1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compilerDefinitions.inline.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/g1/g1HeapRegion.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gcLocker.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/klass.inline.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/typeArrayOop.inline.hpp"
  51 #include "opto/ad.hpp"
  52 #include "opto/addnode.hpp"
  53 #include "opto/callnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/graphKit.hpp"
  56 #include "opto/machnode.hpp"
  57 #include "opto/matcher.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/output.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/subnode.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/interfaceSupport.inline.hpp"
  68 #include "runtime/java.hpp"
  69 #include "runtime/javaCalls.hpp"
  70 #include "runtime/perfData.inline.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/synchronizer.hpp"
  75 #include "runtime/threadCritical.hpp"
  76 #include "runtime/threadWXSetters.inline.hpp"
  77 #include "runtime/vframe.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vframe_hp.hpp"
  80 #include "services/management.hpp"
  81 #include "utilities/copy.hpp"
  82 #include "utilities/preserveException.hpp"
  83 
  84 
  85 // For debugging purposes:
  86 //  To force FullGCALot inside a runtime function, add the following two lines
  87 //
  88 //  Universe::release_fullgc_alot_dummy();
  89 //  Universe::heap()->collect();
  90 //
  91 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  92 
  93 
  94 #define C2_BLOB_FIELD_DEFINE(name, type) \
  95   type OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  96 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  97 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  98   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
  99 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \
 100   address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr;
 101 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE)
 102 #undef C2_BLOB_FIELD_DEFINE
 103 #undef C2_STUB_FIELD_DEFINE
 104 #undef C2_JVMTI_STUB_FIELD_DEFINE
 105 
 106 
 107 #define C2_BLOB_NAME_DEFINE(name, type)  "C2 Runtime " # name "_blob",
 108 #define C2_STUB_NAME_DEFINE(name, f, t, r)  "C2 Runtime " # name,
 109 #define C2_JVMTI_STUB_NAME_DEFINE(name)  "C2 Runtime " # name,
 110 const char* OptoRuntime::_stub_names[] = {
 111   C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE)
 112 };
 113 #undef C2_BLOB_NAME_DEFINE
 114 #undef C2_STUB_NAME_DEFINE
 115 #undef C2_JVMTI_STUB_NAME_DEFINE
 116 
 117 address OptoRuntime::_vtable_must_compile_Java                    = nullptr;
 118 
 119 PerfCounter* _perf_OptoRuntime_class_init_barrier_redundant_count = nullptr;
 120 
 121 // This should be called in an assertion at the start of OptoRuntime routines
 122 // which are entered from compiled code (all of them)
 123 #ifdef ASSERT
 124 static bool check_compiled_frame(JavaThread* thread) {
 125   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 126   RegisterMap map(thread,
 127                   RegisterMap::UpdateMap::skip,
 128                   RegisterMap::ProcessFrames::include,
 129                   RegisterMap::WalkContinuation::skip);
 130   frame caller = thread->last_frame().sender(&map);
 131   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 132   return true;
 133 }
 134 #endif // ASSERT
 135 
 136 /*
 137 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 138   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 139   if (var == nullptr) { return false; }
 140 */
 141 
 142 #define GEN_C2_BLOB(name, type)                    \
 143   generate_ ## name ## _blob();
 144 
 145 // a few helper macros to conjure up generate_stub call arguments
 146 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
 147 #define C2_STUB_TYPEFUNC(name) name ## _Type
 148 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C)
 149 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id)
 150 
 151 // Almost all the C functions targeted from the generated stubs are
 152 // implemented locally to OptoRuntime with names that can be generated
 153 // from the stub name by appending suffix '_C'. However, in two cases
 154 // a common target method also needs to be called from shared runtime
 155 // stubs. In these two cases the opto stubs rely on method
 156 // imlementations defined in class SharedRuntime. The following
 157 // defines temporarily rebind the generated names to reference the
 158 // relevant implementations.
 159 
 160 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 161   C2_STUB_FIELD_NAME(name) =                                          \
 162     generate_stub(env,                                                  \
 163                   C2_STUB_TYPEFUNC(name),                             \
 164                   C2_STUB_C_FUNC(name),                               \
 165                   C2_STUB_NAME(name),                                 \
 166                   fancy_jump,                                           \
 167                   pass_tls,                                             \
 168                   pass_retpc);                                          \
 169   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 170 
 171 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name)
 172 
 173 #define GEN_C2_JVMTI_STUB(name)                                       \
 174   STUB_FIELD_NAME(name) =                                               \
 175     generate_stub(env,                                                  \
 176                   notify_jvmti_vthread_Type,                            \
 177                   C2_JVMTI_STUB_C_FUNC(name),                         \
 178                   C2_STUB_NAME(name),                                 \
 179                   0,                                                    \
 180                   true,                                                 \
 181                   false);                                               \
 182   if (STUB_FIELD_NAME(name) == nullptr) { return false; }               \
 183 
 184 bool OptoRuntime::generate(ciEnv* env) {
 185   init_counters();
 186 
 187   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
 188 
 189   return true;
 190 }
 191 
 192 #undef GEN_C2_BLOB
 193 
 194 #undef C2_STUB_FIELD_NAME
 195 #undef C2_STUB_TYPEFUNC
 196 #undef C2_STUB_C_FUNC
 197 #undef C2_STUB_NAME
 198 #undef GEN_C2_STUB
 199 
 200 #undef C2_JVMTI_STUB_C_FUNC
 201 #undef GEN_C2_JVMTI_STUB
 202 // #undef gen
 203 
 204 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 205 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 206 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 207 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;
 208 const TypeFunc* OptoRuntime::_multianewarray4_Type                = nullptr;
 209 const TypeFunc* OptoRuntime::_multianewarray5_Type                = nullptr;
 210 const TypeFunc* OptoRuntime::_multianewarrayN_Type                = nullptr;
 211 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type         = nullptr;
 212 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type          = nullptr;
 213 const TypeFunc* OptoRuntime::_monitor_notify_Type                 = nullptr;
 214 const TypeFunc* OptoRuntime::_uncommon_trap_Type                  = nullptr;
 215 const TypeFunc* OptoRuntime::_athrow_Type                         = nullptr;
 216 const TypeFunc* OptoRuntime::_rethrow_Type                        = nullptr;
 217 const TypeFunc* OptoRuntime::_Math_D_D_Type                       = nullptr;
 218 const TypeFunc* OptoRuntime::_Math_DD_D_Type                      = nullptr;
 219 const TypeFunc* OptoRuntime::_modf_Type                           = nullptr;
 220 const TypeFunc* OptoRuntime::_l2f_Type                            = nullptr;
 221 const TypeFunc* OptoRuntime::_void_long_Type                      = nullptr;
 222 const TypeFunc* OptoRuntime::_void_void_Type                      = nullptr;
 223 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type           = nullptr;
 224 const TypeFunc* OptoRuntime::_flush_windows_Type                  = nullptr;
 225 const TypeFunc* OptoRuntime::_fast_arraycopy_Type                 = nullptr;
 226 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type            = nullptr;
 227 const TypeFunc* OptoRuntime::_generic_arraycopy_Type              = nullptr;
 228 const TypeFunc* OptoRuntime::_slow_arraycopy_Type                 = nullptr;
 229 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type               = nullptr;
 230 const TypeFunc* OptoRuntime::_array_fill_Type                     = nullptr;
 231 const TypeFunc* OptoRuntime::_array_sort_Type                     = nullptr;
 232 const TypeFunc* OptoRuntime::_array_partition_Type                = nullptr;
 233 const TypeFunc* OptoRuntime::_aescrypt_block_Type                 = nullptr;
 234 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type   = nullptr;
 235 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type    = nullptr;
 236 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type           = nullptr;
 237 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type     = nullptr;
 238 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type      = nullptr;
 239 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type   = nullptr;
 240 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type    = nullptr;
 241 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr;
 242 const TypeFunc* OptoRuntime::_multiplyToLen_Type                  = nullptr;
 243 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type             = nullptr;
 244 const TypeFunc* OptoRuntime::_montgomerySquare_Type               = nullptr;
 245 const TypeFunc* OptoRuntime::_squareToLen_Type                    = nullptr;
 246 const TypeFunc* OptoRuntime::_mulAdd_Type                         = nullptr;
 247 const TypeFunc* OptoRuntime::_bigIntegerShift_Type                = nullptr;
 248 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type             = nullptr;
 249 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type            = nullptr;
 250 const TypeFunc* OptoRuntime::_chacha20Block_Type                  = nullptr;
 251 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type             = nullptr;
 252 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type             = nullptr;
 253 const TypeFunc* OptoRuntime::_string_IndexOf_Type                 = nullptr;
 254 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type         = nullptr;
 255 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type    = nullptr;
 256 const TypeFunc* OptoRuntime::_intpoly_assign_Type                 = nullptr;
 257 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 258 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 259 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 260 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 261 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 262 #if INCLUDE_JFR
 263 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 264 #endif // INCLUDE_JFR
 265 #if INCLUDE_JVMTI
 266 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type           = nullptr;
 267 #endif // INCLUDE_JVMTI
 268 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 269 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 270 
 271 // Helper method to do generation of RunTimeStub's
 272 address OptoRuntime::generate_stub(ciEnv* env,
 273                                    TypeFunc_generator gen, address C_function,
 274                                    const char *name, int is_fancy_jump,
 275                                    bool pass_tls,
 276                                    bool return_pc) {
 277 
 278   // Matching the default directive, we currently have no method to match.
