1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmClasses.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerDefinitions.inline.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/g1HeapRegion.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.hpp"
  41 #include "interpreter/bytecode.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/linkResolver.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/objArrayKlass.hpp"
  49 #include "oops/klass.inline.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/typeArrayOop.inline.hpp"
  52 #include "opto/ad.hpp"
  53 #include "opto/addnode.hpp"
  54 #include "opto/callnode.hpp"
  55 #include "opto/cfgnode.hpp"
  56 #include "opto/graphKit.hpp"
  57 #include "opto/machnode.hpp"
  58 #include "opto/matcher.hpp"
  59 #include "opto/memnode.hpp"
  60 #include "opto/mulnode.hpp"
  61 #include "opto/output.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/subnode.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/perfData.inline.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stackWatermarkSet.hpp"
  75 #include "runtime/synchronizer.hpp"
  76 #include "runtime/threadCritical.hpp"
  77 #include "runtime/threadWXSetters.inline.hpp"
  78 #include "runtime/vframe.hpp"
  79 #include "runtime/vframeArray.hpp"
  80 #include "runtime/vframe_hp.hpp"
  81 #include "services/management.hpp"
  82 #include "utilities/copy.hpp"
  83 #include "utilities/preserveException.hpp"
  84 
  85 
  86 // For debugging purposes:
  87 //  To force FullGCALot inside a runtime function, add the following two lines
  88 //
  89 //  Universe::release_fullgc_alot_dummy();
  90 //  Universe::heap()->collect();
  91 //
  92 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  93 
  94 
  95 
  96 
  97 // Compiled code entry points
  98 address OptoRuntime::_new_instance_Java                           = nullptr;
  99 address OptoRuntime::_new_array_Java                              = nullptr;
 100 address OptoRuntime::_new_array_nozero_Java                       = nullptr;
 101 address OptoRuntime::_multianewarray2_Java                        = nullptr;
 102 address OptoRuntime::_multianewarray3_Java                        = nullptr;
 103 address OptoRuntime::_multianewarray4_Java                        = nullptr;
 104 address OptoRuntime::_multianewarray5_Java                        = nullptr;
 105 address OptoRuntime::_multianewarrayN_Java                        = nullptr;
 106 address OptoRuntime::_vtable_must_compile_Java                    = nullptr;
 107 address OptoRuntime::_complete_monitor_locking_Java               = nullptr;
 108 address OptoRuntime::_monitor_notify_Java                         = nullptr;
 109 address OptoRuntime::_monitor_notifyAll_Java                      = nullptr;
 110 address OptoRuntime::_rethrow_Java                                = nullptr;
 111 
 112 address OptoRuntime::_slow_arraycopy_Java                         = nullptr;
 113 address OptoRuntime::_register_finalizer_Java                     = nullptr;
 114 address OptoRuntime::_class_init_barrier_Java                     = nullptr;
 115 #if INCLUDE_JVMTI
 116 address OptoRuntime::_notify_jvmti_vthread_start                  = nullptr;
 117 address OptoRuntime::_notify_jvmti_vthread_end                    = nullptr;
 118 address OptoRuntime::_notify_jvmti_vthread_mount                  = nullptr;
 119 address OptoRuntime::_notify_jvmti_vthread_unmount                = nullptr;
 120 #endif
 121 
 122 ExceptionBlob* OptoRuntime::_exception_blob;
 123 
 124 PerfCounter* _perf_OptoRuntime_class_init_barrier_redundant_count = nullptr;
 125 
 126 // This should be called in an assertion at the start of OptoRuntime routines
 127 // which are entered from compiled code (all of them)
 128 #ifdef ASSERT
 129 static bool check_compiled_frame(JavaThread* thread) {
 130   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 131   RegisterMap map(thread,
 132                   RegisterMap::UpdateMap::skip,
 133                   RegisterMap::ProcessFrames::include,
 134                   RegisterMap::WalkContinuation::skip);
 135   frame caller = thread->last_frame().sender(&map);
 136   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 137   return true;
 138 }
 139 #endif // ASSERT
 140 
 141 
 142 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 143   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 144   if (var == nullptr) { return false; }
 145 
 146 bool OptoRuntime::generate(ciEnv* env) {
 147   init_counters();
 148 
 149   generate_exception_blob();
 150 
 151   // Note: tls: Means fetching the return oop out of the thread-local storage
 152   //
 153   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,retpc
 154   // -------------------------------------------------------------------------------------------------------------------------------
 155   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true, false);
 156   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true, false);
 157   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true, false);
 158   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true, false);
 159   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true, false);
 160   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true, false);
 161   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true, false);
 162   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true, false);
 163 #if INCLUDE_JVMTI
 164   gen(env, _notify_jvmti_vthread_start     , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_start, 0, true, false);
 165   gen(env, _notify_jvmti_vthread_end       , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_end,   0, true, false);
 166   gen(env, _notify_jvmti_vthread_mount     , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_mount, 0, true, false);
 167   gen(env, _notify_jvmti_vthread_unmount   , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_unmount, 0, true, false);
 168 #endif
 169   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false);
 170   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false);
 171   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false);
 172   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , true );
 173 
 174   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false);
 175   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false);
 176   gen(env, _class_init_barrier_Java        , class_init_barrier_Type      , class_init_barrier              ,    0 , false, false);
 177 
 178   return true;
 179 }
 180 
 181 #undef gen
 182 
 183 
 184 // Helper method to do generation of RunTimeStub's
 185 address OptoRuntime::generate_stub(ciEnv* env,
 186                                    TypeFunc_generator gen, address C_function,
 187                                    const char *name, int is_fancy_jump,
 188                                    bool pass_tls,
 189                                    bool return_pc) {
 190 
 191   // Matching the default directive, we currently have no method to match.
 192   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompilerThread::current()->compiler());
 193   ResourceMark rm;
 194   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 195   DirectivesStack::release(directive);
 196   return  C.stub_entry_point();
 197 }
 198 
 199 const char* OptoRuntime::stub_name(address entry) {
 200 #ifndef PRODUCT
 201   CodeBlob* cb = CodeCache::find_blob(entry);
 202   RuntimeStub* rs =(RuntimeStub *)cb;
 203   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 204   return rs->name();
 205 #else
 206   // Fast implementation for product mode (maybe it should be inlined too)
 207   return "runtime stub";
 208 #endif
 209 }
 210 
 211 
 212 //=============================================================================
 213 // Opto compiler runtime routines
 214 //=============================================================================
 215 
 216 
 217 //=============================allocation======================================
 218 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 219 // and try allocation again.
 220 
 221 // object allocation
 222 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_instance_C, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 223   JRT_BLOCK;
 224 #ifndef PRODUCT
 225   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 226 #endif
 227   assert(check_compiled_frame(current), "incorrect caller");
 228 
 229   // These checks are cheap to make and support reflective allocation.
 230   int lh = klass->layout_helper();
 231   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 232     Handle holder(current, klass->klass_holder()); // keep the klass alive
 233     klass->check_valid_for_instantiation(false, THREAD);
 234     if (!HAS_PENDING_EXCEPTION) {
 235       InstanceKlass::cast(klass)->initialize(THREAD);
 236     }
 237   }
 238 
 239   if (!HAS_PENDING_EXCEPTION) {
 240     // Scavenge and allocate an instance.
 241     Handle holder(current, klass->klass_holder()); // keep the klass alive
 242     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 243     current->set_vm_result(result);
 244 
 245     // Pass oops back through thread local storage.  Our apparent type to Java
 246     // is that we return an oop, but we can block on exit from this routine and
 247     // a GC can trash the oop in C's return register.  The generated stub will
 248     // fetch the oop from TLS after any possible GC.
 249   }
 250 
 251   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 252   JRT_BLOCK_END;
 253 
 254   // inform GC that we won't do card marks for initializing writes.
