1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerDefinitions.inline.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/g1HeapRegion.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.hpp"
  41 #include "interpreter/bytecode.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/linkResolver.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/objArrayKlass.hpp"
  49 #include "oops/klass.inline.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/typeArrayOop.inline.hpp"
  52 #include "opto/ad.hpp"
  53 #include "opto/addnode.hpp"
  54 #include "opto/callnode.hpp"
  55 #include "opto/cfgnode.hpp"
  56 #include "opto/graphKit.hpp"
  57 #include "opto/machnode.hpp"
  58 #include "opto/matcher.hpp"
  59 #include "opto/memnode.hpp"
  60 #include "opto/mulnode.hpp"
  61 #include "opto/output.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/subnode.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/perfData.inline.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stackWatermarkSet.hpp"
  75 #include "runtime/synchronizer.hpp"
  76 #include "runtime/threadCritical.hpp"
  77 #include "runtime/threadWXSetters.inline.hpp"
  78 #include "runtime/vframe.hpp"
  79 #include "runtime/vframeArray.hpp"
  80 #include "runtime/vframe_hp.hpp"
  81 #include "services/management.hpp"
  82 #include "utilities/copy.hpp"
  83 #include "utilities/preserveException.hpp"
  84 
  85 
  86 // For debugging purposes:
  87 //  To force FullGCALot inside a runtime function, add the following two lines
  88 //
  89 //  Universe::release_fullgc_alot_dummy();
  90 //  Universe::heap()->collect();
  91 //
  92 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  93 
  94 
  95 #define C2_BLOB_FIELD_DEFINE(name, type) \
  96   type OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  97 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  98 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  99   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
 100 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \
 101   address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr;
 102 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE)
 103 #undef C2_BLOB_FIELD_DEFINE
 104 #undef C2_STUB_FIELD_DEFINE
 105 #undef C2_JVMTI_STUB_FIELD_DEFINE
 106 
 107 
 108 #define C2_BLOB_NAME_DEFINE(name, type)  "C2 Runtime " # name "_blob",
 109 #define C2_STUB_NAME_DEFINE(name, f, t, r)  "C2 Runtime " # name,
 110 #define C2_JVMTI_STUB_NAME_DEFINE(name)  "C2 Runtime " # name,
 111 const char* OptoRuntime::_stub_names[] = {
 112   C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE)
 113 };
 114 #undef C2_BLOB_NAME_DEFINE
 115 #undef C2_STUB_NAME_DEFINE
 116 #undef C2_JVMTI_STUB_NAME_DEFINE
 117 
 118 address OptoRuntime::_vtable_must_compile_Java                    = nullptr;
 119 
 120 PerfCounter* _perf_OptoRuntime_class_init_barrier_redundant_count = nullptr;
 121 
 122 // This should be called in an assertion at the start of OptoRuntime routines
 123 // which are entered from compiled code (all of them)
 124 #ifdef ASSERT
 125 static bool check_compiled_frame(JavaThread* thread) {
 126   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 127   RegisterMap map(thread,
 128                   RegisterMap::UpdateMap::skip,
 129                   RegisterMap::ProcessFrames::include,
 130                   RegisterMap::WalkContinuation::skip);
 131   frame caller = thread->last_frame().sender(&map);
 132   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 133   return true;
 134 }
 135 #endif // ASSERT
 136 
 137 /*
 138 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 139   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 140   if (var == nullptr) { return false; }
 141 */
 142 
 143 #define GEN_C2_BLOB(name, type)                    \
 144   BLOB_FIELD_NAME(name) =                       \
 145     generate_ ## name ## _blob();                  \
 146   if (BLOB_FIELD_NAME(name) == nullptr) { return false; }
 147 
 148 // a few helper macros to conjure up generate_stub call arguments
 149 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
 150 #define C2_STUB_TYPEFUNC(name) name ## _Type
 151 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C)
 152 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id)
 153 
 154 // Almost all the C functions targeted from the generated stubs are
 155 // implemented locally to OptoRuntime with names that can be generated
 156 // from the stub name by appending suffix '_C'. However, in two cases
 157 // a common target method also needs to be called from shared runtime
 158 // stubs. In these two cases the opto stubs rely on method
 159 // imlementations defined in class SharedRuntime. The following
 160 // defines temporarily rebind the generated names to reference the
 161 // relevant implementations.
 162 
 163 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 164   C2_STUB_FIELD_NAME(name) =                                          \
 165     generate_stub(env,                                                  \
 166                   C2_STUB_TYPEFUNC(name),                             \
 167                   C2_STUB_C_FUNC(name),                               \
 168                   C2_STUB_NAME(name),                                 \
 169                   fancy_jump,                                           \
 170                   pass_tls,                                             \
 171                   pass_retpc);                                          \
 172   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 173 
 174 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name)
 175 
 176 #define GEN_C2_JVMTI_STUB(name)                                       \
 177   STUB_FIELD_NAME(name) =                                               \
 178     generate_stub(env,                                                  \
 179                   notify_jvmti_vthread_Type,                            \
 180                   C2_JVMTI_STUB_C_FUNC(name),                         \
 181                   C2_STUB_NAME(name),                                 \
 182                   0,                                                    \
 183                   true,                                                 \
 184                   false);                                               \
 185   if (STUB_FIELD_NAME(name) == nullptr) { return false; }               \
 186 
 187 bool OptoRuntime::generate(ciEnv* env) {
 188   init_counters();
 189 
 190   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
 191 
 192   return true;
 193 }
 194 
 195 #undef GEN_C2_BLOB
 196 
 197 #undef C2_STUB_FIELD_NAME
 198 #undef C2_STUB_TYPEFUNC
 199 #undef C2_STUB_C_FUNC
 200 #undef C2_STUB_NAME
 201 #undef GEN_C2_STUB
 202 
 203 #undef C2_JVMTI_STUB_C_FUNC
 204 #undef GEN_C2_JVMTI_STUB
 205 // #undef gen
 206 
 207 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 208 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 209 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 210 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;
 211 const TypeFunc* OptoRuntime::_multianewarray4_Type                = nullptr;
 212 const TypeFunc* OptoRuntime::_multianewarray5_Type                = nullptr;
 213 const TypeFunc* OptoRuntime::_multianewarrayN_Type                = nullptr;
 214 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type         = nullptr;
 215 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type          = nullptr;
 216 const TypeFunc* OptoRuntime::_monitor_notify_Type                 = nullptr;
 217 const TypeFunc* OptoRuntime::_uncommon_trap_Type                  = nullptr;
 218 const TypeFunc* OptoRuntime::_athrow_Type                         = nullptr;
 219 const TypeFunc* OptoRuntime::_rethrow_Type                        = nullptr;
 220 const TypeFunc* OptoRuntime::_Math_D_D_Type                       = nullptr;
 221 const TypeFunc* OptoRuntime::_Math_DD_D_Type                      = nullptr;
 222 const TypeFunc* OptoRuntime::_modf_Type                           = nullptr;
 223 const TypeFunc* OptoRuntime::_l2f_Type                            = nullptr;
 224 const TypeFunc* OptoRuntime::_void_long_Type                      = nullptr;
 225 const TypeFunc* OptoRuntime::_void_void_Type                      = nullptr;
 226 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type           = nullptr;
 227 const TypeFunc* OptoRuntime::_flush_windows_Type                  = nullptr;
 228 const TypeFunc* OptoRuntime::_fast_arraycopy_Type                 = nullptr;
 229 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type            = nullptr;
 230 const TypeFunc* OptoRuntime::_generic_arraycopy_Type              = nullptr;
 231 const TypeFunc* OptoRuntime::_slow_arraycopy_Type                 = nullptr;
 232 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type               = nullptr;
 233 const TypeFunc* OptoRuntime::_array_fill_Type                     = nullptr;
 234 const TypeFunc* OptoRuntime::_array_sort_Type                     = nullptr;
 235 const TypeFunc* OptoRuntime::_array_partition_Type                = nullptr;
 236 const TypeFunc* OptoRuntime::_aescrypt_block_Type                 = nullptr;
 237 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type   = nullptr;
 238 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type    = nullptr;
 239 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type           = nullptr;
 240 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type     = nullptr;
 241 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type      = nullptr;
 242 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type   = nullptr;
 243 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type    = nullptr;
 244 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr;
 245 const TypeFunc* OptoRuntime::_double_keccak_Type                  = nullptr;
 246 const TypeFunc* OptoRuntime::_multiplyToLen_Type                  = nullptr;
 247 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type             = nullptr;
 248 const TypeFunc* OptoRuntime::_montgomerySquare_Type               = nullptr;
 249 const TypeFunc* OptoRuntime::_squareToLen_Type                    = nullptr;
 250 const TypeFunc* OptoRuntime::_mulAdd_Type                         = nullptr;
 251 const TypeFunc* OptoRuntime::_bigIntegerShift_Type                = nullptr;
 252 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type             = nullptr;
 253 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type            = nullptr;
 254 const TypeFunc* OptoRuntime::_chacha20Block_Type                  = nullptr;
 255 const TypeFunc* OptoRuntime::_kyberNtt_Type                       = nullptr;
 256 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type                = nullptr;
 257 const TypeFunc* OptoRuntime::_kyberNttMult_Type                   = nullptr;
 258 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type                 = nullptr;
 259 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type                 = nullptr;
 260 const TypeFunc* OptoRuntime::_kyber12To16_Type                    = nullptr;
 261 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type             = nullptr;
 262 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type             = nullptr;
 263 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type      = nullptr;
 264 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type               = nullptr;
 265 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type     = nullptr;
 266 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type         = nullptr;
 267 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type             = nullptr;
 268 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type             = nullptr;
 269 const TypeFunc* OptoRuntime::_string_IndexOf_Type                 = nullptr;
 270 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type         = nullptr;
 271 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type    = nullptr;
 272 const TypeFunc* OptoRuntime::_intpoly_assign_Type                 = nullptr;
 273 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 274 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 275 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 276 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 277 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 278 #if INCLUDE_JFR
 279 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 280 #endif // INCLUDE_JFR
 281 #if INCLUDE_JVMTI
 282 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type           = nullptr;
 283 #endif // INCLUDE_JVMTI
 284 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 285 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 286 
 287 // Helper method to do generation of RunTimeStub's
 288 address OptoRuntime::generate_stub(ciEnv* env,
 289                                    TypeFunc_generator gen, address C_function,
 290                                    const char *name, int is_fancy_jump,
 291                                    bool pass_tls,
 292                                    bool return_pc) {
 293 
 294   // Matching the default directive, we currently have no method to match.
