1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmClasses.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "code/codeCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/nmethod.hpp" 30 #include "code/pcDesc.hpp" 31 #include "code/scopeDesc.hpp" 32 #include "code/vtableStubs.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compilerDefinitions.inline.hpp" 36 #include "compiler/oopMap.hpp" 37 #include "gc/g1/g1HeapRegion.hpp" 38 #include "gc/shared/barrierSet.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "gc/shared/gcLocker.hpp" 41 #include "interpreter/bytecode.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/linkResolver.hpp" 44 #include "logging/log.hpp" 45 #include "logging/logStream.hpp" 46 #include "memory/oopFactory.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "oops/klass.inline.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/oop.inline.hpp" 51 #include "oops/typeArrayOop.inline.hpp" 52 #include "opto/ad.hpp" 53 #include "opto/addnode.hpp" 54 #include "opto/callnode.hpp" 55 #include "opto/cfgnode.hpp" 56 #include "opto/graphKit.hpp" 57 #include "opto/machnode.hpp" 58 #include "opto/matcher.hpp" 59 #include "opto/memnode.hpp" 60 #include "opto/mulnode.hpp" 61 #include "opto/output.hpp" 62 #include "opto/runtime.hpp" 63 #include "opto/subnode.hpp" 64 #include "prims/jvmtiExport.hpp" 65 #include "runtime/atomic.hpp" 66 #include "runtime/frame.inline.hpp" 67 #include "runtime/handles.inline.hpp" 68 #include "runtime/interfaceSupport.inline.hpp" 69 #include "runtime/java.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/perfData.inline.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/signature.hpp" 74 #include "runtime/stackWatermarkSet.hpp" 75 #include "runtime/synchronizer.hpp" 76 #include "runtime/threadWXSetters.inline.hpp" 77 #include "runtime/vframe.hpp" 78 #include "runtime/vframe_hp.hpp" 79 #include "runtime/vframeArray.hpp" 80 #include "services/management.hpp" 81 #include "utilities/copy.hpp" 82 #include "utilities/preserveException.hpp" 83 84 85 // For debugging purposes: 86 // To force FullGCALot inside a runtime function, add the following two lines 87 // 88 // Universe::release_fullgc_alot_dummy(); 89 // Universe::heap()->collect(); 90 // 91 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 92 93 94 #define C2_BLOB_FIELD_DEFINE(name, type) \ 95 type* OptoRuntime:: BLOB_FIELD_NAME(name) = nullptr; 96 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 97 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \ 98 address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr; 99 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \ 100 address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr; 101 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE) 102 #undef C2_BLOB_FIELD_DEFINE 103 #undef C2_STUB_FIELD_DEFINE 104 #undef C2_JVMTI_STUB_FIELD_DEFINE 105 106 address OptoRuntime::_vtable_must_compile_Java = nullptr; 107 108 PerfCounter* _perf_OptoRuntime_class_init_barrier_redundant_count = nullptr; 109 110 // This should be called in an assertion at the start of OptoRuntime routines 111 // which are entered from compiled code (all of them) 112 #ifdef ASSERT 113 static bool check_compiled_frame(JavaThread* thread) { 114 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 115 RegisterMap map(thread, 116 RegisterMap::UpdateMap::skip, 117 RegisterMap::ProcessFrames::include, 118 RegisterMap::WalkContinuation::skip); 119 frame caller = thread->last_frame().sender(&map); 120 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 121 return true; 122 } 123 #endif // ASSERT 124 125 /* 126 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 127 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 128 if (var == nullptr) { return false; } 129 */ 130 131 #define GEN_C2_BLOB(name, type) \ 132 BLOB_FIELD_NAME(name) = \ 133 generate_ ## name ## _blob(); \ 134 if (BLOB_FIELD_NAME(name) == nullptr) { return false; } 135 136 // a few helper macros to conjure up generate_stub call arguments 137 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 138 #define C2_STUB_TYPEFUNC(name) name ## _Type 139 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C) 140 #define C2_STUB_ID(name) StubId:: JOIN3(c2, name, id) 141 #define C2_STUB_NAME(name) stub_name(C2_STUB_ID(name)) 142 143 // Almost all the C functions targeted from the generated stubs are 144 // implemented locally to OptoRuntime with names that can be generated 145 // from the stub name by appending suffix '_C'. However, in two cases 146 // a common target method also needs to be called from shared runtime 147 // stubs. In these two cases the opto stubs rely on method 148 // imlementations defined in class SharedRuntime. The following 149 // defines temporarily rebind the generated names to reference the 150 // relevant implementations. 151 152 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc ) \ 153 C2_STUB_FIELD_NAME(name) = \ 154 generate_stub(env, \ 155 C2_STUB_TYPEFUNC(name), \ 156 C2_STUB_C_FUNC(name), \ 157 C2_STUB_NAME(name), \ 158 C2_STUB_ID(name), \ 159 fancy_jump, \ 160 pass_tls, \ 161 pass_retpc); \ 162 if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; } \ 163 164 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name) 165 166 #define GEN_C2_JVMTI_STUB(name) \ 167 STUB_FIELD_NAME(name) = \ 168 generate_stub(env, \ 169 notify_jvmti_vthread_Type, \ 170 C2_JVMTI_STUB_C_FUNC(name), \ 171 C2_STUB_NAME(name), \ 172 C2_STUB_ID(name), \ 173 0, \ 174 true, \ 175 false); \ 176 if (STUB_FIELD_NAME(name) == nullptr) { return false; } \ 177 178 bool OptoRuntime::generate(ciEnv* env) { 179 init_counters(); 180 181 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB) 182 183 return true; 184 } 185 186 #undef GEN_C2_BLOB 187 188 #undef C2_STUB_FIELD_NAME 189 #undef C2_STUB_TYPEFUNC 190 #undef C2_STUB_C_FUNC 191 #undef C2_STUB_NAME 192 #undef GEN_C2_STUB 193 194 #undef C2_JVMTI_STUB_C_FUNC 195 #undef GEN_C2_JVMTI_STUB 196 // #undef gen 197 198 const TypeFunc* OptoRuntime::_new_instance_Type = nullptr; 199 const TypeFunc* OptoRuntime::_new_array_Type = nullptr; 200 const TypeFunc* OptoRuntime::_multianewarray2_Type = nullptr; 201 const TypeFunc* OptoRuntime::_multianewarray3_Type = nullptr; 202 const TypeFunc* OptoRuntime::_multianewarray4_Type = nullptr; 203 const TypeFunc* OptoRuntime::_multianewarray5_Type = nullptr; 204 const TypeFunc* OptoRuntime::_multianewarrayN_Type = nullptr; 205 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type = nullptr; 206 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type = nullptr; 207 const TypeFunc* OptoRuntime::_monitor_notify_Type = nullptr; 208 const TypeFunc* OptoRuntime::_uncommon_trap_Type = nullptr; 209 const TypeFunc* OptoRuntime::_athrow_Type = nullptr; 210 const TypeFunc* OptoRuntime::_rethrow_Type = nullptr; 211 const TypeFunc* OptoRuntime::_Math_D_D_Type = nullptr; 212 const TypeFunc* OptoRuntime::_Math_DD_D_Type = nullptr; 213 const TypeFunc* OptoRuntime::_modf_Type = nullptr; 214 const TypeFunc* OptoRuntime::_l2f_Type = nullptr; 215 const TypeFunc* OptoRuntime::_void_long_Type = nullptr; 216 const TypeFunc* OptoRuntime::_void_void_Type = nullptr; 217 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type = nullptr; 218 const TypeFunc* OptoRuntime::_flush_windows_Type = nullptr; 219 const TypeFunc* OptoRuntime::_fast_arraycopy_Type = nullptr; 220 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type = nullptr; 221 const TypeFunc* OptoRuntime::_generic_arraycopy_Type = nullptr; 222 const TypeFunc* OptoRuntime::_slow_arraycopy_Type = nullptr; 223 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type = nullptr; 224 const TypeFunc* OptoRuntime::_array_fill_Type = nullptr; 225 const TypeFunc* OptoRuntime::_array_sort_Type = nullptr; 226 const TypeFunc* OptoRuntime::_array_partition_Type = nullptr; 227 const TypeFunc* OptoRuntime::_aescrypt_block_Type = nullptr; 228 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type = nullptr; 229 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type = nullptr; 230 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type = nullptr; 231 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type = nullptr; 232 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type = nullptr; 233 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type = nullptr; 234 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type = nullptr; 235 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr; 236 const TypeFunc* OptoRuntime::_double_keccak_Type = nullptr; 237 const TypeFunc* OptoRuntime::_multiplyToLen_Type = nullptr; 238 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type = nullptr; 239 const TypeFunc* OptoRuntime::_montgomerySquare_Type = nullptr; 240 const TypeFunc* OptoRuntime::_squareToLen_Type = nullptr; 241 const TypeFunc* OptoRuntime::_mulAdd_Type = nullptr; 242 const TypeFunc* OptoRuntime::_bigIntegerShift_Type = nullptr; 243 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type = nullptr; 244 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type = nullptr; 245 const TypeFunc* OptoRuntime::_chacha20Block_Type = nullptr; 246 const TypeFunc* OptoRuntime::_kyberNtt_Type = nullptr; 247 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type = nullptr; 248 const TypeFunc* OptoRuntime::_kyberNttMult_Type = nullptr; 249 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type = nullptr; 250 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type = nullptr; 251 const TypeFunc* OptoRuntime::_kyber12To16_Type = nullptr; 252 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type = nullptr; 253 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type = nullptr; 254 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type = nullptr; 255 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type = nullptr; 256 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type = nullptr; 257 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type = nullptr; 258 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type = nullptr; 259 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type = nullptr; 260 const TypeFunc* OptoRuntime::_string_IndexOf_Type = nullptr; 261 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type = nullptr; 262 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type = nullptr; 263 const TypeFunc* OptoRuntime::_intpoly_assign_Type = nullptr; 264 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type = nullptr; 265 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type = nullptr; 266 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type = nullptr; 267 const TypeFunc* OptoRuntime::_osr_end_Type = nullptr; 268 const TypeFunc* OptoRuntime::_register_finalizer_Type = nullptr; 269 #if INCLUDE_JFR 270 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type = nullptr; 271 #endif // INCLUDE_JFR 272 #if INCLUDE_JVMTI 273 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type = nullptr; 274 #endif // INCLUDE_JVMTI 275 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type = nullptr; 276 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type = nullptr; 277 278 // Helper method to do generation of RunTimeStub's 279 address OptoRuntime::generate_stub(ciEnv* env, 280 TypeFunc_generator gen, address C_function, 281 const char *name, StubId stub_id, 282 int is_fancy_jump, bool pass_tls, 283 bool return_pc) { 284 285 // Matching the default directive, we currently have no method to match. 