 255   SharedRuntime::on_slowpath_allocation_exit(current);
 256 JRT_END
 257 
 258 
 259 // array allocation
 260 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_C, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 261   JRT_BLOCK;
 262 #ifndef PRODUCT
 263   SharedRuntime::_new_array_ctr++;            // new array requires GC
 264 #endif
 265   assert(check_compiled_frame(current), "incorrect caller");
 266 
 267   // Scavenge and allocate an instance.
 268   oop result;
 269 
 270   if (array_type->is_typeArray_klass()) {
 271     // The oopFactory likes to work with the element type.
 272     // (We could bypass the oopFactory, since it doesn't add much value.)
 273     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 274     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 275   } else {
 276     // Although the oopFactory likes to work with the elem_type,
 277     // the compiler prefers the array_type, since it must already have
 278     // that latter value in hand for the fast path.
 279     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 280     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 281     result = oopFactory::new_objArray(elem_type, len, THREAD);
 282   }
 283 
 284   // Pass oops back through thread local storage.  Our apparent type to Java
 285   // is that we return an oop, but we can block on exit from this routine and
 286   // a GC can trash the oop in C's return register.  The generated stub will
 287   // fetch the oop from TLS after any possible GC.
 288   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 289   current->set_vm_result(result);
 290   JRT_BLOCK_END;
 291 
 292   // inform GC that we won't do card marks for initializing writes.
 293   SharedRuntime::on_slowpath_allocation_exit(current);
 294 JRT_END
 295 
 296 // array allocation without zeroing
 297 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_nozero_C, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 298   JRT_BLOCK;
 299 #ifndef PRODUCT
 300   SharedRuntime::_new_array_ctr++;            // new array requires GC
 301 #endif
 302   assert(check_compiled_frame(current), "incorrect caller");
 303 
 304   // Scavenge and allocate an instance.
 305   oop result;
 306 
 307   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 308   // The oopFactory likes to work with the element type.
 309   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 310   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 311 
 312   // Pass oops back through thread local storage.  Our apparent type to Java
 313   // is that we return an oop, but we can block on exit from this routine and
 314   // a GC can trash the oop in C's return register.  The generated stub will
 315   // fetch the oop from TLS after any possible GC.
 316   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 317   current->set_vm_result(result);
 318   JRT_BLOCK_END;
 319 
 320 
 321   // inform GC that we won't do card marks for initializing writes.
 322   SharedRuntime::on_slowpath_allocation_exit(current);
 323 
 324   oop result = current->vm_result();
 325   if ((len > 0) && (result != nullptr) &&
 326       is_deoptimized_caller_frame(current)) {
 327     // Zero array here if the caller is deoptimized.
 328     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 329     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 330     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 331     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 332     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 333     if (!is_aligned(hs_bytes, BytesPerLong)) {
 334       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 335       hs_bytes += BytesPerInt;
 336     }
 337 
 338     // Optimized zeroing.
 339     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 340     const size_t aligned_hs = hs_bytes / BytesPerLong;
 341     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 342   }
 343 
 344 JRT_END
 345 
 346 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 347 
 348 // multianewarray for 2 dimensions
 349 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray2_C, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 350 #ifndef PRODUCT
 351   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 352 #endif
 353   assert(check_compiled_frame(current), "incorrect caller");
 354   assert(elem_type->is_klass(), "not a class");
 355   jint dims[2];
 356   dims[0] = len1;
 357   dims[1] = len2;
 358   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 359   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 360   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 361   current->set_vm_result(obj);
 362 JRT_END
 363 
 364 // multianewarray for 3 dimensions
 365 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray3_C, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 366 #ifndef PRODUCT
 367   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 368 #endif
 369   assert(check_compiled_frame(current), "incorrect caller");
 370   assert(elem_type->is_klass(), "not a class");
 371   jint dims[3];
 372   dims[0] = len1;
 373   dims[1] = len2;
 374   dims[2] = len3;
 375   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 376   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 377   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 378   current->set_vm_result(obj);
 379 JRT_END
 380 
 381 // multianewarray for 4 dimensions
 382 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray4_C, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 383 #ifndef PRODUCT
 384   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 385 #endif
 386   assert(check_compiled_frame(current), "incorrect caller");
 387   assert(elem_type->is_klass(), "not a class");
 388   jint dims[4];
 389   dims[0] = len1;
 390   dims[1] = len2;
 391   dims[2] = len3;
 392   dims[3] = len4;
 393   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 394   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 395   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 396   current->set_vm_result(obj);
 397 JRT_END
 398 
 399 // multianewarray for 5 dimensions
 400 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 401 #ifndef PRODUCT
 402   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 403 #endif
 404   assert(check_compiled_frame(current), "incorrect caller");
 405   assert(elem_type->is_klass(), "not a class");
 406   jint dims[5];
 407   dims[0] = len1;
 408   dims[1] = len2;
 409   dims[2] = len3;
 410   dims[3] = len4;
 411   dims[4] = len5;
 412   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 413   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 414   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 415   current->set_vm_result(obj);
 416 JRT_END
 417 
 418 JRT_ENTRY_PROF(void, OptoRuntime, multianewarrayN_C, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 419   assert(check_compiled_frame(current), "incorrect caller");
 420   assert(elem_type->is_klass(), "not a class");
 421   assert(oop(dims)->is_typeArray(), "not an array");
 422 
 423   ResourceMark rm;
 424   jint len = dims->length();
 425   assert(len > 0, "Dimensions array should contain data");
 426   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 427   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 428                                        c_dims, len);
 429 
 430   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 431   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 432   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 433   current->set_vm_result(obj);
 434 JRT_END
 435 
 436 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notify_C, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 437 
 438   // Very few notify/notifyAll operations find any threads on the waitset, so
 439   // the dominant fast-path is to simply return.
 440   // Relatedly, it's critical that notify/notifyAll be fast in order to
 441   // reduce lock hold times.
 442   if (!SafepointSynchronize::is_synchronizing()) {
 443     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 444       return;
 445     }
 446   }
 447 
 448   // This is the case the fast-path above isn't provisioned to handle.
 449   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 450   // (The fast-path is just a degenerate variant of the slow-path).
 451   // Perform the dreaded state transition and pass control into the slow-path.
 452   JRT_BLOCK;
 453   Handle h_obj(current, obj);
 454   ObjectSynchronizer::notify(h_obj, CHECK);
 455   JRT_BLOCK_END;
 456 JRT_END
 457 
 458 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notifyAll_C, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 459 
 460   if (!SafepointSynchronize::is_synchronizing() ) {
 461     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 462       return;
 463     }
 464   }
 465 
 466   // This is the case the fast-path above isn't provisioned to handle.
 467   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 468   // (The fast-path is just a degenerate variant of the slow-path).
 469   // Perform the dreaded state transition and pass control into the slow-path.