 295   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompilerThread::current()->compiler());
 296   CompilationMemoryStatisticMark cmsm(directive);
 297   ResourceMark rm;
 298   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 299   DirectivesStack::release(directive);
 300   return  C.stub_entry_point();
 301 }
 302 
 303 const char* OptoRuntime::stub_name(address entry) {
 304 #ifndef PRODUCT
 305   CodeBlob* cb = CodeCache::find_blob(entry);
 306   RuntimeStub* rs =(RuntimeStub *)cb;
 307   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 308   return rs->name();
 309 #else
 310   // Fast implementation for product mode (maybe it should be inlined too)
 311   return "runtime stub";
 312 #endif
 313 }
 314 
 315 // local methods passed as arguments to stub generator that forward
 316 // control to corresponding JRT methods of SharedRuntime
 317 
 318 void OptoRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
 319                                    oopDesc* dest, jint dest_pos,
 320                                    jint length, JavaThread* thread) {
 321   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 322 }
 323 
 324 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 325   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 326 }
 327 
 328 
 329 //=============================================================================
 330 // Opto compiler runtime routines
 331 //=============================================================================
 332 
 333 
 334 //=============================allocation======================================
 335 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 336 // and try allocation again.
 337 
 338 // object allocation
 339 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_instance_C, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 340   JRT_BLOCK;
 341 #ifndef PRODUCT
 342   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 343 #endif
 344   assert(check_compiled_frame(current), "incorrect caller");
 345 
 346   // These checks are cheap to make and support reflective allocation.
 347   int lh = klass->layout_helper();
 348   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 349     Handle holder(current, klass->klass_holder()); // keep the klass alive
 350     klass->check_valid_for_instantiation(false, THREAD);
 351     if (!HAS_PENDING_EXCEPTION) {
 352       InstanceKlass::cast(klass)->initialize(THREAD);
 353     }
 354   }
 355 
 356   if (!HAS_PENDING_EXCEPTION) {
 357     // Scavenge and allocate an instance.
 358     Handle holder(current, klass->klass_holder()); // keep the klass alive
 359     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 360     current->set_vm_result_oop(result);
 361 
 362     // Pass oops back through thread local storage.  Our apparent type to Java
 363     // is that we return an oop, but we can block on exit from this routine and
 364     // a GC can trash the oop in C's return register.  The generated stub will
 365     // fetch the oop from TLS after any possible GC.
 366   }
 367 
 368   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 369   JRT_BLOCK_END;
 370 
 371   // inform GC that we won't do card marks for initializing writes.
 372   SharedRuntime::on_slowpath_allocation_exit(current);
 373 JRT_END
 374 
 375 
 376 // array allocation
 377 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_C, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 378   JRT_BLOCK;
 379 #ifndef PRODUCT
 380   SharedRuntime::_new_array_ctr++;            // new array requires GC
 381 #endif
 382   assert(check_compiled_frame(current), "incorrect caller");
 383 
 384   // Scavenge and allocate an instance.
 385   oop result;
 386 
 387   if (array_type->is_typeArray_klass()) {
 388     // The oopFactory likes to work with the element type.
 389     // (We could bypass the oopFactory, since it doesn't add much value.)
 390     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 391     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 392   } else {
 393     // Although the oopFactory likes to work with the elem_type,
 394     // the compiler prefers the array_type, since it must already have
 395     // that latter value in hand for the fast path.
 396     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 397     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 398     result = oopFactory::new_objArray(elem_type, len, THREAD);
 399   }
 400 
 401   // Pass oops back through thread local storage.  Our apparent type to Java
 402   // is that we return an oop, but we can block on exit from this routine and
 403   // a GC can trash the oop in C's return register.  The generated stub will
 404   // fetch the oop from TLS after any possible GC.
 405   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 406   current->set_vm_result_oop(result);
 407   JRT_BLOCK_END;
 408 
 409   // inform GC that we won't do card marks for initializing writes.
 410   SharedRuntime::on_slowpath_allocation_exit(current);
 411 JRT_END
 412 
 413 // array allocation without zeroing
 414 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_nozero_C, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 415   JRT_BLOCK;
 416 #ifndef PRODUCT
 417   SharedRuntime::_new_array_ctr++;            // new array requires GC
 418 #endif
 419   assert(check_compiled_frame(current), "incorrect caller");
 420 
 421   // Scavenge and allocate an instance.
 422   oop result;
 423 
 424   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 425   // The oopFactory likes to work with the element type.
 426   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 427   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 428 
 429   // Pass oops back through thread local storage.  Our apparent type to Java
 430   // is that we return an oop, but we can block on exit from this routine and
 431   // a GC can trash the oop in C's return register.  The generated stub will
 432   // fetch the oop from TLS after any possible GC.
 433   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 434   current->set_vm_result_oop(result);
 435   JRT_BLOCK_END;
 436 
 437 
 438   // inform GC that we won't do card marks for initializing writes.
 439   SharedRuntime::on_slowpath_allocation_exit(current);
 440 
 441   oop result = current->vm_result_oop();
 442   if ((len > 0) && (result != nullptr) &&
 443       is_deoptimized_caller_frame(current)) {
 444     // Zero array here if the caller is deoptimized.
 445     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 446     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 447     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 448     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 449     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 450     if (!is_aligned(hs_bytes, BytesPerLong)) {
 451       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 452       hs_bytes += BytesPerInt;
 453     }
 454 
 455     // Optimized zeroing.
 456     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 457     const size_t aligned_hs = hs_bytes / BytesPerLong;
 458     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 459   }
 460 
 461 JRT_END
 462 
 463 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 464 
 465 // multianewarray for 2 dimensions
 466 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray2_C, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 467 #ifndef PRODUCT
 468   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 469 #endif
 470   assert(check_compiled_frame(current), "incorrect caller");
 471   assert(elem_type->is_klass(), "not a class");
 472   jint dims[2];
 473   dims[0] = len1;
 474   dims[1] = len2;
 475   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 476   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 477   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 478   current->set_vm_result_oop(obj);
 479 JRT_END
 480 
 481 // multianewarray for 3 dimensions
 482 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray3_C, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 483 #ifndef PRODUCT
 484   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 485 #endif
 486   assert(check_compiled_frame(current), "incorrect caller");
 487   assert(elem_type->is_klass(), "not a class");
 488   jint dims[3];
 489   dims[0] = len1;
 490   dims[1] = len2;
 491   dims[2] = len3;
 492   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 493   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 494   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 495   current->set_vm_result_oop(obj);
 496 JRT_END
 497 
 498 // multianewarray for 4 dimensions
 499 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray4_C, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 500 #ifndef PRODUCT
 501   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 502 #endif
 503   assert(check_compiled_frame(current), "incorrect caller");
 504   assert(elem_type->is_klass(), "not a class");
 505   jint dims[4];
 506   dims[0] = len1;
 507   dims[1] = len2;
 508   dims[2] = len3;
 509   dims[3] = len4;
 510   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 511   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 512   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 513   current->set_vm_result_oop(obj);
 514 JRT_END
 515 
 516 // multianewarray for 5 dimensions
 517 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 518 #ifndef PRODUCT
 519   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 520 #endif
 521   assert(check_compiled_frame(current), "incorrect caller");
 522   assert(elem_type->is_klass(), "not a class");
 523   jint dims[5];
 524   dims[0] = len1;
 525   dims[1] = len2;
 526   dims[2] = len3;
 527   dims[3] = len4;
 528   dims[4] = len5;
 529   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 530   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 531   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 532   current->set_vm_result_oop(obj);
 533 JRT_END
 534 
 535 JRT_ENTRY_PROF(void, OptoRuntime, multianewarrayN_C, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 536   assert(check_compiled_frame(current), "incorrect caller");
 537   assert(elem_type->is_klass(), "not a class");
 538   assert(oop(dims)->is_typeArray(), "not an array");
 539 
 540   ResourceMark rm;
 541   jint len = dims->length();
 542   assert(len > 0, "Dimensions array should contain data");
 543   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 544   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 545                                        c_dims, len);
 546 
 547   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 548   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 549   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 550   current->set_vm_result_oop(obj);
 551 JRT_END
 552 
 553 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notify_C, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 554 
 555   // Very few notify/notifyAll operations find any threads on the waitset, so
 556   // the dominant fast-path is to simply return.
 557   // Relatedly, it's critical that notify/notifyAll be fast in order to
 558   // reduce lock hold times.
 559   if (!SafepointSynchronize::is_synchronizing()) {
 560     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 561       return;
 562     }
 563   }
 564 
 565   // This is the case the fast-path above isn't provisioned to handle.
 566   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 567   // (The fast-path is just a degenerate variant of the slow-path).
 568   // Perform the dreaded state transition and pass control into the slow-path.
 569   JRT_BLOCK;
 570   Handle h_obj(current, obj);
 571   ObjectSynchronizer::notify(h_obj, CHECK);
 572   JRT_BLOCK_END;
 573 JRT_END
 574 
 575 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notifyAll_C, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 576 
 577   if (!SafepointSynchronize::is_synchronizing() ) {
 578     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 579       return;
 580     }
 581   }
 582 
 583   // This is the case the fast-path above isn't provisioned to handle.
 584   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 585   // (The fast-path is just a degenerate variant of the slow-path).
 586   // Perform the dreaded state transition and pass control into the slow-path.