286 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompilerThread::current()->compiler()); 287 CompilationMemoryStatisticMark cmsm(directive); 288 ResourceMark rm; 289 Compile C(env, gen, C_function, name, stub_id, is_fancy_jump, pass_tls, return_pc, directive); 290 DirectivesStack::release(directive); 291 return C.stub_entry_point(); 292 } 293 294 const char* OptoRuntime::stub_name(address entry) { 295 #ifndef PRODUCT 296 CodeBlob* cb = CodeCache::find_blob(entry); 297 RuntimeStub* rs =(RuntimeStub *)cb; 298 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub"); 299 return rs->name(); 300 #else 301 // Fast implementation for product mode (maybe it should be inlined too) 302 return "runtime stub"; 303 #endif 304 } 305 306 // local methods passed as arguments to stub generator that forward 307 // control to corresponding JRT methods of SharedRuntime 308 309 void OptoRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 310 oopDesc* dest, jint dest_pos, 311 jint length, JavaThread* thread) { 312 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread); 313 } 314 315 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) { 316 SharedRuntime::complete_monitor_locking_C(obj, lock, current); 317 } 318 319 320 //============================================================================= 321 // Opto compiler runtime routines 322 //============================================================================= 323 324 325 //=============================allocation====================================== 326 // We failed the fast-path allocation. Now we need to do a scavenge or GC 327 // and try allocation again. 328 329 // object allocation 330 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_instance_C, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current)) 331 JRT_BLOCK; 332 #ifndef PRODUCT 333 SharedRuntime::_new_instance_ctr++; // new instance requires GC 334 #endif 335 assert(check_compiled_frame(current), "incorrect caller"); 336 337 // These checks are cheap to make and support reflective allocation. 338 int lh = klass->layout_helper(); 339 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 340 Handle holder(current, klass->klass_holder()); // keep the klass alive 341 klass->check_valid_for_instantiation(false, THREAD); 342 if (!HAS_PENDING_EXCEPTION) { 343 InstanceKlass::cast(klass)->initialize(THREAD); 344 } 345 } 346 347 if (!HAS_PENDING_EXCEPTION) { 348 // Scavenge and allocate an instance. 349 Handle holder(current, klass->klass_holder()); // keep the klass alive 350 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 351 current->set_vm_result_oop(result); 352 353 // Pass oops back through thread local storage. Our apparent type to Java 354 // is that we return an oop, but we can block on exit from this routine and 355 // a GC can trash the oop in C's return register. The generated stub will 356 // fetch the oop from TLS after any possible GC. 357 } 358 359 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 360 JRT_BLOCK_END; 361 362 // inform GC that we won't do card marks for initializing writes. 363 SharedRuntime::on_slowpath_allocation_exit(current); 364 JRT_END 365 366 367 // array allocation 368 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_C, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current)) 369 JRT_BLOCK; 370 #ifndef PRODUCT 371 SharedRuntime::_new_array_ctr++; // new array requires GC 372 #endif 373 assert(check_compiled_frame(current), "incorrect caller"); 374 375 // Scavenge and allocate an instance. 376 oop result; 377 378 if (array_type->is_typeArray_klass()) { 379 // The oopFactory likes to work with the element type. 380 // (We could bypass the oopFactory, since it doesn't add much value.) 381 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 382 result = oopFactory::new_typeArray(elem_type, len, THREAD); 383 } else { 384 // Although the oopFactory likes to work with the elem_type, 385 // the compiler prefers the array_type, since it must already have 386 // that latter value in hand for the fast path. 387 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 388 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 389 result = oopFactory::new_objArray(elem_type, len, THREAD); 390 } 391 392 // Pass oops back through thread local storage. Our apparent type to Java 393 // is that we return an oop, but we can block on exit from this routine and 394 // a GC can trash the oop in C's return register. The generated stub will 395 // fetch the oop from TLS after any possible GC. 396 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 397 current->set_vm_result_oop(result); 398 JRT_BLOCK_END; 399 400 // inform GC that we won't do card marks for initializing writes. 401 SharedRuntime::on_slowpath_allocation_exit(current); 402 JRT_END 403 404 // array allocation without zeroing 405 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_nozero_C, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 406 JRT_BLOCK; 407 #ifndef PRODUCT 408 SharedRuntime::_new_array_ctr++; // new array requires GC 409 #endif 410 assert(check_compiled_frame(current), "incorrect caller"); 411 412 // Scavenge and allocate an instance. 413 oop result; 414 415 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 416 // The oopFactory likes to work with the element type. 417 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 418 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 419 420 // Pass oops back through thread local storage. Our apparent type to Java 421 // is that we return an oop, but we can block on exit from this routine and 422 // a GC can trash the oop in C's return register. The generated stub will 423 // fetch the oop from TLS after any possible GC. 424 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 425 current->set_vm_result_oop(result); 426 JRT_BLOCK_END; 427 428 429 // inform GC that we won't do card marks for initializing writes. 430 SharedRuntime::on_slowpath_allocation_exit(current); 431 432 oop result = current->vm_result_oop(); 433 if ((len > 0) && (result != nullptr) && 434 is_deoptimized_caller_frame(current)) { 435 // Zero array here if the caller is deoptimized. 436 const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result); 437 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 438 size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 439 assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned"); 440 HeapWord* obj = cast_from_oop<HeapWord*>(result); 441 if (!is_aligned(hs_bytes, BytesPerLong)) { 442 *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0; 443 hs_bytes += BytesPerInt; 444 } 445 446 // Optimized zeroing. 447 assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned"); 448 const size_t aligned_hs = hs_bytes / BytesPerLong; 449 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 450 } 451 452 JRT_END 453 454 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 455 456 // multianewarray for 2 dimensions 457 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray2_C, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 458 #ifndef PRODUCT 459 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 460 #endif 461 assert(check_compiled_frame(current), "incorrect caller"); 462 assert(elem_type->is_klass(), "not a class"); 463 jint dims[2]; 464 dims[0] = len1; 465 dims[1] = len2; 466 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 467 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 468 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 469 current->set_vm_result_oop(obj); 470 JRT_END 471 472 // multianewarray for 3 dimensions 473 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray3_C, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 474 #ifndef PRODUCT 475 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 476 #endif 477 assert(check_compiled_frame(current), "incorrect caller"); 478 assert(elem_type->is_klass(), "not a class"); 479 jint dims[3]; 480 dims[0] = len1; 481 dims[1] = len2; 482 dims[2] = len3; 483 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 484 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 485 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 486 current->set_vm_result_oop(obj); 487 JRT_END 488 489 // multianewarray for 4 dimensions 490 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray4_C, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 491 #ifndef PRODUCT 492 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 493 #endif 494 assert(check_compiled_frame(current), "incorrect caller"); 495 assert(elem_type->is_klass(), "not a class"); 496 jint dims[4]; 497 dims[0] = len1; 498 dims[1] = len2; 499 dims[2] = len3; 500 dims[3] = len4; 501 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 502 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 503 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 504 current->set_vm_result_oop(obj); 505 JRT_END 506 507 // multianewarray for 5 dimensions 508 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 509 #ifndef PRODUCT 510 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 511 #endif 512 assert(check_compiled_frame(current), "incorrect caller"); 513 assert(elem_type->is_klass(), "not a class"); 514 jint dims[5]; 515 dims[0] = len1; 516 dims[1] = len2; 517 dims[2] = len3; 518 dims[3] = len4; 519 dims[4] = len5; 520 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 521 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 522 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 523 current->set_vm_result_oop(obj); 524 JRT_END 525 526 JRT_ENTRY_PROF(void, OptoRuntime, multianewarrayN_C, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 527 assert(check_compiled_frame(current), "incorrect caller"); 528 assert(elem_type->is_klass(), "not a class"); 529 assert(oop(dims)->is_typeArray(), "not an array"); 530 531 ResourceMark rm; 532 jint len = dims->length(); 533 assert(len > 0, "Dimensions array should contain data"); 534 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 535 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 536 c_dims, len); 537 538 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 539 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 540 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 541 current->set_vm_result_oop(obj); 542 JRT_END 543 544 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notify_C, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 545 546 // Very few notify/notifyAll operations find any threads on the waitset, so 547 // the dominant fast-path is to simply return. 548 // Relatedly, it's critical that notify/notifyAll be fast in order to 549 // reduce lock hold times. 550 if (!SafepointSynchronize::is_synchronizing()) { 551 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 552 return; 553 } 554 } 555 556 // This is the case the fast-path above isn't provisioned to handle. 557 // The fast-path is designed to handle frequently arising cases in an efficient manner. 558 // (The fast-path is just a degenerate variant of the slow-path). 559 // Perform the dreaded state transition and pass control into the slow-path. 560 JRT_BLOCK; 561 Handle h_obj(current, obj); 562 ObjectSynchronizer::notify(h_obj, CHECK); 563 JRT_BLOCK_END; 564 JRT_END 565 566 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notifyAll_C, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 567 568 if (!SafepointSynchronize::is_synchronizing() ) { 569 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 570 return; 571 } 572 } 573 574 // This is the case the fast-path above isn't provisioned to handle. 575 // The fast-path is designed to handle frequently arising cases in an efficient manner. 576 // (The fast-path is just a degenerate variant of the slow-path). 