1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciMethodData.hpp"
  26 #include "ci/ciTypeFlow.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/callnode.hpp"
  39 #include "opto/arraycopynode.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/runtime.hpp"
  44 #include "opto/type.hpp"
  45 #include "utilities/checkedCast.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 #include "utilities/stringUtils.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 
  50 // Portions of code courtesy of Clifford Click
  51 
  52 // Optimization - Graph Style
  53 
  54 // Dictionary of types shared among compilations.
  55 Dict* Type::_shared_type_dict = nullptr;
  56 
  57 // Array which maps compiler types to Basic Types
  58 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  59   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  60   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  61   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  62   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  63   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  64   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  65   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  66   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  67   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  68   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  69   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
  70 
  71 #if defined(PPC64)
  72   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  73   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  74   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  75   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  76   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  77   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  78   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  79 #elif defined(S390)
  80   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  81   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  82   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  83   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  84   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  85   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  86   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  87 #else // all other
  88   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  89   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  90   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  91   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  92   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  93   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  94   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  95 #endif
  96   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  97   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::external_word_type },  // RawPtr
  98   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  99   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 100   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 101   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 102   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 103   { Bad,             T_METADATA,   "instklass:",    false, Op_RegP,              relocInfo::metadata_type },  // InstKlassPtr
 104   { Bad,             T_METADATA,   "aryklass:",     false, Op_RegP,              relocInfo::metadata_type },  // AryKlassPtr
 105   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 106   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 107   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 108   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 109   { HalfFloatBot,    T_SHORT,      "halffloat_top", false, Op_RegF,              relocInfo::none          },  // HalfFloatTop
 110   { HalfFloatCon,    T_SHORT,      "hfcon:",        false, Op_RegF,              relocInfo::none          },  // HalfFloatCon
 111   { HalfFloatTop,    T_SHORT,      "short",         false, Op_RegF,              relocInfo::none          },  // HalfFloatBot
 112   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 113   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 114   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 115   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 116   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 117   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 118   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 119 };
 120 
 121 // Map ideal registers (machine types) to ideal types
 122 const Type *Type::mreg2type[_last_machine_leaf];
 123 
 124 // Map basic types to canonical Type* pointers.
 125 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 126 
 127 // Map basic types to constant-zero Types.
 128 const Type* Type::            _zero_type[T_CONFLICT+1];
 129 
 130 // Map basic types to array-body alias types.
 131 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 132 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr;
 133 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr;
 134 
 135 //=============================================================================
 136 // Convenience common pre-built types.
 137 const Type *Type::ABIO;         // State-of-machine only
 138 const Type *Type::BOTTOM;       // All values
 139 const Type *Type::CONTROL;      // Control only
 140 const Type *Type::DOUBLE;       // All doubles
 141 const Type *Type::HALF_FLOAT;   // All half floats
 142 const Type *Type::FLOAT;        // All floats
 143 const Type *Type::HALF;         // Placeholder half of doublewide type
 144 const Type *Type::MEMORY;       // Abstract store only
 145 const Type *Type::RETURN_ADDRESS;
 146 const Type *Type::TOP;          // No values in set
 147 
 148 //------------------------------get_const_type---------------------------
 149 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) {
 150   if (type == nullptr) {
 151     return nullptr;
 152   } else if (type->is_primitive_type()) {
 153     return get_const_basic_type(type->basic_type());
 154   } else {
 155     return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling);
 156   }
 157 }
 158 
 159 //---------------------------array_element_basic_type---------------------------------
 160 // Mapping to the array element's basic type.
 161 BasicType Type::array_element_basic_type() const {
 162   BasicType bt = basic_type();
 163   if (bt == T_INT) {
 164     if (this == TypeInt::INT)   return T_INT;
 165     if (this == TypeInt::CHAR)  return T_CHAR;
 166     if (this == TypeInt::BYTE)  return T_BYTE;
 167     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 168     if (this == TypeInt::SHORT) return T_SHORT;
 169     return T_VOID;
 170   }
 171   return bt;
 172 }
 173 
 174 // For two instance arrays of same dimension, return the base element types.
 175 // Otherwise or if the arrays have different dimensions, return null.
 176 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 177                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 178 
 179   if (e1) *e1 = nullptr;
 180   if (e2) *e2 = nullptr;
 181   const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr();
 182   const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr();
 183 
 184   if (a1tap != nullptr && a2tap != nullptr) {
 185     // Handle multidimensional arrays
 186     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 187     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 188     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 189       a1tap = a1tp->is_aryptr();
 190       a2tap = a2tp->is_aryptr();
 191       a1tp = a1tap->elem()->make_ptr();
 192       a2tp = a2tap->elem()->make_ptr();
 193     }
 194     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 195       if (e1) *e1 = a1tp->is_instptr();
 196       if (e2) *e2 = a2tp->is_instptr();
 197     }
 198   }
 199 }
 200 
 201 //---------------------------get_typeflow_type---------------------------------
 202 // Import a type produced by ciTypeFlow.
 203 const Type* Type::get_typeflow_type(ciType* type) {
 204   switch (type->basic_type()) {
 205 
 206   case ciTypeFlow::StateVector::T_BOTTOM:
 207     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 208     return Type::BOTTOM;
 209 
 210   case ciTypeFlow::StateVector::T_TOP:
 211     assert(type == ciTypeFlow::StateVector::top_type(), "");
 212     return Type::TOP;
 213 
 214   case ciTypeFlow::StateVector::T_NULL:
 215     assert(type == ciTypeFlow::StateVector::null_type(), "");
 216     return TypePtr::NULL_PTR;
 217 
 218   case ciTypeFlow::StateVector::T_LONG2:
 219     // The ciTypeFlow pass pushes a long, then the half.
 220     // We do the same.
 221     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 222     return TypeInt::TOP;
 223 
 224   case ciTypeFlow::StateVector::T_DOUBLE2:
 225     // The ciTypeFlow pass pushes double, then the half.
 226     // Our convention is the same.
 227     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 228     return Type::TOP;
 229 
 230   case T_ADDRESS:
 231     assert(type->is_return_address(), "");
 232     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 233 
 234   default:
 235     // make sure we did not mix up the cases:
 236     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 237     assert(type != ciTypeFlow::StateVector::top_type(), "");
 238     assert(type != ciTypeFlow::StateVector::null_type(), "");
 239     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 240     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 241     assert(!type->is_return_address(), "");
 242 
 243     return Type::get_const_type(type);
 244   }
 245 }
 246 
 247 
 248 //-----------------------make_from_constant------------------------------------
 249 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 250                                      int stable_dimension, bool is_narrow_oop,
 251                                      bool is_autobox_cache) {
 252   switch (constant.basic_type()) {
 253     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 254     case T_CHAR:     return TypeInt::make(constant.as_char());
 255     case T_BYTE:     return TypeInt::make(constant.as_byte());
 256     case T_SHORT:    return TypeInt::make(constant.as_short());
 257     case T_INT:      return TypeInt::make(constant.as_int());
 258     case T_LONG:     return TypeLong::make(constant.as_long());
 259     case T_FLOAT:    return TypeF::make(constant.as_float());
 260     case T_DOUBLE:   return TypeD::make(constant.as_double());
 261     case T_ARRAY:
 262     case T_OBJECT: {
 263         const Type* con_type = nullptr;
 264         ciObject* oop_constant = constant.as_object();
 265         if (oop_constant->is_null_object()) {
 266           con_type = Type::get_zero_type(T_OBJECT);
 267         } else {
 268           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 269           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 270           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 271             con_type = con_type->is_aryptr()->cast_to_autobox_cache();
 272           }
 273           if (stable_dimension > 0) {
 274             assert(FoldStableValues, "sanity");
 275             assert(!con_type->is_zero_type(), "default value for stable field");
 276             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 277           }
 278         }
 279         if (is_narrow_oop) {
 280           con_type = con_type->make_narrowoop();
 281         }
 282         return con_type;
 283       }
 284     case T_ILLEGAL:
 285       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 286       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 287       return nullptr;
 288     default:
 289       // Fall through to failure
 290       return nullptr;
 291   }
 292 }
 293 
 294 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 295   BasicType conbt = con.basic_type();
 296   switch (conbt) {
 297     case T_BOOLEAN: conbt = T_BYTE;   break;
 298     case T_ARRAY:   conbt = T_OBJECT; break;
 299     default:                          break;
 300   }
 301   switch (loadbt) {
 302     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 303     case T_NARROWOOP: loadbt = T_OBJECT; break;
 304     case T_ARRAY:     loadbt = T_OBJECT; break;
 305     case T_ADDRESS:   loadbt = T_OBJECT; break;
 306     default:                             break;
 307   }
 308   if (conbt == loadbt) {
 309     if (is_unsigned && conbt == T_BYTE) {
 310       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 311       return ciConstant(T_INT, con.as_int() & 0xFF);
 312     } else {
 313       return con;
 314     }
 315   }
 316   if (conbt == T_SHORT && loadbt == T_CHAR) {
 317     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 318     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 319   }
 320   return ciConstant(); // T_ILLEGAL
 321 }
 322 
 323 // Try to constant-fold a stable array element.
 324 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 325                                                    BasicType loadbt, bool is_unsigned_load) {
 326   // Decode the results of GraphKit::array_element_address.
 327   ciConstant element_value = array->element_value_by_offset(off);
 328   if (element_value.basic_type() == T_ILLEGAL) {
 329     return nullptr; // wrong offset
 330   }
 331   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 332 
 333   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 334          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 335 
 336   if (con.is_valid() &&          // not a mismatched access
 337       !con.is_null_or_zero()) {  // not a default value
 338     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 339     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 340   }
 341   return nullptr;
 342 }
 343 
 344 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 345   ciField* field;
 346   ciType* type = holder->java_mirror_type();
 347   if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 348     // Static field
 349     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 350   } else {
 351     // Instance field
 352     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 353   }
 354   if (field == nullptr) {
 355     return nullptr; // Wrong offset
 356   }
 357   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 358 }
 359 
 360 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 361                                            BasicType loadbt, bool is_unsigned_load) {
 362   if (!field->is_constant()) {
 363     return nullptr; // Non-constant field
 364   }
 365   ciConstant field_value;
 366   if (field->is_static()) {
 367     // final static field
 368     field_value = field->constant_value();
 369   } else if (holder != nullptr) {
 370     // final or stable non-static field
 371     // Treat final non-static fields of trusted classes (classes in
 372     // java.lang.invoke and sun.invoke packages and subpackages) as
 373     // compile time constants.
 374     field_value = field->constant_value_of(holder);
 375   }
 376   if (!field_value.is_valid()) {
 377     return nullptr; // Not a constant
 378   }
 379 
 380   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 381 
 382   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 383          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 384 
 385   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 386   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 387   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 388 
 389   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 390                                             stable_dimension, is_narrow_oop,
 391                                             field->is_autobox_cache());
 392   if (con_type != nullptr && field->is_call_site_target()) {
 393     ciCallSite* call_site = holder->as_call_site();
 394     if (!call_site->is_fully_initialized_constant_call_site()) {
 395       ciMethodHandle* target = con.as_object()->as_method_handle();
 396       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 397     }
 398   }
 399   return con_type;
 400 }
 401 
 402 //------------------------------make-------------------------------------------
 403 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 404 // and look for an existing copy in the type dictionary.
 405 const Type *Type::make( enum TYPES t ) {
 406   return (new Type(t))->hashcons();
 407 }
 408 
 409 //------------------------------cmp--------------------------------------------
 410 bool Type::equals(const Type* t1, const Type* t2) {
 411   if (t1->_base != t2->_base) {
 412     return false; // Missed badly
 413   }
 414 
 415   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 416   return t1->eq(t2);
 417 }
 418 
 419 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 420   if (!include_speculative) {
 421     return remove_speculative();
 422   }
 423   return this;
 424 }
 425 
 426 //------------------------------hash-------------------------------------------
 427 int Type::uhash( const Type *const t ) {
 428   return (int)t->hash();
 429 }
 430 
 431 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 432 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
 433 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
 434 
 435 //--------------------------Initialize_shared----------------------------------
 436 void Type::Initialize_shared(Compile* current) {
 437   // This method does not need to be locked because the first system
 438   // compilations (stub compilations) occur serially.  If they are
 439   // changed to proceed in parallel, then this section will need
 440   // locking.
 441 
 442   Arena* save = current->type_arena();
 443   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler, Arena::Tag::tag_type);
 444 
 445   current->set_type_arena(shared_type_arena);
 446 
 447   // Map the boolean result of Type::equals into a comparator result that CmpKey expects.
 448   CmpKey type_cmp = [](const void* t1, const void* t2) -> int32_t {
 449     return Type::equals((Type*) t1, (Type*) t2) ? 0 : 1;
 450   };
 451 
 452   _shared_type_dict = new (shared_type_arena) Dict(type_cmp, (Hash) Type::uhash, shared_type_arena, 128);
 453   current->set_type_dict(_shared_type_dict);
 454 
 455   // Make shared pre-built types.
 456   CONTROL = make(Control);      // Control only
 457   TOP     = make(Top);          // No values in set
 458   MEMORY  = make(Memory);       // Abstract store only
 459   ABIO    = make(Abio);         // State-of-machine only
 460   RETURN_ADDRESS=make(Return_Address);
 461   FLOAT   = make(FloatBot);     // All floats
 462   HALF_FLOAT = make(HalfFloatBot); // All half floats
 463   DOUBLE  = make(DoubleBot);    // All doubles
 464   BOTTOM  = make(Bottom);       // Everything
 465   HALF    = make(Half);         // Placeholder half of doublewide type
 466 
 467   TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
 468   TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
 469   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 470   TypeF::ONE  = TypeF::make(1.0); // Float 1
 471   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
 472   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
 473 
 474   TypeH::MAX = TypeH::make(max_jfloat16); // HalfFloat MAX
 475   TypeH::MIN = TypeH::make(min_jfloat16); // HalfFloat MIN
 476   TypeH::ZERO = TypeH::make((jshort)0); // HalfFloat 0 (positive zero)
 477   TypeH::ONE  = TypeH::make(one_jfloat16); // HalfFloat 1
 478   TypeH::POS_INF = TypeH::make(pos_inf_jfloat16);
 479   TypeH::NEG_INF = TypeH::make(neg_inf_jfloat16);
 480 
 481   TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
 482   TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
 483   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 484   TypeD::ONE  = TypeD::make(1.0); // Double 1
 485   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
 486   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
 487 
 488   TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
 489   TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
 490   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 491   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 492   TypeInt::ONE     = TypeInt::make( 1);  //  1
 493   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 494   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 495   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 496   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 497   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 498   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 499   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 500   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 501   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 502   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 503   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 504   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 505   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 506   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 507   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 508   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 509   // CmpL is overloaded both as the bytecode computation returning
 510   // a trinary (-1,0,+1) integer result AND as an efficient long
 511   // compare returning optimizer ideal-type flags.
 512   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 513   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 514   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 515   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 516   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 517 
 518   TypeLong::MAX = TypeLong::make(max_jlong);  // Long MAX
 519   TypeLong::MIN = TypeLong::make(min_jlong);  // Long MIN
 520   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 521   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 522   TypeLong::ONE     = TypeLong::make( 1);        //  1
 523   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 524   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 525   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 526   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 527   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 528 
 529   const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 530   fboth[0] = Type::CONTROL;
 531   fboth[1] = Type::CONTROL;
 532   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 533 
 534   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 535   ffalse[0] = Type::CONTROL;
 536   ffalse[1] = Type::TOP;
 537   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 538 
 539   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 540   fneither[0] = Type::TOP;
 541   fneither[1] = Type::TOP;
 542   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 543 
 544   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 545   ftrue[0] = Type::TOP;
 546   ftrue[1] = Type::CONTROL;
 547   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 548 
 549   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 550   floop[0] = Type::CONTROL;
 551   floop[1] = TypeInt::INT;
 552   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 553 
 554   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 555   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 556   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 557 
 558   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 559   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 560 
 561   const Type **fmembar = TypeTuple::fields(0);
 562   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 563 
 564   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 565   fsc[0] = TypeInt::CC;
 566   fsc[1] = Type::MEMORY;
 567   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 568 
 569   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 570   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 571   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 572   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 573                                            false, nullptr, oopDesc::mark_offset_in_bytes());
 574   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 575                                            false, nullptr, oopDesc::klass_offset_in_bytes());
 576   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 577 
 578   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
 579 
 580   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 581   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 582 
 583   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 584 
 585   mreg2type[Op_Node] = Type::BOTTOM;
 586   mreg2type[Op_Set ] = nullptr;
 587   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 588   mreg2type[Op_RegI] = TypeInt::INT;
 589   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 590   mreg2type[Op_RegF] = Type::FLOAT;
 591   mreg2type[Op_RegD] = Type::DOUBLE;
 592   mreg2type[Op_RegL] = TypeLong::LONG;
 593   mreg2type[Op_RegFlags] = TypeInt::CC;
 594 
 595   GrowableArray<ciInstanceKlass*> array_interfaces;
 596   array_interfaces.push(current->env()->Cloneable_klass());
 597   array_interfaces.push(current->env()->Serializable_klass());
 598   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 599   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 600 
 601   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS), nullptr, false, Type::OffsetBot);
 602   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 603 
 604   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 605 
 606 #ifdef _LP64
 607   if (UseCompressedOops) {
 608     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 609     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 610   } else
 611 #endif
 612   {
 613     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 614     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 615   }
 616   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 617   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 618   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 619   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 620   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 621   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 622   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 623 
 624   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 625   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 626   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 627   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 628   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 629   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 630   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 631   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 632   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 633   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 634   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 635   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 636 
 637   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
 638   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
 639 
 640   const Type **fi2c = TypeTuple::fields(2);
 641   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 642   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 643   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 644 
 645   const Type **intpair = TypeTuple::fields(2);
 646   intpair[0] = TypeInt::INT;
 647   intpair[1] = TypeInt::INT;
 648   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 649 
 650   const Type **longpair = TypeTuple::fields(2);
 651   longpair[0] = TypeLong::LONG;
 652   longpair[1] = TypeLong::LONG;
 653   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 654 
 655   const Type **intccpair = TypeTuple::fields(2);
 656   intccpair[0] = TypeInt::INT;
 657   intccpair[1] = TypeInt::CC;
 658   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 659 
 660   const Type **longccpair = TypeTuple::fields(2);
 661   longccpair[0] = TypeLong::LONG;
 662   longccpair[1] = TypeInt::CC;
 663   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 664 
 665   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 666   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 667   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 668   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 669   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 670   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 671   _const_basic_type[T_INT]         = TypeInt::INT;
 672   _const_basic_type[T_LONG]        = TypeLong::LONG;
 673   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 674   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 675   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 676   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 677   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 678   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 679   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 680 
 681   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 682   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 683   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 684   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 685   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 686   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 687   _zero_type[T_INT]         = TypeInt::ZERO;
 688   _zero_type[T_LONG]        = TypeLong::ZERO;
 689   _zero_type[T_FLOAT]       = TypeF::ZERO;
 690   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 691   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 692   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 693   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 694   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 695 
 696   // get_zero_type() should not happen for T_CONFLICT
 697   _zero_type[T_CONFLICT]= nullptr;
 698 
 699   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 700   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 701 
 702   if (Matcher::supports_scalable_vector()) {
 703     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 704   }
 705 
 706   // Vector predefined types, it needs initialized _const_basic_type[].
 707   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 708     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 709   }
 710   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 711     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 712   }
 713   if (Matcher::vector_size_supported(T_FLOAT, 4)) {
 714     TypeVect::VECTX = TypeVect::make(T_FLOAT, 4);
 715   }
 716   if (Matcher::vector_size_supported(T_FLOAT, 8)) {
 717     TypeVect::VECTY = TypeVect::make(T_FLOAT, 8);
 718   }
 719   if (Matcher::vector_size_supported(T_FLOAT, 16)) {
 720     TypeVect::VECTZ = TypeVect::make(T_FLOAT, 16);
 721   }
 722 
 723   mreg2type[Op_VecA] = TypeVect::VECTA;
 724   mreg2type[Op_VecS] = TypeVect::VECTS;
 725   mreg2type[Op_VecD] = TypeVect::VECTD;
 726   mreg2type[Op_VecX] = TypeVect::VECTX;
 727   mreg2type[Op_VecY] = TypeVect::VECTY;
 728   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 729 
 730   LockNode::initialize_lock_Type();
 731   ArrayCopyNode::initialize_arraycopy_Type();
 732   OptoRuntime::initialize_types();
 733 
 734   // Restore working type arena.
 735   current->set_type_arena(save);
 736   current->set_type_dict(nullptr);
 737 }
 738 
 739 //------------------------------Initialize-------------------------------------
 740 void Type::Initialize(Compile* current) {
 741   assert(current->type_arena() != nullptr, "must have created type arena");
 742 
 743   if (_shared_type_dict == nullptr) {
 744     Initialize_shared(current);
 745   }
 746 
 747   Arena* type_arena = current->type_arena();
 748 
 749   // Create the hash-cons'ing dictionary with top-level storage allocation
 750   Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
 751   current->set_type_dict(tdic);
 752 }
 753 
 754 //------------------------------hashcons---------------------------------------
 755 // Do the hash-cons trick.  If the Type already exists in the type table,
 756 // delete the current Type and return the existing Type.  Otherwise stick the
 757 // current Type in the Type table.
 758 const Type *Type::hashcons(void) {
 759   debug_only(base());           // Check the assertion in Type::base().
 760   // Look up the Type in the Type dictionary
 761   Dict *tdic = type_dict();
 762   Type* old = (Type*)(tdic->Insert(this, this, false));
 763   if( old ) {                   // Pre-existing Type?
 764     if( old != this )           // Yes, this guy is not the pre-existing?
 765       delete this;              // Yes, Nuke this guy
 766     assert( old->_dual, "" );
 767     return old;                 // Return pre-existing
 768   }
 769 
 770   // Every type has a dual (to make my lattice symmetric).
 771   // Since we just discovered a new Type, compute its dual right now.
 772   assert( !_dual, "" );         // No dual yet
 773   _dual = xdual();              // Compute the dual
 774   if (equals(this, _dual)) {    // Handle self-symmetric
 775     if (_dual != this) {
 776       delete _dual;
 777       _dual = this;
 778     }
 779     return this;
 780   }
 781   assert( !_dual->_dual, "" );  // No reverse dual yet
 782   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 783   // New Type, insert into Type table
 784   tdic->Insert((void*)_dual,(void*)_dual);
 785   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 786 #ifdef ASSERT
 787   Type *dual_dual = (Type*)_dual->xdual();
 788   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 789   delete dual_dual;
 790 #endif
 791   return this;                  // Return new Type
 792 }
 793 
 794 //------------------------------eq---------------------------------------------
 795 // Structural equality check for Type representations
 796 bool Type::eq( const Type * ) const {
 797   return true;                  // Nothing else can go wrong
 798 }
 799 
 800 //------------------------------hash-------------------------------------------
 801 // Type-specific hashing function.
 802 uint Type::hash(void) const {
 803   return _base;
 804 }
 805 
 806 //------------------------------is_finite--------------------------------------
 807 // Has a finite value
 808 bool Type::is_finite() const {
 809   return false;
 810 }
 811 
 812 //------------------------------is_nan-----------------------------------------
 813 // Is not a number (NaN)
 814 bool Type::is_nan()    const {
 815   return false;
 816 }
 817 
 818 #ifdef ASSERT
 819 class VerifyMeet;
 820 class VerifyMeetResult : public ArenaObj {
 821   friend class VerifyMeet;
 822   friend class Type;
 823 private:
 824   class VerifyMeetResultEntry {
 825   private:
 826     const Type* _in1;
 827     const Type* _in2;
 828     const Type* _res;
 829   public:
 830     VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res):
 831             _in1(in1), _in2(in2), _res(res) {
 832     }
 833     VerifyMeetResultEntry():
 834             _in1(nullptr), _in2(nullptr), _res(nullptr) {
 835     }
 836 
 837     bool operator==(const VerifyMeetResultEntry& rhs) const {
 838       return _in1 == rhs._in1 &&
 839              _in2 == rhs._in2 &&
 840              _res == rhs._res;
 841     }
 842 
 843     bool operator!=(const VerifyMeetResultEntry& rhs) const {
 844       return !(rhs == *this);
 845     }
 846 
 847     static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) {
 848       if ((intptr_t) v1._in1 < (intptr_t) v2._in1) {
 849         return -1;
 850       } else if (v1._in1 == v2._in1) {
 851         if ((intptr_t) v1._in2 < (intptr_t) v2._in2) {
 852           return -1;
 853         } else if (v1._in2 == v2._in2) {
 854           assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result");
 855           return 0;
 856         }
 857         return 1;
 858       }
 859       return 1;
 860     }
 861     const Type* res() const { return _res; }
 862   };
 863   uint _depth;
 864   GrowableArray<VerifyMeetResultEntry> _cache;
 865 
 866   // With verification code, the meet of A and B causes the computation of:
 867   // 1- meet(A, B)
 868   // 2- meet(B, A)
 869   // 3- meet(dual(meet(A, B)), dual(A))
 870   // 4- meet(dual(meet(A, B)), dual(B))
 871   // 5- meet(dual(A), dual(B))
 872   // 6- meet(dual(B), dual(A))
 873   // 7- meet(dual(meet(dual(A), dual(B))), A)
 874   // 8- meet(dual(meet(dual(A), dual(B))), B)
 875   //
 876   // In addition the meet of A[] and B[] requires the computation of the meet of A and B.
 877   //
 878   // The meet of A[] and B[] triggers the computation of:
 879   // 1- meet(A[], B[][)
 880   //   1.1- meet(A, B)
 881   //   1.2- meet(B, A)
 882   //   1.3- meet(dual(meet(A, B)), dual(A))
 883   //   1.4- meet(dual(meet(A, B)), dual(B))
 884   //   1.5- meet(dual(A), dual(B))
 885   //   1.6- meet(dual(B), dual(A))
 886   //   1.7- meet(dual(meet(dual(A), dual(B))), A)
 887   //   1.8- meet(dual(meet(dual(A), dual(B))), B)
 888   // 2- meet(B[], A[])
 889   //   2.1- meet(B, A) = 1.2
 890   //   2.2- meet(A, B) = 1.1
 891   //   2.3- meet(dual(meet(B, A)), dual(B)) = 1.4
 892   //   2.4- meet(dual(meet(B, A)), dual(A)) = 1.3
 893   //   2.5- meet(dual(B), dual(A)) = 1.6
 894   //   2.6- meet(dual(A), dual(B)) = 1.5
 895   //   2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8
 896   //   2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7
 897   // etc.
 898   // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number
 899   // of different meet operations is linear in the number of dimensions. The function below caches meet results for the
 900   // duration of the meet at the root of the recursive calls.
