1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerDefinitions.inline.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/g1HeapRegion.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.hpp"
  41 #include "interpreter/bytecode.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/linkResolver.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/objArrayKlass.hpp"
  49 #include "oops/klass.inline.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/typeArrayOop.inline.hpp"
  52 #include "opto/ad.hpp"
  53 #include "opto/addnode.hpp"
  54 #include "opto/callnode.hpp"
  55 #include "opto/cfgnode.hpp"
  56 #include "opto/graphKit.hpp"
  57 #include "opto/machnode.hpp"
  58 #include "opto/matcher.hpp"
  59 #include "opto/memnode.hpp"
  60 #include "opto/mulnode.hpp"
  61 #include "opto/output.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/subnode.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/perfData.inline.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stackWatermarkSet.hpp"
  75 #include "runtime/synchronizer.hpp"
  76 #include "runtime/threadWXSetters.inline.hpp"
  77 #include "runtime/vframe.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vframe_hp.hpp"
  80 #include "services/management.hpp"
  81 #include "utilities/copy.hpp"
  82 #include "utilities/preserveException.hpp"
  83 
  84 
  85 // For debugging purposes:
  86 //  To force FullGCALot inside a runtime function, add the following two lines
  87 //
  88 //  Universe::release_fullgc_alot_dummy();
  89 //  Universe::heap()->collect();
  90 //
  91 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  92 
  93 
  94 #define C2_BLOB_FIELD_DEFINE(name, type) \
  95   type OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  96 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  97 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  98   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
  99 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \
 100   address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr;
 101 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE)
 102 #undef C2_BLOB_FIELD_DEFINE
 103 #undef C2_STUB_FIELD_DEFINE
 104 #undef C2_JVMTI_STUB_FIELD_DEFINE
 105 
 106 #define C2_BLOB_NAME_DEFINE(name, type)  "C2 Runtime " # name "_blob",
 107 #define C2_STUB_NAME_DEFINE(name, f, t, r)  "C2 Runtime " # name,
 108 #define C2_JVMTI_STUB_NAME_DEFINE(name)  "C2 Runtime " # name,
 109 const char* OptoRuntime::_stub_names[] = {
 110   C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE)
 111 };
 112 #undef C2_BLOB_NAME_DEFINE
 113 #undef C2_STUB_NAME_DEFINE
 114 #undef C2_JVMTI_STUB_NAME_DEFINE
 115 
 116 address OptoRuntime::_vtable_must_compile_Java                    = nullptr;
 117 
 118 PerfCounter* _perf_OptoRuntime_class_init_barrier_redundant_count = nullptr;
 119 
 120 // This should be called in an assertion at the start of OptoRuntime routines
 121 // which are entered from compiled code (all of them)
 122 #ifdef ASSERT
 123 static bool check_compiled_frame(JavaThread* thread) {
 124   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 125   RegisterMap map(thread,
 126                   RegisterMap::UpdateMap::skip,
 127                   RegisterMap::ProcessFrames::include,
 128                   RegisterMap::WalkContinuation::skip);
 129   frame caller = thread->last_frame().sender(&map);
 130   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 131   return true;
 132 }
 133 #endif // ASSERT
 134 
 135 /*
 136 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 137   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 138   if (var == nullptr) { return false; }
 139 */
 140 
 141 #define GEN_C2_BLOB(name, type)                    \
 142   BLOB_FIELD_NAME(name) =                       \
 143     generate_ ## name ## _blob();                  \
 144   if (BLOB_FIELD_NAME(name) == nullptr) { return false; }
 145 
 146 // a few helper macros to conjure up generate_stub call arguments
 147 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
 148 #define C2_STUB_TYPEFUNC(name) name ## _Type
 149 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C)
 150 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id)
 151 #define C2_STUB_ID(name) OptoStubId::name ## _id
 152 
 153 // Almost all the C functions targeted from the generated stubs are
 154 // implemented locally to OptoRuntime with names that can be generated
 155 // from the stub name by appending suffix '_C'. However, in two cases
 156 // a common target method also needs to be called from shared runtime
 157 // stubs. In these two cases the opto stubs rely on method
 158 // imlementations defined in class SharedRuntime. The following
 159 // defines temporarily rebind the generated names to reference the
 160 // relevant implementations.
 161 
 162 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 163   C2_STUB_FIELD_NAME(name) =                                          \
 164     generate_stub(env,                                                \
 165                   C2_STUB_TYPEFUNC(name),                             \
 166                   C2_STUB_C_FUNC(name),                               \
 167                   C2_STUB_NAME(name),                                 \
 168                   (int)C2_STUB_ID(name),                              \
 169                   fancy_jump,                                         \
 170                   pass_tls,                                           \
 171                   pass_retpc);                                        \
 172   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 173 
 174 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name)
 175 
 176 #define GEN_C2_JVMTI_STUB(name)                                       \
 177   STUB_FIELD_NAME(name) =                                             \
 178     generate_stub(env,                                                \
 179                   notify_jvmti_vthread_Type,                          \
 180                   C2_JVMTI_STUB_C_FUNC(name),                         \
 181                   C2_STUB_NAME(name),                                 \
 182                   (int)C2_STUB_ID(name),                              \
 183                   0,                                                  \
 184                   true,                                               \
 185                   false);                                             \
 186   if (STUB_FIELD_NAME(name) == nullptr) { return false; }             \
 187 
 188 bool OptoRuntime::generate(ciEnv* env) {
 189   init_counters();
 190 
 191   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
 192 
 193   return true;
 194 }
 195 
 196 #undef GEN_C2_BLOB
 197 
 198 #undef C2_STUB_FIELD_NAME
 199 #undef C2_STUB_TYPEFUNC
 200 #undef C2_STUB_C_FUNC
 201 #undef C2_STUB_NAME
 202 #undef GEN_C2_STUB
 203 
 204 #undef C2_JVMTI_STUB_C_FUNC
 205 #undef GEN_C2_JVMTI_STUB
 206 // #undef gen
 207 
 208 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 209 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 210 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 211 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;
 212 const TypeFunc* OptoRuntime::_multianewarray4_Type                = nullptr;
 213 const TypeFunc* OptoRuntime::_multianewarray5_Type                = nullptr;
 214 const TypeFunc* OptoRuntime::_multianewarrayN_Type                = nullptr;
 215 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type         = nullptr;
 216 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type          = nullptr;
 217 const TypeFunc* OptoRuntime::_monitor_notify_Type                 = nullptr;
 218 const TypeFunc* OptoRuntime::_uncommon_trap_Type                  = nullptr;
 219 const TypeFunc* OptoRuntime::_athrow_Type                         = nullptr;
 220 const TypeFunc* OptoRuntime::_rethrow_Type                        = nullptr;
 221 const TypeFunc* OptoRuntime::_Math_D_D_Type                       = nullptr;
 222 const TypeFunc* OptoRuntime::_Math_DD_D_Type                      = nullptr;
 223 const TypeFunc* OptoRuntime::_modf_Type                           = nullptr;
 224 const TypeFunc* OptoRuntime::_l2f_Type                            = nullptr;
 225 const TypeFunc* OptoRuntime::_void_long_Type                      = nullptr;
 226 const TypeFunc* OptoRuntime::_void_void_Type                      = nullptr;
 227 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type           = nullptr;
 228 const TypeFunc* OptoRuntime::_flush_windows_Type                  = nullptr;
 229 const TypeFunc* OptoRuntime::_fast_arraycopy_Type                 = nullptr;
 230 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type            = nullptr;
 231 const TypeFunc* OptoRuntime::_generic_arraycopy_Type              = nullptr;
 232 const TypeFunc* OptoRuntime::_slow_arraycopy_Type                 = nullptr;
 233 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type               = nullptr;
 234 const TypeFunc* OptoRuntime::_array_fill_Type                     = nullptr;
 235 const TypeFunc* OptoRuntime::_array_sort_Type                     = nullptr;
 236 const TypeFunc* OptoRuntime::_array_partition_Type                = nullptr;
 237 const TypeFunc* OptoRuntime::_aescrypt_block_Type                 = nullptr;
 238 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type   = nullptr;
 239 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type    = nullptr;
 240 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type           = nullptr;
 241 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type     = nullptr;
 242 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type      = nullptr;
 243 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type   = nullptr;
 244 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type    = nullptr;
 245 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr;
 246 const TypeFunc* OptoRuntime::_double_keccak_Type                  = nullptr;
 247 const TypeFunc* OptoRuntime::_multiplyToLen_Type                  = nullptr;
 248 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type             = nullptr;
 249 const TypeFunc* OptoRuntime::_montgomerySquare_Type               = nullptr;
 250 const TypeFunc* OptoRuntime::_squareToLen_Type                    = nullptr;
 251 const TypeFunc* OptoRuntime::_mulAdd_Type                         = nullptr;
 252 const TypeFunc* OptoRuntime::_bigIntegerShift_Type                = nullptr;
 253 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type             = nullptr;
 254 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type            = nullptr;
 255 const TypeFunc* OptoRuntime::_chacha20Block_Type                  = nullptr;
 256 const TypeFunc* OptoRuntime::_kyberNtt_Type                       = nullptr;
 257 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type                = nullptr;
 258 const TypeFunc* OptoRuntime::_kyberNttMult_Type                   = nullptr;
 259 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type                 = nullptr;
 260 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type                 = nullptr;
 261 const TypeFunc* OptoRuntime::_kyber12To16_Type                    = nullptr;
 262 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type             = nullptr;
 263 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type             = nullptr;
 264 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type      = nullptr;
 265 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type               = nullptr;
 266 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type     = nullptr;
 267 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type         = nullptr;
 268 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type             = nullptr;
 269 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type             = nullptr;
 270 const TypeFunc* OptoRuntime::_string_IndexOf_Type                 = nullptr;
 271 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type         = nullptr;
 272 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type    = nullptr;
 273 const TypeFunc* OptoRuntime::_intpoly_assign_Type                 = nullptr;
 274 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 275 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 276 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 277 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 278 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 279 #if INCLUDE_JFR
 280 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 281 #endif // INCLUDE_JFR
 282 #if INCLUDE_JVMTI
 283 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type           = nullptr;
 284 #endif // INCLUDE_JVMTI
 285 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 286 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 287 
 288 // Helper method to do generation of RunTimeStub's
 289 address OptoRuntime::generate_stub(ciEnv* env,
 290                                    TypeFunc_generator gen, address C_function,
 291                                    const char *name, int stub_id,
 292                                    int is_fancy_jump, bool pass_tls,
 293                                    bool return_pc) {
 294 
 295   // Matching the default directive, we currently have no method to match.