577 // Perform the dreaded state transition and pass control into the slow-path. 578 JRT_BLOCK; 579 Handle h_obj(current, obj); 580 ObjectSynchronizer::notifyall(h_obj, CHECK); 581 JRT_BLOCK_END; 582 JRT_END 583 584 static const TypeFunc* make_new_instance_Type() { 585 // create input type (domain) 586 const Type **fields = TypeTuple::fields(1); 587 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 588 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 589 590 // create result type (range) 591 fields = TypeTuple::fields(1); 592 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 593 594 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 595 596 return TypeFunc::make(domain, range); 597 } 598 599 #if INCLUDE_JVMTI 600 static const TypeFunc* make_notify_jvmti_vthread_Type() { 601 // create input type (domain) 602 const Type **fields = TypeTuple::fields(2); 603 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop 604 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean 605 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 606 607 // no result type needed 608 fields = TypeTuple::fields(1); 609 fields[TypeFunc::Parms+0] = nullptr; // void 610 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 611 612 return TypeFunc::make(domain,range); 613 } 614 #endif 615 616 static const TypeFunc* make_athrow_Type() { 617 // create input type (domain) 618 const Type **fields = TypeTuple::fields(1); 619 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 620 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 621 622 // create result type (range) 623 fields = TypeTuple::fields(0); 624 625 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 626 627 return TypeFunc::make(domain, range); 628 } 629 630 static const TypeFunc* make_new_array_Type() { 631 // create input type (domain) 632 const Type **fields = TypeTuple::fields(2); 633 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 634 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 635 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 636 637 // create result type (range) 638 fields = TypeTuple::fields(1); 639 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 640 641 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 642 643 return TypeFunc::make(domain, range); 644 } 645 646 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) { 647 // create input type (domain) 648 const int nargs = ndim + 1; 649 const Type **fields = TypeTuple::fields(nargs); 650 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 651 for( int i = 1; i < nargs; i++ ) 652 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 653 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 654 655 // create result type (range) 656 fields = TypeTuple::fields(1); 657 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 658 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 659 660 return TypeFunc::make(domain, range); 661 } 662 663 static const TypeFunc* make_multianewarrayN_Type() { 664 // create input type (domain) 665 const Type **fields = TypeTuple::fields(2); 666 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 667 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 668 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 669 670 // create result type (range) 671 fields = TypeTuple::fields(1); 672 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 673 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 674 675 return TypeFunc::make(domain, range); 676 } 677 678 static const TypeFunc* make_uncommon_trap_Type() { 679 // create input type (domain) 680 const Type **fields = TypeTuple::fields(1); 681 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 682 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 683 684 // create result type (range) 685 fields = TypeTuple::fields(0); 686 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 687 688 return TypeFunc::make(domain, range); 689 } 690 691 //----------------------------------------------------------------------------- 692 // Monitor Handling 693 694 static const TypeFunc* make_complete_monitor_enter_Type() { 695 // create input type (domain) 696 const Type **fields = TypeTuple::fields(2); 697 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 698 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 699 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 700 701 // create result type (range) 702 fields = TypeTuple::fields(0); 703 704 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 705 706 return TypeFunc::make(domain,range); 707 } 708 709 //----------------------------------------------------------------------------- 710 711 static const TypeFunc* make_complete_monitor_exit_Type() { 712 // create input type (domain) 713 const Type **fields = TypeTuple::fields(3); 714 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 715 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 716 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 717 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 718 719 // create result type (range) 720 fields = TypeTuple::fields(0); 721 722 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 723 724 return TypeFunc::make(domain, range); 725 } 726 727 static const TypeFunc* make_monitor_notify_Type() { 728 // create input type (domain) 729 const Type **fields = TypeTuple::fields(1); 730 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 731 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 732 733 // create result type (range) 734 fields = TypeTuple::fields(0); 735 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 736 return TypeFunc::make(domain, range); 737 } 738 739 static const TypeFunc* make_flush_windows_Type() { 740 // create input type (domain) 741 const Type** fields = TypeTuple::fields(1); 742 fields[TypeFunc::Parms+0] = nullptr; // void 743 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 744 745 // create result type 746 fields = TypeTuple::fields(1); 747 fields[TypeFunc::Parms+0] = nullptr; // void 748 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 749 750 return TypeFunc::make(domain, range); 751 } 752 753 static const TypeFunc* make_l2f_Type() { 754 // create input type (domain) 755 const Type **fields = TypeTuple::fields(2); 756 fields[TypeFunc::Parms+0] = TypeLong::LONG; 757 fields[TypeFunc::Parms+1] = Type::HALF; 758 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 759 760 // create result type (range) 761 fields = TypeTuple::fields(1); 762 fields[TypeFunc::Parms+0] = Type::FLOAT; 763 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 764 765 return TypeFunc::make(domain, range); 766 } 767 768 static const TypeFunc* make_modf_Type() { 769 const Type **fields = TypeTuple::fields(2); 770 fields[TypeFunc::Parms+0] = Type::FLOAT; 771 fields[TypeFunc::Parms+1] = Type::FLOAT; 772 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 773 774 // create result type (range) 775 fields = TypeTuple::fields(1); 776 fields[TypeFunc::Parms+0] = Type::FLOAT; 777 778 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 779 780 return TypeFunc::make(domain, range); 781 } 782 783 static const TypeFunc* make_Math_D_D_Type() { 784 // create input type (domain) 785 const Type **fields = TypeTuple::fields(2); 786 // Symbol* name of class to be loaded 787 fields[TypeFunc::Parms+0] = Type::DOUBLE; 788 fields[TypeFunc::Parms+1] = Type::HALF; 789 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 790 791 // create result type (range) 792 fields = TypeTuple::fields(2); 793 fields[TypeFunc::Parms+0] = Type::DOUBLE; 794 fields[TypeFunc::Parms+1] = Type::HALF; 795 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 796 797 return TypeFunc::make(domain, range); 798 } 799 800 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 801 // create input type (domain) 802 const Type **fields = TypeTuple::fields(num_arg); 803 // Symbol* name of class to be loaded 804 assert(num_arg > 0, "must have at least 1 input"); 805 for (uint i = 0; i < num_arg; i++) { 806 fields[TypeFunc::Parms+i] = in_type; 807 } 808 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 809 810 // create result type (range) 811 const uint num_ret = 1; 812 fields = TypeTuple::fields(num_ret); 813 fields[TypeFunc::Parms+0] = out_type; 814 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 815 816 return TypeFunc::make(domain, range); 817 } 818 819 static const TypeFunc* make_Math_DD_D_Type() { 820 const Type **fields = TypeTuple::fields(4); 821 fields[TypeFunc::Parms+0] = Type::DOUBLE; 822 fields[TypeFunc::Parms+1] = Type::HALF; 823 fields[TypeFunc::Parms+2] = Type::DOUBLE; 824 fields[TypeFunc::Parms+3] = Type::HALF; 825 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 826 827 // create result type (range) 828 fields = TypeTuple::fields(2); 829 fields[TypeFunc::Parms+0] = Type::DOUBLE; 830 fields[TypeFunc::Parms+1] = Type::HALF; 831 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 832 833 return TypeFunc::make(domain, range); 834 } 835 836 //-------------- currentTimeMillis, currentTimeNanos, etc 837 838 static const TypeFunc* make_void_long_Type() { 839 // create input type (domain) 840 const Type **fields = TypeTuple::fields(0); 841 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 842 843 // create result type (range) 844 fields = TypeTuple::fields(2); 845 fields[TypeFunc::Parms+0] = TypeLong::LONG; 846 fields[TypeFunc::Parms+1] = Type::HALF; 847 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 848 849 return TypeFunc::make(domain, range); 850 } 851 852 static const TypeFunc* make_void_void_Type() { 853 // create input type (domain) 854 const Type **fields = TypeTuple::fields(0); 855 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 856 857 // create result type (range) 858 fields = TypeTuple::fields(0); 859 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 860 return TypeFunc::make(domain, range); 861 } 862 863 static const TypeFunc* make_jfr_write_checkpoint_Type() { 864 // create input type (domain) 865 const Type **fields = TypeTuple::fields(0); 866 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 867 868 // create result type (range) 869 fields = TypeTuple::fields(0); 870 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 871 return TypeFunc::make(domain, range); 872 } 873 874 875 // Takes as parameters: 876 // void *dest 877 // long size 878 // uchar byte 879 880 static const TypeFunc* make_setmemory_Type() { 881 // create input type (domain) 882 int argcnt = NOT_LP64(3) LP64_ONLY(4); 883 const Type** fields = TypeTuple::fields(argcnt); 884 int argp = TypeFunc::Parms; 885 fields[argp++] = TypePtr::NOTNULL; // dest 886 fields[argp++] = TypeX_X; // size 887 LP64_ONLY(fields[argp++] = Type::HALF); // size 888 fields[argp++] = TypeInt::UBYTE; // bytevalue 889 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 890 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 891 892 // no result type needed 893 fields = TypeTuple::fields(1); 894 fields[TypeFunc::Parms+0] = nullptr; // void 895 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 896 return TypeFunc::make(domain, range); 897 } 898 899 // arraycopy stub variations: 900 enum ArrayCopyType { 901 ac_fast, // void(ptr, ptr, size_t) 902 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 903 ac_slow, // void(ptr, int, ptr, int, int) 904 ac_generic // int(ptr, int, ptr, int, int) 905 }; 906 907 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 908 // create input type (domain) 909 int num_args = (act == ac_fast ? 