 901   //
 902   const Type* meet(const Type* t1, const Type* t2) {
 903     bool found = false;
 904     const VerifyMeetResultEntry meet(t1, t2, nullptr);
 905     int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
 906     const Type* res = nullptr;
 907     if (found) {
 908       res = _cache.at(pos).res();
 909     } else {
 910       res = t1->xmeet(t2);
 911       _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
 912       found = false;
 913       _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
 914       assert(found, "should be in table after it's added");
 915     }
 916     return res;
 917   }
 918 
 919   void add(const Type* t1, const Type* t2, const Type* res) {
 920     _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
 921   }
 922 
 923   bool empty_cache() const {
 924     return _cache.length() == 0;
 925   }
 926 public:
 927   VerifyMeetResult(Compile* C) :
 928           _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) {
 929   }
 930 };
 931 
 932 void Type::assert_type_verify_empty() const {
 933   assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded");
 934 }
 935 
 936 class VerifyMeet {
 937 private:
 938   Compile* _C;
 939 public:
 940   VerifyMeet(Compile* C) : _C(C) {
 941     if (C->_type_verify == nullptr) {
 942       C->_type_verify = new (C->comp_arena())VerifyMeetResult(C);
 943     }
 944     _C->_type_verify->_depth++;
 945   }
 946 
 947   ~VerifyMeet() {
 948     assert(_C->_type_verify->_depth != 0, "");
 949     _C->_type_verify->_depth--;
 950     if (_C->_type_verify->_depth == 0) {
 951       _C->_type_verify->_cache.trunc_to(0);
 952     }
 953   }
 954 
 955   const Type* meet(const Type* t1, const Type* t2) const {
 956     return _C->_type_verify->meet(t1, t2);
 957   }
 958 
 959   void add(const Type* t1, const Type* t2, const Type* res) const {
 960     _C->_type_verify->add(t1, t2, res);
 961   }
 962 };
 963 
 964 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 965   Compile* C = Compile::current();
 966   const Type* mt2 = verify.meet(t, this);
 967   if (mt != mt2) {
 968     tty->print_cr("=== Meet Not Commutative ===");
 969     tty->print("t           = ");   t->dump(); tty->cr();
 970     tty->print("this        = ");      dump(); tty->cr();
 971     tty->print("t meet this = "); mt2->dump(); tty->cr();
 972     tty->print("this meet t = ");  mt->dump(); tty->cr();
 973     fatal("meet not commutative");
 974   }
 975   const Type* dual_join = mt->_dual;
 976   const Type* t2t    = verify.meet(dual_join,t->_dual);
 977   const Type* t2this = verify.meet(dual_join,this->_dual);
 978 
 979   // Interface meet Oop is Not Symmetric:
 980   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 981   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 982 
 983   if (t2t != t->_dual || t2this != this->_dual) {
 984     tty->print_cr("=== Meet Not Symmetric ===");
 985     tty->print("t   =                   ");              t->dump(); tty->cr();
 986     tty->print("this=                   ");                 dump(); tty->cr();
 987     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 988 
 989     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 990     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 991     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 992 
 993     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 994     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 995 
 996     fatal("meet not symmetric");
 997   }
 998 }
 999 #endif
1000 
1001 //------------------------------meet-------------------------------------------
1002 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1003 // commutative and the lattice is symmetric.
1004 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1005   if (isa_narrowoop() && t->isa_narrowoop()) {
1006     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1007     return result->make_narrowoop();
1008   }
1009   if (isa_narrowklass() && t->isa_narrowklass()) {
1010     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1011     return result->make_narrowklass();
1012   }
1013 
1014 #ifdef ASSERT
1015   Compile* C = Compile::current();
1016   VerifyMeet verify(C);
1017 #endif
1018 
1019   const Type *this_t = maybe_remove_speculative(include_speculative);
1020   t = t->maybe_remove_speculative(include_speculative);
1021 
1022   const Type *mt = this_t->xmeet(t);
1023 #ifdef ASSERT
1024   verify.add(this_t, t, mt);
1025   if (isa_narrowoop() || t->isa_narrowoop()) {
1026     return mt;
1027   }
1028   if (isa_narrowklass() || t->isa_narrowklass()) {
1029     return mt;
1030   }
1031   this_t->check_symmetrical(t, mt, verify);
1032   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1033   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1034 #endif
1035   return mt;
1036 }
1037 
1038 //------------------------------xmeet------------------------------------------
1039 // Compute the MEET of two types.  It returns a new Type object.
1040 const Type *Type::xmeet( const Type *t ) const {
1041   // Perform a fast test for common case; meeting the same types together.
1042   if( this == t ) return this;  // Meeting same type-rep?
1043 
1044   // Meeting TOP with anything?
1045   if( _base == Top ) return t;
1046 
1047   // Meeting BOTTOM with anything?
1048   if( _base == Bottom ) return BOTTOM;
1049 
1050   // Current "this->_base" is one of: Bad, Multi, Control, Top,
1051   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
1052   switch (t->base()) {  // Switch on original type
1053 
1054   // Cut in half the number of cases I must handle.  Only need cases for when
1055   // the given enum "t->type" is less than or equal to the local enum "type".
1056   case HalfFloatCon:
1057   case FloatCon:
1058   case DoubleCon:
1059   case Int:
1060   case Long:
1061     return t->xmeet(this);
1062 
1063   case OopPtr:
1064     return t->xmeet(this);
1065 
1066   case InstPtr:
1067     return t->xmeet(this);
1068 
1069   case MetadataPtr:
1070   case KlassPtr:
1071   case InstKlassPtr:
1072   case AryKlassPtr:
1073     return t->xmeet(this);
1074 
1075   case AryPtr:
1076     return t->xmeet(this);
1077 
1078   case NarrowOop:
1079     return t->xmeet(this);
1080 
1081   case NarrowKlass:
1082     return t->xmeet(this);
1083 
1084   case Bad:                     // Type check
1085   default:                      // Bogus type not in lattice
1086     typerr(t);
1087     return Type::BOTTOM;
1088 
1089   case Bottom:                  // Ye Olde Default
1090     return t;
1091 
1092   case HalfFloatTop:
1093     if (_base == HalfFloatTop) { return this; }
1094   case HalfFloatBot:            // Half Float
1095     if (_base == HalfFloatBot || _base == HalfFloatTop) { return HALF_FLOAT; }
1096     if (_base == FloatBot || _base == FloatTop) { return Type::BOTTOM; }
1097     if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; }
1098     typerr(t);
1099     return Type::BOTTOM;
1100 
1101   case FloatTop:
1102     if (_base == FloatTop ) { return this; }
1103   case FloatBot:                // Float
1104     if (_base == FloatBot || _base == FloatTop) { return FLOAT; }
1105     if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; }
1106     if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; }
1107     typerr(t);
1108     return Type::BOTTOM;
1109 
1110   case DoubleTop:
1111     if (_base == DoubleTop) { return this; }
1112   case DoubleBot:               // Double
1113     if (_base == DoubleBot || _base == DoubleTop) { return DOUBLE; }
1114     if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; }
1115     if (_base == FloatTop || _base == FloatBot) { return Type::BOTTOM; }
1116     typerr(t);
1117     return Type::BOTTOM;
1118 
1119   // These next few cases must match exactly or it is a compile-time error.
1120   case Control:                 // Control of code
1121   case Abio:                    // State of world outside of program
1122   case Memory:
1123     if (_base == t->_base)  { return this; }
1124     typerr(t);
1125     return Type::BOTTOM;
1126 
1127   case Top:                     // Top of the lattice
1128     return this;
1129   }
1130 
1131   // The type is unchanged
1132   return this;
1133 }
1134 
1135 //-----------------------------filter------------------------------------------
1136 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1137   const Type* ft = join_helper(kills, include_speculative);
1138   if (ft->empty())
1139     return Type::TOP;           // Canonical empty value
1140   return ft;
1141 }
1142 
1143 //------------------------------xdual------------------------------------------
1144 const Type *Type::xdual() const {
1145   // Note: the base() accessor asserts the sanity of _base.
1146   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1147   return new Type(_type_info[_base].dual_type);
1148 }
1149 
1150 //------------------------------has_memory-------------------------------------
1151 bool Type::has_memory() const {
1152   Type::TYPES tx = base();
1153   if (tx == Memory) return true;
1154   if (tx == Tuple) {
1155     const TypeTuple *t = is_tuple();
1156     for (uint i=0; i < t->cnt(); i++) {
1157       tx = t->field_at(i)->base();
1158       if (tx == Memory)  return true;
1159     }
1160   }
1161   return false;
1162 }
1163 
1164 #ifndef PRODUCT
1165 //------------------------------dump2------------------------------------------
1166 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1167   st->print("%s", _type_info[_base].msg);
1168 }
1169 
1170 //------------------------------dump-------------------------------------------
1171 void Type::dump_on(outputStream *st) const {
1172   ResourceMark rm;
1173   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1174   dump2(d,1, st);
1175   if (is_ptr_to_narrowoop()) {
1176     st->print(" [narrow]");
1177   } else if (is_ptr_to_narrowklass()) {
1178     st->print(" [narrowklass]");
1179   }
1180 }
1181 
1182 //-----------------------------------------------------------------------------
1183 const char* Type::str(const Type* t) {
1184   stringStream ss;
1185   t->dump_on(&ss);
1186   return ss.as_string();
1187 }
1188 #endif
1189 
1190 //------------------------------singleton--------------------------------------
1191 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1192 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1193 bool Type::singleton(void) const {
1194   return _base == Top || _base == Half;
1195 }
1196 
1197 //------------------------------empty------------------------------------------
1198 // TRUE if Type is a type with no values, FALSE otherwise.
1199 bool Type::empty(void) const {
1200   switch (_base) {
1201   case DoubleTop:
1202   case FloatTop:
1203   case HalfFloatTop:
1204   case Top:
1205     return true;
1206 
1207   case Half:
1208   case Abio:
1209   case Return_Address:
1210   case Memory:
1211   case Bottom:
1212   case HalfFloatBot:
1213   case FloatBot:
1214   case DoubleBot:
1215     return false;  // never a singleton, therefore never empty
1216 
1217   default:
1218     ShouldNotReachHere();
1219     return false;
1220   }
1221 }
1222 
1223 //------------------------------dump_stats-------------------------------------
1224 // Dump collected statistics to stderr
1225 #ifndef PRODUCT
1226 void Type::dump_stats() {
1227   tty->print("Types made: %d\n", type_dict()->Size());
1228 }
1229 #endif
1230 
1231 //------------------------------category---------------------------------------
1232 #ifndef PRODUCT
1233 Type::Category Type::category() const {
1234   const TypeTuple* tuple;
1235   switch (base()) {
1236     case Type::Int:
1237     case Type::Long:
1238     case Type::Half:
1239     case Type::NarrowOop:
1240     case Type::NarrowKlass:
1241     case Type::Array:
1242     case Type::VectorA:
1243     case Type::VectorS:
1244     case Type::VectorD:
1245     case Type::VectorX:
1246     case Type::VectorY:
1247     case Type::VectorZ:
1248     case Type::VectorMask:
1249     case Type::AnyPtr:
1250     case Type::RawPtr:
1251     case Type::OopPtr:
1252     case Type::InstPtr:
1253     case Type::AryPtr:
1254     case Type::MetadataPtr:
1255     case Type::KlassPtr:
1256     case Type::InstKlassPtr:
1257     case Type::AryKlassPtr:
1258     case Type::Function:
1259     case Type::Return_Address:
1260     case Type::HalfFloatTop:
1261     case Type::HalfFloatCon:
1262     case Type::HalfFloatBot:
1263     case Type::FloatTop:
1264     case Type::FloatCon:
1265     case Type::FloatBot:
1266     case Type::DoubleTop:
1267     case Type::DoubleCon:
1268     case Type::DoubleBot:
1269       return Category::Data;
1270     case Type::Memory:
1271       return Category::Memory;
1272     case Type::Control:
1273       return Category::Control;
1274     case Type::Top:
1275     case Type::Abio:
1276     case Type::Bottom:
1277       return Category::Other;
1278     case Type::Bad:
1279     case Type::lastype:
1280       return Category::Undef;
1281     case Type::Tuple:
1282       // Recursive case. Return CatMixed if the tuple contains types of
1283       // different categories (e.g. CallStaticJavaNode's type), or the specific
1284       // category if all types are of the same category (e.g. IfNode's type).
1285       tuple = is_tuple();
1286       if (tuple->cnt() == 0) {
1287         return Category::Undef;
1288       } else {
1289         Category first = tuple->field_at(0)->category();
1290         for (uint i = 1; i < tuple->cnt(); i++) {
1291           if (tuple->field_at(i)->category() != first) {
1292             return Category::Mixed;
1293           }
1294         }
1295         return first;
1296       }
1297     default:
1298       assert(false, "unmatched base type: all base types must be categorized");
1299   }
1300   return Category::Undef;
1301 }
1302 
1303 bool Type::has_category(Type::Category cat) const {
1304   if (category() == cat) {
1305     return true;
1306   }
1307   if (category() == Category::Mixed) {
1308     const TypeTuple* tuple = is_tuple();
1309     for (uint i = 0; i < tuple->cnt(); i++) {
1310       if (tuple->field_at(i)->has_category(cat)) {
1311         return true;
1312       }
1313     }
1314   }
1315   return false;
1316 }
1317 #endif
1318 
1319 //------------------------------typerr-----------------------------------------
1320 void Type::typerr( const Type *t ) const {
1321 #ifndef PRODUCT
1322   tty->print("\nError mixing types: ");
1323   dump();
1324   tty->print(" and ");
1325   t->dump();
1326   tty->print("\n");
1327 #endif
1328   ShouldNotReachHere();
1329 }
1330 
1331 
1332 //=============================================================================
1333 // Convenience common pre-built types.
1334 const TypeF *TypeF::MAX;        // Floating point max
1335 const TypeF *TypeF::MIN;        // Floating point min
1336 const TypeF *TypeF::ZERO;       // Floating point zero
1337 const TypeF *TypeF::ONE;        // Floating point one
1338 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1339 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1340 
1341 //------------------------------make-------------------------------------------
1342 // Create a float constant
1343 const TypeF *TypeF::make(float f) {
1344   return (TypeF*)(new TypeF(f))->hashcons();
1345 }
1346 
1347 //------------------------------meet-------------------------------------------
1348 // Compute the MEET of two types.  It returns a new Type object.
1349 const Type *TypeF::xmeet( const Type *t ) const {
1350   // Perform a fast test for common case; meeting the same types together.
1351   if( this == t ) return this;  // Meeting same type-rep?
1352 
1353   // Current "this->_base" is FloatCon
1354   switch (t->base()) {          // Switch on original type
1355   case AnyPtr:                  // Mixing with oops happens when javac
1356   case RawPtr:                  // reuses local variables
1357   case OopPtr:
1358   case InstPtr:
1359   case AryPtr:
1360   case MetadataPtr:
1361   case KlassPtr:
1362   case InstKlassPtr:
1363   case AryKlassPtr:
1364   case NarrowOop:
1365   case NarrowKlass:
1366   case Int:
1367   case Long:
1368   case HalfFloatTop:
1369   case HalfFloatCon:
1370   case HalfFloatBot:
1371   case DoubleTop:
1372   case DoubleCon:
1373   case DoubleBot:
1374   case Bottom:                  // Ye Olde Default
1375     return Type::BOTTOM;
1376 
1377   case FloatBot:
1378     return t;
1379 
1380   default:                      // All else is a mistake
1381     typerr(t);
1382 
1383   case FloatCon:                // Float-constant vs Float-constant?
1384     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1385                                 // must compare bitwise as positive zero, negative zero and NaN have
1386                                 // all the same representation in C++
1387       return FLOAT;             // Return generic float
1388                                 // Equal constants
1389   case Top:
1390   case FloatTop:
1391     break;                      // Return the float constant
1392   }
1393   return this;                  // Return the float constant
1394 }
1395 
1396 //------------------------------xdual------------------------------------------
1397 // Dual: symmetric
1398 const Type *TypeF::xdual() const {
1399   return this;
1400 }
1401 
1402 //------------------------------eq---------------------------------------------
1403 // Structural equality check for Type representations
1404 bool TypeF::eq(const Type *t) const {
1405   // Bitwise comparison to distinguish between +/-0. These values must be treated
1406   // as different to be consistent with C1 and the interpreter.
1407   return (jint_cast(_f) == jint_cast(t->getf()));
1408 }
1409 
1410 //------------------------------hash-------------------------------------------
1411 // Type-specific hashing function.
1412 uint TypeF::hash(void) const {
1413   return *(uint*)(&_f);
1414 }
1415 
1416 //------------------------------is_finite--------------------------------------
1417 // Has a finite value
1418 bool TypeF::is_finite() const {
1419   return g_isfinite(getf()) != 0;
1420 }
1421 
1422 //------------------------------is_nan-----------------------------------------
1423 // Is not a number (NaN)
1424 bool TypeF::is_nan()    const {
1425   return g_isnan(getf()) != 0;
1426 }
1427 
1428 //------------------------------dump2------------------------------------------
1429 // Dump float constant Type
1430 #ifndef PRODUCT
1431 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1432   Type::dump2(d,depth, st);
1433   st->print("%f", _f);
1434 }
1435 #endif
1436 
1437 //------------------------------singleton--------------------------------------
1438 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1439 // constants (Ldi nodes).  Singletons are integer, float or double constants
1440 // or a single symbol.
1441 bool TypeF::singleton(void) const {
1442   return true;                  // Always a singleton
1443 }
1444 
1445 bool TypeF::empty(void) const {
1446   return false;                 // always exactly a singleton
1447 }
1448 
1449 //=============================================================================
1450 // Convenience common pre-built types.
1451 const TypeH* TypeH::MAX;        // Half float max
1452 const TypeH* TypeH::MIN;        // Half float min
1453 const TypeH* TypeH::ZERO;       // Half float zero
1454 const TypeH* TypeH::ONE;        // Half float one
1455 const TypeH* TypeH::POS_INF;    // Half float positive infinity
1456 const TypeH* TypeH::NEG_INF;    // Half float negative infinity
1457 
1458 //------------------------------make-------------------------------------------
1459 // Create a halffloat constant
1460 const TypeH* TypeH::make(short f) {
1461   return (TypeH*)(new TypeH(f))->hashcons();
1462 }
1463 
1464 const TypeH* TypeH::make(float f) {
1465   assert(StubRoutines::f2hf_adr() != nullptr, "");
1466   short hf = StubRoutines::f2hf(f);
1467   return (TypeH*)(new TypeH(hf))->hashcons();
1468 }
1469 
1470 //------------------------------xmeet-------------------------------------------
1471 // Compute the MEET of two types.  It returns a new Type object.
1472 const Type* TypeH::xmeet(const Type* t) const {
1473   // Perform a fast test for common case; meeting the same types together.
1474   if (this == t) return this;  // Meeting same type-rep?
1475 
1476   // Current "this->_base" is FloatCon
1477   switch (t->base()) {          // Switch on original type
1478   case AnyPtr:                  // Mixing with oops happens when javac
1479   case RawPtr:                  // reuses local variables
1480   case OopPtr:
1481   case InstPtr:
1482   case AryPtr:
1483   case MetadataPtr:
1484   case KlassPtr:
1485   case InstKlassPtr:
1486   case AryKlassPtr:
1487   case NarrowOop:
1488   case NarrowKlass:
1489   case Int:
1490   case Long:
1491   case FloatTop:
1492   case FloatCon:
1493   case FloatBot:
1494   case DoubleTop:
1495   case DoubleCon:
1496   case DoubleBot:
1497   case Bottom:                  // Ye Olde Default
1498     return Type::BOTTOM;
1499 
1500   case HalfFloatBot:
1501     return t;
1502 
1503   default:                      // All else is a mistake
1504     typerr(t);
1505 
1506   case HalfFloatCon:            // Half float-constant vs Half float-constant?
1507     if (_f != t->geth()) {      // unequal constants?
1508                                 // must compare bitwise as positive zero, negative zero and NaN have
1509                                 // all the same representation in C++
1510       return HALF_FLOAT;        // Return generic float
1511     }                           // Equal constants
1512   case Top:
1513   case HalfFloatTop:
1514     break;                      // Return the Half float constant
1515   }
1516   return this;                  // Return the Half float constant
1517 }
1518 
1519 //------------------------------xdual------------------------------------------
1520 // Dual: symmetric
1521 const Type* TypeH::xdual() const {
1522   return this;
1523 }
1524 
1525 //------------------------------eq---------------------------------------------
1526 // Structural equality check for Type representations
1527 bool TypeH::eq(const Type* t) const {
1528   // Bitwise comparison to distinguish between +/-0. These values must be treated
1529   // as different to be consistent with C1 and the interpreter.
1530   return (_f == t->geth());
1531 }
1532 
1533 //------------------------------hash-------------------------------------------
1534 // Type-specific hashing function.
1535 uint TypeH::hash(void) const {
1536   return *(jshort*)(&_f);
1537 }
1538 
1539 //------------------------------is_finite--------------------------------------
1540 // Has a finite value
1541 bool TypeH::is_finite() const {
1542   assert(StubRoutines::hf2f_adr() != nullptr, "");
1543   float f = StubRoutines::hf2f(geth());
1544   return g_isfinite(f) != 0;
1545 }
1546 
1547 float TypeH::getf() const {
1548   assert(StubRoutines::hf2f_adr() != nullptr, "");
1549   return StubRoutines::hf2f(geth());
1550 }
1551 
1552 //------------------------------is_nan-----------------------------------------
1553 // Is not a number (NaN)
1554 bool TypeH::is_nan() const {
1555   assert(StubRoutines::hf2f_adr() != nullptr, "");
1556   float f = StubRoutines::hf2f(geth());
1557   return g_isnan(f) != 0;
1558 }
1559 
1560 //------------------------------dump2------------------------------------------
1561 // Dump float constant Type
1562 #ifndef PRODUCT
1563 void TypeH::dump2(Dict &d, uint depth, outputStream* st) const {
1564   Type::dump2(d,depth, st);
1565   st->print("%f", getf());
1566 }
1567 #endif
1568 
1569 //------------------------------singleton--------------------------------------
1570 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1571 // constants (Ldi nodes).  Singletons are integer, half float, float or double constants
1572 // or a single symbol.
1573 bool TypeH::singleton(void) const {
1574   return true;                  // Always a singleton
1575 }
1576 
1577 bool TypeH::empty(void) const {
1578   return false;                 // always exactly a singleton
1579 }
1580 
1581 //=============================================================================
1582 // Convenience common pre-built types.
1583 const TypeD *TypeD::MAX;        // Floating point max
1584 const TypeD *TypeD::MIN;        // Floating point min
1585 const TypeD *TypeD::ZERO;       // Floating point zero
1586 const TypeD *TypeD::ONE;        // Floating point one
1587 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1588 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1589 
1590 //------------------------------make-------------------------------------------
1591 const TypeD *TypeD::make(double d) {
1592   return (TypeD*)(new TypeD(d))->hashcons();
1593 }
1594 
1595 //------------------------------meet-------------------------------------------
1596 // Compute the MEET of two types.  It returns a new Type object.
1597 const Type *TypeD::xmeet( const Type *t ) const {
1598   // Perform a fast test for common case; meeting the same types together.
1599   if( this == t ) return this;  // Meeting same type-rep?
1600 
1601   // Current "this->_base" is DoubleCon
1602   switch (t->base()) {          // Switch on original type
1603   case AnyPtr:                  // Mixing with oops happens when javac
1604   case RawPtr:                  // reuses local variables
1605   case OopPtr:
1606   case InstPtr:
1607   case AryPtr:
1608   case MetadataPtr:
1609   case KlassPtr:
1610   case InstKlassPtr:
1611   case AryKlassPtr:
1612   case NarrowOop:
1613   case NarrowKlass:
1614   case Int:
1615   case Long:
1616   case HalfFloatTop:
1617   case HalfFloatCon:
1618   case HalfFloatBot:
1619   case FloatTop:
1620   case FloatCon:
1621   case FloatBot:
1622   case Bottom:                  // Ye Olde Default
1623     return Type::BOTTOM;
1624 
1625   case DoubleBot:
1626     return t;
1627 
1628   default:                      // All else is a mistake
1629     typerr(t);
1630 
1631   case DoubleCon:               // Double-constant vs Double-constant?
1632     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1633       return DOUBLE;            // Return generic double
1634   case Top:
1635   case DoubleTop:
1636     break;
1637   }
1638   return this;                  // Return the double constant
1639 }
1640 
1641 //------------------------------xdual------------------------------------------
1642 // Dual: symmetric
1643 const Type *TypeD::xdual() const {
1644   return this;
1645 }
1646 
1647 //------------------------------eq---------------------------------------------
1648 // Structural equality check for Type representations
1649 bool TypeD::eq(const Type *t) const {
1650   // Bitwise comparison to distinguish between +/-0. These values must be treated
1651   // as different to be consistent with C1 and the interpreter.
1652   return (jlong_cast(_d) == jlong_cast(t->getd()));
1653 }
1654 
1655 //------------------------------hash-------------------------------------------
1656 // Type-specific hashing function.
1657 uint TypeD::hash(void) const {
1658   return *(uint*)(&_d);
1659 }
1660 
1661 //------------------------------is_finite--------------------------------------
1662 // Has a finite value
1663 bool TypeD::is_finite() const {
1664   return g_isfinite(getd()) != 0;
1665 }
1666 
1667 //------------------------------is_nan-----------------------------------------
1668 // Is not a number (NaN)
1669 bool TypeD::is_nan()    const {
1670   return g_isnan(getd()) != 0;
1671 }
1672 
1673 //------------------------------dump2------------------------------------------
1674 // Dump double constant Type
1675 #ifndef PRODUCT
1676 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1677   Type::dump2(d,depth,st);
1678   st->print("%f", _d);
1679 }
1680 #endif
1681 
1682 //------------------------------singleton--------------------------------------
1683 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1684 // constants (Ldi nodes).  Singletons are integer, float or double constants
1685 // or a single symbol.
1686 bool TypeD::singleton(void) const {
1687   return true;                  // Always a singleton
1688 }
1689 
1690 bool TypeD::empty(void) const {
1691   return false;                 // always exactly a singleton
1692 }
1693 
1694 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1695   if (bt == T_INT) {
1696     return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1697   }
1698   assert(bt == T_LONG, "basic type not an int or long");
1699   return TypeLong::make(lo, hi, w);
1700 }
1701 
1702 const TypeInteger* TypeInteger::make(jlong con, BasicType bt) {
1703   return make(con, con, WidenMin, bt);
1704 }
1705 
1706 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1707   if (bt == T_INT) {
1708     return is_int()->get_con();
1709   }
1710   assert(bt == T_LONG, "basic type not an int or long");
1711   return is_long()->get_con();
1712 }
1713 
1714 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1715   if (bt == T_INT) {
1716     return TypeInt::INT;
1717   }
1718   assert(bt == T_LONG, "basic type not an int or long");
1719   return TypeLong::LONG;
1720 }
1721 
1722 const TypeInteger* TypeInteger::zero(BasicType bt) {
1723   if (bt == T_INT) {
1724     return TypeInt::ZERO;
1725   }
1726   assert(bt == T_LONG, "basic type not an int or long");
1727   return TypeLong::ZERO;
1728 }
1729 
1730 const TypeInteger* TypeInteger::one(BasicType bt) {
1731   if (bt == T_INT) {
1732     return TypeInt::ONE;
1733   }
1734   assert(bt == T_LONG, "basic type not an int or long");
1735   return TypeLong::ONE;
1736 }
1737 
1738 const TypeInteger* TypeInteger::minus_1(BasicType bt) {
1739   if (bt == T_INT) {
1740     return TypeInt::MINUS_1;
1741   }
1742   assert(bt == T_LONG, "basic type not an int or long");
1743   return TypeLong::MINUS_1;
1744 }
1745 
1746 //=============================================================================
1747 // Convenience common pre-built types.
1748 const TypeInt *TypeInt::MAX;    // INT_MAX
1749 const TypeInt *TypeInt::MIN;    // INT_MIN
1750 const TypeInt *TypeInt::MINUS_1;// -1
1751 const TypeInt *TypeInt::ZERO;   // 0
1752 const TypeInt *TypeInt::ONE;    // 1
1753 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1754 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1755 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1756 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1757 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1758 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1759 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1760 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1761 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1762 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1763 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1764 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1765 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1766 const TypeInt *TypeInt::INT;    // 32-bit integers
1767 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1768 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1769 
1770 //------------------------------TypeInt----------------------------------------
1771 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int, w), _lo(lo), _hi(hi) {
1772 }
1773 
1774 //------------------------------make-------------------------------------------
1775 const TypeInt *TypeInt::make( jint lo ) {
1776   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1777 }
1778 
1779 static int normalize_int_widen( jint lo, jint hi, int w ) {
1780   // Certain normalizations keep us sane when comparing types.