 296   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompilerThread::current()->compiler());
 297   CompilationMemoryStatisticMark cmsm(directive);
 298   ResourceMark rm;
 299   Compile C(env, gen, C_function, name, stub_id, is_fancy_jump, pass_tls, return_pc, directive);
 300   DirectivesStack::release(directive);
 301   return  C.stub_entry_point();
 302 }
 303 
 304 const char* OptoRuntime::stub_name(address entry) {
 305 #ifndef PRODUCT
 306   CodeBlob* cb = CodeCache::find_blob(entry);
 307   RuntimeStub* rs =(RuntimeStub *)cb;
 308   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 309   return rs->name();
 310 #else
 311   // Fast implementation for product mode (maybe it should be inlined too)
 312   return "runtime stub";
 313 #endif
 314 }
 315 
 316 // local methods passed as arguments to stub generator that forward
 317 // control to corresponding JRT methods of SharedRuntime
 318 
 319 void OptoRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
 320                                    oopDesc* dest, jint dest_pos,
 321                                    jint length, JavaThread* thread) {
 322   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 323 }
 324 
 325 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 326   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 327 }
 328 
 329 
 330 //=============================================================================
 331 // Opto compiler runtime routines
 332 //=============================================================================
 333 
 334 
 335 //=============================allocation======================================
 336 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 337 // and try allocation again.
 338 
 339 // object allocation
 340 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_instance_C, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 341   JRT_BLOCK;
 342 #ifndef PRODUCT
 343   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 344 #endif
 345   assert(check_compiled_frame(current), "incorrect caller");
 346 
 347   // These checks are cheap to make and support reflective allocation.
 348   int lh = klass->layout_helper();
 349   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 350     Handle holder(current, klass->klass_holder()); // keep the klass alive
 351     klass->check_valid_for_instantiation(false, THREAD);
 352     if (!HAS_PENDING_EXCEPTION) {
 353       InstanceKlass::cast(klass)->initialize(THREAD);
 354     }
 355   }
 356 
 357   if (!HAS_PENDING_EXCEPTION) {
 358     // Scavenge and allocate an instance.
 359     Handle holder(current, klass->klass_holder()); // keep the klass alive
 360     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 361     current->set_vm_result_oop(result);
 362 
 363     // Pass oops back through thread local storage.  Our apparent type to Java
 364     // is that we return an oop, but we can block on exit from this routine and
 365     // a GC can trash the oop in C's return register.  The generated stub will
 366     // fetch the oop from TLS after any possible GC.
 367   }
 368 
 369   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 370   JRT_BLOCK_END;
 371 
 372   // inform GC that we won't do card marks for initializing writes.
 373   SharedRuntime::on_slowpath_allocation_exit(current);
 374 JRT_END
 375 
 376 
 377 // array allocation
 378 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_C, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 379   JRT_BLOCK;
 380 #ifndef PRODUCT
 381   SharedRuntime::_new_array_ctr++;            // new array requires GC
 382 #endif
 383   assert(check_compiled_frame(current), "incorrect caller");
 384 
 385   // Scavenge and allocate an instance.
 386   oop result;
 387 
 388   if (array_type->is_typeArray_klass()) {
 389     // The oopFactory likes to work with the element type.
 390     // (We could bypass the oopFactory, since it doesn't add much value.)
 391     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 392     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 393   } else {
 394     // Although the oopFactory likes to work with the elem_type,
 395     // the compiler prefers the array_type, since it must already have
 396     // that latter value in hand for the fast path.
 397     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 398     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 399     result = oopFactory::new_objArray(elem_type, len, THREAD);
 400   }
 401 
 402   // Pass oops back through thread local storage.  Our apparent type to Java
 403   // is that we return an oop, but we can block on exit from this routine and
 404   // a GC can trash the oop in C's return register.  The generated stub will
 405   // fetch the oop from TLS after any possible GC.
 406   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 407   current->set_vm_result_oop(result);
 408   JRT_BLOCK_END;
 409 
 410   // inform GC that we won't do card marks for initializing writes.
 411   SharedRuntime::on_slowpath_allocation_exit(current);
 412 JRT_END
 413 
 414 // array allocation without zeroing
 415 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_nozero_C, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 416   JRT_BLOCK;
 417 #ifndef PRODUCT
 418   SharedRuntime::_new_array_ctr++;            // new array requires GC
 419 #endif
 420   assert(check_compiled_frame(current), "incorrect caller");
 421 
 422   // Scavenge and allocate an instance.
 423   oop result;
 424 
 425   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 426   // The oopFactory likes to work with the element type.
 427   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 428   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 429 
 430   // Pass oops back through thread local storage.  Our apparent type to Java
 431   // is that we return an oop, but we can block on exit from this routine and
 432   // a GC can trash the oop in C's return register.  The generated stub will
 433   // fetch the oop from TLS after any possible GC.
 434   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 435   current->set_vm_result_oop(result);
 436   JRT_BLOCK_END;
 437 
 438 
 439   // inform GC that we won't do card marks for initializing writes.
 440   SharedRuntime::on_slowpath_allocation_exit(current);
 441 
 442   oop result = current->vm_result_oop();
 443   if ((len > 0) && (result != nullptr) &&
 444       is_deoptimized_caller_frame(current)) {
 445     // Zero array here if the caller is deoptimized.
 446     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 447     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 448     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 449     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 450     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 451     if (!is_aligned(hs_bytes, BytesPerLong)) {
 452       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 453       hs_bytes += BytesPerInt;
 454     }
 455 
 456     // Optimized zeroing.
 457     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 458     const size_t aligned_hs = hs_bytes / BytesPerLong;
 459     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 460   }
 461 
 462 JRT_END
 463 
 464 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 465 
 466 // multianewarray for 2 dimensions
 467 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray2_C, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 468 #ifndef PRODUCT
 469   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 470 #endif
 471   assert(check_compiled_frame(current), "incorrect caller");
 472   assert(elem_type->is_klass(), "not a class");
 473   jint dims[2];
 474   dims[0] = len1;
 475   dims[1] = len2;
 476   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 477   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 478   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 479   current->set_vm_result_oop(obj);
 480 JRT_END
 481 
 482 // multianewarray for 3 dimensions
 483 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray3_C, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 484 #ifndef PRODUCT
 485   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 486 #endif
 487   assert(check_compiled_frame(current), "incorrect caller");
 488   assert(elem_type->is_klass(), "not a class");
 489   jint dims[3];
 490   dims[0] = len1;
 491   dims[1] = len2;
 492   dims[2] = len3;
 493   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 494   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 495   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 496   current->set_vm_result_oop(obj);
 497 JRT_END
 498 
 499 // multianewarray for 4 dimensions
 500 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray4_C, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 501 #ifndef PRODUCT
 502   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 503 #endif
 504   assert(check_compiled_frame(current), "incorrect caller");
 505   assert(elem_type->is_klass(), "not a class");
 506   jint dims[4];
 507   dims[0] = len1;
 508   dims[1] = len2;
 509   dims[2] = len3;
 510   dims[3] = len4;
 511   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 512   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 513   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 514   current->set_vm_result_oop(obj);
 515 JRT_END
 516 
 517 // multianewarray for 5 dimensions
 518 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 519 #ifndef PRODUCT
 520   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 521 #endif
 522   assert(check_compiled_frame(current), "incorrect caller");
 523   assert(elem_type->is_klass(), "not a class");
 524   jint dims[5];
 525   dims[0] = len1;
 526   dims[1] = len2;
 527   dims[2] = len3;
 528   dims[3] = len4;
 529   dims[4] = len5;
 530   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 531   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 532   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 533   current->set_vm_result_oop(obj);
 534 JRT_END
 535 
 536 JRT_ENTRY_PROF(void, OptoRuntime, multianewarrayN_C, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 537   assert(check_compiled_frame(current), "incorrect caller");
 538   assert(elem_type->is_klass(), "not a class");
 539   assert(oop(dims)->is_typeArray(), "not an array");
 540 
 541   ResourceMark rm;
 542   jint len = dims->length();
 543   assert(len > 0, "Dimensions array should contain data");
 544   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 545   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 546                                        c_dims, len);
 547 
 548   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 549   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 550   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 551   current->set_vm_result_oop(obj);
 552 JRT_END
 553 
 554 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notify_C, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 555 
 556   // Very few notify/notifyAll operations find any threads on the waitset, so
 557   // the dominant fast-path is to simply return.
 558   // Relatedly, it's critical that notify/notifyAll be fast in order to
 559   // reduce lock hold times.
 560   if (!SafepointSynchronize::is_synchronizing()) {
 561     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 562       return;
 563     }
 564   }
 565 
 566   // This is the case the fast-path above isn't provisioned to handle.
 567   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 568   // (The fast-path is just a degenerate variant of the slow-path).
 569   // Perform the dreaded state transition and pass control into the slow-path.
 570   JRT_BLOCK;
 571   Handle h_obj(current, obj);
 572   ObjectSynchronizer::notify(h_obj, CHECK);
 573   JRT_BLOCK_END;
 574 JRT_END
 575 
 576 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notifyAll_C, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 577 
 578   if (!SafepointSynchronize::is_synchronizing() ) {
 579     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 580       return;
 581     }
 582   }
 583 
 584   // This is the case the fast-path above isn't provisioned to handle.
 585   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 586   // (The fast-path is just a degenerate variant of the slow-path).
 587   // Perform the dreaded state transition and pass control into the slow-path.