 470   JRT_BLOCK;
 471   Handle h_obj(current, obj);
 472   ObjectSynchronizer::notifyall(h_obj, CHECK);
 473   JRT_BLOCK_END;
 474 JRT_END
 475 
 476 const TypeFunc *OptoRuntime::new_instance_Type() {
 477   // create input type (domain)
 478   const Type **fields = TypeTuple::fields(1);
 479   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 480   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 481 
 482   // create result type (range)
 483   fields = TypeTuple::fields(1);
 484   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 485 
 486   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 487 
 488   return TypeFunc::make(domain, range);
 489 }
 490 
 491 #if INCLUDE_JVMTI
 492 const TypeFunc *OptoRuntime::notify_jvmti_vthread_Type() {
 493   // create input type (domain)
 494   const Type **fields = TypeTuple::fields(2);
 495   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 496   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 497   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 498 
 499   // no result type needed
 500   fields = TypeTuple::fields(1);
 501   fields[TypeFunc::Parms+0] = nullptr; // void
 502   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 503 
 504   return TypeFunc::make(domain,range);
 505 }
 506 #endif
 507 
 508 const TypeFunc *OptoRuntime::athrow_Type() {
 509   // create input type (domain)
 510   const Type **fields = TypeTuple::fields(1);
 511   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 512   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 513 
 514   // create result type (range)
 515   fields = TypeTuple::fields(0);
 516 
 517   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 518 
 519   return TypeFunc::make(domain, range);
 520 }
 521 
 522 
 523 const TypeFunc *OptoRuntime::new_array_Type() {
 524   // create input type (domain)
 525   const Type **fields = TypeTuple::fields(2);
 526   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 527   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 528   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 529 
 530   // create result type (range)
 531   fields = TypeTuple::fields(1);
 532   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 533 
 534   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 535 
 536   return TypeFunc::make(domain, range);
 537 }
 538 
 539 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 540   // create input type (domain)
 541   const int nargs = ndim + 1;
 542   const Type **fields = TypeTuple::fields(nargs);
 543   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 544   for( int i = 1; i < nargs; i++ )
 545     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 546   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 547 
 548   // create result type (range)
 549   fields = TypeTuple::fields(1);
 550   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 551   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 552 
 553   return TypeFunc::make(domain, range);
 554 }
 555 
 556 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 557   return multianewarray_Type(2);
 558 }
 559 
 560 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 561   return multianewarray_Type(3);
 562 }
 563 
 564 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 565   return multianewarray_Type(4);
 566 }
 567 
 568 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 569   return multianewarray_Type(5);
 570 }
 571 
 572 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 573   // create input type (domain)
 574   const Type **fields = TypeTuple::fields(2);
 575   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 576   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 577   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 578 
 579   // create result type (range)
 580   fields = TypeTuple::fields(1);
 581   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 582   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 583 
 584   return TypeFunc::make(domain, range);
 585 }
 586 
 587 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 588   // create input type (domain)
 589   const Type **fields = TypeTuple::fields(1);
 590   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 591   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 592 
 593   // create result type (range)
 594   fields = TypeTuple::fields(0);
 595   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 596 
 597   return TypeFunc::make(domain, range);
 598 }
 599 
 600 //-----------------------------------------------------------------------------
 601 // Monitor Handling
 602 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 603   // create input type (domain)
 604   const Type **fields = TypeTuple::fields(2);
 605   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 606   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 607   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 608 
 609   // create result type (range)
 610   fields = TypeTuple::fields(0);
 611 
 612   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 613 
 614   return TypeFunc::make(domain,range);
 615 }
 616 
 617 
 618 //-----------------------------------------------------------------------------
 619 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 620   // create input type (domain)
 621   const Type **fields = TypeTuple::fields(3);
 622   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 623   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 624   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 625   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 626 
 627   // create result type (range)
 628   fields = TypeTuple::fields(0);
 629 
 630   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 631 
 632   return TypeFunc::make(domain, range);
 633 }
 634 
 635 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 636   // create input type (domain)
 637   const Type **fields = TypeTuple::fields(1);
 638   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 639   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 640 
 641   // create result type (range)
 642   fields = TypeTuple::fields(0);
 643   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 644   return TypeFunc::make(domain, range);
 645 }
 646 
 647 const TypeFunc* OptoRuntime::flush_windows_Type() {
 648   // create input type (domain)
 649   const Type** fields = TypeTuple::fields(1);
 650   fields[TypeFunc::Parms+0] = nullptr; // void
 651   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 652 
 653   // create result type
 654   fields = TypeTuple::fields(1);
 655   fields[TypeFunc::Parms+0] = nullptr; // void
 656   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 657 
 658   return TypeFunc::make(domain, range);
 659 }
 660 
 661 const TypeFunc* OptoRuntime::l2f_Type() {
 662   // create input type (domain)
 663   const Type **fields = TypeTuple::fields(2);
 664   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 665   fields[TypeFunc::Parms+1] = Type::HALF;
 666   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 667 
 668   // create result type (range)
 669   fields = TypeTuple::fields(1);
 670   fields[TypeFunc::Parms+0] = Type::FLOAT;
 671   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 672 
 673   return TypeFunc::make(domain, range);
 674 }
 675 
 676 const TypeFunc* OptoRuntime::modf_Type() {
 677   const Type **fields = TypeTuple::fields(2);
 678   fields[TypeFunc::Parms+0] = Type::FLOAT;
 679   fields[TypeFunc::Parms+1] = Type::FLOAT;
 680   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 681 
 682   // create result type (range)
 683   fields = TypeTuple::fields(1);
 684   fields[TypeFunc::Parms+0] = Type::FLOAT;
 685 
 686   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 687 
 688   return TypeFunc::make(domain, range);
 689 }
 690 
 691 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 692   // create input type (domain)
 693   const Type **fields = TypeTuple::fields(2);
 694   // Symbol* name of class to be loaded
 695   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 696   fields[TypeFunc::Parms+1] = Type::HALF;
 697   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 698 
 699   // create result type (range)
 700   fields = TypeTuple::fields(2);
 701   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 702   fields[TypeFunc::Parms+1] = Type::HALF;
 703   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 704 
 705   return TypeFunc::make(domain, range);
 706 }
 707 
 708 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 709   // create input type (domain)
 710   const Type **fields = TypeTuple::fields(num_arg);
 711   // Symbol* name of class to be loaded
 712   assert(num_arg > 0, "must have at least 1 input");
 713   for (uint i = 0; i < num_arg; i++) {
 714     fields[TypeFunc::Parms+i] = in_type;
 715   }
 716   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 717 
 718   // create result type (range)
 719   const uint num_ret = 1;
 720   fields = TypeTuple::fields(num_ret);
 721   fields[TypeFunc::Parms+0] = out_type;
 722   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 723 
 724   return TypeFunc::make(domain, range);
 725 }
 726 
 727 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 728   const Type **fields = TypeTuple::fields(4);
 729   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 730   fields[TypeFunc::Parms+1] = Type::HALF;
 731   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 732   fields[TypeFunc::Parms+3] = Type::HALF;
 733   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 734 
 735   // create result type (range)
 736   fields = TypeTuple::fields(2);
 737   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 738   fields[TypeFunc::Parms+1] = Type::HALF;
 739   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 740 
 741   return TypeFunc::make(domain, range);
 742 }
 743 
 744 //-------------- currentTimeMillis, currentTimeNanos, etc
 745 
 746 const TypeFunc* OptoRuntime::void_long_Type() {
 747   // create input type (domain)
 748   const Type **fields = TypeTuple::fields(0);
 749   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 750 
 751   // create result type (range)
 752   fields = TypeTuple::fields(2);
 753   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 754   fields[TypeFunc::Parms+1] = Type::HALF;
 755   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 756 
 757   return TypeFunc::make(domain, range);
 758 }
 759 
 760 const TypeFunc* OptoRuntime::void_void_Type() {
 761    // create input type (domain)
 762    const Type **fields = TypeTuple::fields(0);
 763    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 764 
 765    // create result type (range)
 766    fields = TypeTuple::fields(0);
 767    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 768    return TypeFunc::make(domain, range);
 769  }
 770 
 771  const TypeFunc* OptoRuntime::jfr_write_checkpoint_Type() {
 772    // create input type (domain)
 773    const Type **fields = TypeTuple::fields(0);
 774    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 775 
 776    // create result type (range)
 777    fields = TypeTuple::fields(0);
 778    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 779    return TypeFunc::make(domain, range);
 780  }
 781 
 782 
 783 // Takes as parameters:
 784 // void *dest
 785 // long size
 786 // uchar byte
 787 const TypeFunc* OptoRuntime::make_setmemory_Type() {
 788   // create input type (domain)
 789   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 790   const Type** fields = TypeTuple::fields(argcnt);
 791   int argp = TypeFunc::Parms;
 792   fields[argp++] = TypePtr::NOTNULL;        // dest
 793   fields[argp++] = TypeX_X;                 // size
 794   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 795   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 796   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 797   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 798 
 799   // no result type needed
 800   fields = TypeTuple::fields(1);
 801   fields[TypeFunc::Parms+0] = nullptr; // void
 802   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 803   return TypeFunc::make(domain, range);
 804 }
 805 
 806 // arraycopy stub variations:
 807 enum ArrayCopyType {
 808   ac_fast,                      // void(ptr, ptr, size_t)
 809   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 810   ac_slow,                      // void(ptr, int, ptr, int, int)
 811   ac_generic                    //  int(ptr, int, ptr, int, int)
 812 };
 813 
 814 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 815   // create input type (domain)
 816   int num_args      = (act == ac_fast ? 3 : 5);
 817   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 818   int argcnt = num_args;
 819   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 820   const Type** fields = TypeTuple::fields(argcnt);
 821   int argp = TypeFunc::Parms;
 822   fields[argp++] = TypePtr::NOTNULL;    // src
 823   if (num_size_args == 0) {
 824     fields[argp++] = TypeInt::INT;      // src_pos
 825   }
 826   fields[argp++] = TypePtr::NOTNULL;    // dest
 827   if (num_size_args == 0) {
 828     fields[argp++] = TypeInt::INT;      // dest_pos
 829     fields[argp++] = TypeInt::INT;      // length
 830   }
 831   while (num_size_args-- > 0) {
 832     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 833     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 834   }
 835   if (act == ac_checkcast) {
 836     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 837   }
 838   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 839   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 840 
 841   // create result type if needed
 842   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 843   fields = TypeTuple::fields(1);
 844   if (retcnt == 0)
 845     fields[TypeFunc::Parms+0] = nullptr; // void
 846   else
 847     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 848   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 849   return TypeFunc::make(domain, range);
 850 }
 851 
 852 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 853   // This signature is simple:  Two base pointers and a size_t.