 587   JRT_BLOCK;
 588   Handle h_obj(current, obj);
 589   ObjectSynchronizer::notifyall(h_obj, CHECK);
 590   JRT_BLOCK_END;
 591 JRT_END
 592 
 593 static const TypeFunc* make_new_instance_Type() {
 594   // create input type (domain)
 595   const Type **fields = TypeTuple::fields(1);
 596   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 597   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 598 
 599   // create result type (range)
 600   fields = TypeTuple::fields(1);
 601   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 602 
 603   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 604 
 605   return TypeFunc::make(domain, range);
 606 }
 607 
 608 #if INCLUDE_JVMTI
 609 static const TypeFunc* make_notify_jvmti_vthread_Type() {
 610   // create input type (domain)
 611   const Type **fields = TypeTuple::fields(2);
 612   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 613   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 614   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 615 
 616   // no result type needed
 617   fields = TypeTuple::fields(1);
 618   fields[TypeFunc::Parms+0] = nullptr; // void
 619   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 620 
 621   return TypeFunc::make(domain,range);
 622 }
 623 #endif
 624 
 625 static const TypeFunc* make_athrow_Type() {
 626   // create input type (domain)
 627   const Type **fields = TypeTuple::fields(1);
 628   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 629   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 630 
 631   // create result type (range)
 632   fields = TypeTuple::fields(0);
 633 
 634   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 635 
 636   return TypeFunc::make(domain, range);
 637 }
 638 
 639 static const TypeFunc* make_new_array_Type() {
 640   // create input type (domain)
 641   const Type **fields = TypeTuple::fields(2);
 642   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 643   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 644   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 645 
 646   // create result type (range)
 647   fields = TypeTuple::fields(1);
 648   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 649 
 650   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 651 
 652   return TypeFunc::make(domain, range);
 653 }
 654 
 655 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
 656   // create input type (domain)
 657   const int nargs = ndim + 1;
 658   const Type **fields = TypeTuple::fields(nargs);
 659   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 660   for( int i = 1; i < nargs; i++ )
 661     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 662   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 663 
 664   // create result type (range)
 665   fields = TypeTuple::fields(1);
 666   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 667   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 668 
 669   return TypeFunc::make(domain, range);
 670 }
 671 
 672 static const TypeFunc* make_multianewarrayN_Type() {
 673   // create input type (domain)
 674   const Type **fields = TypeTuple::fields(2);
 675   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 676   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 677   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 678 
 679   // create result type (range)
 680   fields = TypeTuple::fields(1);
 681   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 682   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 683 
 684   return TypeFunc::make(domain, range);
 685 }
 686 
 687 static const TypeFunc* make_uncommon_trap_Type() {
 688   // create input type (domain)
 689   const Type **fields = TypeTuple::fields(1);
 690   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 691   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 692 
 693   // create result type (range)
 694   fields = TypeTuple::fields(0);
 695   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 696 
 697   return TypeFunc::make(domain, range);
 698 }
 699 
 700 //-----------------------------------------------------------------------------
 701 // Monitor Handling
 702 
 703 static const TypeFunc* make_complete_monitor_enter_Type() {
 704   // create input type (domain)
 705   const Type **fields = TypeTuple::fields(2);
 706   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 707   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 708   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 709 
 710   // create result type (range)
 711   fields = TypeTuple::fields(0);
 712 
 713   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 714 
 715   return TypeFunc::make(domain,range);
 716 }
 717 
 718 //-----------------------------------------------------------------------------
 719 
 720 static const TypeFunc* make_complete_monitor_exit_Type() {
 721   // create input type (domain)
 722   const Type **fields = TypeTuple::fields(3);
 723   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 724   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 725   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 726   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 727 
 728   // create result type (range)
 729   fields = TypeTuple::fields(0);
 730 
 731   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 732 
 733   return TypeFunc::make(domain, range);
 734 }
 735 
 736 static const TypeFunc* make_monitor_notify_Type() {
 737   // create input type (domain)
 738   const Type **fields = TypeTuple::fields(1);
 739   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 740   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 741 
 742   // create result type (range)
 743   fields = TypeTuple::fields(0);
 744   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 745   return TypeFunc::make(domain, range);
 746 }
 747 
 748 static const TypeFunc* make_flush_windows_Type() {
 749   // create input type (domain)
 750   const Type** fields = TypeTuple::fields(1);
 751   fields[TypeFunc::Parms+0] = nullptr; // void
 752   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 753 
 754   // create result type
 755   fields = TypeTuple::fields(1);
 756   fields[TypeFunc::Parms+0] = nullptr; // void
 757   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 758 
 759   return TypeFunc::make(domain, range);
 760 }
 761 
 762 static const TypeFunc* make_l2f_Type() {
 763   // create input type (domain)
 764   const Type **fields = TypeTuple::fields(2);
 765   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 766   fields[TypeFunc::Parms+1] = Type::HALF;
 767   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 768 
 769   // create result type (range)
 770   fields = TypeTuple::fields(1);
 771   fields[TypeFunc::Parms+0] = Type::FLOAT;
 772   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 773 
 774   return TypeFunc::make(domain, range);
 775 }
 776 
 777 static const TypeFunc* make_modf_Type() {
 778   const Type **fields = TypeTuple::fields(2);
 779   fields[TypeFunc::Parms+0] = Type::FLOAT;
 780   fields[TypeFunc::Parms+1] = Type::FLOAT;
 781   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 782 
 783   // create result type (range)
 784   fields = TypeTuple::fields(1);
 785   fields[TypeFunc::Parms+0] = Type::FLOAT;
 786 
 787   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 788 
 789   return TypeFunc::make(domain, range);
 790 }
 791 
 792 static const TypeFunc* make_Math_D_D_Type() {
 793   // create input type (domain)
 794   const Type **fields = TypeTuple::fields(2);
 795   // Symbol* name of class to be loaded
 796   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 797   fields[TypeFunc::Parms+1] = Type::HALF;
 798   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 799 
 800   // create result type (range)
 801   fields = TypeTuple::fields(2);
 802   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 803   fields[TypeFunc::Parms+1] = Type::HALF;
 804   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 805 
 806   return TypeFunc::make(domain, range);
 807 }
 808 
 809 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 810   // create input type (domain)
 811   const Type **fields = TypeTuple::fields(num_arg);
 812   // Symbol* name of class to be loaded
 813   assert(num_arg > 0, "must have at least 1 input");
 814   for (uint i = 0; i < num_arg; i++) {
 815     fields[TypeFunc::Parms+i] = in_type;
 816   }
 817   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 818 
 819   // create result type (range)
 820   const uint num_ret = 1;
 821   fields = TypeTuple::fields(num_ret);
 822   fields[TypeFunc::Parms+0] = out_type;
 823   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 824 
 825   return TypeFunc::make(domain, range);
 826 }
 827 
 828 static const TypeFunc* make_Math_DD_D_Type() {
 829   const Type **fields = TypeTuple::fields(4);
 830   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 831   fields[TypeFunc::Parms+1] = Type::HALF;
 832   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 833   fields[TypeFunc::Parms+3] = Type::HALF;
 834   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 835 
 836   // create result type (range)
 837   fields = TypeTuple::fields(2);
 838   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 839   fields[TypeFunc::Parms+1] = Type::HALF;
 840   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 841 
 842   return TypeFunc::make(domain, range);
 843 }
 844 
 845 //-------------- currentTimeMillis, currentTimeNanos, etc
 846 
 847 static const TypeFunc* make_void_long_Type() {
 848   // create input type (domain)
 849   const Type **fields = TypeTuple::fields(0);
 850   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 851 
 852   // create result type (range)
 853   fields = TypeTuple::fields(2);
 854   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 855   fields[TypeFunc::Parms+1] = Type::HALF;
 856   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 857 
 858   return TypeFunc::make(domain, range);
 859 }
 860 
 861 static const TypeFunc* make_void_void_Type() {
 862   // create input type (domain)
 863   const Type **fields = TypeTuple::fields(0);
 864   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 865 
 866   // create result type (range)
 867   fields = TypeTuple::fields(0);
 868   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 869   return TypeFunc::make(domain, range);
 870 }
 871 
 872 static const TypeFunc* make_jfr_write_checkpoint_Type() {
 873   // create input type (domain)
 874   const Type **fields = TypeTuple::fields(0);
 875   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 876 
 877   // create result type (range)
 878   fields = TypeTuple::fields(0);
 879   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 880   return TypeFunc::make(domain, range);
 881 }
 882 
 883 
 884 // Takes as parameters:
 885 // void *dest
 886 // long size
 887 // uchar byte
 888 
 889 static const TypeFunc* make_setmemory_Type() {
 890   // create input type (domain)
 891   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 892   const Type** fields = TypeTuple::fields(argcnt);
 893   int argp = TypeFunc::Parms;
 894   fields[argp++] = TypePtr::NOTNULL;        // dest
 895   fields[argp++] = TypeX_X;                 // size
 896   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 897   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 898   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 899   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 900 
 901   // no result type needed
 902   fields = TypeTuple::fields(1);
 903   fields[TypeFunc::Parms+0] = nullptr; // void
 904   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 905   return TypeFunc::make(domain, range);
 906 }
 907 
 908 // arraycopy stub variations:
 909 enum ArrayCopyType {
 910   ac_fast,                      // void(ptr, ptr, size_t)
 911   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 912   ac_slow,                      // void(ptr, int, ptr, int, int)
 913   ac_generic                    //  int(ptr, int, ptr, int, int)
 914 };
 915 
 916 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 917   // create input type (domain)
 918   int num_args      = (act == ac_fast ? 3 : 5);
 919   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 920   int argcnt = num_args;
 921   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 922   const Type** fields = TypeTuple::fields(argcnt);
 923   int argp = TypeFunc::Parms;
 924   fields[argp++] = TypePtr::NOTNULL;    // src
 925   if (num_size_args == 0) {
 926     fields[argp++] = TypeInt::INT;      // src_pos
 927   }
 928   fields[argp++] = TypePtr::NOTNULL;    // dest
 929   if (num_size_args == 0) {
 930     fields[argp++] = TypeInt::INT;      // dest_pos
 931     fields[argp++] = TypeInt::INT;      // length
 932   }
 933   while (num_size_args-- > 0) {
 934     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 935     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 936   }
 937   if (act == ac_checkcast) {
 938     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 939   }