 588   JRT_BLOCK;
 589   Handle h_obj(current, obj);
 590   ObjectSynchronizer::notifyall(h_obj, CHECK);
 591   JRT_BLOCK_END;
 592 JRT_END
 593 
 594 static const TypeFunc* make_new_instance_Type() {
 595   // create input type (domain)
 596   const Type **fields = TypeTuple::fields(1);
 597   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 598   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 599 
 600   // create result type (range)
 601   fields = TypeTuple::fields(1);
 602   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 603 
 604   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 605 
 606   return TypeFunc::make(domain, range);
 607 }
 608 
 609 #if INCLUDE_JVMTI
 610 static const TypeFunc* make_notify_jvmti_vthread_Type() {
 611   // create input type (domain)
 612   const Type **fields = TypeTuple::fields(2);
 613   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 614   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 615   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 616 
 617   // no result type needed
 618   fields = TypeTuple::fields(1);
 619   fields[TypeFunc::Parms+0] = nullptr; // void
 620   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 621 
 622   return TypeFunc::make(domain,range);
 623 }
 624 #endif
 625 
 626 static const TypeFunc* make_athrow_Type() {
 627   // create input type (domain)
 628   const Type **fields = TypeTuple::fields(1);
 629   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 630   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 631 
 632   // create result type (range)
 633   fields = TypeTuple::fields(0);
 634 
 635   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 636 
 637   return TypeFunc::make(domain, range);
 638 }
 639 
 640 static const TypeFunc* make_new_array_Type() {
 641   // create input type (domain)
 642   const Type **fields = TypeTuple::fields(2);
 643   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 644   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 645   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 646 
 647   // create result type (range)
 648   fields = TypeTuple::fields(1);
 649   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 650 
 651   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 652 
 653   return TypeFunc::make(domain, range);
 654 }
 655 
 656 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
 657   // create input type (domain)
 658   const int nargs = ndim + 1;
 659   const Type **fields = TypeTuple::fields(nargs);
 660   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 661   for( int i = 1; i < nargs; i++ )
 662     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 663   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 664 
 665   // create result type (range)
 666   fields = TypeTuple::fields(1);
 667   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 668   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 669 
 670   return TypeFunc::make(domain, range);
 671 }
 672 
 673 static const TypeFunc* make_multianewarrayN_Type() {
 674   // create input type (domain)
 675   const Type **fields = TypeTuple::fields(2);
 676   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 677   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 678   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 679 
 680   // create result type (range)
 681   fields = TypeTuple::fields(1);
 682   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 683   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 684 
 685   return TypeFunc::make(domain, range);
 686 }
 687 
 688 static const TypeFunc* make_uncommon_trap_Type() {
 689   // create input type (domain)
 690   const Type **fields = TypeTuple::fields(1);
 691   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 692   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 693 
 694   // create result type (range)
 695   fields = TypeTuple::fields(0);
 696   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 697 
 698   return TypeFunc::make(domain, range);
 699 }
 700 
 701 //-----------------------------------------------------------------------------
 702 // Monitor Handling
 703 
 704 static const TypeFunc* make_complete_monitor_enter_Type() {
 705   // create input type (domain)
 706   const Type **fields = TypeTuple::fields(2);
 707   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 708   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 709   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 710 
 711   // create result type (range)
 712   fields = TypeTuple::fields(0);
 713 
 714   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 715 
 716   return TypeFunc::make(domain,range);
 717 }
 718 
 719 //-----------------------------------------------------------------------------
 720 
 721 static const TypeFunc* make_complete_monitor_exit_Type() {
 722   // create input type (domain)
 723   const Type **fields = TypeTuple::fields(3);
 724   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 725   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 726   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 727   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 728 
 729   // create result type (range)
 730   fields = TypeTuple::fields(0);
 731 
 732   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 733 
 734   return TypeFunc::make(domain, range);
 735 }
 736 
 737 static const TypeFunc* make_monitor_notify_Type() {
 738   // create input type (domain)
 739   const Type **fields = TypeTuple::fields(1);
 740   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 741   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 742 
 743   // create result type (range)
 744   fields = TypeTuple::fields(0);
 745   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 746   return TypeFunc::make(domain, range);
 747 }
 748 
 749 static const TypeFunc* make_flush_windows_Type() {
 750   // create input type (domain)
 751   const Type** fields = TypeTuple::fields(1);
 752   fields[TypeFunc::Parms+0] = nullptr; // void
 753   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 754 
 755   // create result type
 756   fields = TypeTuple::fields(1);
 757   fields[TypeFunc::Parms+0] = nullptr; // void
 758   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 759 
 760   return TypeFunc::make(domain, range);
 761 }
 762 
 763 static const TypeFunc* make_l2f_Type() {
 764   // create input type (domain)
 765   const Type **fields = TypeTuple::fields(2);
 766   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 767   fields[TypeFunc::Parms+1] = Type::HALF;
 768   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 769 
 770   // create result type (range)
 771   fields = TypeTuple::fields(1);
 772   fields[TypeFunc::Parms+0] = Type::FLOAT;
 773   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 774 
 775   return TypeFunc::make(domain, range);
 776 }
 777 
 778 static const TypeFunc* make_modf_Type() {
 779   const Type **fields = TypeTuple::fields(2);
 780   fields[TypeFunc::Parms+0] = Type::FLOAT;
 781   fields[TypeFunc::Parms+1] = Type::FLOAT;
 782   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 783 
 784   // create result type (range)
 785   fields = TypeTuple::fields(1);
 786   fields[TypeFunc::Parms+0] = Type::FLOAT;
 787 
 788   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 789 
 790   return TypeFunc::make(domain, range);
 791 }
 792 
 793 static const TypeFunc* make_Math_D_D_Type() {
 794   // create input type (domain)
 795   const Type **fields = TypeTuple::fields(2);
 796   // Symbol* name of class to be loaded
 797   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 798   fields[TypeFunc::Parms+1] = Type::HALF;
 799   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 800 
 801   // create result type (range)
 802   fields = TypeTuple::fields(2);
 803   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 804   fields[TypeFunc::Parms+1] = Type::HALF;
 805   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 806 
 807   return TypeFunc::make(domain, range);
 808 }
 809 
 810 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 811   // create input type (domain)
 812   const Type **fields = TypeTuple::fields(num_arg);
 813   // Symbol* name of class to be loaded
 814   assert(num_arg > 0, "must have at least 1 input");
 815   for (uint i = 0; i < num_arg; i++) {
 816     fields[TypeFunc::Parms+i] = in_type;
 817   }
 818   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 819 
 820   // create result type (range)
 821   const uint num_ret = 1;
 822   fields = TypeTuple::fields(num_ret);
 823   fields[TypeFunc::Parms+0] = out_type;
 824   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 825 
 826   return TypeFunc::make(domain, range);
 827 }
 828 
 829 static const TypeFunc* make_Math_DD_D_Type() {
 830   const Type **fields = TypeTuple::fields(4);
 831   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 832   fields[TypeFunc::Parms+1] = Type::HALF;
 833   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 834   fields[TypeFunc::Parms+3] = Type::HALF;
 835   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 836 
 837   // create result type (range)
 838   fields = TypeTuple::fields(2);
 839   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 840   fields[TypeFunc::Parms+1] = Type::HALF;
 841   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 842 
 843   return TypeFunc::make(domain, range);
 844 }
 845 
 846 //-------------- currentTimeMillis, currentTimeNanos, etc
 847 
 848 static const TypeFunc* make_void_long_Type() {
 849   // create input type (domain)
 850   const Type **fields = TypeTuple::fields(0);
 851   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 852 
 853   // create result type (range)
 854   fields = TypeTuple::fields(2);
 855   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 856   fields[TypeFunc::Parms+1] = Type::HALF;
 857   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 858 
 859   return TypeFunc::make(domain, range);
 860 }
 861 
 862 static const TypeFunc* make_void_void_Type() {
 863   // create input type (domain)
 864   const Type **fields = TypeTuple::fields(0);
 865   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 866 
 867   // create result type (range)
 868   fields = TypeTuple::fields(0);
 869   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 870   return TypeFunc::make(domain, range);
 871 }
 872 
 873 static const TypeFunc* make_jfr_write_checkpoint_Type() {
 874   // create input type (domain)
 875   const Type **fields = TypeTuple::fields(0);
 876   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 877 
 878   // create result type (range)
 879   fields = TypeTuple::fields(0);
 880   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 881   return TypeFunc::make(domain, range);
 882 }
 883 
 884 
 885 // Takes as parameters:
 886 // void *dest
 887 // long size
 888 // uchar byte
 889 
 890 static const TypeFunc* make_setmemory_Type() {
 891   // create input type (domain)
 892   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 893   const Type** fields = TypeTuple::fields(argcnt);
 894   int argp = TypeFunc::Parms;
 895   fields[argp++] = TypePtr::NOTNULL;        // dest
 896   fields[argp++] = TypeX_X;                 // size
 897   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 898   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 899   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 900   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 901 
 902   // no result type needed
 903   fields = TypeTuple::fields(1);
 904   fields[TypeFunc::Parms+0] = nullptr; // void
 905   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 906   return TypeFunc::make(domain, range);
 907 }
 908 
 909 // arraycopy stub variations:
 910 enum ArrayCopyType {
 911   ac_fast,                      // void(ptr, ptr, size_t)
 912   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 913   ac_slow,                      // void(ptr, int, ptr, int, int)
 914   ac_generic                    //  int(ptr, int, ptr, int, int)
 915 };
 916 
 917 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 918   // create input type (domain)
 919   int num_args      = (act == ac_fast ? 3 : 5);
 920   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 921   int argcnt = num_args;
 922   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 923   const Type** fields = TypeTuple::fields(argcnt);
 924   int argp = TypeFunc::Parms;
 925   fields[argp++] = TypePtr::NOTNULL;    // src
 926   if (num_size_args == 0) {
 927     fields[argp++] = TypeInt::INT;      // src_pos
 928   }
 929   fields[argp++] = TypePtr::NOTNULL;    // dest
 930   if (num_size_args == 0) {
 931     fields[argp++] = TypeInt::INT;      // dest_pos
 932     fields[argp++] = TypeInt::INT;      // length
 933   }
 934   while (num_size_args-- > 0) {
 935     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 936     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 937   }
 938   if (act == ac_checkcast) {
 939     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 940   }