 854   return make_arraycopy_Type(ac_fast);
 855 }
 856 
 857 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 858   // An extension of fast_arraycopy_Type which adds type checking.
 859   return make_arraycopy_Type(ac_checkcast);
 860 }
 861 
 862 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 863   // This signature is exactly the same as System.arraycopy.
 864   // There are no intptr_t (int/long) arguments.
 865   return make_arraycopy_Type(ac_slow);
 866 }
 867 
 868 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 869   // This signature is like System.arraycopy, except that it returns status.
 870   return make_arraycopy_Type(ac_generic);
 871 }
 872 
 873 
 874 const TypeFunc* OptoRuntime::array_fill_Type() {
 875   const Type** fields;
 876   int argp = TypeFunc::Parms;
 877   // create input type (domain): pointer, int, size_t
 878   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 879   fields[argp++] = TypePtr::NOTNULL;
 880   fields[argp++] = TypeInt::INT;
 881   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 882   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 883   const TypeTuple *domain = TypeTuple::make(argp, fields);
 884 
 885   // create result type
 886   fields = TypeTuple::fields(1);
 887   fields[TypeFunc::Parms+0] = nullptr; // void
 888   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 889 
 890   return TypeFunc::make(domain, range);
 891 }
 892 
 893 const TypeFunc* OptoRuntime::array_partition_Type() {
 894   // create input type (domain)
 895   int num_args = 7;
 896   int argcnt = num_args;
 897   const Type** fields = TypeTuple::fields(argcnt);
 898   int argp = TypeFunc::Parms;
 899   fields[argp++] = TypePtr::NOTNULL;  // array
 900   fields[argp++] = TypeInt::INT;      // element type
 901   fields[argp++] = TypeInt::INT;      // low
 902   fields[argp++] = TypeInt::INT;      // end
 903   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 904   fields[argp++] = TypeInt::INT;      // indexPivot1
 905   fields[argp++] = TypeInt::INT;      // indexPivot2
 906   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 907   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 908 
 909   // no result type needed
 910   fields = TypeTuple::fields(1);
 911   fields[TypeFunc::Parms+0] = nullptr; // void
 912   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 913   return TypeFunc::make(domain, range);
 914 }
 915 
 916 const TypeFunc* OptoRuntime::array_sort_Type() {
 917   // create input type (domain)
 918   int num_args      = 4;
 919   int argcnt = num_args;
 920   const Type** fields = TypeTuple::fields(argcnt);
 921   int argp = TypeFunc::Parms;
 922   fields[argp++] = TypePtr::NOTNULL;    // array
 923   fields[argp++] = TypeInt::INT;    // element type
 924   fields[argp++] = TypeInt::INT;    // fromIndex
 925   fields[argp++] = TypeInt::INT;    // toIndex
 926   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 927   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 928 
 929   // no result type needed
 930   fields = TypeTuple::fields(1);
 931   fields[TypeFunc::Parms+0] = nullptr; // void
 932   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 933   return TypeFunc::make(domain, range);
 934 }
 935 
 936 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 937 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 938   // create input type (domain)
 939   int num_args      = 3;
 940   int argcnt = num_args;
 941   const Type** fields = TypeTuple::fields(argcnt);
 942   int argp = TypeFunc::Parms;
 943   fields[argp++] = TypePtr::NOTNULL;    // src
 944   fields[argp++] = TypePtr::NOTNULL;    // dest
 945   fields[argp++] = TypePtr::NOTNULL;    // k array
 946   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 947   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 948 
 949   // no result type needed
 950   fields = TypeTuple::fields(1);
 951   fields[TypeFunc::Parms+0] = nullptr; // void
 952   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 953   return TypeFunc::make(domain, range);
 954 }
 955 
 956 /**
 957  * int updateBytesCRC32(int crc, byte* b, int len)
 958  */
 959 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 960   // create input type (domain)
 961   int num_args      = 3;
 962   int argcnt = num_args;
 963   const Type** fields = TypeTuple::fields(argcnt);
 964   int argp = TypeFunc::Parms;
 965   fields[argp++] = TypeInt::INT;        // crc
 966   fields[argp++] = TypePtr::NOTNULL;    // src
 967   fields[argp++] = TypeInt::INT;        // len
 968   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 969   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 970 
 971   // result type needed
 972   fields = TypeTuple::fields(1);
 973   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 974   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 975   return TypeFunc::make(domain, range);
 976 }
 977 
 978 /**
 979  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 980  */
 981 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 982   // create input type (domain)
 983   int num_args      = 4;
 984   int argcnt = num_args;
 985   const Type** fields = TypeTuple::fields(argcnt);
 986   int argp = TypeFunc::Parms;
 987   fields[argp++] = TypeInt::INT;        // crc
 988   fields[argp++] = TypePtr::NOTNULL;    // buf
 989   fields[argp++] = TypeInt::INT;        // len
 990   fields[argp++] = TypePtr::NOTNULL;    // table
 991   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 992   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 993 
 994   // result type needed
 995   fields = TypeTuple::fields(1);
 996   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 997   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 998   return TypeFunc::make(domain, range);
 999 }
1000 
1001 /**
1002 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
1003 */
1004 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
1005   // create input type (domain)
1006   int num_args      = 3;
1007   int argcnt = num_args;
1008   const Type** fields = TypeTuple::fields(argcnt);
1009   int argp = TypeFunc::Parms;
1010   fields[argp++] = TypeInt::INT;        // crc
1011   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1012   fields[argp++] = TypeInt::INT;        // len
1013   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1014   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1015 
1016   // result type needed
1017   fields = TypeTuple::fields(1);
1018   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1019   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1020   return TypeFunc::make(domain, range);
1021 }
1022 
1023 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1024 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
1025   // create input type (domain)
1026   int num_args      = 5;
1027   int argcnt = num_args;
1028   const Type** fields = TypeTuple::fields(argcnt);
1029   int argp = TypeFunc::Parms;
1030   fields[argp++] = TypePtr::NOTNULL;    // src
1031   fields[argp++] = TypePtr::NOTNULL;    // dest
1032   fields[argp++] = TypePtr::NOTNULL;    // k array
1033   fields[argp++] = TypePtr::NOTNULL;    // r array
1034   fields[argp++] = TypeInt::INT;        // src len
1035   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1036   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1037 
1038   // returning cipher len (int)
1039   fields = TypeTuple::fields(1);
1040   fields[TypeFunc::Parms+0] = TypeInt::INT;
1041   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1042   return TypeFunc::make(domain, range);
1043 }
1044 
1045 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
1046 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
1047   // create input type (domain)
1048   int num_args = 4;
1049   int argcnt = num_args;
1050   const Type** fields = TypeTuple::fields(argcnt);
1051   int argp = TypeFunc::Parms;
1052   fields[argp++] = TypePtr::NOTNULL;    // src
1053   fields[argp++] = TypePtr::NOTNULL;    // dest
1054   fields[argp++] = TypePtr::NOTNULL;    // k array
1055   fields[argp++] = TypeInt::INT;        // src len
1056   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1057   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1058 
1059   // returning cipher len (int)
1060   fields = TypeTuple::fields(1);
1061   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1062   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1063   return TypeFunc::make(domain, range);
1064 }
1065 
1066 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1067 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
1068   // create input type (domain)
1069   int num_args = 7;
1070   int argcnt = num_args;
1071   const Type** fields = TypeTuple::fields(argcnt);
1072   int argp = TypeFunc::Parms;
1073   fields[argp++] = TypePtr::NOTNULL; // src
1074   fields[argp++] = TypePtr::NOTNULL; // dest
1075   fields[argp++] = TypePtr::NOTNULL; // k array