 940   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 941   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 942 
 943   // create result type if needed
 944   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 945   fields = TypeTuple::fields(1);
 946   if (retcnt == 0)
 947     fields[TypeFunc::Parms+0] = nullptr; // void
 948   else
 949     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 950   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 951   return TypeFunc::make(domain, range);
 952 }
 953 
 954 static const TypeFunc* make_array_fill_Type() {
 955   const Type** fields;
 956   int argp = TypeFunc::Parms;
 957   // create input type (domain): pointer, int, size_t
 958   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 959   fields[argp++] = TypePtr::NOTNULL;
 960   fields[argp++] = TypeInt::INT;
 961   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 962   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 963   const TypeTuple *domain = TypeTuple::make(argp, fields);
 964 
 965   // create result type
 966   fields = TypeTuple::fields(1);
 967   fields[TypeFunc::Parms+0] = nullptr; // void
 968   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 969 
 970   return TypeFunc::make(domain, range);
 971 }
 972 
 973 static const TypeFunc* make_array_partition_Type() {
 974   // create input type (domain)
 975   int num_args = 7;
 976   int argcnt = num_args;
 977   const Type** fields = TypeTuple::fields(argcnt);
 978   int argp = TypeFunc::Parms;
 979   fields[argp++] = TypePtr::NOTNULL;  // array
 980   fields[argp++] = TypeInt::INT;      // element type
 981   fields[argp++] = TypeInt::INT;      // low
 982   fields[argp++] = TypeInt::INT;      // end
 983   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 984   fields[argp++] = TypeInt::INT;      // indexPivot1
 985   fields[argp++] = TypeInt::INT;      // indexPivot2
 986   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 987   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 988 
 989   // no result type needed
 990   fields = TypeTuple::fields(1);
 991   fields[TypeFunc::Parms+0] = nullptr; // void
 992   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 993   return TypeFunc::make(domain, range);
 994 }
 995 
 996 static const TypeFunc* make_array_sort_Type() {
 997   // create input type (domain)
 998   int num_args      = 4;
 999   int argcnt = num_args;
1000   const Type** fields = TypeTuple::fields(argcnt);
1001   int argp = TypeFunc::Parms;
1002   fields[argp++] = TypePtr::NOTNULL;    // array
1003   fields[argp++] = TypeInt::INT;    // element type
1004   fields[argp++] = TypeInt::INT;    // fromIndex
1005   fields[argp++] = TypeInt::INT;    // toIndex
1006   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1007   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1008 
1009   // no result type needed
1010   fields = TypeTuple::fields(1);
1011   fields[TypeFunc::Parms+0] = nullptr; // void
1012   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1013   return TypeFunc::make(domain, range);
1014 }
1015 
1016 static const TypeFunc* make_aescrypt_block_Type() {
1017   // create input type (domain)
1018   int num_args      = 3;
1019   int argcnt = num_args;
1020   const Type** fields = TypeTuple::fields(argcnt);
1021   int argp = TypeFunc::Parms;
1022   fields[argp++] = TypePtr::NOTNULL;    // src
1023   fields[argp++] = TypePtr::NOTNULL;    // dest
1024   fields[argp++] = TypePtr::NOTNULL;    // k array
1025   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1026   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1027 
1028   // no result type needed
1029   fields = TypeTuple::fields(1);
1030   fields[TypeFunc::Parms+0] = nullptr; // void
1031   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1032   return TypeFunc::make(domain, range);
1033 }
1034 
1035 static const TypeFunc* make_updateBytesCRC32_Type() {
1036   // create input type (domain)
1037   int num_args      = 3;
1038   int argcnt = num_args;
1039   const Type** fields = TypeTuple::fields(argcnt);
1040   int argp = TypeFunc::Parms;
1041   fields[argp++] = TypeInt::INT;        // crc
1042   fields[argp++] = TypePtr::NOTNULL;    // src
1043   fields[argp++] = TypeInt::INT;        // len
1044   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1045   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1046 
1047   // result type needed
1048   fields = TypeTuple::fields(1);
1049   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1050   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1051   return TypeFunc::make(domain, range);
1052 }
1053 
1054 static const TypeFunc* make_updateBytesCRC32C_Type() {
1055   // create input type (domain)
1056   int num_args      = 4;
1057   int argcnt = num_args;
1058   const Type** fields = TypeTuple::fields(argcnt);
1059   int argp = TypeFunc::Parms;
1060   fields[argp++] = TypeInt::INT;        // crc
1061   fields[argp++] = TypePtr::NOTNULL;    // buf
1062   fields[argp++] = TypeInt::INT;        // len
1063   fields[argp++] = TypePtr::NOTNULL;    // table
1064   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1065   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1066 
1067   // result type needed
1068   fields = TypeTuple::fields(1);
1069   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1070   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1071   return TypeFunc::make(domain, range);
1072 }
1073 
1074 static const TypeFunc* make_updateBytesAdler32_Type() {
1075   // create input type (domain)
1076   int num_args      = 3;
1077   int argcnt = num_args;
1078   const Type** fields = TypeTuple::fields(argcnt);
1079   int argp = TypeFunc::Parms;
1080   fields[argp++] = TypeInt::INT;        // crc
1081   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1082   fields[argp++] = TypeInt::INT;        // len
1083   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1084   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1085 
1086   // result type needed
1087   fields = TypeTuple::fields(1);
1088   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1089   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1090   return TypeFunc::make(domain, range);
1091 }
1092 
1093 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() {
1094   // create input type (domain)
1095   int num_args      = 5;
1096   int argcnt = num_args;
1097   const Type** fields = TypeTuple::fields(argcnt);
1098   int argp = TypeFunc::Parms;
1099   fields[argp++] = TypePtr::NOTNULL;    // src
1100   fields[argp++] = TypePtr::NOTNULL;    // dest
1101   fields[argp++] = TypePtr::NOTNULL;    // k array
1102   fields[argp++] = TypePtr::NOTNULL;    // r array
1103   fields[argp++] = TypeInt::INT;        // src len
1104   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1105   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1106 
1107   // returning cipher len (int)
1108   fields = TypeTuple::fields(1);
1109   fields[TypeFunc::Parms+0] = TypeInt::INT;
1110   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1111   return TypeFunc::make(domain, range);
1112 }
1113 
1114 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() {
1115   // create input type (domain)
1116   int num_args = 4;
1117   int argcnt = num_args;
1118   const Type** fields = TypeTuple::fields(argcnt);
1119   int argp = TypeFunc::Parms;
1120   fields[argp++] = TypePtr::NOTNULL;    // src
1121   fields[argp++] = TypePtr::NOTNULL;    // dest
1122   fields[argp++] = TypePtr::NOTNULL;    // k array
1123   fields[argp++] = TypeInt::INT;        // src len
1124   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1125   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1126 
1127   // returning cipher len (int)
1128   fields = TypeTuple::fields(1);
1129   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1130   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1131   return TypeFunc::make(domain, range);
1132 }
1133 
1134 static const TypeFunc* make_counterMode_aescrypt_Type() {
1135   // create input type (domain)
1136   int num_args = 7;
1137   int argcnt = num_args;
1138   const Type** fields = TypeTuple::fields(argcnt);
1139   int argp = TypeFunc::Parms;
1140   fields[argp++] = TypePtr::NOTNULL; // src
1141   fields[argp++] = TypePtr::NOTNULL; // dest
1142   fields[argp++] = TypePtr::NOTNULL; // k array
1143   fields[argp++] = TypePtr::NOTNULL; // counter array
1144   fields[argp++] = TypeInt::INT; // src len
1145   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1146   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1147   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1148   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1149   // returning cipher len (int)
1150   fields = TypeTuple::fields(1);
1151   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1152   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1153   return TypeFunc::make(domain, range);
1154 }
1155 
1156 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() {
1157   // create input type (domain)
1158   int num_args = 8;
1159   int argcnt = num_args;
1160   const Type** fields = TypeTuple::fields(argcnt);
1161   int argp = TypeFunc::Parms;
1162   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1163   fields[argp++] = TypeInt::INT;     // int len
1164   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1165   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1166   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1167   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1168   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1169   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1170 
1171   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1172   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1173   // returning cipher len (int)
1174   fields = TypeTuple::fields(1);
1175   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1176   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1177   return TypeFunc::make(domain, range);
1178 }
1179 
1180 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) {
1181   // create input type (domain)
1182   int num_args = is_sha3 ? 3 : 2;
1183   int argcnt = num_args;
1184   const Type** fields = TypeTuple::fields(argcnt);
1185   int argp = TypeFunc::Parms;
1186   fields[argp++] = TypePtr::NOTNULL; // buf
1187   fields[argp++] = TypePtr::NOTNULL; // state
1188   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1189   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1190   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1191 
1192   // no result type needed
1193   fields = TypeTuple::fields(1);
1194   fields[TypeFunc::Parms+0] = nullptr; // void
1195   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1196   return TypeFunc::make(domain, range);
1197 }
1198 
1199 /*
1200  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1201  */
1202 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) {
1203   // create input type (domain)
1204   int num_args = is_sha3 ? 5 : 4;
1205   int argcnt = num_args;
1206   const Type** fields = TypeTuple::fields(argcnt);
1207   int argp = TypeFunc::Parms;
1208   fields[argp++] = TypePtr::NOTNULL; // buf
1209   fields[argp++] = TypePtr::NOTNULL; // state
1210   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1211   fields[argp++] = TypeInt::INT;     // ofs
1212   fields[argp++] = TypeInt::INT;     // limit
1213   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1214   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1215 
1216   // returning ofs (int)
1217   fields = TypeTuple::fields(1);
1218   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1219   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1220   return TypeFunc::make(domain, range);
1221 }
1222 
1223 // SHAKE128Parallel doubleKeccak function
1224 static const TypeFunc* make_double_keccak_Type() {
1225     int argcnt = 2;
1226 
1227     const Type** fields = TypeTuple::fields(argcnt);
1228     int argp = TypeFunc::Parms;
1229     fields[argp++] = TypePtr::NOTNULL;      // status0
1230     fields[argp++] = TypePtr::NOTNULL;      // status1
1231 
1232     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1233     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1234 
1235     // result type needed
1236     fields = TypeTuple::fields(1);
1237     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1238     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1239     return TypeFunc::make(domain, range);
1240 }
1241 
1242 static const TypeFunc* make_multiplyToLen_Type() {
1243   // create input type (domain)
1244   int num_args      = 5;
1245   int argcnt = num_args;
1246   const Type** fields = TypeTuple::fields(argcnt);
1247   int argp = TypeFunc::Parms;
1248   fields[argp++] = TypePtr::NOTNULL;    // x
1249   fields[argp++] = TypeInt::INT;        // xlen
1250   fields[argp++] = TypePtr::NOTNULL;    // y
1251   fields[argp++] = TypeInt::INT;        // ylen
1252   fields[argp++] = TypePtr::NOTNULL;    // z
1253   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1254   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1255 
1256   // no result type needed