 941   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 942   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 943 
 944   // create result type if needed
 945   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 946   fields = TypeTuple::fields(1);
 947   if (retcnt == 0)
 948     fields[TypeFunc::Parms+0] = nullptr; // void
 949   else
 950     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 951   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 952   return TypeFunc::make(domain, range);
 953 }
 954 
 955 static const TypeFunc* make_array_fill_Type() {
 956   const Type** fields;
 957   int argp = TypeFunc::Parms;
 958   // create input type (domain): pointer, int, size_t
 959   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 960   fields[argp++] = TypePtr::NOTNULL;
 961   fields[argp++] = TypeInt::INT;
 962   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 963   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 964   const TypeTuple *domain = TypeTuple::make(argp, fields);
 965 
 966   // create result type
 967   fields = TypeTuple::fields(1);
 968   fields[TypeFunc::Parms+0] = nullptr; // void
 969   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 970 
 971   return TypeFunc::make(domain, range);
 972 }
 973 
 974 static const TypeFunc* make_array_partition_Type() {
 975   // create input type (domain)
 976   int num_args = 7;
 977   int argcnt = num_args;
 978   const Type** fields = TypeTuple::fields(argcnt);
 979   int argp = TypeFunc::Parms;
 980   fields[argp++] = TypePtr::NOTNULL;  // array
 981   fields[argp++] = TypeInt::INT;      // element type
 982   fields[argp++] = TypeInt::INT;      // low
 983   fields[argp++] = TypeInt::INT;      // end
 984   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 985   fields[argp++] = TypeInt::INT;      // indexPivot1
 986   fields[argp++] = TypeInt::INT;      // indexPivot2
 987   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 988   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 989 
 990   // no result type needed
 991   fields = TypeTuple::fields(1);
 992   fields[TypeFunc::Parms+0] = nullptr; // void
 993   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 994   return TypeFunc::make(domain, range);
 995 }
 996 
 997 static const TypeFunc* make_array_sort_Type() {
 998   // create input type (domain)
 999   int num_args      = 4;
1000   int argcnt = num_args;
1001   const Type** fields = TypeTuple::fields(argcnt);
1002   int argp = TypeFunc::Parms;
1003   fields[argp++] = TypePtr::NOTNULL;    // array
1004   fields[argp++] = TypeInt::INT;    // element type
1005   fields[argp++] = TypeInt::INT;    // fromIndex
1006   fields[argp++] = TypeInt::INT;    // toIndex
1007   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1008   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1009 
1010   // no result type needed
1011   fields = TypeTuple::fields(1);
1012   fields[TypeFunc::Parms+0] = nullptr; // void
1013   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1014   return TypeFunc::make(domain, range);
1015 }
1016 
1017 static const TypeFunc* make_aescrypt_block_Type() {
1018   // create input type (domain)
1019   int num_args      = 3;
1020   int argcnt = num_args;
1021   const Type** fields = TypeTuple::fields(argcnt);
1022   int argp = TypeFunc::Parms;
1023   fields[argp++] = TypePtr::NOTNULL;    // src
1024   fields[argp++] = TypePtr::NOTNULL;    // dest
1025   fields[argp++] = TypePtr::NOTNULL;    // k array
1026   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1027   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1028 
1029   // no result type needed
1030   fields = TypeTuple::fields(1);
1031   fields[TypeFunc::Parms+0] = nullptr; // void
1032   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1033   return TypeFunc::make(domain, range);
1034 }
1035 
1036 static const TypeFunc* make_updateBytesCRC32_Type() {
1037   // create input type (domain)
1038   int num_args      = 3;
1039   int argcnt = num_args;
1040   const Type** fields = TypeTuple::fields(argcnt);
1041   int argp = TypeFunc::Parms;
1042   fields[argp++] = TypeInt::INT;        // crc
1043   fields[argp++] = TypePtr::NOTNULL;    // src
1044   fields[argp++] = TypeInt::INT;        // len
1045   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1046   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1047 
1048   // result type needed
1049   fields = TypeTuple::fields(1);
1050   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1051   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1052   return TypeFunc::make(domain, range);
1053 }
1054 
1055 static const TypeFunc* make_updateBytesCRC32C_Type() {
1056   // create input type (domain)
1057   int num_args      = 4;
1058   int argcnt = num_args;
1059   const Type** fields = TypeTuple::fields(argcnt);
1060   int argp = TypeFunc::Parms;
1061   fields[argp++] = TypeInt::INT;        // crc
1062   fields[argp++] = TypePtr::NOTNULL;    // buf
1063   fields[argp++] = TypeInt::INT;        // len
1064   fields[argp++] = TypePtr::NOTNULL;    // table
1065   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1066   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1067 
1068   // result type needed
1069   fields = TypeTuple::fields(1);
1070   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1071   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1072   return TypeFunc::make(domain, range);
1073 }
1074 
1075 static const TypeFunc* make_updateBytesAdler32_Type() {
1076   // create input type (domain)
1077   int num_args      = 3;
1078   int argcnt = num_args;
1079   const Type** fields = TypeTuple::fields(argcnt);
1080   int argp = TypeFunc::Parms;
1081   fields[argp++] = TypeInt::INT;        // crc
1082   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1083   fields[argp++] = TypeInt::INT;        // len
1084   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1085   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1086 
1087   // result type needed
1088   fields = TypeTuple::fields(1);
1089   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1090   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1091   return TypeFunc::make(domain, range);
1092 }
1093 
1094 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() {
1095   // create input type (domain)
1096   int num_args      = 5;
1097   int argcnt = num_args;
1098   const Type** fields = TypeTuple::fields(argcnt);
1099   int argp = TypeFunc::Parms;
1100   fields[argp++] = TypePtr::NOTNULL;    // src
1101   fields[argp++] = TypePtr::NOTNULL;    // dest
1102   fields[argp++] = TypePtr::NOTNULL;    // k array
1103   fields[argp++] = TypePtr::NOTNULL;    // r array
1104   fields[argp++] = TypeInt::INT;        // src len
1105   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1106   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1107 
1108   // returning cipher len (int)
1109   fields = TypeTuple::fields(1);
1110   fields[TypeFunc::Parms+0] = TypeInt::INT;
1111   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1112   return TypeFunc::make(domain, range);
1113 }
1114 
1115 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() {
1116   // create input type (domain)
1117   int num_args = 4;
1118   int argcnt = num_args;
1119   const Type** fields = TypeTuple::fields(argcnt);
1120   int argp = TypeFunc::Parms;
1121   fields[argp++] = TypePtr::NOTNULL;    // src
1122   fields[argp++] = TypePtr::NOTNULL;    // dest
1123   fields[argp++] = TypePtr::NOTNULL;    // k array
1124   fields[argp++] = TypeInt::INT;        // src len
1125   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1126   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1127 
1128   // returning cipher len (int)
1129   fields = TypeTuple::fields(1);
1130   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1131   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1132   return TypeFunc::make(domain, range);
1133 }
1134 
1135 static const TypeFunc* make_counterMode_aescrypt_Type() {
1136   // create input type (domain)
1137   int num_args = 7;
1138   int argcnt = num_args;
1139   const Type** fields = TypeTuple::fields(argcnt);
1140   int argp = TypeFunc::Parms;
1141   fields[argp++] = TypePtr::NOTNULL; // src
1142   fields[argp++] = TypePtr::NOTNULL; // dest
1143   fields[argp++] = TypePtr::NOTNULL; // k array
1144   fields[argp++] = TypePtr::NOTNULL; // counter array
1145   fields[argp++] = TypeInt::INT; // src len
1146   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1147   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1148   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1149   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1150   // returning cipher len (int)
1151   fields = TypeTuple::fields(1);
1152   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1153   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1154   return TypeFunc::make(domain, range);
1155 }
1156 
1157 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() {
1158   // create input type (domain)
1159   int num_args = 8;
1160   int argcnt = num_args;
1161   const Type** fields = TypeTuple::fields(argcnt);
1162   int argp = TypeFunc::Parms;
1163   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1164   fields[argp++] = TypeInt::INT;     // int len
1165   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1166   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1167   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1168   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1169   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1170   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1171 
1172   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1173   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1174   // returning cipher len (int)
1175   fields = TypeTuple::fields(1);
1176   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1177   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1178   return TypeFunc::make(domain, range);
1179 }
1180 
1181 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) {
1182   // create input type (domain)
1183   int num_args = is_sha3 ? 3 : 2;
1184   int argcnt = num_args;
1185   const Type** fields = TypeTuple::fields(argcnt);
1186   int argp = TypeFunc::Parms;
1187   fields[argp++] = TypePtr::NOTNULL; // buf
1188   fields[argp++] = TypePtr::NOTNULL; // state
1189   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1190   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1191   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1192 
1193   // no result type needed
1194   fields = TypeTuple::fields(1);
1195   fields[TypeFunc::Parms+0] = nullptr; // void
1196   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1197   return TypeFunc::make(domain, range);
1198 }
1199 
1200 /*
1201  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1202  */
1203 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) {
1204   // create input type (domain)
1205   int num_args = is_sha3 ? 5 : 4;
1206   int argcnt = num_args;
1207   const Type** fields = TypeTuple::fields(argcnt);
1208   int argp = TypeFunc::Parms;
1209   fields[argp++] = TypePtr::NOTNULL; // buf
1210   fields[argp++] = TypePtr::NOTNULL; // state
1211   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1212   fields[argp++] = TypeInt::INT;     // ofs
1213   fields[argp++] = TypeInt::INT;     // limit
1214   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1215   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1216 
1217   // returning ofs (int)
1218   fields = TypeTuple::fields(1);
1219   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1220   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1221   return TypeFunc::make(domain, range);
1222 }
1223 
1224 // SHAKE128Parallel doubleKeccak function
1225 static const TypeFunc* make_double_keccak_Type() {
1226     int argcnt = 2;
1227 
1228     const Type** fields = TypeTuple::fields(argcnt);
1229     int argp = TypeFunc::Parms;
1230     fields[argp++] = TypePtr::NOTNULL;      // status0
1231     fields[argp++] = TypePtr::NOTNULL;      // status1
1232 
1233     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1234     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1235 
1236     // result type needed
1237     fields = TypeTuple::fields(1);
1238     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1239     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1240     return TypeFunc::make(domain, range);
1241 }
1242 
1243 static const TypeFunc* make_multiplyToLen_Type() {
1244   // create input type (domain)
1245   int num_args      = 5;
1246   int argcnt = num_args;
1247   const Type** fields = TypeTuple::fields(argcnt);
1248   int argp = TypeFunc::Parms;
1249   fields[argp++] = TypePtr::NOTNULL;    // x
1250   fields[argp++] = TypeInt::INT;        // xlen
1251   fields[argp++] = TypePtr::NOTNULL;    // y
1252   fields[argp++] = TypeInt::INT;        // ylen
1253   fields[argp++] = TypePtr::NOTNULL;    // z
1254   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1255   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1256 
1257   // no result type needed
