< prev index next >

src/hotspot/share/opto/runtime.cpp

Print this page

  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"

  35 #include "compiler/oopMap.hpp"
  36 #include "gc/g1/g1HeapRegion.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gcLocker.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/klass.inline.hpp"
  48 #include "oops/objArrayKlass.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/typeArrayOop.inline.hpp"
  51 #include "opto/ad.hpp"
  52 #include "opto/addnode.hpp"
  53 #include "opto/callnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/graphKit.hpp"
  56 #include "opto/machnode.hpp"
  57 #include "opto/matcher.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/output.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/subnode.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "runtime/atomicAccess.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/interfaceSupport.inline.hpp"

  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/mountUnmountDisabler.hpp"

  70 #include "runtime/sharedRuntime.hpp"
  71 #include "runtime/signature.hpp"
  72 #include "runtime/stackWatermarkSet.hpp"
  73 #include "runtime/synchronizer.hpp"
  74 #include "runtime/threadWXSetters.inline.hpp"
  75 #include "runtime/vframe.hpp"
  76 #include "runtime/vframe_hp.hpp"
  77 #include "runtime/vframeArray.hpp"

  78 #include "utilities/copy.hpp"
  79 #include "utilities/preserveException.hpp"
  80 
  81 
  82 // For debugging purposes:
  83 //  To force FullGCALot inside a runtime function, add the following two lines
  84 //
  85 //  Universe::release_fullgc_alot_dummy();
  86 //  Universe::heap()->collect();
  87 //
  88 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  89 
  90 
  91 #define C2_BLOB_FIELD_DEFINE(name, type) \
  92   type* OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  93 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  94 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  95   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
  96 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE)
  97 #undef C2_BLOB_FIELD_DEFINE
  98 #undef C2_STUB_FIELD_DEFINE
  99 




 100 // This should be called in an assertion at the start of OptoRuntime routines
 101 // which are entered from compiled code (all of them)
 102 #ifdef ASSERT
 103 static bool check_compiled_frame(JavaThread* thread) {
 104   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 105   RegisterMap map(thread,
 106                   RegisterMap::UpdateMap::skip,
 107                   RegisterMap::ProcessFrames::include,
 108                   RegisterMap::WalkContinuation::skip);
 109   frame caller = thread->last_frame().sender(&map);
 110   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 111   return true;
 112 }
 113 #endif // ASSERT
 114 
 115 /*
 116 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 117   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 118   if (var == nullptr) { return false; }
 119 */

 135 // from the stub name by appending suffix '_C'. However, in two cases
 136 // a common target method also needs to be called from shared runtime
 137 // stubs. In these two cases the opto stubs rely on method
 138 // imlementations defined in class SharedRuntime. The following
 139 // defines temporarily rebind the generated names to reference the
 140 // relevant implementations.
 141 
 142 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 143   C2_STUB_FIELD_NAME(name) =                                          \
 144     generate_stub(env,                                                \
 145                   C2_STUB_TYPEFUNC(name),                             \
 146                   C2_STUB_C_FUNC(name),                               \
 147                   C2_STUB_NAME(name),                                 \
 148                   C2_STUB_ID(name),                                   \
 149                   fancy_jump,                                         \
 150                   pass_tls,                                           \
 151                   pass_retpc);                                        \
 152   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 153 
 154 bool OptoRuntime::generate(ciEnv* env) {

 155 
 156   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB)
 157 
 158   return true;
 159 }
 160 
 161 #undef GEN_C2_BLOB
 162 
 163 #undef C2_STUB_FIELD_NAME
 164 #undef C2_STUB_TYPEFUNC
 165 #undef C2_STUB_C_FUNC
 166 #undef C2_STUB_NAME
 167 #undef GEN_C2_STUB
 168 
 169 // #undef gen
 170 
 171 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 172 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 173 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 174 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;

 237 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 238 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 239 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 240 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 241 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 242 const TypeFunc* OptoRuntime::_vthread_transition_Type             = nullptr;
 243 #if INCLUDE_JFR
 244 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 245 #endif // INCLUDE_JFR
 246 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 247 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 248 
 249 // Helper method to do generation of RunTimeStub's
 250 address OptoRuntime::generate_stub(ciEnv* env,
 251                                    TypeFunc_generator gen, address C_function,
 252                                    const char *name, StubId stub_id,
 253                                    int is_fancy_jump, bool pass_tls,
 254                                    bool return_pc) {
 255 
 256   // Matching the default directive, we currently have no method to match.
 257   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 258   CompilationMemoryStatisticMark cmsm(directive);
 259   ResourceMark rm;
 260   Compile C(env, gen, C_function, name, stub_id, is_fancy_jump, pass_tls, return_pc, directive);
 261   DirectivesStack::release(directive);
 262   return  C.stub_entry_point();
 263 }
 264 
 265 const char* OptoRuntime::stub_name(address entry) {
 266 #ifndef PRODUCT
 267   CodeBlob* cb = CodeCache::find_blob(entry);
 268   RuntimeStub* rs =(RuntimeStub *)cb;
 269   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 270   return rs->name();
 271 #else
 272   // Fast implementation for product mode (maybe it should be inlined too)
 273   return "runtime stub";
 274 #endif
 275 }
 276 
 277 // local methods passed as arguments to stub generator that forward