1076   fields[argp++] = TypePtr::NOTNULL; // counter array
1077   fields[argp++] = TypeInt::INT; // src len
1078   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1079   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1080   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1081   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1082   // returning cipher len (int)
1083   fields = TypeTuple::fields(1);
1084   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1085   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1086   return TypeFunc::make(domain, range);
1087 }
1088 
1089 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1090 const TypeFunc* OptoRuntime::galoisCounterMode_aescrypt_Type() {
1091   // create input type (domain)
1092   int num_args = 8;
1093   int argcnt = num_args;
1094   const Type** fields = TypeTuple::fields(argcnt);
1095   int argp = TypeFunc::Parms;
1096   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1097   fields[argp++] = TypeInt::INT;     // int len
1098   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1099   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1100   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1101   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1102   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1103   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1104 
1105   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1106   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1107   // returning cipher len (int)
1108   fields = TypeTuple::fields(1);
1109   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1110   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1111   return TypeFunc::make(domain, range);
1112 }
1113 
1114 /*
1115  * void implCompress(byte[] buf, int ofs)
1116  */
1117 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) {
1118   // create input type (domain)
1119   int num_args = is_sha3 ? 3 : 2;
1120   int argcnt = num_args;
1121   const Type** fields = TypeTuple::fields(argcnt);
1122   int argp = TypeFunc::Parms;
1123   fields[argp++] = TypePtr::NOTNULL; // buf
1124   fields[argp++] = TypePtr::NOTNULL; // state
1125   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1126   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1127   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1128 
1129   // no result type needed
1130   fields = TypeTuple::fields(1);
1131   fields[TypeFunc::Parms+0] = nullptr; // void
1132   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1133   return TypeFunc::make(domain, range);
1134 }
1135 
1136 /*
1137  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1138  */
1139 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) {
1140   // create input type (domain)
1141   int num_args = is_sha3 ? 5 : 4;
1142   int argcnt = num_args;
1143   const Type** fields = TypeTuple::fields(argcnt);
1144   int argp = TypeFunc::Parms;
1145   fields[argp++] = TypePtr::NOTNULL; // buf
1146   fields[argp++] = TypePtr::NOTNULL; // state
1147   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1148   fields[argp++] = TypeInt::INT;     // ofs
1149   fields[argp++] = TypeInt::INT;     // limit
1150   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1151   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1152 
1153   // returning ofs (int)
1154   fields = TypeTuple::fields(1);
1155   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1156   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1157   return TypeFunc::make(domain, range);
1158 }
1159 
1160 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1161   // create input type (domain)
1162   int num_args      = 6;
1163   int argcnt = num_args;
1164   const Type** fields = TypeTuple::fields(argcnt);
1165   int argp = TypeFunc::Parms;
1166   fields[argp++] = TypePtr::NOTNULL;    // x
1167   fields[argp++] = TypeInt::INT;        // xlen
1168   fields[argp++] = TypePtr::NOTNULL;    // y
1169   fields[argp++] = TypeInt::INT;        // ylen
1170   fields[argp++] = TypePtr::NOTNULL;    // z
1171   fields[argp++] = TypeInt::INT;        // zlen
1172   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1173   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1174 
1175   // no result type needed
1176   fields = TypeTuple::fields(1);
1177   fields[TypeFunc::Parms+0] = nullptr;
1178   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1179   return TypeFunc::make(domain, range);
1180 }
1181 
1182 const TypeFunc* OptoRuntime::squareToLen_Type() {
1183   // create input type (domain)
1184   int num_args      = 4;
1185   int argcnt = num_args;
1186   const Type** fields = TypeTuple::fields(argcnt);
1187   int argp = TypeFunc::Parms;
1188   fields[argp++] = TypePtr::NOTNULL;    // x
1189   fields[argp++] = TypeInt::INT;        // len
1190   fields[argp++] = TypePtr::NOTNULL;    // z
1191   fields[argp++] = TypeInt::INT;        // zlen
1192   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1193   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1194 
1195   // no result type needed
1196   fields = TypeTuple::fields(1);
1197   fields[TypeFunc::Parms+0] = nullptr;
1198   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1199   return TypeFunc::make(domain, range);
1200 }
1201 
1202 // for mulAdd calls, 2 pointers and 3 ints, returning int
1203 const TypeFunc* OptoRuntime::mulAdd_Type() {
1204   // create input type (domain)
1205   int num_args      = 5;
1206   int argcnt = num_args;
1207   const Type** fields = TypeTuple::fields(argcnt);
1208   int argp = TypeFunc::Parms;
1209   fields[argp++] = TypePtr::NOTNULL;    // out
1210   fields[argp++] = TypePtr::NOTNULL;    // in
1211   fields[argp++] = TypeInt::INT;        // offset
1212   fields[argp++] = TypeInt::INT;        // len
1213   fields[argp++] = TypeInt::INT;        // k
1214   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1215   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1216 
1217   // returning carry (int)
1218   fields = TypeTuple::fields(1);
1219   fields[TypeFunc::Parms+0] = TypeInt::INT;
1220   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1221   return TypeFunc::make(domain, range);
1222 }
1223 
1224 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1225   // create input type (domain)
1226   int num_args      = 7;
1227   int argcnt = num_args;
1228   const Type** fields = TypeTuple::fields(argcnt);
1229   int argp = TypeFunc::Parms;
1230   fields[argp++] = TypePtr::NOTNULL;    // a
1231   fields[argp++] = TypePtr::NOTNULL;    // b
1232   fields[argp++] = TypePtr::NOTNULL;    // n
1233   fields[argp++] = TypeInt::INT;        // len
1234   fields[argp++] = TypeLong::LONG;      // inv
1235   fields[argp++] = Type::HALF;
1236   fields[argp++] = TypePtr::NOTNULL;    // result
1237   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1238   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1239 
1240   // result type needed
1241   fields = TypeTuple::fields(1);
1242   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1243 
1244   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1245   return TypeFunc::make(domain, range);
1246 }
1247 
1248 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1249   // create input type (domain)
1250   int num_args      = 6;
1251   int argcnt = num_args;
1252   const Type** fields = TypeTuple::fields(argcnt);
1253   int argp = TypeFunc::Parms;
1254   fields[argp++] = TypePtr::NOTNULL;    // a
1255   fields[argp++] = TypePtr::NOTNULL;    // n
1256   fields[argp++] = TypeInt::INT;        // len
1257   fields[argp++] = TypeLong::LONG;      // inv
1258   fields[argp++] = Type::HALF;
1259   fields[argp++] = TypePtr::NOTNULL;    // result
1260   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1261   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1262 
1263   // result type needed
1264   fields = TypeTuple::fields(1);
1265   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1266 
1267   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1268   return TypeFunc::make(domain, range);
1269 }
1270 
1271 const TypeFunc * OptoRuntime::bigIntegerShift_Type() {
1272   int argcnt = 5;
1273   const Type** fields = TypeTuple::fields(argcnt);
1274   int argp = TypeFunc::Parms;
1275   fields[argp++] = TypePtr::NOTNULL;    // newArr
1276   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1277   fields[argp++] = TypeInt::INT;        // newIdx
1278   fields[argp++] = TypeInt::INT;        // shiftCount
1279   fields[argp++] = TypeInt::INT;        // numIter
1280   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1281   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1282 
1283   // no result type needed
1284   fields = TypeTuple::fields(1);
1285   fields[TypeFunc::Parms + 0] = nullptr;
1286   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1287   return TypeFunc::make(domain, range);
1288 }
1289 
1290 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1291   // create input type (domain)