3 : 5); 910 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 911 int argcnt = num_args; 912 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 913 const Type** fields = TypeTuple::fields(argcnt); 914 int argp = TypeFunc::Parms; 915 fields[argp++] = TypePtr::NOTNULL; // src 916 if (num_size_args == 0) { 917 fields[argp++] = TypeInt::INT; // src_pos 918 } 919 fields[argp++] = TypePtr::NOTNULL; // dest 920 if (num_size_args == 0) { 921 fields[argp++] = TypeInt::INT; // dest_pos 922 fields[argp++] = TypeInt::INT; // length 923 } 924 while (num_size_args-- > 0) { 925 fields[argp++] = TypeX_X; // size in whatevers (size_t) 926 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 927 } 928 if (act == ac_checkcast) { 929 fields[argp++] = TypePtr::NOTNULL; // super_klass 930 } 931 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 932 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 933 934 // create result type if needed 935 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 936 fields = TypeTuple::fields(1); 937 if (retcnt == 0) 938 fields[TypeFunc::Parms+0] = nullptr; // void 939 else 940 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 941 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 942 return TypeFunc::make(domain, range); 943 } 944 945 static const TypeFunc* make_array_fill_Type() { 946 const Type** fields; 947 int argp = TypeFunc::Parms; 948 // create input type (domain): pointer, int, size_t 949 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 950 fields[argp++] = TypePtr::NOTNULL; 951 fields[argp++] = TypeInt::INT; 952 fields[argp++] = TypeX_X; // size in whatevers (size_t) 953 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 954 const TypeTuple *domain = TypeTuple::make(argp, fields); 955 956 // create result type 957 fields = TypeTuple::fields(1); 958 fields[TypeFunc::Parms+0] = nullptr; // void 959 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 960 961 return TypeFunc::make(domain, range); 962 } 963 964 static const TypeFunc* make_array_partition_Type() { 965 // create input type (domain) 966 int num_args = 7; 967 int argcnt = num_args; 968 const Type** fields = TypeTuple::fields(argcnt); 969 int argp = TypeFunc::Parms; 970 fields[argp++] = TypePtr::NOTNULL; // array 971 fields[argp++] = TypeInt::INT; // element type 972 fields[argp++] = TypeInt::INT; // low 973 fields[argp++] = TypeInt::INT; // end 974 fields[argp++] = TypePtr::NOTNULL; // pivot_indices (int array) 975 fields[argp++] = TypeInt::INT; // indexPivot1 976 fields[argp++] = TypeInt::INT; // indexPivot2 977 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 978 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 979 980 // no result type needed 981 fields = TypeTuple::fields(1); 982 fields[TypeFunc::Parms+0] = nullptr; // void 983 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 984 return TypeFunc::make(domain, range); 985 } 986 987 static const TypeFunc* make_array_sort_Type() { 988 // create input type (domain) 989 int num_args = 4; 990 int argcnt = num_args; 991 const Type** fields = TypeTuple::fields(argcnt); 992 int argp = TypeFunc::Parms; 993 fields[argp++] = TypePtr::NOTNULL; // array 994 fields[argp++] = TypeInt::INT; // element type 995 fields[argp++] = TypeInt::INT; // fromIndex 996 fields[argp++] = TypeInt::INT; // toIndex 997 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 998 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 999 1000 // no result type needed 1001 fields = TypeTuple::fields(1); 1002 fields[TypeFunc::Parms+0] = nullptr; // void 1003 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1004 return TypeFunc::make(domain, range); 1005 } 1006 1007 static const TypeFunc* make_aescrypt_block_Type() { 1008 // create input type (domain) 1009 int num_args = 3; 1010 int argcnt = num_args; 1011 const Type** fields = TypeTuple::fields(argcnt); 1012 int argp = TypeFunc::Parms; 1013 fields[argp++] = TypePtr::NOTNULL; // src 1014 fields[argp++] = TypePtr::NOTNULL; // dest 1015 fields[argp++] = TypePtr::NOTNULL; // k array 1016 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1017 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1018 1019 // no result type needed 1020 fields = TypeTuple::fields(1); 1021 fields[TypeFunc::Parms+0] = nullptr; // void 1022 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1023 return TypeFunc::make(domain, range); 1024 } 1025 1026 static const TypeFunc* make_updateBytesCRC32_Type() { 1027 // create input type (domain) 1028 int num_args = 3; 1029 int argcnt = num_args; 1030 const Type** fields = TypeTuple::fields(argcnt); 1031 int argp = TypeFunc::Parms; 1032 fields[argp++] = TypeInt::INT; // crc 1033 fields[argp++] = TypePtr::NOTNULL; // src 1034 fields[argp++] = TypeInt::INT; // len 1035 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1036 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1037 1038 // result type needed 1039 fields = TypeTuple::fields(1); 1040 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1041 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1042 return TypeFunc::make(domain, range); 1043 } 1044 1045 static const TypeFunc* make_updateBytesCRC32C_Type() { 1046 // create input type (domain) 1047 int num_args = 4; 1048 int argcnt = num_args; 1049 const Type** fields = TypeTuple::fields(argcnt); 1050 int argp = TypeFunc::Parms; 1051 fields[argp++] = TypeInt::INT; // crc 1052 fields[argp++] = TypePtr::NOTNULL; // buf 1053 fields[argp++] = TypeInt::INT; // len 1054 fields[argp++] = TypePtr::NOTNULL; // table 1055 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1056 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1057 1058 // result type needed 1059 fields = TypeTuple::fields(1); 1060 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1061 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1062 return TypeFunc::make(domain, range); 1063 } 1064 1065 static const TypeFunc* make_updateBytesAdler32_Type() { 1066 // create input type (domain) 1067 int num_args = 3; 1068 int argcnt = num_args; 1069 const Type** fields = TypeTuple::fields(argcnt); 1070 int argp = TypeFunc::Parms; 1071 fields[argp++] = TypeInt::INT; // crc 1072 fields[argp++] = TypePtr::NOTNULL; // src + offset 1073 fields[argp++] = TypeInt::INT; // len 1074 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1075 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1076 1077 // result type needed 1078 fields = TypeTuple::fields(1); 1079 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1080 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1081 return TypeFunc::make(domain, range); 1082 } 1083 1084 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() { 1085 // create input type (domain) 1086 int num_args = 5; 1087 int argcnt = num_args; 1088 const Type** fields = TypeTuple::fields(argcnt); 1089 int argp = TypeFunc::Parms; 1090 fields[argp++] = TypePtr::NOTNULL; // src 1091 fields[argp++] = TypePtr::NOTNULL; // dest 1092 fields[argp++] = TypePtr::NOTNULL; // k array 1093 fields[argp++] = TypePtr::NOTNULL; // r array 1094 fields[argp++] = TypeInt::INT; // src len 1095 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1096 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1097 1098 // returning cipher len (int) 1099 fields = TypeTuple::fields(1); 1100 fields[TypeFunc::Parms+0] = TypeInt::INT; 1101 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1102 return TypeFunc::make(domain, range); 1103 } 1104 1105 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() { 1106 // create input type (domain) 1107 int num_args = 4; 1108 int argcnt = num_args; 1109 const Type** fields = TypeTuple::fields(argcnt); 1110 int argp = TypeFunc::Parms; 1111 fields[argp++] = TypePtr::NOTNULL; // src 1112 fields[argp++] = TypePtr::NOTNULL; // dest 1113 fields[argp++] = TypePtr::NOTNULL; // k array 1114 fields[argp++] = TypeInt::INT; // src len 1115 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1116 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1117 1118 // returning cipher len (int) 1119 fields = TypeTuple::fields(1); 1120 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1121 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1122 return TypeFunc::make(domain, range); 1123 } 1124 1125 static const TypeFunc* make_counterMode_aescrypt_Type() { 1126 // create input type (domain) 1127 int num_args = 7; 1128 int argcnt = num_args; 1129 const Type** fields = TypeTuple::fields(argcnt); 1130 int argp = TypeFunc::Parms; 1131 fields[argp++] = TypePtr::NOTNULL; // src 1132 fields[argp++] = TypePtr::NOTNULL; // dest 1133 fields[argp++] = TypePtr::NOTNULL; // k array 1134 fields[argp++] = TypePtr::NOTNULL; // counter array 1135 fields[argp++] = TypeInt::INT; // src len 1136 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 1137 fields[argp++] = TypePtr::NOTNULL; // saved used addr 1138 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1139 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1140 // returning cipher len (int) 1141 fields = TypeTuple::fields(1); 1142 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1143 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1144 return TypeFunc::make(domain, range); 1145 } 1146 1147 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() { 1148 // create input type (domain) 1149 int num_args = 8; 1150 int argcnt = num_args; 1151 const Type** fields = TypeTuple::fields(argcnt); 1152 int argp = TypeFunc::Parms; 1153 fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs 1154 fields[argp++] = TypeInt::INT; // int len 1155 fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs 1156 fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs 1157 fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj 1158 fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj 1159 fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj 1160 fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj 1161 1162 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1163 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1164 // returning cipher len (int) 1165 fields = TypeTuple::fields(1); 1166 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1167 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1168 return TypeFunc::make(domain, range); 1169 } 1170 1171 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) { 1172 // create input type (domain) 1173 int num_args = is_sha3 ? 3 : 2; 1174 int argcnt = num_args; 1175 const Type** fields = TypeTuple::fields(argcnt); 1176 int argp = TypeFunc::Parms; 1177 fields[argp++] = TypePtr::NOTNULL; // buf 1178 fields[argp++] = TypePtr::NOTNULL; // state 1179 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1180 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1181 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1182 1183 // no result type needed 1184 fields = TypeTuple::fields(1); 1185 fields[TypeFunc::Parms+0] = nullptr; // void 1186 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1187 return TypeFunc::make(domain, range); 1188 } 1189 1190 /* 1191 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1192 */ 1193 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) { 1194 // create input type (domain) 1195 int num_args = is_sha3 ? 