1781   // The 'SMALLINT' covers constants and also CC and its relatives.
1782   if (lo <= hi) {
1783     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1784     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1785   } else {
1786     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1787     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1788   }
1789   return w;
1790 }
1791 
1792 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1793   w = normalize_int_widen(lo, hi, w);
1794   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1795 }
1796 
1797 //------------------------------meet-------------------------------------------
1798 // Compute the MEET of two types.  It returns a new Type representation object
1799 // with reference count equal to the number of Types pointing at it.
1800 // Caller should wrap a Types around it.
1801 const Type *TypeInt::xmeet( const Type *t ) const {
1802   // Perform a fast test for common case; meeting the same types together.
1803   if( this == t ) return this;  // Meeting same type?
1804 
1805   // Currently "this->_base" is a TypeInt
1806   switch (t->base()) {          // Switch on original type
1807   case AnyPtr:                  // Mixing with oops happens when javac
1808   case RawPtr:                  // reuses local variables
1809   case OopPtr:
1810   case InstPtr:
1811   case AryPtr:
1812   case MetadataPtr:
1813   case KlassPtr:
1814   case InstKlassPtr:
1815   case AryKlassPtr:
1816   case NarrowOop:
1817   case NarrowKlass:
1818   case Long:
1819   case HalfFloatTop:
1820   case HalfFloatCon:
1821   case HalfFloatBot:
1822   case FloatTop:
1823   case FloatCon:
1824   case FloatBot:
1825   case DoubleTop:
1826   case DoubleCon:
1827   case DoubleBot:
1828   case Bottom:                  // Ye Olde Default
1829     return Type::BOTTOM;
1830   default:                      // All else is a mistake
1831     typerr(t);
1832   case Top:                     // No change
1833     return this;
1834   case Int:                     // Int vs Int?
1835     break;
1836   }
1837 
1838   // Expand covered set
1839   const TypeInt *r = t->is_int();
1840   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1841 }
1842 
1843 //------------------------------xdual------------------------------------------
1844 // Dual: reverse hi & lo; flip widen
1845 const Type *TypeInt::xdual() const {
1846   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1847   return new TypeInt(_hi,_lo,w);
1848 }
1849 
1850 //------------------------------widen------------------------------------------
1851 // Only happens for optimistic top-down optimizations.
1852 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1853   // Coming from TOP or such; no widening
1854   if( old->base() != Int ) return this;
1855   const TypeInt *ot = old->is_int();
1856 
1857   // If new guy is equal to old guy, no widening
1858   if( _lo == ot->_lo && _hi == ot->_hi )
1859     return old;
1860 
1861   // If new guy contains old, then we widened
1862   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1863     // New contains old
1864     // If new guy is already wider than old, no widening
1865     if( _widen > ot->_widen ) return this;
1866     // If old guy was a constant, do not bother
1867     if (ot->_lo == ot->_hi)  return this;
1868     // Now widen new guy.
1869     // Check for widening too far
1870     if (_widen == WidenMax) {
1871       int max = max_jint;
1872       int min = min_jint;
1873       if (limit->isa_int()) {
1874         max = limit->is_int()->_hi;
1875         min = limit->is_int()->_lo;
1876       }
1877       if (min < _lo && _hi < max) {
1878         // If neither endpoint is extremal yet, push out the endpoint
1879         // which is closer to its respective limit.
1880         if (_lo >= 0 ||                 // easy common case
1881             ((juint)_lo - min) >= ((juint)max - _hi)) {
1882           // Try to widen to an unsigned range type of 31 bits:
1883           return make(_lo, max, WidenMax);
1884         } else {
1885           return make(min, _hi, WidenMax);
1886         }
1887       }
1888       return TypeInt::INT;
1889     }
1890     // Returned widened new guy
1891     return make(_lo,_hi,_widen+1);
1892   }
1893 
1894   // If old guy contains new, then we probably widened too far & dropped to
1895   // bottom.  Return the wider fellow.
1896   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1897     return old;
1898 
1899   //fatal("Integer value range is not subset");
1900   //return this;
1901   return TypeInt::INT;
1902 }
1903 
1904 //------------------------------narrow---------------------------------------
1905 // Only happens for pessimistic optimizations.
1906 const Type *TypeInt::narrow( const Type *old ) const {
1907   if (_lo >= _hi)  return this;   // already narrow enough
1908   if (old == nullptr)  return this;
1909   const TypeInt* ot = old->isa_int();
1910   if (ot == nullptr)  return this;
1911   jint olo = ot->_lo;
1912   jint ohi = ot->_hi;
1913 
1914   // If new guy is equal to old guy, no narrowing
1915   if (_lo == olo && _hi == ohi)  return old;
1916 
1917   // If old guy was maximum range, allow the narrowing
1918   if (olo == min_jint && ohi == max_jint)  return this;
1919 
1920   if (_lo < olo || _hi > ohi)
1921     return this;                // doesn't narrow; pretty weird
1922 
1923   // The new type narrows the old type, so look for a "death march".
1924   // See comments on PhaseTransform::saturate.
1925   juint nrange = (juint)_hi - _lo;
1926   juint orange = (juint)ohi - olo;
1927   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1928     // Use the new type only if the range shrinks a lot.
1929     // We do not want the optimizer computing 2^31 point by point.
1930     return old;
1931   }
1932 
1933   return this;
1934 }
1935 
1936 //-----------------------------filter------------------------------------------
1937 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1938   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1939   if (ft == nullptr || ft->empty())
1940     return Type::TOP;           // Canonical empty value
1941   if (ft->_widen < this->_widen) {
1942     // Do not allow the value of kill->_widen to affect the outcome.
1943     // The widen bits must be allowed to run freely through the graph.
1944     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1945   }
1946   return ft;
1947 }
1948 
1949 //------------------------------eq---------------------------------------------
1950 // Structural equality check for Type representations
1951 bool TypeInt::eq( const Type *t ) const {
1952   const TypeInt *r = t->is_int(); // Handy access
1953   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1954 }
1955 
1956 //------------------------------hash-------------------------------------------
1957 // Type-specific hashing function.
1958 uint TypeInt::hash(void) const {
1959   return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Int;
1960 }
1961 
1962 //------------------------------is_finite--------------------------------------
1963 // Has a finite value
1964 bool TypeInt::is_finite() const {
1965   return true;
1966 }
1967 
1968 //------------------------------dump2------------------------------------------
1969 // Dump TypeInt
1970 #ifndef PRODUCT
1971 static const char* intname(char* buf, size_t buf_size, jint n) {
1972   if (n == min_jint)
1973     return "min";
1974   else if (n < min_jint + 10000)
1975     os::snprintf_checked(buf, buf_size, "min+" INT32_FORMAT, n - min_jint);
1976   else if (n == max_jint)
1977     return "max";
1978   else if (n > max_jint - 10000)
1979     os::snprintf_checked(buf, buf_size, "max-" INT32_FORMAT, max_jint - n);
1980   else
1981     os::snprintf_checked(buf, buf_size, INT32_FORMAT, n);
1982   return buf;
1983 }
1984 
1985 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1986   char buf[40], buf2[40];
1987   if (_lo == min_jint && _hi == max_jint)
1988     st->print("int");
1989   else if (is_con())
1990     st->print("int:%s", intname(buf, sizeof(buf), get_con()));
1991   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1992     st->print("bool");
1993   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1994     st->print("byte");
1995   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1996     st->print("char");
1997   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1998     st->print("short");
1999   else if (_hi == max_jint)
2000     st->print("int:>=%s", intname(buf, sizeof(buf), _lo));
2001   else if (_lo == min_jint)
2002     st->print("int:<=%s", intname(buf, sizeof(buf), _hi));
2003   else
2004     st->print("int:%s..%s", intname(buf, sizeof(buf), _lo), intname(buf2, sizeof(buf2), _hi));
2005 
2006   if (_widen != 0 && this != TypeInt::INT)
2007     st->print(":%.*s", _widen, "wwww");
2008 }
2009 #endif
2010 
2011 //------------------------------singleton--------------------------------------
2012 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2013 // constants.
2014 bool TypeInt::singleton(void) const {
2015   return _lo >= _hi;
2016 }
2017 
2018 bool TypeInt::empty(void) const {
2019   return _lo > _hi;
2020 }
2021 
2022 //=============================================================================
2023 // Convenience common pre-built types.
2024 const TypeLong *TypeLong::MAX;
2025 const TypeLong *TypeLong::MIN;
2026 const TypeLong *TypeLong::MINUS_1;// -1
2027 const TypeLong *TypeLong::ZERO; // 0
2028 const TypeLong *TypeLong::ONE;  // 1
2029 const TypeLong *TypeLong::POS;  // >=0
2030 const TypeLong *TypeLong::LONG; // 64-bit integers
2031 const TypeLong *TypeLong::INT;  // 32-bit subrange
2032 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
2033 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
2034 
2035 //------------------------------TypeLong---------------------------------------
2036 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long, w), _lo(lo), _hi(hi) {
2037 }
2038 
2039 //------------------------------make-------------------------------------------
2040 const TypeLong *TypeLong::make( jlong lo ) {
2041   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
2042 }
2043 
2044 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
2045   // Certain normalizations keep us sane when comparing types.
2046   // The 'SMALLINT' covers constants.
2047   if (lo <= hi) {
2048     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
2049     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
2050   } else {
2051     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
2052     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
2053   }
2054   return w;
2055 }
2056 
2057 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
2058   w = normalize_long_widen(lo, hi, w);
2059   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
2060 }
2061 
2062 
2063 //------------------------------meet-------------------------------------------
2064 // Compute the MEET of two types.  It returns a new Type representation object
2065 // with reference count equal to the number of Types pointing at it.
2066 // Caller should wrap a Types around it.
2067 const Type *TypeLong::xmeet( const Type *t ) const {
2068   // Perform a fast test for common case; meeting the same types together.
2069   if( this == t ) return this;  // Meeting same type?
2070 
2071   // Currently "this->_base" is a TypeLong
2072   switch (t->base()) {          // Switch on original type
2073   case AnyPtr:                  // Mixing with oops happens when javac
2074   case RawPtr:                  // reuses local variables
2075   case OopPtr:
2076   case InstPtr:
2077   case AryPtr:
2078   case MetadataPtr:
2079   case KlassPtr:
2080   case InstKlassPtr:
2081   case AryKlassPtr:
2082   case NarrowOop:
2083   case NarrowKlass:
2084   case Int:
2085   case HalfFloatTop:
2086   case HalfFloatCon:
2087   case HalfFloatBot:
2088   case FloatTop:
2089   case FloatCon:
2090   case FloatBot:
2091   case DoubleTop:
2092   case DoubleCon:
2093   case DoubleBot:
2094   case Bottom:                  // Ye Olde Default
2095     return Type::BOTTOM;
2096   default:                      // All else is a mistake
2097     typerr(t);
2098   case Top:                     // No change
2099     return this;
2100   case Long:                    // Long vs Long?
2101     break;
2102   }
2103 
2104   // Expand covered set
2105   const TypeLong *r = t->is_long(); // Turn into a TypeLong
2106   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
2107 }
2108 
2109 //------------------------------xdual------------------------------------------
2110 // Dual: reverse hi & lo; flip widen
2111 const Type *TypeLong::xdual() const {
2112   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
2113   return new TypeLong(_hi,_lo,w);
2114 }
2115 
2116 //------------------------------widen------------------------------------------
2117 // Only happens for optimistic top-down optimizations.
2118 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
2119   // Coming from TOP or such; no widening
2120   if( old->base() != Long ) return this;
2121   const TypeLong *ot = old->is_long();
2122 
2123   // If new guy is equal to old guy, no widening
2124   if( _lo == ot->_lo && _hi == ot->_hi )
2125     return old;
2126 
2127   // If new guy contains old, then we widened
2128   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
2129     // New contains old
2130     // If new guy is already wider than old, no widening
2131     if( _widen > ot->_widen ) return this;
2132     // If old guy was a constant, do not bother
2133     if (ot->_lo == ot->_hi)  return this;
2134     // Now widen new guy.
2135     // Check for widening too far
2136     if (_widen == WidenMax) {
2137       jlong max = max_jlong;
2138       jlong min = min_jlong;
2139       if (limit->isa_long()) {
2140         max = limit->is_long()->_hi;
2141         min = limit->is_long()->_lo;
2142       }
2143       if (min < _lo && _hi < max) {
2144         // If neither endpoint is extremal yet, push out the endpoint
2145         // which is closer to its respective limit.
2146         if (_lo >= 0 ||                 // easy common case
2147             ((julong)_lo - min) >= ((julong)max - _hi)) {
2148           // Try to widen to an unsigned range type of 32/63 bits:
2149           if (max >= max_juint && _hi < max_juint)
2150             return make(_lo, max_juint, WidenMax);
2151           else
2152             return make(_lo, max, WidenMax);
2153         } else {
2154           return make(min, _hi, WidenMax);
2155         }
2156       }
2157       return TypeLong::LONG;
2158     }
2159     // Returned widened new guy
2160     return make(_lo,_hi,_widen+1);
2161   }
2162 
2163   // If old guy contains new, then we probably widened too far & dropped to
2164   // bottom.  Return the wider fellow.
2165   if ( ot->_lo <= _lo && ot->_hi >= _hi )
2166     return old;
2167 
2168   //  fatal("Long value range is not subset");
2169   // return this;
2170   return TypeLong::LONG;
2171 }
2172 
2173 //------------------------------narrow----------------------------------------
2174 // Only happens for pessimistic optimizations.
2175 const Type *TypeLong::narrow( const Type *old ) const {
2176   if (_lo >= _hi)  return this;   // already narrow enough
2177   if (old == nullptr)  return this;
2178   const TypeLong* ot = old->isa_long();
2179   if (ot == nullptr)  return this;
2180   jlong olo = ot->_lo;
2181   jlong ohi = ot->_hi;
2182 
2183   // If new guy is equal to old guy, no narrowing
2184   if (_lo == olo && _hi == ohi)  return old;
2185 
2186   // If old guy was maximum range, allow the narrowing
2187   if (olo == min_jlong && ohi == max_jlong)  return this;
2188 
2189   if (_lo < olo || _hi > ohi)
2190     return this;                // doesn't narrow; pretty weird
2191 
2192   // The new type narrows the old type, so look for a "death march".
2193   // See comments on PhaseTransform::saturate.
2194   julong nrange = (julong)_hi - _lo;
2195   julong orange = (julong)ohi - olo;
2196   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
2197     // Use the new type only if the range shrinks a lot.
2198     // We do not want the optimizer computing 2^31 point by point.
2199     return old;
2200   }
2201 
2202   return this;
2203 }
2204 
2205 //-----------------------------filter------------------------------------------
2206 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
2207   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
2208   if (ft == nullptr || ft->empty())
2209     return Type::TOP;           // Canonical empty value
2210   if (ft->_widen < this->_widen) {
2211     // Do not allow the value of kill->_widen to affect the outcome.
2212     // The widen bits must be allowed to run freely through the graph.
2213     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
2214   }
2215   return ft;
2216 }
2217 
2218 //------------------------------eq---------------------------------------------
2219 // Structural equality check for Type representations
2220 bool TypeLong::eq( const Type *t ) const {
2221   const TypeLong *r = t->is_long(); // Handy access
2222   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
2223 }
2224 
2225 //------------------------------hash-------------------------------------------
2226 // Type-specific hashing function.
2227 uint TypeLong::hash(void) const {
2228   return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Long;
2229 }
2230 
2231 //------------------------------is_finite--------------------------------------
2232 // Has a finite value
2233 bool TypeLong::is_finite() const {
2234   return true;
2235 }
2236 
2237 //------------------------------dump2------------------------------------------
2238 // Dump TypeLong
2239 #ifndef PRODUCT
2240 static const char* longnamenear(jlong x, const char* xname, char* buf, size_t buf_size, jlong n) {
2241   if (n > x) {
2242     if (n >= x + 10000)  return nullptr;
2243     os::snprintf_checked(buf, buf_size, "%s+" JLONG_FORMAT, xname, n - x);
2244   } else if (n < x) {
2245     if (n <= x - 10000)  return nullptr;
2246     os::snprintf_checked(buf, buf_size, "%s-" JLONG_FORMAT, xname, x - n);
2247   } else {
2248     return xname;
2249   }
2250   return buf;
2251 }
2252 
2253 static const char* longname(char* buf, size_t buf_size, jlong n) {
2254   const char* str;
2255   if (n == min_jlong)
2256     return "min";
2257   else if (n < min_jlong + 10000)
2258     os::snprintf_checked(buf, buf_size, "min+" JLONG_FORMAT, n - min_jlong);
2259   else if (n == max_jlong)
2260     return "max";
2261   else if (n > max_jlong - 10000)
2262     os::snprintf_checked(buf, buf_size, "max-" JLONG_FORMAT, max_jlong - n);
2263   else if ((str = longnamenear(max_juint, "maxuint", buf, buf_size, n)) != nullptr)
2264     return str;
2265   else if ((str = longnamenear(max_jint, "maxint", buf, buf_size, n)) != nullptr)
2266     return str;
2267   else if ((str = longnamenear(min_jint, "minint", buf, buf_size, n)) != nullptr)
2268     return str;
2269   else
2270     os::snprintf_checked(buf, buf_size, JLONG_FORMAT, n);
2271   return buf;
2272 }
2273 
2274 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
2275   char buf[80], buf2[80];
2276   if (_lo == min_jlong && _hi == max_jlong)
2277     st->print("long");
2278   else if (is_con())
2279     st->print("long:%s", longname(buf, sizeof(buf), get_con()));
2280   else if (_hi == max_jlong)
2281     st->print("long:>=%s", longname(buf, sizeof(buf), _lo));
2282   else if (_lo == min_jlong)
2283     st->print("long:<=%s", longname(buf, sizeof(buf), _hi));
2284   else
2285     st->print("long:%s..%s", longname(buf, sizeof(buf), _lo), longname(buf2,sizeof(buf2),  _hi));
2286 
2287   if (_widen != 0 && this != TypeLong::LONG)
2288     st->print(":%.*s", _widen, "wwww");
2289 }
2290 #endif
2291 
2292 //------------------------------singleton--------------------------------------
2293 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2294 // constants
2295 bool TypeLong::singleton(void) const {
2296   return _lo >= _hi;
2297 }
2298 
2299 bool TypeLong::empty(void) const {
2300   return _lo > _hi;
2301 }
2302 
2303 //=============================================================================
2304 // Convenience common pre-built types.
2305 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2306 const TypeTuple *TypeTuple::IFFALSE;
2307 const TypeTuple *TypeTuple::IFTRUE;
2308 const TypeTuple *TypeTuple::IFNEITHER;
2309 const TypeTuple *TypeTuple::LOOPBODY;
2310 const TypeTuple *TypeTuple::MEMBAR;
2311 const TypeTuple *TypeTuple::STORECONDITIONAL;
2312 const TypeTuple *TypeTuple::START_I2C;
2313 const TypeTuple *TypeTuple::INT_PAIR;
2314 const TypeTuple *TypeTuple::LONG_PAIR;
2315 const TypeTuple *TypeTuple::INT_CC_PAIR;
2316 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2317 
2318 //------------------------------make-------------------------------------------
2319 // Make a TypeTuple from the range of a method signature
2320 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2321   ciType* return_type = sig->return_type();
2322   uint arg_cnt = return_type->size();
2323   const Type **field_array = fields(arg_cnt);
2324   switch (return_type->basic_type()) {
2325   case T_LONG:
2326     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2327     field_array[TypeFunc::Parms+1] = Type::HALF;
2328     break;
2329   case T_DOUBLE:
2330     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2331     field_array[TypeFunc::Parms+1] = Type::HALF;
2332     break;
2333   case T_OBJECT:
2334   case T_ARRAY:
2335   case T_BOOLEAN:
2336   case T_CHAR:
2337   case T_FLOAT:
2338   case T_BYTE:
2339   case T_SHORT:
2340   case T_INT:
2341     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2342     break;
2343   case T_VOID:
2344     break;
2345   default:
2346     ShouldNotReachHere();
2347   }
2348   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2349 }
2350 
2351 // Make a TypeTuple from the domain of a method signature
2352 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2353   uint arg_cnt = sig->size();
2354 
2355   uint pos = TypeFunc::Parms;
2356   const Type **field_array;
2357   if (recv != nullptr) {
2358     arg_cnt++;
2359     field_array = fields(arg_cnt);
2360     // Use get_const_type here because it respects UseUniqueSubclasses:
2361     field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2362   } else {
2363     field_array = fields(arg_cnt);
2364   }
2365 
2366   int i = 0;
2367   while (pos < TypeFunc::Parms + arg_cnt) {
2368     ciType* type = sig->type_at(i);
2369 
2370     switch (type->basic_type()) {
2371     case T_LONG:
2372       field_array[pos++] = TypeLong::LONG;
2373       field_array[pos++] = Type::HALF;
2374       break;
2375     case T_DOUBLE:
2376       field_array[pos++] = Type::DOUBLE;
2377       field_array[pos++] = Type::HALF;
2378       break;
2379     case T_OBJECT:
2380     case T_ARRAY:
2381     case T_FLOAT:
2382     case T_INT:
2383       field_array[pos++] = get_const_type(type, interface_handling);
2384       break;
2385     case T_BOOLEAN:
2386     case T_CHAR:
2387     case T_BYTE:
2388     case T_SHORT:
2389       field_array[pos++] = TypeInt::INT;
2390       break;
2391     default:
2392       ShouldNotReachHere();
2393     }
2394     i++;
2395   }
2396 
2397   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2398 }
2399 
2400 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2401   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2402 }
2403 
2404 //------------------------------fields-----------------------------------------
2405 // Subroutine call type with space allocated for argument types
2406 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2407 const Type **TypeTuple::fields( uint arg_cnt ) {
2408   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2409   flds[TypeFunc::Control  ] = Type::CONTROL;
2410   flds[TypeFunc::I_O      ] = Type::ABIO;
2411   flds[TypeFunc::Memory   ] = Type::MEMORY;
2412   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2413   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2414 
2415   return flds;
2416 }
2417 
2418 //------------------------------meet-------------------------------------------
2419 // Compute the MEET of two types.  It returns a new Type object.
2420 const Type *TypeTuple::xmeet( const Type *t ) const {
2421   // Perform a fast test for common case; meeting the same types together.
2422   if( this == t ) return this;  // Meeting same type-rep?
2423 
2424   // Current "this->_base" is Tuple
2425   switch (t->base()) {          // switch on original type
2426 
2427   case Bottom:                  // Ye Olde Default
2428     return t;
2429 
2430   default:                      // All else is a mistake
2431     typerr(t);
2432 
2433   case Tuple: {                 // Meeting 2 signatures?
2434     const TypeTuple *x = t->is_tuple();
2435     assert( _cnt == x->_cnt, "" );
2436     const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2437     for( uint i=0; i<_cnt; i++ )
2438       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2439     return TypeTuple::make(_cnt,fields);
2440   }
2441   case Top:
2442     break;
2443   }
2444   return this;                  // Return the double constant
2445 }
2446 
2447 //------------------------------xdual------------------------------------------
2448 // Dual: compute field-by-field dual
2449 const Type *TypeTuple::xdual() const {
2450   const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2451   for( uint i=0; i<_cnt; i++ )
2452     fields[i] = _fields[i]->dual();
2453   return new TypeTuple(_cnt,fields);
2454 }
2455 
2456 //------------------------------eq---------------------------------------------
2457 // Structural equality check for Type representations
2458 bool TypeTuple::eq( const Type *t ) const {
2459   const TypeTuple *s = (const TypeTuple *)t;
2460   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2461   for (uint i = 0; i < _cnt; i++)
2462     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2463       return false;             // Missed
2464   return true;
2465 }
2466 
2467 //------------------------------hash-------------------------------------------
2468 // Type-specific hashing function.
2469 uint TypeTuple::hash(void) const {
2470   uintptr_t sum = _cnt;
2471   for( uint i=0; i<_cnt; i++ )
2472     sum += (uintptr_t)_fields[i];     // Hash on pointers directly
2473   return (uint)sum;
2474 }
2475 
2476 //------------------------------dump2------------------------------------------
2477 // Dump signature Type
2478 #ifndef PRODUCT
2479 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2480   st->print("{");
2481   if( !depth || d[this] ) {     // Check for recursive print
2482     st->print("...}");
2483     return;
2484   }
2485   d.Insert((void*)this, (void*)this);   // Stop recursion
2486   if( _cnt ) {
2487     uint i;
2488     for( i=0; i<_cnt-1; i++ ) {
2489       st->print("%d:", i);
2490       _fields[i]->dump2(d, depth-1, st);
2491       st->print(", ");
2492     }
2493     st->print("%d:", i);
2494     _fields[i]->dump2(d, depth-1, st);
2495   }
2496   st->print("}");
2497 }
2498 #endif
2499 
2500 //------------------------------singleton--------------------------------------
2501 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2502 // constants (Ldi nodes).  Singletons are integer, float or double constants
2503 // or a single symbol.
2504 bool TypeTuple::singleton(void) const {
2505   return false;                 // Never a singleton
2506 }
2507 
2508 bool TypeTuple::empty(void) const {
2509   for( uint i=0; i<_cnt; i++ ) {
2510     if (_fields[i]->empty())  return true;
2511   }
2512   return false;
2513 }
2514 
2515 //=============================================================================
2516 // Convenience common pre-built types.
2517 
2518 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2519   // Certain normalizations keep us sane when comparing types.
2520   // We do not want arrayOop variables to differ only by the wideness
2521   // of their index types.  Pick minimum wideness, since that is the
2522   // forced wideness of small ranges anyway.
2523   if (size->_widen != Type::WidenMin)
2524     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2525   else
2526     return size;
2527 }
2528 
2529 //------------------------------make-------------------------------------------
2530 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2531   if (UseCompressedOops && elem->isa_oopptr()) {
2532     elem = elem->make_narrowoop();
2533   }
2534   size = normalize_array_size(size);
2535   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2536 }
2537 
2538 //------------------------------meet-------------------------------------------
2539 // Compute the MEET of two types.  It returns a new Type object.
2540 const Type *TypeAry::xmeet( const Type *t ) const {
2541   // Perform a fast test for common case; meeting the same types together.
2542   if( this == t ) return this;  // Meeting same type-rep?
2543 
2544   // Current "this->_base" is Ary
2545   switch (t->base()) {          // switch on original type
2546 
2547   case Bottom:                  // Ye Olde Default
2548     return t;
2549 
2550   default:                      // All else is a mistake
2551     typerr(t);
2552 
2553   case Array: {                 // Meeting 2 arrays?
2554     const TypeAry *a = t->is_ary();
2555     return TypeAry::make(_elem->meet_speculative(a->_elem),
2556                          _size->xmeet(a->_size)->is_int(),
2557                          _stable && a->_stable);
2558   }
2559   case Top:
2560     break;
2561   }
2562   return this;                  // Return the double constant
2563 }
2564 
2565 //------------------------------xdual------------------------------------------
2566 // Dual: compute field-by-field dual
2567 const Type *TypeAry::xdual() const {
2568   const TypeInt* size_dual = _size->dual()->is_int();
2569   size_dual = normalize_array_size(size_dual);
2570   return new TypeAry(_elem->dual(), size_dual, !_stable);
2571 }
2572 
2573 //------------------------------eq---------------------------------------------
2574 // Structural equality check for Type representations
2575 bool TypeAry::eq( const Type *t ) const {
2576   const TypeAry *a = (const TypeAry*)t;
2577   return _elem == a->_elem &&
2578     _stable == a->_stable &&
2579     _size == a->_size;
2580 }
2581 
2582 //------------------------------hash-------------------------------------------
2583 // Type-specific hashing function.
