1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmClasses.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "code/codeCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/nmethod.hpp" 30 #include "code/pcDesc.hpp" 31 #include "code/scopeDesc.hpp" 32 #include "code/vtableStubs.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compilerDefinitions.inline.hpp" 36 #include "compiler/oopMap.hpp" 37 #include "gc/g1/g1HeapRegion.hpp" 38 #include "gc/shared/barrierSet.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "gc/shared/gcLocker.hpp" 41 #include "interpreter/bytecode.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/linkResolver.hpp" 44 #include "logging/log.hpp" 45 #include "logging/logStream.hpp" 46 #include "memory/oopFactory.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "oops/objArrayKlass.hpp" 49 #include "oops/klass.inline.hpp" 50 #include "oops/oop.inline.hpp" 51 #include "oops/typeArrayOop.inline.hpp" 52 #include "opto/ad.hpp" 53 #include "opto/addnode.hpp" 54 #include "opto/callnode.hpp" 55 #include "opto/cfgnode.hpp" 56 #include "opto/graphKit.hpp" 57 #include "opto/machnode.hpp" 58 #include "opto/matcher.hpp" 59 #include "opto/memnode.hpp" 60 #include "opto/mulnode.hpp" 61 #include "opto/output.hpp" 62 #include "opto/runtime.hpp" 63 #include "opto/subnode.hpp" 64 #include "prims/jvmtiExport.hpp" 65 #include "runtime/atomic.hpp" 66 #include "runtime/frame.inline.hpp" 67 #include "runtime/handles.inline.hpp" 68 #include "runtime/interfaceSupport.inline.hpp" 69 #include "runtime/java.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/perfData.inline.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/signature.hpp" 74 #include "runtime/stackWatermarkSet.hpp" 75 #include "runtime/synchronizer.hpp" 76 #include "runtime/threadCritical.hpp" 77 #include "runtime/threadWXSetters.inline.hpp" 78 #include "runtime/vframe.hpp" 79 #include "runtime/vframeArray.hpp" 80 #include "runtime/vframe_hp.hpp" 81 #include "services/management.hpp" 82 #include "utilities/copy.hpp" 83 #include "utilities/preserveException.hpp" 84 85 86 // For debugging purposes: 87 // To force FullGCALot inside a runtime function, add the following two lines 88 // 89 // Universe::release_fullgc_alot_dummy(); 90 // Universe::heap()->collect(); 91 // 92 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 93 94 95 #define C2_BLOB_FIELD_DEFINE(name, type) \ 96 type OptoRuntime:: BLOB_FIELD_NAME(name) = nullptr; 97 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 98 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \ 99 address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr; 100 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \ 101 address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr; 102 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE) 103 #undef C2_BLOB_FIELD_DEFINE 104 #undef C2_STUB_FIELD_DEFINE 105 #undef C2_JVMTI_STUB_FIELD_DEFINE 106 107 108 #define C2_BLOB_NAME_DEFINE(name, type) "C2 Runtime " # name "_blob", 109 #define C2_STUB_NAME_DEFINE(name, f, t, r) "C2 Runtime " # name, 110 #define C2_JVMTI_STUB_NAME_DEFINE(name) "C2 Runtime " # name, 111 const char* OptoRuntime::_stub_names[] = { 112 C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE) 113 }; 114 #undef C2_BLOB_NAME_DEFINE 115 #undef C2_STUB_NAME_DEFINE 116 #undef C2_JVMTI_STUB_NAME_DEFINE 117 118 address OptoRuntime::_vtable_must_compile_Java = nullptr; 119 120 PerfCounter* _perf_OptoRuntime_class_init_barrier_redundant_count = nullptr; 121 122 // This should be called in an assertion at the start of OptoRuntime routines 123 // which are entered from compiled code (all of them) 124 #ifdef ASSERT 125 static bool check_compiled_frame(JavaThread* thread) { 126 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 127 RegisterMap map(thread, 128 RegisterMap::UpdateMap::skip, 129 RegisterMap::ProcessFrames::include, 130 RegisterMap::WalkContinuation::skip); 131 frame caller = thread->last_frame().sender(&map); 132 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 133 return true; 134 } 135 #endif // ASSERT 136 137 /* 138 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 139 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 140 if (var == nullptr) { return false; } 141 */ 142 143 #define GEN_C2_BLOB(name, type) \ 144 BLOB_FIELD_NAME(name) = \ 145 generate_ ## name ## _blob(); \ 146 if (BLOB_FIELD_NAME(name) == nullptr) { return false; } 147 148 // a few helper macros to conjure up generate_stub call arguments 149 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 150 #define C2_STUB_TYPEFUNC(name) name ## _Type 151 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C) 152 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id) 153 154 // Almost all the C functions targeted from the generated stubs are 155 // implemented locally to OptoRuntime with names that can be generated 156 // from the stub name by appending suffix '_C'. However, in two cases 157 // a common target method also needs to be called from shared runtime 158 // stubs. In these two cases the opto stubs rely on method 159 // imlementations defined in class SharedRuntime. The following 160 // defines temporarily rebind the generated names to reference the 161 // relevant implementations. 162 163 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc ) \ 164 C2_STUB_FIELD_NAME(name) = \ 165 generate_stub(env, \ 166 C2_STUB_TYPEFUNC(name), \ 167 C2_STUB_C_FUNC(name), \ 168 C2_STUB_NAME(name), \ 169 fancy_jump, \ 170 pass_tls, \ 171 pass_retpc); \ 172 if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; } \ 173 174 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name) 175 176 #define GEN_C2_JVMTI_STUB(name) \ 177 STUB_FIELD_NAME(name) = \ 178 generate_stub(env, \ 179 notify_jvmti_vthread_Type, \ 180 C2_JVMTI_STUB_C_FUNC(name), \ 181 C2_STUB_NAME(name), \ 182 0, \ 183 true, \ 184 false); \ 185 if (STUB_FIELD_NAME(name) == nullptr) { return false; } \ 186 187 bool OptoRuntime::generate(ciEnv* env) { 188 init_counters(); 189 190 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB) 191 192 return true; 193 } 194 195 #undef GEN_C2_BLOB 196 197 #undef C2_STUB_FIELD_NAME 198 #undef C2_STUB_TYPEFUNC 199 #undef C2_STUB_C_FUNC 200 #undef C2_STUB_NAME 201 #undef GEN_C2_STUB 202 203 #undef C2_JVMTI_STUB_C_FUNC 204 #undef GEN_C2_JVMTI_STUB 205 // #undef gen 206 207 const TypeFunc* OptoRuntime::_new_instance_Type = nullptr; 208 const TypeFunc* OptoRuntime::_new_array_Type = nullptr; 209 const TypeFunc* OptoRuntime::_multianewarray2_Type = nullptr; 210 const TypeFunc* OptoRuntime::_multianewarray3_Type = nullptr; 211 const TypeFunc* OptoRuntime::_multianewarray4_Type = nullptr; 212 const TypeFunc* OptoRuntime::_multianewarray5_Type = nullptr; 213 const TypeFunc* OptoRuntime::_multianewarrayN_Type = nullptr; 214 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type = nullptr; 215 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type = nullptr; 216 const TypeFunc* OptoRuntime::_monitor_notify_Type = nullptr; 217 const TypeFunc* OptoRuntime::_uncommon_trap_Type = nullptr; 218 const TypeFunc* OptoRuntime::_athrow_Type = nullptr; 219 const TypeFunc* OptoRuntime::_rethrow_Type = nullptr; 220 const TypeFunc* OptoRuntime::_Math_D_D_Type = nullptr; 221 const TypeFunc* OptoRuntime::_Math_DD_D_Type = nullptr; 222 const TypeFunc* OptoRuntime::_modf_Type = nullptr; 223 const TypeFunc* OptoRuntime::_l2f_Type = nullptr; 224 const TypeFunc* OptoRuntime::_void_long_Type = nullptr; 225 const TypeFunc* OptoRuntime::_void_void_Type = nullptr; 226 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type = nullptr; 227 const TypeFunc* OptoRuntime::_flush_windows_Type = nullptr; 228 const TypeFunc* OptoRuntime::_fast_arraycopy_Type = nullptr; 229 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type = nullptr; 230 const TypeFunc* OptoRuntime::_generic_arraycopy_Type = nullptr; 231 const TypeFunc* OptoRuntime::_slow_arraycopy_Type = nullptr; 232 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type = nullptr; 233 const TypeFunc* OptoRuntime::_array_fill_Type = nullptr; 234 const TypeFunc* OptoRuntime::_array_sort_Type = nullptr; 235 const TypeFunc* OptoRuntime::_array_partition_Type = nullptr; 236 const TypeFunc* OptoRuntime::_aescrypt_block_Type = nullptr; 237 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type = nullptr; 238 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type = nullptr; 239 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type = nullptr; 240 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type = nullptr; 241 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type = nullptr; 242 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type = nullptr; 243 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type = nullptr; 244 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr; 245 const TypeFunc* OptoRuntime::_double_keccak_Type = nullptr; 246 const TypeFunc* OptoRuntime::_multiplyToLen_Type = nullptr; 247 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type = nullptr; 248 const TypeFunc* OptoRuntime::_montgomerySquare_Type = nullptr; 249 const TypeFunc* OptoRuntime::_squareToLen_Type = nullptr; 250 const TypeFunc* OptoRuntime::_mulAdd_Type = nullptr; 251 const TypeFunc* OptoRuntime::_bigIntegerShift_Type = nullptr; 252 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type = nullptr; 253 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type = nullptr; 254 const TypeFunc* OptoRuntime::_chacha20Block_Type = nullptr; 255 256 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type = nullptr; 257 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type = nullptr; 258 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type = nullptr; 259 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type = nullptr; 260 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type = nullptr; 261 262 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type = nullptr; 263 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type = nullptr; 264 const TypeFunc* OptoRuntime::_string_IndexOf_Type = nullptr; 265 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type = nullptr; 266 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type = nullptr; 267 const TypeFunc* OptoRuntime::_intpoly_assign_Type = nullptr; 268 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type = nullptr; 269 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type = nullptr; 270 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type = nullptr; 271 const TypeFunc* OptoRuntime::_osr_end_Type = nullptr; 272 const TypeFunc* OptoRuntime::_register_finalizer_Type = nullptr; 273 #if INCLUDE_JFR 274 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type = nullptr; 275 #endif // INCLUDE_JFR 276 #if INCLUDE_JVMTI 277 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type = nullptr; 278 #endif // INCLUDE_JVMTI 279 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type = nullptr; 280 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type = nullptr; 281 282 // Helper method to do generation of RunTimeStub's 283 address OptoRuntime::generate_stub(ciEnv* env, 284 TypeFunc_generator gen, address C_function, 285 const char *name, int is_fancy_jump, 286 bool pass_tls, 287 bool return_pc) { 288 289 // Matching the default directive, we currently have no method to match. 