5 : 4; 1196 int argcnt = num_args; 1197 const Type** fields = TypeTuple::fields(argcnt); 1198 int argp = TypeFunc::Parms; 1199 fields[argp++] = TypePtr::NOTNULL; // buf 1200 fields[argp++] = TypePtr::NOTNULL; // state 1201 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1202 fields[argp++] = TypeInt::INT; // ofs 1203 fields[argp++] = TypeInt::INT; // limit 1204 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1205 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1206 1207 // returning ofs (int) 1208 fields = TypeTuple::fields(1); 1209 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1210 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1211 return TypeFunc::make(domain, range); 1212 } 1213 1214 // SHAKE128Parallel doubleKeccak function 1215 static const TypeFunc* make_double_keccak_Type() { 1216 int argcnt = 2; 1217 1218 const Type** fields = TypeTuple::fields(argcnt); 1219 int argp = TypeFunc::Parms; 1220 fields[argp++] = TypePtr::NOTNULL; // status0 1221 fields[argp++] = TypePtr::NOTNULL; // status1 1222 1223 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1224 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1225 1226 // result type needed 1227 fields = TypeTuple::fields(1); 1228 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1229 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1230 return TypeFunc::make(domain, range); 1231 } 1232 1233 static const TypeFunc* make_multiplyToLen_Type() { 1234 // create input type (domain) 1235 int num_args = 5; 1236 int argcnt = num_args; 1237 const Type** fields = TypeTuple::fields(argcnt); 1238 int argp = TypeFunc::Parms; 1239 fields[argp++] = TypePtr::NOTNULL; // x 1240 fields[argp++] = TypeInt::INT; // xlen 1241 fields[argp++] = TypePtr::NOTNULL; // y 1242 fields[argp++] = TypeInt::INT; // ylen 1243 fields[argp++] = TypePtr::NOTNULL; // z 1244 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1245 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1246 1247 // no result type needed 1248 fields = TypeTuple::fields(1); 1249 fields[TypeFunc::Parms+0] = nullptr; 1250 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1251 return TypeFunc::make(domain, range); 1252 } 1253 1254 static const TypeFunc* make_squareToLen_Type() { 1255 // create input type (domain) 1256 int num_args = 4; 1257 int argcnt = num_args; 1258 const Type** fields = TypeTuple::fields(argcnt); 1259 int argp = TypeFunc::Parms; 1260 fields[argp++] = TypePtr::NOTNULL; // x 1261 fields[argp++] = TypeInt::INT; // len 1262 fields[argp++] = TypePtr::NOTNULL; // z 1263 fields[argp++] = TypeInt::INT; // zlen 1264 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1265 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1266 1267 // no result type needed 1268 fields = TypeTuple::fields(1); 1269 fields[TypeFunc::Parms+0] = nullptr; 1270 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1271 return TypeFunc::make(domain, range); 1272 } 1273 1274 static const TypeFunc* make_mulAdd_Type() { 1275 // create input type (domain) 1276 int num_args = 5; 1277 int argcnt = num_args; 1278 const Type** fields = TypeTuple::fields(argcnt); 1279 int argp = TypeFunc::Parms; 1280 fields[argp++] = TypePtr::NOTNULL; // out 1281 fields[argp++] = TypePtr::NOTNULL; // in 1282 fields[argp++] = TypeInt::INT; // offset 1283 fields[argp++] = TypeInt::INT; // len 1284 fields[argp++] = TypeInt::INT; // k 1285 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1286 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1287 1288 // returning carry (int) 1289 fields = TypeTuple::fields(1); 1290 fields[TypeFunc::Parms+0] = TypeInt::INT; 1291 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1292 return TypeFunc::make(domain, range); 1293 } 1294 1295 static const TypeFunc* make_montgomeryMultiply_Type() { 1296 // create input type (domain) 1297 int num_args = 7; 1298 int argcnt = num_args; 1299 const Type** fields = TypeTuple::fields(argcnt); 1300 int argp = TypeFunc::Parms; 1301 fields[argp++] = TypePtr::NOTNULL; // a 1302 fields[argp++] = TypePtr::NOTNULL; // b 1303 fields[argp++] = TypePtr::NOTNULL; // n 1304 fields[argp++] = TypeInt::INT; // len 1305 fields[argp++] = TypeLong::LONG; // inv 1306 fields[argp++] = Type::HALF; 1307 fields[argp++] = TypePtr::NOTNULL; // result 1308 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1309 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1310 1311 // result type needed 1312 fields = TypeTuple::fields(1); 1313 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1314 1315 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1316 return TypeFunc::make(domain, range); 1317 } 1318 1319 static const TypeFunc* make_montgomerySquare_Type() { 1320 // create input type (domain) 1321 int num_args = 6; 1322 int argcnt = num_args; 1323 const Type** fields = TypeTuple::fields(argcnt); 1324 int argp = TypeFunc::Parms; 1325 fields[argp++] = TypePtr::NOTNULL; // a 1326 fields[argp++] = TypePtr::NOTNULL; // n 1327 fields[argp++] = TypeInt::INT; // len 1328 fields[argp++] = TypeLong::LONG; // inv 1329 fields[argp++] = Type::HALF; 1330 fields[argp++] = TypePtr::NOTNULL; // result 1331 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1332 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1333 1334 // result type needed 1335 fields = TypeTuple::fields(1); 1336 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1337 1338 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1339 return TypeFunc::make(domain, range); 1340 } 1341 1342 static const TypeFunc* make_bigIntegerShift_Type() { 1343 int argcnt = 5; 1344 const Type** fields = TypeTuple::fields(argcnt); 1345 int argp = TypeFunc::Parms; 1346 fields[argp++] = TypePtr::NOTNULL; // newArr 1347 fields[argp++] = TypePtr::NOTNULL; // oldArr 1348 fields[argp++] = TypeInt::INT; // newIdx 1349 fields[argp++] = TypeInt::INT; // shiftCount 1350 fields[argp++] = TypeInt::INT; // numIter 1351 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1352 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1353 1354 // no result type needed 1355 fields = TypeTuple::fields(1); 1356 fields[TypeFunc::Parms + 0] = nullptr; 1357 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1358 return TypeFunc::make(domain, range); 1359 } 1360 1361 static const TypeFunc* make_vectorizedMismatch_Type() { 1362 // create input type (domain) 1363 int num_args = 4; 1364 int argcnt = num_args; 1365 const Type** fields = TypeTuple::fields(argcnt); 1366 int argp = TypeFunc::Parms; 1367 fields[argp++] = TypePtr::NOTNULL; // obja 1368 fields[argp++] = TypePtr::NOTNULL; // objb 1369 fields[argp++] = TypeInt::INT; // length, number of elements 1370 fields[argp++] = TypeInt::INT; // log2scale, element size 1371 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1372 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1373 1374 //return mismatch index (int) 1375 fields = TypeTuple::fields(1); 1376 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1377 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1378 return TypeFunc::make(domain, range); 1379 } 1380 1381 static const TypeFunc* make_ghash_processBlocks_Type() { 1382 int argcnt = 4; 1383 1384 const Type** fields = TypeTuple::fields(argcnt); 1385 int argp = TypeFunc::Parms; 1386 fields[argp++] = TypePtr::NOTNULL; // state 1387 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1388 fields[argp++] = TypePtr::NOTNULL; // data 1389 fields[argp++] = TypeInt::INT; // blocks 1390 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1391 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1392 1393 // result type needed 1394 fields = TypeTuple::fields(1); 1395 fields[TypeFunc::Parms+0] = nullptr; // void 1396 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1397 return TypeFunc::make(domain, range); 1398 } 1399 1400 static const TypeFunc* make_chacha20Block_Type() { 1401 int argcnt = 2; 1402 1403 const Type** fields = TypeTuple::fields(argcnt); 1404 int argp = TypeFunc::Parms; 1405 fields[argp++] = TypePtr::NOTNULL; // state 1406 fields[argp++] = TypePtr::NOTNULL; // result 1407 1408 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1409 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1410 1411 // result type needed 1412 fields = TypeTuple::fields(1); 1413 fields[TypeFunc::Parms + 0] = TypeInt::INT; // key stream outlen as int 1414 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1415 return TypeFunc::make(domain, range); 1416 } 1417 1418 // Kyber NTT function 1419 static const TypeFunc* make_kyberNtt_Type() { 1420 int argcnt = 2; 1421 1422 const Type** fields = TypeTuple::fields(argcnt); 1423 int argp = TypeFunc::Parms; 1424 fields[argp++] = TypePtr::NOTNULL; // coeffs 1425 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1426 1427 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1428 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1429 1430 // result type needed 1431 fields = TypeTuple::fields(1); 1432 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1433 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1434 return TypeFunc::make(domain, range); 1435 } 1436 1437 // Kyber inverse NTT function 1438 static const TypeFunc* make_kyberInverseNtt_Type() { 1439 int argcnt = 2; 1440 1441 const Type** fields = TypeTuple::fields(argcnt); 1442 int argp = TypeFunc::Parms; 1443 fields[argp++] = TypePtr::NOTNULL; // coeffs 1444 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1445 1446 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1447 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1448 1449 // result type needed 1450 fields = TypeTuple::fields(1); 1451 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1452 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1453 return TypeFunc::make(domain, range); 1454 } 1455 1456 // Kyber NTT multiply function 1457 static const TypeFunc* make_kyberNttMult_Type() { 1458 int argcnt = 4; 1459 1460 const Type** fields = TypeTuple::fields(argcnt); 1461 int argp = TypeFunc::Parms; 1462 fields[argp++] = TypePtr::NOTNULL; // result 1463 fields[argp++] = TypePtr::NOTNULL; // ntta 1464 fields[argp++] = TypePtr::NOTNULL; // nttb 1465 fields[argp++] = TypePtr::NOTNULL; // NTT multiply zetas 1466 1467 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1468 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1469 1470 // result type needed 1471 fields = TypeTuple::fields(1); 1472 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1473 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1474 return TypeFunc::make(domain, range); 1475 } 1476 1477 // Kyber add 2 polynomials function 1478 static const TypeFunc* make_kyberAddPoly_2_Type() { 1479 int argcnt = 3; 1480 1481 const Type** fields = TypeTuple::fields(argcnt); 1482 int argp = TypeFunc::Parms; 1483 fields[argp++] = TypePtr::NOTNULL; // result 1484 fields[argp++] = TypePtr::NOTNULL; // a 1485 fields[argp++] = TypePtr::NOTNULL; // b 1486 1487 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1488 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1489 1490 // result type needed 1491 fields = TypeTuple::fields(1); 1492 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1493 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1494 return TypeFunc::make(domain, range); 1495 } 1496 1497 1498 // Kyber add 3 polynomials function 1499 static const TypeFunc* make_kyberAddPoly_3_Type() { 1500 int argcnt = 4; 1501 1502 const Type** fields = TypeTuple::fields(argcnt); 1503 int argp = TypeFunc::Parms; 1504 fields[argp++] = TypePtr::NOTNULL; // result 1505 fields[argp++] = TypePtr::NOTNULL; // a 1506 fields[argp++] = TypePtr::NOTNULL; // b 1507 fields[argp++] = TypePtr::NOTNULL; // c 1508 1509 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1510 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1511 1512 // result type needed 1513 fields = TypeTuple::fields(1); 1514 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1515 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1516 return TypeFunc::make(domain, range); 1517 } 1518 1519 1520 // Kyber XOF output parsing into polynomial coefficients candidates 1521 // or decompress(12,...) function 1522 static const TypeFunc* make_kyber12To16_Type() { 1523 int argcnt = 4; 1524 1525 const Type** fields = TypeTuple::fields(argcnt); 1526 int argp = TypeFunc::Parms; 1527 fields[argp++] = TypePtr::NOTNULL; // condensed 1528 fields[argp++] = TypeInt::INT; // condensedOffs 1529 fields[argp++] = TypePtr::NOTNULL; // parsed 1530 fields[argp++] = TypeInt::INT; // parsedLength 1531 1532 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1533 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1534 