to exception handling");
1919   } else {
1920     // we are switching to old paradigm: search for exception handler in caller_frame
1921     // instead in exception handler of caller_frame.sender()
1922 
1923     if (JvmtiExport::can_post_on_exceptions()) {
1924       // "Full-speed catching" is not necessary here,
1925       // since we're notifying the VM on every catch.
1926       // Force deoptimization and the rest of the lookup
1927       // will be fine.
1928       deoptimize_caller_frame(current);
1929     }
1930 
1931     // Check the stack guard pages.  If enabled, look for handler in this frame;
1932     // otherwise, forcibly unwind the frame.
1933     //
1934     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1935     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1936     bool deopting = false;
1937     if (nm->is_deopt_pc(pc)) {
1938       deopting = true;
1939       RegisterMap map(current,
1940                       RegisterMap::UpdateMap::skip,
1941                       RegisterMap::ProcessFrames::include,
1942                       RegisterMap::WalkContinuation::skip);
1943       frame deoptee = current->last_frame().sender(&map);
1944       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1945       // Adjust the pc back to the original throwing pc
1946       pc = deoptee.pc();
1947     }
1948 
1949     // If we are forcing an unwind because of stack overflow then deopt is
1950     // irrelevant since we are throwing the frame away anyway.
1951 
1952     if (deopting && !force_unwind) {
1953       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1954     } else {
1955 
1956       handler_address =
1957         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1958 
1959       if (handler_address == nullptr) {
1960         bool recursive_exception = false;
1961         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1962         assert (handler_address != nullptr, "must have compiled handler");
1963         // Update the exception cache only when the unwind was not forced
1964         // and there didn't happen another exception during the computation of the
1965         // compiled exception handler. Checking for exception oop equality is not
1966         // sufficient because some exceptions are pre-allocated and reused.
1967         if (!force_unwind && !recursive_exception) {
1968           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1969         }
1970       } else {
1971 #ifdef ASSERT
1972         bool recursive_exception = false;
1973         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1974         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1975                  p2i(handler_address), p2i(computed_address));
1976 #endif
1977       }
1978     }
1979 
1980     current->set_exception_pc(pc);
1981     current->set_exception_handler_pc(handler_address);
1982   }
1983 
1984   // Restore correct return pc.  Was saved above.
1985   current->set_exception_oop(exception());
1986   return handler_address;
1987 
1988 JRT_END
1989 
1990 // We are entering here from exception_blob
1991 // If there is a compiled exception handler in this method, we will continue there;
1992 // otherwise we will unwind the stack and continue at the caller of top frame method
1993 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1994 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1995 // we looked up the handler for has been deoptimized in the meantime. If it has been
1996 // we must not use the handler and instead return the deopt blob.
1997 address OptoRuntime::handle_exception_C(JavaThread* current) {
1998 //
1999 // We are in Java not VM and in debug mode we have a NoHandleMark
2000 //
2001 #ifndef PRODUCT
2002   SharedRuntime::_find_handler_ctr++;          // find exception handler
2003 #endif
2004   DEBUG_ONLY(NoHandleMark __hm;)
2005   nmethod* nm = nullptr;
2006   address handler_address = nullptr;
2007   {
2008     // Enter the VM
2009 
2010     ResetNoHandleMark rnhm;
2011     handler_address = handle_exception_C_helper(current, nm);
2012   }
2013 
2014   // Back in java: Use no oops, DON'T safepoint
2015 
2016   // Now check to see if the handler we are returning is in a now
2017   // deoptimized frame
2018 
2019   if (nm != nullptr) {
2020     RegisterMap map(current,
2021                     RegisterMap::UpdateMap::skip,
2022                     RegisterMap::ProcessFrames::skip,
2023                     RegisterMap::WalkContinuation::skip);
2024     frame caller = current->last_frame().sender(&map);
2025 #ifdef ASSERT
2026     assert(caller.is_compiled_frame(), "must be");
2027 #endif // ASSERT
2028     if (caller.is_deoptimized_frame()) {
2029       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
2030     }
2031   }
2032   return handler_address;
2033 }
2034 
2035 //------------------------------rethrow----------------------------------------
2036 // We get here after compiled code has executed a 'RethrowNode'.  The callee
2037 // is either throwing or rethrowing an exception.  The callee-save registers
2038 // have been restored, synchronized objects have been unlocked and the callee
2039 // stack frame has been removed.  The return address was passed in.
2040 // Exception oop is passed as the 1st argument.  This routine is then called
2041 // from the stub.  On exit, we know where to jump in the caller's code.
