1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "ci/ciTypeFlow.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "libadt/dict.hpp" 32 #include "memory/oopFactory.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/instanceKlass.hpp" 35 #include "oops/instanceMirrorKlass.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "oops/typeArrayKlass.hpp" 38 #include "opto/matcher.hpp" 39 #include "opto/node.hpp" 40 #include "opto/opcodes.hpp" 41 #include "opto/type.hpp" 42 #include "utilities/checkedCast.hpp" 43 #include "utilities/powerOfTwo.hpp" 44 #include "utilities/stringUtils.hpp" 45 46 // Portions of code courtesy of Clifford Click 47 48 // Optimization - Graph Style 49 50 // Dictionary of types shared among compilations. 51 Dict* Type::_shared_type_dict = nullptr; 52 53 // Array which maps compiler types to Basic Types 54 const Type::TypeInfo Type::_type_info[Type::lastype] = { 55 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad 56 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control 57 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top 58 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int 59 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long 60 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half 61 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop 62 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass 63 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple 64 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array 65 { Bad, T_ARRAY, "interfaces:", false, Node::NotAMachineReg, relocInfo::none }, // Interfaces 66 67 #if defined(PPC64) 68 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 69 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 70 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 71 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 72 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 73 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 74 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 75 #elif defined(S390) 76 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 77 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 78 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 79 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 80 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX 81 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 82 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 83 #else // all other 84 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 85 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 86 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS 87 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD 88 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 89 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY 90 { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ 91 #endif 92 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr 93 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::external_word_type }, // RawPtr 94 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr 95 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr 96 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr 97 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr 98 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr 99 { Bad, T_METADATA, "instklass:", false, Op_RegP, relocInfo::metadata_type }, // InstKlassPtr 100 { Bad, T_METADATA, "aryklass:", false, Op_RegP, relocInfo::metadata_type }, // AryKlassPtr 101 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function 102 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio 103 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address 104 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory 105 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop 106 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon 107 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot 108 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop 109 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon 110 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot 111 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom 112 }; 113 114 // Map ideal registers (machine types) to ideal types 115 const Type *Type::mreg2type[_last_machine_leaf]; 116 117 // Map basic types to canonical Type* pointers. 118 const Type* Type:: _const_basic_type[T_CONFLICT+1]; 119 120 // Map basic types to constant-zero Types. 121 const Type* Type:: _zero_type[T_CONFLICT+1]; 122 123 // Map basic types to array-body alias types. 124 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1]; 125 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr; 126 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr; 127 128 //============================================================================= 129 // Convenience common pre-built types. 130 const Type *Type::ABIO; // State-of-machine only 131 const Type *Type::BOTTOM; // All values 132 const Type *Type::CONTROL; // Control only 133 const Type *Type::DOUBLE; // All doubles 134 const Type *Type::FLOAT; // All floats 135 const Type *Type::HALF; // Placeholder half of doublewide type 136 const Type *Type::MEMORY; // Abstract store only 137 const Type *Type::RETURN_ADDRESS; 138 const Type *Type::TOP; // No values in set 139 140 //------------------------------get_const_type--------------------------- 141 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) { 142 if (type == nullptr) { 143 return nullptr; 144 } else if (type->is_primitive_type()) { 145 return get_const_basic_type(type->basic_type()); 146 } else { 147 return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling); 148 } 149 } 150 151 //---------------------------array_element_basic_type--------------------------------- 152 // Mapping to the array element's basic type. 153 BasicType Type::array_element_basic_type() const { 154 BasicType bt = basic_type(); 155 if (bt == T_INT) { 156 if (this == TypeInt::INT) return T_INT; 157 if (this == TypeInt::CHAR) return T_CHAR; 158 if (this == TypeInt::BYTE) return T_BYTE; 159 if (this == TypeInt::BOOL) return T_BOOLEAN; 160 if (this == TypeInt::SHORT) return T_SHORT; 161 return T_VOID; 162 } 163 return bt; 164 } 165 166 // For two instance arrays of same dimension, return the base element types. 167 // Otherwise or if the arrays have different dimensions, return null. 168 void Type::get_arrays_base_elements(const Type *a1, const Type *a2, 169 const TypeInstPtr **e1, const TypeInstPtr **e2) { 170 171 if (e1) *e1 = nullptr; 172 if (e2) *e2 = nullptr; 173 const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr(); 174 const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr(); 175 176 if (a1tap != nullptr && a2tap != nullptr) { 177 // Handle multidimensional arrays 178 const TypePtr* a1tp = a1tap->elem()->make_ptr(); 179 const TypePtr* a2tp = a2tap->elem()->make_ptr(); 180 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) { 181 a1tap = a1tp->is_aryptr(); 182 a2tap = a2tp->is_aryptr(); 183 a1tp = a1tap->elem()->make_ptr(); 184 a2tp = a2tap->elem()->make_ptr(); 185 } 186 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) { 187 if (e1) *e1 = a1tp->is_instptr(); 188 if (e2) *e2 = a2tp->is_instptr(); 189 } 190 } 191 } 192 193 //---------------------------get_typeflow_type--------------------------------- 194 // Import a type produced by ciTypeFlow. 195 const Type* Type::get_typeflow_type(ciType* type) { 196 switch (type->basic_type()) { 197 198 case ciTypeFlow::StateVector::T_BOTTOM: 199 assert(type == ciTypeFlow::StateVector::bottom_type(), ""); 200 return Type::BOTTOM; 201 202 case ciTypeFlow::StateVector::T_TOP: 203 assert(type == ciTypeFlow::StateVector::top_type(), ""); 204 return Type::TOP; 205 206 case ciTypeFlow::StateVector::T_NULL: 207 assert(type == ciTypeFlow::StateVector::null_type(), ""); 208 return TypePtr::NULL_PTR; 209 210 case ciTypeFlow::StateVector::T_LONG2: 211 // The ciTypeFlow pass pushes a long, then the half. 212 // We do the same. 213 assert(type == ciTypeFlow::StateVector::long2_type(), ""); 214 return TypeInt::TOP; 215 216 case ciTypeFlow::StateVector::T_DOUBLE2: 217 // The ciTypeFlow pass pushes double, then the half. 218 // Our convention is the same. 219 assert(type == ciTypeFlow::StateVector::double2_type(), ""); 220 return Type::TOP; 221 222 case T_ADDRESS: 223 assert(type->is_return_address(), ""); 224 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci()); 225 226 default: 227 // make sure we did not mix up the cases: 228 assert(type != ciTypeFlow::StateVector::bottom_type(), ""); 229 assert(type != ciTypeFlow::StateVector::top_type(), ""); 230 assert(type != ciTypeFlow::StateVector::null_type(), ""); 231 assert(type != ciTypeFlow::StateVector::long2_type(), ""); 232 assert(type != ciTypeFlow::StateVector::double2_type(), ""); 233 assert(!type->is_return_address(), ""); 234 235 return Type::get_const_type(type); 236 } 237 } 238 239 240 //-----------------------make_from_constant------------------------------------ 241 const Type* Type::make_from_constant(ciConstant constant, bool require_constant, 242 int stable_dimension, bool is_narrow_oop, 243 bool is_autobox_cache) { 244 switch (constant.basic_type()) { 245 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 246 case T_CHAR: return TypeInt::make(constant.as_char()); 247 case T_BYTE: return TypeInt::make(constant.as_byte()); 248 case T_SHORT: return TypeInt::make(constant.as_short()); 249 case T_INT: return TypeInt::make(constant.as_int()); 250 case T_LONG: return TypeLong::make(constant.as_long()); 251 case T_FLOAT: return TypeF::make(constant.as_float()); 252 case T_DOUBLE: return TypeD::make(constant.as_double()); 253 case T_ARRAY: 254 case T_OBJECT: { 255 const Type* con_type = nullptr; 256 ciObject* oop_constant = constant.as_object(); 257 if (oop_constant->is_null_object()) { 258 con_type = Type::get_zero_type(T_OBJECT); 259 } else { 260 guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed"); 261 con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant); 262 if (Compile::current()->eliminate_boxing() && is_autobox_cache) { 263 con_type = con_type->is_aryptr()->cast_to_autobox_cache(); 264 } 265 if (stable_dimension > 0) { 266 assert(FoldStableValues, "sanity"); 267 assert(!con_type->is_zero_type(), "default value for stable field"); 268 con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension); 269 } 270 } 271 if (is_narrow_oop) { 272 con_type = con_type->make_narrowoop(); 273 } 274 return con_type; 275 } 276 case T_ILLEGAL: 277 // Invalid ciConstant returned due to OutOfMemoryError in the CI 278 assert(Compile::current()->env()->failing(), "otherwise should not see this"); 279 return nullptr; 280 default: 281 // Fall through to failure 282 return nullptr; 283 } 284 } 285 286 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) { 287 BasicType conbt = con.basic_type(); 288 switch (conbt) { 289 case T_BOOLEAN: conbt = T_BYTE; break; 290 case T_ARRAY: conbt = T_OBJECT; break; 291 default: break; 292 } 293 switch (loadbt) { 294 case T_BOOLEAN: loadbt = T_BYTE; break; 295 case T_NARROWOOP: loadbt = T_OBJECT; break; 296 case T_ARRAY: loadbt = T_OBJECT; break; 297 case T_ADDRESS: loadbt = T_OBJECT; break; 298 default: break; 299 } 300 if (conbt == loadbt) { 301 if (is_unsigned && conbt == T_BYTE) { 302 // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE). 303 return ciConstant(T_INT, con.as_int() & 0xFF); 304 } else { 305 return con; 306 } 307 } 308 if (conbt == T_SHORT && loadbt == T_CHAR) { 309 // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR). 310 return ciConstant(T_INT, con.as_int() & 0xFFFF); 311 } 312 return ciConstant(); // T_ILLEGAL 313 } 314 315 // Try to constant-fold a stable array element. 316 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension, 317 BasicType loadbt, bool is_unsigned_load) { 318 // Decode the results of GraphKit::array_element_address. 319 ciConstant element_value = array->element_value_by_offset(off); 320 if (element_value.basic_type() == T_ILLEGAL) { 321 return nullptr; // wrong offset 322 } 323 ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load); 324 325 assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d", 326 type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load); 327 328 if (con.is_valid() && // not a mismatched access 329 !con.is_null_or_zero()) { // not a default value 330 bool is_narrow_oop = (loadbt == T_NARROWOOP); 331 return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false); 332 } 333 return nullptr; 334 } 335 336 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) { 337 ciField* field; 338 ciType* type = holder->java_mirror_type(); 339 if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) { 340 // Static field 341 field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true); 342 } else { 343 // Instance field 344 field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false); 345 } 346 if (field == nullptr) { 347 return nullptr; // Wrong offset 348 } 349 return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load); 350 } 351 352 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder, 353 BasicType loadbt, bool is_unsigned_load) { 354 if (!field->is_constant()) { 355 return nullptr; // Non-constant field 356 } 357 ciConstant field_value; 358 if (field->is_static()) { 359 // final static field 360 field_value = field->constant_value(); 361 } else if (holder != nullptr) { 362 // final or stable non-static field 363 // Treat final non-static fields of trusted classes (classes in 364 // java.lang.invoke and sun.invoke packages and subpackages) as 365 // compile time constants. 366 field_value = field->constant_value_of(holder); 367 } 368 if (!field_value.is_valid()) { 369 return nullptr; // Not a constant 370 } 371 372 ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load); 373 374 assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d", 375 type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load); 376 377 bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass(); 378 int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0); 379 bool is_narrow_oop = (loadbt == T_NARROWOOP); 380 381 const Type* con_type = make_from_constant(con, /*require_constant=*/ true, 382 stable_dimension, is_narrow_oop, 383 field->is_autobox_cache()); 384 if (con_type != nullptr && field->is_call_site_target()) { 385 ciCallSite* call_site = holder->as_call_site(); 386 if (!call_site->is_fully_initialized_constant_call_site()) { 387 ciMethodHandle* target = con.as_object()->as_method_handle(); 388 Compile::current()->dependencies()->assert_call_site_target_value(call_site, target); 389 } 390 } 391 return con_type; 392 } 393 394 //------------------------------make------------------------------------------- 395 // Create a simple Type, with default empty symbol sets. Then hashcons it 396 // and look for an existing copy in the type dictionary. 