 279   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompilerThread::current()->compiler());
 280   ResourceMark rm;
 281   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 282   DirectivesStack::release(directive);
 283   return  C.stub_entry_point();
 284 }
 285 
 286 const char* OptoRuntime::stub_name(address entry) {
 287 #ifndef PRODUCT
 288   CodeBlob* cb = CodeCache::find_blob(entry);
 289   RuntimeStub* rs =(RuntimeStub *)cb;
 290   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 291   return rs->name();
 292 #else
 293   // Fast implementation for product mode (maybe it should be inlined too)
 294   return "runtime stub";
 295 #endif
 296 }
 297 
 298 // local methods passed as arguments to stub generator that forward
 299 // control to corresponding JRT methods of SharedRuntime
 300 
 301 void OptoRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
 302                                    oopDesc* dest, jint dest_pos,
 303                                    jint length, JavaThread* thread) {
 304   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 305 }
 306 
 307 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 308   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 309 }
 310 
 311 
 312 //=============================================================================
 313 // Opto compiler runtime routines
 314 //=============================================================================
 315 
 316 
 317 //=============================allocation======================================
 318 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 319 // and try allocation again.
 320 
 321 // object allocation
 322 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_instance_C, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 323   JRT_BLOCK;
 324 #ifndef PRODUCT
 325   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 326 #endif
 327   assert(check_compiled_frame(current), "incorrect caller");
 328 
 329   // These checks are cheap to make and support reflective allocation.
 330   int lh = klass->layout_helper();
 331   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 332     Handle holder(current, klass->klass_holder()); // keep the klass alive
 333     klass->check_valid_for_instantiation(false, THREAD);
 334     if (!HAS_PENDING_EXCEPTION) {
 335       InstanceKlass::cast(klass)->initialize(THREAD);
 336     }
 337   }
 338 
 339   if (!HAS_PENDING_EXCEPTION) {
 340     // Scavenge and allocate an instance.
 341     Handle holder(current, klass->klass_holder()); // keep the klass alive
 342     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 343     current->set_vm_result(result);
 344 
 345     // Pass oops back through thread local storage.  Our apparent type to Java
 346     // is that we return an oop, but we can block on exit from this routine and
 347     // a GC can trash the oop in C's return register.  The generated stub will
 348     // fetch the oop from TLS after any possible GC.
 349   }
 350 
 351   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 352   JRT_BLOCK_END;
 353 
 354   // inform GC that we won't do card marks for initializing writes.
 355   SharedRuntime::on_slowpath_allocation_exit(current);
 356 JRT_END
 357 
 358 
 359 // array allocation
 360 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_C, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 361   JRT_BLOCK;
 362 #ifndef PRODUCT
 363   SharedRuntime::_new_array_ctr++;            // new array requires GC
 364 #endif
 365   assert(check_compiled_frame(current), "incorrect caller");
 366 
 367   // Scavenge and allocate an instance.
 368   oop result;
 369 
 370   if (array_type->is_typeArray_klass()) {
 371     // The oopFactory likes to work with the element type.
 372     // (We could bypass the oopFactory, since it doesn't add much value.)
 373     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 374     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 375   } else {
 376     // Although the oopFactory likes to work with the elem_type,
 377     // the compiler prefers the array_type, since it must already have
 378     // that latter value in hand for the fast path.
 379     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 380     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 381     result = oopFactory::new_objArray(elem_type, len, THREAD);
 382   }
 383 
 384   // Pass oops back through thread local storage.  Our apparent type to Java
 385   // is that we return an oop, but we can block on exit from this routine and
 386   // a GC can trash the oop in C's return register.  The generated stub will
 387   // fetch the oop from TLS after any possible GC.
 388   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 389   current->set_vm_result(result);
 390   JRT_BLOCK_END;
 391 
 392   // inform GC that we won't do card marks for initializing writes.
 393   SharedRuntime::on_slowpath_allocation_exit(current);
 394 JRT_END
 395 
 396 // array allocation without zeroing
 397 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_nozero_C, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 398   JRT_BLOCK;
 399 #ifndef PRODUCT
 400   SharedRuntime::_new_array_ctr++;            // new array requires GC
 401 #endif
 402   assert(check_compiled_frame(current), "incorrect caller");
 403 
 404   // Scavenge and allocate an instance.
 405   oop result;
 406 
 407   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 408   // The oopFactory likes to work with the element type.
 409   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 410   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 411 
 412   // Pass oops back through thread local storage.  Our apparent type to Java
 413   // is that we return an oop, but we can block on exit from this routine and
 414   // a GC can trash the oop in C's return register.  The generated stub will
 415   // fetch the oop from TLS after any possible GC.
 416   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 417   current->set_vm_result(result);
 418   JRT_BLOCK_END;
 419 
 420 
 421   // inform GC that we won't do card marks for initializing writes.
 422   SharedRuntime::on_slowpath_allocation_exit(current);
 423 
 424   oop result = current->vm_result();
 425   if ((len > 0) && (result != nullptr) &&
 426       is_deoptimized_caller_frame(current)) {
 427     // Zero array here if the caller is deoptimized.
 428     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 429     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 430     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 431     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 432     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 433     if (!is_aligned(hs_bytes, BytesPerLong)) {
 434       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 435       hs_bytes += BytesPerInt;
 436     }
 437 
 438     // Optimized zeroing.
 439     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 440     const size_t aligned_hs = hs_bytes / BytesPerLong;
 441     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 442   }
 443 
 444 JRT_END
 445 
 446 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 447 
 448 // multianewarray for 2 dimensions
 449 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray2_C, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 450 #ifndef PRODUCT
 451   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 452 #endif
 453   assert(check_compiled_frame(current), "incorrect caller");
 454   assert(elem_type->is_klass(), "not a class");
 455   jint dims[2];
 456   dims[0] = len1;
 457   dims[1] = len2;
 458   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 459   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 460   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 461   current->set_vm_result(obj);
 462 JRT_END
 463 
 464 // multianewarray for 3 dimensions
 465 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray3_C, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 466 #ifndef PRODUCT
 467   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 468 #endif
 469   assert(check_compiled_frame(current), "incorrect caller");
 470   assert(elem_type->is_klass(), "not a class");
 471   jint dims[3];
 472   dims[0] = len1;
 473   dims[1] = len2;
 474   dims[2] = len3;
 475   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 476   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 477   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 478   current->set_vm_result(obj);
 479 JRT_END
 480 
 481 // multianewarray for 4 dimensions
 482 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray4_C, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 483 #ifndef PRODUCT
 484   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 485 #endif
 486   assert(check_compiled_frame(current), "incorrect caller");
 487   assert(elem_type->is_klass(), "not a class");
 488   jint dims[4];
 489   dims[0] = len1;
 490   dims[1] = len2;
 491   dims[2] = len3;
 492   dims[3] = len4;
 493   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 494   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 495   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 496   current->set_vm_result(obj);
 497 JRT_END
 498 
 499 // multianewarray for 5 dimensions
 500 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 501 #ifndef PRODUCT
 502   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 503 #endif
 504   assert(check_compiled_frame(current), "incorrect caller");
 505   assert(elem_type->is_klass(), "not a class");
 506   jint dims[5];
 507   dims[0] = len1;
 508   dims[1] = len2;
 509   dims[2] = len3;
 510   dims[3] = len4;
 511   dims[4] = len5;
 512   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 513   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 514   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 515   current->set_vm_result(obj);
 516 JRT_END
 517 
 518 JRT_ENTRY_PROF(void, OptoRuntime, multianewarrayN_C, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 519   assert(check_compiled_frame(current), "incorrect caller");
 520   assert(elem_type->is_klass(), "not a class");
 521   assert(oop(dims)->is_typeArray(), "not an array");
 522 
 523   ResourceMark rm;
 524   jint len = dims->length();
 525   assert(len > 0, "Dimensions array should contain data");
 526   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 527   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 528                                        c_dims, len);
 529 
 530   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 531   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 532   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 533   current->set_vm_result(obj);
 534 JRT_END
 535 
 536 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notify_C, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 537 
 538   // Very few notify/notifyAll operations find any threads on the waitset, so
 539   // the dominant fast-path is to simply return.
 540   // Relatedly, it's critical that notify/notifyAll be fast in order to
 541   // reduce lock hold times.
 542   if (!SafepointSynchronize::is_synchronizing()) {
 543     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 544       return;
 545     }
 546   }
 547 
 548   // This is the case the fast-path above isn't provisioned to handle.
 549   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 550   // (The fast-path is just a degenerate variant of the slow-path).
 551   // Perform the dreaded state transition and pass control into the slow-path.
 552   JRT_BLOCK;
 553   Handle h_obj(current, obj);
 554   ObjectSynchronizer::notify(h_obj, CHECK);
 555   JRT_BLOCK_END;
 556 JRT_END
 557 
 558 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notifyAll_C, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 559 
 560   if (!SafepointSynchronize::is_synchronizing() ) {
 561     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 562       return;
 563     }
 564   }
 565 
 566   // This is the case the fast-path above isn't provisioned to handle.