2042 // After this C code exits, the stub will pop his frame and end in a jump
2043 // (instead of a return).  We enter the caller's default handler.
2044 //
2045 // This must be JRT_LEAF:
2046 //     - caller will not change its state as we cannot block on exit,
2047 //       therefore raw_exception_handler_for_return_address is all it takes
2048 //       to handle deoptimized blobs
2049 //
2050 // However, there needs to be a safepoint check in the middle!  So compiled
2051 // safepoints are completely watertight.
2052 //
2053 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
2054 //
2055 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
2056 //
2057 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
2058   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
2059   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
2060 
2061 #ifndef PRODUCT
2062   SharedRuntime::_rethrow_ctr++;               // count rethrows
2063 #endif
2064   assert (exception != nullptr, "should have thrown a NullPointerException");
2065 #ifdef ASSERT
2066   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
2067     // should throw an exception here
2068     ShouldNotReachHere();
2069   }
2070 #endif
2071 
2072   thread->set_vm_result_oop(exception);
2073   // Frame not compiled (handles deoptimization blob)
2074   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
2075 }
2076 
2077 static const TypeFunc* make_rethrow_Type() {
2078   // create input type (domain)
2079   const Type **fields = TypeTuple::fields(1);
2080   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2081   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2082 
2083   // create result type (range)
2084   fields = TypeTuple::fields(1);
2085   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2086   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
2087 
2088   return TypeFunc::make(domain, range);
2089 }
2090 
2091 
2092 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
2093   // Deoptimize the caller before continuing, as the compiled
2094   // exception handler table may not be valid.
2095   if (DeoptimizeOnAllocationException && doit) {
2096     deoptimize_caller_frame(thread);
2097   }
2098 }
2099 
2100 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
2101   // Called from within the owner thread, so no need for safepoint
2102   RegisterMap reg_map(thread,
2103                       RegisterMap::UpdateMap::include,
2104                       RegisterMap::ProcessFrames::include,
2105                       RegisterMap::WalkContinuation::skip);
2106   frame stub_frame = thread->last_frame();
2107   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2108   frame caller_frame = stub_frame.sender(&reg_map);
2109 
2110   // Deoptimize the caller frame.
2111   Deoptimization::deoptimize_frame(thread, caller_frame.id());
2112 }
2113 
2114 
2115 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
2116   // Called from within the owner thread, so no need for safepoint
2117   RegisterMap reg_map(thread,
2118                       RegisterMap::UpdateMap::include,
2119                       RegisterMap::ProcessFrames::include,
2120                       RegisterMap::WalkContinuation::skip);
2121   frame stub_frame = thread->last_frame();
2122   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2123   frame caller_frame = stub_frame.sender(&reg_map);
2124   return caller_frame.is_deoptimized_frame();
2125 }
2126 
2127 static const TypeFunc* make_register_finalizer_Type() {
2128   // create input type (domain)
2129   const Type **fields = TypeTuple::fields(1);
2130   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
2131   // // The JavaThread* is passed to each routine as the last argument
2132   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2133   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2134 
2135   // create result type (range)
2136   fields = TypeTuple::fields(0);
2137 
2138   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2139 
2140   return TypeFunc::make(domain,range);
2141 }
2142 
2143 const TypeFunc *OptoRuntime::class_init_barrier_Type() {
2144   // create input type (domain)
2145   const Type** fields = TypeTuple::fields(1);
2146   fields[TypeFunc::Parms+0] = TypeKlassPtr::NOTNULL;
2147   // // The JavaThread* is passed to each routine as the last argument
2148   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2149   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+1, fields);
2150 
2151   // create result type (range)
2152   fields = TypeTuple::fields(0);
2153   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
2154   return TypeFunc::make(domain,range);
2155 }
2156 
2157 #if INCLUDE_JFR
2158 static const TypeFunc* make_class_id_load_barrier_Type() {
2159   // create input type (domain)
2160   const Type **fields = TypeTuple::fields(1);
2161   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2162   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2163 
2164   // create result type (range)