1257   fields = TypeTuple::fields(1);
1258   fields[TypeFunc::Parms+0] = nullptr;
1259   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1260   return TypeFunc::make(domain, range);
1261 }
1262 
1263 static const TypeFunc* make_squareToLen_Type() {
1264   // create input type (domain)
1265   int num_args      = 4;
1266   int argcnt = num_args;
1267   const Type** fields = TypeTuple::fields(argcnt);
1268   int argp = TypeFunc::Parms;
1269   fields[argp++] = TypePtr::NOTNULL;    // x
1270   fields[argp++] = TypeInt::INT;        // len
1271   fields[argp++] = TypePtr::NOTNULL;    // z
1272   fields[argp++] = TypeInt::INT;        // zlen
1273   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1274   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1275 
1276   // no result type needed
1277   fields = TypeTuple::fields(1);
1278   fields[TypeFunc::Parms+0] = nullptr;
1279   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1280   return TypeFunc::make(domain, range);
1281 }
1282 
1283 static const TypeFunc* make_mulAdd_Type() {
1284   // create input type (domain)
1285   int num_args      = 5;
1286   int argcnt = num_args;
1287   const Type** fields = TypeTuple::fields(argcnt);
1288   int argp = TypeFunc::Parms;
1289   fields[argp++] = TypePtr::NOTNULL;    // out
1290   fields[argp++] = TypePtr::NOTNULL;    // in
1291   fields[argp++] = TypeInt::INT;        // offset
1292   fields[argp++] = TypeInt::INT;        // len
1293   fields[argp++] = TypeInt::INT;        // k
1294   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1295   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1296 
1297   // returning carry (int)
1298   fields = TypeTuple::fields(1);
1299   fields[TypeFunc::Parms+0] = TypeInt::INT;
1300   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1301   return TypeFunc::make(domain, range);
1302 }
1303 
1304 static const TypeFunc* make_montgomeryMultiply_Type() {
1305   // create input type (domain)
1306   int num_args      = 7;
1307   int argcnt = num_args;
1308   const Type** fields = TypeTuple::fields(argcnt);
1309   int argp = TypeFunc::Parms;
1310   fields[argp++] = TypePtr::NOTNULL;    // a
1311   fields[argp++] = TypePtr::NOTNULL;    // b
1312   fields[argp++] = TypePtr::NOTNULL;    // n
1313   fields[argp++] = TypeInt::INT;        // len
1314   fields[argp++] = TypeLong::LONG;      // inv
1315   fields[argp++] = Type::HALF;
1316   fields[argp++] = TypePtr::NOTNULL;    // result
1317   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1318   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1319 
1320   // result type needed
1321   fields = TypeTuple::fields(1);
1322   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1323 
1324   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1325   return TypeFunc::make(domain, range);
1326 }
1327 
1328 static const TypeFunc* make_montgomerySquare_Type() {
1329   // create input type (domain)
1330   int num_args      = 6;
1331   int argcnt = num_args;
1332   const Type** fields = TypeTuple::fields(argcnt);
1333   int argp = TypeFunc::Parms;
1334   fields[argp++] = TypePtr::NOTNULL;    // a
1335   fields[argp++] = TypePtr::NOTNULL;    // n
1336   fields[argp++] = TypeInt::INT;        // len
1337   fields[argp++] = TypeLong::LONG;      // inv
1338   fields[argp++] = Type::HALF;
1339   fields[argp++] = TypePtr::NOTNULL;    // result
1340   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1341   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1342 
1343   // result type needed
1344   fields = TypeTuple::fields(1);
1345   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1346 
1347   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1348   return TypeFunc::make(domain, range);
1349 }
1350 
1351 static const TypeFunc* make_bigIntegerShift_Type() {
1352   int argcnt = 5;
1353   const Type** fields = TypeTuple::fields(argcnt);
1354   int argp = TypeFunc::Parms;
1355   fields[argp++] = TypePtr::NOTNULL;    // newArr
1356   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1357   fields[argp++] = TypeInt::INT;        // newIdx
1358   fields[argp++] = TypeInt::INT;        // shiftCount
1359   fields[argp++] = TypeInt::INT;        // numIter
1360   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1361   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1362 
1363   // no result type needed
1364   fields = TypeTuple::fields(1);
1365   fields[TypeFunc::Parms + 0] = nullptr;
1366   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1367   return TypeFunc::make(domain, range);
1368 }
1369 
1370 static const TypeFunc* make_vectorizedMismatch_Type() {
1371   // create input type (domain)
1372   int num_args = 4;
1373   int argcnt = num_args;
1374   const Type** fields = TypeTuple::fields(argcnt);
1375   int argp = TypeFunc::Parms;
1376   fields[argp++] = TypePtr::NOTNULL;    // obja
1377   fields[argp++] = TypePtr::NOTNULL;    // objb
1378   fields[argp++] = TypeInt::INT;        // length, number of elements
1379   fields[argp++] = TypeInt::INT;        // log2scale, element size
1380   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1381   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1382 
1383   //return mismatch index (int)
1384   fields = TypeTuple::fields(1);
1385   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1386   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1387   return TypeFunc::make(domain, range);
1388 }
1389 
1390 static const TypeFunc* make_ghash_processBlocks_Type() {
1391   int argcnt = 4;
1392 
1393   const Type** fields = TypeTuple::fields(argcnt);
1394   int argp = TypeFunc::Parms;
1395   fields[argp++] = TypePtr::NOTNULL;    // state
1396   fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1397   fields[argp++] = TypePtr::NOTNULL;    // data
1398   fields[argp++] = TypeInt::INT;        // blocks
1399   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1400   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1401 
1402   // result type needed
1403   fields = TypeTuple::fields(1);
1404   fields[TypeFunc::Parms+0] = nullptr; // void
1405   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1406   return TypeFunc::make(domain, range);
1407 }
1408 
1409 static const TypeFunc* make_chacha20Block_Type() {
1410   int argcnt = 2;
1411 
1412   const Type** fields = TypeTuple::fields(argcnt);
1413   int argp = TypeFunc::Parms;
1414   fields[argp++] = TypePtr::NOTNULL;      // state
1415   fields[argp++] = TypePtr::NOTNULL;      // result
1416 
1417   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1418   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1419 
1420   // result type needed
1421   fields = TypeTuple::fields(1);
1422   fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1423   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1424   return TypeFunc::make(domain, range);
1425 }
1426 
1427 // Kyber NTT function
1428 static const TypeFunc* make_kyberNtt_Type() {
1429     int argcnt = 2;
1430 
1431     const Type** fields = TypeTuple::fields(argcnt);
1432     int argp = TypeFunc::Parms;
1433     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1434     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1435 
1436     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1437     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1438 
1439     // result type needed
1440     fields = TypeTuple::fields(1);
1441     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1442     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1443     return TypeFunc::make(domain, range);
1444 }
1445 
1446 // Kyber inverse NTT function
1447 static const TypeFunc* make_kyberInverseNtt_Type() {
1448     int argcnt = 2;
1449 
1450     const Type** fields = TypeTuple::fields(argcnt);
1451     int argp = TypeFunc::Parms;
1452     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1453     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1454 
1455     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1456     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1457 
1458     // result type needed
1459     fields = TypeTuple::fields(1);
1460     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1461     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1462     return TypeFunc::make(domain, range);
1463 }
1464 
1465 // Kyber NTT multiply function
1466 static const TypeFunc* make_kyberNttMult_Type() {
1467     int argcnt = 4;
1468 
1469     const Type** fields = TypeTuple::fields(argcnt);
1470     int argp = TypeFunc::Parms;
1471     fields[argp++] = TypePtr::NOTNULL;      // result
1472     fields[argp++] = TypePtr::NOTNULL;      // ntta
1473     fields[argp++] = TypePtr::NOTNULL;      // nttb
1474     fields[argp++] = TypePtr::NOTNULL;      // NTT multiply zetas
1475 
1476     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1477     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1478 
1479     // result type needed
1480     fields = TypeTuple::fields(1);
1481     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1482     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1483     return TypeFunc::make(domain, range);
1484 }
1485 // Kyber add 2 polynomials function
1486 static const TypeFunc* make_kyberAddPoly_2_Type() {
1487     int argcnt = 3;
1488 
1489     const Type** fields = TypeTuple::fields(argcnt);
1490     int argp = TypeFunc::Parms;
1491     fields[argp++] = TypePtr::NOTNULL;      // result
1492     fields[argp++] = TypePtr::NOTNULL;      // a
1493     fields[argp++] = TypePtr::NOTNULL;      // b
1494 
1495     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1496     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1497 
1498     // result type needed
1499     fields = TypeTuple::fields(1);
1500     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1501     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1502     return TypeFunc::make(domain, range);
1503 }
1504 
1505 
1506 // Kyber add 3 polynomials function
1507 static const TypeFunc* make_kyberAddPoly_3_Type() {
1508     int argcnt = 4;
1509 
1510     const Type** fields = TypeTuple::fields(argcnt);
1511     int argp = TypeFunc::Parms;
1512     fields[argp++] = TypePtr::NOTNULL;      // result
1513     fields[argp++] = TypePtr::NOTNULL;      // a
1514     fields[argp++] = TypePtr::NOTNULL;      // b
1515     fields[argp++] = TypePtr::NOTNULL;      // c
1516 
1517     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1518     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1519 
1520     // result type needed
1521     fields = TypeTuple::fields(1);
1522     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1523     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1524     return TypeFunc::make(domain, range);
1525 }
1526 
1527 
1528 // Kyber XOF output parsing into polynomial coefficients candidates
1529 // or decompress(12,...) function
1530 static const TypeFunc* make_kyber12To16_Type() {
1531     int argcnt = 4;
1532 
1533     const Type** fields = TypeTuple::fields(argcnt);
1534     int argp = TypeFunc::Parms;
1535     fields[argp++] = TypePtr::NOTNULL;      // condensed
1536     fields[argp++] = TypeInt::INT;          // condensedOffs
1537     fields[argp++] = TypePtr::NOTNULL;      // parsed
1538     fields[argp++] = TypeInt::INT;          // parsedLength
1539 
1540     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1541     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1542 
1543     // result type needed
1544     fields = TypeTuple::fields(1);
1545     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1546     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1547     return TypeFunc::make(domain, range);
1548 }
1549 
1550 // Kyber Barrett reduce function
1551 static const TypeFunc* make_kyberBarrettReduce_Type() {
1552     int argcnt = 1;
1553 
1554     const Type** fields = TypeTuple::fields(argcnt);
1555     int argp = TypeFunc::Parms;
1556     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1557     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1558     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1559 
1560     // result type needed
1561     fields = TypeTuple::fields(1);
1562     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1563     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1564     return TypeFunc::make(domain, range);
1565 }
1566 
1567 // Dilithium NTT function except for the final "normalization" to |coeff| < Q
1568 static const TypeFunc* make_dilithiumAlmostNtt_Type() {
1569     int argcnt = 2;
1570 
1571     const Type** fields = TypeTuple::fields(argcnt);
1572     int argp = TypeFunc::Parms;
1573     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1574     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1575 
1576     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1577     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1578 
1579     // result type needed
1580     fields = TypeTuple::fields(1);
1581     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1582     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1583     return TypeFunc::make(domain, range);
1584 }
1585 