 567   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 568   // (The fast-path is just a degenerate variant of the slow-path).
 569   // Perform the dreaded state transition and pass control into the slow-path.
 570   JRT_BLOCK;
 571   Handle h_obj(current, obj);
 572   ObjectSynchronizer::notifyall(h_obj, CHECK);
 573   JRT_BLOCK_END;
 574 JRT_END
 575 
 576 static const TypeFunc* make_new_instance_Type() {
 577   // create input type (domain)
 578   const Type **fields = TypeTuple::fields(1);
 579   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 580   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 581 
 582   // create result type (range)
 583   fields = TypeTuple::fields(1);
 584   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 585 
 586   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 587 
 588   return TypeFunc::make(domain, range);
 589 }
 590 
 591 #if INCLUDE_JVMTI
 592 static const TypeFunc* make_notify_jvmti_vthread_Type() {
 593   // create input type (domain)
 594   const Type **fields = TypeTuple::fields(2);
 595   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 596   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 597   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 598 
 599   // no result type needed
 600   fields = TypeTuple::fields(1);
 601   fields[TypeFunc::Parms+0] = nullptr; // void
 602   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 603 
 604   return TypeFunc::make(domain,range);
 605 }
 606 #endif
 607 
 608 static const TypeFunc* make_athrow_Type() {
 609   // create input type (domain)
 610   const Type **fields = TypeTuple::fields(1);
 611   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 612   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 613 
 614   // create result type (range)
 615   fields = TypeTuple::fields(0);
 616 
 617   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 618 
 619   return TypeFunc::make(domain, range);
 620 }
 621 
 622 static const TypeFunc* make_new_array_Type() {
 623   // create input type (domain)
 624   const Type **fields = TypeTuple::fields(2);
 625   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 626   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 627   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 628 
 629   // create result type (range)
 630   fields = TypeTuple::fields(1);
 631   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 632 
 633   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 634 
 635   return TypeFunc::make(domain, range);
 636 }
 637 
 638 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
 639   // create input type (domain)
 640   const int nargs = ndim + 1;
 641   const Type **fields = TypeTuple::fields(nargs);
 642   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 643   for( int i = 1; i < nargs; i++ )
 644     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 645   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 646 
 647   // create result type (range)
 648   fields = TypeTuple::fields(1);
 649   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 650   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 651 
 652   return TypeFunc::make(domain, range);
 653 }
 654 
 655 static const TypeFunc* make_multianewarrayN_Type() {
 656   // create input type (domain)
 657   const Type **fields = TypeTuple::fields(2);
 658   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 659   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 660   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 661 
 662   // create result type (range)
 663   fields = TypeTuple::fields(1);
 664   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 665   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 666 
 667   return TypeFunc::make(domain, range);
 668 }
 669 
 670 static const TypeFunc* make_uncommon_trap_Type() {
 671   // create input type (domain)
 672   const Type **fields = TypeTuple::fields(1);
 673   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 674   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 675 
 676   // create result type (range)
 677   fields = TypeTuple::fields(0);
 678   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 679 
 680   return TypeFunc::make(domain, range);
 681 }
 682 
 683 //-----------------------------------------------------------------------------
 684 // Monitor Handling
 685 
 686 static const TypeFunc* make_complete_monitor_enter_Type() {
 687   // create input type (domain)
 688   const Type **fields = TypeTuple::fields(2);
 689   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 690   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 691   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 692 
 693   // create result type (range)
 694   fields = TypeTuple::fields(0);
 695 
 696   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 697 
 698   return TypeFunc::make(domain,range);
 699 }
 700 
 701 //-----------------------------------------------------------------------------
 702 
 703 static const TypeFunc* make_complete_monitor_exit_Type() {
 704   // create input type (domain)
 705   const Type **fields = TypeTuple::fields(3);
 706   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 707   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 708   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 709   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 710 
 711   // create result type (range)
 712   fields = TypeTuple::fields(0);
 713 
 714   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 715 
 716   return TypeFunc::make(domain, range);
 717 }
 718 
 719 static const TypeFunc* make_monitor_notify_Type() {
 720   // create input type (domain)
 721   const Type **fields = TypeTuple::fields(1);
 722   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 723   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 724 
 725   // create result type (range)
 726   fields = TypeTuple::fields(0);
 727   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 728   return TypeFunc::make(domain, range);
 729 }
 730 
 731 static const TypeFunc* make_flush_windows_Type() {
 732   // create input type (domain)
 733   const Type** fields = TypeTuple::fields(1);
 734   fields[TypeFunc::Parms+0] = nullptr; // void
 735   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 736 
 737   // create result type
 738   fields = TypeTuple::fields(1);
 739   fields[TypeFunc::Parms+0] = nullptr; // void
 740   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 741 
 742   return TypeFunc::make(domain, range);
 743 }
 744 
 745 static const TypeFunc* make_l2f_Type() {
 746   // create input type (domain)
 747   const Type **fields = TypeTuple::fields(2);
 748   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 749   fields[TypeFunc::Parms+1] = Type::HALF;
 750   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 751 
 752   // create result type (range)
 753   fields = TypeTuple::fields(1);
 754   fields[TypeFunc::Parms+0] = Type::FLOAT;
 755   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 756 
 757   return TypeFunc::make(domain, range);
 758 }
 759 
 760 static const TypeFunc* make_modf_Type() {
 761   const Type **fields = TypeTuple::fields(2);
 762   fields[TypeFunc::Parms+0] = Type::FLOAT;
 763   fields[TypeFunc::Parms+1] = Type::FLOAT;
 764   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 765 
 766   // create result type (range)
 767   fields = TypeTuple::fields(1);
 768   fields[TypeFunc::Parms+0] = Type::FLOAT;
 769 
 770   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 771 
 772   return TypeFunc::make(domain, range);
 773 }
 774 
 775 static const TypeFunc* make_Math_D_D_Type() {
 776   // create input type (domain)
 777   const Type **fields = TypeTuple::fields(2);
 778   // Symbol* name of class to be loaded
 779   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 780   fields[TypeFunc::Parms+1] = Type::HALF;
 781   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 782 
 783   // create result type (range)
 784   fields = TypeTuple::fields(2);
 785   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 786   fields[TypeFunc::Parms+1] = Type::HALF;
 787   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 788 
 789   return TypeFunc::make(domain, range);
 790 }
 791 
 792 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 793   // create input type (domain)
 794   const Type **fields = TypeTuple::fields(num_arg);
 795   // Symbol* name of class to be loaded
 796   assert(num_arg > 0, "must have at least 1 input");
 797   for (uint i = 0; i < num_arg; i++) {
 798     fields[TypeFunc::Parms+i] = in_type;
 799   }
 800   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 801 
 802   // create result type (range)
 803   const uint num_ret = 1;
 804   fields = TypeTuple::fields(num_ret);
 805   fields[TypeFunc::Parms+0] = out_type;
 806   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 807 
 808   return TypeFunc::make(domain, range);
 809 }
 810 
 811 static const TypeFunc* make_Math_DD_D_Type() {
 812   const Type **fields = TypeTuple::fields(4);
 813   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 814   fields[TypeFunc::Parms+1] = Type::HALF;
 815   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 816   fields[TypeFunc::Parms+3] = Type::HALF;
 817   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 818 
 819   // create result type (range)
 820   fields = TypeTuple::fields(2);
 821   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 822   fields[TypeFunc::Parms+1] = Type::HALF;
 823   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 824 
 825   return TypeFunc::make(domain, range);
 826 }
 827 
 828 //-------------- currentTimeMillis, currentTimeNanos, etc
 829 
 830 static const TypeFunc* make_void_long_Type() {
 831   // create input type (domain)
 832   const Type **fields = TypeTuple::fields(0);
 833   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 834 
 835   // create result type (range)
 836   fields = TypeTuple::fields(2);
 837   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 838   fields[TypeFunc::Parms+1] = Type::HALF;
 839   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 840 
 841   return TypeFunc::make(domain, range);
 842 }
 843 
 844 static const TypeFunc* make_void_void_Type() {
 845   // create input type (domain)
 846   const Type **fields = TypeTuple::fields(0);
 847   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 848 
 849   // create result type (range)
 850   fields = TypeTuple::fields(0);
 851   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 852   return TypeFunc::make(domain, range);
 853 }
 854 
 855 static const TypeFunc* make_jfr_write_checkpoint_Type() {
 856   // create input type (domain)
 857   const Type **fields = TypeTuple::fields(0);
 858   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 859 
 860   // create result type (range)
 861   fields = TypeTuple::fields(0);
 862   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 863   return TypeFunc::make(domain, range);
 864 }
 865 
 866 
 867 // Takes as parameters:
 868 // void *dest
 869 // long size
 870 // uchar byte
 871 