 281                                    oopDesc* dest, jint dest_pos,
 282                                    jint length, JavaThread* thread) {
 283   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 284 }
 285 
 286 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 287   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 288 }
 289 
 290 
 291 //=============================================================================
 292 // Opto compiler runtime routines
 293 //=============================================================================
 294 
 295 
 296 //=============================allocation======================================
 297 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 298 // and try allocation again.
 299 
 300 // object allocation
 301 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 302   JRT_BLOCK;
 303 #ifndef PRODUCT
 304   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 305 #endif
 306   assert(check_compiled_frame(current), "incorrect caller");
 307 
 308   // These checks are cheap to make and support reflective allocation.
 309   int lh = klass->layout_helper();
 310   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 311     Handle holder(current, klass->klass_holder()); // keep the klass alive
 312     klass->check_valid_for_instantiation(false, THREAD);
 313     if (!HAS_PENDING_EXCEPTION) {
 314       InstanceKlass::cast(klass)->initialize(THREAD);
 315     }
 316   }
 317 
 318   if (!HAS_PENDING_EXCEPTION) {
 319     // Scavenge and allocate an instance.
 320     Handle holder(current, klass->klass_holder()); // keep the klass alive
 321     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 322     current->set_vm_result_oop(result);
 323 
 324     // Pass oops back through thread local storage.  Our apparent type to Java
 325     // is that we return an oop, but we can block on exit from this routine and
 326     // a GC can trash the oop in C's return register.  The generated stub will
 327     // fetch the oop from TLS after any possible GC.
 328   }
 329 
 330   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 331   JRT_BLOCK_END;
 332 
 333   // inform GC that we won't do card marks for initializing writes.
 334   SharedRuntime::on_slowpath_allocation_exit(current);
 335 JRT_END
 336 
 337 
 338 // array allocation
 339 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 340   JRT_BLOCK;
 341 #ifndef PRODUCT
 342   SharedRuntime::_new_array_ctr++;            // new array requires GC
 343 #endif
 344   assert(check_compiled_frame(current), "incorrect caller");
 345 
 346   // Scavenge and allocate an instance.
 347   oop result;
 348 
 349   if (array_type->is_typeArray_klass()) {
 350     // The oopFactory likes to work with the element type.
 351     // (We could bypass the oopFactory, since it doesn't add much value.)
 352     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 353     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 354   } else {
 355     // Although the oopFactory likes to work with the elem_type,
 356     // the compiler prefers the array_type, since it must already have
 357     // that latter value in hand for the fast path.
 358     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 359     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 360     result = oopFactory::new_objArray(elem_type, len, THREAD);
 361   }
 362 
 363   // Pass oops back through thread local storage.  Our apparent type to Java
 364   // is that we return an oop, but we can block on exit from this routine and
 365   // a GC can trash the oop in C's return register.  The generated stub will
 366   // fetch the oop from TLS after any possible GC.
 367   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 368   current->set_vm_result_oop(result);
 369   JRT_BLOCK_END;
 370 
 371   // inform GC that we won't do card marks for initializing writes.
 372   SharedRuntime::on_slowpath_allocation_exit(current);
 373 JRT_END
 374 
 375 // array allocation without zeroing
 376 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 377   JRT_BLOCK;
 378 #ifndef PRODUCT
 379   SharedRuntime::_new_array_ctr++;            // new array requires GC
 380 #endif
 381   assert(check_compiled_frame(current), "incorrect caller");
 382 
 383   // Scavenge and allocate an instance.
 384   oop result;
 385 
 386   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 387   // The oopFactory likes to work with the element type.
 388   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 389   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 390 
 391   // Pass oops back through thread local storage.  Our apparent type to Java
 392   // is that we return an oop, but we can block on exit from this routine and
 393   // a GC can trash the oop in C's return register.  The generated stub will
 394   // fetch the oop from TLS after any possible GC.
 395   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 396   current->set_vm_result_oop(result);