2584 uint TypeAry::hash(void) const {
2585   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);
2586 }
2587 
2588 /**
2589  * Return same type without a speculative part in the element
2590  */
2591 const TypeAry* TypeAry::remove_speculative() const {
2592   return make(_elem->remove_speculative(), _size, _stable);
2593 }
2594 
2595 /**
2596  * Return same type with cleaned up speculative part of element
2597  */
2598 const Type* TypeAry::cleanup_speculative() const {
2599   return make(_elem->cleanup_speculative(), _size, _stable);
2600 }
2601 
2602 /**
2603  * Return same type but with a different inline depth (used for speculation)
2604  *
2605  * @param depth  depth to meet with
2606  */
2607 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2608   if (!UseInlineDepthForSpeculativeTypes) {
2609     return this;
2610   }
2611   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2612 }
2613 
2614 //------------------------------dump2------------------------------------------
2615 #ifndef PRODUCT
2616 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2617   if (_stable)  st->print("stable:");
2618   _elem->dump2(d, depth, st);
2619   st->print("[");
2620   _size->dump2(d, depth, st);
2621   st->print("]");
2622 }
2623 #endif
2624 
2625 //------------------------------singleton--------------------------------------
2626 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2627 // constants (Ldi nodes).  Singletons are integer, float or double constants
2628 // or a single symbol.
2629 bool TypeAry::singleton(void) const {
2630   return false;                 // Never a singleton
2631 }
2632 
2633 bool TypeAry::empty(void) const {
2634   return _elem->empty() || _size->empty();
2635 }
2636 
2637 //--------------------------ary_must_be_exact----------------------------------
2638 bool TypeAry::ary_must_be_exact() const {
2639   // This logic looks at the element type of an array, and returns true
2640   // if the element type is either a primitive or a final instance class.
2641   // In such cases, an array built on this ary must have no subclasses.
2642   if (_elem == BOTTOM)      return false;  // general array not exact
2643   if (_elem == TOP   )      return false;  // inverted general array not exact
2644   const TypeOopPtr*  toop = nullptr;
2645   if (UseCompressedOops && _elem->isa_narrowoop()) {
2646     toop = _elem->make_ptr()->isa_oopptr();
2647   } else {
2648     toop = _elem->isa_oopptr();
2649   }
2650   if (!toop)                return true;   // a primitive type, like int
2651   if (!toop->is_loaded())   return false;  // unloaded class
2652   const TypeInstPtr* tinst;
2653   if (_elem->isa_narrowoop())
2654     tinst = _elem->make_ptr()->isa_instptr();
2655   else
2656     tinst = _elem->isa_instptr();
2657   if (tinst)
2658     return tinst->instance_klass()->is_final();
2659   const TypeAryPtr*  tap;
2660   if (_elem->isa_narrowoop())
2661     tap = _elem->make_ptr()->isa_aryptr();
2662   else
2663     tap = _elem->isa_aryptr();
2664   if (tap)
2665     return tap->ary()->ary_must_be_exact();
2666   return false;
2667 }
2668 
2669 //==============================TypeVect=======================================
2670 // Convenience common pre-built types.
2671 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2672 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2673 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2674 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2675 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2676 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2677 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2678 
2679 //------------------------------make-------------------------------------------
2680 const TypeVect* TypeVect::make(BasicType elem_bt, uint length, bool is_mask) {
2681   if (is_mask) {
2682     return makemask(elem_bt, length);
2683   }
2684   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2685   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2686   int size = length * type2aelembytes(elem_bt);
2687   switch (Matcher::vector_ideal_reg(size)) {
2688   case Op_VecA:
2689     return (TypeVect*)(new TypeVectA(elem_bt, length))->hashcons();
2690   case Op_VecS:
2691     return (TypeVect*)(new TypeVectS(elem_bt, length))->hashcons();
2692   case Op_RegL:
2693   case Op_VecD:
2694   case Op_RegD:
2695     return (TypeVect*)(new TypeVectD(elem_bt, length))->hashcons();
2696   case Op_VecX:
2697     return (TypeVect*)(new TypeVectX(elem_bt, length))->hashcons();
2698   case Op_VecY:
2699     return (TypeVect*)(new TypeVectY(elem_bt, length))->hashcons();
2700   case Op_VecZ:
2701     return (TypeVect*)(new TypeVectZ(elem_bt, length))->hashcons();
2702   }
2703  ShouldNotReachHere();
2704   return nullptr;
2705 }
2706 
2707 const TypeVect* TypeVect::makemask(BasicType elem_bt, uint length) {
2708   if (Matcher::has_predicated_vectors() &&
2709       Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) {
2710     return TypeVectMask::make(elem_bt, length);
2711   } else {
2712     return make(elem_bt, length);
2713   }
2714 }
2715 
2716 //------------------------------meet-------------------------------------------
2717 // Compute the MEET of two types. Since each TypeVect is the only instance of
2718 // its species, meeting often returns itself
2719 const Type* TypeVect::xmeet(const Type* t) const {
2720   // Perform a fast test for common case; meeting the same types together.
2721   if (this == t) {
2722     return this;
2723   }
2724 
2725   // Current "this->_base" is Vector
2726   switch (t->base()) {          // switch on original type
2727 
2728   case Bottom:                  // Ye Olde Default
2729     return t;
2730 
2731   default:                      // All else is a mistake
2732     typerr(t);
2733   case VectorMask:
2734   case VectorA:
2735   case VectorS:
2736   case VectorD:
2737   case VectorX:
2738   case VectorY:
2739   case VectorZ: {                // Meeting 2 vectors?
2740     const TypeVect* v = t->is_vect();
2741     assert(base() == v->base(), "");
2742     assert(length() == v->length(), "");
2743     assert(element_basic_type() == v->element_basic_type(), "");
2744     return this;
2745   }
2746   case Top:
2747     break;
2748   }
2749   return this;
2750 }
2751 
2752 //------------------------------xdual------------------------------------------
2753 // Since each TypeVect is the only instance of its species, it is self-dual
2754 const Type* TypeVect::xdual() const {
2755   return this;
2756 }
2757 
2758 //------------------------------eq---------------------------------------------
2759 // Structural equality check for Type representations
2760 bool TypeVect::eq(const Type* t) const {
2761   const TypeVect* v = t->is_vect();
2762   return (element_basic_type() == v->element_basic_type()) && (length() == v->length());
2763 }
2764 
2765 //------------------------------hash-------------------------------------------
2766 // Type-specific hashing function.
2767 uint TypeVect::hash(void) const {
2768   return (uint)base() + (uint)(uintptr_t)_elem_bt + (uint)(uintptr_t)_length;
2769 }
2770 
2771 //------------------------------singleton--------------------------------------
2772 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2773 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2774 // constant value (when vector is created with Replicate code).
2775 bool TypeVect::singleton(void) const {
2776 // There is no Con node for vectors yet.
2777 //  return _elem->singleton();
2778   return false;
2779 }
2780 
2781 bool TypeVect::empty(void) const {
2782   return false;
2783 }
2784 
2785 //------------------------------dump2------------------------------------------
2786 #ifndef PRODUCT
2787 void TypeVect::dump2(Dict& d, uint depth, outputStream* st) const {
2788   switch (base()) {
2789   case VectorA:
2790     st->print("vectora"); break;
2791   case VectorS:
2792     st->print("vectors"); break;
2793   case VectorD:
2794     st->print("vectord"); break;
2795   case VectorX:
2796     st->print("vectorx"); break;
2797   case VectorY:
2798     st->print("vectory"); break;
2799   case VectorZ:
2800     st->print("vectorz"); break;
2801   case VectorMask:
2802     st->print("vectormask"); break;
2803   default:
2804     ShouldNotReachHere();
2805   }
2806   st->print("<%c,%u>", type2char(element_basic_type()), length());
2807 }
2808 #endif
2809 
2810 const TypeVectMask* TypeVectMask::make(const BasicType elem_bt, uint length) {
2811   return (TypeVectMask*) (new TypeVectMask(elem_bt, length))->hashcons();
2812 }
2813 
2814 //=============================================================================
2815 // Convenience common pre-built types.
2816 const TypePtr *TypePtr::NULL_PTR;
2817 const TypePtr *TypePtr::NOTNULL;
2818 const TypePtr *TypePtr::BOTTOM;
2819 
2820 //------------------------------meet-------------------------------------------
2821 // Meet over the PTR enum
2822 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2823   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2824   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2825   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2826   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2827   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2828   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2829   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2830 };
2831 
2832 //------------------------------make-------------------------------------------
2833 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2834   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2835 }
2836 
2837 //------------------------------cast_to_ptr_type-------------------------------
2838 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2839   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2840   if( ptr == _ptr ) return this;
2841   return make(_base, ptr, _offset, _speculative, _inline_depth);
2842 }
2843 
2844 //------------------------------get_con----------------------------------------
2845 intptr_t TypePtr::get_con() const {
2846   assert( _ptr == Null, "" );
2847   return _offset;
2848 }
2849 
2850 //------------------------------meet-------------------------------------------
2851 // Compute the MEET of two types.  It returns a new Type object.
2852 const Type *TypePtr::xmeet(const Type *t) const {
2853   const Type* res = xmeet_helper(t);
2854   if (res->isa_ptr() == nullptr) {
2855     return res;
2856   }
2857 
2858   const TypePtr* res_ptr = res->is_ptr();
2859   if (res_ptr->speculative() != nullptr) {
2860     // type->speculative() is null means that speculation is no better
2861     // than type, i.e. type->speculative() == type. So there are 2
2862     // ways to represent the fact that we have no useful speculative
2863     // data and we should use a single one to be able to test for
2864     // equality between types. Check whether type->speculative() ==
2865     // type and set speculative to null if it is the case.
2866     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2867       return res_ptr->remove_speculative();
2868     }
2869   }
2870 
2871   return res;
2872 }
2873 
2874 const Type *TypePtr::xmeet_helper(const Type *t) const {
2875   // Perform a fast test for common case; meeting the same types together.
2876   if( this == t ) return this;  // Meeting same type-rep?
2877 
2878   // Current "this->_base" is AnyPtr
2879   switch (t->base()) {          // switch on original type
2880   case Int:                     // Mixing ints & oops happens when javac
2881   case Long:                    // reuses local variables
2882   case HalfFloatTop:
2883   case HalfFloatCon:
2884   case HalfFloatBot:
2885   case FloatTop:
2886   case FloatCon:
2887   case FloatBot:
2888   case DoubleTop:
2889   case DoubleCon:
2890   case DoubleBot:
2891   case NarrowOop:
2892   case NarrowKlass:
2893   case Bottom:                  // Ye Olde Default
2894     return Type::BOTTOM;
2895   case Top:
2896     return this;
2897 
2898   case AnyPtr: {                // Meeting to AnyPtrs
2899     const TypePtr *tp = t->is_ptr();
2900     const TypePtr* speculative = xmeet_speculative(tp);
2901     int depth = meet_inline_depth(tp->inline_depth());
2902     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2903   }
2904   case RawPtr:                  // For these, flip the call around to cut down
2905   case OopPtr:
2906   case InstPtr:                 // on the cases I have to handle.
2907   case AryPtr:
2908   case MetadataPtr:
2909   case KlassPtr:
2910   case InstKlassPtr:
2911   case AryKlassPtr:
2912     return t->xmeet(this);      // Call in reverse direction
2913   default:                      // All else is a mistake
2914     typerr(t);
2915 
2916   }
2917   return this;
2918 }
2919 
2920 //------------------------------meet_offset------------------------------------
2921 int TypePtr::meet_offset( int offset ) const {
2922   // Either is 'TOP' offset?  Return the other offset!
2923   if( _offset == OffsetTop ) return offset;
2924   if( offset == OffsetTop ) return _offset;
2925   // If either is different, return 'BOTTOM' offset
2926   if( _offset != offset ) return OffsetBot;
2927   return _offset;
2928 }
2929 
2930 //------------------------------dual_offset------------------------------------
2931 int TypePtr::dual_offset( ) const {
2932   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2933   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2934   return _offset;               // Map everything else into self
2935 }
2936 
2937 //------------------------------xdual------------------------------------------
2938 // Dual: compute field-by-field dual
2939 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2940   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2941 };
2942 const Type *TypePtr::xdual() const {
2943   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2944 }
2945 
2946 //------------------------------xadd_offset------------------------------------
2947 int TypePtr::xadd_offset( intptr_t offset ) const {
2948   // Adding to 'TOP' offset?  Return 'TOP'!
2949   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2950   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2951   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2952   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2953   offset += (intptr_t)_offset;
2954   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2955 
2956   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2957   // It is possible to construct a negative offset during PhaseCCP
2958 
2959   return (int)offset;        // Sum valid offsets
2960 }
2961 
2962 //------------------------------add_offset-------------------------------------
2963 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2964   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2965 }
2966 
2967 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2968   return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2969 }
2970 
2971 //------------------------------eq---------------------------------------------
2972 // Structural equality check for Type representations
2973 bool TypePtr::eq( const Type *t ) const {
2974   const TypePtr *a = (const TypePtr*)t;
2975   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2976 }
2977 
2978 //------------------------------hash-------------------------------------------
2979 // Type-specific hashing function.
2980 uint TypePtr::hash(void) const {
2981   return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2982 }
2983 
2984 /**
2985  * Return same type without a speculative part
2986  */
2987 const TypePtr* TypePtr::remove_speculative() const {
2988   if (_speculative == nullptr) {
2989     return this;
2990   }
2991   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2992   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2993 }
2994 
2995 /**
2996  * Return same type but drop speculative part if we know we won't use
2997  * it
2998  */
2999 const Type* TypePtr::cleanup_speculative() const {
3000   if (speculative() == nullptr) {
3001     return this;
3002   }
3003   const Type* no_spec = remove_speculative();
3004   // If this is NULL_PTR then we don't need the speculative type
3005   // (with_inline_depth in case the current type inline depth is
3006   // InlineDepthTop)
3007   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
3008     return no_spec;
3009   }
3010   if (above_centerline(speculative()->ptr())) {
3011     return no_spec;
3012   }
3013   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
3014   // If the speculative may be null and is an inexact klass then it
3015   // doesn't help
3016   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
3017       (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) {
3018     return no_spec;
3019   }
3020   return this;
3021 }
3022 
3023 /**
3024  * dual of the speculative part of the type
3025  */
3026 const TypePtr* TypePtr::dual_speculative() const {
3027   if (_speculative == nullptr) {
3028     return nullptr;
3029   }
3030   return _speculative->dual()->is_ptr();
3031 }
3032 
3033 /**
3034  * meet of the speculative parts of 2 types
3035  *
3036  * @param other  type to meet with
3037  */
3038 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
3039   bool this_has_spec = (_speculative != nullptr);
3040   bool other_has_spec = (other->speculative() != nullptr);
3041 
3042   if (!this_has_spec && !other_has_spec) {
3043     return nullptr;
3044   }
3045 
3046   // If we are at a point where control flow meets and one branch has
3047   // a speculative type and the other has not, we meet the speculative
3048   // type of one branch with the actual type of the other. If the
3049   // actual type is exact and the speculative is as well, then the
3050   // result is a speculative type which is exact and we can continue
3051   // speculation further.
3052   const TypePtr* this_spec = _speculative;
3053   const TypePtr* other_spec = other->speculative();
3054 
3055   if (!this_has_spec) {
3056     this_spec = this;
3057   }
3058 
3059   if (!other_has_spec) {
3060     other_spec = other;
3061   }
3062 
3063   return this_spec->meet(other_spec)->is_ptr();
3064 }
3065 
3066 /**
3067  * dual of the inline depth for this type (used for speculation)
3068  */
3069 int TypePtr::dual_inline_depth() const {
3070   return -inline_depth();
3071 }
3072 
3073 /**
3074  * meet of 2 inline depths (used for speculation)
3075  *
3076  * @param depth  depth to meet with
3077  */
3078 int TypePtr::meet_inline_depth(int depth) const {
3079   return MAX2(inline_depth(), depth);
3080 }
3081 
3082 /**
3083  * Are the speculative parts of 2 types equal?
3084  *
3085  * @param other  type to compare this one to
3086  */
3087 bool TypePtr::eq_speculative(const TypePtr* other) const {
3088   if (_speculative == nullptr || other->speculative() == nullptr) {
3089     return _speculative == other->speculative();
3090   }
3091 
3092   if (_speculative->base() != other->speculative()->base()) {
3093     return false;
3094   }
3095 
3096   return _speculative->eq(other->speculative());
3097 }
3098 
3099 /**
3100  * Hash of the speculative part of the type
3101  */
3102 int TypePtr::hash_speculative() const {
3103   if (_speculative == nullptr) {
3104     return 0;
3105   }
3106 
3107   return _speculative->hash();
3108 }
3109 
3110 /**
3111  * add offset to the speculative part of the type
3112  *
3113  * @param offset  offset to add
3114  */
3115 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
3116   if (_speculative == nullptr) {
3117     return nullptr;
3118   }
3119   return _speculative->add_offset(offset)->is_ptr();
3120 }
3121 
3122 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const {
3123   if (_speculative == nullptr) {
3124     return nullptr;
3125   }
3126   return _speculative->with_offset(offset)->is_ptr();
3127 }
3128 
3129 /**
3130  * return exact klass from the speculative type if there's one
3131  */
3132 ciKlass* TypePtr::speculative_type() const {
3133   if (_speculative != nullptr && _speculative->isa_oopptr()) {
3134     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
3135     if (speculative->klass_is_exact()) {
3136       return speculative->exact_klass();
3137     }
3138   }
3139   return nullptr;
3140 }
3141 
3142 /**
3143  * return true if speculative type may be null
3144  */
3145 bool TypePtr::speculative_maybe_null() const {
3146   if (_speculative != nullptr) {
3147     const TypePtr* speculative = _speculative->join(this)->is_ptr();
3148     return speculative->maybe_null();
3149   }
3150   return true;
3151 }
3152 
3153 bool TypePtr::speculative_always_null() const {
3154   if (_speculative != nullptr) {
3155     const TypePtr* speculative = _speculative->join(this)->is_ptr();
3156     return speculative == TypePtr::NULL_PTR;
3157   }
3158   return false;
3159 }
3160 
3161 /**
3162  * Same as TypePtr::speculative_type() but return the klass only if
3163  * the speculative tells us is not null
3164  */
3165 ciKlass* TypePtr::speculative_type_not_null() const {
3166   if (speculative_maybe_null()) {
3167     return nullptr;
3168   }
3169   return speculative_type();
3170 }
3171 
3172 /**
3173  * Check whether new profiling would improve speculative type
3174  *
3175  * @param   exact_kls    class from profiling
3176  * @param   inline_depth inlining depth of profile point
3177  *
3178  * @return  true if type profile is valuable
3179  */
3180 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3181   // no profiling?
3182   if (exact_kls == nullptr) {
3183     return false;
3184   }
3185   if (speculative() == TypePtr::NULL_PTR) {
3186     return false;
3187   }
3188   // no speculative type or non exact speculative type?
3189   if (speculative_type() == nullptr) {
3190     return true;
3191   }
3192   // If the node already has an exact speculative type keep it,
3193   // unless it was provided by profiling that is at a deeper
3194   // inlining level. Profiling at a higher inlining depth is
3195   // expected to be less accurate.
3196   if (_speculative->inline_depth() == InlineDepthBottom) {
3197     return false;
3198   }
3199   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
3200   return inline_depth < _speculative->inline_depth();
3201 }
3202 
3203 /**
3204  * Check whether new profiling would improve ptr (= tells us it is non
3205  * null)
3206  *
3207  * @param   ptr_kind always null or not null?
3208  *
3209  * @return  true if ptr profile is valuable
3210  */
3211 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
3212   // profiling doesn't tell us anything useful
3213   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
3214     return false;
3215   }
3216   // We already know this is not null
3217   if (!this->maybe_null()) {
3218     return false;
3219   }
3220   // We already know the speculative type cannot be null
3221   if (!speculative_maybe_null()) {
3222     return false;
3223   }
3224   // We already know this is always null
3225   if (this == TypePtr::NULL_PTR) {
3226     return false;
3227   }
3228   // We already know the speculative type is always null
3229   if (speculative_always_null()) {
3230     return false;
3231   }
3232   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3233     return false;
3234   }
3235   return true;
3236 }
3237 
3238 //------------------------------dump2------------------------------------------
3239 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3240   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3241 };
3242 
3243 #ifndef PRODUCT
3244 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3245   if( _ptr == Null ) st->print("null");
3246   else st->print("%s *", ptr_msg[_ptr]);
3247   if( _offset == OffsetTop ) st->print("+top");
3248   else if( _offset == OffsetBot ) st->print("+bot");
3249   else if( _offset ) st->print("+%d", _offset);
3250   dump_inline_depth(st);
3251   dump_speculative(st);
3252 }
3253 
3254 /**
3255  *dump the speculative part of the type
3256  */
3257 void TypePtr::dump_speculative(outputStream *st) const {
3258   if (_speculative != nullptr) {
3259     st->print(" (speculative=");
3260     _speculative->dump_on(st);
3261     st->print(")");
3262   }
3263 }
3264 
3265 /**
3266  *dump the inline depth of the type
3267  */
3268 void TypePtr::dump_inline_depth(outputStream *st) const {
3269   if (_inline_depth != InlineDepthBottom) {
3270     if (_inline_depth == InlineDepthTop) {
3271       st->print(" (inline_depth=InlineDepthTop)");
3272     } else {
3273       st->print(" (inline_depth=%d)", _inline_depth);
3274     }
3275   }
3276 }
3277 #endif
3278 
3279 //------------------------------singleton--------------------------------------
3280 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3281 // constants
3282 bool TypePtr::singleton(void) const {
3283   // TopPTR, Null, AnyNull, Constant are all singletons
3284   return (_offset != OffsetBot) && !below_centerline(_ptr);
3285 }
3286 
3287 bool TypePtr::empty(void) const {
3288   return (_offset == OffsetTop) || above_centerline(_ptr);
3289 }
3290 
3291 //=============================================================================
3292 // Convenience common pre-built types.
3293 const TypeRawPtr *TypeRawPtr::BOTTOM;
3294 const TypeRawPtr *TypeRawPtr::NOTNULL;
3295 
3296 //------------------------------make-------------------------------------------
3297 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3298   assert( ptr != Constant, "what is the constant?" );
3299   assert( ptr != Null, "Use TypePtr for null" );
3300   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3301 }
3302 
3303 const TypeRawPtr *TypeRawPtr::make(address bits) {
3304   assert(bits != nullptr, "Use TypePtr for null");
3305   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3306 }
3307 
3308 //------------------------------cast_to_ptr_type-------------------------------
3309 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3310   assert( ptr != Constant, "what is the constant?" );
3311   assert( ptr != Null, "Use TypePtr for null" );
3312   assert( _bits == nullptr, "Why cast a constant address?");
3313   if( ptr == _ptr ) return this;
3314   return make(ptr);
3315 }
3316 
3317 //------------------------------get_con----------------------------------------
3318 intptr_t TypeRawPtr::get_con() const {
3319   assert( _ptr == Null || _ptr == Constant, "" );
3320   return (intptr_t)_bits;
3321 }
3322 
3323 //------------------------------meet-------------------------------------------
3324 // Compute the MEET of two types.  It returns a new Type object.
3325 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3326   // Perform a fast test for common case; meeting the same types together.
3327   if( this == t ) return this;  // Meeting same type-rep?
3328 
3329   // Current "this->_base" is RawPtr
3330   switch( t->base() ) {         // switch on original type
3331   case Bottom:                  // Ye Olde Default
3332     return t;
3333   case Top:
3334     return this;
3335   case AnyPtr:                  // Meeting to AnyPtrs
3336     break;
3337   case RawPtr: {                // might be top, bot, any/not or constant
3338     enum PTR tptr = t->is_ptr()->ptr();
3339     enum PTR ptr = meet_ptr( tptr );
3340     if( ptr == Constant ) {     // Cannot be equal constants, so...
3341       if( tptr == Constant && _ptr != Constant)  return t;
3342       if( _ptr == Constant && tptr != Constant)  return this;
3343       ptr = NotNull;            // Fall down in lattice
3344     }
3345     return make( ptr );
3346   }
3347 
3348   case OopPtr:
3349   case InstPtr:
3350   case AryPtr:
3351   case MetadataPtr:
3352   case KlassPtr:
3353   case InstKlassPtr:
3354   case AryKlassPtr:
3355     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3356   default:                      // All else is a mistake
3357     typerr(t);
3358   }
3359 
3360   // Found an AnyPtr type vs self-RawPtr type
3361   const TypePtr *tp = t->is_ptr();
3362   switch (tp->ptr()) {
3363   case TypePtr::TopPTR:  return this;
3364   case TypePtr::BotPTR:  return t;
3365   case TypePtr::Null:
3366     if( _ptr == TypePtr::TopPTR ) return t;
3367     return TypeRawPtr::BOTTOM;
3368   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3369   case TypePtr::AnyNull:
3370     if( _ptr == TypePtr::Constant) return this;
3371     return make( meet_ptr(TypePtr::AnyNull) );
3372   default: ShouldNotReachHere();
3373   }
3374   return this;
3375 }
3376 
3377 //------------------------------xdual------------------------------------------
3378 // Dual: compute field-by-field dual
3379 const Type *TypeRawPtr::xdual() const {
3380   return new TypeRawPtr( dual_ptr(), _bits );
3381 }
3382 
3383 //------------------------------add_offset-------------------------------------
3384 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const {
3385   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3386   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3387   if( offset == 0 ) return this; // No change
3388   switch (_ptr) {
3389   case TypePtr::TopPTR:
3390   case TypePtr::BotPTR:
3391   case TypePtr::NotNull:
3392     return this;
3393   case TypePtr::Constant: {
3394     uintptr_t bits = (uintptr_t)_bits;
3395     uintptr_t sum = bits + offset;
3396     if (( offset < 0 )
3397         ? ( sum > bits )        // Underflow?
3398         : ( sum < bits )) {     // Overflow?
3399       return BOTTOM;
3400     } else if ( sum == 0 ) {
3401       return TypePtr::NULL_PTR;
3402     } else {
3403       return make( (address)sum );
3404     }
3405   }
3406   default:  ShouldNotReachHere();
3407   }
3408 }
3409 
3410 //------------------------------eq---------------------------------------------
3411 // Structural equality check for Type representations
3412 bool TypeRawPtr::eq( const Type *t ) const {
3413   const TypeRawPtr *a = (const TypeRawPtr*)t;
3414   return _bits == a->_bits && TypePtr::eq(t);
3415 }
3416 
3417 //------------------------------hash-------------------------------------------
3418 // Type-specific hashing function.
3419 uint TypeRawPtr::hash(void) const {
3420   return (uint)(uintptr_t)_bits + (uint)TypePtr::hash();
3421 }
3422 
3423 //------------------------------dump2------------------------------------------
3424 #ifndef PRODUCT
3425 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3426   if( _ptr == Constant )
3427     st->print(INTPTR_FORMAT, p2i(_bits));
3428   else
3429     st->print("rawptr:%s", ptr_msg[_ptr]);
3430 }
3431 #endif
3432 
3433 //=============================================================================
3434 // Convenience common pre-built type.