 872 static const TypeFunc* make_setmemory_Type() {
 873   // create input type (domain)
 874   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 875   const Type** fields = TypeTuple::fields(argcnt);
 876   int argp = TypeFunc::Parms;
 877   fields[argp++] = TypePtr::NOTNULL;        // dest
 878   fields[argp++] = TypeX_X;                 // size
 879   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 880   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 881   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 882   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 883 
 884   // no result type needed
 885   fields = TypeTuple::fields(1);
 886   fields[TypeFunc::Parms+0] = nullptr; // void
 887   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 888   return TypeFunc::make(domain, range);
 889 }
 890 
 891 // arraycopy stub variations:
 892 enum ArrayCopyType {
 893   ac_fast,                      // void(ptr, ptr, size_t)
 894   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 895   ac_slow,                      // void(ptr, int, ptr, int, int)
 896   ac_generic                    //  int(ptr, int, ptr, int, int)
 897 };
 898 
 899 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 900   // create input type (domain)
 901   int num_args      = (act == ac_fast ? 3 : 5);
 902   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 903   int argcnt = num_args;
 904   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 905   const Type** fields = TypeTuple::fields(argcnt);
 906   int argp = TypeFunc::Parms;
 907   fields[argp++] = TypePtr::NOTNULL;    // src
 908   if (num_size_args == 0) {
 909     fields[argp++] = TypeInt::INT;      // src_pos
 910   }
 911   fields[argp++] = TypePtr::NOTNULL;    // dest
 912   if (num_size_args == 0) {
 913     fields[argp++] = TypeInt::INT;      // dest_pos
 914     fields[argp++] = TypeInt::INT;      // length
 915   }
 916   while (num_size_args-- > 0) {
 917     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 918     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 919   }
 920   if (act == ac_checkcast) {
 921     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 922   }
 923   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 924   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 925 
 926   // create result type if needed
 927   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 928   fields = TypeTuple::fields(1);
 929   if (retcnt == 0)
 930     fields[TypeFunc::Parms+0] = nullptr; // void
 931   else
 932     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 933   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 934   return TypeFunc::make(domain, range);
 935 }
 936 
 937 static const TypeFunc* make_array_fill_Type() {
 938   const Type** fields;
 939   int argp = TypeFunc::Parms;
 940   // create input type (domain): pointer, int, size_t
 941   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 942   fields[argp++] = TypePtr::NOTNULL;
 943   fields[argp++] = TypeInt::INT;
 944   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 945   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 946   const TypeTuple *domain = TypeTuple::make(argp, fields);
 947 
 948   // create result type
 949   fields = TypeTuple::fields(1);
 950   fields[TypeFunc::Parms+0] = nullptr; // void
 951   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 952 
 953   return TypeFunc::make(domain, range);
 954 }
 955 
 956 static const TypeFunc* make_array_partition_Type() {
 957   // create input type (domain)
 958   int num_args = 7;
 959   int argcnt = num_args;
 960   const Type** fields = TypeTuple::fields(argcnt);
 961   int argp = TypeFunc::Parms;
 962   fields[argp++] = TypePtr::NOTNULL;  // array
 963   fields[argp++] = TypeInt::INT;      // element type
 964   fields[argp++] = TypeInt::INT;      // low
 965   fields[argp++] = TypeInt::INT;      // end
 966   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 967   fields[argp++] = TypeInt::INT;      // indexPivot1
 968   fields[argp++] = TypeInt::INT;      // indexPivot2
 969   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 970   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 971 
 972   // no result type needed
 973   fields = TypeTuple::fields(1);
 974   fields[TypeFunc::Parms+0] = nullptr; // void
 975   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 976   return TypeFunc::make(domain, range);
 977 }
 978 
 979 static const TypeFunc* make_array_sort_Type() {
 980   // create input type (domain)
 981   int num_args      = 4;
 982   int argcnt = num_args;
 983   const Type** fields = TypeTuple::fields(argcnt);
 984   int argp = TypeFunc::Parms;
 985   fields[argp++] = TypePtr::NOTNULL;    // array
 986   fields[argp++] = TypeInt::INT;    // element type
 987   fields[argp++] = TypeInt::INT;    // fromIndex
 988   fields[argp++] = TypeInt::INT;    // toIndex
 989   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 990   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 991 
 992   // no result type needed
 993   fields = TypeTuple::fields(1);
 994   fields[TypeFunc::Parms+0] = nullptr; // void
 995   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 996   return TypeFunc::make(domain, range);
 997 }
 998 
 999 static const TypeFunc* make_aescrypt_block_Type() {
1000   // create input type (domain)
1001   int num_args      = 3;
1002   int argcnt = num_args;
1003   const Type** fields = TypeTuple::fields(argcnt);
1004   int argp = TypeFunc::Parms;
1005   fields[argp++] = TypePtr::NOTNULL;    // src
1006   fields[argp++] = TypePtr::NOTNULL;    // dest
1007   fields[argp++] = TypePtr::NOTNULL;    // k array
1008   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1009   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1010 
1011   // no result type needed
1012   fields = TypeTuple::fields(1);
1013   fields[TypeFunc::Parms+0] = nullptr; // void
1014   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1015   return TypeFunc::make(domain, range);
1016 }
1017 
1018 static const TypeFunc* make_updateBytesCRC32_Type() {
1019   // create input type (domain)
1020   int num_args      = 3;
1021   int argcnt = num_args;
1022   const Type** fields = TypeTuple::fields(argcnt);
1023   int argp = TypeFunc::Parms;
1024   fields[argp++] = TypeInt::INT;        // crc
1025   fields[argp++] = TypePtr::NOTNULL;    // src
1026   fields[argp++] = TypeInt::INT;        // len
1027   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1028   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1029 
1030   // result type needed
1031   fields = TypeTuple::fields(1);
1032   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1033   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1034   return TypeFunc::make(domain, range);
1035 }
1036 
1037 static const TypeFunc* make_updateBytesCRC32C_Type() {
1038   // create input type (domain)
1039   int num_args      = 4;
1040   int argcnt = num_args;
1041   const Type** fields = TypeTuple::fields(argcnt);
1042   int argp = TypeFunc::Parms;
1043   fields[argp++] = TypeInt::INT;        // crc
1044   fields[argp++] = TypePtr::NOTNULL;    // buf
1045   fields[argp++] = TypeInt::INT;        // len
1046   fields[argp++] = TypePtr::NOTNULL;    // table
1047   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1048   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1049 
1050   // result type needed
1051   fields = TypeTuple::fields(1);
1052   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1053   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1054   return TypeFunc::make(domain, range);
1055 }
1056 
1057 static const TypeFunc* make_updateBytesAdler32_Type() {
1058   // create input type (domain)
1059   int num_args      = 3;
1060   int argcnt = num_args;
1061   const Type** fields = TypeTuple::fields(argcnt);
1062   int argp = TypeFunc::Parms;
1063   fields[argp++] = TypeInt::INT;        // crc
1064   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1065   fields[argp++] = TypeInt::INT;        // len
1066   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1067   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1068 
1069   // result type needed
1070   fields = TypeTuple::fields(1);
1071   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1072   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1073   return TypeFunc::make(domain, range);
1074 }
1075 
1076 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() {
1077   // create input type (domain)
1078   int num_args      = 5;
1079   int argcnt = num_args;
1080   const Type** fields = TypeTuple::fields(argcnt);
1081   int argp = TypeFunc::Parms;
1082   fields[argp++] = TypePtr::NOTNULL;    // src
1083   fields[argp++] = TypePtr::NOTNULL;    // dest
1084   fields[argp++] = TypePtr::NOTNULL;    // k array
1085   fields[argp++] = TypePtr::NOTNULL;    // r array
1086   fields[argp++] = TypeInt::INT;        // src len
1087   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1088   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1089 
1090   // returning cipher len (int)
1091   fields = TypeTuple::fields(1);
1092   fields[TypeFunc::Parms+0] = TypeInt::INT;
1093   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1094   return TypeFunc::make(domain, range);
1095 }
1096 
1097 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() {
1098   // create input type (domain)
1099   int num_args = 4;
1100   int argcnt = num_args;
1101   const Type** fields = TypeTuple::fields(argcnt);
1102   int argp = TypeFunc::Parms;
1103   fields[argp++] = TypePtr::NOTNULL;    // src
1104   fields[argp++] = TypePtr::NOTNULL;    // dest
1105   fields[argp++] = TypePtr::NOTNULL;    // k array
1106   fields[argp++] = TypeInt::INT;        // src len
1107   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1108   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1109 
1110   // returning cipher len (int)
1111   fields = TypeTuple::fields(1);
1112   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1113   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1114   return TypeFunc::make(domain, range);
1115 }
1116 
1117 static const TypeFunc* make_counterMode_aescrypt_Type() {
1118   // create input type (domain)
1119   int num_args = 7;
1120   int argcnt = num_args;
1121   const Type** fields = TypeTuple::fields(argcnt);
1122   int argp = TypeFunc::Parms;
1123   fields[argp++] = TypePtr::NOTNULL; // src
1124   fields[argp++] = TypePtr::NOTNULL; // dest
1125   fields[argp++] = TypePtr::NOTNULL; // k array
1126   fields[argp++] = TypePtr::NOTNULL; // counter array
1127   fields[argp++] = TypeInt::INT; // src len
1128   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1129   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1130   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1131   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1132   // returning cipher len (int)
1133   fields = TypeTuple::fields(1);
1134   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1135   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1136   return TypeFunc::make(domain, range);
1137 }
1138 
1139 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() {