 408     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 409     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 410     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 411     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 412     if (!is_aligned(hs_bytes, BytesPerLong)) {
 413       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 414       hs_bytes += BytesPerInt;
 415     }
 416 
 417     // Optimized zeroing.
 418     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 419     const size_t aligned_hs = hs_bytes / BytesPerLong;
 420     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 421   }
 422 
 423 JRT_END
 424 
 425 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 426 
 427 // multianewarray for 2 dimensions
 428 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 429 #ifndef PRODUCT
 430   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 431 #endif
 432   assert(check_compiled_frame(current), "incorrect caller");
 433   assert(elem_type->is_klass(), "not a class");
 434   jint dims[2];
 435   dims[0] = len1;
 436   dims[1] = len2;
 437   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 438   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 439   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 440   current->set_vm_result_oop(obj);
 441 JRT_END
 442 
 443 // multianewarray for 3 dimensions
 444 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 445 #ifndef PRODUCT
 446   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 447 #endif
 448   assert(check_compiled_frame(current), "incorrect caller");
 449   assert(elem_type->is_klass(), "not a class");
 450   jint dims[3];
 451   dims[0] = len1;
 452   dims[1] = len2;
 453   dims[2] = len3;
 454   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 455   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 456   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 457   current->set_vm_result_oop(obj);
 458 JRT_END
 459 
 460 // multianewarray for 4 dimensions
 461 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 462 #ifndef PRODUCT
 463   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 464 #endif
 465   assert(check_compiled_frame(current), "incorrect caller");
 466   assert(elem_type->is_klass(), "not a class");
 467   jint dims[4];
 468   dims[0] = len1;
 469   dims[1] = len2;
 470   dims[2] = len3;
 471   dims[3] = len4;
 472   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 473   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 474   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 475   current->set_vm_result_oop(obj);
 476 JRT_END
 477 
 478 // multianewarray for 5 dimensions
 479 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 480 #ifndef PRODUCT
 481   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 482 #endif
 483   assert(check_compiled_frame(current), "incorrect caller");
 484   assert(elem_type->is_klass(), "not a class");
 485   jint dims[5];
 486   dims[0] = len1;
 487   dims[1] = len2;
 488   dims[2] = len3;
 489   dims[3] = len4;
 490   dims[4] = len5;
 491   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 492   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 493   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 494   current->set_vm_result_oop(obj);
 495 JRT_END
 496 
 497 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 498   assert(check_compiled_frame(current), "incorrect caller");
 499   assert(elem_type->is_klass(), "not a class");
 500   assert(oop(dims)->is_typeArray(), "not an array");
 501 
 502   ResourceMark rm;
 503   jint len = dims->length();
 504   assert(len > 0, "Dimensions array should contain data");
 505   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 506   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 507                                        c_dims, len);
 508 
 509   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 510   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 511   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 512   current->set_vm_result_oop(obj);
 513 JRT_END
 514 
 515 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 516 
 517   // Very few notify/notifyAll operations find any threads on the waitset, so
 518   // the dominant fast-path is to simply return.
 519   // Relatedly, it's critical that notify/notifyAll be fast in order to
 520   // reduce lock hold times.
 521   if (!SafepointSynchronize::is_synchronizing()) {
 522     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 523       return;
 524     }
 525   }
 526 
 527   // This is the case the fast-path above isn't provisioned to handle.
 528   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 529   // (The fast-path is just a degenerate variant of the slow-path).
 530   // Perform the dreaded state transition and pass control into the slow-path.
 531   JRT_BLOCK;
 532   Handle h_obj(current, obj);
 533   ObjectSynchronizer::notify(h_obj, CHECK);
 534   JRT_BLOCK_END;
 535 JRT_END
 536 
 537 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 538 
 539   if (!SafepointSynchronize::is_synchronizing() ) {
 540     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 541       return;
 542     }
 543   }
 544 
 545   // This is the case the fast-path above isn't provisioned to handle.
 546   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 547   // (The fast-path is just a degenerate variant of the slow-path).
 548   // Perform the dreaded state transition and pass control into the slow-path.
 549   JRT_BLOCK;
 550   Handle h_obj(current, obj);
 551   ObjectSynchronizer::notifyall(h_obj, CHECK);
 552   JRT_BLOCK_END;
 553 JRT_END
 554 
 555 JRT_ENTRY(void, OptoRuntime::vthread_end_first_transition_C(oopDesc* vt, jboolean is_mount, JavaThread* current))
 556   MountUnmountDisabler::end_transition(current, vt, true /*is_mount*/, true /*is_thread_start*/);
 557 JRT_END

1842   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1843   switch (register_save_policy[reg]) {
1844     case 'C': return false; //SOC
1845     case 'E': return true ; //SOE
1846     case 'N': return false; //NS
1847     case 'A': return false; //AS
1848   }
1849   ShouldNotReachHere();
1850   return false;
1851 }
1852 
1853 //-----------------------------------------------------------------------
1854 // Exceptions
1855 //
1856 
1857 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1858 
1859 // The method is an entry that is always called by a C++ method not
1860 // directly from compiled code. Compiled code will call the C++ method following.
1861 // We can't allow async exception to be installed during  exception processing.
1862 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1863   // The frame we rethrow the exception to might not have been processed by the GC yet.
1864   // The stack watermark barrier takes care of detecting that and ensuring the frame
1865   // has updated oops.
1866   StackWatermarkSet::after_unwind(current);
1867 
1868   // Do not confuse exception_oop with pending_exception. The exception_oop
1869   // is only used to pass arguments into the method. Not for general
1870   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1871   // the runtime stubs checks this on exit.
1872   assert(current->exception_oop() != nullptr, "exception oop is found");
1873   address handler_address = nullptr;
1874 
1875   Handle exception(current, current->exception_oop());
1876   address pc = current->exception_pc();
1877 
1878   // Clear out the exception oop and pc since looking up an
1879   // exception handler can cause class loading, which might throw an
1880   // exception and those fields are expected to be clear during
1881   // normal bytecode execution.
1882   current->clear_exception_oop_and_pc();

2112   frame caller_frame = stub_frame.sender(&reg_map);
2113   return caller_frame.is_deoptimized_frame();
2114 }
2115 
2116 static const TypeFunc* make_register_finalizer_Type() {
2117   // create input type (domain)
2118   const Type **fields = TypeTuple::fields(1);
2119   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
2120   // // The JavaThread* is passed to each routine as the last argument
2121   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2122   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2123 
2124   // create result type (range)
2125   fields = TypeTuple::fields(0);
2126 
2127   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2128 
2129   return TypeFunc::make(domain,range);
2130 }
2131 