1586 // Dilithium inverse NTT function except the final mod Q division by 2^256
1587 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() {
1588     int argcnt = 2;
1589 
1590     const Type** fields = TypeTuple::fields(argcnt);
1591     int argp = TypeFunc::Parms;
1592     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1593     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1594 
1595     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1596     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1597 
1598     // result type needed
1599     fields = TypeTuple::fields(1);
1600     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1601     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1602     return TypeFunc::make(domain, range);
1603 }
1604 
1605 // Dilithium NTT multiply function
1606 static const TypeFunc* make_dilithiumNttMult_Type() {
1607     int argcnt = 3;
1608 
1609     const Type** fields = TypeTuple::fields(argcnt);
1610     int argp = TypeFunc::Parms;
1611     fields[argp++] = TypePtr::NOTNULL;      // result
1612     fields[argp++] = TypePtr::NOTNULL;      // ntta
1613     fields[argp++] = TypePtr::NOTNULL;      // nttb
1614 
1615     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1616     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1617 
1618     // result type needed
1619     fields = TypeTuple::fields(1);
1620     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1621     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1622     return TypeFunc::make(domain, range);
1623 }
1624 
1625 // Dilithium Montgomery multiply a polynome coefficient array by a constant
1626 static const TypeFunc* make_dilithiumMontMulByConstant_Type() {
1627     int argcnt = 2;
1628 
1629     const Type** fields = TypeTuple::fields(argcnt);
1630     int argp = TypeFunc::Parms;
1631     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1632     fields[argp++] = TypeInt::INT;          // constant multiplier
1633 
1634     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1635     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1636 
1637     // result type needed
1638     fields = TypeTuple::fields(1);
1639     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1640     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1641     return TypeFunc::make(domain, range);
1642 }
1643 
1644 // Dilithium decompose polynomial
1645 static const TypeFunc* make_dilithiumDecomposePoly_Type() {
1646     int argcnt = 5;
1647 
1648     const Type** fields = TypeTuple::fields(argcnt);
1649     int argp = TypeFunc::Parms;
1650     fields[argp++] = TypePtr::NOTNULL;      // input
1651     fields[argp++] = TypePtr::NOTNULL;      // lowPart
1652     fields[argp++] = TypePtr::NOTNULL;      // highPart
1653     fields[argp++] = TypeInt::INT;          // 2 * gamma2
1654     fields[argp++] = TypeInt::INT;          // multiplier
1655 
1656     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1657     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1658 
1659     // result type needed
1660     fields = TypeTuple::fields(1);
1661     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1662     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1663     return TypeFunc::make(domain, range);
1664 }
1665 
1666 static const TypeFunc* make_base64_encodeBlock_Type() {
1667   int argcnt = 6;
1668 
1669   const Type** fields = TypeTuple::fields(argcnt);
1670   int argp = TypeFunc::Parms;
1671   fields[argp++] = TypePtr::NOTNULL;    // src array
1672   fields[argp++] = TypeInt::INT;        // offset
1673   fields[argp++] = TypeInt::INT;        // length
1674   fields[argp++] = TypePtr::NOTNULL;    // dest array
1675   fields[argp++] = TypeInt::INT;       // dp
1676   fields[argp++] = TypeInt::BOOL;       // isURL
1677   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1678   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1679 
1680   // result type needed
1681   fields = TypeTuple::fields(1);
1682   fields[TypeFunc::Parms + 0] = nullptr; // void
1683   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1684   return TypeFunc::make(domain, range);
1685 }
1686 
1687 static const TypeFunc* make_string_IndexOf_Type() {
1688   int argcnt = 4;
1689 
1690   const Type** fields = TypeTuple::fields(argcnt);
1691   int argp = TypeFunc::Parms;
1692   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1693   fields[argp++] = TypeInt::INT;        // haystack length
1694   fields[argp++] = TypePtr::NOTNULL;    // needle array
1695   fields[argp++] = TypeInt::INT;        // needle length
1696   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1697   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1698 
1699   // result type needed
1700   fields = TypeTuple::fields(1);
1701   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1702   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1703   return TypeFunc::make(domain, range);
1704 }
1705 
1706 static const TypeFunc* make_base64_decodeBlock_Type() {
1707   int argcnt = 7;
1708 
1709   const Type** fields = TypeTuple::fields(argcnt);
1710   int argp = TypeFunc::Parms;
1711   fields[argp++] = TypePtr::NOTNULL;    // src array
1712   fields[argp++] = TypeInt::INT;        // src offset
1713   fields[argp++] = TypeInt::INT;        // src length
1714   fields[argp++] = TypePtr::NOTNULL;    // dest array
1715   fields[argp++] = TypeInt::INT;        // dest offset
1716   fields[argp++] = TypeInt::BOOL;       // isURL
1717   fields[argp++] = TypeInt::BOOL;       // isMIME
1718   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1719   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1720 
1721   // result type needed
1722   fields = TypeTuple::fields(1);
1723   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1724   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1725   return TypeFunc::make(domain, range);
1726 }
1727 
1728 static const TypeFunc* make_poly1305_processBlocks_Type() {
1729   int argcnt = 4;
1730 
1731   const Type** fields = TypeTuple::fields(argcnt);
1732   int argp = TypeFunc::Parms;
1733   fields[argp++] = TypePtr::NOTNULL;    // input array
1734   fields[argp++] = TypeInt::INT;        // input length
1735   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1736   fields[argp++] = TypePtr::NOTNULL;    // r array
1737   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1738   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1739 
1740   // result type needed
1741   fields = TypeTuple::fields(1);
1742   fields[TypeFunc::Parms + 0] = nullptr; // void
1743   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1744   return TypeFunc::make(domain, range);
1745 }
1746 
1747 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() {
1748   int argcnt = 3;
1749 
1750   const Type** fields = TypeTuple::fields(argcnt);
1751   int argp = TypeFunc::Parms;
1752   fields[argp++] = TypePtr::NOTNULL;    // a array
1753   fields[argp++] = TypePtr::NOTNULL;    // b array
1754   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1755   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1756   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1757 
1758   // result type needed
1759   fields = TypeTuple::fields(1);
1760   fields[TypeFunc::Parms + 0] = nullptr; // void
1761   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1762   return TypeFunc::make(domain, range);
1763 }
1764 
1765 static const TypeFunc* make_intpoly_assign_Type() {
1766   int argcnt = 4;
1767 
1768   const Type** fields = TypeTuple::fields(argcnt);
1769   int argp = TypeFunc::Parms;
1770   fields[argp++] = TypeInt::INT;        // set flag
1771   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1772   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1773   fields[argp++] = TypeInt::INT;        // array length
1774   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1775   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1776 
1777   // result type needed
1778   fields = TypeTuple::fields(1);
1779   fields[TypeFunc::Parms + 0] = nullptr; // void
1780   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1781   return TypeFunc::make(domain, range);
1782 }
1783 
1784 //------------- Interpreter state for on stack replacement
1785 static const TypeFunc* make_osr_end_Type() {
1786   // create input type (domain)
1787   const Type **fields = TypeTuple::fields(1);
1788   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1789   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1790 
1791   // create result type
1792   fields = TypeTuple::fields(1);
1793   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1794   fields[TypeFunc::Parms+0] = nullptr; // void
1795   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1796   return TypeFunc::make(domain, range);
1797 }
1798 
1799 //-------------------------------------------------------------------------------------
1800 // register policy
1801 
1802 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1803   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1804   switch (register_save_policy[reg]) {
1805     case 'C': return false; //SOC
1806     case 'E': return true ; //SOE
1807     case 'N': return false; //NS
1808     case 'A': return false; //AS
1809   }
1810   ShouldNotReachHere();
1811   return false;
1812 }
1813 
1814 //-----------------------------------------------------------------------
1815 // Exceptions
1816 //
1817 
1818 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1819 
1820 // The method is an entry that is always called by a C++ method not
1821 // directly from compiled code. Compiled code will call the C++ method following.
1822 // We can't allow async exception to be installed during  exception processing.
1823 JRT_ENTRY_NO_ASYNC_PROF(address, OptoRuntime, handle_exception_C_helper, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1824   // The frame we rethrow the exception to might not have been processed by the GC yet.
1825   // The stack watermark barrier takes care of detecting that and ensuring the frame
1826   // has updated oops.
1827   StackWatermarkSet::after_unwind(current);
1828 
1829   // Do not confuse exception_oop with pending_exception. The exception_oop
1830   // is only used to pass arguments into the method. Not for general
1831   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1832   // the runtime stubs checks this on exit.
1833   assert(current->exception_oop() != nullptr, "exception oop is found");
1834   address handler_address = nullptr;
1835 
1836   Handle exception(current, current->exception_oop());
1837   address pc = current->exception_pc();
1838 
1839   // Clear out the exception oop and pc since looking up an
1840   // exception handler can cause class loading, which might throw an
1841   // exception and those fields are expected to be clear during
1842   // normal bytecode execution.
1843   current->clear_exception_oop_and_pc();
1844 
1845   LogTarget(Info, exceptions) lt;
1846   if (lt.is_enabled()) {
1847     LogStream ls(lt);
1848     trace_exception(&ls, exception(), pc, "");
1849   }
1850 
1851   // for AbortVMOnException flag
1852   Exceptions::debug_check_abort(exception);
1853 
1854 #ifdef ASSERT
1855   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1856     // should throw an exception here
1857     ShouldNotReachHere();
1858   }
1859 #endif
1860 
1861   // new exception handling: this method is entered only from adapters
1862   // exceptions from compiled java methods are handled in compiled code
1863   // using rethrow node
1864 
1865   nm = CodeCache::find_nmethod(pc);
1866   assert(nm != nullptr, "No NMethod found");
1867   if (nm->is_native_method()) {
1868     fatal("Native method should not have path to exception handling");
1869   } else {
1870     // we are switching to old paradigm: search for exception handler in caller_frame
1871     // instead in exception handler of caller_frame.sender()
1872 
1873     if (JvmtiExport::can_post_on_exceptions()) {
1874       // "Full-speed catching" is not necessary here,
1875       // since we're notifying the VM on every catch.
1876       // Force deoptimization and the rest of the lookup
1877       // will be fine.
1878       deoptimize_caller_frame(current);
1879     }
1880 
1881     // Check the stack guard pages.  If enabled, look for handler in this frame;
1882     // otherwise, forcibly unwind the frame.
1883     //
1884     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1885     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1886     bool deopting = false;
1887     if (nm->is_deopt_pc(pc)) {
1888       deopting = true;
1889       RegisterMap map(current,
1890                       RegisterMap::UpdateMap::skip,
1891                       RegisterMap::ProcessFrames::include,
1892                       RegisterMap::WalkContinuation::skip);
1893       frame deoptee = current->last_frame().sender(&map);
1894       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1895       // Adjust the pc back to the original throwing pc
1896       pc = deoptee.pc();
1897     }
1898 
1899     // If we are forcing an unwind because of stack overflow then deopt is
1900     // irrelevant since we are throwing the frame away anyway.