1140   // create input type (domain)
1141   int num_args = 8;
1142   int argcnt = num_args;
1143   const Type** fields = TypeTuple::fields(argcnt);
1144   int argp = TypeFunc::Parms;
1145   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1146   fields[argp++] = TypeInt::INT;     // int len
1147   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1148   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1149   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1150   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1151   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1152   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1153 
1154   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1155   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1156   // returning cipher len (int)
1157   fields = TypeTuple::fields(1);
1158   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1159   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1160   return TypeFunc::make(domain, range);
1161 }
1162 
1163 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) {
1164   // create input type (domain)
1165   int num_args = is_sha3 ? 3 : 2;
1166   int argcnt = num_args;
1167   const Type** fields = TypeTuple::fields(argcnt);
1168   int argp = TypeFunc::Parms;
1169   fields[argp++] = TypePtr::NOTNULL; // buf
1170   fields[argp++] = TypePtr::NOTNULL; // state
1171   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1172   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1173   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1174 
1175   // no result type needed
1176   fields = TypeTuple::fields(1);
1177   fields[TypeFunc::Parms+0] = nullptr; // void
1178   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1179   return TypeFunc::make(domain, range);
1180 }
1181 
1182 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) {
1183   // create input type (domain)
1184   int num_args = is_sha3 ? 5 : 4;
1185   int argcnt = num_args;
1186   const Type** fields = TypeTuple::fields(argcnt);
1187   int argp = TypeFunc::Parms;
1188   fields[argp++] = TypePtr::NOTNULL; // buf
1189   fields[argp++] = TypePtr::NOTNULL; // state
1190   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1191   fields[argp++] = TypeInt::INT;     // ofs
1192   fields[argp++] = TypeInt::INT;     // limit
1193   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1194   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1195 
1196   // returning ofs (int)
1197   fields = TypeTuple::fields(1);
1198   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1199   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1200   return TypeFunc::make(domain, range);
1201 }
1202 
1203 static const TypeFunc* make_multiplyToLen_Type() {
1204   // create input type (domain)
1205   int num_args      = 5;
1206   int argcnt = num_args;
1207   const Type** fields = TypeTuple::fields(argcnt);
1208   int argp = TypeFunc::Parms;
1209   fields[argp++] = TypePtr::NOTNULL;    // x
1210   fields[argp++] = TypeInt::INT;        // xlen
1211   fields[argp++] = TypePtr::NOTNULL;    // y
1212   fields[argp++] = TypeInt::INT;        // ylen
1213   fields[argp++] = TypePtr::NOTNULL;    // z
1214   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1215   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1216 
1217   // no result type needed
1218   fields = TypeTuple::fields(1);
1219   fields[TypeFunc::Parms+0] = nullptr;
1220   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1221   return TypeFunc::make(domain, range);
1222 }
1223 
1224 static const TypeFunc* make_squareToLen_Type() {
1225   // create input type (domain)
1226   int num_args      = 4;
1227   int argcnt = num_args;
1228   const Type** fields = TypeTuple::fields(argcnt);
1229   int argp = TypeFunc::Parms;
1230   fields[argp++] = TypePtr::NOTNULL;    // x
1231   fields[argp++] = TypeInt::INT;        // len
1232   fields[argp++] = TypePtr::NOTNULL;    // z
1233   fields[argp++] = TypeInt::INT;        // zlen
1234   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1235   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1236 
1237   // no result type needed
1238   fields = TypeTuple::fields(1);
1239   fields[TypeFunc::Parms+0] = nullptr;
1240   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1241   return TypeFunc::make(domain, range);
1242 }
1243 
1244 static const TypeFunc* make_mulAdd_Type() {
1245   // create input type (domain)
1246   int num_args      = 5;
1247   int argcnt = num_args;
1248   const Type** fields = TypeTuple::fields(argcnt);
1249   int argp = TypeFunc::Parms;
1250   fields[argp++] = TypePtr::NOTNULL;    // out
1251   fields[argp++] = TypePtr::NOTNULL;    // in
1252   fields[argp++] = TypeInt::INT;        // offset
1253   fields[argp++] = TypeInt::INT;        // len
1254   fields[argp++] = TypeInt::INT;        // k
1255   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1256   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1257 
1258   // returning carry (int)
1259   fields = TypeTuple::fields(1);
1260   fields[TypeFunc::Parms+0] = TypeInt::INT;
1261   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1262   return TypeFunc::make(domain, range);
1263 }
1264 
1265 static const TypeFunc* make_montgomeryMultiply_Type() {
1266   // create input type (domain)
1267   int num_args      = 7;
1268   int argcnt = num_args;
1269   const Type** fields = TypeTuple::fields(argcnt);
1270   int argp = TypeFunc::Parms;
1271   fields[argp++] = TypePtr::NOTNULL;    // a
1272   fields[argp++] = TypePtr::NOTNULL;    // b
1273   fields[argp++] = TypePtr::NOTNULL;    // n
1274   fields[argp++] = TypeInt::INT;        // len
1275   fields[argp++] = TypeLong::LONG;      // inv
1276   fields[argp++] = Type::HALF;
1277   fields[argp++] = TypePtr::NOTNULL;    // result
1278   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1279   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1280 
1281   // result type needed
1282   fields = TypeTuple::fields(1);
1283   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1284 
1285   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1286   return TypeFunc::make(domain, range);
1287 }
1288 
1289 static const TypeFunc* make_montgomerySquare_Type() {
1290   // create input type (domain)
1291   int num_args      = 6;
1292   int argcnt = num_args;
1293   const Type** fields = TypeTuple::fields(argcnt);
1294   int argp = TypeFunc::Parms;
1295   fields[argp++] = TypePtr::NOTNULL;    // a
1296   fields[argp++] = TypePtr::NOTNULL;    // n
1297   fields[argp++] = TypeInt::INT;        // len
1298   fields[argp++] = TypeLong::LONG;      // inv
1299   fields[argp++] = Type::HALF;
1300   fields[argp++] = TypePtr::NOTNULL;    // result
1301   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1302   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1303 
1304   // result type needed
1305   fields = TypeTuple::fields(1);
1306   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1307 
1308   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1309   return TypeFunc::make(domain, range);
1310 }
1311 
1312 static const TypeFunc* make_bigIntegerShift_Type() {
1313   int argcnt = 5;
1314   const Type** fields = TypeTuple::fields(argcnt);
1315   int argp = TypeFunc::Parms;
1316   fields[argp++] = TypePtr::NOTNULL;    // newArr
1317   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1318   fields[argp++] = TypeInt::INT;        // newIdx
1319   fields[argp++] = TypeInt::INT;        // shiftCount
1320   fields[argp++] = TypeInt::INT;        // numIter
1321   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1322   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1323 
1324   // no result type needed
1325   fields = TypeTuple::fields(1);
1326   fields[TypeFunc::Parms + 0] = nullptr;
1327   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1328   return TypeFunc::make(domain, range);
1329 }
1330 
1331 static const TypeFunc* make_vectorizedMismatch_Type() {
1332   // create input type (domain)
1333   int num_args = 4;
1334   int argcnt = num_args;
1335   const Type** fields = TypeTuple::fields(argcnt);
1336   int argp = TypeFunc::Parms;
1337   fields[argp++] = TypePtr::NOTNULL;    // obja
1338   fields[argp++] = TypePtr::NOTNULL;    // objb
1339   fields[argp++] = TypeInt::INT;        // length, number of elements
1340   fields[argp++] = TypeInt::INT;        // log2scale, element size
1341   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1342   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1343 
1344   //return mismatch index (int)
1345   fields = TypeTuple::fields(1);
1346   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1347   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1348   return TypeFunc::make(domain, range);
1349 }
1350 
1351 static const TypeFunc* make_ghash_processBlocks_Type() {
1352   int argcnt = 4;
1353 
1354   const Type** fields = TypeTuple::fields(argcnt);
1355   int argp = TypeFunc::Parms;
1356   fields[argp++] = TypePtr::NOTNULL;    // state
1357   fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1358   fields[argp++] = TypePtr::NOTNULL;    // data
1359   fields[argp++] = TypeInt::INT;        // blocks
1360   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1361   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1362 
1363   // result type needed
1364   fields = TypeTuple::fields(1);
1365   fields[TypeFunc::Parms+0] = nullptr; // void
1366   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1367   return TypeFunc::make(domain, range);
1368 }
1369 
1370 static const TypeFunc* make_chacha20Block_Type() {
1371   int argcnt = 2;
1372 
1373   const Type** fields = TypeTuple::fields(argcnt);
1374   int argp = TypeFunc::Parms;
1375   fields[argp++] = TypePtr::NOTNULL;      // state
1376   fields[argp++] = TypePtr::NOTNULL;      // result
1377 
1378   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1379   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1380 
1381   // result type needed
1382   fields = TypeTuple::fields(1);
1383   fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1384   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1385   return TypeFunc::make(domain, range);
1386 }
1387 
1388 static const TypeFunc* make_base64_encodeBlock_Type() {
1389   int argcnt = 6;
1390 
1391   const Type** fields = TypeTuple::fields(argcnt);
1392   int argp = TypeFunc::Parms;
1393   fields[argp++] = TypePtr::NOTNULL;    // src array
1394   fields[argp++] = TypeInt::INT;        // offset
1395   fields[argp++] = TypeInt::INT;        // length
1396   fields[argp++] = TypePtr::NOTNULL;    // dest array
1397   fields[argp++] = TypeInt::INT;       // dp
1398   fields[argp++] = TypeInt::BOOL;       // isURL
1399   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1400   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1401 
1402   // result type needed
1403   fields = TypeTuple::fields(1);
1404   fields[TypeFunc::Parms + 0] = nullptr; // void
1405   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1406   return TypeFunc::make(domain, range);
1407 }
1408 
1409 static const TypeFunc* make_string_IndexOf_Type() {
1410   int argcnt = 4;