1292   int num_args = 4;
1293   int argcnt = num_args;
1294   const Type** fields = TypeTuple::fields(argcnt);
1295   int argp = TypeFunc::Parms;
1296   fields[argp++] = TypePtr::NOTNULL;    // obja
1297   fields[argp++] = TypePtr::NOTNULL;    // objb
1298   fields[argp++] = TypeInt::INT;        // length, number of elements
1299   fields[argp++] = TypeInt::INT;        // log2scale, element size
1300   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1301   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1302 
1303   //return mismatch index (int)
1304   fields = TypeTuple::fields(1);
1305   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1306   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1307   return TypeFunc::make(domain, range);
1308 }
1309 
1310 // GHASH block processing
1311 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1312     int argcnt = 4;
1313 
1314     const Type** fields = TypeTuple::fields(argcnt);
1315     int argp = TypeFunc::Parms;
1316     fields[argp++] = TypePtr::NOTNULL;    // state
1317     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1318     fields[argp++] = TypePtr::NOTNULL;    // data
1319     fields[argp++] = TypeInt::INT;        // blocks
1320     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1321     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1322 
1323     // result type needed
1324     fields = TypeTuple::fields(1);
1325     fields[TypeFunc::Parms+0] = nullptr; // void
1326     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1327     return TypeFunc::make(domain, range);
1328 }
1329 
1330 // ChaCha20 Block function
1331 const TypeFunc* OptoRuntime::chacha20Block_Type() {
1332     int argcnt = 2;
1333 
1334     const Type** fields = TypeTuple::fields(argcnt);
1335     int argp = TypeFunc::Parms;
1336     fields[argp++] = TypePtr::NOTNULL;      // state
1337     fields[argp++] = TypePtr::NOTNULL;      // result
1338 
1339     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1340     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1341 
1342     // result type needed
1343     fields = TypeTuple::fields(1);
1344     fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1345     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1346     return TypeFunc::make(domain, range);
1347 }
1348 
1349 // Base64 encode function
1350 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1351   int argcnt = 6;
1352 
1353   const Type** fields = TypeTuple::fields(argcnt);
1354   int argp = TypeFunc::Parms;
1355   fields[argp++] = TypePtr::NOTNULL;    // src array
1356   fields[argp++] = TypeInt::INT;        // offset
1357   fields[argp++] = TypeInt::INT;        // length
1358   fields[argp++] = TypePtr::NOTNULL;    // dest array
1359   fields[argp++] = TypeInt::INT;       // dp
1360   fields[argp++] = TypeInt::BOOL;       // isURL
1361   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1362   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1363 
1364   // result type needed
1365   fields = TypeTuple::fields(1);
1366   fields[TypeFunc::Parms + 0] = nullptr; // void
1367   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1368   return TypeFunc::make(domain, range);
1369 }
1370 // Base64 decode function
1371 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() {
1372   int argcnt = 7;
1373 
1374   const Type** fields = TypeTuple::fields(argcnt);
1375   int argp = TypeFunc::Parms;
1376   fields[argp++] = TypePtr::NOTNULL;    // src array
1377   fields[argp++] = TypeInt::INT;        // src offset
1378   fields[argp++] = TypeInt::INT;        // src length
1379   fields[argp++] = TypePtr::NOTNULL;    // dest array
1380   fields[argp++] = TypeInt::INT;        // dest offset
1381   fields[argp++] = TypeInt::BOOL;       // isURL
1382   fields[argp++] = TypeInt::BOOL;       // isMIME
1383   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1384   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1385 
1386   // result type needed
1387   fields = TypeTuple::fields(1);
1388   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1389   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1390   return TypeFunc::make(domain, range);
1391 }
1392 
1393 // Poly1305 processMultipleBlocks function
1394 const TypeFunc* OptoRuntime::poly1305_processBlocks_Type() {
1395   int argcnt = 4;
1396 
1397   const Type** fields = TypeTuple::fields(argcnt);
1398   int argp = TypeFunc::Parms;
1399   fields[argp++] = TypePtr::NOTNULL;    // input array
1400   fields[argp++] = TypeInt::INT;        // input length
1401   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1402   fields[argp++] = TypePtr::NOTNULL;    // r array
1403   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1404   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1405 
1406   // result type needed
1407   fields = TypeTuple::fields(1);
1408   fields[TypeFunc::Parms + 0] = nullptr; // void
1409   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1410   return TypeFunc::make(domain, range);
1411 }
1412 
1413 //------------- Interpreter state access for on stack replacement
1414 const TypeFunc* OptoRuntime::osr_end_Type() {
1415   // create input type (domain)
1416   const Type **fields = TypeTuple::fields(1);
1417   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1418   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1419 
1420   // create result type
1421   fields = TypeTuple::fields(1);
1422   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1423   fields[TypeFunc::Parms+0] = nullptr; // void
1424   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1425   return TypeFunc::make(domain, range);
1426 }
1427 
1428 //-------------------------------------------------------------------------------------
1429 // register policy
1430 
1431 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1432   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1433   switch (register_save_policy[reg]) {
1434     case 'C': return false; //SOC
1435     case 'E': return true ; //SOE
1436     case 'N': return false; //NS
1437     case 'A': return false; //AS
1438   }
1439   ShouldNotReachHere();
1440   return false;
1441 }
1442 
1443 //-----------------------------------------------------------------------
1444 // Exceptions
1445 //
1446 
1447 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1448 
1449 // The method is an entry that is always called by a C++ method not
1450 // directly from compiled code. Compiled code will call the C++ method following.
1451 // We can't allow async exception to be installed during  exception processing.
1452 JRT_ENTRY_NO_ASYNC_PROF(address, OptoRuntime, handle_exception_C_helper, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1453   // The frame we rethrow the exception to might not have been processed by the GC yet.
1454   // The stack watermark barrier takes care of detecting that and ensuring the frame
1455   // has updated oops.
1456   StackWatermarkSet::after_unwind(current);
1457 
1458   // Do not confuse exception_oop with pending_exception. The exception_oop
1459   // is only used to pass arguments into the method. Not for general
1460   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1461   // the runtime stubs checks this on exit.
1462   assert(current->exception_oop() != nullptr, "exception oop is found");
1463   address handler_address = nullptr;
1464 
1465   Handle exception(current, current->exception_oop());
1466   address pc = current->exception_pc();
1467 
1468   // Clear out the exception oop and pc since looking up an
1469   // exception handler can cause class loading, which might throw an
1470   // exception and those fields are expected to be clear during
1471   // normal bytecode execution.
1472   current->clear_exception_oop_and_pc();
1473 
1474   LogTarget(Info, exceptions) lt;
1475   if (lt.is_enabled()) {
1476     ResourceMark rm;
1477     LogStream ls(lt);
1478     trace_exception(&ls, exception(), pc, "");
1479   }
1480 
1481   // for AbortVMOnException flag
1482   Exceptions::debug_check_abort(exception);
1483 
1484 #ifdef ASSERT
1485   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1486     // should throw an exception here
1487     ShouldNotReachHere();
1488   }
1489 #endif
1490 
1491   // new exception handling: this method is entered only from adapters
1492   // exceptions from compiled java methods are handled in compiled code
1493   // using rethrow node
1494 
1495   nm = CodeCache::find_nmethod(pc);
1496   assert(nm != nullptr, "No NMethod found");
1497   if (nm->is_native_method()) {
1498     fatal("Native method should not have path to exception handling");
1499   } else {
1500     // we are switching to old paradigm: search for exception handler in caller_frame
1501     // instead in exception handler of caller_frame.sender()
1502 
1503     if (JvmtiExport::can_post_on_exceptions()) {
1504       // "Full-speed catching" is not necessary here,
1505       // since we're notifying the VM on every catch.