290 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompilerThread::current()->compiler()); 291 CompilationMemoryStatisticMark cmsm(directive); 292 ResourceMark rm; 293 Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive); 294 DirectivesStack::release(directive); 295 return C.stub_entry_point(); 296 } 297 298 const char* OptoRuntime::stub_name(address entry) { 299 #ifndef PRODUCT 300 CodeBlob* cb = CodeCache::find_blob(entry); 301 RuntimeStub* rs =(RuntimeStub *)cb; 302 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub"); 303 return rs->name(); 304 #else 305 // Fast implementation for product mode (maybe it should be inlined too) 306 return "runtime stub"; 307 #endif 308 } 309 310 // local methods passed as arguments to stub generator that forward 311 // control to corresponding JRT methods of SharedRuntime 312 313 void OptoRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 314 oopDesc* dest, jint dest_pos, 315 jint length, JavaThread* thread) { 316 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread); 317 } 318 319 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) { 320 SharedRuntime::complete_monitor_locking_C(obj, lock, current); 321 } 322 323 324 //============================================================================= 325 // Opto compiler runtime routines 326 //============================================================================= 327 328 329 //=============================allocation====================================== 330 // We failed the fast-path allocation. Now we need to do a scavenge or GC 331 // and try allocation again. 332 333 // object allocation 334 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_instance_C, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current)) 335 JRT_BLOCK; 336 #ifndef PRODUCT 337 SharedRuntime::_new_instance_ctr++; // new instance requires GC 338 #endif 339 assert(check_compiled_frame(current), "incorrect caller"); 340 341 // These checks are cheap to make and support reflective allocation. 342 int lh = klass->layout_helper(); 343 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 344 Handle holder(current, klass->klass_holder()); // keep the klass alive 345 klass->check_valid_for_instantiation(false, THREAD); 346 if (!HAS_PENDING_EXCEPTION) { 347 InstanceKlass::cast(klass)->initialize(THREAD); 348 } 349 } 350 351 if (!HAS_PENDING_EXCEPTION) { 352 // Scavenge and allocate an instance. 353 Handle holder(current, klass->klass_holder()); // keep the klass alive 354 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 355 current->set_vm_result(result); 356 357 // Pass oops back through thread local storage. Our apparent type to Java 358 // is that we return an oop, but we can block on exit from this routine and 359 // a GC can trash the oop in C's return register. The generated stub will 360 // fetch the oop from TLS after any possible GC. 361 } 362 363 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 364 JRT_BLOCK_END; 365 366 // inform GC that we won't do card marks for initializing writes. 367 SharedRuntime::on_slowpath_allocation_exit(current); 368 JRT_END 369 370 371 // array allocation 372 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_C, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current)) 373 JRT_BLOCK; 374 #ifndef PRODUCT 375 SharedRuntime::_new_array_ctr++; // new array requires GC 376 #endif 377 assert(check_compiled_frame(current), "incorrect caller"); 378 379 // Scavenge and allocate an instance. 380 oop result; 381 382 if (array_type->is_typeArray_klass()) { 383 // The oopFactory likes to work with the element type. 384 // (We could bypass the oopFactory, since it doesn't add much value.) 385 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 386 result = oopFactory::new_typeArray(elem_type, len, THREAD); 387 } else { 388 // Although the oopFactory likes to work with the elem_type, 389 // the compiler prefers the array_type, since it must already have 390 // that latter value in hand for the fast path. 391 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 392 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 393 result = oopFactory::new_objArray(elem_type, len, THREAD); 394 } 395 396 // Pass oops back through thread local storage. Our apparent type to Java 397 // is that we return an oop, but we can block on exit from this routine and 398 // a GC can trash the oop in C's return register. The generated stub will 399 // fetch the oop from TLS after any possible GC. 400 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 401 current->set_vm_result(result); 402 JRT_BLOCK_END; 403 404 // inform GC that we won't do card marks for initializing writes. 405 SharedRuntime::on_slowpath_allocation_exit(current); 406 JRT_END 407 408 // array allocation without zeroing 409 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_nozero_C, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 410 JRT_BLOCK; 411 #ifndef PRODUCT 412 SharedRuntime::_new_array_ctr++; // new array requires GC 413 #endif 414 assert(check_compiled_frame(current), "incorrect caller"); 415 416 // Scavenge and allocate an instance. 417 oop result; 418 419 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 420 // The oopFactory likes to work with the element type. 421 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 422 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 423 424 // Pass oops back through thread local storage. Our apparent type to Java 425 // is that we return an oop, but we can block on exit from this routine and 426 // a GC can trash the oop in C's return register. The generated stub will 427 // fetch the oop from TLS after any possible GC. 428 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 429 current->set_vm_result(result); 430 JRT_BLOCK_END; 431 432 433 // inform GC that we won't do card marks for initializing writes. 434 SharedRuntime::on_slowpath_allocation_exit(current); 435 436 oop result = current->vm_result(); 437 if ((len > 0) && (result != nullptr) && 438 is_deoptimized_caller_frame(current)) { 439 // Zero array here if the caller is deoptimized. 440 const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result); 441 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 442 size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 443 assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned"); 444 HeapWord* obj = cast_from_oop<HeapWord*>(result); 445 if (!is_aligned(hs_bytes, BytesPerLong)) { 446 *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0; 447 hs_bytes += BytesPerInt; 448 } 449 450 // Optimized zeroing. 451 assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned"); 452 const size_t aligned_hs = hs_bytes / BytesPerLong; 453 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 454 } 455 456 JRT_END 457 458 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 459 460 // multianewarray for 2 dimensions 461 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray2_C, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 462 #ifndef PRODUCT 463 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 464 #endif 465 assert(check_compiled_frame(current), "incorrect caller"); 466 assert(elem_type->is_klass(), "not a class"); 467 jint dims[2]; 468 dims[0] = len1; 469 dims[1] = len2; 470 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 471 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 472 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 473 current->set_vm_result(obj); 474 JRT_END 475 476 // multianewarray for 3 dimensions 477 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray3_C, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 478 #ifndef PRODUCT 479 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 480 #endif 481 assert(check_compiled_frame(current), "incorrect caller"); 482 assert(elem_type->is_klass(), "not a class"); 483 jint dims[3]; 484 dims[0] = len1; 485 dims[1] = len2; 486 dims[2] = len3; 487 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 488 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 489 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 490 current->set_vm_result(obj); 491 JRT_END 492 493 // multianewarray for 4 dimensions 494 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray4_C, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 495 #ifndef PRODUCT 496 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 497 #endif 498 assert(check_compiled_frame(current), "incorrect caller"); 499 assert(elem_type->is_klass(), "not a class"); 500 jint dims[4]; 501 dims[0] = len1; 502 dims[1] = len2; 503 dims[2] = len3; 504 dims[3] = len4; 505 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 506 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 507 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 508 current->set_vm_result(obj); 509 JRT_END 510 511 // multianewarray for 5 dimensions 512 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 513 #ifndef PRODUCT 514 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 515 #endif 516 assert(check_compiled_frame(current), "incorrect caller"); 517 assert(elem_type->is_klass(), "not a class"); 518 jint dims[5]; 519 dims[0] = len1; 520 dims[1] = len2; 521 dims[2] = len3; 522 dims[3] = len4; 523 dims[4] = len5; 524 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 525 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 526 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 527 current->set_vm_result(obj); 528 JRT_END 529 530 JRT_ENTRY_PROF(void, OptoRuntime, multianewarrayN_C, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 531 assert(check_compiled_frame(current), "incorrect caller"); 532 assert(elem_type->is_klass(), "not a class"); 533 assert(oop(dims)->is_typeArray(), "not an array"); 534 535 ResourceMark rm; 536 jint len = dims->length(); 537 assert(len > 0, "Dimensions array should contain data"); 538 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 539 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 540 c_dims, len); 541 542 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 543 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 544 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 545 current->set_vm_result(obj); 546 JRT_END 547 548 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notify_C, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 549 550 // Very few notify/notifyAll operations find any threads on the waitset, so 551 // the dominant fast-path is to simply return. 552 // Relatedly, it's critical that notify/notifyAll be fast in order to 553 // reduce lock hold times. 