2132 #if INCLUDE_JFR
2133 static const TypeFunc* make_class_id_load_barrier_Type() {
2134   // create input type (domain)
2135   const Type **fields = TypeTuple::fields(1);
2136   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2137   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2138 
2139   // create result type (range)
2140   fields = TypeTuple::fields(0);
2141 
2142   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2143 
2144   return TypeFunc::make(domain,range);
2145 }
2146 #endif // INCLUDE_JFR
2147 
















2148 //-----------------------------------------------------------------------------
2149 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2150   // create input type (domain)
2151   const Type **fields = TypeTuple::fields(2);
2152   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2153   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
2154   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2155 
2156   // create result type (range)
2157   fields = TypeTuple::fields(0);
2158 
2159   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2160 
2161   return TypeFunc::make(domain,range);
2162 }
2163 
2164 static const TypeFunc* make_dtrace_object_alloc_Type() {
2165   // create input type (domain)
2166   const Type **fields = TypeTuple::fields(2);
2167   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2168   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
2169 
2170   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2171 
2172   // create result type (range)
2173   fields = TypeTuple::fields(0);
2174 
2175   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2176 
2177   return TypeFunc::make(domain,range);
2178 }
2179 
2180 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2181   assert(oopDesc::is_oop(obj), "must be a valid oop");
2182   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2183   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2184 JRT_END
2185 









2186 //-----------------------------------------------------------------------------
2187 
2188 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2189 
2190 //
2191 // dump the collected NamedCounters.
2192 //
2193 void OptoRuntime::print_named_counters() {
2194   int total_lock_count = 0;
2195   int eliminated_lock_count = 0;
2196 
2197   NamedCounter* c = _named_counters;
2198   while (c) {
2199     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
2200       int count = c->count();
2201       if (count > 0) {
2202         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
2203         if (Verbose) {
2204           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
2205         }

2346 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2347   trace_exception_counter++;
2348   stringStream tempst;
2349 
2350   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2351   exception_oop->print_value_on(&tempst);
2352   tempst.print(" in ");
2353   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2354   if (blob->is_nmethod()) {
2355     blob->as_nmethod()->method()->print_value_on(&tempst);
2356   } else if (blob->is_runtime_stub()) {
2357     tempst.print("<runtime-stub>");
2358   } else {
2359     tempst.print("<unknown>");
2360   }
2361   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2362   tempst.print("]");
2363 
2364   st->print_raw_cr(tempst.freeze());
2365 }



































































  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerDefinitions.inline.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/g1HeapRegion.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.hpp"
  41 #include "interpreter/bytecode.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/linkResolver.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/klass.inline.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/typeArrayOop.inline.hpp"
  52 #include "opto/ad.hpp"
  53 #include "opto/addnode.hpp"
  54 #include "opto/callnode.hpp"
  55 #include "opto/cfgnode.hpp"
  56 #include "opto/graphKit.hpp"
  57 #include "opto/machnode.hpp"
  58 #include "opto/matcher.hpp"
  59 #include "opto/memnode.hpp"
  60 #include "opto/mulnode.hpp"
  61 #include "opto/output.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/subnode.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "runtime/atomicAccess.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/mountUnmountDisabler.hpp"
  72 #include "runtime/perfData.inline.hpp"
  73 #include "runtime/sharedRuntime.hpp"
  74 #include "runtime/signature.hpp"
  75 #include "runtime/stackWatermarkSet.hpp"
  76 #include "runtime/synchronizer.hpp"
  77 #include "runtime/threadWXSetters.inline.hpp"
  78 #include "runtime/vframe.hpp"
  79 #include "runtime/vframe_hp.hpp"
  80 #include "runtime/vframeArray.hpp"
  81 #include "services/management.hpp"
  82 #include "utilities/copy.hpp"
  83 #include "utilities/preserveException.hpp"
  84 
  85 
  86 // For debugging purposes:
  87 //  To force FullGCALot inside a runtime function, add the following two lines
  88 //
  89 //  Universe::release_fullgc_alot_dummy();
  90 //  Universe::heap()->collect();
  91 //
  92 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  93 
  94 
  95 #define C2_BLOB_FIELD_DEFINE(name, type) \
  96   type* OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  97 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  98 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  99   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
 100 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE)
 101 #undef C2_BLOB_FIELD_DEFINE
 102 #undef C2_STUB_FIELD_DEFINE
 103 
 104 address OptoRuntime::_vtable_must_compile_Java                    = nullptr;
 105 
 106 PerfCounter* _perf_OptoRuntime_class_init_barrier_redundant_count = nullptr;
 107 
 108 // This should be called in an assertion at the start of OptoRuntime routines
 109 // which are entered from compiled code (all of them)
 110 #ifdef ASSERT
 111 static bool check_compiled_frame(JavaThread* thread) {
 112   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 113   RegisterMap map(thread,
 114                   RegisterMap::UpdateMap::skip,
 115                   RegisterMap::ProcessFrames::include,
 116                   RegisterMap::WalkContinuation::skip);
 117   frame caller = thread->last_frame().sender(&map);
 118   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 119   return true;
 120 }
 121 #endif // ASSERT
 122 
 123 /*
 124 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 125   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 126   if (var == nullptr) { return false; }
 127 */