1506       // Force deoptimization and the rest of the lookup
1507       // will be fine.
1508       deoptimize_caller_frame(current);
1509     }
1510 
1511     // Check the stack guard pages.  If enabled, look for handler in this frame;
1512     // otherwise, forcibly unwind the frame.
1513     //
1514     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1515     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1516     bool deopting = false;
1517     if (nm->is_deopt_pc(pc)) {
1518       deopting = true;
1519       RegisterMap map(current,
1520                       RegisterMap::UpdateMap::skip,
1521                       RegisterMap::ProcessFrames::include,
1522                       RegisterMap::WalkContinuation::skip);
1523       frame deoptee = current->last_frame().sender(&map);
1524       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1525       // Adjust the pc back to the original throwing pc
1526       pc = deoptee.pc();
1527     }
1528 
1529     // If we are forcing an unwind because of stack overflow then deopt is
1530     // irrelevant since we are throwing the frame away anyway.
1531 
1532     if (deopting && !force_unwind) {
1533       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1534     } else {
1535 
1536       handler_address =
1537         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1538 
1539       if (handler_address == nullptr) {
1540         bool recursive_exception = false;
1541         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1542         assert (handler_address != nullptr, "must have compiled handler");
1543         // Update the exception cache only when the unwind was not forced
1544         // and there didn't happen another exception during the computation of the
1545         // compiled exception handler. Checking for exception oop equality is not
1546         // sufficient because some exceptions are pre-allocated and reused.
1547         if (!force_unwind && !recursive_exception) {
1548           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1549         }
1550       } else {
1551 #ifdef ASSERT
1552         bool recursive_exception = false;
1553         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1554         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1555                  p2i(handler_address), p2i(computed_address));
1556 #endif
1557       }
1558     }
1559 
1560     current->set_exception_pc(pc);
1561     current->set_exception_handler_pc(handler_address);
1562 
1563     // Check if the exception PC is a MethodHandle call site.
1564     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1565   }
1566 
1567   // Restore correct return pc.  Was saved above.
1568   current->set_exception_oop(exception());
1569   return handler_address;
1570 
1571 JRT_END
1572 
1573 // We are entering here from exception_blob
1574 // If there is a compiled exception handler in this method, we will continue there;
1575 // otherwise we will unwind the stack and continue at the caller of top frame method
1576 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1577 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1578 // we looked up the handler for has been deoptimized in the meantime. If it has been
1579 // we must not use the handler and instead return the deopt blob.
1580 address OptoRuntime::handle_exception_C(JavaThread* current) {
1581 //
1582 // We are in Java not VM and in debug mode we have a NoHandleMark
1583 //
1584 #ifndef PRODUCT
1585   SharedRuntime::_find_handler_ctr++;          // find exception handler
1586 #endif
1587   debug_only(NoHandleMark __hm;)
1588   nmethod* nm = nullptr;
1589   address handler_address = nullptr;
1590   {
1591     // Enter the VM
1592 
1593     ResetNoHandleMark rnhm;
1594     handler_address = handle_exception_C_helper(current, nm);
1595   }
1596 
1597   // Back in java: Use no oops, DON'T safepoint
1598 
1599   // Now check to see if the handler we are returning is in a now
1600   // deoptimized frame
1601 
1602   if (nm != nullptr) {
1603     RegisterMap map(current,
1604                     RegisterMap::UpdateMap::skip,
1605                     RegisterMap::ProcessFrames::skip,
1606                     RegisterMap::WalkContinuation::skip);
1607     frame caller = current->last_frame().sender(&map);
1608 #ifdef ASSERT
1609     assert(caller.is_compiled_frame(), "must be");
1610 #endif // ASSERT
1611     if (caller.is_deoptimized_frame()) {
1612       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1613     }
1614   }
1615   return handler_address;
1616 }
1617 
1618 //------------------------------rethrow----------------------------------------
1619 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1620 // is either throwing or rethrowing an exception.  The callee-save registers
1621 // have been restored, synchronized objects have been unlocked and the callee
1622 // stack frame has been removed.  The return address was passed in.
1623 // Exception oop is passed as the 1st argument.  This routine is then called
1624 // from the stub.  On exit, we know where to jump in the caller's code.
1625 // After this C code exits, the stub will pop his frame and end in a jump
1626 // (instead of a return).  We enter the caller's default handler.
1627 //
1628 // This must be JRT_LEAF:
1629 //     - caller will not change its state as we cannot block on exit,
1630 //       therefore raw_exception_handler_for_return_address is all it takes
1631 //       to handle deoptimized blobs
1632 //
1633 // However, there needs to be a safepoint check in the middle!  So compiled
1634 // safepoints are completely watertight.
1635 //
1636 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1637 //
1638 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1639 //
1640 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1641   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
1642   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
1643 
1644 #ifndef PRODUCT
1645   SharedRuntime::_rethrow_ctr++;               // count rethrows
1646 #endif
1647   assert (exception != nullptr, "should have thrown a NullPointerException");
1648 #ifdef ASSERT
1649   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1650     // should throw an exception here
1651     ShouldNotReachHere();
1652   }
1653 #endif
1654 
1655   thread->set_vm_result(exception);
1656   // Frame not compiled (handles deoptimization blob)
1657   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1658 }
1659 
1660 
1661 const TypeFunc *OptoRuntime::rethrow_Type() {
1662   // create input type (domain)
1663   const Type **fields = TypeTuple::fields(1);
1664   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1665   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1666 
1667   // create result type (range)
1668   fields = TypeTuple::fields(1);
1669   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1670   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1671 
1672   return TypeFunc::make(domain, range);
1673 }
1674 
1675 
1676 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1677   // Deoptimize the caller before continuing, as the compiled
1678   // exception handler table may not be valid.
1679   if (!StressCompiledExceptionHandlers && doit) {
1680     deoptimize_caller_frame(thread);
1681   }
1682 }
1683 
1684 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1685   // Called from within the owner thread, so no need for safepoint
1686   RegisterMap reg_map(thread,
1687                       RegisterMap::UpdateMap::include,
1688                       RegisterMap::ProcessFrames::include,
1689                       RegisterMap::WalkContinuation::skip);
1690   frame stub_frame = thread->last_frame();
1691   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1692   frame caller_frame = stub_frame.sender(&reg_map);
1693 
1694   // Deoptimize the caller frame.