2165   fields = TypeTuple::fields(0);
2166 
2167   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2168 
2169   return TypeFunc::make(domain,range);
2170 }
2171 #endif // INCLUDE_JFR
2172 
2173 //-----------------------------------------------------------------------------
2174 // runtime upcall support
2175 const TypeFunc *OptoRuntime::runtime_up_call_Type() {
2176   // create input type (domain)
2177   const Type **fields = TypeTuple::fields(1);
2178   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2179   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2180 
2181   // create result type (range)
2182   fields = TypeTuple::fields(0);
2183 
2184   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2185 
2186   return TypeFunc::make(domain,range);
2187 }
2188 
2189 //-----------------------------------------------------------------------------
2190 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2191   // create input type (domain)
2192   const Type **fields = TypeTuple::fields(2);
2193   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2194   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
2195   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2196 
2197   // create result type (range)
2198   fields = TypeTuple::fields(0);
2199 
2200   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2201 
2202   return TypeFunc::make(domain,range);
2203 }
2204 
2205 static const TypeFunc* make_dtrace_object_alloc_Type() {
2206   // create input type (domain)
2207   const Type **fields = TypeTuple::fields(2);
2208   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2209   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
2210 
2211   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2212 
2213   // create result type (range)
2214   fields = TypeTuple::fields(0);
2215 
2216   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2217 
2218   return TypeFunc::make(domain,range);
2219 }
2220 
2221 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, register_finalizer_C, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2222   assert(oopDesc::is_oop(obj), "must be a valid oop");
2223   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2224   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2225 JRT_END
2226 
2227 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, class_init_barrier_C, OptoRuntime::class_init_barrier_C(Klass* k, JavaThread* current))
2228   InstanceKlass* ik = InstanceKlass::cast(k);
2229   if (ik->should_be_initialized()) {
2230     ik->initialize(CHECK);
2231   } else if (UsePerfData) {
2232     _perf_OptoRuntime_class_init_barrier_redundant_count->inc();
2233   }
2234 JRT_END
2235 
2236 //-----------------------------------------------------------------------------
2237 
2238 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2239 
2240 //
2241 // dump the collected NamedCounters.
2242 //
2243 void OptoRuntime::print_named_counters() {
2244   int total_lock_count = 0;
2245   int eliminated_lock_count = 0;
2246 
2247   NamedCounter* c = _named_counters;
2248   while (c) {
2249     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
2250       int count = c->count();
2251       if (count > 0) {
2252         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
2253         if (Verbose) {
2254           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
2255         }
2256         total_lock_count += count;
2257         if (eliminated) {
2258           eliminated_lock_count += count;
2259         }
2260       }
2261     }
2262     c = c->next();
2263   }
2264   if (total_lock_count > 0) {
2265     tty->print_cr("dynamic locks: %d", total_lock_count);
2266     if (eliminated_lock_count) {
2267       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
2268                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
2269     }
2270   }
2271 }
2272 
2273 //
2274 //  Allocate a new NamedCounter.  The JVMState is used to generate the
2275 //  name which consists of method@line for the inlining tree.
2276 //
2277 
2278 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
2279   int max_depth = youngest_jvms->depth();
2280 
2281   // Visit scopes from youngest to oldest.
2282   bool first = true;
2283   stringStream st;
2284   for (int depth = max_depth; depth >= 1; depth--) {
2285     JVMState* jvms = youngest_jvms->of_depth(depth);
2286     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
2287     if (!first) {
2288       st.print(" ");
2289     } else {
2290       first = false;
2291     }
2292     int bci = jvms->bci();
2293     if (bci < 0) bci = 0;
2294     if (m != nullptr) {
2295       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
2296     } else {
2297       st.print("no method");
2298     }
2299     st.print("@%d", bci);
2300     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2301   }
2302   NamedCounter* c = new NamedCounter(st.freeze(), tag);
2303 
2304   // atomically add the new counter to the head of the list.  We only
2305   // add counters so this is safe.