 143 // from the stub name by appending suffix '_C'. However, in two cases
 144 // a common target method also needs to be called from shared runtime
 145 // stubs. In these two cases the opto stubs rely on method
 146 // imlementations defined in class SharedRuntime. The following
 147 // defines temporarily rebind the generated names to reference the
 148 // relevant implementations.
 149 
 150 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 151   C2_STUB_FIELD_NAME(name) =                                          \
 152     generate_stub(env,                                                \
 153                   C2_STUB_TYPEFUNC(name),                             \
 154                   C2_STUB_C_FUNC(name),                               \
 155                   C2_STUB_NAME(name),                                 \
 156                   C2_STUB_ID(name),                                   \
 157                   fancy_jump,                                         \
 158                   pass_tls,                                           \
 159                   pass_retpc);                                        \
 160   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 161 
 162 bool OptoRuntime::generate(ciEnv* env) {
 163   init_counters();
 164 
 165   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB)
 166 
 167   return true;
 168 }
 169 
 170 #undef GEN_C2_BLOB
 171 
 172 #undef C2_STUB_FIELD_NAME
 173 #undef C2_STUB_TYPEFUNC
 174 #undef C2_STUB_C_FUNC
 175 #undef C2_STUB_NAME
 176 #undef GEN_C2_STUB
 177 
 178 // #undef gen
 179 
 180 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 181 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 182 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 183 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;

 246 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 247 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 248 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 249 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 250 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 251 const TypeFunc* OptoRuntime::_vthread_transition_Type             = nullptr;
 252 #if INCLUDE_JFR
 253 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 254 #endif // INCLUDE_JFR
 255 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 256 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 257 
 258 // Helper method to do generation of RunTimeStub's
 259 address OptoRuntime::generate_stub(ciEnv* env,
 260                                    TypeFunc_generator gen, address C_function,
 261                                    const char *name, StubId stub_id,
 262                                    int is_fancy_jump, bool pass_tls,
 263                                    bool return_pc) {
 264 
 265   // Matching the default directive, we currently have no method to match.
 266   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompilerThread::current()->compiler());
 267   CompilationMemoryStatisticMark cmsm(directive);
 268   ResourceMark rm;
 269   Compile C(env, gen, C_function, name, stub_id, is_fancy_jump, pass_tls, return_pc, directive);
 270   DirectivesStack::release(directive);
 271   return  C.stub_entry_point();
 272 }
 273 
 274 const char* OptoRuntime::stub_name(address entry) {
 275 #ifndef PRODUCT
 276   CodeBlob* cb = CodeCache::find_blob(entry);
 277   RuntimeStub* rs =(RuntimeStub *)cb;
 278   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 279   return rs->name();
 280 #else
 281   // Fast implementation for product mode (maybe it should be inlined too)
 282   return "runtime stub";
 283 #endif
 284 }
 285 
 286 // local methods passed as arguments to stub generator that forward

 290                                    oopDesc* dest, jint dest_pos,
 291                                    jint length, JavaThread* thread) {
 292   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 293 }
 294 
 295 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 296   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 297 }
 298 
 299 
 300 //=============================================================================
 301 // Opto compiler runtime routines
 302 //=============================================================================
 303 
 304 
 305 //=============================allocation======================================
 306 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 307 // and try allocation again.
 308 
 309 // object allocation
 310 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_instance_C, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 311   JRT_BLOCK;
 312 #ifndef PRODUCT
 313   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 314 #endif
 315   assert(check_compiled_frame(current), "incorrect caller");
 316 
 317   // These checks are cheap to make and support reflective allocation.
 318   int lh = klass->layout_helper();
 319   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 320     Handle holder(current, klass->klass_holder()); // keep the klass alive
 321     klass->check_valid_for_instantiation(false, THREAD);
 322     if (!HAS_PENDING_EXCEPTION) {
 323       InstanceKlass::cast(klass)->initialize(THREAD);
 324     }
 325   }
 326 
 327   if (!HAS_PENDING_EXCEPTION) {
 328     // Scavenge and allocate an instance.
 329     Handle holder(current, klass->klass_holder()); // keep the klass alive
 330     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 331     current->set_vm_result_oop(result);
 332 
 333     // Pass oops back through thread local storage.  Our apparent type to Java
 334     // is that we return an oop, but we can block on exit from this routine and
 335     // a GC can trash the oop in C's return register.  The generated stub will
 336     // fetch the oop from TLS after any possible GC.
 337   }
 338 
 339   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 340   JRT_BLOCK_END;
 341 
 342   // inform GC that we won't do card marks for initializing writes.
 343   SharedRuntime::on_slowpath_allocation_exit(current);
 344 JRT_END
 345 
 346 
 347 // array allocation
 348 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_C, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 349   JRT_BLOCK;
 350 #ifndef PRODUCT
 351   SharedRuntime::_new_array_ctr++;            // new array requires GC
 352 #endif
 353   assert(check_compiled_frame(current), "incorrect caller");
 354 
 355   // Scavenge and allocate an instance.
 356   oop result;
 357 
 358   if (array_type->is_typeArray_klass()) {
 359     // The oopFactory likes to work with the element type.
 360     // (We could bypass the oopFactory, since it doesn't add much value.)
 361     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 362     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 363   } else {
 364     // Although the oopFactory likes to work with the elem_type,
 365     // the compiler prefers the array_type, since it must already have
 366     // that latter value in hand for the fast path.
 367     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 368     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 369     result = oopFactory::new_objArray(elem_type, len, THREAD);
 370   }
 371 
 372   // Pass oops back through thread local storage.  Our apparent type to Java
 373   // is that we return an oop, but we can block on exit from this routine and
 374   // a GC can trash the oop in C's return register.  The generated stub will
 375   // fetch the oop from TLS after any possible GC.
 376   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 377   current->set_vm_result_oop(result);
 378   JRT_BLOCK_END;
 379 
 380   // inform GC that we won't do card marks for initializing writes.
 381   SharedRuntime::on_slowpath_allocation_exit(current);
 382 JRT_END
 383 
 384 // array allocation without zeroing
 385 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, new_array_nozero_C, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 386   JRT_BLOCK;
 387 #ifndef PRODUCT
 388   SharedRuntime::_new_array_ctr++;            // new array requires GC
 389 #endif
 390   assert(check_compiled_frame(current), "incorrect caller");
 391 
 392   // Scavenge and allocate an instance.
 393   oop result;
 394 
 395   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 396   // The oopFactory likes to work with the element type.
 397   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 398   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 399 
 400   // Pass oops back through thread local storage.  Our apparent type to Java
 401   // is that we return an oop, but we can block on exit from this routine and
 402   // a GC can trash the oop in C's return register.  The generated stub will
 403   // fetch the oop from TLS after any possible GC.
 404   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 405   current->set_vm_result_oop(result);