1535 // result type needed 1536 fields = TypeTuple::fields(1); 1537 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1538 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1539 return TypeFunc::make(domain, range); 1540 } 1541 1542 // Kyber Barrett reduce function 1543 static const TypeFunc* make_kyberBarrettReduce_Type() { 1544 int argcnt = 1; 1545 1546 const Type** fields = TypeTuple::fields(argcnt); 1547 int argp = TypeFunc::Parms; 1548 fields[argp++] = TypePtr::NOTNULL; // coeffs 1549 1550 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1551 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1552 1553 // result type needed 1554 fields = TypeTuple::fields(1); 1555 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1556 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1557 return TypeFunc::make(domain, range); 1558 } 1559 1560 // Dilithium NTT function except for the final "normalization" to |coeff| < Q 1561 static const TypeFunc* make_dilithiumAlmostNtt_Type() { 1562 int argcnt = 2; 1563 1564 const Type** fields = TypeTuple::fields(argcnt); 1565 int argp = TypeFunc::Parms; 1566 fields[argp++] = TypePtr::NOTNULL; // coeffs 1567 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1568 1569 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1570 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1571 1572 // result type needed 1573 fields = TypeTuple::fields(1); 1574 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1575 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1576 return TypeFunc::make(domain, range); 1577 } 1578 1579 // Dilithium inverse NTT function except the final mod Q division by 2^256 1580 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() { 1581 int argcnt = 2; 1582 1583 const Type** fields = TypeTuple::fields(argcnt); 1584 int argp = TypeFunc::Parms; 1585 fields[argp++] = TypePtr::NOTNULL; // coeffs 1586 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1587 1588 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1589 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1590 1591 // result type needed 1592 fields = TypeTuple::fields(1); 1593 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1594 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1595 return TypeFunc::make(domain, range); 1596 } 1597 1598 // Dilithium NTT multiply function 1599 static const TypeFunc* make_dilithiumNttMult_Type() { 1600 int argcnt = 3; 1601 1602 const Type** fields = TypeTuple::fields(argcnt); 1603 int argp = TypeFunc::Parms; 1604 fields[argp++] = TypePtr::NOTNULL; // result 1605 fields[argp++] = TypePtr::NOTNULL; // ntta 1606 fields[argp++] = TypePtr::NOTNULL; // nttb 1607 1608 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1609 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1610 1611 // result type needed 1612 fields = TypeTuple::fields(1); 1613 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1614 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1615 return TypeFunc::make(domain, range); 1616 } 1617 1618 // Dilithium Montgomery multiply a polynome coefficient array by a constant 1619 static const TypeFunc* make_dilithiumMontMulByConstant_Type() { 1620 int argcnt = 2; 1621 1622 const Type** fields = TypeTuple::fields(argcnt); 1623 int argp = TypeFunc::Parms; 1624 fields[argp++] = TypePtr::NOTNULL; // coeffs 1625 fields[argp++] = TypeInt::INT; // constant multiplier 1626 1627 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1628 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1629 1630 // result type needed 1631 fields = TypeTuple::fields(1); 1632 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1633 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1634 return TypeFunc::make(domain, range); 1635 } 1636 1637 // Dilithium decompose polynomial 1638 static const TypeFunc* make_dilithiumDecomposePoly_Type() { 1639 int argcnt = 5; 1640 1641 const Type** fields = TypeTuple::fields(argcnt); 1642 int argp = TypeFunc::Parms; 1643 fields[argp++] = TypePtr::NOTNULL; // input 1644 fields[argp++] = TypePtr::NOTNULL; // lowPart 1645 fields[argp++] = TypePtr::NOTNULL; // highPart 1646 fields[argp++] = TypeInt::INT; // 2 * gamma2 1647 fields[argp++] = TypeInt::INT; // multiplier 1648 1649 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1650 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1651 1652 // result type needed 1653 fields = TypeTuple::fields(1); 1654 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1655 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1656 return TypeFunc::make(domain, range); 1657 } 1658 1659 static const TypeFunc* make_base64_encodeBlock_Type() { 1660 int argcnt = 6; 1661 1662 const Type** fields = TypeTuple::fields(argcnt); 1663 int argp = TypeFunc::Parms; 1664 fields[argp++] = TypePtr::NOTNULL; // src array 1665 fields[argp++] = TypeInt::INT; // offset 1666 fields[argp++] = TypeInt::INT; // length 1667 fields[argp++] = TypePtr::NOTNULL; // dest array 1668 fields[argp++] = TypeInt::INT; // dp 1669 fields[argp++] = TypeInt::BOOL; // isURL 1670 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1671 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1672 1673 // result type needed 1674 fields = TypeTuple::fields(1); 1675 fields[TypeFunc::Parms + 0] = nullptr; // void 1676 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1677 return TypeFunc::make(domain, range); 1678 } 1679 1680 static const TypeFunc* make_string_IndexOf_Type() { 1681 int argcnt = 4; 1682 1683 const Type** fields = TypeTuple::fields(argcnt); 1684 int argp = TypeFunc::Parms; 1685 fields[argp++] = TypePtr::NOTNULL; // haystack array 1686 fields[argp++] = TypeInt::INT; // haystack length 1687 fields[argp++] = TypePtr::NOTNULL; // needle array 1688 fields[argp++] = TypeInt::INT; // needle length 1689 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1690 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1691 1692 // result type needed 1693 fields = TypeTuple::fields(1); 1694 fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack 1695 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1696 return TypeFunc::make(domain, range); 1697 } 1698 1699 static const TypeFunc* make_base64_decodeBlock_Type() { 1700 int argcnt = 7; 1701 1702 const Type** fields = TypeTuple::fields(argcnt); 1703 int argp = TypeFunc::Parms; 1704 fields[argp++] = TypePtr::NOTNULL; // src array 1705 fields[argp++] = TypeInt::INT; // src offset 1706 fields[argp++] = TypeInt::INT; // src length 1707 fields[argp++] = TypePtr::NOTNULL; // dest array 1708 fields[argp++] = TypeInt::INT; // dest offset 1709 fields[argp++] = TypeInt::BOOL; // isURL 1710 fields[argp++] = TypeInt::BOOL; // isMIME 1711 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1712 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1713 1714 // result type needed 1715 fields = TypeTuple::fields(1); 1716 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1717 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1718 return TypeFunc::make(domain, range); 1719 } 1720 1721 static const TypeFunc* make_poly1305_processBlocks_Type() { 1722 int argcnt = 4; 1723 1724 const Type** fields = TypeTuple::fields(argcnt); 1725 int argp = TypeFunc::Parms; 1726 fields[argp++] = TypePtr::NOTNULL; // input array 1727 fields[argp++] = TypeInt::INT; // input length 1728 fields[argp++] = TypePtr::NOTNULL; // accumulator array 1729 fields[argp++] = TypePtr::NOTNULL; // r array 1730 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1731 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1732 1733 // result type needed 1734 fields = TypeTuple::fields(1); 1735 fields[TypeFunc::Parms + 0] = nullptr; // void 1736 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1737 return TypeFunc::make(domain, range); 1738 } 1739 1740 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() { 1741 int argcnt = 3; 1742 1743 const Type** fields = TypeTuple::fields(argcnt); 1744 int argp = TypeFunc::Parms; 1745 fields[argp++] = TypePtr::NOTNULL; // a array 1746 fields[argp++] = TypePtr::NOTNULL; // b array 1747 fields[argp++] = TypePtr::NOTNULL; // r(esult) array 1748 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1749 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1750 1751 // result type needed 1752 fields = TypeTuple::fields(1); 1753 fields[TypeFunc::Parms + 0] = nullptr; // void 1754 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1755 return TypeFunc::make(domain, range); 1756 } 1757 1758 static const TypeFunc* make_intpoly_assign_Type() { 1759 int argcnt = 4; 1760 1761 const Type** fields = TypeTuple::fields(argcnt); 1762 int argp = TypeFunc::Parms; 1763 fields[argp++] = TypeInt::INT; // set flag 1764 fields[argp++] = TypePtr::NOTNULL; // a array (result) 1765 fields[argp++] = TypePtr::NOTNULL; // b array (if set is set) 1766 fields[argp++] = TypeInt::INT; // array length 1767 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1768 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1769 1770 // result type needed 1771 fields = TypeTuple::fields(1); 1772 fields[TypeFunc::Parms + 0] = nullptr; // void 1773 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1774 return TypeFunc::make(domain, range); 1775 } 1776 1777 //------------- Interpreter state for on stack replacement 1778 static const TypeFunc* make_osr_end_Type() { 1779 // create input type (domain) 1780 const Type **fields = TypeTuple::fields(1); 1781 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1782 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1783 1784 // create result type 1785 fields = TypeTuple::fields(1); 1786 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1787 fields[TypeFunc::Parms+0] = nullptr; // void 1788 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1789 return TypeFunc::make(domain, range); 1790 } 1791 1792 //------------------------------------------------------------------------------------- 1793 // register policy 1794 1795 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1796 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1797 switch (register_save_policy[reg]) { 1798 case 'C': return false; //SOC 1799 case 'E': return true ; //SOE 1800 case 'N': return false; //NS 1801 case 'A': return false; //AS 1802 } 1803 ShouldNotReachHere(); 1804 return false; 1805 } 1806 1807 //----------------------------------------------------------------------- 1808 // Exceptions 1809 // 1810 1811 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1812 1813 // The method is an entry that is always called by a C++ method not 1814 // directly from compiled code. Compiled code will call the C++ method following. 1815 // We can't allow async exception to be installed during exception processing. 1816 JRT_ENTRY_NO_ASYNC_PROF(address, OptoRuntime, handle_exception_C_helper, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1817 // The frame we rethrow the exception to might not have been processed by the GC yet. 1818 // The stack watermark barrier takes care of detecting that and ensuring the frame 1819 // has updated oops. 1820 StackWatermarkSet::after_unwind(current); 1821 1822 // Do not confuse exception_oop with pending_exception. The exception_oop 1823 // is only used to pass arguments into the method. Not for general 1824 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1825 // the runtime stubs checks this on exit. 1826 assert(current->exception_oop() != nullptr, "exception oop is found"); 1827 address handler_address = nullptr; 1828 1829 Handle exception(current, current->exception_oop()); 1830 address pc = current->exception_pc(); 1831 1832 // Clear out the exception oop and pc since looking up an 1833 // exception handler can cause class loading, which might throw an 1834 // exception and those fields are expected to be clear during 1835 // normal bytecode execution. 