554 if (!SafepointSynchronize::is_synchronizing()) { 555 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 556 return; 557 } 558 } 559 560 // This is the case the fast-path above isn't provisioned to handle. 561 // The fast-path is designed to handle frequently arising cases in an efficient manner. 562 // (The fast-path is just a degenerate variant of the slow-path). 563 // Perform the dreaded state transition and pass control into the slow-path. 564 JRT_BLOCK; 565 Handle h_obj(current, obj); 566 ObjectSynchronizer::notify(h_obj, CHECK); 567 JRT_BLOCK_END; 568 JRT_END 569 570 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notifyAll_C, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 571 572 if (!SafepointSynchronize::is_synchronizing() ) { 573 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 574 return; 575 } 576 } 577 578 // This is the case the fast-path above isn't provisioned to handle. 579 // The fast-path is designed to handle frequently arising cases in an efficient manner. 580 // (The fast-path is just a degenerate variant of the slow-path). 581 // Perform the dreaded state transition and pass control into the slow-path. 582 JRT_BLOCK; 583 Handle h_obj(current, obj); 584 ObjectSynchronizer::notifyall(h_obj, CHECK); 585 JRT_BLOCK_END; 586 JRT_END 587 588 static const TypeFunc* make_new_instance_Type() { 589 // create input type (domain) 590 const Type **fields = TypeTuple::fields(1); 591 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 592 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 593 594 // create result type (range) 595 fields = TypeTuple::fields(1); 596 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 597 598 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 599 600 return TypeFunc::make(domain, range); 601 } 602 603 #if INCLUDE_JVMTI 604 static const TypeFunc* make_notify_jvmti_vthread_Type() { 605 // create input type (domain) 606 const Type **fields = TypeTuple::fields(2); 607 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop 608 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean 609 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 610 611 // no result type needed 612 fields = TypeTuple::fields(1); 613 fields[TypeFunc::Parms+0] = nullptr; // void 614 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 615 616 return TypeFunc::make(domain,range); 617 } 618 #endif 619 620 static const TypeFunc* make_athrow_Type() { 621 // create input type (domain) 622 const Type **fields = TypeTuple::fields(1); 623 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 624 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 625 626 // create result type (range) 627 fields = TypeTuple::fields(0); 628 629 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 630 631 return TypeFunc::make(domain, range); 632 } 633 634 static const TypeFunc* make_new_array_Type() { 635 // create input type (domain) 636 const Type **fields = TypeTuple::fields(2); 637 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 638 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 639 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 640 641 // create result type (range) 642 fields = TypeTuple::fields(1); 643 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 644 645 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 646 647 return TypeFunc::make(domain, range); 648 } 649 650 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) { 651 // create input type (domain) 652 const int nargs = ndim + 1; 653 const Type **fields = TypeTuple::fields(nargs); 654 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 655 for( int i = 1; i < nargs; i++ ) 656 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 657 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 658 659 // create result type (range) 660 fields = TypeTuple::fields(1); 661 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 662 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 663 664 return TypeFunc::make(domain, range); 665 } 666 667 static const TypeFunc* make_multianewarrayN_Type() { 668 // create input type (domain) 669 const Type **fields = TypeTuple::fields(2); 670 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 671 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 672 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 673 674 // create result type (range) 675 fields = TypeTuple::fields(1); 676 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 677 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 678 679 return TypeFunc::make(domain, range); 680 } 681 682 static const TypeFunc* make_uncommon_trap_Type() { 683 // create input type (domain) 684 const Type **fields = TypeTuple::fields(1); 685 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 686 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 687 688 // create result type (range) 689 fields = TypeTuple::fields(0); 690 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 691 692 return TypeFunc::make(domain, range); 693 } 694 695 //----------------------------------------------------------------------------- 696 // Monitor Handling 697 698 static const TypeFunc* make_complete_monitor_enter_Type() { 699 // create input type (domain) 700 const Type **fields = TypeTuple::fields(2); 701 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 702 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 703 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 704 705 // create result type (range) 706 fields = TypeTuple::fields(0); 707 708 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 709 710 return TypeFunc::make(domain,range); 711 } 712 713 //----------------------------------------------------------------------------- 714 715 static const TypeFunc* make_complete_monitor_exit_Type() { 716 // create input type (domain) 717 const Type **fields = TypeTuple::fields(3); 718 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 719 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 720 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 721 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 722 723 // create result type (range) 724 fields = TypeTuple::fields(0); 725 726 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 727 728 return TypeFunc::make(domain, range); 729 } 730 731 static const TypeFunc* make_monitor_notify_Type() { 732 // create input type (domain) 733 const Type **fields = TypeTuple::fields(1); 734 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 735 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 736 737 // create result type (range) 738 fields = TypeTuple::fields(0); 739 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 740 return TypeFunc::make(domain, range); 741 } 742 743 static const TypeFunc* make_flush_windows_Type() { 744 // create input type (domain) 745 const Type** fields = TypeTuple::fields(1); 746 fields[TypeFunc::Parms+0] = nullptr; // void 747 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 748 749 // create result type 750 fields = TypeTuple::fields(1); 751 fields[TypeFunc::Parms+0] = nullptr; // void 752 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 753 754 return TypeFunc::make(domain, range); 755 } 756 757 static const TypeFunc* make_l2f_Type() { 758 // create input type (domain) 759 const Type **fields = TypeTuple::fields(2); 760 fields[TypeFunc::Parms+0] = TypeLong::LONG; 761 fields[TypeFunc::Parms+1] = Type::HALF; 762 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 763 764 // create result type (range) 765 fields = TypeTuple::fields(1); 766 fields[TypeFunc::Parms+0] = Type::FLOAT; 767 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 768 769 return TypeFunc::make(domain, range); 770 } 771 772 static const TypeFunc* make_modf_Type() { 773 const Type **fields = TypeTuple::fields(2); 774 fields[TypeFunc::Parms+0] = Type::FLOAT; 775 fields[TypeFunc::Parms+1] = Type::FLOAT; 776 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 777 778 // create result type (range) 779 fields = TypeTuple::fields(1); 780 fields[TypeFunc::Parms+0] = Type::FLOAT; 781 782 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 783 784 return TypeFunc::make(domain, range); 785 } 786 787 static const TypeFunc* make_Math_D_D_Type() { 788 // create input type (domain) 789 const Type **fields = TypeTuple::fields(2); 790 // Symbol* name of class to be loaded 791 fields[TypeFunc::Parms+0] = Type::DOUBLE; 792 fields[TypeFunc::Parms+1] = Type::HALF; 793 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 794 795 // create result type (range) 796 fields = TypeTuple::fields(2); 797 fields[TypeFunc::Parms+0] = Type::DOUBLE; 798 fields[TypeFunc::Parms+1] = Type::HALF; 799 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 800 801 return TypeFunc::make(domain, range); 802 } 803 804 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 805 // create input type (domain) 806 const Type **fields = TypeTuple::fields(num_arg); 807 // Symbol* name of class to be loaded 808 assert(num_arg > 0, "must have at least 1 input"); 809 for (uint i = 0; i < num_arg; i++) { 810 fields[TypeFunc::Parms+i] = in_type; 811 } 812 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 813 814 // create result type (range) 815 const uint num_ret = 1; 816 fields = TypeTuple::fields(num_ret); 817 fields[TypeFunc::Parms+0] = out_type; 818 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 819 820 return TypeFunc::make(domain, range); 821 } 822 823 static const TypeFunc* make_Math_DD_D_Type() { 824 const Type **fields = TypeTuple::fields(4); 825 fields[TypeFunc::Parms+0] = Type::DOUBLE; 826 fields[TypeFunc::Parms+1] = Type::HALF; 827 fields[TypeFunc::Parms+2] = Type::DOUBLE; 828 fields[TypeFunc::Parms+3] = Type::HALF; 829 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 830 831 // create result type (range) 832 fields = TypeTuple::fields(2); 833 fields[TypeFunc::Parms+0] = Type::DOUBLE; 834 fields[TypeFunc::Parms+1] = Type::HALF; 835 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 836 837 return TypeFunc::make(domain, range); 838 } 839 840 //-------------- currentTimeMillis, currentTimeNanos, etc 841 842 static const TypeFunc* make_void_long_Type() { 843 // create input type (domain) 844 const Type **fields = TypeTuple::fields(0); 845 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 846 847 // create result type (range) 848 fields = TypeTuple::fields(2); 849 fields[TypeFunc::Parms+0] = TypeLong::LONG; 850 fields[TypeFunc::Parms+1] = Type::HALF; 851 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 852 853 return TypeFunc::make(domain, range); 854 } 855 856 static const TypeFunc* make_void_void_Type() { 857 // create input type (domain) 858 const Type **fields = TypeTuple::fields(0); 859 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 860 861 // create result type (range) 862 fields = TypeTuple::fields(0); 863 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 864 return TypeFunc::make(domain, range); 865 } 866 867 static const TypeFunc* make_jfr_write_checkpoint_Type() { 868 // create input type (domain) 869 const Type **fields = TypeTuple::fields(0); 870 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 871 872 // create result type (range) 873 fields = TypeTuple::fields(0); 874 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 875 return TypeFunc::make(domain, range); 876 } 877 878 879 // Takes as parameters: 880 // void *dest 881 // long size 882 // uchar byte 883 884 static const TypeFunc* make_setmemory_Type() { 885 // create input type (domain) 886 int argcnt = NOT_LP64(3) LP64_ONLY(4); 887 const Type** fields = TypeTuple::fields(argcnt); 888 int argp = TypeFunc::Parms; 889 fields[argp++] = TypePtr::NOTNULL; // dest 890 fields[argp++] = TypeX_X; // size 891 LP64_ONLY(fields[argp++] = Type::HALF); // size 892 fields[argp++] = TypeInt::UBYTE; // bytevalue 893 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 894 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 895 896 // no result type needed 897 fields = TypeTuple::fields(1); 898 fields[TypeFunc::Parms+0] = nullptr; // void 899 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 900 return TypeFunc::make(domain, range); 901 } 902 903 // arraycopy stub variations: 904 enum ArrayCopyType { 905 ac_fast, // void(ptr, ptr, size_t) 906 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 907 ac_slow, // void(ptr, int, ptr, int, int) 908 ac_generic // int(ptr, int, ptr, int, int) 909 }; 910 911 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 912 // create input type (domain) 913 int num_args = (act == ac_fast ? 