397 const Type *Type::make( enum TYPES t ) { 398 return (new Type(t))->hashcons(); 399 } 400 401 //------------------------------cmp-------------------------------------------- 402 bool Type::equals(const Type* t1, const Type* t2) { 403 if (t1->_base != t2->_base) { 404 return false; // Missed badly 405 } 406 407 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive"); 408 return t1->eq(t2); 409 } 410 411 const Type* Type::maybe_remove_speculative(bool include_speculative) const { 412 if (!include_speculative) { 413 return remove_speculative(); 414 } 415 return this; 416 } 417 418 //------------------------------hash------------------------------------------- 419 int Type::uhash( const Type *const t ) { 420 return (int)t->hash(); 421 } 422 423 #define SMALLINT ((juint)3) // a value too insignificant to consider widening 424 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite 425 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite 426 427 //--------------------------Initialize_shared---------------------------------- 428 void Type::Initialize_shared(Compile* current) { 429 // This method does not need to be locked because the first system 430 // compilations (stub compilations) occur serially. If they are 431 // changed to proceed in parallel, then this section will need 432 // locking. 433 434 Arena* save = current->type_arena(); 435 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler); 436 437 current->set_type_arena(shared_type_arena); 438 439 // Map the boolean result of Type::equals into a comparator result that CmpKey expects. 440 CmpKey type_cmp = [](const void* t1, const void* t2) -> int32_t { 441 return Type::equals((Type*) t1, (Type*) t2) ? 0 : 1; 442 }; 443 444 _shared_type_dict = new (shared_type_arena) Dict(type_cmp, (Hash) Type::uhash, shared_type_arena, 128); 445 current->set_type_dict(_shared_type_dict); 446 447 // Make shared pre-built types. 448 CONTROL = make(Control); // Control only 449 TOP = make(Top); // No values in set 450 MEMORY = make(Memory); // Abstract store only 451 ABIO = make(Abio); // State-of-machine only 452 RETURN_ADDRESS=make(Return_Address); 453 FLOAT = make(FloatBot); // All floats 454 DOUBLE = make(DoubleBot); // All doubles 455 BOTTOM = make(Bottom); // Everything 456 HALF = make(Half); // Placeholder half of doublewide type 457 458 TypeF::MAX = TypeF::make(max_jfloat); // Float MAX 459 TypeF::MIN = TypeF::make(min_jfloat); // Float MIN 460 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero) 461 TypeF::ONE = TypeF::make(1.0); // Float 1 462 TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F)); 463 TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F)); 464 465 TypeD::MAX = TypeD::make(max_jdouble); // Double MAX 466 TypeD::MIN = TypeD::make(min_jdouble); // Double MIN 467 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero) 468 TypeD::ONE = TypeD::make(1.0); // Double 1 469 TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D)); 470 TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D)); 471 472 TypeInt::MAX = TypeInt::make(max_jint); // Int MAX 473 TypeInt::MIN = TypeInt::make(min_jint); // Int MIN 474 TypeInt::MINUS_1 = TypeInt::make(-1); // -1 475 TypeInt::ZERO = TypeInt::make( 0); // 0 476 TypeInt::ONE = TypeInt::make( 1); // 1 477 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE. 478 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes 479 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1 480 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE 481 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO 482 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin); 483 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL 484 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes 485 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes 486 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars 487 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts 488 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values 489 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values 490 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers 491 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range 492 TypeInt::TYPE_DOMAIN = TypeInt::INT; 493 // CmpL is overloaded both as the bytecode computation returning 494 // a trinary (-1,0,+1) integer result AND as an efficient long 495 // compare returning optimizer ideal-type flags. 496 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" ); 497 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" ); 498 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" ); 499 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" ); 500 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small"); 501 502 TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX 503 TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN 504 TypeLong::MINUS_1 = TypeLong::make(-1); // -1 505 TypeLong::ZERO = TypeLong::make( 0); // 0 506 TypeLong::ONE = TypeLong::make( 1); // 1 507 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values 508 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers 509 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin); 510 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin); 511 TypeLong::TYPE_DOMAIN = TypeLong::LONG; 512 513 const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 514 fboth[0] = Type::CONTROL; 515 fboth[1] = Type::CONTROL; 516 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth ); 517 518 const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 519 ffalse[0] = Type::CONTROL; 520 ffalse[1] = Type::TOP; 521 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse ); 522 523 const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 524 fneither[0] = Type::TOP; 525 fneither[1] = Type::TOP; 526 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither ); 527 528 const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 529 ftrue[0] = Type::TOP; 530 ftrue[1] = Type::CONTROL; 531 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue ); 532 533 const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 534 floop[0] = Type::CONTROL; 535 floop[1] = TypeInt::INT; 536 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop ); 537 538 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0); 539 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot); 540 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot); 541 542 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR ); 543 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull ); 544 545 const Type **fmembar = TypeTuple::fields(0); 546 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar); 547 548 const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 549 fsc[0] = TypeInt::CC; 550 fsc[1] = Type::MEMORY; 551 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc); 552 553 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass()); 554 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass()); 555 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass()); 556 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 557 false, nullptr, oopDesc::mark_offset_in_bytes()); 558 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 559 false, nullptr, oopDesc::klass_offset_in_bytes()); 560 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot); 561 562 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot); 563 564 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR ); 565 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM ); 566 567 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR ); 568 569 mreg2type[Op_Node] = Type::BOTTOM; 570 mreg2type[Op_Set ] = nullptr; 571 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM; 572 mreg2type[Op_RegI] = TypeInt::INT; 573 mreg2type[Op_RegP] = TypePtr::BOTTOM; 574 mreg2type[Op_RegF] = Type::FLOAT; 575 mreg2type[Op_RegD] = Type::DOUBLE; 576 mreg2type[Op_RegL] = TypeLong::LONG; 577 mreg2type[Op_RegFlags] = TypeInt::CC; 578 579 GrowableArray<ciInstanceKlass*> array_interfaces; 580 array_interfaces.push(current->env()->Cloneable_klass()); 581 array_interfaces.push(current->env()->Serializable_klass()); 582 TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces); 583 TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces; 584 585 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes()); 586 587 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); 588 589 #ifdef _LP64 590 if (UseCompressedOops) { 591 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop"); 592 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS; 593 } else 594 #endif 595 { 596 // There is no shared klass for Object[]. See note in TypeAryPtr::klass(). 597 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); 598 } 599 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot); 600 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot); 601 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot); 602 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot); 603 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot); 604 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot); 605 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot); 606 607 // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert. 608 TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr; 609 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS; 610 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays 611 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES; 612 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array 613 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS; 614 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS; 615 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS; 616 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS; 617 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS; 618 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES; 619 620 TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0); 621 TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0); 622 623 const Type **fi2c = TypeTuple::fields(2); 624 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method* 625 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer 626 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c); 627 628 const Type **intpair = TypeTuple::fields(2); 629 intpair[0] = TypeInt::INT; 630 intpair[1] = TypeInt::INT; 631 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair); 632 633 const Type **longpair = TypeTuple::fields(2); 634 longpair[0] = TypeLong::LONG; 635 longpair[1] = TypeLong::LONG; 636 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair); 637 638 const Type **intccpair = TypeTuple::fields(2); 639 intccpair[0] = TypeInt::INT; 640 intccpair[1] = TypeInt::CC; 641 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair); 642 643 const Type **longccpair = TypeTuple::fields(2); 644 longccpair[0] = TypeLong::LONG; 645 longccpair[1] = TypeInt::CC; 646 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair); 647 648 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM; 649 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM; 650 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL; 651 _const_basic_type[T_CHAR] = TypeInt::CHAR; 652 _const_basic_type[T_BYTE] = TypeInt::BYTE; 653 _const_basic_type[T_SHORT] = TypeInt::SHORT; 654 _const_basic_type[T_INT] = TypeInt::INT; 655 _const_basic_type[T_LONG] = TypeLong::LONG; 656 _const_basic_type[T_FLOAT] = Type::FLOAT; 657 _const_basic_type[T_DOUBLE] = Type::DOUBLE; 658 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM; 659 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays 660 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way 661 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs 662 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not? 663 664 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR; 665 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR; 666 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0 667 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0 668 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0 669 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0 670 _zero_type[T_INT] = TypeInt::ZERO; 671 _zero_type[T_LONG] = TypeLong::ZERO; 672 _zero_type[T_FLOAT] = TypeF::ZERO; 673 _zero_type[T_DOUBLE] = TypeD::ZERO; 674 _zero_type[T_OBJECT] = TypePtr::NULL_PTR; 675 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop 676 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null 677 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all 678 679 // get_zero_type() should not happen for T_CONFLICT 680 _zero_type[T_CONFLICT]= nullptr; 681 682 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons(); 683 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK; 684 685 if (Matcher::supports_scalable_vector()) { 686 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE)); 687 } 688 689 // Vector predefined types, it needs initialized _const_basic_type[]. 690 if (Matcher::vector_size_supported(T_BYTE,4)) { 691 TypeVect::VECTS = TypeVect::make(T_BYTE,4); 692 } 693 if (Matcher::vector_size_supported(T_FLOAT,2)) { 694 TypeVect::VECTD = TypeVect::make(T_FLOAT,2); 695 } 696 if (Matcher::vector_size_supported(T_FLOAT,4)) { 697 TypeVect::VECTX = TypeVect::make(T_FLOAT,4); 698 } 699 if (Matcher::vector_size_supported(T_FLOAT,8)) { 700 TypeVect::VECTY = TypeVect::make(T_FLOAT,8); 701 } 702 if (Matcher::vector_size_supported(T_FLOAT,16)) { 703 TypeVect::VECTZ = TypeVect::make(T_FLOAT,16); 704 } 705 706 mreg2type[Op_VecA] = TypeVect::VECTA; 707 mreg2type[Op_VecS] = TypeVect::VECTS; 708 mreg2type[Op_VecD] = TypeVect::VECTD; 709 mreg2type[Op_VecX] = TypeVect::VECTX; 710 mreg2type[Op_VecY] = TypeVect::VECTY; 711 mreg2type[Op_VecZ] = TypeVect::VECTZ; 712 713 // Restore working type arena. 714 current->set_type_arena(save); 715 current->set_type_dict(nullptr); 716 } 717 718 //------------------------------Initialize------------------------------------- 719 void Type::Initialize(Compile* current) { 720 assert(current->type_arena() != nullptr, "must have created type arena"); 721 722 if (_shared_type_dict == nullptr) { 723 Initialize_shared(current); 724 } 725 726 Arena* type_arena = current->type_arena(); 727 728 // Create the hash-cons'ing dictionary with top-level storage allocation 729 Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena); 730 current->set_type_dict(tdic); 731 } 732 733 //------------------------------hashcons--------------------------------------- 734 // Do the hash-cons trick. If the Type already exists in the type table, 735 // delete the current Type and return the existing Type. Otherwise stick the 736 // current Type in the Type table. 