2306   NamedCounter* head;
2307   do {
2308     c->set_next(nullptr);
2309     head = _named_counters;
2310     c->set_next(head);
2311   } while (AtomicAccess::cmpxchg(&_named_counters, head, c) != head);
2312   return c;
2313 }
2314 
2315 void OptoRuntime::initialize_types() {
2316   _new_instance_Type                  = make_new_instance_Type();
2317   _new_array_Type                     = make_new_array_Type();
2318   _multianewarray2_Type               = multianewarray_Type(2);
2319   _multianewarray3_Type               = multianewarray_Type(3);
2320   _multianewarray4_Type               = multianewarray_Type(4);
2321   _multianewarray5_Type               = multianewarray_Type(5);
2322   _multianewarrayN_Type               = make_multianewarrayN_Type();
2323   _complete_monitor_enter_Type        = make_complete_monitor_enter_Type();
2324   _complete_monitor_exit_Type         = make_complete_monitor_exit_Type();
2325   _monitor_notify_Type                = make_monitor_notify_Type();
2326   _uncommon_trap_Type                 = make_uncommon_trap_Type();
2327   _athrow_Type                        = make_athrow_Type();
2328   _rethrow_Type                       = make_rethrow_Type();
2329   _Math_D_D_Type                      = make_Math_D_D_Type();
2330   _Math_DD_D_Type                     = make_Math_DD_D_Type();
2331   _modf_Type                          = make_modf_Type();
2332   _l2f_Type                           = make_l2f_Type();
2333   _void_long_Type                     = make_void_long_Type();
2334   _void_void_Type                     = make_void_void_Type();
2335   _jfr_write_checkpoint_Type          = make_jfr_write_checkpoint_Type();
2336   _flush_windows_Type                 = make_flush_windows_Type();
2337   _fast_arraycopy_Type                = make_arraycopy_Type(ac_fast);
2338   _checkcast_arraycopy_Type           = make_arraycopy_Type(ac_checkcast);
2339   _generic_arraycopy_Type             = make_arraycopy_Type(ac_generic);
2340   _slow_arraycopy_Type                = make_arraycopy_Type(ac_slow);
2341   _unsafe_setmemory_Type              = make_setmemory_Type();
2342   _array_fill_Type                    = make_array_fill_Type();
2343   _array_sort_Type                    = make_array_sort_Type();
2344   _array_partition_Type               = make_array_partition_Type();
2345   _aescrypt_block_Type                = make_aescrypt_block_Type();
2346   _cipherBlockChaining_aescrypt_Type  = make_cipherBlockChaining_aescrypt_Type();
2347   _electronicCodeBook_aescrypt_Type   = make_electronicCodeBook_aescrypt_Type();
2348   _counterMode_aescrypt_Type          = make_counterMode_aescrypt_Type();
2349   _galoisCounterMode_aescrypt_Type    = make_galoisCounterMode_aescrypt_Type();
2350   _digestBase_implCompress_with_sha3_Type      = make_digestBase_implCompress_Type(  /* is_sha3= */ true);
2351   _digestBase_implCompress_without_sha3_Type   = make_digestBase_implCompress_Type(  /* is_sha3= */ false);;
2352   _digestBase_implCompressMB_with_sha3_Type    = make_digestBase_implCompressMB_Type(/* is_sha3= */ true);
2353   _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false);
2354   _double_keccak_Type                 = make_double_keccak_Type();
2355   _multiplyToLen_Type                 = make_multiplyToLen_Type();
2356   _montgomeryMultiply_Type            = make_montgomeryMultiply_Type();
2357   _montgomerySquare_Type              = make_montgomerySquare_Type();
2358   _squareToLen_Type                   = make_squareToLen_Type();
2359   _mulAdd_Type                        = make_mulAdd_Type();
2360   _bigIntegerShift_Type               = make_bigIntegerShift_Type();
2361   _vectorizedMismatch_Type            = make_vectorizedMismatch_Type();
2362   _ghash_processBlocks_Type           = make_ghash_processBlocks_Type();
2363   _chacha20Block_Type                 = make_chacha20Block_Type();
2364   _kyberNtt_Type                      = make_kyberNtt_Type();
2365   _kyberInverseNtt_Type               = make_kyberInverseNtt_Type();
2366   _kyberNttMult_Type                  = make_kyberNttMult_Type();
2367   _kyberAddPoly_2_Type                = make_kyberAddPoly_2_Type();
2368   _kyberAddPoly_3_Type                = make_kyberAddPoly_3_Type();
2369   _kyber12To16_Type                   = make_kyber12To16_Type();
2370   _kyberBarrettReduce_Type            = make_kyberBarrettReduce_Type();
2371   _dilithiumAlmostNtt_Type            = make_dilithiumAlmostNtt_Type();
2372   _dilithiumAlmostInverseNtt_Type     = make_dilithiumAlmostInverseNtt_Type();
2373   _dilithiumNttMult_Type              = make_dilithiumNttMult_Type();
2374   _dilithiumMontMulByConstant_Type    = make_dilithiumMontMulByConstant_Type();