1901 
1902     if (deopting && !force_unwind) {
1903       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1904     } else {
1905 
1906       handler_address =
1907         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1908 
1909       if (handler_address == nullptr) {
1910         bool recursive_exception = false;
1911         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1912         assert (handler_address != nullptr, "must have compiled handler");
1913         // Update the exception cache only when the unwind was not forced
1914         // and there didn't happen another exception during the computation of the
1915         // compiled exception handler. Checking for exception oop equality is not
1916         // sufficient because some exceptions are pre-allocated and reused.
1917         if (!force_unwind && !recursive_exception) {
1918           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1919         }
1920       } else {
1921 #ifdef ASSERT
1922         bool recursive_exception = false;
1923         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1924         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1925                  p2i(handler_address), p2i(computed_address));
1926 #endif
1927       }
1928     }
1929 
1930     current->set_exception_pc(pc);
1931     current->set_exception_handler_pc(handler_address);
1932 
1933     // Check if the exception PC is a MethodHandle call site.
1934     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1935   }
1936 
1937   // Restore correct return pc.  Was saved above.
1938   current->set_exception_oop(exception());
1939   return handler_address;
1940 
1941 JRT_END
1942 
1943 // We are entering here from exception_blob
1944 // If there is a compiled exception handler in this method, we will continue there;
1945 // otherwise we will unwind the stack and continue at the caller of top frame method
1946 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1947 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1948 // we looked up the handler for has been deoptimized in the meantime. If it has been
1949 // we must not use the handler and instead return the deopt blob.
1950 address OptoRuntime::handle_exception_C(JavaThread* current) {
1951 //
1952 // We are in Java not VM and in debug mode we have a NoHandleMark
1953 //
1954 #ifndef PRODUCT
1955   SharedRuntime::_find_handler_ctr++;          // find exception handler
1956 #endif
1957   DEBUG_ONLY(NoHandleMark __hm;)
1958   nmethod* nm = nullptr;
1959   address handler_address = nullptr;
1960   {
1961     // Enter the VM
1962 
1963     ResetNoHandleMark rnhm;
1964     handler_address = handle_exception_C_helper(current, nm);
1965   }
1966 
1967   // Back in java: Use no oops, DON'T safepoint
1968 
1969   // Now check to see if the handler we are returning is in a now
1970   // deoptimized frame
1971 
1972   if (nm != nullptr) {
1973     RegisterMap map(current,
1974                     RegisterMap::UpdateMap::skip,
1975                     RegisterMap::ProcessFrames::skip,
1976                     RegisterMap::WalkContinuation::skip);
1977     frame caller = current->last_frame().sender(&map);
1978 #ifdef ASSERT
1979     assert(caller.is_compiled_frame(), "must be");
1980 #endif // ASSERT
1981     if (caller.is_deoptimized_frame()) {
1982       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1983     }
1984   }
1985   return handler_address;
1986 }
1987 
1988 //------------------------------rethrow----------------------------------------
1989 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1990 // is either throwing or rethrowing an exception.  The callee-save registers
1991 // have been restored, synchronized objects have been unlocked and the callee
1992 // stack frame has been removed.  The return address was passed in.
1993 // Exception oop is passed as the 1st argument.  This routine is then called
1994 // from the stub.  On exit, we know where to jump in the caller's code.
1995 // After this C code exits, the stub will pop his frame and end in a jump
1996 // (instead of a return).  We enter the caller's default handler.
1997 //
1998 // This must be JRT_LEAF:
1999 //     - caller will not change its state as we cannot block on exit,
2000 //       therefore raw_exception_handler_for_return_address is all it takes
2001 //       to handle deoptimized blobs
2002 //
2003 // However, there needs to be a safepoint check in the middle!  So compiled
2004 // safepoints are completely watertight.
2005 //
2006 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
2007 //
2008 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
2009 //
2010 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
2011   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
2012   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
2013 
2014 #ifndef PRODUCT
2015   SharedRuntime::_rethrow_ctr++;               // count rethrows
2016 #endif
2017   assert (exception != nullptr, "should have thrown a NullPointerException");
2018 #ifdef ASSERT
2019   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
2020     // should throw an exception here
2021     ShouldNotReachHere();
2022   }
2023 #endif
2024 
2025   thread->set_vm_result_oop(exception);
2026   // Frame not compiled (handles deoptimization blob)
2027   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
2028 }
2029 
2030 static const TypeFunc* make_rethrow_Type() {
2031   // create input type (domain)
2032   const Type **fields = TypeTuple::fields(1);
2033   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2034   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2035 
2036   // create result type (range)
2037   fields = TypeTuple::fields(1);
2038   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2039   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
2040 
2041   return TypeFunc::make(domain, range);
2042 }
2043 
2044 
2045 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
2046   // Deoptimize the caller before continuing, as the compiled
2047   // exception handler table may not be valid.
2048   if (!StressCompiledExceptionHandlers && doit) {
2049     deoptimize_caller_frame(thread);
2050   }
2051 }
2052 
2053 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
2054   // Called from within the owner thread, so no need for safepoint
2055   RegisterMap reg_map(thread,
2056                       RegisterMap::UpdateMap::include,
2057                       RegisterMap::ProcessFrames::include,
2058                       RegisterMap::WalkContinuation::skip);
2059   frame stub_frame = thread->last_frame();
2060   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2061   frame caller_frame = stub_frame.sender(&reg_map);
2062 
2063   // Deoptimize the caller frame.
2064   Deoptimization::deoptimize_frame(thread, caller_frame.id());
2065 }
2066 
2067 
2068 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
2069   // Called from within the owner thread, so no need for safepoint
2070   RegisterMap reg_map(thread,
2071                       RegisterMap::UpdateMap::include,
2072                       RegisterMap::ProcessFrames::include,
2073                       RegisterMap::WalkContinuation::skip);
2074   frame stub_frame = thread->last_frame();
2075   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2076   frame caller_frame = stub_frame.sender(&reg_map);
2077   return caller_frame.is_deoptimized_frame();
2078 }
2079 
2080 static const TypeFunc* make_register_finalizer_Type() {
2081   // create input type (domain)
2082   const Type **fields = TypeTuple::fields(1);
2083   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
2084   // // The JavaThread* is passed to each routine as the last argument
2085   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2086   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2087 
2088   // create result type (range)
2089   fields = TypeTuple::fields(0);
2090 
2091   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2092 
2093   return TypeFunc::make(domain,range);
2094 }
2095 
2096 const TypeFunc *OptoRuntime::class_init_barrier_Type() {
2097   // create input type (domain)
2098   const Type** fields = TypeTuple::fields(1);
2099   fields[TypeFunc::Parms+0] = TypeKlassPtr::NOTNULL;
2100   // // The JavaThread* is passed to each routine as the last argument
2101   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2102   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+1, fields);
2103 
2104   // create result type (range)
2105   fields = TypeTuple::fields(0);
2106   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
2107   return TypeFunc::make(domain,range);
2108 }
2109 
2110 #if INCLUDE_JFR
2111 static const TypeFunc* make_class_id_load_barrier_Type() {
2112   // create input type (domain)
2113   const Type **fields = TypeTuple::fields(1);
2114   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2115   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2116 
2117   // create result type (range)
2118   fields = TypeTuple::fields(0);
2119 
2120   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2121 
2122   return TypeFunc::make(domain,range);
2123 }
2124 #endif // INCLUDE_JFR
2125 
2126 //-----------------------------------------------------------------------------
2127 // runtime upcall support
2128 const TypeFunc *OptoRuntime::runtime_up_call_Type() {
2129   // create input type (domain)
2130   const Type **fields = TypeTuple::fields(1);
2131   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2132   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2133 
2134   // create result type (range)
2135   fields = TypeTuple::fields(0);
2136 
2137   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2138 
2139   return TypeFunc::make(domain,range);
2140 }
2141 
2142 //-----------------------------------------------------------------------------
2143 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2144   // create input type (domain)
2145   const Type **fields = TypeTuple::fields(2);
2146   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2147   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
2148   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2149 
2150   // create result type (range)
2151   fields = TypeTuple::fields(0);
2152 
2153   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2154 
2155   return TypeFunc::make(domain,range);
2156 }
2157 
2158 static const TypeFunc* make_dtrace_object_alloc_Type() {
2159   // create input type (domain)
2160   const Type **fields = TypeTuple::fields(2);
2161   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2162   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
2163 
2164   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2165 
2166   // create result type (range)
2167   fields = TypeTuple::fields(0);
2168 
2169   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2170 
2171   return TypeFunc::make(domain,range);
2172 }
2173 
2174 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, register_finalizer_C, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2175   assert(oopDesc::is_oop(obj), "must be a valid oop");
2176   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2177   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2178 JRT_END
2179 
2180 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, class_init_barrier_C, OptoRuntime::class_init_barrier_C(Klass* k, JavaThread* current))
2181   InstanceKlass* ik = InstanceKlass::cast(k);
2182   if (ik->should_be_initialized()) {
2183     ik->initialize(CHECK);
2184   } else if (UsePerfData) {
2185     _perf_OptoRuntime_class_init_barrier_redundant_count->inc();
2186   }
2187 JRT_END
2188 
2189 //-----------------------------------------------------------------------------
2190 
2191 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2192 
2193 //
2194 // dump the collected NamedCounters.
2195 //
2196 void OptoRuntime::print_named_counters() {
2197   int total_lock_count = 0;
2198   int eliminated_lock_count = 0;
2199 
2200   NamedCounter* c = _named_counters;
2201   while (c) {
2202     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
2203       int count = c->count();
2204       if (count > 0) {
2205         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
2206         if (Verbose) {
2207           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
2208         }
2209         total_lock_count += count;
2210         if (eliminated) {
2211           eliminated_lock_count += count;
2212         }
2213       }
2214     }
2215     c = c->next();
2216   }
2217   if (total_lock_count > 0) {
2218     tty->print_cr("dynamic locks: %d", total_lock_count);
2219     if (eliminated_lock_count) {
2220       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
2221                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
2222     }
2223   }
2224 }
2225 
2226 //
2227 //  Allocate a new NamedCounter.  The JVMState is used to generate the
2228 //  name which consists of method@line for the inlining tree.
2229 //
2230 
2231 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
2232   int max_depth = youngest_jvms->depth();
2233 
2234   // Visit scopes from youngest to oldest.