3 : 5); 914 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 915 int argcnt = num_args; 916 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 917 const Type** fields = TypeTuple::fields(argcnt); 918 int argp = TypeFunc::Parms; 919 fields[argp++] = TypePtr::NOTNULL; // src 920 if (num_size_args == 0) { 921 fields[argp++] = TypeInt::INT; // src_pos 922 } 923 fields[argp++] = TypePtr::NOTNULL; // dest 924 if (num_size_args == 0) { 925 fields[argp++] = TypeInt::INT; // dest_pos 926 fields[argp++] = TypeInt::INT; // length 927 } 928 while (num_size_args-- > 0) { 929 fields[argp++] = TypeX_X; // size in whatevers (size_t) 930 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 931 } 932 if (act == ac_checkcast) { 933 fields[argp++] = TypePtr::NOTNULL; // super_klass 934 } 935 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 936 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 937 938 // create result type if needed 939 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 940 fields = TypeTuple::fields(1); 941 if (retcnt == 0) 942 fields[TypeFunc::Parms+0] = nullptr; // void 943 else 944 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 945 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 946 return TypeFunc::make(domain, range); 947 } 948 949 static const TypeFunc* make_array_fill_Type() { 950 const Type** fields; 951 int argp = TypeFunc::Parms; 952 // create input type (domain): pointer, int, size_t 953 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 954 fields[argp++] = TypePtr::NOTNULL; 955 fields[argp++] = TypeInt::INT; 956 fields[argp++] = TypeX_X; // size in whatevers (size_t) 957 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 958 const TypeTuple *domain = TypeTuple::make(argp, fields); 959 960 // create result type 961 fields = TypeTuple::fields(1); 962 fields[TypeFunc::Parms+0] = nullptr; // void 963 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 964 965 return TypeFunc::make(domain, range); 966 } 967 968 static const TypeFunc* make_array_partition_Type() { 969 // create input type (domain) 970 int num_args = 7; 971 int argcnt = num_args; 972 const Type** fields = TypeTuple::fields(argcnt); 973 int argp = TypeFunc::Parms; 974 fields[argp++] = TypePtr::NOTNULL; // array 975 fields[argp++] = TypeInt::INT; // element type 976 fields[argp++] = TypeInt::INT; // low 977 fields[argp++] = TypeInt::INT; // end 978 fields[argp++] = TypePtr::NOTNULL; // pivot_indices (int array) 979 fields[argp++] = TypeInt::INT; // indexPivot1 980 fields[argp++] = TypeInt::INT; // indexPivot2 981 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 982 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 983 984 // no result type needed 985 fields = TypeTuple::fields(1); 986 fields[TypeFunc::Parms+0] = nullptr; // void 987 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 988 return TypeFunc::make(domain, range); 989 } 990 991 static const TypeFunc* make_array_sort_Type() { 992 // create input type (domain) 993 int num_args = 4; 994 int argcnt = num_args; 995 const Type** fields = TypeTuple::fields(argcnt); 996 int argp = TypeFunc::Parms; 997 fields[argp++] = TypePtr::NOTNULL; // array 998 fields[argp++] = TypeInt::INT; // element type 999 fields[argp++] = TypeInt::INT; // fromIndex 1000 fields[argp++] = TypeInt::INT; // toIndex 1001 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1002 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1003 1004 // no result type needed 1005 fields = TypeTuple::fields(1); 1006 fields[TypeFunc::Parms+0] = nullptr; // void 1007 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1008 return TypeFunc::make(domain, range); 1009 } 1010 1011 static const TypeFunc* make_aescrypt_block_Type() { 1012 // create input type (domain) 1013 int num_args = 3; 1014 int argcnt = num_args; 1015 const Type** fields = TypeTuple::fields(argcnt); 1016 int argp = TypeFunc::Parms; 1017 fields[argp++] = TypePtr::NOTNULL; // src 1018 fields[argp++] = TypePtr::NOTNULL; // dest 1019 fields[argp++] = TypePtr::NOTNULL; // k array 1020 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1021 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1022 1023 // no result type needed 1024 fields = TypeTuple::fields(1); 1025 fields[TypeFunc::Parms+0] = nullptr; // void 1026 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1027 return TypeFunc::make(domain, range); 1028 } 1029 1030 static const TypeFunc* make_updateBytesCRC32_Type() { 1031 // create input type (domain) 1032 int num_args = 3; 1033 int argcnt = num_args; 1034 const Type** fields = TypeTuple::fields(argcnt); 1035 int argp = TypeFunc::Parms; 1036 fields[argp++] = TypeInt::INT; // crc 1037 fields[argp++] = TypePtr::NOTNULL; // src 1038 fields[argp++] = TypeInt::INT; // len 1039 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1040 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1041 1042 // result type needed 1043 fields = TypeTuple::fields(1); 1044 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1045 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1046 return TypeFunc::make(domain, range); 1047 } 1048 1049 static const TypeFunc* make_updateBytesCRC32C_Type() { 1050 // create input type (domain) 1051 int num_args = 4; 1052 int argcnt = num_args; 1053 const Type** fields = TypeTuple::fields(argcnt); 1054 int argp = TypeFunc::Parms; 1055 fields[argp++] = TypeInt::INT; // crc 1056 fields[argp++] = TypePtr::NOTNULL; // buf 1057 fields[argp++] = TypeInt::INT; // len 1058 fields[argp++] = TypePtr::NOTNULL; // table 1059 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1060 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1061 1062 // result type needed 1063 fields = TypeTuple::fields(1); 1064 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1065 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1066 return TypeFunc::make(domain, range); 1067 } 1068 1069 static const TypeFunc* make_updateBytesAdler32_Type() { 1070 // create input type (domain) 1071 int num_args = 3; 1072 int argcnt = num_args; 1073 const Type** fields = TypeTuple::fields(argcnt); 1074 int argp = TypeFunc::Parms; 1075 fields[argp++] = TypeInt::INT; // crc 1076 fields[argp++] = TypePtr::NOTNULL; // src + offset 1077 fields[argp++] = TypeInt::INT; // len 1078 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1079 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1080 1081 // result type needed 1082 fields = TypeTuple::fields(1); 1083 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1084 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1085 return TypeFunc::make(domain, range); 1086 } 1087 1088 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() { 1089 // create input type (domain) 1090 int num_args = 5; 1091 int argcnt = num_args; 1092 const Type** fields = TypeTuple::fields(argcnt); 1093 int argp = TypeFunc::Parms; 1094 fields[argp++] = TypePtr::NOTNULL; // src 1095 fields[argp++] = TypePtr::NOTNULL; // dest 1096 fields[argp++] = TypePtr::NOTNULL; // k array 1097 fields[argp++] = TypePtr::NOTNULL; // r array 1098 fields[argp++] = TypeInt::INT; // src len 1099 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1100 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1101 1102 // returning cipher len (int) 1103 fields = TypeTuple::fields(1); 1104 fields[TypeFunc::Parms+0] = TypeInt::INT; 1105 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1106 return TypeFunc::make(domain, range); 1107 } 1108 1109 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() { 1110 // create input type (domain) 1111 int num_args = 4; 1112 int argcnt = num_args; 1113 const Type** fields = TypeTuple::fields(argcnt); 1114 int argp = TypeFunc::Parms; 1115 fields[argp++] = TypePtr::NOTNULL; // src 1116 fields[argp++] = TypePtr::NOTNULL; // dest 1117 fields[argp++] = TypePtr::NOTNULL; // k array 1118 fields[argp++] = TypeInt::INT; // src len 1119 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1120 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1121 1122 // returning cipher len (int) 1123 fields = TypeTuple::fields(1); 1124 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1125 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1126 return TypeFunc::make(domain, range); 1127 } 1128 1129 static const TypeFunc* make_counterMode_aescrypt_Type() { 1130 // create input type (domain) 1131 int num_args = 7; 1132 int argcnt = num_args; 1133 const Type** fields = TypeTuple::fields(argcnt); 1134 int argp = TypeFunc::Parms; 1135 fields[argp++] = TypePtr::NOTNULL; // src 1136 fields[argp++] = TypePtr::NOTNULL; // dest 1137 fields[argp++] = TypePtr::NOTNULL; // k array 1138 fields[argp++] = TypePtr::NOTNULL; // counter array 1139 fields[argp++] = TypeInt::INT; // src len 1140 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 1141 fields[argp++] = TypePtr::NOTNULL; // saved used addr 1142 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1143 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1144 // returning cipher len (int) 1145 fields = TypeTuple::fields(1); 1146 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1147 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1148 return TypeFunc::make(domain, range); 1149 } 1150 1151 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() { 1152 // create input type (domain) 1153 int num_args = 8; 1154 int argcnt = num_args; 1155 const Type** fields = TypeTuple::fields(argcnt); 1156 int argp = TypeFunc::Parms; 1157 fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs 1158 fields[argp++] = TypeInt::INT; // int len 1159 fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs 1160 fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs 1161 fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj 1162 fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj 1163 fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj 1164 fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj 1165 1166 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1167 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1168 // returning cipher len (int) 1169 fields = TypeTuple::fields(1); 1170 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1171 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1172 return TypeFunc::make(domain, range); 1173 } 1174 1175 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) { 1176 // create input type (domain) 1177 int num_args = is_sha3 ? 