737 const Type *Type::hashcons(void) { 738 debug_only(base()); // Check the assertion in Type::base(). 739 // Look up the Type in the Type dictionary 740 Dict *tdic = type_dict(); 741 Type* old = (Type*)(tdic->Insert(this, this, false)); 742 if( old ) { // Pre-existing Type? 743 if( old != this ) // Yes, this guy is not the pre-existing? 744 delete this; // Yes, Nuke this guy 745 assert( old->_dual, "" ); 746 return old; // Return pre-existing 747 } 748 749 // Every type has a dual (to make my lattice symmetric). 750 // Since we just discovered a new Type, compute its dual right now. 751 assert( !_dual, "" ); // No dual yet 752 _dual = xdual(); // Compute the dual 753 if (equals(this, _dual)) { // Handle self-symmetric 754 if (_dual != this) { 755 delete _dual; 756 _dual = this; 757 } 758 return this; 759 } 760 assert( !_dual->_dual, "" ); // No reverse dual yet 761 assert( !(*tdic)[_dual], "" ); // Dual not in type system either 762 // New Type, insert into Type table 763 tdic->Insert((void*)_dual,(void*)_dual); 764 ((Type*)_dual)->_dual = this; // Finish up being symmetric 765 #ifdef ASSERT 766 Type *dual_dual = (Type*)_dual->xdual(); 767 assert( eq(dual_dual), "xdual(xdual()) should be identity" ); 768 delete dual_dual; 769 #endif 770 return this; // Return new Type 771 } 772 773 //------------------------------eq--------------------------------------------- 774 // Structural equality check for Type representations 775 bool Type::eq( const Type * ) const { 776 return true; // Nothing else can go wrong 777 } 778 779 //------------------------------hash------------------------------------------- 780 // Type-specific hashing function. 781 uint Type::hash(void) const { 782 return _base; 783 } 784 785 //------------------------------is_finite-------------------------------------- 786 // Has a finite value 787 bool Type::is_finite() const { 788 return false; 789 } 790 791 //------------------------------is_nan----------------------------------------- 792 // Is not a number (NaN) 793 bool Type::is_nan() const { 794 return false; 795 } 796 797 #ifdef ASSERT 798 class VerifyMeet; 799 class VerifyMeetResult : public ArenaObj { 800 friend class VerifyMeet; 801 friend class Type; 802 private: 803 class VerifyMeetResultEntry { 804 private: 805 const Type* _in1; 806 const Type* _in2; 807 const Type* _res; 808 public: 809 VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res): 810 _in1(in1), _in2(in2), _res(res) { 811 } 812 VerifyMeetResultEntry(): 813 _in1(nullptr), _in2(nullptr), _res(nullptr) { 814 } 815 816 bool operator==(const VerifyMeetResultEntry& rhs) const { 817 return _in1 == rhs._in1 && 818 _in2 == rhs._in2 && 819 _res == rhs._res; 820 } 821 822 bool operator!=(const VerifyMeetResultEntry& rhs) const { 823 return !(rhs == *this); 824 } 825 826 static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) { 827 if ((intptr_t) v1._in1 < (intptr_t) v2._in1) { 828 return -1; 829 } else if (v1._in1 == v2._in1) { 830 if ((intptr_t) v1._in2 < (intptr_t) v2._in2) { 831 return -1; 832 } else if (v1._in2 == v2._in2) { 833 assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result"); 834 return 0; 835 } 836 return 1; 837 } 838 return 1; 839 } 840 const Type* res() const { return _res; } 841 }; 842 uint _depth; 843 GrowableArray<VerifyMeetResultEntry> _cache; 844 845 // With verification code, the meet of A and B causes the computation of: 846 // 1- meet(A, B) 847 // 2- meet(B, A) 848 // 3- meet(dual(meet(A, B)), dual(A)) 849 // 4- meet(dual(meet(A, B)), dual(B)) 850 // 5- meet(dual(A), dual(B)) 851 // 6- meet(dual(B), dual(A)) 852 // 7- meet(dual(meet(dual(A), dual(B))), A) 853 // 8- meet(dual(meet(dual(A), dual(B))), B) 854 // 855 // In addition the meet of A[] and B[] requires the computation of the meet of A and B. 856 // 857 // The meet of A[] and B[] triggers the computation of: 858 // 1- meet(A[], B[][) 859 // 1.1- meet(A, B) 860 // 1.2- meet(B, A) 861 // 1.3- meet(dual(meet(A, B)), dual(A)) 862 // 1.4- meet(dual(meet(A, B)), dual(B)) 863 // 1.5- meet(dual(A), dual(B)) 864 // 1.6- meet(dual(B), dual(A)) 865 // 1.7- meet(dual(meet(dual(A), dual(B))), A) 866 // 1.8- meet(dual(meet(dual(A), dual(B))), B) 867 // 2- meet(B[], A[]) 868 // 2.1- meet(B, A) = 1.2 869 // 2.2- meet(A, B) = 1.1 870 // 2.3- meet(dual(meet(B, A)), dual(B)) = 1.4 871 // 2.4- meet(dual(meet(B, A)), dual(A)) = 1.3 872 // 2.5- meet(dual(B), dual(A)) = 1.6 873 // 2.6- meet(dual(A), dual(B)) = 1.5 874 // 2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8 875 // 2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7 876 // etc. 877 // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number 878 // of different meet operations is linear in the number of dimensions. The function below caches meet results for the 879 // duration of the meet at the root of the recursive calls. 880 // 881 const Type* meet(const Type* t1, const Type* t2) { 882 bool found = false; 883 const VerifyMeetResultEntry meet(t1, t2, nullptr); 884 int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found); 885 const Type* res = nullptr; 886 if (found) { 887 res = _cache.at(pos).res(); 888 } else { 889 res = t1->xmeet(t2); 890 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res)); 891 found = false; 892 _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found); 893 assert(found, "should be in table after it's added"); 894 } 895 return res; 896 } 897 898 void add(const Type* t1, const Type* t2, const Type* res) { 899 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res)); 900 } 901 902 bool empty_cache() const { 903 return _cache.length() == 0; 904 } 905 public: 906 VerifyMeetResult(Compile* C) : 907 _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) { 908 } 909 }; 910 911 void Type::assert_type_verify_empty() const { 912 assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded"); 913 } 914 915 class VerifyMeet { 916 private: 917 Compile* _C; 918 public: 919 VerifyMeet(Compile* C) : _C(C) { 920 if (C->_type_verify == nullptr) { 921 C->_type_verify = new (C->comp_arena())VerifyMeetResult(C); 922 } 923 _C->_type_verify->_depth++; 924 } 925 926 ~VerifyMeet() { 927 assert(_C->_type_verify->_depth != 0, ""); 928 _C->_type_verify->_depth--; 929 if (_C->_type_verify->_depth == 0) { 930 _C->_type_verify->_cache.trunc_to(0); 931 } 932 } 933 934 const Type* meet(const Type* t1, const Type* t2) const { 935 return _C->_type_verify->meet(t1, t2); 936 } 937 938 void add(const Type* t1, const Type* t2, const Type* res) const { 939 _C->_type_verify->add(t1, t2, res); 940 } 941 }; 942 943 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const { 944 Compile* C = Compile::current(); 945 const Type* mt2 = verify.meet(t, this); 946 if (mt != mt2) { 947 tty->print_cr("=== Meet Not Commutative ==="); 948 tty->print("t = "); t->dump(); tty->cr(); 949 tty->print("this = "); dump(); tty->cr(); 950 tty->print("t meet this = "); mt2->dump(); tty->cr(); 951 tty->print("this meet t = "); mt->dump(); tty->cr(); 952 fatal("meet not commutative"); 953 } 954 const Type* dual_join = mt->_dual; 955 const Type* t2t = verify.meet(dual_join,t->_dual); 956 const Type* t2this = verify.meet(dual_join,this->_dual); 957 958 // Interface meet Oop is Not Symmetric: 959 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull 960 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull 961 962 if (t2t != t->_dual || t2this != this->_dual) { 963 tty->print_cr("=== Meet Not Symmetric ==="); 964 tty->print("t = "); t->dump(); tty->cr(); 965 tty->print("this= "); dump(); tty->cr(); 966 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr(); 967 968 tty->print("t_dual= "); t->_dual->dump(); tty->cr(); 969 tty->print("this_dual= "); _dual->dump(); tty->cr(); 970 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr(); 971 972 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr(); 973 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr(); 974 975 fatal("meet not symmetric"); 976 } 977 } 978 #endif 979 980 //------------------------------meet------------------------------------------- 981 // Compute the MEET of two types. NOT virtual. It enforces that meet is 982 // commutative and the lattice is symmetric. 983 const Type *Type::meet_helper(const Type *t, bool include_speculative) const { 984 if (isa_narrowoop() && t->isa_narrowoop()) { 985 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 986 return result->make_narrowoop(); 987 } 988 if (isa_narrowklass() && t->isa_narrowklass()) { 989 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 990 return result->make_narrowklass(); 991 } 992 993 #ifdef ASSERT 994 Compile* C = Compile::current(); 995 VerifyMeet verify(C); 996 #endif 997 998 const Type *this_t = maybe_remove_speculative(include_speculative); 999 t = t->maybe_remove_speculative(include_speculative); 1000 1001 const Type *mt = this_t->xmeet(t); 1002 #ifdef ASSERT 1003 verify.add(this_t, t, mt); 1004 if (isa_narrowoop() || t->isa_narrowoop()) { 1005 return mt; 1006 } 1007 if (isa_narrowklass() || t->isa_narrowklass()) { 1008 return mt; 1009 } 1010 this_t->check_symmetrical(t, mt, verify); 1011 const Type *mt_dual = verify.meet(this_t->_dual, t->_dual); 1012 this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify); 1013 #endif 1014 return mt; 1015 } 1016 1017 //------------------------------xmeet------------------------------------------ 1018 // Compute the MEET of two types. It returns a new Type object. 1019 const Type *Type::xmeet( const Type *t ) const { 1020 // Perform a fast test for common case; meeting the same types together. 1021 if( this == t ) return this; // Meeting same type-rep? 1022 1023 // Meeting TOP with anything? 1024 if( _base == Top ) return t; 1025 1026 // Meeting BOTTOM with anything? 1027 if( _base == Bottom ) return BOTTOM; 1028 1029 // Current "this->_base" is one of: Bad, Multi, Control, Top, 1030 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype. 1031 switch (t->base()) { // Switch on original type 1032 1033 // Cut in half the number of cases I must handle. Only need cases for when 1034 // the given enum "t->type" is less than or equal to the local enum "type". 1035 case FloatCon: 1036 case DoubleCon: 1037 case Int: 1038 case Long: 1039 return t->xmeet(this); 1040 1041 case OopPtr: 1042 return t->xmeet(this); 1043 1044 case InstPtr: 1045 return t->xmeet(this); 1046 1047 case MetadataPtr: 1048 case KlassPtr: 1049 case InstKlassPtr: 1050 case AryKlassPtr: 1051 return t->xmeet(this); 1052 1053 case AryPtr: 1054 return t->xmeet(this); 1055 1056 case NarrowOop: 1057 return t->xmeet(this); 1058 1059 case NarrowKlass: 1060 return t->xmeet(this); 1061 1062 case Bad: // Type check 1063 default: // Bogus type not in lattice 1064 typerr(t); 1065 return Type::BOTTOM; 1066 1067 case Bottom: // Ye Olde Default 1068 return t; 1069 1070 case FloatTop: 1071 if( _base == FloatTop ) return this; 1072 case FloatBot: // Float 1073 if( _base == FloatBot || _base == FloatTop ) return FLOAT; 1074 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM; 1075 typerr(t); 1076 return Type::BOTTOM; 1077 1078 case DoubleTop: 1079 if( _base == DoubleTop ) return this; 1080 case DoubleBot: // Double 1081 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE; 1082 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM; 1083 typerr(t); 1084 return Type::BOTTOM; 1085 1086 // These next few cases must match exactly or it is a compile-time error. 1087 case Control: // Control of code 1088 case Abio: // State of world outside of program 1089 case Memory: 1090 if( _base == t->_base ) return this; 1091 typerr(t); 1092 return Type::BOTTOM; 1093 1094 case Top: // Top of the lattice 1095 return this; 1096 } 1097 1098 // The type is unchanged 1099 return this; 1100 } 1101 1102 //-----------------------------filter------------------------------------------ 1103 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const { 1104 const Type* ft = join_helper(kills, include_speculative); 1105 if (ft->empty()) 1106 return Type::TOP; // Canonical empty value 1107 return ft; 1108 } 1109 1110 //------------------------------xdual------------------------------------------ 1111 const Type *Type::xdual() const { 1112 // Note: the base() accessor asserts the sanity of _base. 1113 assert(_type_info[base()].dual_type != Bad, "implement with v-call"); 1114 return new Type(_type_info[_base].dual_type); 1115 } 1116 1117 //------------------------------has_memory------------------------------------- 1118 bool Type::has_memory() const { 1119 Type::TYPES tx = base(); 1120 if (tx == Memory) return true; 1121 if (tx == Tuple) { 1122 const TypeTuple *t = is_tuple(); 1123 for (uint i=0; i < t->cnt(); i++) { 1124 tx = t->field_at(i)->base(); 1125 if (tx == Memory) return true; 1126 } 1127 } 1128 return false; 1129 } 1130 1131 #ifndef PRODUCT 1132 //------------------------------dump2------------------------------------------ 1133 void Type::dump2( Dict &d, uint depth, outputStream *st ) const { 1134 st->print("%s", _type_info[_base].msg); 1135 } 1136 1137 //------------------------------dump------------------------------------------- 1138 void Type::dump_on(outputStream *st) const { 1139 ResourceMark rm; 1140 Dict d(cmpkey,hashkey); // Stop recursive type dumping 1141 dump2(d,1, st); 1142 if (is_ptr_to_narrowoop()) { 1143 st->print(" [narrow]"); 1144 } else if (is_ptr_to_narrowklass()) { 1145 st->print(" [narrowklass]"); 1146 } 1147 } 1148 1149 //----------------------------------------------------------------------------- 1150 const char* Type::str(const Type* t) { 1151 stringStream ss; 1152 t->dump_on(&ss); 1153 return ss.as_string(); 1154 } 1155 #endif 1156 1157 //------------------------------singleton-------------------------------------- 1158 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1159 // constants (Ldi nodes). Singletons are integer, float or double constants. 1160 bool Type::singleton(void) const { 1161 return _base == Top || _base == Half; 1162 } 1163 1164 //------------------------------empty------------------------------------------ 1165 // TRUE if Type is a type with no values, FALSE otherwise. 