1258   fields = TypeTuple::fields(1);
1259   fields[TypeFunc::Parms+0] = nullptr;
1260   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1261   return TypeFunc::make(domain, range);
1262 }
1263 
1264 static const TypeFunc* make_squareToLen_Type() {
1265   // create input type (domain)
1266   int num_args      = 4;
1267   int argcnt = num_args;
1268   const Type** fields = TypeTuple::fields(argcnt);
1269   int argp = TypeFunc::Parms;
1270   fields[argp++] = TypePtr::NOTNULL;    // x
1271   fields[argp++] = TypeInt::INT;        // len
1272   fields[argp++] = TypePtr::NOTNULL;    // z
1273   fields[argp++] = TypeInt::INT;        // zlen
1274   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1275   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1276 
1277   // no result type needed
1278   fields = TypeTuple::fields(1);
1279   fields[TypeFunc::Parms+0] = nullptr;
1280   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1281   return TypeFunc::make(domain, range);
1282 }
1283 
1284 static const TypeFunc* make_mulAdd_Type() {
1285   // create input type (domain)
1286   int num_args      = 5;
1287   int argcnt = num_args;
1288   const Type** fields = TypeTuple::fields(argcnt);
1289   int argp = TypeFunc::Parms;
1290   fields[argp++] = TypePtr::NOTNULL;    // out
1291   fields[argp++] = TypePtr::NOTNULL;    // in
1292   fields[argp++] = TypeInt::INT;        // offset
1293   fields[argp++] = TypeInt::INT;        // len
1294   fields[argp++] = TypeInt::INT;        // k
1295   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1296   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1297 
1298   // returning carry (int)
1299   fields = TypeTuple::fields(1);
1300   fields[TypeFunc::Parms+0] = TypeInt::INT;
1301   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1302   return TypeFunc::make(domain, range);
1303 }
1304 
1305 static const TypeFunc* make_montgomeryMultiply_Type() {
1306   // create input type (domain)
1307   int num_args      = 7;
1308   int argcnt = num_args;
1309   const Type** fields = TypeTuple::fields(argcnt);
1310   int argp = TypeFunc::Parms;
1311   fields[argp++] = TypePtr::NOTNULL;    // a
1312   fields[argp++] = TypePtr::NOTNULL;    // b
1313   fields[argp++] = TypePtr::NOTNULL;    // n
1314   fields[argp++] = TypeInt::INT;        // len
1315   fields[argp++] = TypeLong::LONG;      // inv
1316   fields[argp++] = Type::HALF;
1317   fields[argp++] = TypePtr::NOTNULL;    // result
1318   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1319   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1320 
1321   // result type needed
1322   fields = TypeTuple::fields(1);
1323   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1324 
1325   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1326   return TypeFunc::make(domain, range);
1327 }
1328 
1329 static const TypeFunc* make_montgomerySquare_Type() {
1330   // create input type (domain)
1331   int num_args      = 6;
1332   int argcnt = num_args;
1333   const Type** fields = TypeTuple::fields(argcnt);
1334   int argp = TypeFunc::Parms;
1335   fields[argp++] = TypePtr::NOTNULL;    // a
1336   fields[argp++] = TypePtr::NOTNULL;    // n
1337   fields[argp++] = TypeInt::INT;        // len
1338   fields[argp++] = TypeLong::LONG;      // inv
1339   fields[argp++] = Type::HALF;
1340   fields[argp++] = TypePtr::NOTNULL;    // result
1341   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1342   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1343 
1344   // result type needed
1345   fields = TypeTuple::fields(1);
1346   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1347 
1348   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1349   return TypeFunc::make(domain, range);
1350 }
1351 
1352 static const TypeFunc* make_bigIntegerShift_Type() {
1353   int argcnt = 5;
1354   const Type** fields = TypeTuple::fields(argcnt);
1355   int argp = TypeFunc::Parms;
1356   fields[argp++] = TypePtr::NOTNULL;    // newArr
1357   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1358   fields[argp++] = TypeInt::INT;        // newIdx
1359   fields[argp++] = TypeInt::INT;        // shiftCount
1360   fields[argp++] = TypeInt::INT;        // numIter
1361   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1362   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1363 
1364   // no result type needed
1365   fields = TypeTuple::fields(1);
1366   fields[TypeFunc::Parms + 0] = nullptr;
1367   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1368   return TypeFunc::make(domain, range);
1369 }
1370 
1371 static const TypeFunc* make_vectorizedMismatch_Type() {
1372   // create input type (domain)
1373   int num_args = 4;
1374   int argcnt = num_args;
1375   const Type** fields = TypeTuple::fields(argcnt);
1376   int argp = TypeFunc::Parms;
1377   fields[argp++] = TypePtr::NOTNULL;    // obja
1378   fields[argp++] = TypePtr::NOTNULL;    // objb
1379   fields[argp++] = TypeInt::INT;        // length, number of elements
1380   fields[argp++] = TypeInt::INT;        // log2scale, element size
1381   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1382   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1383 
1384   //return mismatch index (int)
1385   fields = TypeTuple::fields(1);
1386   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1387   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1388   return TypeFunc::make(domain, range);
1389 }
1390 
1391 static const TypeFunc* make_ghash_processBlocks_Type() {
1392   int argcnt = 4;
1393 
1394   const Type** fields = TypeTuple::fields(argcnt);
1395   int argp = TypeFunc::Parms;
1396   fields[argp++] = TypePtr::NOTNULL;    // state
1397   fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1398   fields[argp++] = TypePtr::NOTNULL;    // data
1399   fields[argp++] = TypeInt::INT;        // blocks
1400   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1401   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1402 
1403   // result type needed
1404   fields = TypeTuple::fields(1);
1405   fields[TypeFunc::Parms+0] = nullptr; // void
1406   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1407   return TypeFunc::make(domain, range);
1408 }
1409 
1410 static const TypeFunc* make_chacha20Block_Type() {
1411   int argcnt = 2;
1412 
1413   const Type** fields = TypeTuple::fields(argcnt);
1414   int argp = TypeFunc::Parms;
1415   fields[argp++] = TypePtr::NOTNULL;      // state
1416   fields[argp++] = TypePtr::NOTNULL;      // result
1417 
1418   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1419   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1420 
1421   // result type needed
1422   fields = TypeTuple::fields(1);
1423   fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1424   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1425   return TypeFunc::make(domain, range);
1426 }
1427 
1428 // Kyber NTT function
1429 static const TypeFunc* make_kyberNtt_Type() {
1430     int argcnt = 2;
1431 
1432     const Type** fields = TypeTuple::fields(argcnt);
1433     int argp = TypeFunc::Parms;
1434     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1435     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1436 
1437     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1438     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1439 
1440     // result type needed
1441     fields = TypeTuple::fields(1);
1442     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1443     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1444     return TypeFunc::make(domain, range);
1445 }
1446 
1447 // Kyber inverse NTT function
1448 static const TypeFunc* make_kyberInverseNtt_Type() {
1449     int argcnt = 2;
1450 
1451     const Type** fields = TypeTuple::fields(argcnt);
1452     int argp = TypeFunc::Parms;
1453     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1454     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1455 
1456     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1457     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1458 
1459     // result type needed
1460     fields = TypeTuple::fields(1);
1461     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1462     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1463     return TypeFunc::make(domain, range);
1464 }
1465 
1466 // Kyber NTT multiply function
1467 static const TypeFunc* make_kyberNttMult_Type() {
1468     int argcnt = 4;
1469 
1470     const Type** fields = TypeTuple::fields(argcnt);
1471     int argp = TypeFunc::Parms;
1472     fields[argp++] = TypePtr::NOTNULL;      // result
1473     fields[argp++] = TypePtr::NOTNULL;      // ntta
1474     fields[argp++] = TypePtr::NOTNULL;      // nttb
1475     fields[argp++] = TypePtr::NOTNULL;      // NTT multiply zetas
1476 
1477     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1478     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1479 
1480     // result type needed
1481     fields = TypeTuple::fields(1);
1482     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1483     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1484     return TypeFunc::make(domain, range);
1485 }
1486 
1487 // Kyber add 2 polynomials function
1488 static const TypeFunc* make_kyberAddPoly_2_Type() {
1489     int argcnt = 3;
1490 
1491     const Type** fields = TypeTuple::fields(argcnt);
1492     int argp = TypeFunc::Parms;
1493     fields[argp++] = TypePtr::NOTNULL;      // result
1494     fields[argp++] = TypePtr::NOTNULL;      // a
1495     fields[argp++] = TypePtr::NOTNULL;      // b
1496 
1497     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1498     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1499 
1500     // result type needed
1501     fields = TypeTuple::fields(1);
1502     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1503     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1504     return TypeFunc::make(domain, range);
1505 }
1506 
1507 
1508 // Kyber add 3 polynomials function
1509 static const TypeFunc* make_kyberAddPoly_3_Type() {
1510     int argcnt = 4;
1511 
1512     const Type** fields = TypeTuple::fields(argcnt);
1513     int argp = TypeFunc::Parms;
1514     fields[argp++] = TypePtr::NOTNULL;      // result
1515     fields[argp++] = TypePtr::NOTNULL;      // a
1516     fields[argp++] = TypePtr::NOTNULL;      // b
1517     fields[argp++] = TypePtr::NOTNULL;      // c
1518 
1519     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1520     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1521 
1522     // result type needed
1523     fields = TypeTuple::fields(1);
1524     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1525     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1526     return TypeFunc::make(domain, range);
1527 }
1528 
1529 
1530 // Kyber XOF output parsing into polynomial coefficients candidates
1531 // or decompress(12,...) function
1532 static const TypeFunc* make_kyber12To16_Type() {
1533     int argcnt = 4;
1534 
1535     const Type** fields = TypeTuple::fields(argcnt);
1536     int argp = TypeFunc::Parms;
1537     fields[argp++] = TypePtr::NOTNULL;      // condensed
1538     fields[argp++] = TypeInt::INT;          // condensedOffs
1539     fields[argp++] = TypePtr::NOTNULL;      // parsed
1540     fields[argp++] = TypeInt::INT;          // parsedLength
1541 
1542     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1543     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1544 
1545     // result type needed
1546     fields = TypeTuple::fields(1);
1547     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1548     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1549     return TypeFunc::make(domain, range);
1550 }
1551 
1552 // Kyber Barrett reduce function
1553 static const TypeFunc* make_kyberBarrettReduce_Type() {
1554     int argcnt = 1;
1555 
1556     const Type** fields = TypeTuple::fields(argcnt);
1557     int argp = TypeFunc::Parms;
1558     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1559 
1560     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1561     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1562 
1563     // result type needed
1564     fields = TypeTuple::fields(1);
1565     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1566     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1567     return TypeFunc::make(domain, range);
1568 }
1569 
1570 // Dilithium NTT function except for the final "normalization" to |coeff| < Q
1571 static const TypeFunc* make_dilithiumAlmostNtt_Type() {
1572     int argcnt = 2;
1573 
1574     const Type** fields = TypeTuple::fields(argcnt);
1575     int argp = TypeFunc::Parms;
1576     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1577     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1578 
1579     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1580     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1581 
1582     // result type needed
1583     fields = TypeTuple::fields(1);
1584     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1585     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1586     return TypeFunc::make(domain, range);
1587 }
1588 