1411 
1412   const Type** fields = TypeTuple::fields(argcnt);
1413   int argp = TypeFunc::Parms;
1414   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1415   fields[argp++] = TypeInt::INT;        // haystack length
1416   fields[argp++] = TypePtr::NOTNULL;    // needle array
1417   fields[argp++] = TypeInt::INT;        // needle length
1418   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1419   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1420 
1421   // result type needed
1422   fields = TypeTuple::fields(1);
1423   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1424   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1425   return TypeFunc::make(domain, range);
1426 }
1427 
1428 static const TypeFunc* make_base64_decodeBlock_Type() {
1429   int argcnt = 7;
1430 
1431   const Type** fields = TypeTuple::fields(argcnt);
1432   int argp = TypeFunc::Parms;
1433   fields[argp++] = TypePtr::NOTNULL;    // src array
1434   fields[argp++] = TypeInt::INT;        // src offset
1435   fields[argp++] = TypeInt::INT;        // src length
1436   fields[argp++] = TypePtr::NOTNULL;    // dest array
1437   fields[argp++] = TypeInt::INT;        // dest offset
1438   fields[argp++] = TypeInt::BOOL;       // isURL
1439   fields[argp++] = TypeInt::BOOL;       // isMIME
1440   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1441   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1442 
1443   // result type needed
1444   fields = TypeTuple::fields(1);
1445   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1446   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1447   return TypeFunc::make(domain, range);
1448 }
1449 
1450 static const TypeFunc* make_poly1305_processBlocks_Type() {
1451   int argcnt = 4;
1452 
1453   const Type** fields = TypeTuple::fields(argcnt);
1454   int argp = TypeFunc::Parms;
1455   fields[argp++] = TypePtr::NOTNULL;    // input array
1456   fields[argp++] = TypeInt::INT;        // input length
1457   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1458   fields[argp++] = TypePtr::NOTNULL;    // r array
1459   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1460   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1461 
1462   // result type needed
1463   fields = TypeTuple::fields(1);
1464   fields[TypeFunc::Parms + 0] = nullptr; // void
1465   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1466   return TypeFunc::make(domain, range);
1467 }
1468 
1469 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() {
1470   int argcnt = 3;
1471 
1472   const Type** fields = TypeTuple::fields(argcnt);
1473   int argp = TypeFunc::Parms;
1474   fields[argp++] = TypePtr::NOTNULL;    // a array
1475   fields[argp++] = TypePtr::NOTNULL;    // b array
1476   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1477   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1478   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1479 
1480   // result type needed
1481   fields = TypeTuple::fields(1);
1482   fields[TypeFunc::Parms + 0] = nullptr; // void
1483   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1484   return TypeFunc::make(domain, range);
1485 }
1486 
1487 static const TypeFunc* make_intpoly_assign_Type() {
1488   int argcnt = 4;
1489 
1490   const Type** fields = TypeTuple::fields(argcnt);
1491   int argp = TypeFunc::Parms;
1492   fields[argp++] = TypeInt::INT;        // set flag
1493   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1494   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1495   fields[argp++] = TypeInt::INT;        // array length
1496   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1497   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1498 
1499   // result type needed
1500   fields = TypeTuple::fields(1);
1501   fields[TypeFunc::Parms + 0] = nullptr; // void
1502   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1503   return TypeFunc::make(domain, range);
1504 }
1505 
1506 //------------- Interpreter state for on stack replacement
1507 static const TypeFunc* make_osr_end_Type() {
1508   // create input type (domain)
1509   const Type **fields = TypeTuple::fields(1);
1510   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1511   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1512 
1513   // create result type
1514   fields = TypeTuple::fields(1);
1515   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1516   fields[TypeFunc::Parms+0] = nullptr; // void
1517   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1518   return TypeFunc::make(domain, range);
1519 }
1520 
1521 //-------------------------------------------------------------------------------------
1522 // register policy
1523 
1524 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1525   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1526   switch (register_save_policy[reg]) {
1527     case 'C': return false; //SOC
1528     case 'E': return true ; //SOE
1529     case 'N': return false; //NS
1530     case 'A': return false; //AS
1531   }
1532   ShouldNotReachHere();
1533   return false;
1534 }
1535 
1536 //-----------------------------------------------------------------------
1537 // Exceptions
1538 //
1539 
1540 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1541 
1542 // The method is an entry that is always called by a C++ method not
1543 // directly from compiled code. Compiled code will call the C++ method following.
1544 // We can't allow async exception to be installed during  exception processing.
1545 JRT_ENTRY_NO_ASYNC_PROF(address, OptoRuntime, handle_exception_C_helper, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1546   // The frame we rethrow the exception to might not have been processed by the GC yet.
1547   // The stack watermark barrier takes care of detecting that and ensuring the frame
1548   // has updated oops.
1549   StackWatermarkSet::after_unwind(current);
1550 
1551   // Do not confuse exception_oop with pending_exception. The exception_oop
1552   // is only used to pass arguments into the method. Not for general
1553   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1554   // the runtime stubs checks this on exit.
1555   assert(current->exception_oop() != nullptr, "exception oop is found");
1556   address handler_address = nullptr;
1557 
1558   Handle exception(current, current->exception_oop());
1559   address pc = current->exception_pc();
1560 
1561   // Clear out the exception oop and pc since looking up an
1562   // exception handler can cause class loading, which might throw an
1563   // exception and those fields are expected to be clear during
1564   // normal bytecode execution.
1565   current->clear_exception_oop_and_pc();
1566 
1567   LogTarget(Info, exceptions) lt;
1568   if (lt.is_enabled()) {
1569     ResourceMark rm;
1570     LogStream ls(lt);
1571     trace_exception(&ls, exception(), pc, "");
1572   }
1573 
1574   // for AbortVMOnException flag
1575   Exceptions::debug_check_abort(exception);
1576 
1577 #ifdef ASSERT
1578   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1579     // should throw an exception here
1580     ShouldNotReachHere();
1581   }
1582 #endif
1583 
1584   // new exception handling: this method is entered only from adapters
1585   // exceptions from compiled java methods are handled in compiled code
1586   // using rethrow node
1587 
1588   nm = CodeCache::find_nmethod(pc);
1589   assert(nm != nullptr, "No NMethod found");
1590   if (nm->is_native_method()) {
1591     fatal("Native method should not have path to exception handling");
1592   } else {
1593     // we are switching to old paradigm: search for exception handler in caller_frame
1594     // instead in exception handler of caller_frame.sender()
1595 
1596     if (JvmtiExport::can_post_on_exceptions()) {
1597       // "Full-speed catching" is not necessary here,
1598       // since we're notifying the VM on every catch.
1599       // Force deoptimization and the rest of the lookup
1600       // will be fine.
1601       deoptimize_caller_frame(current);
1602     }
1603 
1604     // Check the stack guard pages.  If enabled, look for handler in this frame;
1605     // otherwise, forcibly unwind the frame.
1606     //
1607     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1608     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1609     bool deopting = false;
1610     if (nm->is_deopt_pc(pc)) {
1611       deopting = true;
1612       RegisterMap map(current,
1613                       RegisterMap::UpdateMap::skip,
1614                       RegisterMap::ProcessFrames::include,
1615                       RegisterMap::WalkContinuation::skip);
1616       frame deoptee = current->last_frame().sender(&map);
1617       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1618       // Adjust the pc back to the original throwing pc
1619       pc = deoptee.pc();
1620     }
1621 
1622     // If we are forcing an unwind because of stack overflow then deopt is
1623     // irrelevant since we are throwing the frame away anyway.
1624 
1625     if (deopting && !force_unwind) {
1626       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1627     } else {
1628 
1629       handler_address =
1630         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1631 
1632       if (handler_address == nullptr) {
1633         bool recursive_exception = false;
1634         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1635         assert (handler_address != nullptr, "must have compiled handler");
1636         // Update the exception cache only when the unwind was not forced
1637         // and there didn't happen another exception during the computation of the
1638         // compiled exception handler. Checking for exception oop equality is not
1639         // sufficient because some exceptions are pre-allocated and reused.
1640         if (!force_unwind && !recursive_exception) {
1641           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1642         }
1643       } else {
1644 #ifdef ASSERT
1645         bool recursive_exception = false;
1646         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1647         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1648                  p2i(handler_address), p2i(computed_address));
1649 #endif
1650       }
1651     }
1652 
1653     current->set_exception_pc(pc);
1654     current->set_exception_handler_pc(handler_address);
1655 
1656     // Check if the exception PC is a MethodHandle call site.
1657     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1658   }
1659 
1660   // Restore correct return pc.  Was saved above.
1661   current->set_exception_oop(exception());
1662   return handler_address;
1663 
1664 JRT_END
1665 
1666 // We are entering here from exception_blob
1667 // If there is a compiled exception handler in this method, we will continue there;
1668 // otherwise we will unwind the stack and continue at the caller of top frame method
1669 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1670 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1671 // we looked up the handler for has been deoptimized in the meantime. If it has been
1672 // we must not use the handler and instead return the deopt blob.