3 : 2; 1178 int argcnt = num_args; 1179 const Type** fields = TypeTuple::fields(argcnt); 1180 int argp = TypeFunc::Parms; 1181 fields[argp++] = TypePtr::NOTNULL; // buf 1182 fields[argp++] = TypePtr::NOTNULL; // state 1183 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1184 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1185 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1186 1187 // no result type needed 1188 fields = TypeTuple::fields(1); 1189 fields[TypeFunc::Parms+0] = nullptr; // void 1190 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1191 return TypeFunc::make(domain, range); 1192 } 1193 1194 /* 1195 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1196 */ 1197 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) { 1198 // create input type (domain) 1199 int num_args = is_sha3 ? 5 : 4; 1200 int argcnt = num_args; 1201 const Type** fields = TypeTuple::fields(argcnt); 1202 int argp = TypeFunc::Parms; 1203 fields[argp++] = TypePtr::NOTNULL; // buf 1204 fields[argp++] = TypePtr::NOTNULL; // state 1205 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1206 fields[argp++] = TypeInt::INT; // ofs 1207 fields[argp++] = TypeInt::INT; // limit 1208 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1209 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1210 1211 // returning ofs (int) 1212 fields = TypeTuple::fields(1); 1213 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1214 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1215 return TypeFunc::make(domain, range); 1216 } 1217 1218 // SHAKE128Parallel doubleKeccak function 1219 static const TypeFunc* make_double_keccak_Type() { 1220 int argcnt = 2; 1221 1222 const Type** fields = TypeTuple::fields(argcnt); 1223 int argp = TypeFunc::Parms; 1224 fields[argp++] = TypePtr::NOTNULL; // status0 1225 fields[argp++] = TypePtr::NOTNULL; // status1 1226 1227 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1228 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1229 1230 // result type needed 1231 fields = TypeTuple::fields(1); 1232 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1233 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1234 return TypeFunc::make(domain, range); 1235 } 1236 1237 static const TypeFunc* make_multiplyToLen_Type() { 1238 // create input type (domain) 1239 int num_args = 5; 1240 int argcnt = num_args; 1241 const Type** fields = TypeTuple::fields(argcnt); 1242 int argp = TypeFunc::Parms; 1243 fields[argp++] = TypePtr::NOTNULL; // x 1244 fields[argp++] = TypeInt::INT; // xlen 1245 fields[argp++] = TypePtr::NOTNULL; // y 1246 fields[argp++] = TypeInt::INT; // ylen 1247 fields[argp++] = TypePtr::NOTNULL; // z 1248 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1249 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1250 1251 // no result type needed 1252 fields = TypeTuple::fields(1); 1253 fields[TypeFunc::Parms+0] = nullptr; 1254 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1255 return TypeFunc::make(domain, range); 1256 } 1257 1258 static const TypeFunc* make_squareToLen_Type() { 1259 // create input type (domain) 1260 int num_args = 4; 1261 int argcnt = num_args; 1262 const Type** fields = TypeTuple::fields(argcnt); 1263 int argp = TypeFunc::Parms; 1264 fields[argp++] = TypePtr::NOTNULL; // x 1265 fields[argp++] = TypeInt::INT; // len 1266 fields[argp++] = TypePtr::NOTNULL; // z 1267 fields[argp++] = TypeInt::INT; // zlen 1268 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1269 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1270 1271 // no result type needed 1272 fields = TypeTuple::fields(1); 1273 fields[TypeFunc::Parms+0] = nullptr; 1274 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1275 return TypeFunc::make(domain, range); 1276 } 1277 1278 static const TypeFunc* make_mulAdd_Type() { 1279 // create input type (domain) 1280 int num_args = 5; 1281 int argcnt = num_args; 1282 const Type** fields = TypeTuple::fields(argcnt); 1283 int argp = TypeFunc::Parms; 1284 fields[argp++] = TypePtr::NOTNULL; // out 1285 fields[argp++] = TypePtr::NOTNULL; // in 1286 fields[argp++] = TypeInt::INT; // offset 1287 fields[argp++] = TypeInt::INT; // len 1288 fields[argp++] = TypeInt::INT; // k 1289 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1290 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1291 1292 // returning carry (int) 1293 fields = TypeTuple::fields(1); 1294 fields[TypeFunc::Parms+0] = TypeInt::INT; 1295 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1296 return TypeFunc::make(domain, range); 1297 } 1298 1299 static const TypeFunc* make_montgomeryMultiply_Type() { 1300 // create input type (domain) 1301 int num_args = 7; 1302 int argcnt = num_args; 1303 const Type** fields = TypeTuple::fields(argcnt); 1304 int argp = TypeFunc::Parms; 1305 fields[argp++] = TypePtr::NOTNULL; // a 1306 fields[argp++] = TypePtr::NOTNULL; // b 1307 fields[argp++] = TypePtr::NOTNULL; // n 1308 fields[argp++] = TypeInt::INT; // len 1309 fields[argp++] = TypeLong::LONG; // inv 1310 fields[argp++] = Type::HALF; 1311 fields[argp++] = TypePtr::NOTNULL; // result 1312 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1313 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1314 1315 // result type needed 1316 fields = TypeTuple::fields(1); 1317 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1318 1319 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1320 return TypeFunc::make(domain, range); 1321 } 1322 1323 static const TypeFunc* make_montgomerySquare_Type() { 1324 // create input type (domain) 1325 int num_args = 6; 1326 int argcnt = num_args; 1327 const Type** fields = TypeTuple::fields(argcnt); 1328 int argp = TypeFunc::Parms; 1329 fields[argp++] = TypePtr::NOTNULL; // a 1330 fields[argp++] = TypePtr::NOTNULL; // n 1331 fields[argp++] = TypeInt::INT; // len 1332 fields[argp++] = TypeLong::LONG; // inv 1333 fields[argp++] = Type::HALF; 1334 fields[argp++] = TypePtr::NOTNULL; // result 1335 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1336 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1337 1338 // result type needed 1339 fields = TypeTuple::fields(1); 1340 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1341 1342 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1343 return TypeFunc::make(domain, range); 1344 } 1345 1346 static const TypeFunc* make_bigIntegerShift_Type() { 1347 int argcnt = 5; 1348 const Type** fields = TypeTuple::fields(argcnt); 1349 int argp = TypeFunc::Parms; 1350 fields[argp++] = TypePtr::NOTNULL; // newArr 1351 fields[argp++] = TypePtr::NOTNULL; // oldArr 1352 fields[argp++] = TypeInt::INT; // newIdx 1353 fields[argp++] = TypeInt::INT; // shiftCount 1354 fields[argp++] = TypeInt::INT; // numIter 1355 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1356 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1357 1358 // no result type needed 1359 fields = TypeTuple::fields(1); 1360 fields[TypeFunc::Parms + 0] = nullptr; 1361 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1362 return TypeFunc::make(domain, range); 1363 } 1364 1365 static const TypeFunc* make_vectorizedMismatch_Type() { 1366 // create input type (domain) 1367 int num_args = 4; 1368 int argcnt = num_args; 1369 const Type** fields = TypeTuple::fields(argcnt); 1370 int argp = TypeFunc::Parms; 1371 fields[argp++] = TypePtr::NOTNULL; // obja 1372 fields[argp++] = TypePtr::NOTNULL; // objb 1373 fields[argp++] = TypeInt::INT; // length, number of elements 1374 fields[argp++] = TypeInt::INT; // log2scale, element size 1375 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1376 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1377 1378 //return mismatch index (int) 1379 fields = TypeTuple::fields(1); 1380 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1381 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1382 return TypeFunc::make(domain, range); 1383 } 1384 1385 static const TypeFunc* make_ghash_processBlocks_Type() { 1386 int argcnt = 4; 1387 1388 const Type** fields = TypeTuple::fields(argcnt); 1389 int argp = TypeFunc::Parms; 1390 fields[argp++] = TypePtr::NOTNULL; // state 1391 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1392 fields[argp++] = TypePtr::NOTNULL; // data 1393 fields[argp++] = TypeInt::INT; // blocks 1394 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1395 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1396 1397 // result type needed 1398 fields = TypeTuple::fields(1); 1399 fields[TypeFunc::Parms+0] = nullptr; // void 1400 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1401 return TypeFunc::make(domain, range); 1402 } 1403 1404 static const TypeFunc* make_chacha20Block_Type() { 1405 int argcnt = 2; 1406 1407 const Type** fields = TypeTuple::fields(argcnt); 1408 int argp = TypeFunc::Parms; 1409 fields[argp++] = TypePtr::NOTNULL; // state 1410 fields[argp++] = TypePtr::NOTNULL; // result 1411 1412 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1413 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1414 1415 // result type needed 1416 fields = TypeTuple::fields(1); 1417 fields[TypeFunc::Parms + 0] = TypeInt::INT; // key stream outlen as int 1418 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1419 return TypeFunc::make(domain, range); 1420 } 1421 1422 // Dilithium NTT function except for the final "normalization" to |coeff| < Q 1423 static const TypeFunc* make_dilithiumAlmostNtt_Type() { 1424 int argcnt = 2; 1425 1426 const Type** fields = TypeTuple::fields(argcnt); 1427 int argp = TypeFunc::Parms; 1428 fields[argp++] = TypePtr::NOTNULL; // coeffs 1429 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1430 1431 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1432 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1433 1434 // result type needed 1435 fields = TypeTuple::fields(1); 1436 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1437 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1438 return TypeFunc::make(domain, range); 1439 } 1440 1441 // Dilithium inverse NTT function except the final mod Q division by 2^256 1442 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() { 