1166 bool Type::empty(void) const { 1167 switch (_base) { 1168 case DoubleTop: 1169 case FloatTop: 1170 case Top: 1171 return true; 1172 1173 case Half: 1174 case Abio: 1175 case Return_Address: 1176 case Memory: 1177 case Bottom: 1178 case FloatBot: 1179 case DoubleBot: 1180 return false; // never a singleton, therefore never empty 1181 1182 default: 1183 ShouldNotReachHere(); 1184 return false; 1185 } 1186 } 1187 1188 //------------------------------dump_stats------------------------------------- 1189 // Dump collected statistics to stderr 1190 #ifndef PRODUCT 1191 void Type::dump_stats() { 1192 tty->print("Types made: %d\n", type_dict()->Size()); 1193 } 1194 #endif 1195 1196 //------------------------------category--------------------------------------- 1197 #ifndef PRODUCT 1198 Type::Category Type::category() const { 1199 const TypeTuple* tuple; 1200 switch (base()) { 1201 case Type::Int: 1202 case Type::Long: 1203 case Type::Half: 1204 case Type::NarrowOop: 1205 case Type::NarrowKlass: 1206 case Type::Array: 1207 case Type::VectorA: 1208 case Type::VectorS: 1209 case Type::VectorD: 1210 case Type::VectorX: 1211 case Type::VectorY: 1212 case Type::VectorZ: 1213 case Type::VectorMask: 1214 case Type::AnyPtr: 1215 case Type::RawPtr: 1216 case Type::OopPtr: 1217 case Type::InstPtr: 1218 case Type::AryPtr: 1219 case Type::MetadataPtr: 1220 case Type::KlassPtr: 1221 case Type::InstKlassPtr: 1222 case Type::AryKlassPtr: 1223 case Type::Function: 1224 case Type::Return_Address: 1225 case Type::FloatTop: 1226 case Type::FloatCon: 1227 case Type::FloatBot: 1228 case Type::DoubleTop: 1229 case Type::DoubleCon: 1230 case Type::DoubleBot: 1231 return Category::Data; 1232 case Type::Memory: 1233 return Category::Memory; 1234 case Type::Control: 1235 return Category::Control; 1236 case Type::Top: 1237 case Type::Abio: 1238 case Type::Bottom: 1239 return Category::Other; 1240 case Type::Bad: 1241 case Type::lastype: 1242 return Category::Undef; 1243 case Type::Tuple: 1244 // Recursive case. Return CatMixed if the tuple contains types of 1245 // different categories (e.g. CallStaticJavaNode's type), or the specific 1246 // category if all types are of the same category (e.g. IfNode's type). 1247 tuple = is_tuple(); 1248 if (tuple->cnt() == 0) { 1249 return Category::Undef; 1250 } else { 1251 Category first = tuple->field_at(0)->category(); 1252 for (uint i = 1; i < tuple->cnt(); i++) { 1253 if (tuple->field_at(i)->category() != first) { 1254 return Category::Mixed; 1255 } 1256 } 1257 return first; 1258 } 1259 default: 1260 assert(false, "unmatched base type: all base types must be categorized"); 1261 } 1262 return Category::Undef; 1263 } 1264 1265 bool Type::has_category(Type::Category cat) const { 1266 if (category() == cat) { 1267 return true; 1268 } 1269 if (category() == Category::Mixed) { 1270 const TypeTuple* tuple = is_tuple(); 1271 for (uint i = 0; i < tuple->cnt(); i++) { 1272 if (tuple->field_at(i)->has_category(cat)) { 1273 return true; 1274 } 1275 } 1276 } 1277 return false; 1278 } 1279 #endif 1280 1281 //------------------------------typerr----------------------------------------- 1282 void Type::typerr( const Type *t ) const { 1283 #ifndef PRODUCT 1284 tty->print("\nError mixing types: "); 1285 dump(); 1286 tty->print(" and "); 1287 t->dump(); 1288 tty->print("\n"); 1289 #endif 1290 ShouldNotReachHere(); 1291 } 1292 1293 1294 //============================================================================= 1295 // Convenience common pre-built types. 1296 const TypeF *TypeF::MAX; // Floating point max 1297 const TypeF *TypeF::MIN; // Floating point min 1298 const TypeF *TypeF::ZERO; // Floating point zero 1299 const TypeF *TypeF::ONE; // Floating point one 1300 const TypeF *TypeF::POS_INF; // Floating point positive infinity 1301 const TypeF *TypeF::NEG_INF; // Floating point negative infinity 1302 1303 //------------------------------make------------------------------------------- 1304 // Create a float constant 1305 const TypeF *TypeF::make(float f) { 1306 return (TypeF*)(new TypeF(f))->hashcons(); 1307 } 1308 1309 //------------------------------meet------------------------------------------- 1310 // Compute the MEET of two types. It returns a new Type object. 1311 const Type *TypeF::xmeet( const Type *t ) const { 1312 // Perform a fast test for common case; meeting the same types together. 1313 if( this == t ) return this; // Meeting same type-rep? 1314 1315 // Current "this->_base" is FloatCon 1316 switch (t->base()) { // Switch on original type 1317 case AnyPtr: // Mixing with oops happens when javac 1318 case RawPtr: // reuses local variables 1319 case OopPtr: 1320 case InstPtr: 1321 case AryPtr: 1322 case MetadataPtr: 1323 case KlassPtr: 1324 case InstKlassPtr: 1325 case AryKlassPtr: 1326 case NarrowOop: 1327 case NarrowKlass: 1328 case Int: 1329 case Long: 1330 case DoubleTop: 1331 case DoubleCon: 1332 case DoubleBot: 1333 case Bottom: // Ye Olde Default 1334 return Type::BOTTOM; 1335 1336 case FloatBot: 1337 return t; 1338 1339 default: // All else is a mistake 1340 typerr(t); 1341 1342 case FloatCon: // Float-constant vs Float-constant? 1343 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants? 1344 // must compare bitwise as positive zero, negative zero and NaN have 1345 // all the same representation in C++ 1346 return FLOAT; // Return generic float 1347 // Equal constants 1348 case Top: 1349 case FloatTop: 1350 break; // Return the float constant 1351 } 1352 return this; // Return the float constant 1353 } 1354 1355 //------------------------------xdual------------------------------------------ 1356 // Dual: symmetric 1357 const Type *TypeF::xdual() const { 1358 return this; 1359 } 1360 1361 //------------------------------eq--------------------------------------------- 1362 // Structural equality check for Type representations 1363 bool TypeF::eq(const Type *t) const { 1364 // Bitwise comparison to distinguish between +/-0. These values must be treated 1365 // as different to be consistent with C1 and the interpreter. 1366 return (jint_cast(_f) == jint_cast(t->getf())); 1367 } 1368 1369 //------------------------------hash------------------------------------------- 1370 // Type-specific hashing function. 1371 uint TypeF::hash(void) const { 1372 return *(uint*)(&_f); 1373 } 1374 1375 //------------------------------is_finite-------------------------------------- 1376 // Has a finite value 1377 bool TypeF::is_finite() const { 1378 return g_isfinite(getf()) != 0; 1379 } 1380 1381 //------------------------------is_nan----------------------------------------- 1382 // Is not a number (NaN) 1383 bool TypeF::is_nan() const { 1384 return g_isnan(getf()) != 0; 1385 } 1386 1387 //------------------------------dump2------------------------------------------ 1388 // Dump float constant Type 1389 #ifndef PRODUCT 1390 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const { 1391 Type::dump2(d,depth, st); 1392 st->print("%f", _f); 1393 } 1394 #endif 1395 1396 //------------------------------singleton-------------------------------------- 1397 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1398 // constants (Ldi nodes). Singletons are integer, float or double constants 1399 // or a single symbol. 1400 bool TypeF::singleton(void) const { 1401 return true; // Always a singleton 1402 } 1403 1404 bool TypeF::empty(void) const { 1405 return false; // always exactly a singleton 1406 } 1407 1408 //============================================================================= 1409 // Convenience common pre-built types. 1410 const TypeD *TypeD::MAX; // Floating point max 1411 const TypeD *TypeD::MIN; // Floating point min 1412 const TypeD *TypeD::ZERO; // Floating point zero 1413 const TypeD *TypeD::ONE; // Floating point one 1414 const TypeD *TypeD::POS_INF; // Floating point positive infinity 1415 const TypeD *TypeD::NEG_INF; // Floating point negative infinity 1416 1417 //------------------------------make------------------------------------------- 1418 const TypeD *TypeD::make(double d) { 1419 return (TypeD*)(new TypeD(d))->hashcons(); 1420 } 1421 1422 //------------------------------meet------------------------------------------- 1423 // Compute the MEET of two types. It returns a new Type object. 1424 const Type *TypeD::xmeet( const Type *t ) const { 1425 // Perform a fast test for common case; meeting the same types together. 1426 if( this == t ) return this; // Meeting same type-rep? 1427 1428 // Current "this->_base" is DoubleCon 1429 switch (t->base()) { // Switch on original type 1430 case AnyPtr: // Mixing with oops happens when javac 1431 case RawPtr: // reuses local variables 1432 case OopPtr: 1433 case InstPtr: 1434 case AryPtr: 1435 case MetadataPtr: 1436 case KlassPtr: 1437 case InstKlassPtr: 1438 case AryKlassPtr: 1439 case NarrowOop: 1440 case NarrowKlass: 1441 case Int: 1442 case Long: 1443 case FloatTop: 1444 case FloatCon: 1445 case FloatBot: 1446 case Bottom: // Ye Olde Default 1447 return Type::BOTTOM; 1448 1449 case DoubleBot: 1450 return t; 1451 1452 default: // All else is a mistake 1453 typerr(t); 1454 1455 case DoubleCon: // Double-constant vs Double-constant? 1456 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet) 1457 return DOUBLE; // Return generic double 1458 case Top: 1459 case DoubleTop: 1460 break; 1461 } 1462 return this; // Return the double constant 1463 } 1464 1465 //------------------------------xdual------------------------------------------ 1466 // Dual: symmetric 1467 const Type *TypeD::xdual() const { 1468 return this; 1469 } 1470 1471 //------------------------------eq--------------------------------------------- 1472 // Structural equality check for Type representations 1473 bool TypeD::eq(const Type *t) const { 1474 // Bitwise comparison to distinguish between +/-0. These values must be treated 1475 // as different to be consistent with C1 and the interpreter. 1476 return (jlong_cast(_d) == jlong_cast(t->getd())); 1477 } 1478 1479 //------------------------------hash------------------------------------------- 1480 // Type-specific hashing function. 1481 uint TypeD::hash(void) const { 1482 return *(uint*)(&_d); 1483 } 1484 1485 //------------------------------is_finite-------------------------------------- 1486 // Has a finite value 1487 bool TypeD::is_finite() const { 1488 return g_isfinite(getd()) != 0; 1489 } 1490 1491 //------------------------------is_nan----------------------------------------- 1492 // Is not a number (NaN) 1493 bool TypeD::is_nan() const { 1494 return g_isnan(getd()) != 0; 1495 } 1496 1497 //------------------------------dump2------------------------------------------ 1498 // Dump double constant Type 1499 #ifndef PRODUCT 1500 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const { 1501 Type::dump2(d,depth,st); 1502 st->print("%f", _d); 1503 } 1504 #endif 1505 1506 //------------------------------singleton-------------------------------------- 1507 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1508 // constants (Ldi nodes). Singletons are integer, float or double constants 1509 // or a single symbol. 1510 bool TypeD::singleton(void) const { 1511 return true; // Always a singleton 1512 } 1513 1514 bool TypeD::empty(void) const { 1515 return false; // always exactly a singleton 1516 } 1517 1518 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) { 1519 if (bt == T_INT) { 1520 return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w); 1521 } 1522 assert(bt == T_LONG, "basic type not an int or long"); 1523 return TypeLong::make(lo, hi, w); 1524 } 1525 1526 jlong TypeInteger::get_con_as_long(BasicType bt) const { 1527 if (bt == T_INT) { 1528 return is_int()->get_con(); 1529 } 1530 assert(bt == T_LONG, "basic type not an int or long"); 1531 return is_long()->get_con(); 1532 } 1533 1534 const TypeInteger* TypeInteger::bottom(BasicType bt) { 1535 if (bt == T_INT) { 1536 return TypeInt::INT; 1537 } 1538 assert(bt == T_LONG, "basic type not an int or long"); 1539 return TypeLong::LONG; 1540 } 1541 1542 const TypeInteger* TypeInteger::zero(BasicType bt) { 1543 if (bt == T_INT) { 1544 return TypeInt::ZERO; 1545 } 1546 assert(bt == T_LONG, "basic type not an int or long"); 1547 return TypeLong::ZERO; 1548 } 1549 1550 const TypeInteger* TypeInteger::one(BasicType bt) { 1551 if (bt == T_INT) { 1552 return TypeInt::ONE; 1553 } 1554 assert(bt == T_LONG, "basic type not an int or long"); 1555 return TypeLong::ONE; 1556 } 1557 1558 const TypeInteger* TypeInteger::minus_1(BasicType bt) { 1559 if (bt == T_INT) { 1560 return TypeInt::MINUS_1; 1561 } 1562 assert(bt == T_LONG, "basic type not an int or long"); 1563 return TypeLong::MINUS_1; 1564 } 1565 1566 //============================================================================= 1567 // Convenience common pre-built types. 1568 const TypeInt *TypeInt::MAX; // INT_MAX 1569 const TypeInt *TypeInt::MIN; // INT_MIN 1570 const TypeInt *TypeInt::MINUS_1;// -1 1571 const TypeInt *TypeInt::ZERO; // 0 1572 const TypeInt *TypeInt::ONE; // 1 1573 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE. 1574 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes 1575 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1 1576 const TypeInt *TypeInt::CC_GT; // [1] == ONE 1577 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO 1578 const TypeInt *TypeInt::CC_LE; // [-1,0] 1579 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!) 1580 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127 1581 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255 1582 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535 1583 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767 1584 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero 1585 const TypeInt *TypeInt::POS1; // Positive 32-bit integers 1586 const TypeInt *TypeInt::INT; // 32-bit integers 1587 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint] 1588 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT 1589 1590 //------------------------------TypeInt---------------------------------------- 1591 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int, w), _lo(lo), _hi(hi) { 1592 } 1593 1594 //------------------------------make------------------------------------------- 1595 const TypeInt *TypeInt::make( jint lo ) { 1596 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons(); 1597 } 1598 1599 static int normalize_int_widen( jint lo, jint hi, int w ) { 1600 // Certain normalizations keep us sane when comparing types. 1601 // The 'SMALLINT' covers constants and also CC and its relatives. 