3435 const TypeOopPtr *TypeOopPtr::BOTTOM;
3436 
3437 TypeInterfaces::TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces)
3438         : Type(Interfaces), _interfaces(interfaces_base, nb_interfaces),
3439           _hash(0), _exact_klass(nullptr) {
3440   _interfaces.sort(compare);
3441   initialize();
3442 }
3443 
3444 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) {
3445   // hashcons() can only delete the last thing that was allocated: to
3446   // make sure all memory for the newly created TypeInterfaces can be
3447   // freed if an identical one exists, allocate space for the array of
3448   // interfaces right after the TypeInterfaces object so that they
3449   // form a contiguous piece of memory.
3450   int nb_interfaces = interfaces == nullptr ? 0 : interfaces->length();
3451   size_t total_size = sizeof(TypeInterfaces) + nb_interfaces * sizeof(ciInstanceKlass*);
3452 
3453   void* allocated_mem = operator new(total_size);
3454   ciInstanceKlass** interfaces_base = (ciInstanceKlass**)((char*)allocated_mem + sizeof(TypeInterfaces));
3455   for (int i = 0; i < nb_interfaces; ++i) {
3456     interfaces_base[i] = interfaces->at(i);
3457   }
3458   TypeInterfaces* result = ::new (allocated_mem) TypeInterfaces(interfaces_base, nb_interfaces);
3459   return (const TypeInterfaces*)result->hashcons();
3460 }
3461 
3462 void TypeInterfaces::initialize() {
3463   compute_hash();
3464   compute_exact_klass();
3465   DEBUG_ONLY(_initialized = true;)
3466 }
3467 
3468 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) {
3469   if ((intptr_t)k1 < (intptr_t)k2) {
3470     return -1;
3471   } else if ((intptr_t)k1 > (intptr_t)k2) {
3472     return 1;
3473   }
3474   return 0;
3475 }
3476 
3477 int TypeInterfaces::compare(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3478   return compare(*k1, *k2);
3479 }
3480 
3481 bool TypeInterfaces::eq(const Type* t) const {
3482   const TypeInterfaces* other = (const TypeInterfaces*)t;
3483   if (_interfaces.length() != other->_interfaces.length()) {
3484     return false;
3485   }
3486   for (int i = 0; i < _interfaces.length(); i++) {
3487     ciKlass* k1 = _interfaces.at(i);
3488     ciKlass* k2 = other->_interfaces.at(i);
3489     if (!k1->equals(k2)) {
3490       return false;
3491     }
3492   }
3493   return true;
3494 }
3495 
3496 bool TypeInterfaces::eq(ciInstanceKlass* k) const {
3497   assert(k->is_loaded(), "should be loaded");
3498   GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces();
3499   if (_interfaces.length() != interfaces->length()) {
3500     return false;
3501   }
3502   for (int i = 0; i < interfaces->length(); i++) {
3503     bool found = false;
3504     _interfaces.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found);
3505     if (!found) {
3506       return false;
3507     }
3508   }
3509   return true;
3510 }
3511 
3512 
3513 uint TypeInterfaces::hash() const {
3514   assert(_initialized, "must be");
3515   return _hash;
3516 }
3517 
3518 const Type* TypeInterfaces::xdual() const {
3519   return this;
3520 }
3521 
3522 void TypeInterfaces::compute_hash() {
3523   uint hash = 0;
3524   for (int i = 0; i < _interfaces.length(); i++) {
3525     ciKlass* k = _interfaces.at(i);
3526     hash += k->hash();
3527   }
3528   _hash = hash;
3529 }
3530 
3531 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3532   return (int)((*k1)->ident() - (*k2)->ident());
3533 }
3534 
3535 void TypeInterfaces::dump(outputStream* st) const {
3536   if (_interfaces.length() == 0) {
3537     return;
3538   }
3539   ResourceMark rm;
3540   st->print(" (");
3541   GrowableArray<ciInstanceKlass*> interfaces;
3542   interfaces.appendAll(&_interfaces);
3543   // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation
3544   interfaces.sort(compare_interfaces);
3545   for (int i = 0; i < interfaces.length(); i++) {
3546     if (i > 0) {
3547       st->print(",");
3548     }
3549     ciKlass* k = interfaces.at(i);
3550     k->print_name_on(st);
3551   }
3552   st->print(")");
3553 }
3554 
3555 #ifdef ASSERT
3556 void TypeInterfaces::verify() const {
3557   for (int i = 1; i < _interfaces.length(); i++) {
3558     ciInstanceKlass* k1 = _interfaces.at(i-1);
3559     ciInstanceKlass* k2 = _interfaces.at(i);
3560     assert(compare(k2, k1) > 0, "should be ordered");
3561     assert(k1 != k2, "no duplicate");
3562   }
3563 }
3564 #endif
3565 
3566 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const {
3567   GrowableArray<ciInstanceKlass*> result_list;
3568   int i = 0;
3569   int j = 0;
3570   while (i < _interfaces.length() || j < other->_interfaces.length()) {
3571     while (i < _interfaces.length() &&
3572            (j >= other->_interfaces.length() ||
3573             compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) {
3574       result_list.push(_interfaces.at(i));
3575       i++;
3576     }
3577     while (j < other->_interfaces.length() &&
3578            (i >= _interfaces.length() ||
3579             compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) {
3580       result_list.push(other->_interfaces.at(j));
3581       j++;
3582     }
3583     if (i < _interfaces.length() &&
3584         j < other->_interfaces.length() &&
3585         _interfaces.at(i) == other->_interfaces.at(j)) {
3586       result_list.push(_interfaces.at(i));
3587       i++;
3588       j++;
3589     }
3590   }
3591   const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3592 #ifdef ASSERT
3593   result->verify();
3594   for (int i = 0; i < _interfaces.length(); i++) {
3595     assert(result->_interfaces.contains(_interfaces.at(i)), "missing");
3596   }
3597   for (int i = 0; i < other->_interfaces.length(); i++) {
3598     assert(result->_interfaces.contains(other->_interfaces.at(i)), "missing");
3599   }
3600   for (int i = 0; i < result->_interfaces.length(); i++) {
3601     assert(_interfaces.contains(result->_interfaces.at(i)) || other->_interfaces.contains(result->_interfaces.at(i)), "missing");
3602   }
3603 #endif
3604   return result;
3605 }
3606 
3607 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const {
3608   GrowableArray<ciInstanceKlass*> result_list;
3609   int i = 0;
3610   int j = 0;
3611   while (i < _interfaces.length() || j < other->_interfaces.length()) {
3612     while (i < _interfaces.length() &&
3613            (j >= other->_interfaces.length() ||
3614             compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) {
3615       i++;
3616     }
3617     while (j < other->_interfaces.length() &&
3618            (i >= _interfaces.length() ||
3619             compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) {
3620       j++;
3621     }
3622     if (i < _interfaces.length() &&
3623         j < other->_interfaces.length() &&
3624         _interfaces.at(i) == other->_interfaces.at(j)) {
3625       result_list.push(_interfaces.at(i));
3626       i++;
3627       j++;
3628     }
3629   }
3630   const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3631 #ifdef ASSERT
3632   result->verify();
3633   for (int i = 0; i < _interfaces.length(); i++) {
3634     assert(!other->_interfaces.contains(_interfaces.at(i)) || result->_interfaces.contains(_interfaces.at(i)), "missing");
3635   }
3636   for (int i = 0; i < other->_interfaces.length(); i++) {
3637     assert(!_interfaces.contains(other->_interfaces.at(i)) || result->_interfaces.contains(other->_interfaces.at(i)), "missing");
3638   }
3639   for (int i = 0; i < result->_interfaces.length(); i++) {
3640     assert(_interfaces.contains(result->_interfaces.at(i)) && other->_interfaces.contains(result->_interfaces.at(i)), "missing");
3641   }
3642 #endif
3643   return result;
3644 }
3645 
3646 // Is there a single ciKlass* that can represent the interface set?
3647 ciInstanceKlass* TypeInterfaces::exact_klass() const {
3648   assert(_initialized, "must be");
3649   return _exact_klass;
3650 }
3651 
3652 void TypeInterfaces::compute_exact_klass() {
3653   if (_interfaces.length() == 0) {
3654     _exact_klass = nullptr;
3655     return;
3656   }
3657   ciInstanceKlass* res = nullptr;
3658   for (int i = 0; i < _interfaces.length(); i++) {
3659     ciInstanceKlass* interface = _interfaces.at(i);
3660     if (eq(interface)) {
3661       assert(res == nullptr, "");
3662       res = interface;
3663     }
3664   }
3665   _exact_klass = res;
3666 }
3667 
3668 #ifdef ASSERT
3669 void TypeInterfaces::verify_is_loaded() const {
3670   for (int i = 0; i < _interfaces.length(); i++) {
3671     ciKlass* interface = _interfaces.at(i);
3672     assert(interface->is_loaded(), "Interface not loaded");
3673   }
3674 }
3675 #endif
3676 
3677 // Can't be implemented because there's no way to know if the type is above or below the center line.
3678 const Type* TypeInterfaces::xmeet(const Type* t) const {
3679   ShouldNotReachHere();
3680   return Type::xmeet(t);
3681 }
3682 
3683 bool TypeInterfaces::singleton(void) const {
3684   ShouldNotReachHere();
3685   return Type::singleton();
3686 }
3687 
3688 bool TypeInterfaces::has_non_array_interface() const {
3689   assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3690 
3691   return !TypeAryPtr::_array_interfaces->contains(this);
3692 }
3693 
3694 //------------------------------TypeOopPtr-------------------------------------
3695 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3696                        int instance_id, const TypePtr* speculative, int inline_depth)
3697   : TypePtr(t, ptr, offset, speculative, inline_depth),
3698     _const_oop(o), _klass(k),
3699     _interfaces(interfaces),
3700     _klass_is_exact(xk),
3701     _is_ptr_to_narrowoop(false),
3702     _is_ptr_to_narrowklass(false),
3703     _is_ptr_to_boxed_value(false),
3704     _instance_id(instance_id) {
3705 #ifdef ASSERT
3706   if (klass() != nullptr && klass()->is_loaded()) {
3707     interfaces->verify_is_loaded();
3708   }
3709 #endif
3710   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3711       (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3712     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3713   }
3714 #ifdef _LP64
3715   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3716     if (_offset == oopDesc::klass_offset_in_bytes()) {
3717       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3718     } else if (klass() == nullptr) {
3719       // Array with unknown body type
3720       assert(this->isa_aryptr(), "only arrays without klass");
3721       _is_ptr_to_narrowoop = UseCompressedOops;
3722     } else if (this->isa_aryptr()) {
3723       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3724                              _offset != arrayOopDesc::length_offset_in_bytes());
3725     } else if (klass()->is_instance_klass()) {
3726       ciInstanceKlass* ik = klass()->as_instance_klass();
3727       if (this->isa_klassptr()) {
3728         // Perm objects don't use compressed references
3729       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3730         // unsafe access
3731         _is_ptr_to_narrowoop = UseCompressedOops;
3732       } else {
3733         assert(this->isa_instptr(), "must be an instance ptr.");
3734 
3735         if (klass() == ciEnv::current()->Class_klass() &&
3736             (_offset == java_lang_Class::klass_offset() ||
3737              _offset == java_lang_Class::array_klass_offset())) {
3738           // Special hidden fields from the Class.
3739           assert(this->isa_instptr(), "must be an instance ptr.");
3740           _is_ptr_to_narrowoop = false;
3741         } else if (klass() == ciEnv::current()->Class_klass() &&
3742                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3743           // Static fields
3744           ciField* field = nullptr;
3745           if (const_oop() != nullptr) {
3746             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3747             field = k->get_field_by_offset(_offset, true);
3748           }
3749           if (field != nullptr) {
3750             BasicType basic_elem_type = field->layout_type();
3751             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3752           } else {
3753             // unsafe access
3754             _is_ptr_to_narrowoop = UseCompressedOops;
3755           }
3756         } else {
3757           // Instance fields which contains a compressed oop references.
3758           ciField* field = ik->get_field_by_offset(_offset, false);
3759           if (field != nullptr) {
3760             BasicType basic_elem_type = field->layout_type();
3761             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3762           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3763             // Compile::find_alias_type() cast exactness on all types to verify
3764             // that it does not affect alias type.
3765             _is_ptr_to_narrowoop = UseCompressedOops;
3766           } else {
3767             // Type for the copy start in LibraryCallKit::inline_native_clone().
3768             _is_ptr_to_narrowoop = UseCompressedOops;
3769           }
3770         }
3771       }
3772     }
3773   }
3774 #endif
3775 }
3776 
3777 //------------------------------make-------------------------------------------
3778 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3779                                      const TypePtr* speculative, int inline_depth) {
3780   assert(ptr != Constant, "no constant generic pointers");
3781   ciKlass*  k = Compile::current()->env()->Object_klass();
3782   bool      xk = false;
3783   ciObject* o = nullptr;
3784   const TypeInterfaces* interfaces = TypeInterfaces::make();
3785   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3786 }
3787 
3788 
3789 //------------------------------cast_to_ptr_type-------------------------------
3790 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3791   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3792   if( ptr == _ptr ) return this;
3793   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3794 }
3795 
3796 //-----------------------------cast_to_instance_id----------------------------
3797 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3798   // There are no instances of a general oop.
3799   // Return self unchanged.
3800   return this;
3801 }
3802 
3803 //-----------------------------cast_to_exactness-------------------------------
3804 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3805   // There is no such thing as an exact general oop.
3806   // Return self unchanged.
3807   return this;
3808 }
3809 
3810 
3811 //------------------------------as_klass_type----------------------------------
3812 // Return the klass type corresponding to this instance or array type.
3813 // It is the type that is loaded from an object of this type.
3814 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3815   ShouldNotReachHere();
3816   return nullptr;
3817 }
3818 
3819 //------------------------------meet-------------------------------------------
3820 // Compute the MEET of two types.  It returns a new Type object.
3821 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3822   // Perform a fast test for common case; meeting the same types together.
3823   if( this == t ) return this;  // Meeting same type-rep?
3824 
3825   // Current "this->_base" is OopPtr
3826   switch (t->base()) {          // switch on original type
3827 
3828   case Int:                     // Mixing ints & oops happens when javac
3829   case Long:                    // reuses local variables
3830   case HalfFloatTop:
3831   case HalfFloatCon:
3832   case HalfFloatBot:
3833   case FloatTop:
3834   case FloatCon:
3835   case FloatBot:
3836   case DoubleTop:
3837   case DoubleCon:
3838   case DoubleBot:
3839   case NarrowOop:
3840   case NarrowKlass:
3841   case Bottom:                  // Ye Olde Default
3842     return Type::BOTTOM;
3843   case Top:
3844     return this;
3845 
3846   default:                      // All else is a mistake
3847     typerr(t);
3848 
3849   case RawPtr:
3850   case MetadataPtr:
3851   case KlassPtr:
3852   case InstKlassPtr:
3853   case AryKlassPtr:
3854     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3855 
3856   case AnyPtr: {
3857     // Found an AnyPtr type vs self-OopPtr type
3858     const TypePtr *tp = t->is_ptr();
3859     int offset = meet_offset(tp->offset());
3860     PTR ptr = meet_ptr(tp->ptr());
3861     const TypePtr* speculative = xmeet_speculative(tp);
3862     int depth = meet_inline_depth(tp->inline_depth());
3863     switch (tp->ptr()) {
3864     case Null:
3865       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3866       // else fall through:
3867     case TopPTR:
3868     case AnyNull: {
3869       int instance_id = meet_instance_id(InstanceTop);
3870       return make(ptr, offset, instance_id, speculative, depth);
3871     }
3872     case BotPTR:
3873     case NotNull:
3874       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3875     default: typerr(t);
3876     }
3877   }
3878 
3879   case OopPtr: {                 // Meeting to other OopPtrs
3880     const TypeOopPtr *tp = t->is_oopptr();
3881     int instance_id = meet_instance_id(tp->instance_id());
3882     const TypePtr* speculative = xmeet_speculative(tp);
3883     int depth = meet_inline_depth(tp->inline_depth());
3884     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3885   }
3886 
3887   case InstPtr:                  // For these, flip the call around to cut down
3888   case AryPtr:
3889     return t->xmeet(this);      // Call in reverse direction
3890 
3891   } // End of switch
3892   return this;                  // Return the double constant
3893 }
3894 
3895 
3896 //------------------------------xdual------------------------------------------
3897 // Dual of a pure heap pointer.  No relevant klass or oop information.
3898 const Type *TypeOopPtr::xdual() const {
3899   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3900   assert(const_oop() == nullptr,             "no constants here");
3901   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3902 }
3903 
3904 //--------------------------make_from_klass_common-----------------------------
3905 // Computes the element-type given a klass.
3906 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3907   if (klass->is_instance_klass()) {
3908     Compile* C = Compile::current();
3909     Dependencies* deps = C->dependencies();
3910     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3911     // Element is an instance
3912     bool klass_is_exact = false;
3913     if (klass->is_loaded()) {
3914       // Try to set klass_is_exact.
3915       ciInstanceKlass* ik = klass->as_instance_klass();
3916       klass_is_exact = ik->is_final();
3917       if (!klass_is_exact && klass_change
3918           && deps != nullptr && UseUniqueSubclasses) {
3919         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3920         if (sub != nullptr) {
3921           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3922           klass = ik = sub;
3923           klass_is_exact = sub->is_final();
3924         }
3925       }
3926       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3927           !ik->is_interface() && !ik->has_subklass()) {
3928         // Add a dependence; if concrete subclass added we need to recompile
3929         deps->assert_leaf_type(ik);
3930         klass_is_exact = true;
3931       }
3932     }
3933     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3934     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3935   } else if (klass->is_obj_array_klass()) {
3936     // Element is an object array. Recursively call ourself.
3937     ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3938     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3939     bool xk = etype->klass_is_exact();
3940     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3941     // We used to pass NotNull in here, asserting that the sub-arrays
3942     // are all not-null.  This is not true in generally, as code can
3943     // slam nulls down in the subarrays.
3944     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3945     return arr;
3946   } else if (klass->is_type_array_klass()) {
3947     // Element is an typeArray
3948     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3949     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3950     // We used to pass NotNull in here, asserting that the array pointer
3951     // is not-null. That was not true in general.
3952     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3953     return arr;
3954   } else {
3955     ShouldNotReachHere();
3956     return nullptr;
3957   }
3958 }
3959 
3960 //------------------------------make_from_constant-----------------------------
3961 // Make a java pointer from an oop constant
3962 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3963   assert(!o->is_null_object(), "null object not yet handled here.");
3964 
3965   const bool make_constant = require_constant || o->should_be_constant();
3966 
3967   ciKlass* klass = o->klass();
3968   if (klass->is_instance_klass()) {
3969     // Element is an instance
3970     if (make_constant) {
3971       return TypeInstPtr::make(o);
3972     } else {
3973       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3974     }
3975   } else if (klass->is_obj_array_klass()) {
3976     // Element is an object array. Recursively call ourself.
3977     const TypeOopPtr *etype =
3978       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3979     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3980     // We used to pass NotNull in here, asserting that the sub-arrays
3981     // are all not-null.  This is not true in generally, as code can
3982     // slam nulls down in the subarrays.
3983     if (make_constant) {
3984       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3985     } else {
3986       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3987     }
3988   } else if (klass->is_type_array_klass()) {
3989     // Element is an typeArray
3990     const Type* etype =
3991       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3992     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3993     // We used to pass NotNull in here, asserting that the array pointer
3994     // is not-null. That was not true in general.
3995     if (make_constant) {
3996       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3997     } else {
3998       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3999     }
4000   }
4001 
4002   fatal("unhandled object type");
4003   return nullptr;
4004 }
4005 
4006 //------------------------------get_con----------------------------------------
4007 intptr_t TypeOopPtr::get_con() const {
4008   assert( _ptr == Null || _ptr == Constant, "" );
4009   assert( _offset >= 0, "" );
4010 
4011   if (_offset != 0) {
4012     // After being ported to the compiler interface, the compiler no longer
4013     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4014     // to a handle at compile time.  This handle is embedded in the generated
4015     // code and dereferenced at the time the nmethod is made.  Until that time,
4016     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4017     // have access to the addresses!).  This does not seem to currently happen,
4018     // but this assertion here is to help prevent its occurrence.
4019     tty->print_cr("Found oop constant with non-zero offset");
4020     ShouldNotReachHere();
4021   }
4022 
4023   return (intptr_t)const_oop()->constant_encoding();
4024 }
4025 
4026 
4027 //-----------------------------filter------------------------------------------
4028 // Do not allow interface-vs.-noninterface joins to collapse to top.
4029 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
4030 
4031   const Type* ft = join_helper(kills, include_speculative);
4032 
4033   if (ft->empty()) {
4034     return Type::TOP;           // Canonical empty value
4035   }
4036 
4037   return ft;
4038 }
4039 
4040 //------------------------------eq---------------------------------------------
4041 // Structural equality check for Type representations
4042 bool TypeOopPtr::eq( const Type *t ) const {
4043   const TypeOopPtr *a = (const TypeOopPtr*)t;
4044   if (_klass_is_exact != a->_klass_is_exact ||
4045       _instance_id != a->_instance_id)  return false;
4046   ciObject* one = const_oop();
4047   ciObject* two = a->const_oop();
4048   if (one == nullptr || two == nullptr) {
4049     return (one == two) && TypePtr::eq(t);
4050   } else {
4051     return one->equals(two) && TypePtr::eq(t);
4052   }
4053 }
4054 
4055 //------------------------------hash-------------------------------------------
4056 // Type-specific hashing function.
4057 uint TypeOopPtr::hash(void) const {
4058   return
4059     (uint)(const_oop() ? const_oop()->hash() : 0) +
4060     (uint)_klass_is_exact +
4061     (uint)_instance_id + TypePtr::hash();
4062 }
4063 
4064 //------------------------------dump2------------------------------------------
4065 #ifndef PRODUCT
4066 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4067   st->print("oopptr:%s", ptr_msg[_ptr]);
4068   if( _klass_is_exact ) st->print(":exact");
4069   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
4070   switch( _offset ) {
4071   case OffsetTop: st->print("+top"); break;
4072   case OffsetBot: st->print("+any"); break;
4073   case         0: break;
4074   default:        st->print("+%d",_offset); break;
4075   }
4076   if (_instance_id == InstanceTop)
4077     st->print(",iid=top");
4078   else if (_instance_id != InstanceBot)
4079     st->print(",iid=%d",_instance_id);
4080 
4081   dump_inline_depth(st);
4082   dump_speculative(st);
4083 }
4084 #endif
4085 
4086 //------------------------------singleton--------------------------------------
4087 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4088 // constants
4089 bool TypeOopPtr::singleton(void) const {
4090   // detune optimizer to not generate constant oop + constant offset as a constant!
4091   // TopPTR, Null, AnyNull, Constant are all singletons
4092   return (_offset == 0) && !below_centerline(_ptr);
4093 }
4094 
4095 //------------------------------add_offset-------------------------------------
4096 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4097   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4098 }
4099 
4100 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4101   return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
4102 }
4103 
4104 /**
4105  * Return same type without a speculative part
4106  */
4107 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4108   if (_speculative == nullptr) {
4109     return this;
4110   }
4111   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4112   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4113 }
4114 
4115 /**
4116  * Return same type but drop speculative part if we know we won't use
4117  * it
4118  */
4119 const Type* TypeOopPtr::cleanup_speculative() const {
4120   // If the klass is exact and the ptr is not null then there's
4121   // nothing that the speculative type can help us with
4122   if (klass_is_exact() && !maybe_null()) {
4123     return remove_speculative();
4124   }
4125   return TypePtr::cleanup_speculative();
4126 }
4127 
4128 /**
4129  * Return same type but with a different inline depth (used for speculation)
4130  *
4131  * @param depth  depth to meet with
4132  */
4133 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
4134   if (!UseInlineDepthForSpeculativeTypes) {
4135     return this;
4136   }
4137   return make(_ptr, _offset, _instance_id, _speculative, depth);
4138 }
4139 
4140 //------------------------------with_instance_id--------------------------------
4141 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
4142   assert(_instance_id != -1, "should be known");
4143   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
4144 }
4145 
4146 //------------------------------meet_instance_id--------------------------------
4147 int TypeOopPtr::meet_instance_id( int instance_id ) const {
4148   // Either is 'TOP' instance?  Return the other instance!
4149   if( _instance_id == InstanceTop ) return  instance_id;
4150   if(  instance_id == InstanceTop ) return _instance_id;
4151   // If either is different, return 'BOTTOM' instance
4152   if( _instance_id != instance_id ) return InstanceBot;
4153   return _instance_id;
4154 }
4155 
4156 //------------------------------dual_instance_id--------------------------------
4157 int TypeOopPtr::dual_instance_id( ) const {
4158   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
4159   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
4160   return _instance_id;              // Map everything else into self
4161 }
4162 
4163 
4164 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const {
4165   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
4166     return _interfaces->union_with(other->_interfaces);
4167   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
4168     return other->_interfaces;
4169   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
4170     return _interfaces;
4171   }
4172   return _interfaces->intersection_with(other->_interfaces);
4173 }
4174 
4175 /**
4176  * Check whether new profiling would improve speculative type
4177  *
4178  * @param   exact_kls    class from profiling
4179  * @param   inline_depth inlining depth of profile point
4180  *
4181  * @return  true if type profile is valuable
4182  */
4183 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
4184   // no way to improve an already exact type
4185   if (klass_is_exact()) {
4186     return false;
4187   }
4188   return TypePtr::would_improve_type(exact_kls, inline_depth);
4189 }
4190 
4191 //=============================================================================
4192 // Convenience common pre-built types.
4193 const TypeInstPtr *TypeInstPtr::NOTNULL;
4194 const TypeInstPtr *TypeInstPtr::BOTTOM;
4195 const TypeInstPtr *TypeInstPtr::MIRROR;
4196 const TypeInstPtr *TypeInstPtr::MARK;
4197 const TypeInstPtr *TypeInstPtr::KLASS;
4198 
4199 // Is there a single ciKlass* that can represent that type?
4200 ciKlass* TypeInstPtr::exact_klass_helper() const {
4201   if (_interfaces->empty()) {
4202     return _klass;
4203   }
4204   if (_klass != ciEnv::current()->Object_klass()) {
4205     if (_interfaces->eq(_klass->as_instance_klass())) {
4206       return _klass;
4207     }
4208     return nullptr;
4209   }
4210   return _interfaces->exact_klass();
4211 }
4212 
4213 //------------------------------TypeInstPtr-------------------------------------
4214 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
4215                          int instance_id, const TypePtr* speculative, int inline_depth)
4216   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {
4217   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4218   assert(k != nullptr &&
4219          (k->is_loaded() || o == nullptr),
4220          "cannot have constants with non-loaded klass");
4221 };
4222 
4223 //------------------------------make-------------------------------------------
4224 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4225                                      ciKlass* k,
4226                                      const TypeInterfaces* interfaces,
4227                                      bool xk,
4228                                      ciObject* o,
4229                                      int offset,
4230                                      int instance_id,
4231                                      const TypePtr* speculative,
4232                                      int inline_depth) {
4233   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4234   // Either const_oop() is null or else ptr is Constant
4235   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4236           "constant pointers must have a value supplied" );
4237   // Ptr is never Null
4238   assert( ptr != Null, "null pointers are not typed" );
4239 
4240   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4241   if (ptr == Constant) {
4242     // Note:  This case includes meta-object constants, such as methods.