1443 int argcnt = 2; 1444 1445 const Type** fields = TypeTuple::fields(argcnt); 1446 int argp = TypeFunc::Parms; 1447 fields[argp++] = TypePtr::NOTNULL; // coeffs 1448 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1449 1450 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1451 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1452 1453 // result type needed 1454 fields = TypeTuple::fields(1); 1455 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1456 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1457 return TypeFunc::make(domain, range); 1458 } 1459 1460 // Dilithium NTT multiply function 1461 static const TypeFunc* make_dilithiumNttMult_Type() { 1462 int argcnt = 3; 1463 1464 const Type** fields = TypeTuple::fields(argcnt); 1465 int argp = TypeFunc::Parms; 1466 fields[argp++] = TypePtr::NOTNULL; // result 1467 fields[argp++] = TypePtr::NOTNULL; // ntta 1468 fields[argp++] = TypePtr::NOTNULL; // nttb 1469 1470 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1471 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1472 1473 // result type needed 1474 fields = TypeTuple::fields(1); 1475 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1476 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1477 return TypeFunc::make(domain, range); 1478 } 1479 1480 // Dilithium Montgomery multiply a polynome coefficient array by a constant 1481 static const TypeFunc* make_dilithiumMontMulByConstant_Type() { 1482 int argcnt = 2; 1483 1484 const Type** fields = TypeTuple::fields(argcnt); 1485 int argp = TypeFunc::Parms; 1486 fields[argp++] = TypePtr::NOTNULL; // coeffs 1487 fields[argp++] = TypeInt::INT; // constant multiplier 1488 1489 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1490 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1491 1492 // result type needed 1493 fields = TypeTuple::fields(1); 1494 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1495 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1496 return TypeFunc::make(domain, range); 1497 } 1498 1499 // Dilithium decompose polynomial 1500 static const TypeFunc* make_dilithiumDecomposePoly_Type() { 1501 int argcnt = 5; 1502 1503 const Type** fields = TypeTuple::fields(argcnt); 1504 int argp = TypeFunc::Parms; 1505 fields[argp++] = TypePtr::NOTNULL; // input 1506 fields[argp++] = TypePtr::NOTNULL; // lowPart 1507 fields[argp++] = TypePtr::NOTNULL; // highPart 1508 fields[argp++] = TypeInt::INT; // 2 * gamma2 1509 fields[argp++] = TypeInt::INT; // multiplier 1510 1511 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1512 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1513 1514 // result type needed 1515 fields = TypeTuple::fields(1); 1516 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1517 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1518 return TypeFunc::make(domain, range); 1519 } 1520 1521 static const TypeFunc* make_base64_encodeBlock_Type() { 1522 int argcnt = 6; 1523 1524 const Type** fields = TypeTuple::fields(argcnt); 1525 int argp = TypeFunc::Parms; 1526 fields[argp++] = TypePtr::NOTNULL; // src array 1527 fields[argp++] = TypeInt::INT; // offset 1528 fields[argp++] = TypeInt::INT; // length 1529 fields[argp++] = TypePtr::NOTNULL; // dest array 1530 fields[argp++] = TypeInt::INT; // dp 1531 fields[argp++] = TypeInt::BOOL; // isURL 1532 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1533 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1534 1535 // result type needed 1536 fields = TypeTuple::fields(1); 1537 fields[TypeFunc::Parms + 0] = nullptr; // void 1538 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1539 return TypeFunc::make(domain, range); 1540 } 1541 1542 static const TypeFunc* make_string_IndexOf_Type() { 1543 int argcnt = 4; 1544 1545 const Type** fields = TypeTuple::fields(argcnt); 1546 int argp = TypeFunc::Parms; 1547 fields[argp++] = TypePtr::NOTNULL; // haystack array 1548 fields[argp++] = TypeInt::INT; // haystack length 1549 fields[argp++] = TypePtr::NOTNULL; // needle array 1550 fields[argp++] = TypeInt::INT; // needle length 1551 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1552 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1553 1554 // result type needed 1555 fields = TypeTuple::fields(1); 1556 fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack 1557 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1558 return TypeFunc::make(domain, range); 1559 } 1560 1561 static const TypeFunc* make_base64_decodeBlock_Type() { 1562 int argcnt = 7; 1563 1564 const Type** fields = TypeTuple::fields(argcnt); 1565 int argp = TypeFunc::Parms; 1566 fields[argp++] = TypePtr::NOTNULL; // src array 1567 fields[argp++] = TypeInt::INT; // src offset 1568 fields[argp++] = TypeInt::INT; // src length 1569 fields[argp++] = TypePtr::NOTNULL; // dest array 1570 fields[argp++] = TypeInt::INT; // dest offset 1571 fields[argp++] = TypeInt::BOOL; // isURL 1572 fields[argp++] = TypeInt::BOOL; // isMIME 1573 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1574 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1575 1576 // result type needed 1577 fields = TypeTuple::fields(1); 1578 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1579 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1580 return TypeFunc::make(domain, range); 1581 } 1582 1583 static const TypeFunc* make_poly1305_processBlocks_Type() { 1584 int argcnt = 4; 1585 1586 const Type** fields = TypeTuple::fields(argcnt); 1587 int argp = TypeFunc::Parms; 1588 fields[argp++] = TypePtr::NOTNULL; // input array 1589 fields[argp++] = TypeInt::INT; // input length 1590 fields[argp++] = TypePtr::NOTNULL; // accumulator array 1591 fields[argp++] = TypePtr::NOTNULL; // r array 1592 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1593 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1594 1595 // result type needed 1596 fields = TypeTuple::fields(1); 1597 fields[TypeFunc::Parms + 0] = nullptr; // void 1598 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1599 return TypeFunc::make(domain, range); 1600 } 1601 1602 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() { 1603 int argcnt = 3; 1604 1605 const Type** fields = TypeTuple::fields(argcnt); 1606 int argp = TypeFunc::Parms; 1607 fields[argp++] = TypePtr::NOTNULL; // a array 1608 fields[argp++] = TypePtr::NOTNULL; // b array 1609 fields[argp++] = TypePtr::NOTNULL; // r(esult) array 1610 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1611 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1612 1613 // result type needed 1614 fields = TypeTuple::fields(1); 1615 fields[TypeFunc::Parms + 0] = nullptr; // void 1616 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1617 return TypeFunc::make(domain, range); 1618 } 1619 1620 static const TypeFunc* make_intpoly_assign_Type() { 1621 int argcnt = 4; 1622 1623 const Type** fields = TypeTuple::fields(argcnt); 1624 int argp = TypeFunc::Parms; 1625 fields[argp++] = TypeInt::INT; // set flag 1626 fields[argp++] = TypePtr::NOTNULL; // a array (result) 1627 fields[argp++] = TypePtr::NOTNULL; // b array (if set is set) 1628 fields[argp++] = TypeInt::INT; // array length 1629 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1630 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1631 1632 // result type needed 1633 fields = TypeTuple::fields(1); 1634 fields[TypeFunc::Parms + 0] = nullptr; // void 1635 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1636 return TypeFunc::make(domain, range); 1637 } 1638 1639 //------------- Interpreter state for on stack replacement 1640 static const TypeFunc* make_osr_end_Type() { 1641 // create input type (domain) 1642 const Type **fields = TypeTuple::fields(1); 1643 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1644 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1645 1646 // create result type 1647 fields = TypeTuple::fields(1); 1648 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1649 fields[TypeFunc::Parms+0] = nullptr; // void 1650 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1651 return TypeFunc::make(domain, range); 1652 } 1653 1654 //------------------------------------------------------------------------------------- 1655 // register policy 1656 1657 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1658 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1659 switch (register_save_policy[reg]) { 1660 case 'C': return false; //SOC 1661 case 'E': return true ; //SOE 1662 case 'N': return false; //NS 1663 case 'A': return false; //AS 1664 } 1665 ShouldNotReachHere(); 1666 return false; 1667 } 1668 1669 //----------------------------------------------------------------------- 1670 // Exceptions 1671 // 1672 1673 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1674 1675 // The method is an entry that is always called by a C++ method not 1676 // directly from compiled code. Compiled code will call the C++ method following. 1677 // We can't allow async exception to be installed during exception processing. 1678 JRT_ENTRY_NO_ASYNC_PROF(address, OptoRuntime, handle_exception_C_helper, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1679 // The frame we rethrow the exception to might not have been processed by the GC yet. 1680 // The stack watermark barrier takes care of detecting that and ensuring the frame 1681 // has updated oops. 1682 StackWatermarkSet::after_unwind(current); 1683 1684 // Do not confuse exception_oop with pending_exception. The exception_oop 1685 // is only used to pass arguments into the method. Not for general 1686 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1687 // the runtime stubs checks this on exit. 1688 assert(current->exception_oop() != nullptr, "exception oop is found"); 1689 address handler_address = nullptr; 1690 1691 Handle exception(current, current->exception_oop()); 1692 address pc = current->exception_pc(); 1693 1694 // Clear out the exception oop and pc since looking up an 1695 // exception handler can cause class loading, which might throw an 1696 // exception and those fields are expected to be clear during 1697 // normal bytecode execution. 1698 current->clear_exception_oop_and_pc(); 1699 1700 LogTarget(Info, exceptions) lt; 1701 if (lt.is_enabled()) { 1702 LogStream ls(lt); 1703 trace_exception(&ls, exception(), pc, ""); 1704 } 1705 1706 // for AbortVMOnException flag 1707 Exceptions::debug_check_abort(exception); 1708 1709 #ifdef ASSERT 1710 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1711 // should throw an exception here 1712 ShouldNotReachHere(); 1713 } 1714 #endif 1715 1716 // new exception handling: this method is entered only from adapters 1717 // exceptions from compiled java methods are handled in compiled code 1718 // using rethrow node 1719 1720 nm = CodeCache::find_nmethod(pc); 1721 assert(nm != nullptr, "No NMethod found"); 1722 if (nm->is_native_method()) { 1723 fatal("Native method should not have path to exception handling"); 1724 } else { 1725 // we are switching to old paradigm: search for exception handler in caller_frame 1726 // instead in exception handler of caller_frame.sender() 1727 1728 if (JvmtiExport::can_post_on_exceptions()) { 1729 // "Full-speed catching" is not necessary here, 1730 // since we're notifying the VM on every catch. 