1673 address OptoRuntime::handle_exception_C(JavaThread* current) {
1674 //
1675 // We are in Java not VM and in debug mode we have a NoHandleMark
1676 //
1677 #ifndef PRODUCT
1678   SharedRuntime::_find_handler_ctr++;          // find exception handler
1679 #endif
1680   debug_only(NoHandleMark __hm;)
1681   nmethod* nm = nullptr;
1682   address handler_address = nullptr;
1683   {
1684     // Enter the VM
1685 
1686     ResetNoHandleMark rnhm;
1687     handler_address = handle_exception_C_helper(current, nm);
1688   }
1689 
1690   // Back in java: Use no oops, DON'T safepoint
1691 
1692   // Now check to see if the handler we are returning is in a now
1693   // deoptimized frame
1694 
1695   if (nm != nullptr) {
1696     RegisterMap map(current,
1697                     RegisterMap::UpdateMap::skip,
1698                     RegisterMap::ProcessFrames::skip,
1699                     RegisterMap::WalkContinuation::skip);
1700     frame caller = current->last_frame().sender(&map);
1701 #ifdef ASSERT
1702     assert(caller.is_compiled_frame(), "must be");
1703 #endif // ASSERT
1704     if (caller.is_deoptimized_frame()) {
1705       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1706     }
1707   }
1708   return handler_address;
1709 }
1710 
1711 //------------------------------rethrow----------------------------------------
1712 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1713 // is either throwing or rethrowing an exception.  The callee-save registers
1714 // have been restored, synchronized objects have been unlocked and the callee
1715 // stack frame has been removed.  The return address was passed in.
1716 // Exception oop is passed as the 1st argument.  This routine is then called
1717 // from the stub.  On exit, we know where to jump in the caller's code.
1718 // After this C code exits, the stub will pop his frame and end in a jump
1719 // (instead of a return).  We enter the caller's default handler.
1720 //
1721 // This must be JRT_LEAF:
1722 //     - caller will not change its state as we cannot block on exit,
1723 //       therefore raw_exception_handler_for_return_address is all it takes
1724 //       to handle deoptimized blobs
1725 //
1726 // However, there needs to be a safepoint check in the middle!  So compiled
1727 // safepoints are completely watertight.
1728 //
1729 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1730 //
1731 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1732 //
1733 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1734   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
1735   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
1736 
1737 #ifndef PRODUCT
1738   SharedRuntime::_rethrow_ctr++;               // count rethrows
1739 #endif
1740   assert (exception != nullptr, "should have thrown a NullPointerException");
1741 #ifdef ASSERT
1742   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1743     // should throw an exception here
1744     ShouldNotReachHere();
1745   }
1746 #endif
1747 
1748   thread->set_vm_result(exception);
1749   // Frame not compiled (handles deoptimization blob)
1750   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1751 }
1752 
1753 static const TypeFunc* make_rethrow_Type() {
1754   // create input type (domain)
1755   const Type **fields = TypeTuple::fields(1);
1756   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1757   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1758 
1759   // create result type (range)
1760   fields = TypeTuple::fields(1);
1761   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1762   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1763 
1764   return TypeFunc::make(domain, range);
1765 }
1766 
1767 
1768 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1769   // Deoptimize the caller before continuing, as the compiled
1770   // exception handler table may not be valid.
1771   if (!StressCompiledExceptionHandlers && doit) {
1772     deoptimize_caller_frame(thread);
1773   }
1774 }
1775 
1776 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1777   // Called from within the owner thread, so no need for safepoint
1778   RegisterMap reg_map(thread,
1779                       RegisterMap::UpdateMap::include,
1780                       RegisterMap::ProcessFrames::include,
1781                       RegisterMap::WalkContinuation::skip);
1782   frame stub_frame = thread->last_frame();
1783   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1784   frame caller_frame = stub_frame.sender(&reg_map);
1785 
1786   // Deoptimize the caller frame.
1787   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1788 }
1789 
1790 
1791 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1792   // Called from within the owner thread, so no need for safepoint
1793   RegisterMap reg_map(thread,
1794                       RegisterMap::UpdateMap::include,
1795                       RegisterMap::ProcessFrames::include,
1796                       RegisterMap::WalkContinuation::skip);
1797   frame stub_frame = thread->last_frame();
1798   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1799   frame caller_frame = stub_frame.sender(&reg_map);
1800   return caller_frame.is_deoptimized_frame();
1801 }
1802 
1803 static const TypeFunc* make_register_finalizer_Type() {
1804   // create input type (domain)
1805   const Type **fields = TypeTuple::fields(1);
1806   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1807   // // The JavaThread* is passed to each routine as the last argument
1808   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1809   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1810 
1811   // create result type (range)
1812   fields = TypeTuple::fields(0);
1813 
1814   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1815 
1816   return TypeFunc::make(domain,range);
1817 }
1818 
1819 const TypeFunc *OptoRuntime::class_init_barrier_Type() {
1820   // create input type (domain)
1821   const Type** fields = TypeTuple::fields(1);
1822   fields[TypeFunc::Parms+0] = TypeKlassPtr::NOTNULL;
1823   // // The JavaThread* is passed to each routine as the last argument
1824   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1825   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1826 
1827   // create result type (range)
1828   fields = TypeTuple::fields(0);
1829   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
1830   return TypeFunc::make(domain,range);
1831 }
1832 
1833 #if INCLUDE_JFR
1834 static const TypeFunc* make_class_id_load_barrier_Type() {
1835   // create input type (domain)
1836   const Type **fields = TypeTuple::fields(1);
1837   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1838   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1839 
1840   // create result type (range)
1841   fields = TypeTuple::fields(0);
1842 
1843   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1844 
1845   return TypeFunc::make(domain,range);
1846 }
1847 #endif // INCLUDE_JFR
1848 
1849 //-----------------------------------------------------------------------------
1850 // runtime upcall support
1851 const TypeFunc *OptoRuntime::runtime_up_call_Type() {
1852   // create input type (domain)
1853   const Type **fields = TypeTuple::fields(1);
1854   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1855   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1856 
1857   // create result type (range)
1858   fields = TypeTuple::fields(0);
1859 
1860   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1861 
1862   return TypeFunc::make(domain,range);
1863 }
1864 
1865 //-----------------------------------------------------------------------------
1866 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
1867   // create input type (domain)
1868   const Type **fields = TypeTuple::fields(2);
1869   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1870   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1871   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1872 
1873   // create result type (range)
1874   fields = TypeTuple::fields(0);
1875 
1876   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1877 
1878   return TypeFunc::make(domain,range);
1879 }
1880 
1881 static const TypeFunc* make_dtrace_object_alloc_Type() {
1882   // create input type (domain)
1883   const Type **fields = TypeTuple::fields(2);
1884   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1885   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1886 
1887   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1888 
1889   // create result type (range)
1890   fields = TypeTuple::fields(0);
1891 
1892   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1893 
1894   return TypeFunc::make(domain,range);
1895 }
1896 
1897 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, register_finalizer_C, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
1898   assert(oopDesc::is_oop(obj), "must be a valid oop");
1899   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1900   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1901 JRT_END
1902 
1903 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, class_init_barrier_C, OptoRuntime::class_init_barrier_C(Klass* k, JavaThread* current))
1904   InstanceKlass* ik = InstanceKlass::cast(k);
1905   if (ik->should_be_initialized()) {
1906     ik->initialize(CHECK);
1907   } else if (UsePerfData) {
1908     _perf_OptoRuntime_class_init_barrier_redundant_count->inc();
1909   }
1910 JRT_END
1911 
1912 //-----------------------------------------------------------------------------
1913 
1914 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
1915 
1916 //
1917 // dump the collected NamedCounters.
1918 //
1919 void OptoRuntime::print_named_counters() {
1920   int total_lock_count = 0;
1921   int eliminated_lock_count = 0;
1922 
1923   NamedCounter* c = _named_counters;
1924   while (c) {
1925     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1926       int count = c->count();
1927       if (count > 0) {
1928         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1929         if (Verbose) {
1930           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1931         }
1932         total_lock_count += count;
1933         if (eliminated) {
1934           eliminated_lock_count += count;
1935         }
1936       }
1937     }
1938     c = c->next();
1939   }
1940   if (total_lock_count > 0) {
1941     tty->print_cr("dynamic locks: %d", total_lock_count);
1942     if (eliminated_lock_count) {
1943       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1944                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1945     }
1946   }
1947 }
1948 
1949 //
1950 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1951 //  name which consists of method@line for the inlining tree.
1952 //
1953 
1954 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1955   int max_depth = youngest_jvms->depth();
1956 
1957   // Visit scopes from youngest to oldest.
1958   bool first = true;
1959   stringStream st;
1960   for (int depth = max_depth; depth >= 1; depth--) {
1961     JVMState* jvms = youngest_jvms->of_depth(depth);
1962     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
1963     if (!first) {
1964       st.print(" ");
1965     } else {
1966       first = false;
1967     }
1968     int bci = jvms->bci();
1969     if (bci < 0) bci = 0;
1970     if (m != nullptr) {
1971       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1972     } else {
1973       st.print("no method");
1974     }
1975     st.print("@%d", bci);
1976     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1977   }
1978   NamedCounter* c = new NamedCounter(st.freeze(), tag);
1979 
1980   // atomically add the new counter to the head of the list.  We only
1981   // add counters so this is safe.