 417     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 418     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 419     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 420     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 421     if (!is_aligned(hs_bytes, BytesPerLong)) {
 422       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 423       hs_bytes += BytesPerInt;
 424     }
 425 
 426     // Optimized zeroing.
 427     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 428     const size_t aligned_hs = hs_bytes / BytesPerLong;
 429     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 430   }
 431 
 432 JRT_END
 433 
 434 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 435 
 436 // multianewarray for 2 dimensions
 437 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray2_C, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 438 #ifndef PRODUCT
 439   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 440 #endif
 441   assert(check_compiled_frame(current), "incorrect caller");
 442   assert(elem_type->is_klass(), "not a class");
 443   jint dims[2];
 444   dims[0] = len1;
 445   dims[1] = len2;
 446   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 447   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 448   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 449   current->set_vm_result_oop(obj);
 450 JRT_END
 451 
 452 // multianewarray for 3 dimensions
 453 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray3_C, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 454 #ifndef PRODUCT
 455   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 456 #endif
 457   assert(check_compiled_frame(current), "incorrect caller");
 458   assert(elem_type->is_klass(), "not a class");
 459   jint dims[3];
 460   dims[0] = len1;
 461   dims[1] = len2;
 462   dims[2] = len3;
 463   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 464   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 465   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 466   current->set_vm_result_oop(obj);
 467 JRT_END
 468 
 469 // multianewarray for 4 dimensions
 470 JRT_ENTRY_PROF(void, OptoRuntime, multianewarray4_C, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 471 #ifndef PRODUCT
 472   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 473 #endif
 474   assert(check_compiled_frame(current), "incorrect caller");
 475   assert(elem_type->is_klass(), "not a class");
 476   jint dims[4];
 477   dims[0] = len1;
 478   dims[1] = len2;
 479   dims[2] = len3;
 480   dims[3] = len4;
 481   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 482   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 483   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 484   current->set_vm_result_oop(obj);
 485 JRT_END
 486 
 487 // multianewarray for 5 dimensions
 488 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 489 #ifndef PRODUCT
 490   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 491 #endif
 492   assert(check_compiled_frame(current), "incorrect caller");
 493   assert(elem_type->is_klass(), "not a class");
 494   jint dims[5];
 495   dims[0] = len1;
 496   dims[1] = len2;
 497   dims[2] = len3;
 498   dims[3] = len4;
 499   dims[4] = len5;
 500   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 501   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 502   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 503   current->set_vm_result_oop(obj);
 504 JRT_END
 505 
 506 JRT_ENTRY_PROF(void, OptoRuntime, multianewarrayN_C, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 507   assert(check_compiled_frame(current), "incorrect caller");
 508   assert(elem_type->is_klass(), "not a class");
 509   assert(oop(dims)->is_typeArray(), "not an array");
 510 
 511   ResourceMark rm;
 512   jint len = dims->length();
 513   assert(len > 0, "Dimensions array should contain data");
 514   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 515   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 516                                        c_dims, len);
 517 
 518   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 519   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 520   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 521   current->set_vm_result_oop(obj);
 522 JRT_END
 523 
 524 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notify_C, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 525 
 526   // Very few notify/notifyAll operations find any threads on the waitset, so
 527   // the dominant fast-path is to simply return.
 528   // Relatedly, it's critical that notify/notifyAll be fast in order to
 529   // reduce lock hold times.
 530   if (!SafepointSynchronize::is_synchronizing()) {
 531     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 532       return;
 533     }
 534   }
 535 
 536   // This is the case the fast-path above isn't provisioned to handle.
 537   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 538   // (The fast-path is just a degenerate variant of the slow-path).
 539   // Perform the dreaded state transition and pass control into the slow-path.
 540   JRT_BLOCK;
 541   Handle h_obj(current, obj);
 542   ObjectSynchronizer::notify(h_obj, CHECK);
 543   JRT_BLOCK_END;
 544 JRT_END
 545 
 546 JRT_BLOCK_ENTRY_PROF(void, OptoRuntime, monitor_notifyAll_C, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 547 
 548   if (!SafepointSynchronize::is_synchronizing() ) {
 549     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 550       return;
 551     }
 552   }
 553 
 554   // This is the case the fast-path above isn't provisioned to handle.
 555   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 556   // (The fast-path is just a degenerate variant of the slow-path).
 557   // Perform the dreaded state transition and pass control into the slow-path.
 558   JRT_BLOCK;
 559   Handle h_obj(current, obj);
 560   ObjectSynchronizer::notifyall(h_obj, CHECK);
 561   JRT_BLOCK_END;
 562 JRT_END
 563 
 564 JRT_ENTRY(void, OptoRuntime::vthread_end_first_transition_C(oopDesc* vt, jboolean is_mount, JavaThread* current))
 565   MountUnmountDisabler::end_transition(current, vt, true /*is_mount*/, true /*is_thread_start*/);
 566 JRT_END