1602 if (lo <= hi) { 1603 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin; 1604 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT 1605 } else { 1606 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin; 1607 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT 1608 } 1609 return w; 1610 } 1611 1612 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) { 1613 w = normalize_int_widen(lo, hi, w); 1614 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons(); 1615 } 1616 1617 //------------------------------meet------------------------------------------- 1618 // Compute the MEET of two types. It returns a new Type representation object 1619 // with reference count equal to the number of Types pointing at it. 1620 // Caller should wrap a Types around it. 1621 const Type *TypeInt::xmeet( const Type *t ) const { 1622 // Perform a fast test for common case; meeting the same types together. 1623 if( this == t ) return this; // Meeting same type? 1624 1625 // Currently "this->_base" is a TypeInt 1626 switch (t->base()) { // Switch on original type 1627 case AnyPtr: // Mixing with oops happens when javac 1628 case RawPtr: // reuses local variables 1629 case OopPtr: 1630 case InstPtr: 1631 case AryPtr: 1632 case MetadataPtr: 1633 case KlassPtr: 1634 case InstKlassPtr: 1635 case AryKlassPtr: 1636 case NarrowOop: 1637 case NarrowKlass: 1638 case Long: 1639 case FloatTop: 1640 case FloatCon: 1641 case FloatBot: 1642 case DoubleTop: 1643 case DoubleCon: 1644 case DoubleBot: 1645 case Bottom: // Ye Olde Default 1646 return Type::BOTTOM; 1647 default: // All else is a mistake 1648 typerr(t); 1649 case Top: // No change 1650 return this; 1651 case Int: // Int vs Int? 1652 break; 1653 } 1654 1655 // Expand covered set 1656 const TypeInt *r = t->is_int(); 1657 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1658 } 1659 1660 //------------------------------xdual------------------------------------------ 1661 // Dual: reverse hi & lo; flip widen 1662 const Type *TypeInt::xdual() const { 1663 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen); 1664 return new TypeInt(_hi,_lo,w); 1665 } 1666 1667 //------------------------------widen------------------------------------------ 1668 // Only happens for optimistic top-down optimizations. 1669 const Type *TypeInt::widen( const Type *old, const Type* limit ) const { 1670 // Coming from TOP or such; no widening 1671 if( old->base() != Int ) return this; 1672 const TypeInt *ot = old->is_int(); 1673 1674 // If new guy is equal to old guy, no widening 1675 if( _lo == ot->_lo && _hi == ot->_hi ) 1676 return old; 1677 1678 // If new guy contains old, then we widened 1679 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1680 // New contains old 1681 // If new guy is already wider than old, no widening 1682 if( _widen > ot->_widen ) return this; 1683 // If old guy was a constant, do not bother 1684 if (ot->_lo == ot->_hi) return this; 1685 // Now widen new guy. 1686 // Check for widening too far 1687 if (_widen == WidenMax) { 1688 int max = max_jint; 1689 int min = min_jint; 1690 if (limit->isa_int()) { 1691 max = limit->is_int()->_hi; 1692 min = limit->is_int()->_lo; 1693 } 1694 if (min < _lo && _hi < max) { 1695 // If neither endpoint is extremal yet, push out the endpoint 1696 // which is closer to its respective limit. 1697 if (_lo >= 0 || // easy common case 1698 ((juint)_lo - min) >= ((juint)max - _hi)) { 1699 // Try to widen to an unsigned range type of 31 bits: 1700 return make(_lo, max, WidenMax); 1701 } else { 1702 return make(min, _hi, WidenMax); 1703 } 1704 } 1705 return TypeInt::INT; 1706 } 1707 // Returned widened new guy 1708 return make(_lo,_hi,_widen+1); 1709 } 1710 1711 // If old guy contains new, then we probably widened too far & dropped to 1712 // bottom. Return the wider fellow. 1713 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1714 return old; 1715 1716 //fatal("Integer value range is not subset"); 1717 //return this; 1718 return TypeInt::INT; 1719 } 1720 1721 //------------------------------narrow--------------------------------------- 1722 // Only happens for pessimistic optimizations. 1723 const Type *TypeInt::narrow( const Type *old ) const { 1724 if (_lo >= _hi) return this; // already narrow enough 1725 if (old == nullptr) return this; 1726 const TypeInt* ot = old->isa_int(); 1727 if (ot == nullptr) return this; 1728 jint olo = ot->_lo; 1729 jint ohi = ot->_hi; 1730 1731 // If new guy is equal to old guy, no narrowing 1732 if (_lo == olo && _hi == ohi) return old; 1733 1734 // If old guy was maximum range, allow the narrowing 1735 if (olo == min_jint && ohi == max_jint) return this; 1736 1737 if (_lo < olo || _hi > ohi) 1738 return this; // doesn't narrow; pretty weird 1739 1740 // The new type narrows the old type, so look for a "death march". 1741 // See comments on PhaseTransform::saturate. 1742 juint nrange = (juint)_hi - _lo; 1743 juint orange = (juint)ohi - olo; 1744 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 1745 // Use the new type only if the range shrinks a lot. 1746 // We do not want the optimizer computing 2^31 point by point. 1747 return old; 1748 } 1749 1750 return this; 1751 } 1752 1753 //-----------------------------filter------------------------------------------ 1754 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const { 1755 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int(); 1756 if (ft == nullptr || ft->empty()) 1757 return Type::TOP; // Canonical empty value 1758 if (ft->_widen < this->_widen) { 1759 // Do not allow the value of kill->_widen to affect the outcome. 1760 // The widen bits must be allowed to run freely through the graph. 1761 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen); 1762 } 1763 return ft; 1764 } 1765 1766 //------------------------------eq--------------------------------------------- 1767 // Structural equality check for Type representations 1768 bool TypeInt::eq( const Type *t ) const { 1769 const TypeInt *r = t->is_int(); // Handy access 1770 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 1771 } 1772 1773 //------------------------------hash------------------------------------------- 1774 // Type-specific hashing function. 1775 uint TypeInt::hash(void) const { 1776 return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Int; 1777 } 1778 1779 //------------------------------is_finite-------------------------------------- 1780 // Has a finite value 1781 bool TypeInt::is_finite() const { 1782 return true; 1783 } 1784 1785 //------------------------------dump2------------------------------------------ 1786 // Dump TypeInt 1787 #ifndef PRODUCT 1788 static const char* intname(char* buf, size_t buf_size, jint n) { 1789 if (n == min_jint) 1790 return "min"; 1791 else if (n < min_jint + 10000) 1792 os::snprintf_checked(buf, buf_size, "min+" INT32_FORMAT, n - min_jint); 1793 else if (n == max_jint) 1794 return "max"; 1795 else if (n > max_jint - 10000) 1796 os::snprintf_checked(buf, buf_size, "max-" INT32_FORMAT, max_jint - n); 1797 else 1798 os::snprintf_checked(buf, buf_size, INT32_FORMAT, n); 1799 return buf; 1800 } 1801 1802 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const { 1803 char buf[40], buf2[40]; 1804 if (_lo == min_jint && _hi == max_jint) 1805 st->print("int"); 1806 else if (is_con()) 1807 st->print("int:%s", intname(buf, sizeof(buf), get_con())); 1808 else if (_lo == BOOL->_lo && _hi == BOOL->_hi) 1809 st->print("bool"); 1810 else if (_lo == BYTE->_lo && _hi == BYTE->_hi) 1811 st->print("byte"); 1812 else if (_lo == CHAR->_lo && _hi == CHAR->_hi) 1813 st->print("char"); 1814 else if (_lo == SHORT->_lo && _hi == SHORT->_hi) 1815 st->print("short"); 1816 else if (_hi == max_jint) 1817 st->print("int:>=%s", intname(buf, sizeof(buf), _lo)); 1818 else if (_lo == min_jint) 1819 st->print("int:<=%s", intname(buf, sizeof(buf), _hi)); 1820 else 1821 st->print("int:%s..%s", intname(buf, sizeof(buf), _lo), intname(buf2, sizeof(buf2), _hi)); 1822 1823 if (_widen != 0 && this != TypeInt::INT) 1824 st->print(":%.*s", _widen, "wwww"); 1825 } 1826 #endif 1827 1828 //------------------------------singleton-------------------------------------- 1829 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1830 // constants. 1831 bool TypeInt::singleton(void) const { 1832 return _lo >= _hi; 1833 } 1834 1835 bool TypeInt::empty(void) const { 1836 return _lo > _hi; 1837 } 1838 1839 //============================================================================= 1840 // Convenience common pre-built types. 1841 const TypeLong *TypeLong::MAX; 1842 const TypeLong *TypeLong::MIN; 1843 const TypeLong *TypeLong::MINUS_1;// -1 1844 const TypeLong *TypeLong::ZERO; // 0 1845 const TypeLong *TypeLong::ONE; // 1 1846 const TypeLong *TypeLong::POS; // >=0 1847 const TypeLong *TypeLong::LONG; // 64-bit integers 1848 const TypeLong *TypeLong::INT; // 32-bit subrange 1849 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange 1850 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG 1851 1852 //------------------------------TypeLong--------------------------------------- 1853 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long, w), _lo(lo), _hi(hi) { 1854 } 1855 1856 //------------------------------make------------------------------------------- 1857 const TypeLong *TypeLong::make( jlong lo ) { 1858 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons(); 1859 } 1860 1861 static int normalize_long_widen( jlong lo, jlong hi, int w ) { 1862 // Certain normalizations keep us sane when comparing types. 1863 // The 'SMALLINT' covers constants. 1864 if (lo <= hi) { 1865 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin; 1866 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG 1867 } else { 1868 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin; 1869 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG 1870 } 1871 return w; 1872 } 1873 1874 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) { 1875 w = normalize_long_widen(lo, hi, w); 1876 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons(); 1877 } 1878 1879 1880 //------------------------------meet------------------------------------------- 1881 // Compute the MEET of two types. It returns a new Type representation object 1882 // with reference count equal to the number of Types pointing at it. 1883 // Caller should wrap a Types around it. 1884 const Type *TypeLong::xmeet( const Type *t ) const { 1885 // Perform a fast test for common case; meeting the same types together. 1886 if( this == t ) return this; // Meeting same type? 1887 1888 // Currently "this->_base" is a TypeLong 1889 switch (t->base()) { // Switch on original type 1890 case AnyPtr: // Mixing with oops happens when javac 1891 case RawPtr: // reuses local variables 1892 case OopPtr: 1893 case InstPtr: 1894 case AryPtr: 1895 case MetadataPtr: 1896 case KlassPtr: 1897 case InstKlassPtr: 1898 case AryKlassPtr: 1899 case NarrowOop: 1900 case NarrowKlass: 1901 case Int: 1902 case FloatTop: 1903 case FloatCon: 1904 case FloatBot: 1905 case DoubleTop: 1906 case DoubleCon: 1907 case DoubleBot: 1908 case Bottom: // Ye Olde Default 1909 return Type::BOTTOM; 1910 default: // All else is a mistake 1911 typerr(t); 1912 case Top: // No change 1913 return this; 1914 case Long: // Long vs Long? 1915 break; 1916 } 1917 1918 // Expand covered set 1919 const TypeLong *r = t->is_long(); // Turn into a TypeLong 1920 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1921 } 1922 1923 //------------------------------xdual------------------------------------------ 1924 // Dual: reverse hi & lo; flip widen 1925 const Type *TypeLong::xdual() const { 1926 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen); 1927 return new TypeLong(_hi,_lo,w); 1928 } 1929 1930 //------------------------------widen------------------------------------------ 1931 // Only happens for optimistic top-down optimizations. 1932 const Type *TypeLong::widen( const Type *old, const Type* limit ) const { 1933 // Coming from TOP or such; no widening 1934 if( old->base() != Long ) return this; 1935 const TypeLong *ot = old->is_long(); 1936 1937 // If new guy is equal to old guy, no widening 1938 if( _lo == ot->_lo && _hi == ot->_hi ) 1939 return old; 1940 1941 // If new guy contains old, then we widened 1942 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1943 // New contains old 1944 // If new guy is already wider than old, no widening 1945 if( _widen > ot->_widen ) return this; 1946 // If old guy was a constant, do not bother 1947 if (ot->_lo == ot->_hi) return this; 1948 // Now widen new guy. 1949 // Check for widening too far 1950 if (_widen == WidenMax) { 1951 jlong max = max_jlong; 1952 jlong min = min_jlong; 1953 if (limit->isa_long()) { 1954 max = limit->is_long()->_hi; 1955 min = limit->is_long()->_lo; 1956 } 1957 if (min < _lo && _hi < max) { 1958 // If neither endpoint is extremal yet, push out the endpoint 1959 // which is closer to its respective limit. 1960 if (_lo >= 0 || // easy common case 1961 ((julong)_lo - min) >= ((julong)max - _hi)) { 1962 // Try to widen to an unsigned range type of 32/63 bits: 1963 if (max >= max_juint && _hi < max_juint) 1964 return make(_lo, max_juint, WidenMax); 1965 else 1966 return make(_lo, max, WidenMax); 1967 } else { 1968 return make(min, _hi, WidenMax); 1969 } 1970 } 1971 return TypeLong::LONG; 1972 } 1973 // Returned widened new guy 1974 return make(_lo,_hi,_widen+1); 1975 } 1976 1977 // If old guy contains new, then we probably widened too far & dropped to 1978 // bottom. Return the wider fellow. 1979 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1980 return old; 1981 1982 // fatal("Long value range is not subset"); 1983 // return this; 1984 return TypeLong::LONG; 1985 } 1986 1987 //------------------------------narrow---------------------------------------- 1988 // Only happens for pessimistic optimizations. 1989 const Type *TypeLong::narrow( const Type *old ) const { 1990 if (_lo >= _hi) return this; // already narrow enough 1991 if (old == nullptr) return this; 1992 const TypeLong* ot = old->isa_long(); 1993 if (ot == nullptr) return this; 1994 jlong olo = ot->_lo; 1995 jlong ohi = ot->_hi; 1996 1997 // If new guy is equal to old guy, no narrowing 1998 if (_lo == olo && _hi == ohi) return old; 1999 2000 // If old guy was maximum range, allow the narrowing 2001 if (olo == min_jlong && ohi == max_jlong) return this; 2002 2003 if (_lo < olo || _hi > ohi) 2004 return this; // doesn't narrow; pretty weird 2005 2006 // The new type narrows the old type, so look for a "death march". 2007 // See comments on PhaseTransform::saturate. 2008 julong nrange = (julong)_hi - _lo; 2009 julong orange = (julong)ohi - olo; 2010 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 2011 // Use the new type only if the range shrinks a lot. 2012 // We do not want the optimizer computing 2^31 point by point. 