2235   bool first = true;
2236   stringStream st;
2237   for (int depth = max_depth; depth >= 1; depth--) {
2238     JVMState* jvms = youngest_jvms->of_depth(depth);
2239     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
2240     if (!first) {
2241       st.print(" ");
2242     } else {
2243       first = false;
2244     }
2245     int bci = jvms->bci();
2246     if (bci < 0) bci = 0;
2247     if (m != nullptr) {
2248       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
2249     } else {
2250       st.print("no method");
2251     }
2252     st.print("@%d", bci);
2253     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2254   }
2255   NamedCounter* c = new NamedCounter(st.freeze(), tag);
2256 
2257   // atomically add the new counter to the head of the list.  We only
2258   // add counters so this is safe.
2259   NamedCounter* head;
2260   do {
2261     c->set_next(nullptr);
2262     head = _named_counters;
2263     c->set_next(head);
2264   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
2265   return c;
2266 }
2267 
2268 void OptoRuntime::initialize_types() {
2269   _new_instance_Type                  = make_new_instance_Type();
2270   _new_array_Type                     = make_new_array_Type();
2271   _multianewarray2_Type               = multianewarray_Type(2);
2272   _multianewarray3_Type               = multianewarray_Type(3);
2273   _multianewarray4_Type               = multianewarray_Type(4);
2274   _multianewarray5_Type               = multianewarray_Type(5);
2275   _multianewarrayN_Type               = make_multianewarrayN_Type();
2276   _complete_monitor_enter_Type        = make_complete_monitor_enter_Type();
2277   _complete_monitor_exit_Type         = make_complete_monitor_exit_Type();
2278   _monitor_notify_Type                = make_monitor_notify_Type();
2279   _uncommon_trap_Type                 = make_uncommon_trap_Type();
2280   _athrow_Type                        = make_athrow_Type();
2281   _rethrow_Type                       = make_rethrow_Type();
2282   _Math_D_D_Type                      = make_Math_D_D_Type();
2283   _Math_DD_D_Type                     = make_Math_DD_D_Type();
2284   _modf_Type                          = make_modf_Type();
2285   _l2f_Type                           = make_l2f_Type();
2286   _void_long_Type                     = make_void_long_Type();
2287   _void_void_Type                     = make_void_void_Type();
2288   _jfr_write_checkpoint_Type          = make_jfr_write_checkpoint_Type();
2289   _flush_windows_Type                 = make_flush_windows_Type();
2290   _fast_arraycopy_Type                = make_arraycopy_Type(ac_fast);
2291   _checkcast_arraycopy_Type           = make_arraycopy_Type(ac_checkcast);
2292   _generic_arraycopy_Type             = make_arraycopy_Type(ac_generic);
2293   _slow_arraycopy_Type                = make_arraycopy_Type(ac_slow);
2294   _unsafe_setmemory_Type              = make_setmemory_Type();
2295   _array_fill_Type                    = make_array_fill_Type();
2296   _array_sort_Type                    = make_array_sort_Type();
2297   _array_partition_Type               = make_array_partition_Type();
2298   _aescrypt_block_Type                = make_aescrypt_block_Type();
2299   _cipherBlockChaining_aescrypt_Type  = make_cipherBlockChaining_aescrypt_Type();
2300   _electronicCodeBook_aescrypt_Type   = make_electronicCodeBook_aescrypt_Type();
2301   _counterMode_aescrypt_Type          = make_counterMode_aescrypt_Type();
2302   _galoisCounterMode_aescrypt_Type    = make_galoisCounterMode_aescrypt_Type();
2303   _digestBase_implCompress_with_sha3_Type      = make_digestBase_implCompress_Type(  /* is_sha3= */ true);
2304   _digestBase_implCompress_without_sha3_Type   = make_digestBase_implCompress_Type(  /* is_sha3= */ false);;
2305   _digestBase_implCompressMB_with_sha3_Type    = make_digestBase_implCompressMB_Type(/* is_sha3= */ true);
2306   _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false);
2307   _double_keccak_Type                 = make_double_keccak_Type();
2308   _multiplyToLen_Type                 = make_multiplyToLen_Type();
2309   _montgomeryMultiply_Type            = make_montgomeryMultiply_Type();
2310   _montgomerySquare_Type              = make_montgomerySquare_Type();
2311   _squareToLen_Type                   = make_squareToLen_Type();
2312   _mulAdd_Type                        = make_mulAdd_Type();
2313   _bigIntegerShift_Type               = make_bigIntegerShift_Type();
2314   _vectorizedMismatch_Type            = make_vectorizedMismatch_Type();
2315   _ghash_processBlocks_Type           = make_ghash_processBlocks_Type();
2316   _chacha20Block_Type                 = make_chacha20Block_Type();
2317   _kyberNtt_Type                      = make_kyberNtt_Type();
2318   _kyberInverseNtt_Type               = make_kyberInverseNtt_Type();
2319   _kyberNttMult_Type                  = make_kyberNttMult_Type();
2320   _kyberAddPoly_2_Type                = make_kyberAddPoly_2_Type();
2321   _kyberAddPoly_3_Type                = make_kyberAddPoly_3_Type();
2322   _kyber12To16_Type                   = make_kyber12To16_Type();
2323   _kyberBarrettReduce_Type            = make_kyberBarrettReduce_Type();
2324   _dilithiumAlmostNtt_Type            = make_dilithiumAlmostNtt_Type();
2325   _dilithiumAlmostInverseNtt_Type     = make_dilithiumAlmostInverseNtt_Type();
2326   _dilithiumNttMult_Type              = make_dilithiumNttMult_Type();
2327   _dilithiumMontMulByConstant_Type    = make_dilithiumMontMulByConstant_Type();
2328   _dilithiumDecomposePoly_Type        = make_dilithiumDecomposePoly_Type();
2329   _base64_encodeBlock_Type            = make_base64_encodeBlock_Type();
2330   _base64_decodeBlock_Type            = make_base64_decodeBlock_Type();
2331   _string_IndexOf_Type                = make_string_IndexOf_Type();
2332   _poly1305_processBlocks_Type        = make_poly1305_processBlocks_Type();
2333   _intpoly_montgomeryMult_P256_Type   = make_intpoly_montgomeryMult_P256_Type();
2334   _intpoly_assign_Type                = make_intpoly_assign_Type();
2335   _updateBytesCRC32_Type              = make_updateBytesCRC32_Type();
2336   _updateBytesCRC32C_Type             = make_updateBytesCRC32C_Type();
2337   _updateBytesAdler32_Type            = make_updateBytesAdler32_Type();
2338   _osr_end_Type                       = make_osr_end_Type();
2339   _register_finalizer_Type            = make_register_finalizer_Type();
2340   JFR_ONLY(
2341     _class_id_load_barrier_Type       = make_class_id_load_barrier_Type();
2342   )
2343 #if INCLUDE_JVMTI
2344   _notify_jvmti_vthread_Type          = make_notify_jvmti_vthread_Type();
2345 #endif // INCLUDE_JVMTI
2346   _dtrace_method_entry_exit_Type      = make_dtrace_method_entry_exit_Type();
2347   _dtrace_object_alloc_Type           = make_dtrace_object_alloc_Type();
2348 }
2349 
2350 int trace_exception_counter = 0;
2351 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2352   trace_exception_counter++;
2353   stringStream tempst;
2354 
2355   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2356   exception_oop->print_value_on(&tempst);
2357   tempst.print(" in ");
2358   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2359   if (blob->is_nmethod()) {
2360     blob->as_nmethod()->method()->print_value_on(&tempst);
2361   } else if (blob->is_runtime_stub()) {
2362     tempst.print("<runtime-stub>");
2363   } else {
2364     tempst.print("<unknown>");
2365   }
2366   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2367   tempst.print("]");
2368 
2369   st->print_raw_cr(tempst.freeze());
2370 }
2371 
2372 #define DO_COUNTERS2(macro2, macro1) \
2373   macro2(OptoRuntime, new_instance_C) \
2374   macro2(OptoRuntime, new_array_C) \
2375   macro2(OptoRuntime, new_array_nozero_C) \
2376   macro2(OptoRuntime, multianewarray2_C) \
2377   macro2(OptoRuntime, multianewarray3_C) \
2378   macro2(OptoRuntime, multianewarray4_C) \
2379   macro2(OptoRuntime, multianewarrayN_C) \
2380   macro2(OptoRuntime, monitor_notify_C) \
2381   macro2(OptoRuntime, monitor_notifyAll_C) \
2382   macro2(OptoRuntime, handle_exception_C_helper) \
2383   macro2(OptoRuntime, register_finalizer_C) \
2384   macro2(OptoRuntime, class_init_barrier_C) \
2385   macro1(OptoRuntime, class_init_barrier_redundant)
2386 
2387 #define INIT_COUNTER_TIME_AND_CNT(sub, name) \
2388   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
2389   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
2390 
2391 #define INIT_COUNTER_CNT(sub, name) \
2392   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
2393 
2394 void OptoRuntime::init_counters() {
2395   assert(CompilerConfig::is_c2_enabled(), "");
2396 
2397   if (UsePerfData) {
2398     EXCEPTION_MARK;
2399 
2400     DO_COUNTERS2(INIT_COUNTER_TIME_AND_CNT, INIT_COUNTER_CNT)
2401 
2402     if (HAS_PENDING_EXCEPTION) {
2403       vm_exit_during_initialization("jvm_perf_init failed unexpectedly");
2404     }
2405   }
2406 }
2407 #undef INIT_COUNTER_TIME_AND_CNT
2408 #undef INIT_COUNTER_CNT
2409 
2410 #define PRINT_COUNTER_TIME_AND_CNT(sub, name) { \
2411   jlong count = _perf_##sub##_##name##_count->get_value(); \
2412   if (count > 0) { \
2413     st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
2414                  _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
2415                  _perf_##sub##_##name##_timer->thread_counter_value_us(), \
2416                  count); \
2417   }}
2418 
2419 #define PRINT_COUNTER_CNT(sub, name) { \
2420   jlong count = _perf_##sub##_##name##_count->get_value(); \
2421   if (count > 0) { \
2422     st->print_cr("  %-30s = " JLONG_FORMAT_W(5) " events", #name, count); \
2423   }}
2424 
2425 void OptoRuntime::print_counters_on(outputStream* st) {
2426   if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c2_enabled()) {
2427     DO_COUNTERS2(PRINT_COUNTER_TIME_AND_CNT, PRINT_COUNTER_CNT)
2428   } else {
2429     st->print_cr("  OptoRuntime: no info (%s is disabled)",
2430                  (!CompilerConfig::is_c2_enabled() ? "C2" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")));
2431   }
2432 }
2433 
2434 #undef PRINT_COUNTER_TIME_AND_CNT
2435 #undef PRINT_COUNTER_CNT
2436 #undef DO_COUNTERS2