4243     xk = true;
4244   } else if (k->is_loaded()) {
4245     ciInstanceKlass* ik = k->as_instance_klass();
4246     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4247     assert(!ik->is_interface(), "no interface here");
4248     if (xk && ik->is_interface())  xk = false;  // no exact interface
4249   }
4250 
4251   // Now hash this baby
4252   TypeInstPtr *result =
4253     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
4254 
4255   return result;
4256 }
4257 
4258 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4259   if (k->is_instance_klass()) {
4260     if (k->is_loaded()) {
4261       if (k->is_interface() && interface_handling == ignore_interfaces) {
4262         assert(interface, "no interface expected");
4263         k = ciEnv::current()->Object_klass();
4264         const TypeInterfaces* interfaces = TypeInterfaces::make();
4265         return interfaces;
4266       }
4267       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4268       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4269       if (k->is_interface()) {
4270         assert(interface, "no interface expected");
4271         k = ciEnv::current()->Object_klass();
4272       } else {
4273         assert(klass, "no instance klass expected");
4274       }
4275       return interfaces;
4276     }
4277     const TypeInterfaces* interfaces = TypeInterfaces::make();
4278     return interfaces;
4279   }
4280   assert(array, "no array expected");
4281   assert(k->is_array_klass(), "Not an array?");
4282   ciType* e = k->as_array_klass()->base_element_type();
4283   if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) {
4284     if (interface_handling == ignore_interfaces) {
4285       k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension());
4286     }
4287   }
4288   return TypeAryPtr::_array_interfaces;
4289 }
4290 
4291 /**
4292  *  Create constant type for a constant boxed value
4293  */
4294 const Type* TypeInstPtr::get_const_boxed_value() const {
4295   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
4296   assert((const_oop() != nullptr), "should be called only for constant object");
4297   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
4298   BasicType bt = constant.basic_type();
4299   switch (bt) {
4300     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4301     case T_INT:      return TypeInt::make(constant.as_int());
4302     case T_CHAR:     return TypeInt::make(constant.as_char());
4303     case T_BYTE:     return TypeInt::make(constant.as_byte());
4304     case T_SHORT:    return TypeInt::make(constant.as_short());
4305     case T_FLOAT:    return TypeF::make(constant.as_float());
4306     case T_DOUBLE:   return TypeD::make(constant.as_double());
4307     case T_LONG:     return TypeLong::make(constant.as_long());
4308     default:         break;
4309   }
4310   fatal("Invalid boxed value type '%s'", type2name(bt));
4311   return nullptr;
4312 }
4313 
4314 //------------------------------cast_to_ptr_type-------------------------------
4315 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4316   if( ptr == _ptr ) return this;
4317   // Reconstruct _sig info here since not a problem with later lazy
4318   // construction, _sig will show up on demand.
4319   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4320 }
4321 
4322 
4323 //-----------------------------cast_to_exactness-------------------------------
4324 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4325   if( klass_is_exact == _klass_is_exact ) return this;
4326   if (!_klass->is_loaded())  return this;
4327   ciInstanceKlass* ik = _klass->as_instance_klass();
4328   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4329   assert(!ik->is_interface(), "no interface here");
4330   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
4331 }
4332 
4333 //-----------------------------cast_to_instance_id----------------------------
4334 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4335   if( instance_id == _instance_id ) return this;
4336   return make(_ptr, klass(),  _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4337 }
4338 
4339 //------------------------------xmeet_unloaded---------------------------------
4340 // Compute the MEET of two InstPtrs when at least one is unloaded.
4341 // Assume classes are different since called after check for same name/class-loader
4342 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4343   int off = meet_offset(tinst->offset());
4344   PTR ptr = meet_ptr(tinst->ptr());
4345   int instance_id = meet_instance_id(tinst->instance_id());
4346   const TypePtr* speculative = xmeet_speculative(tinst);
4347   int depth = meet_inline_depth(tinst->inline_depth());
4348 
4349   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4350   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4351   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4352     //
4353     // Meet unloaded class with java/lang/Object
4354     //
4355     // Meet
4356     //          |                     Unloaded Class
4357     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4358     //  ===================================================================
4359     //   TOP    | ..........................Unloaded......................|
4360     //  AnyNull |  U-AN    |................Unloaded......................|
4361     // Constant | ... O-NN .................................. |   O-BOT   |
4362     //  NotNull | ... O-NN .................................. |   O-BOT   |
4363     //  BOTTOM  | ........................Object-BOTTOM ..................|
4364     //
4365     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4366     //
4367     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4368     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }
4369     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4370     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4371       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4372       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4373     }
4374     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4375 
4376     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4377   }
4378 
4379   // Both are unloaded, not the same class, not Object
4380   // Or meet unloaded with a different loaded class, not java/lang/Object
4381   if (ptr != TypePtr::BotPTR) {
4382     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4383   }
4384   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4385 }
4386 
4387 
4388 //------------------------------meet-------------------------------------------
4389 // Compute the MEET of two types.  It returns a new Type object.
4390 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
4391   // Perform a fast test for common case; meeting the same types together.
4392   if( this == t ) return this;  // Meeting same type-rep?
4393 
4394   // Current "this->_base" is Pointer
4395   switch (t->base()) {          // switch on original type
4396 
4397   case Int:                     // Mixing ints & oops happens when javac
4398   case Long:                    // reuses local variables
4399   case HalfFloatTop:
4400   case HalfFloatCon:
4401   case HalfFloatBot:
4402   case FloatTop:
4403   case FloatCon:
4404   case FloatBot:
4405   case DoubleTop:
4406   case DoubleCon:
4407   case DoubleBot:
4408   case NarrowOop:
4409   case NarrowKlass:
4410   case Bottom:                  // Ye Olde Default
4411     return Type::BOTTOM;
4412   case Top:
4413     return this;
4414 
4415   default:                      // All else is a mistake
4416     typerr(t);
4417 
4418   case MetadataPtr:
4419   case KlassPtr:
4420   case InstKlassPtr:
4421   case AryKlassPtr:
4422   case RawPtr: return TypePtr::BOTTOM;
4423 
4424   case AryPtr: {                // All arrays inherit from Object class
4425     // Call in reverse direction to avoid duplication
4426     return t->is_aryptr()->xmeet_helper(this);
4427   }
4428 
4429   case OopPtr: {                // Meeting to OopPtrs
4430     // Found a OopPtr type vs self-InstPtr type
4431     const TypeOopPtr *tp = t->is_oopptr();
4432     int offset = meet_offset(tp->offset());
4433     PTR ptr = meet_ptr(tp->ptr());
4434     switch (tp->ptr()) {
4435     case TopPTR:
4436     case AnyNull: {
4437       int instance_id = meet_instance_id(InstanceTop);
4438       const TypePtr* speculative = xmeet_speculative(tp);
4439       int depth = meet_inline_depth(tp->inline_depth());
4440       return make(ptr, klass(), _interfaces, klass_is_exact(),
4441                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4442     }
4443     case NotNull:
4444     case BotPTR: {
4445       int instance_id = meet_instance_id(tp->instance_id());
4446       const TypePtr* speculative = xmeet_speculative(tp);
4447       int depth = meet_inline_depth(tp->inline_depth());
4448       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4449     }
4450     default: typerr(t);
4451     }
4452   }
4453 
4454   case AnyPtr: {                // Meeting to AnyPtrs
4455     // Found an AnyPtr type vs self-InstPtr type
4456     const TypePtr *tp = t->is_ptr();
4457     int offset = meet_offset(tp->offset());
4458     PTR ptr = meet_ptr(tp->ptr());
4459     int instance_id = meet_instance_id(InstanceTop);
4460     const TypePtr* speculative = xmeet_speculative(tp);
4461     int depth = meet_inline_depth(tp->inline_depth());
4462     switch (tp->ptr()) {
4463     case Null:
4464       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4465       // else fall through to AnyNull
4466     case TopPTR:
4467     case AnyNull: {
4468       return make(ptr, klass(), _interfaces, klass_is_exact(),
4469                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4470     }
4471     case NotNull:
4472     case BotPTR:
4473       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4474     default: typerr(t);
4475     }
4476   }
4477 
4478   /*
4479                  A-top         }
4480                /   |   \       }  Tops
4481            B-top A-any C-top   }
4482               | /  |  \ |      }  Any-nulls
4483            B-any   |   C-any   }
4484               |    |    |
4485            B-con A-con C-con   } constants; not comparable across classes
4486               |    |    |
4487            B-not   |   C-not   }
4488               | \  |  / |      }  not-nulls
4489            B-bot A-not C-bot   }
4490                \   |   /       }  Bottoms
4491                  A-bot         }
4492   */
4493 
4494   case InstPtr: {                // Meeting 2 Oops?
4495     // Found an InstPtr sub-type vs self-InstPtr type
4496     const TypeInstPtr *tinst = t->is_instptr();
4497     int off = meet_offset(tinst->offset());
4498     PTR ptr = meet_ptr(tinst->ptr());
4499     int instance_id = meet_instance_id(tinst->instance_id());
4500     const TypePtr* speculative = xmeet_speculative(tinst);
4501     int depth = meet_inline_depth(tinst->inline_depth());
4502     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4503 
4504     ciKlass* tinst_klass = tinst->klass();
4505     ciKlass* this_klass  = klass();
4506 
4507     ciKlass* res_klass = nullptr;
4508     bool res_xk = false;
4509     const Type* res;
4510     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4511 
4512     if (kind == UNLOADED) {
4513       // One of these classes has not been loaded
4514       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4515 #ifndef PRODUCT
4516       if (PrintOpto && Verbose) {
4517         tty->print("meet of unloaded classes resulted in: ");
4518         unloaded_meet->dump();
4519         tty->cr();
4520         tty->print("  this == ");
4521         dump();
4522         tty->cr();
4523         tty->print(" tinst == ");
4524         tinst->dump();
4525         tty->cr();
4526       }
4527 #endif
4528       res = unloaded_meet;
4529     } else {
4530       if (kind == NOT_SUBTYPE && instance_id > 0) {
4531         instance_id = InstanceBot;
4532       } else if (kind == LCA) {
4533         instance_id = InstanceBot;
4534       }
4535       ciObject* o = nullptr;             // Assume not constant when done
4536       ciObject* this_oop = const_oop();
4537       ciObject* tinst_oop = tinst->const_oop();
4538       if (ptr == Constant) {
4539         if (this_oop != nullptr && tinst_oop != nullptr &&
4540             this_oop->equals(tinst_oop))
4541           o = this_oop;
4542         else if (above_centerline(_ptr)) {
4543           assert(!tinst_klass->is_interface(), "");
4544           o = tinst_oop;
4545         } else if (above_centerline(tinst->_ptr)) {
4546           assert(!this_klass->is_interface(), "");
4547           o = this_oop;
4548         } else
4549           ptr = NotNull;
4550       }
4551       res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4552     }
4553 
4554     return res;
4555 
4556   } // End of case InstPtr
4557 
4558   } // End of switch
4559   return this;                  // Return the double constant
4560 }
4561 
4562 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4563                                                             ciKlass*& res_klass, bool& res_xk) {
4564   ciKlass* this_klass = this_type->klass();
4565   ciKlass* other_klass = other_type->klass();
4566   bool this_xk = this_type->klass_is_exact();
4567   bool other_xk = other_type->klass_is_exact();
4568   PTR this_ptr = this_type->ptr();
4569   PTR other_ptr = other_type->ptr();
4570   const TypeInterfaces* this_interfaces = this_type->interfaces();
4571   const TypeInterfaces* other_interfaces = other_type->interfaces();
4572   // Check for easy case; klasses are equal (and perhaps not loaded!)
4573   // If we have constants, then we created oops so classes are loaded
4574   // and we can handle the constants further down.  This case handles
4575   // both-not-loaded or both-loaded classes
4576   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4577     res_klass = this_klass;
4578     res_xk = this_xk;
4579     return QUICK;
4580   }
4581 
4582   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4583   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4584     return UNLOADED;
4585   }
4586 
4587   // !!! Here's how the symmetry requirement breaks down into invariants:
4588   // If we split one up & one down AND they subtype, take the down man.
4589   // If we split one up & one down AND they do NOT subtype, "fall hard".
4590   // If both are up and they subtype, take the subtype class.
4591   // If both are up and they do NOT subtype, "fall hard".
4592   // If both are down and they subtype, take the supertype class.
4593   // If both are down and they do NOT subtype, "fall hard".
4594   // Constants treated as down.
4595 
4596   // Now, reorder the above list; observe that both-down+subtype is also
4597   // "fall hard"; "fall hard" becomes the default case:
4598   // If we split one up & one down AND they subtype, take the down man.
4599   // If both are up and they subtype, take the subtype class.
4600 
4601   // If both are down and they subtype, "fall hard".
4602   // If both are down and they do NOT subtype, "fall hard".
4603   // If both are up and they do NOT subtype, "fall hard".
4604   // If we split one up & one down AND they do NOT subtype, "fall hard".
4605 
4606   // If a proper subtype is exact, and we return it, we return it exactly.
4607   // If a proper supertype is exact, there can be no subtyping relationship!
4608   // If both types are equal to the subtype, exactness is and-ed below the
4609   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4610 
4611   // Check for subtyping:
4612   const T* subtype = nullptr;
4613   bool subtype_exact = false;
4614   if (this_type->is_same_java_type_as(other_type)) {
4615     subtype = this_type;
4616     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4617   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4618     subtype = this_type;     // Pick subtyping class
4619     subtype_exact = this_xk;
4620   } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {
4621     subtype = other_type;    // Pick subtyping class
4622     subtype_exact = other_xk;
4623   }
4624 
4625   if (subtype) {
4626     if (above_centerline(ptr)) { // both are up?
4627       this_type = other_type = subtype;
4628       this_xk = other_xk = subtype_exact;
4629     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4630       this_type = other_type; // tinst is down; keep down man
4631       this_xk = other_xk;
4632     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4633       other_type = this_type; // this is down; keep down man
4634       other_xk = this_xk;
4635     } else {
4636       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4637     }
4638   }
4639 
4640   // Check for classes now being equal
4641   if (this_type->is_same_java_type_as(other_type)) {
4642     // If the klasses are equal, the constants may still differ.  Fall to
4643     // NotNull if they do (neither constant is null; that is a special case
4644     // handled elsewhere).
4645     res_klass = this_type->klass();
4646     res_xk = this_xk;
4647     return SUBTYPE;
4648   } // Else classes are not equal
4649 
4650   // Since klasses are different, we require a LCA in the Java
4651   // class hierarchy - which means we have to fall to at least NotNull.
4652   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4653     ptr = NotNull;
4654   }
4655 
4656   interfaces = this_interfaces->intersection_with(other_interfaces);
4657 
4658   // Now we find the LCA of Java classes
4659   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4660 
4661   res_klass = k;
4662   res_xk = false;
4663 
4664   return LCA;
4665 }
4666 
4667 //------------------------java_mirror_type--------------------------------------
4668 ciType* TypeInstPtr::java_mirror_type() const {
4669   // must be a singleton type
4670   if( const_oop() == nullptr )  return nullptr;
4671 
4672   // must be of type java.lang.Class
4673   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4674 
4675   return const_oop()->as_instance()->java_mirror_type();
4676 }
4677 
4678 
4679 //------------------------------xdual------------------------------------------
4680 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4681 // inheritance mechanism.
4682 const Type *TypeInstPtr::xdual() const {
4683   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4684 }
4685 
4686 //------------------------------eq---------------------------------------------
4687 // Structural equality check for Type representations
4688 bool TypeInstPtr::eq( const Type *t ) const {
4689   const TypeInstPtr *p = t->is_instptr();
4690   return
4691     klass()->equals(p->klass()) &&
4692     _interfaces->eq(p->_interfaces) &&
4693     TypeOopPtr::eq(p);          // Check sub-type stuff
4694 }
4695 
4696 //------------------------------hash-------------------------------------------
4697 // Type-specific hashing function.
4698 uint TypeInstPtr::hash(void) const {
4699   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4700 }
4701 
4702 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4703   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4704 }
4705 
4706 
4707 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4708   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4709 }
4710 
4711 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4712   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4713 }
4714 
4715 
4716 //------------------------------dump2------------------------------------------
4717 // Dump oop Type
4718 #ifndef PRODUCT
4719 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4720   // Print the name of the klass.
4721   klass()->print_name_on(st);
4722   _interfaces->dump(st);
4723 
4724   switch( _ptr ) {
4725   case Constant:
4726     if (WizardMode || Verbose) {
4727       ResourceMark rm;
4728       stringStream ss;
4729 
4730       st->print(" " INTPTR_FORMAT, p2i(const_oop()));
4731       const_oop()->print_oop(&ss);
4732       // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4733       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4734       char* buf = ss.as_string(/* c_heap= */false);
4735       StringUtils::replace_no_expand(buf, "\n", "");
4736       st->print_raw(buf);
4737     }
4738   case BotPTR:
4739     if (!WizardMode && !Verbose) {
4740       if( _klass_is_exact ) st->print(":exact");
4741       break;
4742     }
4743   case TopPTR:
4744   case AnyNull:
4745   case NotNull:
4746     st->print(":%s", ptr_msg[_ptr]);
4747     if( _klass_is_exact ) st->print(":exact");
4748     break;
4749   default:
4750     break;
4751   }
4752 
4753   if( _offset ) {               // Dump offset, if any
4754     if( _offset == OffsetBot )      st->print("+any");
4755     else if( _offset == OffsetTop ) st->print("+unknown");
4756     else st->print("+%d", _offset);
4757   }
4758 
4759   st->print(" *");
4760   if (_instance_id == InstanceTop)
4761     st->print(",iid=top");
4762   else if (_instance_id != InstanceBot)
4763     st->print(",iid=%d",_instance_id);
4764 
4765   dump_inline_depth(st);
4766   dump_speculative(st);
4767 }
4768 #endif
4769 
4770 //------------------------------add_offset-------------------------------------
4771 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4772   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4773               _instance_id, add_offset_speculative(offset), _inline_depth);
4774 }
4775 
4776 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4777   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4778               _instance_id, with_offset_speculative(offset), _inline_depth);
4779 }
4780 
4781 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4782   if (_speculative == nullptr) {
4783     return this;
4784   }
4785   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4786   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4787               _instance_id, nullptr, _inline_depth);
4788 }
4789 
4790 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4791   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth);
4792 }
4793 
4794 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4795   if (!UseInlineDepthForSpeculativeTypes) {
4796     return this;
4797   }
4798   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4799 }
4800 
4801 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4802   assert(is_known_instance(), "should be known");
4803   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4804 }
4805 
4806 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4807   bool xk = klass_is_exact();
4808   ciInstanceKlass* ik = klass()->as_instance_klass();
4809   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4810     if (_interfaces->eq(ik)) {
4811       Compile* C = Compile::current();
4812       Dependencies* deps = C->dependencies();
4813       deps->assert_leaf_type(ik);
4814       xk = true;
4815     }
4816   }
4817   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);
4818 }
4819 
4820 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4821   static_assert(std::is_base_of<T2, T1>::value, "");
4822 
4823   if (!this_one->is_instance_type(other)) {
4824     return false;
4825   }
4826 
4827   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4828     return true;
4829   }
4830 
4831   return this_one->klass()->is_subtype_of(other->klass()) &&
4832          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4833 }
4834 
4835 
4836 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4837   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4838 }
4839 
4840 template <class T1, class T2>  bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4841   static_assert(std::is_base_of<T2, T1>::value, "");
4842   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4843     return true;
4844   }
4845 
4846   if (this_one->is_instance_type(other)) {
4847     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4848   }
4849 
4850   int dummy;
4851   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4852   if (this_top_or_bottom) {
4853     return false;
4854   }
4855 
4856   const T1* other_ary = this_one->is_array_type(other);
4857   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4858   const TypePtr* this_elem = this_one->elem()->make_ptr();
4859   if (other_elem != nullptr && this_elem != nullptr) {
4860     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4861   }
4862 
4863   if (other_elem == nullptr && this_elem == nullptr) {
4864     return this_one->klass()->is_subtype_of(other->klass());
4865   }
4866 
4867   return false;
4868 }
4869 
4870 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4871   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4872 }
4873 
4874 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4875   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4876 }
4877 
4878 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4879   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4880 }
4881 
4882 //=============================================================================
4883 // Convenience common pre-built types.
4884 const TypeAryPtr* TypeAryPtr::BOTTOM;
4885 const TypeAryPtr* TypeAryPtr::RANGE;
4886 const TypeAryPtr* TypeAryPtr::OOPS;
4887 const TypeAryPtr* TypeAryPtr::NARROWOOPS;
4888 const TypeAryPtr* TypeAryPtr::BYTES;
4889 const TypeAryPtr* TypeAryPtr::SHORTS;
4890 const TypeAryPtr* TypeAryPtr::CHARS;
4891 const TypeAryPtr* TypeAryPtr::INTS;
4892 const TypeAryPtr* TypeAryPtr::LONGS;
4893 const TypeAryPtr* TypeAryPtr::FLOATS;
4894 const TypeAryPtr* TypeAryPtr::DOUBLES;
4895 
4896 //------------------------------make-------------------------------------------
4897 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4898                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4899   assert(!(k == nullptr && ary->_elem->isa_int()),
4900          "integral arrays must be pre-equipped with a class");
4901   if (!xk)  xk = ary->ary_must_be_exact();
4902   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4903   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4904       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4905     k = nullptr;
4906   }
4907   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4908 }
4909 
4910 //------------------------------make-------------------------------------------
4911 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4912                                    int instance_id, const TypePtr* speculative, int inline_depth,
4913                                    bool is_autobox_cache) {
4914   assert(!(k == nullptr && ary->_elem->isa_int()),
4915          "integral arrays must be pre-equipped with a class");
4916   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4917   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4918   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4919   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4920       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4921     k = nullptr;
4922   }
4923   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4924 }
4925 
4926 //------------------------------cast_to_ptr_type-------------------------------
4927 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4928   if( ptr == _ptr ) return this;
4929   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4930 }
4931 
4932 
4933 //-----------------------------cast_to_exactness-------------------------------
4934 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4935   if( klass_is_exact == _klass_is_exact ) return this;
4936   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4937   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4938 }
4939 
4940 //-----------------------------cast_to_instance_id----------------------------
4941 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4942   if( instance_id == _instance_id ) return this;
4943   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4944 }
4945 
4946 
4947 //-----------------------------max_array_length-------------------------------
4948 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4949 jint TypeAryPtr::max_array_length(BasicType etype) {
4950   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4951     if (etype == T_NARROWOOP) {
4952       etype = T_OBJECT;
4953     } else if (etype == T_ILLEGAL) { // bottom[]
4954       etype = T_BYTE; // will produce conservatively high value
4955     } else {
4956       fatal("not an element type: %s", type2name(etype));
4957     }
4958   }
4959   return arrayOopDesc::max_array_length(etype);
4960 }
4961 
4962 //-----------------------------narrow_size_type-------------------------------
4963 // Narrow the given size type to the index range for the given array base type.
4964 // Return null if the resulting int type becomes empty.
4965 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4966   jint hi = size->_hi;
4967   jint lo = size->_lo;
4968   jint min_lo = 0;
4969   jint max_hi = max_array_length(elem()->array_element_basic_type());
4970   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4971   bool chg = false;
4972   if (lo < min_lo) {
4973     lo = min_lo;
4974     if (size->is_con()) {
4975       hi = lo;
4976     }
4977     chg = true;
4978   }
4979   if (hi > max_hi) {
4980     hi = max_hi;
4981     if (size->is_con()) {
4982       lo = hi;
4983     }
4984     chg = true;
4985   }
4986   // Negative length arrays will produce weird intermediate dead fast-path code
4987   if (lo > hi)
4988     return TypeInt::ZERO;
4989   if (!chg)
4990     return size;
4991   return TypeInt::make(lo, hi, Type::WidenMin);
4992 }
4993 
4994 //-------------------------------cast_to_size----------------------------------
4995 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4996   assert(new_size != nullptr, "");
4997   new_size = narrow_size_type(new_size);
4998   if (new_size == size())  return this;
4999   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
5000   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
5001 }
5002 
5003 //------------------------------cast_to_stable---------------------------------
5004 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5005   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5006     return this;
5007 
5008   const Type* elem = this->elem();
5009   const TypePtr* elem_ptr = elem->make_ptr();
5010 
5011   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5012     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5013     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5014   }
5015 
5016   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
5017 
5018   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
5019 }
5020 
5021 //-----------------------------stable_dimension--------------------------------
5022 int TypeAryPtr::stable_dimension() const {
5023   if (!is_stable())  return 0;
5024   int dim = 1;
5025   const TypePtr* elem_ptr = elem()->make_ptr();
5026   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5027     dim += elem_ptr->is_aryptr()->stable_dimension();
5028   return dim;
5029 }
5030 
5031 //----------------------cast_to_autobox_cache-----------------------------------
5032 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5033   if (is_autobox_cache())  return this;
5034   const TypeOopPtr* etype = elem()->make_oopptr();
5035   if (etype == nullptr)  return this;
5036   // The pointers in the autobox arrays are always non-null.
5037   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5038   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
5039   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5040 }
5041 
5042 //------------------------------eq---------------------------------------------
5043 // Structural equality check for Type representations
5044 bool TypeAryPtr::eq( const Type *t ) const {
5045   const TypeAryPtr *p = t->is_aryptr();
5046   return
5047     _ary == p->_ary &&  // Check array
5048     TypeOopPtr::eq(p);  // Check sub-parts
5049 }
5050 
5051 //------------------------------hash-------------------------------------------
5052 // Type-specific hashing function.
5053 uint TypeAryPtr::hash(void) const {
5054   return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
5055 }
5056 
5057 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5058   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5059 }
5060 
5061 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5062   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5063 }
5064 
5065 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5066   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5067 }
5068 //------------------------------meet-------------------------------------------
5069 // Compute the MEET of two types.  It returns a new Type object.
5070 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5071   // Perform a fast test for common case; meeting the same types together.
5072   if( this == t ) return this;  // Meeting same type-rep?
5073   // Current "this->_base" is Pointer
5074   switch (t->base()) {          // switch on original type
5075 
5076   // Mixing ints & oops happens when javac reuses local variables
5077   case Int:
5078   case Long:
5079   case HalfFloatTop:
5080   case HalfFloatCon:
5081   case HalfFloatBot:
5082   case FloatTop:
5083   case FloatCon:
5084   case FloatBot:
5085   case DoubleTop:
5086   case DoubleCon:
5087   case DoubleBot:
5088   case NarrowOop:
5089   case NarrowKlass:
5090   case Bottom:                  // Ye Olde Default
5091     return Type::BOTTOM;
5092   case Top:
5093     return this;
5094 
5095   default:                      // All else is a mistake
5096     typerr(t);
5097 
5098   case OopPtr: {                // Meeting to OopPtrs
5099     // Found a OopPtr type vs self-AryPtr type
5100     const TypeOopPtr *tp = t->is_oopptr();
5101     int offset = meet_offset(tp->offset());
5102     PTR ptr = meet_ptr(tp->ptr());
5103     int depth = meet_inline_depth(tp->inline_depth());
5104     const TypePtr* speculative = xmeet_speculative(tp);
5105     switch (tp->ptr()) {
5106     case TopPTR:
5107     case AnyNull: {
5108       int instance_id = meet_instance_id(InstanceTop);
5109       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5110                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5111     }
5112     case BotPTR:
5113     case NotNull: {
5114       int instance_id = meet_instance_id(tp->instance_id());
5115       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5116     }
5117     default: ShouldNotReachHere();
5118     }
5119   }
5120 
5121   case AnyPtr: {                // Meeting two AnyPtrs
5122     // Found an AnyPtr type vs self-AryPtr type
5123     const TypePtr *tp = t->is_ptr();
5124     int offset = meet_offset(tp->offset());
5125     PTR ptr = meet_ptr(tp->ptr());
5126     const TypePtr* speculative = xmeet_speculative(tp);
5127     int depth = meet_inline_depth(tp->inline_depth());
5128     switch (tp->ptr()) {
5129     case TopPTR:
5130       return this;
5131     case BotPTR:
5132     case NotNull:
5133       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5134     case Null:
5135       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5136       // else fall through to AnyNull
5137     case AnyNull: {
5138       int instance_id = meet_instance_id(InstanceTop);
5139       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5140                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5141     }
5142     default: ShouldNotReachHere();
5143     }
5144   }
5145 
5146   case MetadataPtr:
5147   case KlassPtr:
5148   case InstKlassPtr:
5149   case AryKlassPtr:
5150   case RawPtr: return TypePtr::BOTTOM;
5151 
5152   case AryPtr: {                // Meeting 2 references?