1589 // Dilithium inverse NTT function except the final mod Q division by 2^256
1590 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() {
1591     int argcnt = 2;
1592 
1593     const Type** fields = TypeTuple::fields(argcnt);
1594     int argp = TypeFunc::Parms;
1595     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1596     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1597 
1598     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1599     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1600 
1601     // result type needed
1602     fields = TypeTuple::fields(1);
1603     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1604     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1605     return TypeFunc::make(domain, range);
1606 }
1607 
1608 // Dilithium NTT multiply function
1609 static const TypeFunc* make_dilithiumNttMult_Type() {
1610     int argcnt = 3;
1611 
1612     const Type** fields = TypeTuple::fields(argcnt);
1613     int argp = TypeFunc::Parms;
1614     fields[argp++] = TypePtr::NOTNULL;      // result
1615     fields[argp++] = TypePtr::NOTNULL;      // ntta
1616     fields[argp++] = TypePtr::NOTNULL;      // nttb
1617 
1618     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1619     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1620 
1621     // result type needed
1622     fields = TypeTuple::fields(1);
1623     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1624     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1625     return TypeFunc::make(domain, range);
1626 }
1627 
1628 // Dilithium Montgomery multiply a polynome coefficient array by a constant
1629 static const TypeFunc* make_dilithiumMontMulByConstant_Type() {
1630     int argcnt = 2;
1631 
1632     const Type** fields = TypeTuple::fields(argcnt);
1633     int argp = TypeFunc::Parms;
1634     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1635     fields[argp++] = TypeInt::INT;          // constant multiplier
1636 
1637     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1638     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1639 
1640     // result type needed
1641     fields = TypeTuple::fields(1);
1642     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1643     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1644     return TypeFunc::make(domain, range);
1645 }
1646 
1647 // Dilithium decompose polynomial
1648 static const TypeFunc* make_dilithiumDecomposePoly_Type() {
1649     int argcnt = 5;
1650 
1651     const Type** fields = TypeTuple::fields(argcnt);
1652     int argp = TypeFunc::Parms;
1653     fields[argp++] = TypePtr::NOTNULL;      // input
1654     fields[argp++] = TypePtr::NOTNULL;      // lowPart
1655     fields[argp++] = TypePtr::NOTNULL;      // highPart
1656     fields[argp++] = TypeInt::INT;          // 2 * gamma2
1657     fields[argp++] = TypeInt::INT;          // multiplier
1658 
1659     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1660     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1661 
1662     // result type needed
1663     fields = TypeTuple::fields(1);
1664     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1665     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1666     return TypeFunc::make(domain, range);
1667 }
1668 
1669 static const TypeFunc* make_base64_encodeBlock_Type() {
1670   int argcnt = 6;
1671 
1672   const Type** fields = TypeTuple::fields(argcnt);
1673   int argp = TypeFunc::Parms;
1674   fields[argp++] = TypePtr::NOTNULL;    // src array
1675   fields[argp++] = TypeInt::INT;        // offset
1676   fields[argp++] = TypeInt::INT;        // length
1677   fields[argp++] = TypePtr::NOTNULL;    // dest array
1678   fields[argp++] = TypeInt::INT;       // dp
1679   fields[argp++] = TypeInt::BOOL;       // isURL
1680   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1681   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1682 
1683   // result type needed
1684   fields = TypeTuple::fields(1);
1685   fields[TypeFunc::Parms + 0] = nullptr; // void
1686   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1687   return TypeFunc::make(domain, range);
1688 }
1689 
1690 static const TypeFunc* make_string_IndexOf_Type() {
1691   int argcnt = 4;
1692 
1693   const Type** fields = TypeTuple::fields(argcnt);
1694   int argp = TypeFunc::Parms;
1695   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1696   fields[argp++] = TypeInt::INT;        // haystack length
1697   fields[argp++] = TypePtr::NOTNULL;    // needle array
1698   fields[argp++] = TypeInt::INT;        // needle length
1699   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1700   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1701 
1702   // result type needed
1703   fields = TypeTuple::fields(1);
1704   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1705   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1706   return TypeFunc::make(domain, range);
1707 }
1708 
1709 static const TypeFunc* make_base64_decodeBlock_Type() {
1710   int argcnt = 7;
1711 
1712   const Type** fields = TypeTuple::fields(argcnt);
1713   int argp = TypeFunc::Parms;
1714   fields[argp++] = TypePtr::NOTNULL;    // src array
1715   fields[argp++] = TypeInt::INT;        // src offset
1716   fields[argp++] = TypeInt::INT;        // src length
1717   fields[argp++] = TypePtr::NOTNULL;    // dest array
1718   fields[argp++] = TypeInt::INT;        // dest offset
1719   fields[argp++] = TypeInt::BOOL;       // isURL
1720   fields[argp++] = TypeInt::BOOL;       // isMIME
1721   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1722   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1723 
1724   // result type needed
1725   fields = TypeTuple::fields(1);
1726   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1727   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1728   return TypeFunc::make(domain, range);
1729 }
1730 
1731 static const TypeFunc* make_poly1305_processBlocks_Type() {
1732   int argcnt = 4;
1733 
1734   const Type** fields = TypeTuple::fields(argcnt);
1735   int argp = TypeFunc::Parms;
1736   fields[argp++] = TypePtr::NOTNULL;    // input array
1737   fields[argp++] = TypeInt::INT;        // input length
1738   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1739   fields[argp++] = TypePtr::NOTNULL;    // r array
1740   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1741   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1742 
1743   // result type needed
1744   fields = TypeTuple::fields(1);
1745   fields[TypeFunc::Parms + 0] = nullptr; // void
1746   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1747   return TypeFunc::make(domain, range);
1748 }
1749 
1750 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() {
1751   int argcnt = 3;
1752 
1753   const Type** fields = TypeTuple::fields(argcnt);
1754   int argp = TypeFunc::Parms;
1755   fields[argp++] = TypePtr::NOTNULL;    // a array
1756   fields[argp++] = TypePtr::NOTNULL;    // b array
1757   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1758   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1759   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1760 
1761   // result type needed
1762   fields = TypeTuple::fields(1);
1763   fields[TypeFunc::Parms + 0] = nullptr; // void
1764   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1765   return TypeFunc::make(domain, range);
1766 }
1767 
1768 static const TypeFunc* make_intpoly_assign_Type() {
1769   int argcnt = 4;
1770 
1771   const Type** fields = TypeTuple::fields(argcnt);
1772   int argp = TypeFunc::Parms;
1773   fields[argp++] = TypeInt::INT;        // set flag
1774   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1775   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1776   fields[argp++] = TypeInt::INT;        // array length
1777   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1778   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1779 
1780   // result type needed
1781   fields = TypeTuple::fields(1);
1782   fields[TypeFunc::Parms + 0] = nullptr; // void
1783   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1784   return TypeFunc::make(domain, range);
1785 }
1786 
1787 //------------- Interpreter state for on stack replacement
1788 static const TypeFunc* make_osr_end_Type() {
1789   // create input type (domain)
1790   const Type **fields = TypeTuple::fields(1);
1791   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1792   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1793 
1794   // create result type
1795   fields = TypeTuple::fields(1);
1796   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1797   fields[TypeFunc::Parms+0] = nullptr; // void
1798   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1799   return TypeFunc::make(domain, range);
1800 }
1801 
1802 //-------------------------------------------------------------------------------------
1803 // register policy
1804 
1805 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1806   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1807   switch (register_save_policy[reg]) {
1808     case 'C': return false; //SOC
1809     case 'E': return true ; //SOE
1810     case 'N': return false; //NS
1811     case 'A': return false; //AS
1812   }
1813   ShouldNotReachHere();
1814   return false;
1815 }
1816 
1817 //-----------------------------------------------------------------------
1818 // Exceptions
1819 //
1820 
1821 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1822 
1823 // The method is an entry that is always called by a C++ method not
1824 // directly from compiled code. Compiled code will call the C++ method following.
1825 // We can't allow async exception to be installed during  exception processing.
1826 JRT_ENTRY_NO_ASYNC_PROF(address, OptoRuntime, handle_exception_C_helper, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1827   // The frame we rethrow the exception to might not have been processed by the GC yet.
1828   // The stack watermark barrier takes care of detecting that and ensuring the frame
1829   // has updated oops.
1830   StackWatermarkSet::after_unwind(current);
1831 
1832   // Do not confuse exception_oop with pending_exception. The exception_oop
1833   // is only used to pass arguments into the method. Not for general
1834   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1835   // the runtime stubs checks this on exit.
1836   assert(current->exception_oop() != nullptr, "exception oop is found");
1837   address handler_address = nullptr;
1838 
1839   Handle exception(current, current->exception_oop());
1840   address pc = current->exception_pc();
1841 
1842   // Clear out the exception oop and pc since looking up an
1843   // exception handler can cause class loading, which might throw an
1844   // exception and those fields are expected to be clear during
1845   // normal bytecode execution.
1846   current->clear_exception_oop_and_pc();
1847 
1848   LogTarget(Info, exceptions) lt;
1849   if (lt.is_enabled()) {
1850     LogStream ls(lt);
1851     trace_exception(&ls, exception(), pc, "");
1852   }
1853 
1854   // for AbortVMOnException flag
1855   Exceptions::debug_check_abort(exception);
1856 
1857 #ifdef ASSERT
1858   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1859     // should throw an exception here
1860     ShouldNotReachHere();
1861   }
1862 #endif
1863 
1864   // new exception handling: this method is entered only from adapters
1865   // exceptions from compiled java methods are handled in compiled code
1866   // using rethrow node
1867 
1868   nm = CodeCache::find_nmethod(pc);
1869   assert(nm != nullptr, "No NMethod found");
1870   if (nm->is_native_method()) {
1871     fatal("Native method should not have path to exception handling");
1872   } else {
1873     // we are switching to old paradigm: search for exception handler in caller_frame
1874     // instead in exception handler of caller_frame.sender()
1875 
1876     if (JvmtiExport::can_post_on_exceptions()) {
1877       // "Full-speed catching" is not necessary here,
1878       // since we're notifying the VM on every catch.
1879       // Force deoptimization and the rest of the lookup
1880       // will be fine.
1881       deoptimize_caller_frame(current);
1882     }
1883 
1884     // Check the stack guard pages.  If enabled, look for handler in this frame;
1885     // otherwise, forcibly unwind the frame.
1886     //
1887     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1888     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1889     bool deopting = false;
1890     if (nm->is_deopt_pc(pc)) {
1891       deopting = true;
1892       RegisterMap map(current,
1893                       RegisterMap::UpdateMap::skip,
1894                       RegisterMap::ProcessFrames::include,
1895                       RegisterMap::WalkContinuation::skip);
1896       frame deoptee = current->last_frame().sender(&map);
1897       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1898       // Adjust the pc back to the original throwing pc
1899       pc = deoptee.pc();
1900     }
1901 
1902     // If we are forcing an unwind because of stack overflow then deopt is
1903     // irrelevant since we are throwing the frame away anyway.