1851   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1852   switch (register_save_policy[reg]) {
1853     case 'C': return false; //SOC
1854     case 'E': return true ; //SOE
1855     case 'N': return false; //NS
1856     case 'A': return false; //AS
1857   }
1858   ShouldNotReachHere();
1859   return false;
1860 }
1861 
1862 //-----------------------------------------------------------------------
1863 // Exceptions
1864 //
1865 
1866 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1867 
1868 // The method is an entry that is always called by a C++ method not
1869 // directly from compiled code. Compiled code will call the C++ method following.
1870 // We can't allow async exception to be installed during  exception processing.
1871 JRT_ENTRY_NO_ASYNC_PROF(address, OptoRuntime, handle_exception_C_helper, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1872   // The frame we rethrow the exception to might not have been processed by the GC yet.
1873   // The stack watermark barrier takes care of detecting that and ensuring the frame
1874   // has updated oops.
1875   StackWatermarkSet::after_unwind(current);
1876 
1877   // Do not confuse exception_oop with pending_exception. The exception_oop
1878   // is only used to pass arguments into the method. Not for general
1879   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1880   // the runtime stubs checks this on exit.
1881   assert(current->exception_oop() != nullptr, "exception oop is found");
1882   address handler_address = nullptr;
1883 
1884   Handle exception(current, current->exception_oop());
1885   address pc = current->exception_pc();
1886 
1887   // Clear out the exception oop and pc since looking up an
1888   // exception handler can cause class loading, which might throw an
1889   // exception and those fields are expected to be clear during
1890   // normal bytecode execution.
1891   current->clear_exception_oop_and_pc();

2121   frame caller_frame = stub_frame.sender(&reg_map);
2122   return caller_frame.is_deoptimized_frame();
2123 }
2124 
2125 static const TypeFunc* make_register_finalizer_Type() {
2126   // create input type (domain)
2127   const Type **fields = TypeTuple::fields(1);
2128   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
2129   // // The JavaThread* is passed to each routine as the last argument
2130   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2131   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2132 
2133   // create result type (range)
2134   fields = TypeTuple::fields(0);
2135 
2136   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2137 
2138   return TypeFunc::make(domain,range);
2139 }
2140 
2141 const TypeFunc *OptoRuntime::class_init_barrier_Type() {
2142   // create input type (domain)
2143   const Type** fields = TypeTuple::fields(1);
2144   fields[TypeFunc::Parms+0] = TypeKlassPtr::NOTNULL;
2145   // // The JavaThread* is passed to each routine as the last argument
2146   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2147   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+1, fields);
2148 
2149   // create result type (range)
2150   fields = TypeTuple::fields(0);
2151   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
2152   return TypeFunc::make(domain,range);
2153 }
2154 
2155 #if INCLUDE_JFR
2156 static const TypeFunc* make_class_id_load_barrier_Type() {
2157   // create input type (domain)
2158   const Type **fields = TypeTuple::fields(1);
2159   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2160   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2161 
2162   // create result type (range)
2163   fields = TypeTuple::fields(0);
2164 
2165   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2166 
2167   return TypeFunc::make(domain,range);
2168 }
2169 #endif // INCLUDE_JFR
2170 
2171 //-----------------------------------------------------------------------------
2172 // runtime upcall support
2173 const TypeFunc *OptoRuntime::runtime_up_call_Type() {
2174   // create input type (domain)
2175   const Type **fields = TypeTuple::fields(1);
2176   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2177   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2178 
2179   // create result type (range)
2180   fields = TypeTuple::fields(0);
2181 
2182   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2183 
2184   return TypeFunc::make(domain,range);
2185 }
2186 
2187 //-----------------------------------------------------------------------------
2188 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2189   // create input type (domain)
2190   const Type **fields = TypeTuple::fields(2);
2191   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2192   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
2193   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2194 
2195   // create result type (range)
2196   fields = TypeTuple::fields(0);
2197 
2198   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2199 
2200   return TypeFunc::make(domain,range);
2201 }
2202 
2203 static const TypeFunc* make_dtrace_object_alloc_Type() {
2204   // create input type (domain)
2205   const Type **fields = TypeTuple::fields(2);
2206   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2207   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
2208 
2209   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2210 
2211   // create result type (range)
2212   fields = TypeTuple::fields(0);
2213 
2214   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2215 
2216   return TypeFunc::make(domain,range);
2217 }
2218 
2219 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, register_finalizer_C, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2220   assert(oopDesc::is_oop(obj), "must be a valid oop");
2221   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2222   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2223 JRT_END
2224 
2225 JRT_ENTRY_NO_ASYNC_PROF(void, OptoRuntime, class_init_barrier_C, OptoRuntime::class_init_barrier_C(Klass* k, JavaThread* current))
2226   InstanceKlass* ik = InstanceKlass::cast(k);
2227   if (ik->should_be_initialized()) {
2228     ik->initialize(CHECK);
2229   } else if (UsePerfData) {
2230     _perf_OptoRuntime_class_init_barrier_redundant_count->inc();
2231   }
2232 JRT_END
2233 
2234 //-----------------------------------------------------------------------------
2235 
2236 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2237 
2238 //
2239 // dump the collected NamedCounters.
2240 //
2241 void OptoRuntime::print_named_counters() {
2242   int total_lock_count = 0;
2243   int eliminated_lock_count = 0;
2244 
2245   NamedCounter* c = _named_counters;
2246   while (c) {
2247     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
2248       int count = c->count();
2249       if (count > 0) {
2250         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
2251         if (Verbose) {
2252           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
2253         }