2375   _dilithiumDecomposePoly_Type        = make_dilithiumDecomposePoly_Type();
2376   _base64_encodeBlock_Type            = make_base64_encodeBlock_Type();
2377   _base64_decodeBlock_Type            = make_base64_decodeBlock_Type();
2378   _string_IndexOf_Type                = make_string_IndexOf_Type();
2379   _poly1305_processBlocks_Type        = make_poly1305_processBlocks_Type();
2380   _intpoly_montgomeryMult_P256_Type   = make_intpoly_montgomeryMult_P256_Type();
2381   _intpoly_assign_Type                = make_intpoly_assign_Type();
2382   _updateBytesCRC32_Type              = make_updateBytesCRC32_Type();
2383   _updateBytesCRC32C_Type             = make_updateBytesCRC32C_Type();
2384   _updateBytesAdler32_Type            = make_updateBytesAdler32_Type();
2385   _osr_end_Type                       = make_osr_end_Type();
2386   _register_finalizer_Type            = make_register_finalizer_Type();
2387   JFR_ONLY(
2388     _class_id_load_barrier_Type       = make_class_id_load_barrier_Type();
2389   )
2390 #if INCLUDE_JVMTI
2391   _notify_jvmti_vthread_Type          = make_notify_jvmti_vthread_Type();
2392 #endif // INCLUDE_JVMTI
2393   _dtrace_method_entry_exit_Type      = make_dtrace_method_entry_exit_Type();
2394   _dtrace_object_alloc_Type           = make_dtrace_object_alloc_Type();
2395 }
2396 
2397 int trace_exception_counter = 0;
2398 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2399   trace_exception_counter++;
2400   stringStream tempst;
2401 
2402   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2403   exception_oop->print_value_on(&tempst);
2404   tempst.print(" in ");
2405   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2406   if (blob->is_nmethod()) {
2407     blob->as_nmethod()->method()->print_value_on(&tempst);
2408   } else if (blob->is_runtime_stub()) {
2409     tempst.print("<runtime-stub>");
2410   } else {
2411     tempst.print("<unknown>");
2412   }
2413   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2414   tempst.print("]");
2415 
2416   st->print_raw_cr(tempst.freeze());
2417 }
2418 
2419 #define DO_COUNTERS2(macro2, macro1) \
2420   macro2(OptoRuntime, new_instance_C) \
2421   macro2(OptoRuntime, new_array_C) \
2422   macro2(OptoRuntime, new_array_nozero_C) \
2423   macro2(OptoRuntime, multianewarray2_C) \
2424   macro2(OptoRuntime, multianewarray3_C) \
2425   macro2(OptoRuntime, multianewarray4_C) \
2426   macro2(OptoRuntime, multianewarrayN_C) \
2427   macro2(OptoRuntime, monitor_notify_C) \
2428   macro2(OptoRuntime, monitor_notifyAll_C) \
2429   macro2(OptoRuntime, handle_exception_C_helper) \
2430   macro2(OptoRuntime, register_finalizer_C) \
2431   macro2(OptoRuntime, class_init_barrier_C) \
2432   macro1(OptoRuntime, class_init_barrier_redundant)
2433 
2434 #define INIT_COUNTER_TIME_AND_CNT(sub, name) \
2435   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
2436   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
2437 
2438 #define INIT_COUNTER_CNT(sub, name) \
2439   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
2440 
2441 void OptoRuntime::init_counters() {
2442   assert(CompilerConfig::is_c2_enabled(), "");
2443 
2444   if (UsePerfData) {
2445     EXCEPTION_MARK;
2446 
2447     DO_COUNTERS2(INIT_COUNTER_TIME_AND_CNT, INIT_COUNTER_CNT)
2448 
2449     if (HAS_PENDING_EXCEPTION) {
2450       vm_exit_during_initialization("jvm_perf_init failed unexpectedly");
2451     }
2452   }
2453 }
2454 #undef INIT_COUNTER_TIME_AND_CNT
2455 #undef INIT_COUNTER_CNT
2456 
2457 #define PRINT_COUNTER_TIME_AND_CNT(sub, name) { \
2458   jlong count = _perf_##sub##_##name##_count->get_value(); \
2459   if (count > 0) { \
2460     st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
2461                  _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
2462                  _perf_##sub##_##name##_timer->thread_counter_value_us(), \
2463                  count); \
2464   }}
2465 
2466 #define PRINT_COUNTER_CNT(sub, name) { \
2467   jlong count = _perf_##sub##_##name##_count->get_value(); \
2468   if (count > 0) { \
2469     st->print_cr("  %-30s = " JLONG_FORMAT_W(5) " events", #name, count); \
2470   }}
2471 
2472 void OptoRuntime::print_counters_on(outputStream* st) {
2473   if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c2_enabled()) {
2474     DO_COUNTERS2(PRINT_COUNTER_TIME_AND_CNT, PRINT_COUNTER_CNT)
2475   } else {
2476     st->print_cr("  OptoRuntime: no info (%s is disabled)",
2477                  (!CompilerConfig::is_c2_enabled() ? "C2" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")));
2478   }
2479 }
2480 
2481 #undef PRINT_COUNTER_TIME_AND_CNT
2482 #undef PRINT_COUNTER_CNT
2483 #undef DO_COUNTERS2