1731 // Force deoptimization and the rest of the lookup 1732 // will be fine. 1733 deoptimize_caller_frame(current); 1734 } 1735 1736 // Check the stack guard pages. If enabled, look for handler in this frame; 1737 // otherwise, forcibly unwind the frame. 1738 // 1739 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1740 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1741 bool deopting = false; 1742 if (nm->is_deopt_pc(pc)) { 1743 deopting = true; 1744 RegisterMap map(current, 1745 RegisterMap::UpdateMap::skip, 1746 RegisterMap::ProcessFrames::include, 1747 RegisterMap::WalkContinuation::skip); 1748 frame deoptee = current->last_frame().sender(&map); 1749 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1750 // Adjust the pc back to the original throwing pc 1751 pc = deoptee.pc(); 1752 } 1753 1754 // If we are forcing an unwind because of stack overflow then deopt is 1755 // irrelevant since we are throwing the frame away anyway. 1756 1757 if (deopting && !force_unwind) { 1758 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1759 } else { 1760 1761 handler_address = 1762 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc); 1763 1764 if (handler_address == nullptr) { 1765 bool recursive_exception = false; 1766 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1767 assert (handler_address != nullptr, "must have compiled handler"); 1768 // Update the exception cache only when the unwind was not forced 1769 // and there didn't happen another exception during the computation of the 1770 // compiled exception handler. Checking for exception oop equality is not 1771 // sufficient because some exceptions are pre-allocated and reused. 1772 if (!force_unwind && !recursive_exception) { 1773 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1774 } 1775 } else { 1776 #ifdef ASSERT 1777 bool recursive_exception = false; 1778 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1779 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1780 p2i(handler_address), p2i(computed_address)); 1781 #endif 1782 } 1783 } 1784 1785 current->set_exception_pc(pc); 1786 current->set_exception_handler_pc(handler_address); 1787 1788 // Check if the exception PC is a MethodHandle call site. 1789 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1790 } 1791 1792 // Restore correct return pc. Was saved above. 1793 current->set_exception_oop(exception()); 1794 return handler_address; 1795 1796 JRT_END 1797 1798 // We are entering here from exception_blob 1799 // If there is a compiled exception handler in this method, we will continue there; 1800 // otherwise we will unwind the stack and continue at the caller of top frame method 1801 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1802 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1803 // we looked up the handler for has been deoptimized in the meantime. If it has been 1804 // we must not use the handler and instead return the deopt blob. 1805 address OptoRuntime::handle_exception_C(JavaThread* current) { 1806 // 1807 // We are in Java not VM and in debug mode we have a NoHandleMark 1808 // 1809 #ifndef PRODUCT 1810 SharedRuntime::_find_handler_ctr++; // find exception handler 1811 #endif 1812 debug_only(NoHandleMark __hm;) 1813 nmethod* nm = nullptr; 1814 address handler_address = nullptr; 1815 { 1816 // Enter the VM 1817 1818 ResetNoHandleMark rnhm; 1819 handler_address = handle_exception_C_helper(current, nm); 1820 } 1821 1822 // Back in java: Use no oops, DON'T safepoint 1823 1824 // Now check to see if the handler we are returning is in a now 1825 // deoptimized frame 1826 1827 if (nm != nullptr) { 1828 RegisterMap map(current, 1829 RegisterMap::UpdateMap::skip, 1830 RegisterMap::ProcessFrames::skip, 1831 RegisterMap::WalkContinuation::skip); 1832 frame caller = current->last_frame().sender(&map); 1833 #ifdef ASSERT 1834 assert(caller.is_compiled_frame(), "must be"); 1835 #endif // ASSERT 1836 if (caller.is_deoptimized_frame()) { 1837 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1838 } 1839 } 1840 return handler_address; 1841 } 1842 1843 //------------------------------rethrow---------------------------------------- 1844 // We get here after compiled code has executed a 'RethrowNode'. The callee 1845 // is either throwing or rethrowing an exception. The callee-save registers 1846 // have been restored, synchronized objects have been unlocked and the callee 1847 // stack frame has been removed. The return address was passed in. 1848 // Exception oop is passed as the 1st argument. This routine is then called 1849 // from the stub. On exit, we know where to jump in the caller's code. 1850 // After this C code exits, the stub will pop his frame and end in a jump 1851 // (instead of a return). We enter the caller's default handler. 1852 // 1853 // This must be JRT_LEAF: 1854 // - caller will not change its state as we cannot block on exit, 1855 // therefore raw_exception_handler_for_return_address is all it takes 1856 // to handle deoptimized blobs 1857 // 1858 // However, there needs to be a safepoint check in the middle! So compiled 1859 // safepoints are completely watertight. 1860 // 1861 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 1862 // 1863 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1864 // 1865 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1866 // ret_pc will have been loaded from the stack, so for AArch64 will be signed. 1867 AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc)); 1868 1869 #ifndef PRODUCT 1870 SharedRuntime::_rethrow_ctr++; // count rethrows 1871 #endif 1872 assert (exception != nullptr, "should have thrown a NullPointerException"); 1873 #ifdef ASSERT 1874 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1875 // should throw an exception here 1876 ShouldNotReachHere(); 1877 } 1878 #endif 1879 1880 thread->set_vm_result(exception); 1881 // Frame not compiled (handles deoptimization blob) 1882 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1883 } 1884 1885 static const TypeFunc* make_rethrow_Type() { 1886 // create input type (domain) 1887 const Type **fields = TypeTuple::fields(1); 1888 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1889 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1890 1891 // create result type (range) 1892 fields = TypeTuple::fields(1); 1893 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1894 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1895 1896 return TypeFunc::make(domain, range); 1897 } 1898 1899 1900 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1901 // Deoptimize the caller before continuing, as the compiled 1902 // exception handler table may not be valid. 1903 if (!StressCompiledExceptionHandlers && doit) { 1904 deoptimize_caller_frame(thread); 1905 } 1906 } 1907 1908 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1909 // Called from within the owner thread, so no need for safepoint 1910 RegisterMap reg_map(thread, 1911 RegisterMap::UpdateMap::include, 1912 RegisterMap::ProcessFrames::include, 1913 RegisterMap::WalkContinuation::skip); 1914 frame stub_frame = thread->last_frame(); 1915 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1916 frame caller_frame = stub_frame.sender(®_map); 1917 1918 // Deoptimize the caller frame. 1919 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1920 } 1921 1922 1923 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1924 // Called from within the owner thread, so no need for safepoint 1925 RegisterMap reg_map(thread, 1926 RegisterMap::UpdateMap::include, 1927 RegisterMap::ProcessFrames::include, 1928 RegisterMap::WalkContinuation::skip); 1929 frame stub_frame = thread->last_frame(); 1930 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1931 frame caller_frame = stub_frame.sender(®_map); 1932 return caller_frame.is_deoptimized_frame(); 1933 } 1934 1935 static const TypeFunc* make_register_finalizer_Type() { 1936 // create input type (domain) 1937 const Type **fields = TypeTuple::fields(1); 1938 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1939 // // The JavaThread* is passed to each routine as the last argument 1940 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1941 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1942 1943 // create result type (range) 1944 fields = TypeTuple::fields(0); 1945 1946 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1947 1948 return TypeFunc::make(domain,range); 1949 } 1950 1951 const TypeFunc *OptoRuntime::class_init_barrier_Type() { 1952 // create input type (domain) 1953 const Type** fields = TypeTuple::fields(1); 1954 fields[TypeFunc::Parms+0] = TypeKlassPtr::NOTNULL; 1955 // // The JavaThread* is passed to each routine as the last argument 1956 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1957 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1958 1959 // create result type (range) 1960 fields = TypeTuple::fields(0); 1961 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 1962 return TypeFunc::make(domain,range); 1963 } 1964 1965 #if INCLUDE_JFR 1966 static const TypeFunc* make_class_id_load_barrier_Type() { 1967 // create input type (domain) 1968 const Type **fields = TypeTuple::fields(1); 1969 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 1970 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 1971 1972 // create result type (range) 1973 fields = TypeTuple::fields(0); 1974 1975 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 1976 1977 return TypeFunc::make(domain,range); 1978 } 1979 #endif // INCLUDE_JFR 1980 1981 //----------------------------------------------------------------------------- 1982 // runtime upcall support 1983 const TypeFunc *OptoRuntime::runtime_up_call_Type() { 1984 // create input type (domain) 1985 const Type **fields = TypeTuple::fields(1); 1986 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1987 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1988 1989 // create result type (range) 1990 fields = TypeTuple::fields(0); 1991 1992 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1993 1994 return TypeFunc::make(domain,range); 1995 } 1996 1997 //----------------------------------------------------------------------------- 1998 static const TypeFunc* make_dtrace_method_entry_exit_Type() { 1999 // create input type (domain) 2000 const Type **fields = TypeTuple::fields(2); 2001 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2002 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 2003 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2004 2005 // create result type (range) 2006 fields = TypeTuple::fields(0); 2007 2008 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2009 2010 return TypeFunc::make(domain,range); 2011 } 2012 2013 static const TypeFunc* make_dtrace_object_alloc_Type() { 2014 // create input type (domain) 2015 const Type **fields = TypeTuple::fields(2); 2016 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2017 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 2018 2019 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2020 2021 // create result type (range) 2022 fields = TypeTuple::fields(0); 2023 2024 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2025 2026 return TypeFunc::make(domain,range); 2027 } 2028 2029 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, register_finalizer_C, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current)) 2030 assert(oopDesc::is_oop(obj), "must be a valid oop"); 2031 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 2032 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 2033 JRT_END 2034 2035 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, class_init_barrier_C, OptoRuntime::class_init_barrier_C(Klass* k, JavaThread* current)) 2036 InstanceKlass* ik = InstanceKlass::cast(k); 2037 if (ik->should_be_initialized()) { 2038 ik->initialize(CHECK); 2039 } else if (UsePerfData) { 2040 _perf_OptoRuntime_class_init_barrier_redundant_count->inc(); 2041 } 2042 JRT_END 2043 2044 //----------------------------------------------------------------------------- 2045 2046 NamedCounter * volatile OptoRuntime::_named_counters = nullptr; 2047 2048 // 2049 // dump the collected NamedCounters. 