1982   NamedCounter* head;
1983   do {
1984     c->set_next(nullptr);
1985     head = _named_counters;
1986     c->set_next(head);
1987   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1988   return c;
1989 }
1990 
1991 void OptoRuntime::initialize_types() {
1992   _new_instance_Type                  = make_new_instance_Type();
1993   _new_array_Type                     = make_new_array_Type();
1994   _multianewarray2_Type               = multianewarray_Type(2);
1995   _multianewarray3_Type               = multianewarray_Type(3);
1996   _multianewarray4_Type               = multianewarray_Type(4);
1997   _multianewarray5_Type               = multianewarray_Type(5);
1998   _multianewarrayN_Type               = make_multianewarrayN_Type();
1999   _complete_monitor_enter_Type        = make_complete_monitor_enter_Type();
2000   _complete_monitor_exit_Type         = make_complete_monitor_exit_Type();
2001   _monitor_notify_Type                = make_monitor_notify_Type();
2002   _uncommon_trap_Type                 = make_uncommon_trap_Type();
2003   _athrow_Type                        = make_athrow_Type();
2004   _rethrow_Type                       = make_rethrow_Type();
2005   _Math_D_D_Type                      = make_Math_D_D_Type();
2006   _Math_DD_D_Type                     = make_Math_DD_D_Type();
2007   _modf_Type                          = make_modf_Type();
2008   _l2f_Type                           = make_l2f_Type();
2009   _void_long_Type                     = make_void_long_Type();
2010   _void_void_Type                     = make_void_void_Type();
2011   _jfr_write_checkpoint_Type          = make_jfr_write_checkpoint_Type();
2012   _flush_windows_Type                 = make_flush_windows_Type();
2013   _fast_arraycopy_Type                = make_arraycopy_Type(ac_fast);
2014   _checkcast_arraycopy_Type           = make_arraycopy_Type(ac_checkcast);
2015   _generic_arraycopy_Type             = make_arraycopy_Type(ac_generic);
2016   _slow_arraycopy_Type                = make_arraycopy_Type(ac_slow);
2017   _unsafe_setmemory_Type              = make_setmemory_Type();
2018   _array_fill_Type                    = make_array_fill_Type();
2019   _array_sort_Type                    = make_array_sort_Type();
2020   _array_partition_Type               = make_array_partition_Type();
2021   _aescrypt_block_Type                = make_aescrypt_block_Type();
2022   _cipherBlockChaining_aescrypt_Type  = make_cipherBlockChaining_aescrypt_Type();
2023   _electronicCodeBook_aescrypt_Type   = make_electronicCodeBook_aescrypt_Type();
2024   _counterMode_aescrypt_Type          = make_counterMode_aescrypt_Type();
2025   _galoisCounterMode_aescrypt_Type    = make_galoisCounterMode_aescrypt_Type();
2026   _digestBase_implCompress_with_sha3_Type      = make_digestBase_implCompress_Type(  /* is_sha3= */ true);
2027   _digestBase_implCompress_without_sha3_Type   = make_digestBase_implCompress_Type(  /* is_sha3= */ false);;
2028   _digestBase_implCompressMB_with_sha3_Type    = make_digestBase_implCompressMB_Type(/* is_sha3= */ true);
2029   _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false);
2030   _multiplyToLen_Type                 = make_multiplyToLen_Type();
2031   _montgomeryMultiply_Type            = make_montgomeryMultiply_Type();
2032   _montgomerySquare_Type              = make_montgomerySquare_Type();
2033   _squareToLen_Type                   = make_squareToLen_Type();
2034   _mulAdd_Type                        = make_mulAdd_Type();
2035   _bigIntegerShift_Type               = make_bigIntegerShift_Type();
2036   _vectorizedMismatch_Type            = make_vectorizedMismatch_Type();
2037   _ghash_processBlocks_Type           = make_ghash_processBlocks_Type();
2038   _chacha20Block_Type                 = make_chacha20Block_Type();
2039   _base64_encodeBlock_Type            = make_base64_encodeBlock_Type();
2040   _base64_decodeBlock_Type            = make_base64_decodeBlock_Type();
2041   _string_IndexOf_Type                = make_string_IndexOf_Type();
2042   _poly1305_processBlocks_Type        = make_poly1305_processBlocks_Type();
2043   _intpoly_montgomeryMult_P256_Type   = make_intpoly_montgomeryMult_P256_Type();
2044   _intpoly_assign_Type                = make_intpoly_assign_Type();
2045   _updateBytesCRC32_Type              = make_updateBytesCRC32_Type();
2046   _updateBytesCRC32C_Type             = make_updateBytesCRC32C_Type();
2047   _updateBytesAdler32_Type            = make_updateBytesAdler32_Type();
2048   _osr_end_Type                       = make_osr_end_Type();
2049   _register_finalizer_Type            = make_register_finalizer_Type();
2050   JFR_ONLY(
2051     _class_id_load_barrier_Type       = make_class_id_load_barrier_Type();
2052   )
2053 #if INCLUDE_JVMTI
2054   _notify_jvmti_vthread_Type          = make_notify_jvmti_vthread_Type();
2055 #endif // INCLUDE_JVMTI
2056   _dtrace_method_entry_exit_Type      = make_dtrace_method_entry_exit_Type();
2057   _dtrace_object_alloc_Type           = make_dtrace_object_alloc_Type();
2058 }
2059 
2060 int trace_exception_counter = 0;
2061 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2062   trace_exception_counter++;
2063   stringStream tempst;
2064 
2065   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2066   exception_oop->print_value_on(&tempst);
2067   tempst.print(" in ");
2068   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2069   if (blob->is_nmethod()) {
2070     blob->as_nmethod()->method()->print_value_on(&tempst);
2071   } else if (blob->is_runtime_stub()) {
2072     tempst.print("<runtime-stub>");
2073   } else {
2074     tempst.print("<unknown>");
2075   }
2076   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2077   tempst.print("]");
2078 
2079   st->print_raw_cr(tempst.freeze());
2080 }
2081 
2082 #define DO_COUNTERS2(macro2, macro1) \
2083   macro2(OptoRuntime, new_instance_C) \
2084   macro2(OptoRuntime, new_array_C) \
2085   macro2(OptoRuntime, new_array_nozero_C) \
2086   macro2(OptoRuntime, multianewarray2_C) \
2087   macro2(OptoRuntime, multianewarray3_C) \
2088   macro2(OptoRuntime, multianewarray4_C) \
2089   macro2(OptoRuntime, multianewarrayN_C) \
2090   macro2(OptoRuntime, monitor_notify_C) \
2091   macro2(OptoRuntime, monitor_notifyAll_C) \
2092   macro2(OptoRuntime, handle_exception_C_helper) \
2093   macro2(OptoRuntime, register_finalizer_C) \
2094   macro2(OptoRuntime, class_init_barrier_C) \
2095   macro1(OptoRuntime, class_init_barrier_redundant)
2096 
2097 #define INIT_COUNTER_TIME_AND_CNT(sub, name) \
2098   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
2099   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
2100 
2101 #define INIT_COUNTER_CNT(sub, name) \
2102   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
2103 
2104 void OptoRuntime::init_counters() {
2105   assert(CompilerConfig::is_c2_enabled(), "");
2106 
2107   if (UsePerfData) {
2108     EXCEPTION_MARK;
2109 
2110     DO_COUNTERS2(INIT_COUNTER_TIME_AND_CNT, INIT_COUNTER_CNT)
2111 
2112     if (HAS_PENDING_EXCEPTION) {
2113       vm_exit_during_initialization("jvm_perf_init failed unexpectedly");
2114     }
2115   }
2116 }
2117 #undef INIT_COUNTER_TIME_AND_CNT
2118 #undef INIT_COUNTER_CNT
2119 
2120 #define PRINT_COUNTER_TIME_AND_CNT(sub, name) { \
2121   jlong count = _perf_##sub##_##name##_count->get_value(); \
2122   if (count > 0) { \
2123     st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
2124                  _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
2125                  _perf_##sub##_##name##_timer->thread_counter_value_us(), \
2126                  count); \
2127   }}
2128 
2129 #define PRINT_COUNTER_CNT(sub, name) { \
2130   jlong count = _perf_##sub##_##name##_count->get_value(); \
2131   if (count > 0) { \
2132     st->print_cr("  %-30s = " JLONG_FORMAT_W(5) " events", #name, count); \
2133   }}
2134 
2135 void OptoRuntime::print_counters_on(outputStream* st) {
2136   if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c2_enabled()) {
2137     DO_COUNTERS2(PRINT_COUNTER_TIME_AND_CNT, PRINT_COUNTER_CNT)
2138   } else {
2139     st->print_cr("  OptoRuntime: no info (%s is disabled)",
2140                  (!CompilerConfig::is_c2_enabled() ? "C2" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")));
2141   }
2142 }
2143 
2144 #undef PRINT_COUNTER_TIME_AND_CNT
2145 #undef PRINT_COUNTER_CNT
2146 #undef DO_COUNTERS2