1904 
1905     if (deopting && !force_unwind) {
1906       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1907     } else {
1908 
1909       handler_address =
1910         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1911 
1912       if (handler_address == nullptr) {
1913         bool recursive_exception = false;
1914         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1915         assert (handler_address != nullptr, "must have compiled handler");
1916         // Update the exception cache only when the unwind was not forced
1917         // and there didn't happen another exception during the computation of the
1918         // compiled exception handler. Checking for exception oop equality is not
1919         // sufficient because some exceptions are pre-allocated and reused.
1920         if (!force_unwind && !recursive_exception) {
1921           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1922         }
1923       } else {
1924 #ifdef ASSERT
1925         bool recursive_exception = false;
1926         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1927         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1928                  p2i(handler_address), p2i(computed_address));
1929 #endif
1930       }
1931     }
1932 
1933     current->set_exception_pc(pc);
1934     current->set_exception_handler_pc(handler_address);
1935 
1936     // Check if the exception PC is a MethodHandle call site.
1937     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1938   }
1939 
1940   // Restore correct return pc.  Was saved above.
1941   current->set_exception_oop(exception());
1942   return handler_address;
1943 
1944 JRT_END
1945 
1946 // We are entering here from exception_blob
1947 // If there is a compiled exception handler in this method, we will continue there;
1948 // otherwise we will unwind the stack and continue at the caller of top frame method
1949 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1950 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1951 // we looked up the handler for has been deoptimized in the meantime. If it has been
1952 // we must not use the handler and instead return the deopt blob.
1953 address OptoRuntime::handle_exception_C(JavaThread* current) {
1954 //
1955 // We are in Java not VM and in debug mode we have a NoHandleMark
1956 //
1957 #ifndef PRODUCT
1958   SharedRuntime::_find_handler_ctr++;          // find exception handler
1959 #endif
1960   DEBUG_ONLY(NoHandleMark __hm;)
1961   nmethod* nm = nullptr;
1962   address handler_address = nullptr;
1963   {
1964     // Enter the VM
1965 
1966     ResetNoHandleMark rnhm;
1967     handler_address = handle_exception_C_helper(current, nm);
1968   }
1969 
1970   // Back in java: Use no oops, DON'T safepoint
1971 
1972   // Now check to see if the handler we are returning is in a now
1973   // deoptimized frame
1974 
1975   if (nm != nullptr) {
1976     RegisterMap map(current,
1977                     RegisterMap::UpdateMap::skip,
1978                     RegisterMap::ProcessFrames::skip,
1979                     RegisterMap::WalkContinuation::skip);
1980     frame caller = current->last_frame().sender(&map);
1981 #ifdef ASSERT
1982     assert(caller.is_compiled_frame(), "must be");
1983 #endif // ASSERT
1984     if (caller.is_deoptimized_frame()) {
1985       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1986     }
1987   }
1988   return handler_address;
1989 }
1990 
1991 //------------------------------rethrow----------------------------------------
1992 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1993 // is either throwing or rethrowing an exception.  The callee-save registers
1994 // have been restored, synchronized objects have been unlocked and the callee
1995 // stack frame has been removed.  The return address was passed in.
1996 // Exception oop is passed as the 1st argument.  This routine is then called
1997 // from the stub.  On exit, we know where to jump in the caller's code.
1998 // After this C code exits, the stub will pop his frame and end in a jump
1999 // (instead of a return).  We enter the caller's default handler.
2000 //
2001 // This must be JRT_LEAF:
2002 //     - caller will not change its state as we cannot block on exit,
2003 //       therefore raw_exception_handler_for_return_address is all it takes
2004 //       to handle deoptimized blobs
2005 //
2006 // However, there needs to be a safepoint check in the middle!  So compiled
2007 // safepoints are completely watertight.
2008 //
2009 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
2010 //
2011 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
2012 //
2013 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
2014   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
2015   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
2016 
2017 #ifndef PRODUCT
2018   SharedRuntime::_rethrow_ctr++;               // count rethrows
2019 #endif
2020   assert (exception != nullptr, "should have thrown a NullPointerException");
2021 #ifdef ASSERT
2022   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
2023     // should throw an exception here
2024     ShouldNotReachHere();
2025   }
2026 #endif
2027 
2028   thread->set_vm_result_oop(exception);
2029   // Frame not compiled (handles deoptimization blob)
2030   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
2031 }
2032 
2033 static const TypeFunc* make_rethrow_Type() {
2034   // create input type (domain)
2035   const Type **fields = TypeTuple::fields(1);
2036   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2037   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2038 
2039   // create result type (range)
2040   fields = TypeTuple::fields(1);
2041   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2042   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
2043 
2044   return TypeFunc::make(domain, range);
2045 }
2046 
2047 
2048 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
2049   // Deoptimize the caller before continuing, as the compiled
2050   // exception handler table may not be valid.
2051   if (DeoptimizeOnAllocationException && doit) {
2052     deoptimize_caller_frame(thread);
2053   }
2054 }
2055 
2056 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
2057   // Called from within the owner thread, so no need for safepoint
2058   RegisterMap reg_map(thread,
2059                       RegisterMap::UpdateMap::include,
2060                       RegisterMap::ProcessFrames::include,
2061                       RegisterMap::WalkContinuation::skip);
2062   frame stub_frame = thread->last_frame();
2063   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2064   frame caller_frame = stub_frame.sender(&reg_map);
2065 
2066   // Deoptimize the caller frame.
2067   Deoptimization::deoptimize_frame(thread, caller_frame.id());
2068 }
2069 
2070 
2071 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
2072   // Called from within the owner thread, so no need for safepoint
2073   RegisterMap reg_map(thread,
2074                       RegisterMap::UpdateMap::include,
2075                       RegisterMap::ProcessFrames::include,
2076                       RegisterMap::WalkContinuation::skip);
2077   frame stub_frame = thread->last_frame();
2078   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2079   frame caller_frame = stub_frame.sender(&reg_map);
2080   return caller_frame.is_deoptimized_frame();
2081 }
2082 
2083 static const TypeFunc* make_register_finalizer_Type() {
2084   // create input type (domain)
2085   const Type **fields = TypeTuple::fields(1);
2086   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
2087   // // The JavaThread* is passed to each routine as the last argument
2088   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2089   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2090 
2091   // create result type (range)
2092   fields = TypeTuple::fields(0);
2093 
2094   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2095 
2096   return TypeFunc::make(domain,range);
2097 }
2098 
2099 const TypeFunc *OptoRuntime::class_init_barrier_Type() {
2100   // create input type (domain)
2101   const Type** fields = TypeTuple::fields(1);
2102   fields[TypeFunc::Parms+0] = TypeKlassPtr::NOTNULL;
2103   // // The JavaThread* is passed to each routine as the last argument
2104   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2105   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+1, fields);
2106 
2107   // create result type (range)
2108   fields = TypeTuple::fields(0);
2109   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
2110   return TypeFunc::make(domain,range);
2111 }
2112 
2113 #if INCLUDE_JFR
2114 static const TypeFunc* make_class_id_load_barrier_Type() {
2115   // create input type (domain)
2116   const Type **fields = TypeTuple::fields(1);
2117   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2118   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2119 
2120   // create result type (range)
2121   fields = TypeTuple::fields(0);
2122 
2123   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2124 
2125   return TypeFunc::make(domain,range);
2126 }
2127 #endif // INCLUDE_JFR
2128 
2129 //-----------------------------------------------------------------------------
2130 // runtime upcall support
2131 const TypeFunc *OptoRuntime::runtime_up_call_Type() {
2132   // create input type (domain)
2133   const Type **fields = TypeTuple::fields(1);
2134   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2135   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2136 
2137   // create result type (range)
2138   fields = TypeTuple::fields(0);
2139 
2140   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2141 
2142   return TypeFunc::make(domain,range);
2143 }
2144 
2145 //-----------------------------------------------------------------------------
2146 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2147   // create input type (domain)
2148   const Type **fields = TypeTuple::fields(2);
2149   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2150   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
2151   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2152 
2153   // create result type (range)
2154   fields = TypeTuple::fields(0);
2155 
2156   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2157 
2158   return TypeFunc::make(domain,range);
2159 }
2160 
2161 static const TypeFunc* make_dtrace_object_alloc_Type() {
2162   // create input type (domain)
2163   const Type **fields = TypeTuple::fields(2);
2164   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2165   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
2166 
2167   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2168 
2169   // create result type (range)
2170   fields = TypeTuple::fields(0);
2171 
2172   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2173 
2174   return TypeFunc::make(domain,range);
2175 }
2176 
2177 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, register_finalizer_C, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2178   assert(oopDesc::is_oop(obj), "must be a valid oop");
2179   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2180   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2181 JRT_END
2182 
2183 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, class_init_barrier_C, OptoRuntime::class_init_barrier_C(Klass* k, JavaThread* current))
2184   InstanceKlass* ik = InstanceKlass::cast(k);
2185   if (ik->should_be_initialized()) {
2186     ik->initialize(CHECK);
2187   } else if (UsePerfData) {
2188     _perf_OptoRuntime_class_init_barrier_redundant_count->inc();
2189   }
2190 JRT_END
2191 
2192 //-----------------------------------------------------------------------------
2193 
2194 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2195 
2196 //
2197 // dump the collected NamedCounters.
2198 //
2199 void OptoRuntime::print_named_counters() {
2200   int total_lock_count = 0;
2201   int eliminated_lock_count = 0;
2202 
2203   NamedCounter* c = _named_counters;
2204   while (c) {
2205     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
2206       int count = c->count();
2207       if (count > 0) {
2208         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
2209         if (Verbose) {
2210           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
2211         }
2212         total_lock_count += count;
2213         if (eliminated) {
2214           eliminated_lock_count += count;
2215         }
2216       }
2217     }
2218     c = c->next();
2219   }
2220   if (total_lock_count > 0) {
2221     tty->print_cr("dynamic locks: %d", total_lock_count);
2222     if (eliminated_lock_count) {
2223       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
2224                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
2225     }
2226   }
2227 }
2228 
2229 //
2230 //  Allocate a new NamedCounter.  The JVMState is used to generate the
2231 //  name which consists of method@line for the inlining tree.
2232 //
2233 
2234 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
2235   int max_depth = youngest_jvms->depth();
2236 
2237   // Visit scopes from youngest to oldest.