2013 return old; 2014 } 2015 2016 return this; 2017 } 2018 2019 //-----------------------------filter------------------------------------------ 2020 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const { 2021 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long(); 2022 if (ft == nullptr || ft->empty()) 2023 return Type::TOP; // Canonical empty value 2024 if (ft->_widen < this->_widen) { 2025 // Do not allow the value of kill->_widen to affect the outcome. 2026 // The widen bits must be allowed to run freely through the graph. 2027 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen); 2028 } 2029 return ft; 2030 } 2031 2032 //------------------------------eq--------------------------------------------- 2033 // Structural equality check for Type representations 2034 bool TypeLong::eq( const Type *t ) const { 2035 const TypeLong *r = t->is_long(); // Handy access 2036 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 2037 } 2038 2039 //------------------------------hash------------------------------------------- 2040 // Type-specific hashing function. 2041 uint TypeLong::hash(void) const { 2042 return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Long; 2043 } 2044 2045 //------------------------------is_finite-------------------------------------- 2046 // Has a finite value 2047 bool TypeLong::is_finite() const { 2048 return true; 2049 } 2050 2051 //------------------------------dump2------------------------------------------ 2052 // Dump TypeLong 2053 #ifndef PRODUCT 2054 static const char* longnamenear(jlong x, const char* xname, char* buf, size_t buf_size, jlong n) { 2055 if (n > x) { 2056 if (n >= x + 10000) return nullptr; 2057 os::snprintf_checked(buf, buf_size, "%s+" JLONG_FORMAT, xname, n - x); 2058 } else if (n < x) { 2059 if (n <= x - 10000) return nullptr; 2060 os::snprintf_checked(buf, buf_size, "%s-" JLONG_FORMAT, xname, x - n); 2061 } else { 2062 return xname; 2063 } 2064 return buf; 2065 } 2066 2067 static const char* longname(char* buf, size_t buf_size, jlong n) { 2068 const char* str; 2069 if (n == min_jlong) 2070 return "min"; 2071 else if (n < min_jlong + 10000) 2072 os::snprintf_checked(buf, buf_size, "min+" JLONG_FORMAT, n - min_jlong); 2073 else if (n == max_jlong) 2074 return "max"; 2075 else if (n > max_jlong - 10000) 2076 os::snprintf_checked(buf, buf_size, "max-" JLONG_FORMAT, max_jlong - n); 2077 else if ((str = longnamenear(max_juint, "maxuint", buf, buf_size, n)) != nullptr) 2078 return str; 2079 else if ((str = longnamenear(max_jint, "maxint", buf, buf_size, n)) != nullptr) 2080 return str; 2081 else if ((str = longnamenear(min_jint, "minint", buf, buf_size, n)) != nullptr) 2082 return str; 2083 else 2084 os::snprintf_checked(buf, buf_size, JLONG_FORMAT, n); 2085 return buf; 2086 } 2087 2088 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const { 2089 char buf[80], buf2[80]; 2090 if (_lo == min_jlong && _hi == max_jlong) 2091 st->print("long"); 2092 else if (is_con()) 2093 st->print("long:%s", longname(buf, sizeof(buf), get_con())); 2094 else if (_hi == max_jlong) 2095 st->print("long:>=%s", longname(buf, sizeof(buf), _lo)); 2096 else if (_lo == min_jlong) 2097 st->print("long:<=%s", longname(buf, sizeof(buf), _hi)); 2098 else 2099 st->print("long:%s..%s", longname(buf, sizeof(buf), _lo), longname(buf2,sizeof(buf2), _hi)); 2100 2101 if (_widen != 0 && this != TypeLong::LONG) 2102 st->print(":%.*s", _widen, "wwww"); 2103 } 2104 #endif 2105 2106 //------------------------------singleton-------------------------------------- 2107 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2108 // constants 2109 bool TypeLong::singleton(void) const { 2110 return _lo >= _hi; 2111 } 2112 2113 bool TypeLong::empty(void) const { 2114 return _lo > _hi; 2115 } 2116 2117 //============================================================================= 2118 // Convenience common pre-built types. 2119 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable 2120 const TypeTuple *TypeTuple::IFFALSE; 2121 const TypeTuple *TypeTuple::IFTRUE; 2122 const TypeTuple *TypeTuple::IFNEITHER; 2123 const TypeTuple *TypeTuple::LOOPBODY; 2124 const TypeTuple *TypeTuple::MEMBAR; 2125 const TypeTuple *TypeTuple::STORECONDITIONAL; 2126 const TypeTuple *TypeTuple::START_I2C; 2127 const TypeTuple *TypeTuple::INT_PAIR; 2128 const TypeTuple *TypeTuple::LONG_PAIR; 2129 const TypeTuple *TypeTuple::INT_CC_PAIR; 2130 const TypeTuple *TypeTuple::LONG_CC_PAIR; 2131 2132 //------------------------------make------------------------------------------- 2133 // Make a TypeTuple from the range of a method signature 2134 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) { 2135 ciType* return_type = sig->return_type(); 2136 uint arg_cnt = return_type->size(); 2137 const Type **field_array = fields(arg_cnt); 2138 switch (return_type->basic_type()) { 2139 case T_LONG: 2140 field_array[TypeFunc::Parms] = TypeLong::LONG; 2141 field_array[TypeFunc::Parms+1] = Type::HALF; 2142 break; 2143 case T_DOUBLE: 2144 field_array[TypeFunc::Parms] = Type::DOUBLE; 2145 field_array[TypeFunc::Parms+1] = Type::HALF; 2146 break; 2147 case T_OBJECT: 2148 case T_ARRAY: 2149 case T_BOOLEAN: 2150 case T_CHAR: 2151 case T_FLOAT: 2152 case T_BYTE: 2153 case T_SHORT: 2154 case T_INT: 2155 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling); 2156 break; 2157 case T_VOID: 2158 break; 2159 default: 2160 ShouldNotReachHere(); 2161 } 2162 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2163 } 2164 2165 // Make a TypeTuple from the domain of a method signature 2166 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) { 2167 uint arg_cnt = sig->size(); 2168 2169 uint pos = TypeFunc::Parms; 2170 const Type **field_array; 2171 if (recv != nullptr) { 2172 arg_cnt++; 2173 field_array = fields(arg_cnt); 2174 // Use get_const_type here because it respects UseUniqueSubclasses: 2175 field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL); 2176 } else { 2177 field_array = fields(arg_cnt); 2178 } 2179 2180 int i = 0; 2181 while (pos < TypeFunc::Parms + arg_cnt) { 2182 ciType* type = sig->type_at(i); 2183 2184 switch (type->basic_type()) { 2185 case T_LONG: 2186 field_array[pos++] = TypeLong::LONG; 2187 field_array[pos++] = Type::HALF; 2188 break; 2189 case T_DOUBLE: 2190 field_array[pos++] = Type::DOUBLE; 2191 field_array[pos++] = Type::HALF; 2192 break; 2193 case T_OBJECT: 2194 case T_ARRAY: 2195 case T_FLOAT: 2196 case T_INT: 2197 field_array[pos++] = get_const_type(type, interface_handling); 2198 break; 2199 case T_BOOLEAN: 2200 case T_CHAR: 2201 case T_BYTE: 2202 case T_SHORT: 2203 field_array[pos++] = TypeInt::INT; 2204 break; 2205 default: 2206 ShouldNotReachHere(); 2207 } 2208 i++; 2209 } 2210 2211 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2212 } 2213 2214 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) { 2215 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons(); 2216 } 2217 2218 //------------------------------fields----------------------------------------- 2219 // Subroutine call type with space allocated for argument types 2220 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly 2221 const Type **TypeTuple::fields( uint arg_cnt ) { 2222 const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) )); 2223 flds[TypeFunc::Control ] = Type::CONTROL; 2224 flds[TypeFunc::I_O ] = Type::ABIO; 2225 flds[TypeFunc::Memory ] = Type::MEMORY; 2226 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM; 2227 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS; 2228 2229 return flds; 2230 } 2231 2232 //------------------------------meet------------------------------------------- 2233 // Compute the MEET of two types. It returns a new Type object. 2234 const Type *TypeTuple::xmeet( const Type *t ) const { 2235 // Perform a fast test for common case; meeting the same types together. 2236 if( this == t ) return this; // Meeting same type-rep? 2237 2238 // Current "this->_base" is Tuple 2239 switch (t->base()) { // switch on original type 2240 2241 case Bottom: // Ye Olde Default 2242 return t; 2243 2244 default: // All else is a mistake 2245 typerr(t); 2246 2247 case Tuple: { // Meeting 2 signatures? 2248 const TypeTuple *x = t->is_tuple(); 2249 assert( _cnt == x->_cnt, "" ); 2250 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2251 for( uint i=0; i<_cnt; i++ ) 2252 fields[i] = field_at(i)->xmeet( x->field_at(i) ); 2253 return TypeTuple::make(_cnt,fields); 2254 } 2255 case Top: 2256 break; 2257 } 2258 return this; // Return the double constant 2259 } 2260 2261 //------------------------------xdual------------------------------------------ 2262 // Dual: compute field-by-field dual 2263 const Type *TypeTuple::xdual() const { 2264 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2265 for( uint i=0; i<_cnt; i++ ) 2266 fields[i] = _fields[i]->dual(); 2267 return new TypeTuple(_cnt,fields); 2268 } 2269 2270 //------------------------------eq--------------------------------------------- 2271 // Structural equality check for Type representations 2272 bool TypeTuple::eq( const Type *t ) const { 2273 const TypeTuple *s = (const TypeTuple *)t; 2274 if (_cnt != s->_cnt) return false; // Unequal field counts 2275 for (uint i = 0; i < _cnt; i++) 2276 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION! 2277 return false; // Missed 2278 return true; 2279 } 2280 2281 //------------------------------hash------------------------------------------- 2282 // Type-specific hashing function. 2283 uint TypeTuple::hash(void) const { 2284 uintptr_t sum = _cnt; 2285 for( uint i=0; i<_cnt; i++ ) 2286 sum += (uintptr_t)_fields[i]; // Hash on pointers directly 2287 return (uint)sum; 2288 } 2289 2290 //------------------------------dump2------------------------------------------ 2291 // Dump signature Type 2292 #ifndef PRODUCT 2293 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const { 2294 st->print("{"); 2295 if( !depth || d[this] ) { // Check for recursive print 2296 st->print("...}"); 2297 return; 2298 } 2299 d.Insert((void*)this, (void*)this); // Stop recursion 2300 if( _cnt ) { 2301 uint i; 2302 for( i=0; i<_cnt-1; i++ ) { 2303 st->print("%d:", i); 2304 _fields[i]->dump2(d, depth-1, st); 2305 st->print(", "); 2306 } 2307 st->print("%d:", i); 2308 _fields[i]->dump2(d, depth-1, st); 2309 } 2310 st->print("}"); 2311 } 2312 #endif 2313 2314 //------------------------------singleton-------------------------------------- 2315 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2316 // constants (Ldi nodes). Singletons are integer, float or double constants 2317 // or a single symbol. 2318 bool TypeTuple::singleton(void) const { 2319 return false; // Never a singleton 2320 } 2321 2322 bool TypeTuple::empty(void) const { 2323 for( uint i=0; i<_cnt; i++ ) { 2324 if (_fields[i]->empty()) return true; 2325 } 2326 return false; 2327 } 2328 2329 //============================================================================= 2330 // Convenience common pre-built types. 2331 2332 inline const TypeInt* normalize_array_size(const TypeInt* size) { 2333 // Certain normalizations keep us sane when comparing types. 2334 // We do not want arrayOop variables to differ only by the wideness 2335 // of their index types. Pick minimum wideness, since that is the 2336 // forced wideness of small ranges anyway. 2337 if (size->_widen != Type::WidenMin) 2338 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin); 2339 else 2340 return size; 2341 } 2342 2343 //------------------------------make------------------------------------------- 2344 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) { 2345 if (UseCompressedOops && elem->isa_oopptr()) { 2346 elem = elem->make_narrowoop(); 2347 } 2348 size = normalize_array_size(size); 2349 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons(); 2350 } 2351 2352 //------------------------------meet------------------------------------------- 2353 // Compute the MEET of two types. It returns a new Type object. 2354 const Type *TypeAry::xmeet( const Type *t ) const { 2355 // Perform a fast test for common case; meeting the same types together. 2356 if( this == t ) return this; // Meeting same type-rep? 2357 2358 // Current "this->_base" is Ary 2359 switch (t->base()) { // switch on original type 2360 2361 case Bottom: // Ye Olde Default 2362 return t; 2363 2364 default: // All else is a mistake 2365 typerr(t); 2366 2367 case Array: { // Meeting 2 arrays? 2368 const TypeAry *a = t->is_ary(); 2369 return TypeAry::make(_elem->meet_speculative(a->_elem), 2370 _size->xmeet(a->_size)->is_int(), 2371 _stable && a->_stable); 2372 } 2373 case Top: 2374 break; 2375 } 2376 return this; // Return the double constant 2377 } 2378 2379 //------------------------------xdual------------------------------------------ 2380 // Dual: compute field-by-field dual 2381 const Type *TypeAry::xdual() const { 2382 const TypeInt* size_dual = _size->dual()->is_int(); 2383 size_dual = normalize_array_size(size_dual); 2384 return new TypeAry(_elem->dual(), size_dual, !_stable); 2385 } 2386 2387 //------------------------------eq--------------------------------------------- 2388 // Structural equality check for Type representations 2389 bool TypeAry::eq( const Type *t ) const { 2390 const TypeAry *a = (const TypeAry*)t; 2391 return _elem == a->_elem && 2392 _stable == a->_stable && 2393 _size == a->_size; 2394 } 2395 2396 //------------------------------hash------------------------------------------- 2397 // Type-specific hashing function. 2398 uint TypeAry::hash(void) const { 2399 return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0); 2400 } 2401 2402 /** 2403 * Return same type without a speculative part in the element 2404 */ 2405 const TypeAry* TypeAry::remove_speculative() const { 2406 return make(_elem->remove_speculative(), _size, _stable); 2407 } 2408 2409 /** 2410 * Return same type with cleaned up speculative part of element 2411 */ 2412 const Type* TypeAry::cleanup_speculative() const { 2413 return make(_elem->cleanup_speculative(), _size, _stable); 2414 } 2415 2416 /** 2417 * Return same type but with a different inline depth (used for speculation) 2418 * 2419 * @param depth depth to meet with 2420 */ 2421 const TypePtr* TypePtr::with_inline_depth(int depth) const { 2422 if (!UseInlineDepthForSpeculativeTypes) { 2423 return this; 2424 } 2425 return make(AnyPtr, _ptr, _offset, _speculative, depth); 2426 } 2427 2428 //------------------------------dump2------------------------------------------ 2429 #ifndef PRODUCT 2430 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const { 2431 if (_stable) st->print("stable:"); 2432 _elem->dump2(d, depth, st); 2433 st->print("["); 2434 _size->dump2(d, depth, st); 2435 st->print("]"); 2436 } 2437 #endif 2438 2439 //------------------------------singleton-------------------------------------- 2440 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2441 // constants (Ldi nodes). Singletons are integer, float or double constants 2442 // or a single symbol. 