1695   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1696 }
1697 
1698 
1699 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1700   // Called from within the owner thread, so no need for safepoint
1701   RegisterMap reg_map(thread,
1702                       RegisterMap::UpdateMap::include,
1703                       RegisterMap::ProcessFrames::include,
1704                       RegisterMap::WalkContinuation::skip);
1705   frame stub_frame = thread->last_frame();
1706   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1707   frame caller_frame = stub_frame.sender(&reg_map);
1708   return caller_frame.is_deoptimized_frame();
1709 }
1710 
1711 
1712 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1713   // create input type (domain)
1714   const Type **fields = TypeTuple::fields(1);
1715   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1716   // // The JavaThread* is passed to each routine as the last argument
1717   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1718   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1719 
1720   // create result type (range)
1721   fields = TypeTuple::fields(0);
1722 
1723   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1724 
1725   return TypeFunc::make(domain,range);
1726 }
1727 
1728 const TypeFunc *OptoRuntime::class_init_barrier_Type() {
1729   // create input type (domain)
1730   const Type** fields = TypeTuple::fields(1);
1731   fields[TypeFunc::Parms+0] = TypeKlassPtr::NOTNULL;
1732   // // The JavaThread* is passed to each routine as the last argument
1733   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1734   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1735 
1736   // create result type (range)
1737   fields = TypeTuple::fields(0);
1738   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
1739   return TypeFunc::make(domain,range);
1740 }
1741 
1742 #if INCLUDE_JFR
1743 const TypeFunc *OptoRuntime::class_id_load_barrier_Type() {
1744   // create input type (domain)
1745   const Type **fields = TypeTuple::fields(1);
1746   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1747   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1748 
1749   // create result type (range)
1750   fields = TypeTuple::fields(0);
1751 
1752   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1753 
1754   return TypeFunc::make(domain,range);
1755 }
1756 #endif
1757 
1758 //-----------------------------------------------------------------------------
1759 // Dtrace support.  entry and exit probes have the same signature
1760 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1761   // create input type (domain)
1762   const Type **fields = TypeTuple::fields(2);
1763   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1764   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1765   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1766 
1767   // create result type (range)
1768   fields = TypeTuple::fields(0);
1769 
1770   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1771 
1772   return TypeFunc::make(domain,range);
1773 }
1774 
1775 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1776   // create input type (domain)
1777   const Type **fields = TypeTuple::fields(2);
1778   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1779   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1780 
1781   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1782 
1783   // create result type (range)
1784   fields = TypeTuple::fields(0);
1785 
1786   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1787 
1788   return TypeFunc::make(domain,range);
1789 }
1790 
1791 
1792 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, register_finalizer, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current))
1793   assert(oopDesc::is_oop(obj), "must be a valid oop");
1794   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1795   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1796 JRT_END
1797 
1798 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, class_init_barrier, OptoRuntime::class_init_barrier(Klass* k, JavaThread* current))
1799   InstanceKlass* ik = InstanceKlass::cast(k);
1800   if (ik->should_be_initialized()) {
1801     ik->initialize(CHECK);
1802   } else if (UsePerfData) {
1803     _perf_OptoRuntime_class_init_barrier_redundant_count->inc();
1804   }
1805 JRT_END
1806 
1807 //-----------------------------------------------------------------------------
1808 
1809 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
1810 
1811 //
1812 // dump the collected NamedCounters.
1813 //
1814 void OptoRuntime::print_named_counters() {
1815   int total_lock_count = 0;
1816   int eliminated_lock_count = 0;
1817 
1818   NamedCounter* c = _named_counters;
1819   while (c) {
1820     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1821       int count = c->count();
1822       if (count > 0) {
1823         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1824         if (Verbose) {
1825           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1826         }
1827         total_lock_count += count;
1828         if (eliminated) {
1829           eliminated_lock_count += count;
1830         }
1831       }
1832 #if INCLUDE_RTM_OPT
1833     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1834       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1835       if (rlc->nonzero()) {
1836         tty->print_cr("%s", c->name());
1837         rlc->print_on(tty);
1838       }
1839 #endif
1840     }
1841     c = c->next();
1842   }
1843   if (total_lock_count > 0) {
1844     tty->print_cr("dynamic locks: %d", total_lock_count);
1845     if (eliminated_lock_count) {
1846       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1847                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1848     }
1849   }
1850 }
1851 
1852 //
1853 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1854 //  name which consists of method@line for the inlining tree.
1855 //
1856 
1857 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1858   int max_depth = youngest_jvms->depth();
1859 
1860   // Visit scopes from youngest to oldest.
1861   bool first = true;
1862   stringStream st;
1863   for (int depth = max_depth; depth >= 1; depth--) {
1864     JVMState* jvms = youngest_jvms->of_depth(depth);
1865     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
1866     if (!first) {
1867       st.print(" ");
1868     } else {
1869       first = false;
1870     }
1871     int bci = jvms->bci();
1872     if (bci < 0) bci = 0;
1873     if (m != nullptr) {
1874       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1875     } else {
1876       st.print("no method");
1877     }
1878     st.print("@%d", bci);
1879     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1880   }
1881   NamedCounter* c;
1882   if (tag == NamedCounter::RTMLockingCounter) {
1883     c = new RTMLockingNamedCounter(st.freeze());
1884   } else {
1885     c = new NamedCounter(st.freeze(), tag);
1886   }
1887 
1888   // atomically add the new counter to the head of the list.  We only
1889   // add counters so this is safe.
1890   NamedCounter* head;
1891   do {
1892     c->set_next(nullptr);
1893     head = _named_counters;
1894     c->set_next(head);
1895   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1896   return c;
1897 }
1898 
1899 int trace_exception_counter = 0;
1900 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1901   trace_exception_counter++;
1902   stringStream tempst;
1903 
1904   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1905   exception_oop->print_value_on(&tempst);
1906   tempst.print(" in ");
1907   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1908   if (blob->is_nmethod()) {
1909     blob->as_nmethod()->method()->print_value_on(&tempst);
1910   } else if (blob->is_runtime_stub()) {
1911     tempst.print("<runtime-stub>");
1912   } else {
1913     tempst.print("<unknown>");
1914   }
1915   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1916   tempst.print("]");
1917 
1918   st->print_raw_cr(tempst.freeze());
1919 }
1920 
1921 #define DO_COUNTERS2(macro2, macro1) \
1922   macro2(OptoRuntime, new_instance_C) \
1923   macro2(OptoRuntime, new_array_C) \
1924   macro2(OptoRuntime, new_array_nozero_C) \
1925   macro2(OptoRuntime, multianewarray2_C) \
1926   macro2(OptoRuntime, multianewarray3_C) \
1927   macro2(OptoRuntime, multianewarray4_C) \
1928   macro2(OptoRuntime, multianewarrayN_C) \
1929   macro2(OptoRuntime, monitor_notify_C) \
1930   macro2(OptoRuntime, monitor_notifyAll_C) \
1931   macro2(OptoRuntime, handle_exception_C_helper) \
1932   macro2(OptoRuntime, register_finalizer) \
1933   macro2(OptoRuntime, class_init_barrier) \
1934   macro1(OptoRuntime, class_init_barrier_redundant)
1935 
1936 #define INIT_COUNTER_TIME_AND_CNT(sub, name) \
1937   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
1938   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
1939 
1940 #define INIT_COUNTER_CNT(sub, name) \
1941   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
1942 
1943 void OptoRuntime::init_counters() {
1944   assert(CompilerConfig::is_c2_enabled(), "");
1945 
1946   if (UsePerfData) {
1947     EXCEPTION_MARK;
1948 
1949     DO_COUNTERS2(INIT_COUNTER_TIME_AND_CNT, INIT_COUNTER_CNT)
1950 
1951     if (HAS_PENDING_EXCEPTION) {
1952       vm_exit_during_initialization("jvm_perf_init failed unexpectedly");
1953     }
1954   }
1955 }
1956 #undef INIT_COUNTER_TIME_AND_CNT
1957 #undef INIT_COUNTER_CNT
1958 
1959 #define PRINT_COUNTER_TIME_AND_CNT(sub, name) { \
1960   jlong count = _perf_##sub##_##name##_count->get_value(); \
1961   if (count > 0) { \
1962     st->print_cr("  %-30s = %4ldms (elapsed) %4ldms (thread) (%5ld events)", #sub "::" #name, \
1963                  _perf_##sub##_##name##_timer->elapsed_counter_value_ms(), \
1964                  _perf_##sub##_##name##_timer->thread_counter_value_ms(), \
1965                  count); \
1966   }}
1967 
1968 #define PRINT_COUNTER_CNT(sub, name) { \
1969   jlong count = _perf_##sub##_##name##_count->get_value(); \
1970   if (count > 0) { \
1971     st->print_cr("  %-30s = %5ld events", #name, count); \
1972   }}
1973 
1974 void OptoRuntime::print_counters_on(outputStream* st) {
1975   if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c2_enabled()) {
1976     DO_COUNTERS2(PRINT_COUNTER_TIME_AND_CNT, PRINT_COUNTER_CNT)
1977   } else {
1978     st->print_cr("  OptoRuntime: no info (%s is disabled)",
1979                  (!CompilerConfig::is_c2_enabled() ? "C2" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")));
1980   }
1981 }
1982 
1983 #undef PRINT_COUNTER_TIME_AND_CNT
1984 #undef PRINT_COUNTER_CNT
1985 #undef DO_COUNTERS2