2238   bool first = true;
2239   stringStream st;
2240   for (int depth = max_depth; depth >= 1; depth--) {
2241     JVMState* jvms = youngest_jvms->of_depth(depth);
2242     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
2243     if (!first) {
2244       st.print(" ");
2245     } else {
2246       first = false;
2247     }
2248     int bci = jvms->bci();
2249     if (bci < 0) bci = 0;
2250     if (m != nullptr) {
2251       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
2252     } else {
2253       st.print("no method");
2254     }
2255     st.print("@%d", bci);
2256     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2257   }
2258   NamedCounter* c = new NamedCounter(st.freeze(), tag);
2259 
2260   // atomically add the new counter to the head of the list.  We only
2261   // add counters so this is safe.
2262   NamedCounter* head;
2263   do {
2264     c->set_next(nullptr);
2265     head = _named_counters;
2266     c->set_next(head);
2267   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
2268   return c;
2269 }
2270 
2271 void OptoRuntime::initialize_types() {
2272   _new_instance_Type                  = make_new_instance_Type();
2273   _new_array_Type                     = make_new_array_Type();
2274   _multianewarray2_Type               = multianewarray_Type(2);
2275   _multianewarray3_Type               = multianewarray_Type(3);
2276   _multianewarray4_Type               = multianewarray_Type(4);
2277   _multianewarray5_Type               = multianewarray_Type(5);
2278   _multianewarrayN_Type               = make_multianewarrayN_Type();
2279   _complete_monitor_enter_Type        = make_complete_monitor_enter_Type();
2280   _complete_monitor_exit_Type         = make_complete_monitor_exit_Type();
2281   _monitor_notify_Type                = make_monitor_notify_Type();
2282   _uncommon_trap_Type                 = make_uncommon_trap_Type();
2283   _athrow_Type                        = make_athrow_Type();
2284   _rethrow_Type                       = make_rethrow_Type();
2285   _Math_D_D_Type                      = make_Math_D_D_Type();
2286   _Math_DD_D_Type                     = make_Math_DD_D_Type();
2287   _modf_Type                          = make_modf_Type();
2288   _l2f_Type                           = make_l2f_Type();
2289   _void_long_Type                     = make_void_long_Type();
2290   _void_void_Type                     = make_void_void_Type();
2291   _jfr_write_checkpoint_Type          = make_jfr_write_checkpoint_Type();
2292   _flush_windows_Type                 = make_flush_windows_Type();
2293   _fast_arraycopy_Type                = make_arraycopy_Type(ac_fast);
2294   _checkcast_arraycopy_Type           = make_arraycopy_Type(ac_checkcast);
2295   _generic_arraycopy_Type             = make_arraycopy_Type(ac_generic);
2296   _slow_arraycopy_Type                = make_arraycopy_Type(ac_slow);
2297   _unsafe_setmemory_Type              = make_setmemory_Type();
2298   _array_fill_Type                    = make_array_fill_Type();
2299   _array_sort_Type                    = make_array_sort_Type();
2300   _array_partition_Type               = make_array_partition_Type();
2301   _aescrypt_block_Type                = make_aescrypt_block_Type();
2302   _cipherBlockChaining_aescrypt_Type  = make_cipherBlockChaining_aescrypt_Type();
2303   _electronicCodeBook_aescrypt_Type   = make_electronicCodeBook_aescrypt_Type();
2304   _counterMode_aescrypt_Type          = make_counterMode_aescrypt_Type();
2305   _galoisCounterMode_aescrypt_Type    = make_galoisCounterMode_aescrypt_Type();
2306   _digestBase_implCompress_with_sha3_Type      = make_digestBase_implCompress_Type(  /* is_sha3= */ true);
2307   _digestBase_implCompress_without_sha3_Type   = make_digestBase_implCompress_Type(  /* is_sha3= */ false);;
2308   _digestBase_implCompressMB_with_sha3_Type    = make_digestBase_implCompressMB_Type(/* is_sha3= */ true);
2309   _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false);
2310   _double_keccak_Type                 = make_double_keccak_Type();
2311   _multiplyToLen_Type                 = make_multiplyToLen_Type();
2312   _montgomeryMultiply_Type            = make_montgomeryMultiply_Type();
2313   _montgomerySquare_Type              = make_montgomerySquare_Type();
2314   _squareToLen_Type                   = make_squareToLen_Type();
2315   _mulAdd_Type                        = make_mulAdd_Type();
2316   _bigIntegerShift_Type               = make_bigIntegerShift_Type();
2317   _vectorizedMismatch_Type            = make_vectorizedMismatch_Type();
2318   _ghash_processBlocks_Type           = make_ghash_processBlocks_Type();
2319   _chacha20Block_Type                 = make_chacha20Block_Type();
2320   _kyberNtt_Type                      = make_kyberNtt_Type();
2321   _kyberInverseNtt_Type               = make_kyberInverseNtt_Type();
2322   _kyberNttMult_Type                  = make_kyberNttMult_Type();
2323   _kyberAddPoly_2_Type                = make_kyberAddPoly_2_Type();
2324   _kyberAddPoly_3_Type                = make_kyberAddPoly_3_Type();
2325   _kyber12To16_Type                   = make_kyber12To16_Type();
2326   _kyberBarrettReduce_Type            = make_kyberBarrettReduce_Type();
2327   _dilithiumAlmostNtt_Type            = make_dilithiumAlmostNtt_Type();
2328   _dilithiumAlmostInverseNtt_Type     = make_dilithiumAlmostInverseNtt_Type();
2329   _dilithiumNttMult_Type              = make_dilithiumNttMult_Type();
2330   _dilithiumMontMulByConstant_Type    = make_dilithiumMontMulByConstant_Type();
2331   _dilithiumDecomposePoly_Type        = make_dilithiumDecomposePoly_Type();
2332   _base64_encodeBlock_Type            = make_base64_encodeBlock_Type();
2333   _base64_decodeBlock_Type            = make_base64_decodeBlock_Type();
2334   _string_IndexOf_Type                = make_string_IndexOf_Type();
2335   _poly1305_processBlocks_Type        = make_poly1305_processBlocks_Type();
2336   _intpoly_montgomeryMult_P256_Type   = make_intpoly_montgomeryMult_P256_Type();
2337   _intpoly_assign_Type                = make_intpoly_assign_Type();
2338   _updateBytesCRC32_Type              = make_updateBytesCRC32_Type();
2339   _updateBytesCRC32C_Type             = make_updateBytesCRC32C_Type();
2340   _updateBytesAdler32_Type            = make_updateBytesAdler32_Type();
2341   _osr_end_Type                       = make_osr_end_Type();
2342   _register_finalizer_Type            = make_register_finalizer_Type();
2343   JFR_ONLY(
2344     _class_id_load_barrier_Type       = make_class_id_load_barrier_Type();
2345   )
2346 #if INCLUDE_JVMTI
2347   _notify_jvmti_vthread_Type          = make_notify_jvmti_vthread_Type();
2348 #endif // INCLUDE_JVMTI
2349   _dtrace_method_entry_exit_Type      = make_dtrace_method_entry_exit_Type();
2350   _dtrace_object_alloc_Type           = make_dtrace_object_alloc_Type();
2351 }
2352 
2353 int trace_exception_counter = 0;
2354 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2355   trace_exception_counter++;
2356   stringStream tempst;
2357 
2358   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2359   exception_oop->print_value_on(&tempst);
2360   tempst.print(" in ");
2361   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2362   if (blob->is_nmethod()) {
2363     blob->as_nmethod()->method()->print_value_on(&tempst);
2364   } else if (blob->is_runtime_stub()) {
2365     tempst.print("<runtime-stub>");
2366   } else {
2367     tempst.print("<unknown>");
2368   }
2369   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2370   tempst.print("]");
2371 
2372   st->print_raw_cr(tempst.freeze());
2373 }
2374 
2375 #define DO_COUNTERS2(macro2, macro1) \
2376   macro2(OptoRuntime, new_instance_C) \
2377   macro2(OptoRuntime, new_array_C) \
2378   macro2(OptoRuntime, new_array_nozero_C) \
2379   macro2(OptoRuntime, multianewarray2_C) \
2380   macro2(OptoRuntime, multianewarray3_C) \
2381   macro2(OptoRuntime, multianewarray4_C) \
2382   macro2(OptoRuntime, multianewarrayN_C) \
2383   macro2(OptoRuntime, monitor_notify_C) \
2384   macro2(OptoRuntime, monitor_notifyAll_C) \
2385   macro2(OptoRuntime, handle_exception_C_helper) \
2386   macro2(OptoRuntime, register_finalizer_C) \
2387   macro2(OptoRuntime, class_init_barrier_C) \
2388   macro1(OptoRuntime, class_init_barrier_redundant)
2389 
2390 #define INIT_COUNTER_TIME_AND_CNT(sub, name) \
2391   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
2392   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
2393 
2394 #define INIT_COUNTER_CNT(sub, name) \
2395   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
2396 
2397 void OptoRuntime::init_counters() {
2398   assert(CompilerConfig::is_c2_enabled(), "");
2399 
2400   if (UsePerfData) {
2401     EXCEPTION_MARK;
2402 
2403     DO_COUNTERS2(INIT_COUNTER_TIME_AND_CNT, INIT_COUNTER_CNT)
2404 
2405     if (HAS_PENDING_EXCEPTION) {
2406       vm_exit_during_initialization("jvm_perf_init failed unexpectedly");
2407     }
2408   }
2409 }
2410 #undef INIT_COUNTER_TIME_AND_CNT
2411 #undef INIT_COUNTER_CNT
2412 
2413 #define PRINT_COUNTER_TIME_AND_CNT(sub, name) { \
2414   jlong count = _perf_##sub##_##name##_count->get_value(); \
2415   if (count > 0) { \
2416     st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
2417                  _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
2418                  _perf_##sub##_##name##_timer->thread_counter_value_us(), \
2419                  count); \
2420   }}
2421 
2422 #define PRINT_COUNTER_CNT(sub, name) { \
2423   jlong count = _perf_##sub##_##name##_count->get_value(); \
2424   if (count > 0) { \
2425     st->print_cr("  %-30s = " JLONG_FORMAT_W(5) " events", #name, count); \
2426   }}
2427 
2428 void OptoRuntime::print_counters_on(outputStream* st) {
2429   if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c2_enabled()) {
2430     DO_COUNTERS2(PRINT_COUNTER_TIME_AND_CNT, PRINT_COUNTER_CNT)
2431   } else {
2432     st->print_cr("  OptoRuntime: no info (%s is disabled)",
2433                  (!CompilerConfig::is_c2_enabled() ? "C2" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")));
2434   }
2435 }
2436 
2437 #undef PRINT_COUNTER_TIME_AND_CNT
2438 #undef PRINT_COUNTER_CNT
2439 #undef DO_COUNTERS2