1836 current->clear_exception_oop_and_pc(); 1837 1838 LogTarget(Info, exceptions) lt; 1839 if (lt.is_enabled()) { 1840 LogStream ls(lt); 1841 trace_exception(&ls, exception(), pc, ""); 1842 } 1843 1844 // for AbortVMOnException flag 1845 Exceptions::debug_check_abort(exception); 1846 1847 #ifdef ASSERT 1848 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1849 // should throw an exception here 1850 ShouldNotReachHere(); 1851 } 1852 #endif 1853 1854 // new exception handling: this method is entered only from adapters 1855 // exceptions from compiled java methods are handled in compiled code 1856 // using rethrow node 1857 1858 nm = CodeCache::find_nmethod(pc); 1859 assert(nm != nullptr, "No NMethod found"); 1860 if (nm->is_native_method()) { 1861 fatal("Native method should not have path to exception handling"); 1862 } else { 1863 // we are switching to old paradigm: search for exception handler in caller_frame 1864 // instead in exception handler of caller_frame.sender() 1865 1866 if (JvmtiExport::can_post_on_exceptions()) { 1867 // "Full-speed catching" is not necessary here, 1868 // since we're notifying the VM on every catch. 1869 // Force deoptimization and the rest of the lookup 1870 // will be fine. 1871 deoptimize_caller_frame(current); 1872 } 1873 1874 // Check the stack guard pages. If enabled, look for handler in this frame; 1875 // otherwise, forcibly unwind the frame. 1876 // 1877 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1878 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1879 bool deopting = false; 1880 if (nm->is_deopt_pc(pc)) { 1881 deopting = true; 1882 RegisterMap map(current, 1883 RegisterMap::UpdateMap::skip, 1884 RegisterMap::ProcessFrames::include, 1885 RegisterMap::WalkContinuation::skip); 1886 frame deoptee = current->last_frame().sender(&map); 1887 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1888 // Adjust the pc back to the original throwing pc 1889 pc = deoptee.pc(); 1890 } 1891 1892 // If we are forcing an unwind because of stack overflow then deopt is 1893 // irrelevant since we are throwing the frame away anyway. 1894 1895 if (deopting && !force_unwind) { 1896 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1897 } else { 1898 1899 handler_address = 1900 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc); 1901 1902 if (handler_address == nullptr) { 1903 bool recursive_exception = false; 1904 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1905 assert (handler_address != nullptr, "must have compiled handler"); 1906 // Update the exception cache only when the unwind was not forced 1907 // and there didn't happen another exception during the computation of the 1908 // compiled exception handler. Checking for exception oop equality is not 1909 // sufficient because some exceptions are pre-allocated and reused. 1910 if (!force_unwind && !recursive_exception) { 1911 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1912 } 1913 } else { 1914 #ifdef ASSERT 1915 bool recursive_exception = false; 1916 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1917 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1918 p2i(handler_address), p2i(computed_address)); 1919 #endif 1920 } 1921 } 1922 1923 current->set_exception_pc(pc); 1924 current->set_exception_handler_pc(handler_address); 1925 1926 // Check if the exception PC is a MethodHandle call site. 1927 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1928 } 1929 1930 // Restore correct return pc. Was saved above. 1931 current->set_exception_oop(exception()); 1932 return handler_address; 1933 1934 JRT_END 1935 1936 // We are entering here from exception_blob 1937 // If there is a compiled exception handler in this method, we will continue there; 1938 // otherwise we will unwind the stack and continue at the caller of top frame method 1939 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1940 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1941 // we looked up the handler for has been deoptimized in the meantime. If it has been 1942 // we must not use the handler and instead return the deopt blob. 1943 address OptoRuntime::handle_exception_C(JavaThread* current) { 1944 // 1945 // We are in Java not VM and in debug mode we have a NoHandleMark 1946 // 1947 #ifndef PRODUCT 1948 SharedRuntime::_find_handler_ctr++; // find exception handler 1949 #endif 1950 DEBUG_ONLY(NoHandleMark __hm;) 1951 nmethod* nm = nullptr; 1952 address handler_address = nullptr; 1953 { 1954 // Enter the VM 1955 1956 ResetNoHandleMark rnhm; 1957 handler_address = handle_exception_C_helper(current, nm); 1958 } 1959 1960 // Back in java: Use no oops, DON'T safepoint 1961 1962 // Now check to see if the handler we are returning is in a now 1963 // deoptimized frame 1964 1965 if (nm != nullptr) { 1966 RegisterMap map(current, 1967 RegisterMap::UpdateMap::skip, 1968 RegisterMap::ProcessFrames::skip, 1969 RegisterMap::WalkContinuation::skip); 1970 frame caller = current->last_frame().sender(&map); 1971 #ifdef ASSERT 1972 assert(caller.is_compiled_frame(), "must be"); 1973 #endif // ASSERT 1974 if (caller.is_deoptimized_frame()) { 1975 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1976 } 1977 } 1978 return handler_address; 1979 } 1980 1981 //------------------------------rethrow---------------------------------------- 1982 // We get here after compiled code has executed a 'RethrowNode'. The callee 1983 // is either throwing or rethrowing an exception. The callee-save registers 1984 // have been restored, synchronized objects have been unlocked and the callee 1985 // stack frame has been removed. The return address was passed in. 1986 // Exception oop is passed as the 1st argument. This routine is then called 1987 // from the stub. On exit, we know where to jump in the caller's code. 1988 // After this C code exits, the stub will pop his frame and end in a jump 1989 // (instead of a return). We enter the caller's default handler. 1990 // 1991 // This must be JRT_LEAF: 1992 // - caller will not change its state as we cannot block on exit, 1993 // therefore raw_exception_handler_for_return_address is all it takes 1994 // to handle deoptimized blobs 1995 // 1996 // However, there needs to be a safepoint check in the middle! So compiled 1997 // safepoints are completely watertight. 1998 // 1999 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 2000 // 2001 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 2002 // 2003 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 2004 // ret_pc will have been loaded from the stack, so for AArch64 will be signed. 2005 AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc)); 2006 2007 #ifndef PRODUCT 2008 SharedRuntime::_rethrow_ctr++; // count rethrows 2009 #endif 2010 assert (exception != nullptr, "should have thrown a NullPointerException"); 2011 #ifdef ASSERT 2012 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 2013 // should throw an exception here 2014 ShouldNotReachHere(); 2015 } 2016 #endif 2017 2018 thread->set_vm_result_oop(exception); 2019 // Frame not compiled (handles deoptimization blob) 2020 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 2021 } 2022 2023 static const TypeFunc* make_rethrow_Type() { 2024 // create input type (domain) 2025 const Type **fields = TypeTuple::fields(1); 2026 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 2027 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2028 2029 // create result type (range) 2030 fields = TypeTuple::fields(1); 2031 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 2032 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 2033 2034 return TypeFunc::make(domain, range); 2035 } 2036 2037 2038 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 2039 // Deoptimize the caller before continuing, as the compiled 2040 // exception handler table may not be valid. 2041 if (DeoptimizeOnAllocationException && doit) { 2042 deoptimize_caller_frame(thread); 2043 } 2044 } 2045 2046 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 2047 // Called from within the owner thread, so no need for safepoint 2048 RegisterMap reg_map(thread, 2049 RegisterMap::UpdateMap::include, 2050 RegisterMap::ProcessFrames::include, 2051 RegisterMap::WalkContinuation::skip); 2052 frame stub_frame = thread->last_frame(); 2053 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 2054 frame caller_frame = stub_frame.sender(®_map); 2055 2056 // Deoptimize the caller frame. 2057 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 2058 } 2059 2060 2061 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 2062 // Called from within the owner thread, so no need for safepoint 2063 RegisterMap reg_map(thread, 2064 RegisterMap::UpdateMap::include, 2065 RegisterMap::ProcessFrames::include, 2066 RegisterMap::WalkContinuation::skip); 2067 frame stub_frame = thread->last_frame(); 2068 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 2069 frame caller_frame = stub_frame.sender(®_map); 2070 return caller_frame.is_deoptimized_frame(); 2071 } 2072 2073 static const TypeFunc* make_register_finalizer_Type() { 2074 // create input type (domain) 2075 const Type **fields = TypeTuple::fields(1); 2076 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 2077 // // The JavaThread* is passed to each routine as the last argument 2078 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 2079 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2080 2081 // create result type (range) 2082 fields = TypeTuple::fields(0); 2083 2084 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2085 2086 return TypeFunc::make(domain,range); 2087 } 2088 2089 const TypeFunc *OptoRuntime::class_init_barrier_Type() { 2090 // create input type (domain) 2091 const Type** fields = TypeTuple::fields(1); 2092 fields[TypeFunc::Parms+0] = TypeKlassPtr::NOTNULL; 2093 // // The JavaThread* is passed to each routine as the last argument 2094 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 2095 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+1, fields); 2096 2097 // create result type (range) 2098 fields = TypeTuple::fields(0); 2099 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 2100 return TypeFunc::make(domain,range); 2101 } 2102 2103 #if INCLUDE_JFR 2104 static const TypeFunc* make_class_id_load_barrier_Type() { 2105 // create input type (domain) 2106 const Type **fields = TypeTuple::fields(1); 2107 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 2108 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 2109 2110 // create result type (range) 2111 fields = TypeTuple::fields(0); 2112 2113 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 2114 2115 return TypeFunc::make(domain,range); 2116 } 2117 #endif // INCLUDE_JFR 2118 2119 //----------------------------------------------------------------------------- 2120 // runtime upcall support 2121 const TypeFunc *OptoRuntime::runtime_up_call_Type() { 2122 // create input type (domain) 2123 const Type **fields = TypeTuple::fields(1); 2124 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2125 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2126 2127 // create result type (range) 2128 fields = TypeTuple::fields(0); 2129 2130 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2131 2132 return TypeFunc::make(domain,range); 2133 } 2134 2135 //----------------------------------------------------------------------------- 2136 static const TypeFunc* make_dtrace_method_entry_exit_Type() { 2137 // create input type (domain) 2138 const Type **fields = TypeTuple::fields(2); 2139 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2140 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 2141 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2142 2143 // create result type (range) 2144 fields = TypeTuple::fields(0); 2145 2146 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2147 2148 return TypeFunc::make(domain,range); 2149 } 2150 2151 static const TypeFunc* make_dtrace_object_alloc_Type() { 2152 // create input type (domain) 2153 const Type **fields = TypeTuple::fields(2); 2154 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2155 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 2156 2157 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2158 2159 // create result type (range) 2160 fields = TypeTuple::fields(0); 2161 2162 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2163 2164 return TypeFunc::make(domain,range); 2165 } 2166 2167 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, register_finalizer_C, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current)) 2168 assert(oopDesc::is_oop(obj), "must be a valid oop"); 2169 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 2170 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 2171 JRT_END 2172 2173 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, class_init_barrier_C, OptoRuntime::class_init_barrier_C(Klass* k, JavaThread* current)) 2174 InstanceKlass* ik = InstanceKlass::cast(k); 2175 if (ik->should_be_initialized()) { 2176 ik->initialize(CHECK); 2177 } else if (UsePerfData) { 2178 _perf_OptoRuntime_class_init_barrier_redundant_count->inc(); 2179 } 2180 JRT_END 2181 2182 //----------------------------------------------------------------------------- 2183 2184 NamedCounter * volatile OptoRuntime::_named_counters = nullptr; 2185 2186 // 2187 // dump the collected NamedCounters. 