5153     const TypeAryPtr *tap = t->is_aryptr();
5154     int off = meet_offset(tap->offset());
5155     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
5156     PTR ptr = meet_ptr(tap->ptr());
5157     int instance_id = meet_instance_id(tap->instance_id());
5158     const TypePtr* speculative = xmeet_speculative(tap);
5159     int depth = meet_inline_depth(tap->inline_depth());
5160 
5161     ciKlass* res_klass = nullptr;
5162     bool res_xk = false;
5163     const Type* elem = tary->_elem;
5164     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
5165       instance_id = InstanceBot;
5166     }
5167 
5168     ciObject* o = nullptr;             // Assume not constant when done
5169     ciObject* this_oop = const_oop();
5170     ciObject* tap_oop = tap->const_oop();
5171     if (ptr == Constant) {
5172       if (this_oop != nullptr && tap_oop != nullptr &&
5173           this_oop->equals(tap_oop)) {
5174         o = tap_oop;
5175       } else if (above_centerline(_ptr)) {
5176         o = tap_oop;
5177       } else if (above_centerline(tap->_ptr)) {
5178         o = this_oop;
5179       } else {
5180         ptr = NotNull;
5181       }
5182     }
5183     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
5184   }
5185 
5186   // All arrays inherit from Object class
5187   case InstPtr: {
5188     const TypeInstPtr *tp = t->is_instptr();
5189     int offset = meet_offset(tp->offset());
5190     PTR ptr = meet_ptr(tp->ptr());
5191     int instance_id = meet_instance_id(tp->instance_id());
5192     const TypePtr* speculative = xmeet_speculative(tp);
5193     int depth = meet_inline_depth(tp->inline_depth());
5194     const TypeInterfaces* interfaces = meet_interfaces(tp);
5195     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5196     const TypeInterfaces* this_interfaces = _interfaces;
5197 
5198     switch (ptr) {
5199     case TopPTR:
5200     case AnyNull:                // Fall 'down' to dual of object klass
5201       // For instances when a subclass meets a superclass we fall
5202       // below the centerline when the superclass is exact. We need to
5203       // do the same here.
5204       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
5205         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5206       } else {
5207         // cannot subclass, so the meet has to fall badly below the centerline
5208         ptr = NotNull;
5209         instance_id = InstanceBot;
5210         interfaces = this_interfaces->intersection_with(tp_interfaces);
5211         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);
5212       }
5213     case Constant:
5214     case NotNull:
5215     case BotPTR:                // Fall down to object klass
5216       // LCA is object_klass, but if we subclass from the top we can do better
5217       if (above_centerline(tp->ptr())) {
5218         // If 'tp'  is above the centerline and it is Object class
5219         // then we can subclass in the Java class hierarchy.
5220         // For instances when a subclass meets a superclass we fall
5221         // below the centerline when the superclass is exact. We need
5222         // to do the same here.
5223         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
5224           // that is, my array type is a subtype of 'tp' klass
5225           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5226                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5227         }
5228       }
5229       // The other case cannot happen, since t cannot be a subtype of an array.
5230       // The meet falls down to Object class below centerline.
5231       if (ptr == Constant) {
5232          ptr = NotNull;
5233       }
5234       if (instance_id > 0) {
5235         instance_id = InstanceBot;
5236       }
5237       interfaces = this_interfaces->intersection_with(tp_interfaces);
5238       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);
5239     default: typerr(t);
5240     }
5241   }
5242   }
5243   return this;                  // Lint noise
5244 }
5245 
5246 
5247 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
5248                                                            const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
5249   int dummy;
5250   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5251   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5252   ciKlass* this_klass = this_ary->klass();
5253   ciKlass* other_klass = other_ary->klass();
5254   bool this_xk = this_ary->klass_is_exact();
5255   bool other_xk = other_ary->klass_is_exact();
5256   PTR this_ptr = this_ary->ptr();
5257   PTR other_ptr = other_ary->ptr();
5258   res_klass = nullptr;
5259   MeetResult result = SUBTYPE;
5260   if (elem->isa_int()) {
5261     // Integral array element types have irrelevant lattice relations.
5262     // It is the klass that determines array layout, not the element type.
5263     if (this_top_or_bottom)
5264       res_klass = other_klass;
5265     else if (other_top_or_bottom || other_klass == this_klass) {
5266       res_klass = this_klass;
5267     } else {
5268       // Something like byte[int+] meets char[int+].
5269       // This must fall to bottom, not (int[-128..65535])[int+].
5270       // instance_id = InstanceBot;
5271       elem = Type::BOTTOM;
5272       result = NOT_SUBTYPE;
5273       if (above_centerline(ptr) || ptr == Constant) {
5274         ptr = NotNull;
5275         res_xk = false;
5276         return NOT_SUBTYPE;
5277       }
5278     }
5279   } else {// Non integral arrays.
5280     // Must fall to bottom if exact klasses in upper lattice
5281     // are not equal or super klass is exact.
5282     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5283         // meet with top[] and bottom[] are processed further down:
5284         !this_top_or_bottom && !other_top_or_bottom &&
5285         // both are exact and not equal:
5286         ((other_xk && this_xk) ||
5287          // 'tap'  is exact and super or unrelated:
5288          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5289          // 'this' is exact and super or unrelated:
5290          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5291       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5292         elem = Type::BOTTOM;
5293       }
5294       ptr = NotNull;
5295       res_xk = false;
5296       return NOT_SUBTYPE;
5297     }
5298   }
5299 
5300   res_xk = false;
5301   switch (other_ptr) {
5302     case AnyNull:
5303     case TopPTR:
5304       // Compute new klass on demand, do not use tap->_klass
5305       if (below_centerline(this_ptr)) {
5306         res_xk = this_xk;
5307       } else {
5308         res_xk = (other_xk || this_xk);
5309       }
5310       return result;
5311     case Constant: {
5312       if (this_ptr == Constant) {
5313         res_xk = true;
5314       } else if(above_centerline(this_ptr)) {
5315         res_xk = true;
5316       } else {
5317         // Only precise for identical arrays
5318         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5319       }
5320       return result;
5321     }
5322     case NotNull:
5323     case BotPTR:
5324       // Compute new klass on demand, do not use tap->_klass
5325       if (above_centerline(this_ptr)) {
5326         res_xk = other_xk;
5327       } else {
5328         res_xk = (other_xk && this_xk) &&
5329                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5330       }
5331       return result;
5332     default:  {
5333       ShouldNotReachHere();
5334       return result;
5335     }
5336   }
5337   return result;
5338 }
5339 
5340 
5341 //------------------------------xdual------------------------------------------
5342 // Dual: compute field-by-field dual
5343 const Type *TypeAryPtr::xdual() const {
5344   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5345 }
5346 
5347 //------------------------------dump2------------------------------------------
5348 #ifndef PRODUCT
5349 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5350   _ary->dump2(d,depth,st);
5351   _interfaces->dump(st);
5352 
5353   switch( _ptr ) {
5354   case Constant:
5355     st->print(" " INTPTR_FORMAT " ", p2i(const_oop()));
5356     const_oop()->print(st);
5357     break;
5358   case BotPTR:
5359     if (!WizardMode && !Verbose) {
5360       if( _klass_is_exact ) st->print(":exact");
5361       break;
5362     }
5363   case TopPTR:
5364   case AnyNull:
5365   case NotNull:
5366     st->print(":%s", ptr_msg[_ptr]);
5367     if( _klass_is_exact ) st->print(":exact");
5368     break;
5369   default:
5370     break;
5371   }
5372 
5373   if( _offset != 0 ) {
5374     BasicType basic_elem_type = elem()->basic_type();
5375     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5376     if( _offset == OffsetTop )       st->print("+undefined");
5377     else if( _offset == OffsetBot )  st->print("+any");
5378     else if( _offset < header_size ) st->print("+%d", _offset);
5379     else {
5380       if (basic_elem_type == T_ILLEGAL) {
5381         st->print("+any");
5382       } else {
5383         int elem_size = type2aelembytes(basic_elem_type);
5384         st->print("[%d]", (_offset - header_size)/elem_size);
5385       }
5386     }
5387   }
5388   st->print(" *");
5389   if (_instance_id == InstanceTop)
5390     st->print(",iid=top");
5391   else if (_instance_id != InstanceBot)
5392     st->print(",iid=%d",_instance_id);
5393 
5394   dump_inline_depth(st);
5395   dump_speculative(st);
5396 }
5397 #endif
5398 
5399 bool TypeAryPtr::empty(void) const {
5400   if (_ary->empty())       return true;
5401   return TypeOopPtr::empty();
5402 }
5403 
5404 //------------------------------add_offset-------------------------------------
5405 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5406   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5407 }
5408 
5409 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5410   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5411 }
5412 
5413 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5414   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5415 }
5416 
5417 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5418   if (_speculative == nullptr) {
5419     return this;
5420   }
5421   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5422   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);
5423 }
5424 
5425 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5426   if (!UseInlineDepthForSpeculativeTypes) {
5427     return this;
5428   }
5429   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
5430 }
5431 
5432 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5433   assert(is_known_instance(), "should be known");
5434   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5435 }
5436 
5437 //=============================================================================
5438 
5439 //------------------------------hash-------------------------------------------
5440 // Type-specific hashing function.
5441 uint TypeNarrowPtr::hash(void) const {
5442   return _ptrtype->hash() + 7;
5443 }
5444 
5445 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5446   return _ptrtype->singleton();
5447 }
5448 
5449 bool TypeNarrowPtr::empty(void) const {
5450   return _ptrtype->empty();
5451 }
5452 
5453 intptr_t TypeNarrowPtr::get_con() const {
5454   return _ptrtype->get_con();
5455 }
5456 
5457 bool TypeNarrowPtr::eq( const Type *t ) const {
5458   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5459   if (tc != nullptr) {
5460     if (_ptrtype->base() != tc->_ptrtype->base()) {
5461       return false;
5462     }
5463     return tc->_ptrtype->eq(_ptrtype);
5464   }
5465   return false;
5466 }
5467 
5468 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
5469   const TypePtr* odual = _ptrtype->dual()->is_ptr();
5470   return make_same_narrowptr(odual);
5471 }
5472 
5473 
5474 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
5475   if (isa_same_narrowptr(kills)) {
5476     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5477     if (ft->empty())
5478       return Type::TOP;           // Canonical empty value
5479     if (ft->isa_ptr()) {
5480       return make_hash_same_narrowptr(ft->isa_ptr());
5481     }
5482     return ft;
5483   } else if (kills->isa_ptr()) {
5484     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5485     if (ft->empty())
5486       return Type::TOP;           // Canonical empty value
5487     return ft;
5488   } else {
5489     return Type::TOP;
5490   }
5491 }
5492 
5493 //------------------------------xmeet------------------------------------------
5494 // Compute the MEET of two types.  It returns a new Type object.
5495 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5496   // Perform a fast test for common case; meeting the same types together.
5497   if( this == t ) return this;  // Meeting same type-rep?
5498 
5499   if (t->base() == base()) {
5500     const Type* result = _ptrtype->xmeet(t->make_ptr());
5501     if (result->isa_ptr()) {
5502       return make_hash_same_narrowptr(result->is_ptr());
5503     }
5504     return result;
5505   }
5506 
5507   // Current "this->_base" is NarrowKlass or NarrowOop
5508   switch (t->base()) {          // switch on original type
5509 
5510   case Int:                     // Mixing ints & oops happens when javac
5511   case Long:                    // reuses local variables
5512   case HalfFloatTop:
5513   case HalfFloatCon:
5514   case HalfFloatBot:
5515   case FloatTop:
5516   case FloatCon:
5517   case FloatBot:
5518   case DoubleTop:
5519   case DoubleCon:
5520   case DoubleBot:
5521   case AnyPtr:
5522   case RawPtr:
5523   case OopPtr:
5524   case InstPtr:
5525   case AryPtr:
5526   case MetadataPtr:
5527   case KlassPtr:
5528   case InstKlassPtr:
5529   case AryKlassPtr:
5530   case NarrowOop:
5531   case NarrowKlass:
5532 
5533   case Bottom:                  // Ye Olde Default
5534     return Type::BOTTOM;
5535   case Top:
5536     return this;
5537 
5538   default:                      // All else is a mistake
5539     typerr(t);
5540 
5541   } // End of switch
5542 
5543   return this;
5544 }
5545 
5546 #ifndef PRODUCT
5547 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5548   _ptrtype->dump2(d, depth, st);
5549 }
5550 #endif
5551 
5552 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5553 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5554 
5555 
5556 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5557   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5558 }
5559 
5560 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const {
5561   return make(_ptrtype->remove_speculative()->is_ptr());
5562 }
5563 
5564 const Type* TypeNarrowOop::cleanup_speculative() const {
5565   return make(_ptrtype->cleanup_speculative()->is_ptr());
5566 }
5567 
5568 #ifndef PRODUCT
5569 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5570   st->print("narrowoop: ");
5571   TypeNarrowPtr::dump2(d, depth, st);
5572 }
5573 #endif
5574 
5575 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5576 
5577 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5578   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5579 }
5580 
5581 #ifndef PRODUCT
5582 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5583   st->print("narrowklass: ");
5584   TypeNarrowPtr::dump2(d, depth, st);
5585 }
5586 #endif
5587 
5588 
5589 //------------------------------eq---------------------------------------------
5590 // Structural equality check for Type representations
5591 bool TypeMetadataPtr::eq( const Type *t ) const {
5592   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5593   ciMetadata* one = metadata();
5594   ciMetadata* two = a->metadata();
5595   if (one == nullptr || two == nullptr) {
5596     return (one == two) && TypePtr::eq(t);
5597   } else {
5598     return one->equals(two) && TypePtr::eq(t);
5599   }
5600 }
5601 
5602 //------------------------------hash-------------------------------------------
5603 // Type-specific hashing function.
5604 uint TypeMetadataPtr::hash(void) const {
5605   return
5606     (metadata() ? metadata()->hash() : 0) +
5607     TypePtr::hash();
5608 }
5609 
5610 //------------------------------singleton--------------------------------------
5611 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5612 // constants
5613 bool TypeMetadataPtr::singleton(void) const {
5614   // detune optimizer to not generate constant metadata + constant offset as a constant!
5615   // TopPTR, Null, AnyNull, Constant are all singletons
5616   return (_offset == 0) && !below_centerline(_ptr);
5617 }
5618 
5619 //------------------------------add_offset-------------------------------------
5620 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5621   return make( _ptr, _metadata, xadd_offset(offset));
5622 }
5623 
5624 //-----------------------------filter------------------------------------------
5625 // Do not allow interface-vs.-noninterface joins to collapse to top.
5626 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5627   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5628   if (ft == nullptr || ft->empty())
5629     return Type::TOP;           // Canonical empty value
5630   return ft;
5631 }
5632 
5633  //------------------------------get_con----------------------------------------
5634 intptr_t TypeMetadataPtr::get_con() const {
5635   assert( _ptr == Null || _ptr == Constant, "" );
5636   assert( _offset >= 0, "" );
5637 
5638   if (_offset != 0) {
5639     // After being ported to the compiler interface, the compiler no longer
5640     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5641     // to a handle at compile time.  This handle is embedded in the generated
5642     // code and dereferenced at the time the nmethod is made.  Until that time,
5643     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5644     // have access to the addresses!).  This does not seem to currently happen,
5645     // but this assertion here is to help prevent its occurrence.
5646     tty->print_cr("Found oop constant with non-zero offset");
5647     ShouldNotReachHere();
5648   }
5649 
5650   return (intptr_t)metadata()->constant_encoding();
5651 }
5652 
5653 //------------------------------cast_to_ptr_type-------------------------------
5654 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5655   if( ptr == _ptr ) return this;
5656   return make(ptr, metadata(), _offset);
5657 }
5658 
5659 //------------------------------meet-------------------------------------------
5660 // Compute the MEET of two types.  It returns a new Type object.
5661 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5662   // Perform a fast test for common case; meeting the same types together.
5663   if( this == t ) return this;  // Meeting same type-rep?
5664 
5665   // Current "this->_base" is OopPtr
5666   switch (t->base()) {          // switch on original type
5667 
5668   case Int:                     // Mixing ints & oops happens when javac
5669   case Long:                    // reuses local variables
5670   case HalfFloatTop:
5671   case HalfFloatCon:
5672   case HalfFloatBot:
5673   case FloatTop:
5674   case FloatCon:
5675   case FloatBot:
5676   case DoubleTop:
5677   case DoubleCon:
5678   case DoubleBot:
5679   case NarrowOop:
5680   case NarrowKlass:
5681   case Bottom:                  // Ye Olde Default
5682     return Type::BOTTOM;
5683   case Top:
5684     return this;
5685 
5686   default:                      // All else is a mistake
5687     typerr(t);
5688 
5689   case AnyPtr: {
5690     // Found an AnyPtr type vs self-OopPtr type
5691     const TypePtr *tp = t->is_ptr();
5692     int offset = meet_offset(tp->offset());
5693     PTR ptr = meet_ptr(tp->ptr());
5694     switch (tp->ptr()) {
5695     case Null:
5696       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5697       // else fall through:
5698     case TopPTR:
5699     case AnyNull: {
5700       return make(ptr, _metadata, offset);
5701     }
5702     case BotPTR:
5703     case NotNull:
5704       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5705     default: typerr(t);
5706     }
5707   }
5708 
5709   case RawPtr:
5710   case KlassPtr:
5711   case InstKlassPtr:
5712   case AryKlassPtr:
5713   case OopPtr:
5714   case InstPtr:
5715   case AryPtr:
5716     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5717 
5718   case MetadataPtr: {
5719     const TypeMetadataPtr *tp = t->is_metadataptr();
5720     int offset = meet_offset(tp->offset());
5721     PTR tptr = tp->ptr();
5722     PTR ptr = meet_ptr(tptr);
5723     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5724     if (tptr == TopPTR || _ptr == TopPTR ||
5725         metadata()->equals(tp->metadata())) {
5726       return make(ptr, md, offset);
5727     }
5728     // metadata is different
5729     if( ptr == Constant ) {  // Cannot be equal constants, so...
5730       if( tptr == Constant && _ptr != Constant)  return t;
5731       if( _ptr == Constant && tptr != Constant)  return this;
5732       ptr = NotNull;            // Fall down in lattice
5733     }
5734     return make(ptr, nullptr, offset);
5735     break;
5736   }
5737   } // End of switch
5738   return this;                  // Return the double constant
5739 }
5740 
5741 
5742 //------------------------------xdual------------------------------------------
5743 // Dual of a pure metadata pointer.
5744 const Type *TypeMetadataPtr::xdual() const {
5745   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5746 }
5747 
5748 //------------------------------dump2------------------------------------------
5749 #ifndef PRODUCT
5750 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5751   st->print("metadataptr:%s", ptr_msg[_ptr]);
5752   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5753   switch( _offset ) {
5754   case OffsetTop: st->print("+top"); break;
5755   case OffsetBot: st->print("+any"); break;
5756   case         0: break;
5757   default:        st->print("+%d",_offset); break;
5758   }
5759 }
5760 #endif
5761 
5762 
5763 //=============================================================================
5764 // Convenience common pre-built type.
5765 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5766 
5767 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5768   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5769 }
5770 
5771 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5772   return make(Constant, m, 0);
5773 }
5774 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5775   return make(Constant, m, 0);
5776 }
5777 
5778 //------------------------------make-------------------------------------------
5779 // Create a meta data constant
5780 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5781   assert(m == nullptr || !m->is_klass(), "wrong type");
5782   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5783 }
5784 
5785 
5786 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5787   const Type* elem = _ary->_elem;
5788   bool xk = klass_is_exact();
5789   if (elem->make_oopptr() != nullptr) {
5790     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5791     if (elem->is_klassptr()->klass_is_exact()) {
5792       xk = true;
5793     }
5794   }
5795   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5796 }
5797 
5798 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5799   if (klass->is_instance_klass()) {
5800     return TypeInstKlassPtr::make(klass, interface_handling);
5801   }
5802   return TypeAryKlassPtr::make(klass, interface_handling);
5803 }
5804 
5805 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5806   if (klass->is_instance_klass()) {
5807     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5808     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5809   }
5810   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5811 }
5812 
5813 
5814 //------------------------------TypeKlassPtr-----------------------------------
5815 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5816   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5817   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5818          klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5819 }
5820 
5821 // Is there a single ciKlass* that can represent that type?
5822 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5823   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5824   if (_interfaces->empty()) {
5825     return _klass;
5826   }
5827   if (_klass != ciEnv::current()->Object_klass()) {
5828     if (_interfaces->eq(_klass->as_instance_klass())) {
5829       return _klass;
5830     }
5831     return nullptr;
5832   }
5833   return _interfaces->exact_klass();
5834 }
5835 
5836 //------------------------------eq---------------------------------------------
5837 // Structural equality check for Type representations
5838 bool TypeKlassPtr::eq(const Type *t) const {
5839   const TypeKlassPtr *p = t->is_klassptr();
5840   return
5841     _interfaces->eq(p->_interfaces) &&
5842     TypePtr::eq(p);
5843 }
5844 
5845 //------------------------------hash-------------------------------------------
5846 // Type-specific hashing function.
5847 uint TypeKlassPtr::hash(void) const {
5848   return TypePtr::hash() + _interfaces->hash();
5849 }
5850 
5851 //------------------------------singleton--------------------------------------
5852 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5853 // constants
5854 bool TypeKlassPtr::singleton(void) const {
5855   // detune optimizer to not generate constant klass + constant offset as a constant!
5856   // TopPTR, Null, AnyNull, Constant are all singletons
5857   return (_offset == 0) && !below_centerline(_ptr);
5858 }
5859 
5860 // Do not allow interface-vs.-noninterface joins to collapse to top.
5861 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5862   // logic here mirrors the one from TypeOopPtr::filter. See comments
5863   // there.
5864   const Type* ft = join_helper(kills, include_speculative);
5865 
5866   if (ft->empty()) {
5867     return Type::TOP;           // Canonical empty value
5868   }
5869 
5870   return ft;
5871 }
5872 
5873 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5874   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5875     return _interfaces->union_with(other->_interfaces);
5876   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5877     return other->_interfaces;
5878   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5879     return _interfaces;
5880   }
5881   return _interfaces->intersection_with(other->_interfaces);
5882 }
5883 
5884 //------------------------------get_con----------------------------------------
5885 intptr_t TypeKlassPtr::get_con() const {
5886   assert( _ptr == Null || _ptr == Constant, "" );
5887   assert( _offset >= 0, "" );
5888 
5889   if (_offset != 0) {
5890     // After being ported to the compiler interface, the compiler no longer
5891     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5892     // to a handle at compile time.  This handle is embedded in the generated
5893     // code and dereferenced at the time the nmethod is made.  Until that time,
5894     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5895     // have access to the addresses!).  This does not seem to currently happen,
5896     // but this assertion here is to help prevent its occurrence.
5897     tty->print_cr("Found oop constant with non-zero offset");
5898     ShouldNotReachHere();
5899   }
5900 
5901   ciKlass* k = exact_klass();
5902 
5903   return (intptr_t)k->constant_encoding();
5904 }
5905 
5906 //------------------------------dump2------------------------------------------
5907 // Dump Klass Type
5908 #ifndef PRODUCT
5909 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {
5910   switch(_ptr) {
5911   case Constant:
5912     st->print("precise ");
5913   case NotNull:
5914     {
5915       const char *name = klass()->name()->as_utf8();
5916       if (name) {
5917         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
5918       } else {
5919         ShouldNotReachHere();
5920       }
5921       _interfaces->dump(st);
5922     }
5923   case BotPTR:
5924     if (!WizardMode && !Verbose && _ptr != Constant) break;
5925   case TopPTR:
5926   case AnyNull:
5927     st->print(":%s", ptr_msg[_ptr]);
5928     if (_ptr == Constant) st->print(":exact");
5929     break;
5930   default:
5931     break;
5932   }
5933 
5934   if (_offset) {               // Dump offset, if any
5935     if (_offset == OffsetBot)      { st->print("+any"); }
5936     else if (_offset == OffsetTop) { st->print("+unknown"); }
5937     else                            { st->print("+%d", _offset); }
5938   }
5939 
5940   st->print(" *");
5941 }
5942 #endif
5943 
5944 //=============================================================================
5945 // Convenience common pre-built types.
5946 
5947 // Not-null object klass or below
5948 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5949 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5950 
5951 bool TypeInstKlassPtr::eq(const Type *t) const {
5952   const TypeKlassPtr *p = t->is_klassptr();
5953   return
5954     klass()->equals(p->klass()) &&
5955     TypeKlassPtr::eq(p);
5956 }
5957 
5958 uint TypeInstKlassPtr::hash(void) const {
5959   return klass()->hash() + TypeKlassPtr::hash();
5960 }
5961 
5962 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {
5963   TypeInstKlassPtr *r =
5964     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5965 
5966   return r;
5967 }
5968 
5969 //------------------------------add_offset-------------------------------------
5970 // Access internals of klass object
5971 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5972   return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5973 }
5974 
5975 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5976   return make(_ptr, klass(), _interfaces, offset);
5977 }
5978 
5979 //------------------------------cast_to_ptr_type-------------------------------
5980 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5981   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5982   if( ptr == _ptr ) return this;
5983   return make(ptr, _klass, _interfaces, _offset);
5984 }
5985 
5986 
5987 bool TypeInstKlassPtr::must_be_exact() const {
5988   if (!_klass->is_loaded())  return false;
5989   ciInstanceKlass* ik = _klass->as_instance_klass();
5990   if (ik->is_final())  return true;  // cannot clear xk
5991   return false;
5992 }
5993 
5994 //-----------------------------cast_to_exactness-------------------------------
5995 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5996   if (klass_is_exact == (_ptr == Constant)) return this;
5997   if (must_be_exact()) return this;
5998   ciKlass* k = klass();
5999   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);
6000 }
6001 
6002 
6003 //-----------------------------as_instance_type--------------------------------
6004 // Corresponding type for an instance of the given class.
6005 // It will be NotNull, and exact if and only if the klass type is exact.
6006 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6007   ciKlass* k = klass();
6008   bool xk = klass_is_exact();
6009   Compile* C = Compile::current();
6010   Dependencies* deps = C->dependencies();
6011   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6012   // Element is an instance
6013   bool klass_is_exact = false;
6014   const TypeInterfaces* interfaces = _interfaces;
6015   if (k->is_loaded()) {
6016     // Try to set klass_is_exact.
6017     ciInstanceKlass* ik = k->as_instance_klass();
6018     klass_is_exact = ik->is_final();
6019     if (!klass_is_exact && klass_change
6020         && deps != nullptr && UseUniqueSubclasses) {
6021       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6022       if (sub != nullptr) {
6023         if (_interfaces->eq(sub)) {
6024           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6025           k = ik = sub;
6026           xk = sub->is_final();
6027         }
6028       }
6029     }
6030   }
6031   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);
6032 }
6033 
6034 //------------------------------xmeet------------------------------------------
6035 // Compute the MEET of two types, return a new Type object.
6036 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6037   // Perform a fast test for common case; meeting the same types together.
6038   if( this == t ) return this;  // Meeting same type-rep?