2443 bool TypeAry::singleton(void) const { 2444 return false; // Never a singleton 2445 } 2446 2447 bool TypeAry::empty(void) const { 2448 return _elem->empty() || _size->empty(); 2449 } 2450 2451 //--------------------------ary_must_be_exact---------------------------------- 2452 bool TypeAry::ary_must_be_exact() const { 2453 // This logic looks at the element type of an array, and returns true 2454 // if the element type is either a primitive or a final instance class. 2455 // In such cases, an array built on this ary must have no subclasses. 2456 if (_elem == BOTTOM) return false; // general array not exact 2457 if (_elem == TOP ) return false; // inverted general array not exact 2458 const TypeOopPtr* toop = nullptr; 2459 if (UseCompressedOops && _elem->isa_narrowoop()) { 2460 toop = _elem->make_ptr()->isa_oopptr(); 2461 } else { 2462 toop = _elem->isa_oopptr(); 2463 } 2464 if (!toop) return true; // a primitive type, like int 2465 if (!toop->is_loaded()) return false; // unloaded class 2466 const TypeInstPtr* tinst; 2467 if (_elem->isa_narrowoop()) 2468 tinst = _elem->make_ptr()->isa_instptr(); 2469 else 2470 tinst = _elem->isa_instptr(); 2471 if (tinst) 2472 return tinst->instance_klass()->is_final(); 2473 const TypeAryPtr* tap; 2474 if (_elem->isa_narrowoop()) 2475 tap = _elem->make_ptr()->isa_aryptr(); 2476 else 2477 tap = _elem->isa_aryptr(); 2478 if (tap) 2479 return tap->ary()->ary_must_be_exact(); 2480 return false; 2481 } 2482 2483 //==============================TypeVect======================================= 2484 // Convenience common pre-built types. 2485 const TypeVect *TypeVect::VECTA = nullptr; // vector length agnostic 2486 const TypeVect *TypeVect::VECTS = nullptr; // 32-bit vectors 2487 const TypeVect *TypeVect::VECTD = nullptr; // 64-bit vectors 2488 const TypeVect *TypeVect::VECTX = nullptr; // 128-bit vectors 2489 const TypeVect *TypeVect::VECTY = nullptr; // 256-bit vectors 2490 const TypeVect *TypeVect::VECTZ = nullptr; // 512-bit vectors 2491 const TypeVect *TypeVect::VECTMASK = nullptr; // predicate/mask vector 2492 2493 //------------------------------make------------------------------------------- 2494 const TypeVect* TypeVect::make(const Type *elem, uint length, bool is_mask) { 2495 if (is_mask) { 2496 return makemask(elem, length); 2497 } 2498 BasicType elem_bt = elem->array_element_basic_type(); 2499 assert(is_java_primitive(elem_bt), "only primitive types in vector"); 2500 assert(Matcher::vector_size_supported(elem_bt, length), "length in range"); 2501 int size = length * type2aelembytes(elem_bt); 2502 switch (Matcher::vector_ideal_reg(size)) { 2503 case Op_VecA: 2504 return (TypeVect*)(new TypeVectA(elem, length))->hashcons(); 2505 case Op_VecS: 2506 return (TypeVect*)(new TypeVectS(elem, length))->hashcons(); 2507 case Op_RegL: 2508 case Op_VecD: 2509 case Op_RegD: 2510 return (TypeVect*)(new TypeVectD(elem, length))->hashcons(); 2511 case Op_VecX: 2512 return (TypeVect*)(new TypeVectX(elem, length))->hashcons(); 2513 case Op_VecY: 2514 return (TypeVect*)(new TypeVectY(elem, length))->hashcons(); 2515 case Op_VecZ: 2516 return (TypeVect*)(new TypeVectZ(elem, length))->hashcons(); 2517 } 2518 ShouldNotReachHere(); 2519 return nullptr; 2520 } 2521 2522 const TypeVect *TypeVect::makemask(const Type* elem, uint length) { 2523 BasicType elem_bt = elem->array_element_basic_type(); 2524 if (Matcher::has_predicated_vectors() && 2525 Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) { 2526 return TypeVectMask::make(elem, length); 2527 } else { 2528 return make(elem, length); 2529 } 2530 } 2531 2532 //------------------------------meet------------------------------------------- 2533 // Compute the MEET of two types. It returns a new Type object. 2534 const Type *TypeVect::xmeet( const Type *t ) const { 2535 // Perform a fast test for common case; meeting the same types together. 2536 if( this == t ) return this; // Meeting same type-rep? 2537 2538 // Current "this->_base" is Vector 2539 switch (t->base()) { // switch on original type 2540 2541 case Bottom: // Ye Olde Default 2542 return t; 2543 2544 default: // All else is a mistake 2545 typerr(t); 2546 case VectorMask: { 2547 const TypeVectMask* v = t->is_vectmask(); 2548 assert( base() == v->base(), ""); 2549 assert(length() == v->length(), ""); 2550 assert(element_basic_type() == v->element_basic_type(), ""); 2551 return TypeVect::makemask(_elem->xmeet(v->_elem), _length); 2552 } 2553 case VectorA: 2554 case VectorS: 2555 case VectorD: 2556 case VectorX: 2557 case VectorY: 2558 case VectorZ: { // Meeting 2 vectors? 2559 const TypeVect* v = t->is_vect(); 2560 assert( base() == v->base(), ""); 2561 assert(length() == v->length(), ""); 2562 assert(element_basic_type() == v->element_basic_type(), ""); 2563 return TypeVect::make(_elem->xmeet(v->_elem), _length); 2564 } 2565 case Top: 2566 break; 2567 } 2568 return this; 2569 } 2570 2571 //------------------------------xdual------------------------------------------ 2572 // Dual: compute field-by-field dual 2573 const Type *TypeVect::xdual() const { 2574 return new TypeVect(base(), _elem->dual(), _length); 2575 } 2576 2577 //------------------------------eq--------------------------------------------- 2578 // Structural equality check for Type representations 2579 bool TypeVect::eq(const Type *t) const { 2580 const TypeVect *v = t->is_vect(); 2581 return (_elem == v->_elem) && (_length == v->_length); 2582 } 2583 2584 //------------------------------hash------------------------------------------- 2585 // Type-specific hashing function. 2586 uint TypeVect::hash(void) const { 2587 return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_length; 2588 } 2589 2590 //------------------------------singleton-------------------------------------- 2591 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2592 // constants (Ldi nodes). Vector is singleton if all elements are the same 2593 // constant value (when vector is created with Replicate code). 2594 bool TypeVect::singleton(void) const { 2595 // There is no Con node for vectors yet. 2596 // return _elem->singleton(); 2597 return false; 2598 } 2599 2600 bool TypeVect::empty(void) const { 2601 return _elem->empty(); 2602 } 2603 2604 //------------------------------dump2------------------------------------------ 2605 #ifndef PRODUCT 2606 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const { 2607 switch (base()) { 2608 case VectorA: 2609 st->print("vectora["); break; 2610 case VectorS: 2611 st->print("vectors["); break; 2612 case VectorD: 2613 st->print("vectord["); break; 2614 case VectorX: 2615 st->print("vectorx["); break; 2616 case VectorY: 2617 st->print("vectory["); break; 2618 case VectorZ: 2619 st->print("vectorz["); break; 2620 case VectorMask: 2621 st->print("vectormask["); break; 2622 default: 2623 ShouldNotReachHere(); 2624 } 2625 st->print("%d]:{", _length); 2626 _elem->dump2(d, depth, st); 2627 st->print("}"); 2628 } 2629 #endif 2630 2631 bool TypeVectMask::eq(const Type *t) const { 2632 const TypeVectMask *v = t->is_vectmask(); 2633 return (element_type() == v->element_type()) && (length() == v->length()); 2634 } 2635 2636 const Type *TypeVectMask::xdual() const { 2637 return new TypeVectMask(element_type()->dual(), length()); 2638 } 2639 2640 const TypeVectMask *TypeVectMask::make(const BasicType elem_bt, uint length) { 2641 return make(get_const_basic_type(elem_bt), length); 2642 } 2643 2644 const TypeVectMask *TypeVectMask::make(const Type* elem, uint length) { 2645 const TypeVectMask* mtype = Matcher::predicate_reg_type(elem, length); 2646 return (TypeVectMask*) const_cast<TypeVectMask*>(mtype)->hashcons(); 2647 } 2648 2649 //============================================================================= 2650 // Convenience common pre-built types. 2651 const TypePtr *TypePtr::NULL_PTR; 2652 const TypePtr *TypePtr::NOTNULL; 2653 const TypePtr *TypePtr::BOTTOM; 2654 2655 //------------------------------meet------------------------------------------- 2656 // Meet over the PTR enum 2657 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = { 2658 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, 2659 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,}, 2660 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,}, 2661 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,}, 2662 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,}, 2663 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,}, 2664 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,} 2665 }; 2666 2667 //------------------------------make------------------------------------------- 2668 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) { 2669 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons(); 2670 } 2671 2672 //------------------------------cast_to_ptr_type------------------------------- 2673 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const { 2674 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type"); 2675 if( ptr == _ptr ) return this; 2676 return make(_base, ptr, _offset, _speculative, _inline_depth); 2677 } 2678 2679 //------------------------------get_con---------------------------------------- 2680 intptr_t TypePtr::get_con() const { 2681 assert( _ptr == Null, "" ); 2682 return _offset; 2683 } 2684 2685 //------------------------------meet------------------------------------------- 2686 // Compute the MEET of two types. It returns a new Type object. 2687 const Type *TypePtr::xmeet(const Type *t) const { 2688 const Type* res = xmeet_helper(t); 2689 if (res->isa_ptr() == nullptr) { 2690 return res; 2691 } 2692 2693 const TypePtr* res_ptr = res->is_ptr(); 2694 if (res_ptr->speculative() != nullptr) { 2695 // type->speculative() is null means that speculation is no better 2696 // than type, i.e. type->speculative() == type. So there are 2 2697 // ways to represent the fact that we have no useful speculative 2698 // data and we should use a single one to be able to test for 2699 // equality between types. Check whether type->speculative() == 2700 // type and set speculative to null if it is the case. 2701 if (res_ptr->remove_speculative() == res_ptr->speculative()) { 2702 return res_ptr->remove_speculative(); 2703 } 2704 } 2705 2706 return res; 2707 } 2708 2709 const Type *TypePtr::xmeet_helper(const Type *t) const { 2710 // Perform a fast test for common case; meeting the same types together. 2711 if( this == t ) return this; // Meeting same type-rep? 2712 2713 // Current "this->_base" is AnyPtr 2714 switch (t->base()) { // switch on original type 2715 case Int: // Mixing ints & oops happens when javac 2716 case Long: // reuses local variables 2717 case FloatTop: 2718 case FloatCon: 2719 case FloatBot: 2720 case DoubleTop: 2721 case DoubleCon: 2722 case DoubleBot: 2723 case NarrowOop: 2724 case NarrowKlass: 2725 case Bottom: // Ye Olde Default 2726 return Type::BOTTOM; 2727 case Top: 2728 return this; 2729 2730 case AnyPtr: { // Meeting to AnyPtrs 2731 const TypePtr *tp = t->is_ptr(); 2732 const TypePtr* speculative = xmeet_speculative(tp); 2733 int depth = meet_inline_depth(tp->inline_depth()); 2734 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth); 2735 } 2736 case RawPtr: // For these, flip the call around to cut down 2737 case OopPtr: 2738 case InstPtr: // on the cases I have to handle. 2739 case AryPtr: 2740 case MetadataPtr: 2741 case KlassPtr: 2742 case InstKlassPtr: 2743 case AryKlassPtr: 2744 return t->xmeet(this); // Call in reverse direction 2745 default: // All else is a mistake 2746 typerr(t); 2747 2748 } 2749 return this; 2750 } 2751 2752 //------------------------------meet_offset------------------------------------ 2753 int TypePtr::meet_offset( int offset ) const { 2754 // Either is 'TOP' offset? Return the other offset! 2755 if( _offset == OffsetTop ) return offset; 2756 if( offset == OffsetTop ) return _offset; 2757 // If either is different, return 'BOTTOM' offset 2758 if( _offset != offset ) return OffsetBot; 2759 return _offset; 2760 } 2761 2762 //------------------------------dual_offset------------------------------------ 2763 int TypePtr::dual_offset( ) const { 2764 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM' 2765 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP' 2766 return _offset; // Map everything else into self 2767 } 2768 2769 //------------------------------xdual------------------------------------------ 2770 // Dual: compute field-by-field dual 2771 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = { 2772 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR 2773 }; 2774 const Type *TypePtr::xdual() const { 2775 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth()); 2776 } 2777 2778 //------------------------------xadd_offset------------------------------------ 2779 int TypePtr::xadd_offset( intptr_t offset ) const { 2780 // Adding to 'TOP' offset? Return 'TOP'! 2781 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop; 2782 // Adding to 'BOTTOM' offset? Return 'BOTTOM'! 2783 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot; 2784 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'! 2785 offset += (intptr_t)_offset; 2786 if (offset != (int)offset || offset == OffsetTop) return OffsetBot; 2787 2788 // assert( _offset >= 0 && _offset+offset >= 0, "" ); 2789 // It is possible to construct a negative offset during PhaseCCP 2790 2791 return (int)offset; // Sum valid offsets 2792 } 2793 2794 //------------------------------add_offset------------------------------------- 2795 const TypePtr *TypePtr::add_offset( intptr_t offset ) const { 2796 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth); 2797 } 2798 2799 const TypePtr *TypePtr::with_offset(intptr_t offset) const { 2800 return make(AnyPtr, _ptr, offset, _speculative, _inline_depth); 2801 } 2802 2803 //------------------------------eq--------------------------------------------- 2804 // Structural equality check for Type representations 2805 bool TypePtr::eq( const Type *t ) const { 2806 const TypePtr *a = (const TypePtr*)t; 2807 return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth; 2808 } 2809 2810 //------------------------------hash------------------------------------------- 2811 // Type-specific hashing function. 