2394 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2395   trace_exception_counter++;
2396   stringStream tempst;
2397 
2398   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2399   exception_oop->print_value_on(&tempst);
2400   tempst.print(" in ");
2401   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2402   if (blob->is_nmethod()) {
2403     blob->as_nmethod()->method()->print_value_on(&tempst);
2404   } else if (blob->is_runtime_stub()) {
2405     tempst.print("<runtime-stub>");
2406   } else {
2407     tempst.print("<unknown>");
2408   }
2409   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2410   tempst.print("]");
2411 
2412   st->print_raw_cr(tempst.freeze());
2413 }
2414 
2415 #define DO_COUNTERS2(macro2, macro1) \
2416   macro2(OptoRuntime, new_instance_C) \
2417   macro2(OptoRuntime, new_array_C) \
2418   macro2(OptoRuntime, new_array_nozero_C) \
2419   macro2(OptoRuntime, multianewarray2_C) \
2420   macro2(OptoRuntime, multianewarray3_C) \
2421   macro2(OptoRuntime, multianewarray4_C) \
2422   macro2(OptoRuntime, multianewarrayN_C) \
2423   macro2(OptoRuntime, monitor_notify_C) \
2424   macro2(OptoRuntime, monitor_notifyAll_C) \
2425   macro2(OptoRuntime, handle_exception_C_helper) \
2426   macro2(OptoRuntime, register_finalizer_C) \
2427   macro2(OptoRuntime, class_init_barrier_C) \
2428   macro1(OptoRuntime, class_init_barrier_redundant)
2429 
2430 #define INIT_COUNTER_TIME_AND_CNT(sub, name) \
2431   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
2432   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
2433 
2434 #define INIT_COUNTER_CNT(sub, name) \
2435   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
2436 
2437 void OptoRuntime::init_counters() {
2438   assert(CompilerConfig::is_c2_enabled(), "");
2439 
2440   if (UsePerfData) {
2441     EXCEPTION_MARK;
2442 
2443     DO_COUNTERS2(INIT_COUNTER_TIME_AND_CNT, INIT_COUNTER_CNT)
2444 
2445     if (HAS_PENDING_EXCEPTION) {
2446       vm_exit_during_initialization("jvm_perf_init failed unexpectedly");
2447     }
2448   }
2449 }
2450 #undef INIT_COUNTER_TIME_AND_CNT
2451 #undef INIT_COUNTER_CNT
2452 
2453 #define PRINT_COUNTER_TIME_AND_CNT(sub, name) { \
2454   jlong count = _perf_##sub##_##name##_count->get_value(); \
2455   if (count > 0) { \
2456     st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
2457                  _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
2458                  _perf_##sub##_##name##_timer->thread_counter_value_us(), \
2459                  count); \
2460   }}
2461 
2462 #define PRINT_COUNTER_CNT(sub, name) { \
2463   jlong count = _perf_##sub##_##name##_count->get_value(); \
2464   if (count > 0) { \
2465     st->print_cr("  %-30s = " JLONG_FORMAT_W(5) " events", #name, count); \
2466   }}
2467 
2468 void OptoRuntime::print_counters_on(outputStream* st) {
2469   if (UsePerfData && ProfileRuntimeCalls && CompilerConfig::is_c2_enabled()) {
2470     DO_COUNTERS2(PRINT_COUNTER_TIME_AND_CNT, PRINT_COUNTER_CNT)
2471   } else {
2472     st->print_cr("  OptoRuntime: no info (%s is disabled)",
2473                  (!CompilerConfig::is_c2_enabled() ? "C2" : (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")));
2474   }
2475 }
2476 
2477 #undef PRINT_COUNTER_TIME_AND_CNT
2478 #undef PRINT_COUNTER_CNT
2479 #undef DO_COUNTERS2
< prev index next >