6039 
6040   // Current "this->_base" is Pointer
6041   switch (t->base()) {          // switch on original type
6042 
6043   case Int:                     // Mixing ints & oops happens when javac
6044   case Long:                    // reuses local variables
6045   case HalfFloatTop:
6046   case HalfFloatCon:
6047   case HalfFloatBot:
6048   case FloatTop:
6049   case FloatCon:
6050   case FloatBot:
6051   case DoubleTop:
6052   case DoubleCon:
6053   case DoubleBot:
6054   case NarrowOop:
6055   case NarrowKlass:
6056   case Bottom:                  // Ye Olde Default
6057     return Type::BOTTOM;
6058   case Top:
6059     return this;
6060 
6061   default:                      // All else is a mistake
6062     typerr(t);
6063 
6064   case AnyPtr: {                // Meeting to AnyPtrs
6065     // Found an AnyPtr type vs self-KlassPtr type
6066     const TypePtr *tp = t->is_ptr();
6067     int offset = meet_offset(tp->offset());
6068     PTR ptr = meet_ptr(tp->ptr());
6069     switch (tp->ptr()) {
6070     case TopPTR:
6071       return this;
6072     case Null:
6073       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6074     case AnyNull:
6075       return make( ptr, klass(), _interfaces, offset );
6076     case BotPTR:
6077     case NotNull:
6078       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6079     default: typerr(t);
6080     }
6081   }
6082 
6083   case RawPtr:
6084   case MetadataPtr:
6085   case OopPtr:
6086   case AryPtr:                  // Meet with AryPtr
6087   case InstPtr:                 // Meet with InstPtr
6088     return TypePtr::BOTTOM;
6089 
6090   //
6091   //             A-top         }
6092   //           /   |   \       }  Tops
6093   //       B-top A-any C-top   }
6094   //          | /  |  \ |      }  Any-nulls
6095   //       B-any   |   C-any   }
6096   //          |    |    |
6097   //       B-con A-con C-con   } constants; not comparable across classes
6098   //          |    |    |
6099   //       B-not   |   C-not   }
6100   //          | \  |  / |      }  not-nulls
6101   //       B-bot A-not C-bot   }
6102   //           \   |   /       }  Bottoms
6103   //             A-bot         }
6104   //
6105 
6106   case InstKlassPtr: {  // Meet two KlassPtr types
6107     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6108     int  off     = meet_offset(tkls->offset());
6109     PTR  ptr     = meet_ptr(tkls->ptr());
6110     const TypeInterfaces* interfaces = meet_interfaces(tkls);
6111 
6112     ciKlass* res_klass = nullptr;
6113     bool res_xk = false;
6114     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {
6115       case UNLOADED:
6116         ShouldNotReachHere();
6117       case SUBTYPE:
6118       case NOT_SUBTYPE:
6119       case LCA:
6120       case QUICK: {
6121         assert(res_xk == (ptr == Constant), "");
6122         const Type* res = make(ptr, res_klass, interfaces, off);
6123         return res;
6124       }
6125       default:
6126         ShouldNotReachHere();
6127     }
6128   } // End of case KlassPtr
6129   case AryKlassPtr: {                // All arrays inherit from Object class
6130     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6131     int offset = meet_offset(tp->offset());
6132     PTR ptr = meet_ptr(tp->ptr());
6133     const TypeInterfaces* interfaces = meet_interfaces(tp);
6134     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6135     const TypeInterfaces* this_interfaces = _interfaces;
6136 
6137     switch (ptr) {
6138     case TopPTR:
6139     case AnyNull:                // Fall 'down' to dual of object klass
6140       // For instances when a subclass meets a superclass we fall
6141       // below the centerline when the superclass is exact. We need to
6142       // do the same here.
6143       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6144         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
6145       } else {
6146         // cannot subclass, so the meet has to fall badly below the centerline
6147         ptr = NotNull;
6148         interfaces = _interfaces->intersection_with(tp->_interfaces);
6149         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6150       }
6151     case Constant:
6152     case NotNull:
6153     case BotPTR:                // Fall down to object klass
6154       // LCA is object_klass, but if we subclass from the top we can do better
6155       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6156         // If 'this' (InstPtr) is above the centerline and it is Object class
6157         // then we can subclass in the Java class hierarchy.
6158         // For instances when a subclass meets a superclass we fall
6159         // below the centerline when the superclass is exact. We need
6160         // to do the same here.
6161         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6162           // that is, tp's array type is a subtype of my klass
6163           return TypeAryKlassPtr::make(ptr,
6164                                        tp->elem(), tp->klass(), offset);
6165         }
6166       }
6167       // The other case cannot happen, since I cannot be a subtype of an array.
6168       // The meet falls down to Object class below centerline.
6169       if( ptr == Constant )
6170          ptr = NotNull;
6171       interfaces = this_interfaces->intersection_with(tp_interfaces);
6172       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6173     default: typerr(t);
6174     }
6175   }
6176 
6177   } // End of switch
6178   return this;                  // Return the double constant
6179 }
6180 
6181 //------------------------------xdual------------------------------------------
6182 // Dual: compute field-by-field dual
6183 const Type    *TypeInstKlassPtr::xdual() const {
6184   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
6185 }
6186 
6187 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6188   static_assert(std::is_base_of<T2, T1>::value, "");
6189   if (!this_one->is_loaded() || !other->is_loaded()) {
6190     return false;
6191   }
6192   if (!this_one->is_instance_type(other)) {
6193     return false;
6194   }
6195 
6196   if (!other_exact) {
6197     return false;
6198   }
6199 
6200   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6201     return true;
6202   }
6203 
6204   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6205 }
6206 
6207 bool TypeInstKlassPtr::might_be_an_array() const {
6208   if (!instance_klass()->is_java_lang_Object()) {
6209     // TypeInstKlassPtr can be an array only if it is java.lang.Object: the only supertype of array types.
6210     return false;
6211   }
6212   if (interfaces()->has_non_array_interface()) {
6213     // Arrays only implement Cloneable and Serializable. If we see any other interface, [this] cannot be an array.
6214     return false;
6215   }
6216   // Cannot prove it's not an array.
6217   return true;
6218 }
6219 
6220 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6221   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6222 }
6223 
6224 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) {
6225   static_assert(std::is_base_of<T2, T1>::value, "");
6226   if (!this_one->is_loaded() || !other->is_loaded()) {
6227     return false;
6228   }
6229   if (!this_one->is_instance_type(other)) {
6230     return false;
6231   }
6232   return this_one->klass()->equals(other->klass()) && this_one->_interfaces->eq(other->_interfaces);
6233 }
6234 
6235 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6236   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
6237 }
6238 
6239 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6240   static_assert(std::is_base_of<T2, T1>::value, "");
6241   if (!this_one->is_loaded() || !other->is_loaded()) {
6242     return true;
6243   }
6244 
6245   if (this_one->is_array_type(other)) {
6246     return !this_exact && this_one->klass()->equals(ciEnv::current()->Object_klass())  && other->_interfaces->contains(this_one->_interfaces);
6247   }
6248 
6249   assert(this_one->is_instance_type(other), "unsupported");
6250 
6251   if (this_exact && other_exact) {
6252     return this_one->is_java_subtype_of(other);
6253   }
6254 
6255   if (!this_one->klass()->is_subtype_of(other->klass()) && !other->klass()->is_subtype_of(this_one->klass())) {
6256     return false;
6257   }
6258 
6259   if (this_exact) {
6260     return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6261   }
6262 
6263   return true;
6264 }
6265 
6266 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6267   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6268 }
6269 
6270 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
6271   if (!UseUniqueSubclasses) {
6272     return this;
6273   }
6274   ciKlass* k = klass();
6275   Compile* C = Compile::current();
6276   Dependencies* deps = C->dependencies();
6277   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6278   const TypeInterfaces* interfaces = _interfaces;
6279   if (k->is_loaded()) {
6280     ciInstanceKlass* ik = k->as_instance_klass();
6281     bool klass_is_exact = ik->is_final();
6282     if (!klass_is_exact &&
6283         deps != nullptr) {
6284       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6285       if (sub != nullptr) {
6286         if (_interfaces->eq(sub)) {
6287           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6288           k = ik = sub;
6289           klass_is_exact = sub->is_final();
6290           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6291         }
6292       }
6293     }
6294   }
6295   return this;
6296 }
6297 
6298 
6299 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
6300   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
6301 }
6302 
6303 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {
6304   if (k->is_obj_array_klass()) {
6305     // Element is an object array. Recursively call ourself.
6306     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6307     const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6308     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);
6309   } else if (k->is_type_array_klass()) {
6310     // Element is an typeArray
6311     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6312     return TypeAryKlassPtr::make(ptr, etype, k, offset);
6313   } else {
6314     ShouldNotReachHere();
6315     return nullptr;
6316   }
6317 }
6318 
6319 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6320   return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);
6321 }
6322 
6323 //------------------------------eq---------------------------------------------
6324 // Structural equality check for Type representations
6325 bool TypeAryKlassPtr::eq(const Type *t) const {
6326   const TypeAryKlassPtr *p = t->is_aryklassptr();
6327   return
6328     _elem == p->_elem &&  // Check array
6329     TypeKlassPtr::eq(p);  // Check sub-parts
6330 }
6331 
6332 //------------------------------hash-------------------------------------------
6333 // Type-specific hashing function.
6334 uint TypeAryKlassPtr::hash(void) const {
6335   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();
6336 }
6337 
6338 //----------------------compute_klass------------------------------------------
6339 // Compute the defining klass for this class
6340 ciKlass* TypeAryPtr::compute_klass() const {
6341   // Compute _klass based on element type.
6342   ciKlass* k_ary = nullptr;
6343   const TypeInstPtr *tinst;
6344   const TypeAryPtr *tary;
6345   const Type* el = elem();
6346   if (el->isa_narrowoop()) {
6347     el = el->make_ptr();
6348   }
6349 
6350   // Get element klass
6351   if ((tinst = el->isa_instptr()) != nullptr) {
6352     // Leave k_ary at null.
6353   } else if ((tary = el->isa_aryptr()) != nullptr) {
6354     // Leave k_ary at null.
6355   } else if ((el->base() == Type::Top) ||
6356              (el->base() == Type::Bottom)) {
6357     // element type of Bottom occurs from meet of basic type
6358     // and object; Top occurs when doing join on Bottom.
6359     // Leave k_ary at null.
6360   } else {
6361     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6362     // Compute array klass directly from basic type
6363     k_ary = ciTypeArrayKlass::make(el->basic_type());
6364   }
6365   return k_ary;
6366 }
6367 
6368 //------------------------------klass------------------------------------------
6369 // Return the defining klass for this class
6370 ciKlass* TypeAryPtr::klass() const {
6371   if( _klass ) return _klass;   // Return cached value, if possible
6372 
6373   // Oops, need to compute _klass and cache it
6374   ciKlass* k_ary = compute_klass();
6375 
6376   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
6377     // The _klass field acts as a cache of the underlying
6378     // ciKlass for this array type.  In order to set the field,
6379     // we need to cast away const-ness.
6380     //
6381     // IMPORTANT NOTE: we *never* set the _klass field for the
6382     // type TypeAryPtr::OOPS.  This Type is shared between all
6383     // active compilations.  However, the ciKlass which represents
6384     // this Type is *not* shared between compilations, so caching
6385     // this value would result in fetching a dangling pointer.
6386     //
6387     // Recomputing the underlying ciKlass for each request is
6388     // a bit less efficient than caching, but calls to
6389     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6390     ((TypeAryPtr*)this)->_klass = k_ary;
6391   }
6392   return k_ary;
6393 }
6394 
6395 // Is there a single ciKlass* that can represent that type?
6396 ciKlass* TypeAryPtr::exact_klass_helper() const {
6397   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6398     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6399     if (k == nullptr) {
6400       return nullptr;
6401     }
6402     k = ciObjArrayKlass::make(k);
6403     return k;
6404   }
6405 
6406   return klass();
6407 }
6408 
6409 const Type* TypeAryPtr::base_element_type(int& dims) const {
6410   const Type* elem = this->elem();
6411   dims = 1;
6412   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6413     elem = elem->make_ptr()->is_aryptr()->elem();
6414     dims++;
6415   }
6416   return elem;
6417 }
6418 
6419 //------------------------------add_offset-------------------------------------
6420 // Access internals of klass object
6421 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6422   return make(_ptr, elem(), klass(), xadd_offset(offset));
6423 }
6424 
6425 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6426   return make(_ptr, elem(), klass(), offset);
6427 }
6428 
6429 //------------------------------cast_to_ptr_type-------------------------------
6430 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6431   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6432   if (ptr == _ptr) return this;
6433   return make(ptr, elem(), _klass, _offset);
6434 }
6435 
6436 bool TypeAryKlassPtr::must_be_exact() const {
6437   if (_elem == Type::BOTTOM) return false;
6438   if (_elem == Type::TOP   ) return false;
6439   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6440   if (!tk)             return true;   // a primitive type, like int
6441   return tk->must_be_exact();
6442 }
6443 
6444 
6445 //-----------------------------cast_to_exactness-------------------------------
6446 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6447   if (must_be_exact()) return this;  // cannot clear xk
6448   ciKlass* k = _klass;
6449   const Type* elem = this->elem();
6450   if (elem->isa_klassptr() && !klass_is_exact) {
6451     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6452   }
6453   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);
6454 }
6455 
6456 
6457 //-----------------------------as_instance_type--------------------------------
6458 // Corresponding type for an instance of the given class.
6459 // It will be NotNull, and exact if and only if the klass type is exact.
6460 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6461   ciKlass* k = klass();
6462   bool    xk = klass_is_exact();
6463   const Type* el = nullptr;
6464   if (elem()->isa_klassptr()) {
6465     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6466     k = nullptr;
6467   } else {
6468     el = elem();
6469   }
6470   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);
6471 }
6472 
6473 
6474 //------------------------------xmeet------------------------------------------
6475 // Compute the MEET of two types, return a new Type object.
6476 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6477   // Perform a fast test for common case; meeting the same types together.
6478   if( this == t ) return this;  // Meeting same type-rep?
6479 
6480   // Current "this->_base" is Pointer
6481   switch (t->base()) {          // switch on original type
6482 
6483   case Int:                     // Mixing ints & oops happens when javac
6484   case Long:                    // reuses local variables
6485   case HalfFloatTop:
6486   case HalfFloatCon:
6487   case HalfFloatBot:
6488   case FloatTop:
6489   case FloatCon:
6490   case FloatBot:
6491   case DoubleTop:
6492   case DoubleCon:
6493   case DoubleBot:
6494   case NarrowOop:
6495   case NarrowKlass:
6496   case Bottom:                  // Ye Olde Default
6497     return Type::BOTTOM;
6498   case Top:
6499     return this;
6500 
6501   default:                      // All else is a mistake
6502     typerr(t);
6503 
6504   case AnyPtr: {                // Meeting to AnyPtrs
6505     // Found an AnyPtr type vs self-KlassPtr type
6506     const TypePtr *tp = t->is_ptr();
6507     int offset = meet_offset(tp->offset());
6508     PTR ptr = meet_ptr(tp->ptr());
6509     switch (tp->ptr()) {
6510     case TopPTR:
6511       return this;
6512     case Null:
6513       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6514     case AnyNull:
6515       return make( ptr, _elem, klass(), offset );
6516     case BotPTR:
6517     case NotNull:
6518       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6519     default: typerr(t);
6520     }
6521   }
6522 
6523   case RawPtr:
6524   case MetadataPtr:
6525   case OopPtr:
6526   case AryPtr:                  // Meet with AryPtr
6527   case InstPtr:                 // Meet with InstPtr
6528     return TypePtr::BOTTOM;
6529 
6530   //
6531   //             A-top         }
6532   //           /   |   \       }  Tops
6533   //       B-top A-any C-top   }
6534   //          | /  |  \ |      }  Any-nulls
6535   //       B-any   |   C-any   }
6536   //          |    |    |
6537   //       B-con A-con C-con   } constants; not comparable across classes
6538   //          |    |    |
6539   //       B-not   |   C-not   }
6540   //          | \  |  / |      }  not-nulls
6541   //       B-bot A-not C-bot   }
6542   //           \   |   /       }  Bottoms
6543   //             A-bot         }
6544   //
6545 
6546   case AryKlassPtr: {  // Meet two KlassPtr types
6547     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6548     int off = meet_offset(tap->offset());
6549     const Type* elem = _elem->meet(tap->_elem);
6550 
6551     PTR ptr = meet_ptr(tap->ptr());
6552     ciKlass* res_klass = nullptr;
6553     bool res_xk = false;
6554     meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);
6555     assert(res_xk == (ptr == Constant), "");
6556     return make(ptr, elem, res_klass, off);
6557   } // End of case KlassPtr
6558   case InstKlassPtr: {
6559     const TypeInstKlassPtr *tp = t->is_instklassptr();
6560     int offset = meet_offset(tp->offset());
6561     PTR ptr = meet_ptr(tp->ptr());
6562     const TypeInterfaces* interfaces = meet_interfaces(tp);
6563     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6564     const TypeInterfaces* this_interfaces = _interfaces;
6565 
6566     switch (ptr) {
6567     case TopPTR:
6568     case AnyNull:                // Fall 'down' to dual of object klass
6569       // For instances when a subclass meets a superclass we fall
6570       // below the centerline when the superclass is exact. We need to
6571       // do the same here.
6572       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6573           !tp->klass_is_exact()) {
6574         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6575       } else {
6576         // cannot subclass, so the meet has to fall badly below the centerline
6577         ptr = NotNull;
6578         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6579         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6580       }
6581     case Constant:
6582     case NotNull:
6583     case BotPTR:                // Fall down to object klass
6584       // LCA is object_klass, but if we subclass from the top we can do better
6585       if (above_centerline(tp->ptr())) {
6586         // If 'tp'  is above the centerline and it is Object class
6587         // then we can subclass in the Java class hierarchy.
6588         // For instances when a subclass meets a superclass we fall
6589         // below the centerline when the superclass is exact. We need
6590         // to do the same here.
6591         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6592             !tp->klass_is_exact()) {
6593           // that is, my array type is a subtype of 'tp' klass
6594           return make(ptr, _elem, _klass, offset);
6595         }
6596       }
6597       // The other case cannot happen, since t cannot be a subtype of an array.
6598       // The meet falls down to Object class below centerline.
6599       if (ptr == Constant)
6600          ptr = NotNull;
6601       interfaces = this_interfaces->intersection_with(tp_interfaces);
6602       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6603     default: typerr(t);
6604     }
6605   }
6606 
6607   } // End of switch
6608   return this;                  // Return the double constant
6609 }
6610 
6611 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6612   static_assert(std::is_base_of<T2, T1>::value, "");
6613 
6614   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6615     return true;
6616   }
6617 
6618   int dummy;
6619   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6620 
6621   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6622     return false;
6623   }
6624 
6625   if (this_one->is_instance_type(other)) {
6626     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6627            other_exact;
6628   }
6629 
6630   assert(this_one->is_array_type(other), "");
6631   const T1* other_ary = this_one->is_array_type(other);
6632   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6633   if (other_top_or_bottom) {
6634     return false;
6635   }
6636 
6637   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6638   const TypePtr* this_elem = this_one->elem()->make_ptr();
6639   if (this_elem != nullptr && other_elem != nullptr) {
6640     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6641   }
6642   if (this_elem == nullptr && other_elem == nullptr) {
6643     return this_one->klass()->is_subtype_of(other->klass());
6644   }
6645   return false;
6646 }
6647 
6648 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6649   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6650 }
6651 
6652 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6653   static_assert(std::is_base_of<T2, T1>::value, "");
6654 
6655   int dummy;
6656   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6657 
6658   if (!this_one->is_array_type(other) ||
6659       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6660     return false;
6661   }
6662   const T1* other_ary = this_one->is_array_type(other);
6663   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6664 
6665   if (other_top_or_bottom) {
6666     return false;
6667   }
6668 
6669   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6670   const TypePtr* this_elem = this_one->elem()->make_ptr();
6671   if (other_elem != nullptr && this_elem != nullptr) {
6672     return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem));
6673   }
6674   if (other_elem == nullptr && this_elem == nullptr) {
6675     return this_one->klass()->equals(other->klass());
6676   }
6677   return false;
6678 }
6679 
6680 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6681   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
6682 }
6683 
6684 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6685   static_assert(std::is_base_of<T2, T1>::value, "");
6686   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6687     return true;
6688   }
6689   if (!this_one->is_loaded() || !other->is_loaded()) {
6690     return true;
6691   }
6692   if (this_one->is_instance_type(other)) {
6693     return other->klass()->equals(ciEnv::current()->Object_klass()) &&
6694            this_one->_interfaces->contains(other->_interfaces);
6695   }
6696 
6697   int dummy;
6698   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6699   if (this_top_or_bottom) {
6700     return true;
6701   }
6702 
6703   assert(this_one->is_array_type(other), "");
6704 
6705   const T1* other_ary = this_one->is_array_type(other);
6706   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6707   if (other_top_or_bottom) {
6708     return true;
6709   }
6710   if (this_exact && other_exact) {
6711     return this_one->is_java_subtype_of(other);
6712   }
6713 
6714   const TypePtr* this_elem = this_one->elem()->make_ptr();
6715   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6716   if (other_elem != nullptr && this_elem != nullptr) {
6717     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6718   }
6719   if (other_elem == nullptr && this_elem == nullptr) {
6720     return this_one->klass()->is_subtype_of(other->klass());
6721   }
6722   return false;
6723 }
6724 
6725 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6726   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6727 }
6728 
6729 //------------------------------xdual------------------------------------------
6730 // Dual: compute field-by-field dual
6731 const Type    *TypeAryKlassPtr::xdual() const {
6732   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6733 }
6734 
6735 // Is there a single ciKlass* that can represent that type?
6736 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6737   if (elem()->isa_klassptr()) {
6738     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6739     if (k == nullptr) {
6740       return nullptr;
6741     }
6742     k = ciObjArrayKlass::make(k);
6743     return k;
6744   }
6745 
6746   return klass();
6747 }
6748 
6749 ciKlass* TypeAryKlassPtr::klass() const {
6750   if (_klass != nullptr) {
6751     return _klass;
6752   }
6753   ciKlass* k = nullptr;
6754   if (elem()->isa_klassptr()) {
6755     // leave null
6756   } else if ((elem()->base() == Type::Top) ||
6757              (elem()->base() == Type::Bottom)) {
6758   } else {
6759     k = ciTypeArrayKlass::make(elem()->basic_type());
6760     ((TypeAryKlassPtr*)this)->_klass = k;
6761   }
6762   return k;
6763 }
6764 
6765 //------------------------------dump2------------------------------------------
6766 // Dump Klass Type
6767 #ifndef PRODUCT
6768 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
6769   switch( _ptr ) {
6770   case Constant:
6771     st->print("precise ");
6772   case NotNull:
6773     {
6774       st->print("[");
6775       _elem->dump2(d, depth, st);
6776       _interfaces->dump(st);
6777       st->print(": ");
6778     }
6779   case BotPTR:
6780     if( !WizardMode && !Verbose && _ptr != Constant ) break;
6781   case TopPTR:
6782   case AnyNull:
6783     st->print(":%s", ptr_msg[_ptr]);
6784     if( _ptr == Constant ) st->print(":exact");
6785     break;
6786   default:
6787     break;
6788   }
6789 
6790   if( _offset ) {               // Dump offset, if any
6791     if( _offset == OffsetBot )      { st->print("+any"); }
6792     else if( _offset == OffsetTop ) { st->print("+unknown"); }
6793     else                            { st->print("+%d", _offset); }
6794   }
6795 
6796   st->print(" *");
6797 }
6798 #endif
6799 
6800 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6801   const Type* elem = this->elem();
6802   dims = 1;
6803   while (elem->isa_aryklassptr()) {
6804     elem = elem->is_aryklassptr()->elem();
6805     dims++;
6806   }
6807   return elem;
6808 }
6809 
6810 //=============================================================================
6811 // Convenience common pre-built types.
6812 
6813 //------------------------------make-------------------------------------------
6814 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6815   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
6816 }
6817 
6818 //------------------------------make-------------------------------------------
6819 const TypeFunc *TypeFunc::make(ciMethod* method) {
6820   Compile* C = Compile::current();
6821   const TypeFunc* tf = C->last_tf(method); // check cache
6822   if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
6823   const TypeTuple *domain;
6824   if (method->is_static()) {
6825     domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6826   } else {
6827     domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);
6828   }
6829   const TypeTuple *range  = TypeTuple::make_range(method->signature(), ignore_interfaces);
6830   tf = TypeFunc::make(domain, range);
6831   C->set_last_tf(method, tf);  // fill cache
6832   return tf;
6833 }
6834 
6835 //------------------------------meet-------------------------------------------
6836 // Compute the MEET of two types.  It returns a new Type object.
6837 const Type *TypeFunc::xmeet( const Type *t ) const {
6838   // Perform a fast test for common case; meeting the same types together.
6839   if( this == t ) return this;  // Meeting same type-rep?
6840 
6841   // Current "this->_base" is Func
6842   switch (t->base()) {          // switch on original type
6843 
6844   case Bottom:                  // Ye Olde Default
6845     return t;
6846 
6847   default:                      // All else is a mistake
6848     typerr(t);
6849 
6850   case Top:
6851     break;
6852   }
6853   return this;                  // Return the double constant
6854 }
6855 
6856 //------------------------------xdual------------------------------------------
6857 // Dual: compute field-by-field dual
6858 const Type *TypeFunc::xdual() const {
6859   return this;
6860 }
6861 
6862 //------------------------------eq---------------------------------------------
6863 // Structural equality check for Type representations
6864 bool TypeFunc::eq( const Type *t ) const {
6865   const TypeFunc *a = (const TypeFunc*)t;
6866   return _domain == a->_domain &&
6867     _range == a->_range;
6868 }
6869 
6870 //------------------------------hash-------------------------------------------
6871 // Type-specific hashing function.
6872 uint TypeFunc::hash(void) const {
6873   return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6874 }
6875 
6876 //------------------------------dump2------------------------------------------
6877 // Dump Function Type
6878 #ifndef PRODUCT
6879 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6880   if( _range->cnt() <= Parms )
6881     st->print("void");
6882   else {
6883     uint i;
6884     for (i = Parms; i < _range->cnt()-1; i++) {
6885       _range->field_at(i)->dump2(d,depth,st);
6886       st->print("/");
6887     }
6888     _range->field_at(i)->dump2(d,depth,st);
6889   }
6890   st->print(" ");
6891   st->print("( ");
6892   if( !depth || d[this] ) {     // Check for recursive dump
6893     st->print("...)");
6894     return;
6895   }
6896   d.Insert((void*)this,(void*)this);    // Stop recursion
6897   if (Parms < _domain->cnt())
6898     _domain->field_at(Parms)->dump2(d,depth-1,st);
6899   for (uint i = Parms+1; i < _domain->cnt(); i++) {
6900     st->print(", ");
6901     _domain->field_at(i)->dump2(d,depth-1,st);
6902   }
6903   st->print(" )");
6904 }
6905 #endif
6906 
6907 //------------------------------singleton--------------------------------------
6908 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6909 // constants (Ldi nodes).  Singletons are integer, float or double constants
6910 // or a single symbol.
6911 bool TypeFunc::singleton(void) const {
6912   return false;                 // Never a singleton
6913 }
6914 
6915 bool TypeFunc::empty(void) const {
6916   return false;                 // Never empty
6917 }
6918 
6919 
6920 BasicType TypeFunc::return_type() const{
6921   if (range()->cnt() == TypeFunc::Parms) {
6922     return T_VOID;
6923   }
6924   return range()->field_at(TypeFunc::Parms)->basic_type();
6925 }