2050 // 2051 void OptoRuntime::print_named_counters() { 2052 int total_lock_count = 0; 2053 int eliminated_lock_count = 0; 2054 2055 NamedCounter* c = _named_counters; 2056 while (c) { 2057 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 2058 int count = c->count(); 2059 if (count > 0) { 2060 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 2061 if (Verbose) { 2062 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 2063 } 2064 total_lock_count += count; 2065 if (eliminated) { 2066 eliminated_lock_count += count; 2067 } 2068 } 2069 } 2070 c = c->next(); 2071 } 2072 if (total_lock_count > 0) { 2073 tty->print_cr("dynamic locks: %d", total_lock_count); 2074 if (eliminated_lock_count) { 2075 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 2076 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 2077 } 2078 } 2079 } 2080 2081 // 2082 // Allocate a new NamedCounter. The JVMState is used to generate the 2083 // name which consists of method@line for the inlining tree. 2084 // 2085 2086 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 2087 int max_depth = youngest_jvms->depth(); 2088 2089 // Visit scopes from youngest to oldest. 2090 bool first = true; 2091 stringStream st; 2092 for (int depth = max_depth; depth >= 1; depth--) { 2093 JVMState* jvms = youngest_jvms->of_depth(depth); 2094 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr; 2095 if (!first) { 2096 st.print(" "); 2097 } else { 2098 first = false; 2099 } 2100 int bci = jvms->bci(); 2101 if (bci < 0) bci = 0; 2102 if (m != nullptr) { 2103 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 2104 } else { 2105 st.print("no method"); 2106 } 2107 st.print("@%d", bci); 2108 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 2109 } 2110 NamedCounter* c = new NamedCounter(st.freeze(), tag); 2111 2112 // atomically add the new counter to the head of the list. We only 2113 // add counters so this is safe. 2114 NamedCounter* head; 2115 do { 2116 c->set_next(nullptr); 2117 head = _named_counters; 2118 c->set_next(head); 2119 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 2120 return c; 2121 } 2122 2123 void OptoRuntime::initialize_types() { 2124 _new_instance_Type = make_new_instance_Type(); 2125 _new_array_Type = make_new_array_Type(); 2126 _multianewarray2_Type = multianewarray_Type(2); 2127 _multianewarray3_Type = multianewarray_Type(3); 2128 _multianewarray4_Type = multianewarray_Type(4); 2129 _multianewarray5_Type = multianewarray_Type(5); 2130 _multianewarrayN_Type = make_multianewarrayN_Type(); 2131 _complete_monitor_enter_Type = make_complete_monitor_enter_Type(); 2132 _complete_monitor_exit_Type = make_complete_monitor_exit_Type(); 2133 _monitor_notify_Type = make_monitor_notify_Type(); 2134 _uncommon_trap_Type = make_uncommon_trap_Type(); 2135 _athrow_Type = make_athrow_Type(); 2136 _rethrow_Type = make_rethrow_Type(); 2137 _Math_D_D_Type = make_Math_D_D_Type(); 2138 _Math_DD_D_Type = make_Math_DD_D_Type(); 2139 _modf_Type = make_modf_Type(); 2140 _l2f_Type = make_l2f_Type(); 2141 _void_long_Type = make_void_long_Type(); 2142 _void_void_Type = make_void_void_Type(); 2143 _jfr_write_checkpoint_Type = make_jfr_write_checkpoint_Type(); 2144 _flush_windows_Type = make_flush_windows_Type(); 2145 _fast_arraycopy_Type = make_arraycopy_Type(ac_fast); 2146 _checkcast_arraycopy_Type = make_arraycopy_Type(ac_checkcast); 2147 _generic_arraycopy_Type = make_arraycopy_Type(ac_generic); 2148 _slow_arraycopy_Type = make_arraycopy_Type(ac_slow); 2149 _unsafe_setmemory_Type = make_setmemory_Type(); 2150 _array_fill_Type = make_array_fill_Type(); 2151 _array_sort_Type = make_array_sort_Type(); 2152 _array_partition_Type = make_array_partition_Type(); 2153 _aescrypt_block_Type = make_aescrypt_block_Type(); 2154 _cipherBlockChaining_aescrypt_Type = make_cipherBlockChaining_aescrypt_Type(); 2155 _electronicCodeBook_aescrypt_Type = make_electronicCodeBook_aescrypt_Type(); 2156 _counterMode_aescrypt_Type = make_counterMode_aescrypt_Type(); 2157 _galoisCounterMode_aescrypt_Type = make_galoisCounterMode_aescrypt_Type(); 2158 _digestBase_implCompress_with_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ true); 2159 _digestBase_implCompress_without_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ false);; 2160 _digestBase_implCompressMB_with_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ true); 2161 _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false); 2162 _double_keccak_Type = make_double_keccak_Type(); 2163 _multiplyToLen_Type = make_multiplyToLen_Type(); 2164 _montgomeryMultiply_Type = make_montgomeryMultiply_Type(); 2165 _montgomerySquare_Type = make_montgomerySquare_Type(); 2166 _squareToLen_Type = make_squareToLen_Type(); 2167 _mulAdd_Type = make_mulAdd_Type(); 2168 _bigIntegerShift_Type = make_bigIntegerShift_Type(); 2169 _vectorizedMismatch_Type = make_vectorizedMismatch_Type(); 2170 _ghash_processBlocks_Type = make_ghash_processBlocks_Type(); 2171 _chacha20Block_Type = make_chacha20Block_Type(); 2172 2173 _dilithiumAlmostNtt_Type = make_dilithiumAlmostNtt_Type(); 2174 _dilithiumAlmostInverseNtt_Type = make_dilithiumAlmostInverseNtt_Type(); 2175 _dilithiumNttMult_Type = make_dilithiumNttMult_Type(); 2176 _dilithiumMontMulByConstant_Type = make_dilithiumMontMulByConstant_Type(); 2177 _dilithiumDecomposePoly_Type = make_dilithiumDecomposePoly_Type(); 2178 2179 _base64_encodeBlock_Type = make_base64_encodeBlock_Type(); 2180 _base64_decodeBlock_Type = make_base64_decodeBlock_Type(); 2181 _string_IndexOf_Type = make_string_IndexOf_Type(); 2182 _poly1305_processBlocks_Type = make_poly1305_processBlocks_Type(); 2183 _intpoly_montgomeryMult_P256_Type = make_intpoly_montgomeryMult_P256_Type(); 2184 _intpoly_assign_Type = make_intpoly_assign_Type(); 2185 _updateBytesCRC32_Type = make_updateBytesCRC32_Type(); 2186 _updateBytesCRC32C_Type = make_updateBytesCRC32C_Type(); 2187 _updateBytesAdler32_Type = make_updateBytesAdler32_Type(); 2188 _osr_end_Type = make_osr_end_Type(); 2189 _register_finalizer_Type = make_register_finalizer_Type(); 2190 JFR_ONLY( 2191 _class_id_load_barrier_Type = make_class_id_load_barrier_Type(); 2192 ) 2193 #if INCLUDE_JVMTI 2194 _notify_jvmti_vthread_Type = make_notify_jvmti_vthread_Type(); 2195 #endif // INCLUDE_JVMTI 2196 _dtrace_method_entry_exit_Type = make_dtrace_method_entry_exit_Type(); 2197 _dtrace_object_alloc_Type = make_dtrace_object_alloc_Type(); 2198 } 2199 2200 int trace_exception_counter = 0; 2201 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 2202 trace_exception_counter++; 2203 stringStream tempst; 2204 2205 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 2206 exception_oop->print_value_on(&tempst); 2207 tempst.print(" in "); 2208 CodeBlob* blob = CodeCache::find_blob(exception_pc); 2209 if (blob->is_nmethod()) { 2210 blob->as_nmethod()->method()->print_value_on(&tempst); 2211 } else if (blob->is_runtime_stub()) { 2212 tempst.print("<runtime-stub>"); 2213 } else { 2214 tempst.print("<unknown>"); 2215 } 2216 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 2217 tempst.print("]"); 2218 2219 st->print_raw_cr(tempst.freeze()); 2220 } 2221 2222 #define DO_COUNTERS2(macro2, macro1) \ 2223 macro2(OptoRuntime, new_instance_C) \ 2224 macro2(OptoRuntime, new_array_C) \ 2225 macro2(OptoRuntime, new_array_nozero_C) \ 2226 macro2(OptoRuntime, multianewarray2_C) \ 2227 macro2(OptoRuntime, multianewarray3_C) \ 2228 macro2(OptoRuntime, multianewarray4_C) \ 2229 macro2(OptoRuntime, multianewarrayN_C) \ 2230 macro2(OptoRuntime, monitor_notify_C) \ 2231 macro2(OptoRuntime, monitor_notifyAll_C) \ 2232 macro2(OptoRuntime, handle_exception_C_helper) \ 2233 macro2(OptoRuntime, register_finalizer_C) \ 2234 macro2(OptoRuntime, class_init_barrier_C) \ 2235 macro1(OptoRuntime, class_init_barrier_redundant) 2236 2237 #define INIT_COUNTER_TIME_AND_CNT(sub, name) \ 2238 NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \ 2239 NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count"); 2240 2241 #define INIT_COUNTER_CNT(sub, name) \ 2242 NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count"); 2243 2244 void OptoRuntime::init_counters() { 2245 assert(CompilerConfig::is_c2_enabled(), ""); 2246 2247 if (UsePerfData) { 2248 EXCEPTION_MARK; 2249 2250 DO_COUNTERS2(INIT_COUNTER_TIME_AND_CNT, INIT_COUNTER_CNT) 2251 2252 if (HAS_PENDING_EXCEPTION) { 2253 vm_exit_during_initialization("jvm_perf_init failed unexpectedly"); 2254 } 2255 } 2256 } 2257 #undef INIT_COUNTER_TIME_AND_CNT 2258 #undef INIT_COUNTER_CNT 2259 2260 #define PRINT_COUNTER_TIME_AND_CNT(sub, name) { \ 2261 jlong count = _perf_##sub##_##name##_count->get_value(); \ 2262 if (count > 0) { \ 2263 st->print_cr(" %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \ 2264 _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \ 2265 _perf_##sub##_##name##_timer->thread_counter_value_us(), \ 2266 count); \ 2267 }} 2268 2269 #define PRINT_COUNTER_CNT(sub, name) { \ 2270 jlong count = _perf_##sub##_##name##_count->get_value(); \ 2271 if (count > 0) { \ 2272 st->print_cr(" %-30s = " JLONG_FORMAT_W(5) " events", #name, count); \ 2273 }} 2274 2275 void OptoRuntime::print_counters_on(outputStream* st) { 2276 if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c2_enabled()) { 2277 DO_COUNTERS2(PRINT_COUNTER_TIME_AND_CNT, PRINT_COUNTER_CNT) 2278 } else { 2279 st->print_cr(" OptoRuntime: no info (%s is disabled)", 2280 (!CompilerConfig::is_c2_enabled() ? "C2" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData"))); 2281 } 2282 } 2283 2284 #undef PRINT_COUNTER_TIME_AND_CNT 2285 #undef PRINT_COUNTER_CNT 2286 #undef DO_COUNTERS2