2188 // 2189 void OptoRuntime::print_named_counters() { 2190 int total_lock_count = 0; 2191 int eliminated_lock_count = 0; 2192 2193 NamedCounter* c = _named_counters; 2194 while (c) { 2195 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 2196 int count = c->count(); 2197 if (count > 0) { 2198 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 2199 if (Verbose) { 2200 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 2201 } 2202 total_lock_count += count; 2203 if (eliminated) { 2204 eliminated_lock_count += count; 2205 } 2206 } 2207 } 2208 c = c->next(); 2209 } 2210 if (total_lock_count > 0) { 2211 tty->print_cr("dynamic locks: %d", total_lock_count); 2212 if (eliminated_lock_count) { 2213 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 2214 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 2215 } 2216 } 2217 } 2218 2219 // 2220 // Allocate a new NamedCounter. The JVMState is used to generate the 2221 // name which consists of method@line for the inlining tree. 2222 // 2223 2224 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 2225 int max_depth = youngest_jvms->depth(); 2226 2227 // Visit scopes from youngest to oldest. 2228 bool first = true; 2229 stringStream st; 2230 for (int depth = max_depth; depth >= 1; depth--) { 2231 JVMState* jvms = youngest_jvms->of_depth(depth); 2232 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr; 2233 if (!first) { 2234 st.print(" "); 2235 } else { 2236 first = false; 2237 } 2238 int bci = jvms->bci(); 2239 if (bci < 0) bci = 0; 2240 if (m != nullptr) { 2241 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 2242 } else { 2243 st.print("no method"); 2244 } 2245 st.print("@%d", bci); 2246 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 2247 } 2248 NamedCounter* c = new NamedCounter(st.freeze(), tag); 2249 2250 // atomically add the new counter to the head of the list. We only 2251 // add counters so this is safe. 2252 NamedCounter* head; 2253 do { 2254 c->set_next(nullptr); 2255 head = _named_counters; 2256 c->set_next(head); 2257 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 2258 return c; 2259 } 2260 2261 void OptoRuntime::initialize_types() { 2262 _new_instance_Type = make_new_instance_Type(); 2263 _new_array_Type = make_new_array_Type(); 2264 _multianewarray2_Type = multianewarray_Type(2); 2265 _multianewarray3_Type = multianewarray_Type(3); 2266 _multianewarray4_Type = multianewarray_Type(4); 2267 _multianewarray5_Type = multianewarray_Type(5); 2268 _multianewarrayN_Type = make_multianewarrayN_Type(); 2269 _complete_monitor_enter_Type = make_complete_monitor_enter_Type(); 2270 _complete_monitor_exit_Type = make_complete_monitor_exit_Type(); 2271 _monitor_notify_Type = make_monitor_notify_Type(); 2272 _uncommon_trap_Type = make_uncommon_trap_Type(); 2273 _athrow_Type = make_athrow_Type(); 2274 _rethrow_Type = make_rethrow_Type(); 2275 _Math_D_D_Type = make_Math_D_D_Type(); 2276 _Math_DD_D_Type = make_Math_DD_D_Type(); 2277 _modf_Type = make_modf_Type(); 2278 _l2f_Type = make_l2f_Type(); 2279 _void_long_Type = make_void_long_Type(); 2280 _void_void_Type = make_void_void_Type(); 2281 _jfr_write_checkpoint_Type = make_jfr_write_checkpoint_Type(); 2282 _flush_windows_Type = make_flush_windows_Type(); 2283 _fast_arraycopy_Type = make_arraycopy_Type(ac_fast); 2284 _checkcast_arraycopy_Type = make_arraycopy_Type(ac_checkcast); 2285 _generic_arraycopy_Type = make_arraycopy_Type(ac_generic); 2286 _slow_arraycopy_Type = make_arraycopy_Type(ac_slow); 2287 _unsafe_setmemory_Type = make_setmemory_Type(); 2288 _array_fill_Type = make_array_fill_Type(); 2289 _array_sort_Type = make_array_sort_Type(); 2290 _array_partition_Type = make_array_partition_Type(); 2291 _aescrypt_block_Type = make_aescrypt_block_Type(); 2292 _cipherBlockChaining_aescrypt_Type = make_cipherBlockChaining_aescrypt_Type(); 2293 _electronicCodeBook_aescrypt_Type = make_electronicCodeBook_aescrypt_Type(); 2294 _counterMode_aescrypt_Type = make_counterMode_aescrypt_Type(); 2295 _galoisCounterMode_aescrypt_Type = make_galoisCounterMode_aescrypt_Type(); 2296 _digestBase_implCompress_with_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ true); 2297 _digestBase_implCompress_without_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ false);; 2298 _digestBase_implCompressMB_with_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ true); 2299 _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false); 2300 _double_keccak_Type = make_double_keccak_Type(); 2301 _multiplyToLen_Type = make_multiplyToLen_Type(); 2302 _montgomeryMultiply_Type = make_montgomeryMultiply_Type(); 2303 _montgomerySquare_Type = make_montgomerySquare_Type(); 2304 _squareToLen_Type = make_squareToLen_Type(); 2305 _mulAdd_Type = make_mulAdd_Type(); 2306 _bigIntegerShift_Type = make_bigIntegerShift_Type(); 2307 _vectorizedMismatch_Type = make_vectorizedMismatch_Type(); 2308 _ghash_processBlocks_Type = make_ghash_processBlocks_Type(); 2309 _chacha20Block_Type = make_chacha20Block_Type(); 2310 _kyberNtt_Type = make_kyberNtt_Type(); 2311 _kyberInverseNtt_Type = make_kyberInverseNtt_Type(); 2312 _kyberNttMult_Type = make_kyberNttMult_Type(); 2313 _kyberAddPoly_2_Type = make_kyberAddPoly_2_Type(); 2314 _kyberAddPoly_3_Type = make_kyberAddPoly_3_Type(); 2315 _kyber12To16_Type = make_kyber12To16_Type(); 2316 _kyberBarrettReduce_Type = make_kyberBarrettReduce_Type(); 2317 _dilithiumAlmostNtt_Type = make_dilithiumAlmostNtt_Type(); 2318 _dilithiumAlmostInverseNtt_Type = make_dilithiumAlmostInverseNtt_Type(); 2319 _dilithiumNttMult_Type = make_dilithiumNttMult_Type(); 2320 _dilithiumMontMulByConstant_Type = make_dilithiumMontMulByConstant_Type(); 2321 _dilithiumDecomposePoly_Type = make_dilithiumDecomposePoly_Type(); 2322 _base64_encodeBlock_Type = make_base64_encodeBlock_Type(); 2323 _base64_decodeBlock_Type = make_base64_decodeBlock_Type(); 2324 _string_IndexOf_Type = make_string_IndexOf_Type(); 2325 _poly1305_processBlocks_Type = make_poly1305_processBlocks_Type(); 2326 _intpoly_montgomeryMult_P256_Type = make_intpoly_montgomeryMult_P256_Type(); 2327 _intpoly_assign_Type = make_intpoly_assign_Type(); 2328 _updateBytesCRC32_Type = make_updateBytesCRC32_Type(); 2329 _updateBytesCRC32C_Type = make_updateBytesCRC32C_Type(); 2330 _updateBytesAdler32_Type = make_updateBytesAdler32_Type(); 2331 _osr_end_Type = make_osr_end_Type(); 2332 _register_finalizer_Type = make_register_finalizer_Type(); 2333 JFR_ONLY( 2334 _class_id_load_barrier_Type = make_class_id_load_barrier_Type(); 2335 ) 2336 #if INCLUDE_JVMTI 2337 _notify_jvmti_vthread_Type = make_notify_jvmti_vthread_Type(); 2338 #endif // INCLUDE_JVMTI 2339 _dtrace_method_entry_exit_Type = make_dtrace_method_entry_exit_Type(); 2340 _dtrace_object_alloc_Type = make_dtrace_object_alloc_Type(); 2341 } 2342 2343 int trace_exception_counter = 0; 2344 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 2345 trace_exception_counter++; 2346 stringStream tempst; 2347 2348 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 2349 exception_oop->print_value_on(&tempst); 2350 tempst.print(" in "); 2351 CodeBlob* blob = CodeCache::find_blob(exception_pc); 2352 if (blob->is_nmethod()) { 2353 blob->as_nmethod()->method()->print_value_on(&tempst); 2354 } else if (blob->is_runtime_stub()) { 2355 tempst.print("<runtime-stub>"); 2356 } else { 2357 tempst.print("<unknown>"); 2358 } 2359 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 2360 tempst.print("]"); 2361 2362 st->print_raw_cr(tempst.freeze()); 2363 } 2364 2365 #define DO_COUNTERS2(macro2, macro1) \ 2366 macro2(OptoRuntime, new_instance_C) \ 2367 macro2(OptoRuntime, new_array_C) \ 2368 macro2(OptoRuntime, new_array_nozero_C) \ 2369 macro2(OptoRuntime, multianewarray2_C) \ 2370 macro2(OptoRuntime, multianewarray3_C) \ 2371 macro2(OptoRuntime, multianewarray4_C) \ 2372 macro2(OptoRuntime, multianewarrayN_C) \ 2373 macro2(OptoRuntime, monitor_notify_C) \ 2374 macro2(OptoRuntime, monitor_notifyAll_C) \ 2375 macro2(OptoRuntime, handle_exception_C_helper) \ 2376 macro2(OptoRuntime, register_finalizer_C) \ 2377 macro2(OptoRuntime, class_init_barrier_C) \ 2378 macro1(OptoRuntime, class_init_barrier_redundant) 2379 2380 #define INIT_COUNTER_TIME_AND_CNT(sub, name) \ 2381 NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \ 2382 NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count"); 2383 2384 #define INIT_COUNTER_CNT(sub, name) \ 2385 NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count"); 2386 2387 void OptoRuntime::init_counters() { 2388 assert(CompilerConfig::is_c2_enabled(), ""); 2389 2390 if (UsePerfData) { 2391 EXCEPTION_MARK; 2392 2393 DO_COUNTERS2(INIT_COUNTER_TIME_AND_CNT, INIT_COUNTER_CNT) 2394 2395 if (HAS_PENDING_EXCEPTION) { 2396 vm_exit_during_initialization("jvm_perf_init failed unexpectedly"); 2397 } 2398 } 2399 } 2400 #undef INIT_COUNTER_TIME_AND_CNT 2401 #undef INIT_COUNTER_CNT 2402 2403 #define PRINT_COUNTER_TIME_AND_CNT(sub, name) { \ 2404 jlong count = _perf_##sub##_##name##_count->get_value(); \ 2405 if (count > 0) { \ 2406 st->print_cr(" %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \ 2407 _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \ 2408 _perf_##sub##_##name##_timer->thread_counter_value_us(), \ 2409 count); \ 2410 }} 2411 2412 #define PRINT_COUNTER_CNT(sub, name) { \ 2413 jlong count = _perf_##sub##_##name##_count->get_value(); \ 2414 if (count > 0) { \ 2415 st->print_cr(" %-30s = " JLONG_FORMAT_W(5) " events", #name, count); \ 2416 }} 2417 2418 void OptoRuntime::print_counters_on(outputStream* st) { 2419 if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c2_enabled()) { 2420 DO_COUNTERS2(PRINT_COUNTER_TIME_AND_CNT, PRINT_COUNTER_CNT) 2421 } else { 2422 st->print_cr(" OptoRuntime: no info (%s is disabled)", 2423 (!CompilerConfig::is_c2_enabled() ? "C2" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData"))); 2424 } 2425 } 2426 2427 #undef PRINT_COUNTER_TIME_AND_CNT 2428 #undef PRINT_COUNTER_CNT 2429 #undef DO_COUNTERS2