2812 uint TypePtr::hash(void) const { 2813 return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth; 2814 } 2815 2816 /** 2817 * Return same type without a speculative part 2818 */ 2819 const TypePtr* TypePtr::remove_speculative() const { 2820 if (_speculative == nullptr) { 2821 return this; 2822 } 2823 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 2824 return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth); 2825 } 2826 2827 /** 2828 * Return same type but drop speculative part if we know we won't use 2829 * it 2830 */ 2831 const Type* TypePtr::cleanup_speculative() const { 2832 if (speculative() == nullptr) { 2833 return this; 2834 } 2835 const Type* no_spec = remove_speculative(); 2836 // If this is NULL_PTR then we don't need the speculative type 2837 // (with_inline_depth in case the current type inline depth is 2838 // InlineDepthTop) 2839 if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) { 2840 return no_spec; 2841 } 2842 if (above_centerline(speculative()->ptr())) { 2843 return no_spec; 2844 } 2845 const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr(); 2846 // If the speculative may be null and is an inexact klass then it 2847 // doesn't help 2848 if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() && 2849 (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) { 2850 return no_spec; 2851 } 2852 return this; 2853 } 2854 2855 /** 2856 * dual of the speculative part of the type 2857 */ 2858 const TypePtr* TypePtr::dual_speculative() const { 2859 if (_speculative == nullptr) { 2860 return nullptr; 2861 } 2862 return _speculative->dual()->is_ptr(); 2863 } 2864 2865 /** 2866 * meet of the speculative parts of 2 types 2867 * 2868 * @param other type to meet with 2869 */ 2870 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const { 2871 bool this_has_spec = (_speculative != nullptr); 2872 bool other_has_spec = (other->speculative() != nullptr); 2873 2874 if (!this_has_spec && !other_has_spec) { 2875 return nullptr; 2876 } 2877 2878 // If we are at a point where control flow meets and one branch has 2879 // a speculative type and the other has not, we meet the speculative 2880 // type of one branch with the actual type of the other. If the 2881 // actual type is exact and the speculative is as well, then the 2882 // result is a speculative type which is exact and we can continue 2883 // speculation further. 2884 const TypePtr* this_spec = _speculative; 2885 const TypePtr* other_spec = other->speculative(); 2886 2887 if (!this_has_spec) { 2888 this_spec = this; 2889 } 2890 2891 if (!other_has_spec) { 2892 other_spec = other; 2893 } 2894 2895 return this_spec->meet(other_spec)->is_ptr(); 2896 } 2897 2898 /** 2899 * dual of the inline depth for this type (used for speculation) 2900 */ 2901 int TypePtr::dual_inline_depth() const { 2902 return -inline_depth(); 2903 } 2904 2905 /** 2906 * meet of 2 inline depths (used for speculation) 2907 * 2908 * @param depth depth to meet with 2909 */ 2910 int TypePtr::meet_inline_depth(int depth) const { 2911 return MAX2(inline_depth(), depth); 2912 } 2913 2914 /** 2915 * Are the speculative parts of 2 types equal? 2916 * 2917 * @param other type to compare this one to 2918 */ 2919 bool TypePtr::eq_speculative(const TypePtr* other) const { 2920 if (_speculative == nullptr || other->speculative() == nullptr) { 2921 return _speculative == other->speculative(); 2922 } 2923 2924 if (_speculative->base() != other->speculative()->base()) { 2925 return false; 2926 } 2927 2928 return _speculative->eq(other->speculative()); 2929 } 2930 2931 /** 2932 * Hash of the speculative part of the type 2933 */ 2934 int TypePtr::hash_speculative() const { 2935 if (_speculative == nullptr) { 2936 return 0; 2937 } 2938 2939 return _speculative->hash(); 2940 } 2941 2942 /** 2943 * add offset to the speculative part of the type 2944 * 2945 * @param offset offset to add 2946 */ 2947 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const { 2948 if (_speculative == nullptr) { 2949 return nullptr; 2950 } 2951 return _speculative->add_offset(offset)->is_ptr(); 2952 } 2953 2954 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const { 2955 if (_speculative == nullptr) { 2956 return nullptr; 2957 } 2958 return _speculative->with_offset(offset)->is_ptr(); 2959 } 2960 2961 /** 2962 * return exact klass from the speculative type if there's one 2963 */ 2964 ciKlass* TypePtr::speculative_type() const { 2965 if (_speculative != nullptr && _speculative->isa_oopptr()) { 2966 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr(); 2967 if (speculative->klass_is_exact()) { 2968 return speculative->exact_klass(); 2969 } 2970 } 2971 return nullptr; 2972 } 2973 2974 /** 2975 * return true if speculative type may be null 2976 */ 2977 bool TypePtr::speculative_maybe_null() const { 2978 if (_speculative != nullptr) { 2979 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 2980 return speculative->maybe_null(); 2981 } 2982 return true; 2983 } 2984 2985 bool TypePtr::speculative_always_null() const { 2986 if (_speculative != nullptr) { 2987 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 2988 return speculative == TypePtr::NULL_PTR; 2989 } 2990 return false; 2991 } 2992 2993 /** 2994 * Same as TypePtr::speculative_type() but return the klass only if 2995 * the speculative tells us is not null 2996 */ 2997 ciKlass* TypePtr::speculative_type_not_null() const { 2998 if (speculative_maybe_null()) { 2999 return nullptr; 3000 } 3001 return speculative_type(); 3002 } 3003 3004 /** 3005 * Check whether new profiling would improve speculative type 3006 * 3007 * @param exact_kls class from profiling 3008 * @param inline_depth inlining depth of profile point 3009 * 3010 * @return true if type profile is valuable 3011 */ 3012 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 3013 // no profiling? 3014 if (exact_kls == nullptr) { 3015 return false; 3016 } 3017 if (speculative() == TypePtr::NULL_PTR) { 3018 return false; 3019 } 3020 // no speculative type or non exact speculative type? 3021 if (speculative_type() == nullptr) { 3022 return true; 3023 } 3024 // If the node already has an exact speculative type keep it, 3025 // unless it was provided by profiling that is at a deeper 3026 // inlining level. Profiling at a higher inlining depth is 3027 // expected to be less accurate. 3028 if (_speculative->inline_depth() == InlineDepthBottom) { 3029 return false; 3030 } 3031 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison"); 3032 return inline_depth < _speculative->inline_depth(); 3033 } 3034 3035 /** 3036 * Check whether new profiling would improve ptr (= tells us it is non 3037 * null) 3038 * 3039 * @param ptr_kind always null or not null? 3040 * 3041 * @return true if ptr profile is valuable 3042 */ 3043 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const { 3044 // profiling doesn't tell us anything useful 3045 if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) { 3046 return false; 3047 } 3048 // We already know this is not null 3049 if (!this->maybe_null()) { 3050 return false; 3051 } 3052 // We already know the speculative type cannot be null 3053 if (!speculative_maybe_null()) { 3054 return false; 3055 } 3056 // We already know this is always null 3057 if (this == TypePtr::NULL_PTR) { 3058 return false; 3059 } 3060 // We already know the speculative type is always null 3061 if (speculative_always_null()) { 3062 return false; 3063 } 3064 if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) { 3065 return false; 3066 } 3067 return true; 3068 } 3069 3070 //------------------------------dump2------------------------------------------ 3071 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = { 3072 "TopPTR","AnyNull","Constant","null","NotNull","BotPTR" 3073 }; 3074 3075 #ifndef PRODUCT 3076 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3077 if( _ptr == Null ) st->print("null"); 3078 else st->print("%s *", ptr_msg[_ptr]); 3079 if( _offset == OffsetTop ) st->print("+top"); 3080 else if( _offset == OffsetBot ) st->print("+bot"); 3081 else if( _offset ) st->print("+%d", _offset); 3082 dump_inline_depth(st); 3083 dump_speculative(st); 3084 } 3085 3086 /** 3087 *dump the speculative part of the type 3088 */ 3089 void TypePtr::dump_speculative(outputStream *st) const { 3090 if (_speculative != nullptr) { 3091 st->print(" (speculative="); 3092 _speculative->dump_on(st); 3093 st->print(")"); 3094 } 3095 } 3096 3097 /** 3098 *dump the inline depth of the type 3099 */ 3100 void TypePtr::dump_inline_depth(outputStream *st) const { 3101 if (_inline_depth != InlineDepthBottom) { 3102 if (_inline_depth == InlineDepthTop) { 3103 st->print(" (inline_depth=InlineDepthTop)"); 3104 } else { 3105 st->print(" (inline_depth=%d)", _inline_depth); 3106 } 3107 } 3108 } 3109 #endif 3110 3111 //------------------------------singleton-------------------------------------- 3112 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 3113 // constants 3114 bool TypePtr::singleton(void) const { 3115 // TopPTR, Null, AnyNull, Constant are all singletons 3116 return (_offset != OffsetBot) && !below_centerline(_ptr); 3117 } 3118 3119 bool TypePtr::empty(void) const { 3120 return (_offset == OffsetTop) || above_centerline(_ptr); 3121 } 3122 3123 //============================================================================= 3124 // Convenience common pre-built types. 3125 const TypeRawPtr *TypeRawPtr::BOTTOM; 3126 const TypeRawPtr *TypeRawPtr::NOTNULL; 3127 3128 //------------------------------make------------------------------------------- 3129 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) { 3130 assert( ptr != Constant, "what is the constant?" ); 3131 assert( ptr != Null, "Use TypePtr for null" ); 3132 return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons(); 3133 } 3134 3135 const TypeRawPtr *TypeRawPtr::make( address bits ) { 3136 assert( bits, "Use TypePtr for null" ); 3137 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons(); 3138 } 3139 3140 //------------------------------cast_to_ptr_type------------------------------- 3141 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const { 3142 assert( ptr != Constant, "what is the constant?" ); 3143 assert( ptr != Null, "Use TypePtr for null" ); 3144 assert( _bits == nullptr, "Why cast a constant address?"); 3145 if( ptr == _ptr ) return this; 3146 return make(ptr); 3147 } 3148 3149 //------------------------------get_con---------------------------------------- 3150 intptr_t TypeRawPtr::get_con() const { 3151 assert( _ptr == Null || _ptr == Constant, "" ); 3152 return (intptr_t)_bits; 3153 } 3154 3155 //------------------------------meet------------------------------------------- 3156 // Compute the MEET of two types. It returns a new Type object. 3157 const Type *TypeRawPtr::xmeet( const Type *t ) const { 3158 // Perform a fast test for common case; meeting the same types together. 3159 if( this == t ) return this; // Meeting same type-rep? 3160 3161 // Current "this->_base" is RawPtr 3162 switch( t->base() ) { // switch on original type 3163 case Bottom: // Ye Olde Default 3164 return t; 3165 case Top: 3166 return this; 3167 case AnyPtr: // Meeting to AnyPtrs 3168 break; 3169 case RawPtr: { // might be top, bot, any/not or constant 3170 enum PTR tptr = t->is_ptr()->ptr(); 3171 enum PTR ptr = meet_ptr( tptr ); 3172 if( ptr == Constant ) { // Cannot be equal constants, so... 3173 if( tptr == Constant && _ptr != Constant) return t; 3174 if( _ptr == Constant && tptr != Constant) return this; 3175 ptr = NotNull; // Fall down in lattice 3176 } 3177 return make( ptr ); 3178 } 3179 3180 case OopPtr: 3181 case InstPtr: 3182 case AryPtr: 3183 case MetadataPtr: 3184 case KlassPtr: 3185 case InstKlassPtr: 3186 case AryKlassPtr: 3187 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3188 default: // All else is a mistake 3189 typerr(t); 3190 } 3191 3192 // Found an AnyPtr type vs self-RawPtr type 3193 const TypePtr *tp = t->is_ptr(); 3194 switch (tp->ptr()) { 3195 case TypePtr::TopPTR: return this; 3196 case TypePtr::BotPTR: return t; 3197 case TypePtr::Null: 3198 if( _ptr == TypePtr::TopPTR ) return t; 3199 return TypeRawPtr::BOTTOM; 3200 case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth()); 3201 case TypePtr::AnyNull: 3202 if( _ptr == TypePtr::Constant) return this; 3203 return make( meet_ptr(TypePtr::AnyNull) ); 3204 default: ShouldNotReachHere(); 3205 } 3206 return this; 3207 } 3208 3209 //------------------------------xdual------------------------------------------ 3210 // Dual: compute field-by-field dual 3211 const Type *TypeRawPtr::xdual() const { 3212 return new TypeRawPtr( dual_ptr(), _bits ); 3213 } 3214 3215 //------------------------------add_offset------------------------------------- 3216 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const { 3217 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer 3218 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer 3219 if( offset == 0 ) return this; // No change 3220 switch (_ptr) { 3221 case TypePtr::TopPTR: 3222 case TypePtr::BotPTR: 3223 case TypePtr::NotNull: 3224 return this; 3225 case TypePtr::Null: 3226 case TypePtr::Constant: { 3227 address bits = _bits+offset; 3228 if ( bits == 0 ) return TypePtr::NULL_PTR; 3229 return make( bits ); 3230 } 3231 default: ShouldNotReachHere(); 3232 } 3233 return nullptr; // Lint noise 3234 } 3235 3236 //------------------------------eq--------------------------------------------- 3237 // Structural equality check for Type representations 3238 bool TypeRawPtr::eq( const Type *t ) const { 3239 const TypeRawPtr *a = (const TypeRawPtr*)t; 3240 return _bits == a->_bits && TypePtr::eq(t); 3241 } 3242 3243 //------------------------------hash------------------------------------------- 3244 // Type-specific hashing function. 3245 uint TypeRawPtr::hash(void) const { 3246 return (uint)(uintptr_t)_bits + (uint)TypePtr::hash(); 3247 } 3248 3249 //------------------------------dump2------------------------------------------ 3250 #ifndef PRODUCT 3251 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3252 if( _ptr == Constant ) 3253 st->print(INTPTR_FORMAT, p2i(_bits)); 3254 else 3255 st->print("rawptr:%s", ptr_msg[_ptr]); 3256 } 3257 #endif 3258 3259 //============================================================================= 3260 // Convenience common pre-built type. 3261 const TypeOopPtr *TypeOopPtr::BOTTOM; 3262 3263 TypeInterfaces::TypeInterfaces() 3264 : Type(Interfaces), _list(Compile::current()->type_arena(), 0, 0, nullptr), 3265 _hash(0), _exact_klass(nullptr) { 3266 DEBUG_ONLY(_initialized = true); 3267 } 3268 3269 TypeInterfaces::TypeInterfaces(GrowableArray<ciInstanceKlass*>* interfaces) 3270 : Type(Interfaces), _list(Compile::current()->type_arena(), interfaces->length(), 0, nullptr), 3271 _hash(0), _exact_klass(nullptr) { 3272 for (int i = 0; i < interfaces->length(); i++) { 3273 add(interfaces->at(i)); 3274 } 3275 initialize(); 3276 } 3277 3278 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) { 3279 TypeInterfaces* result = (interfaces == nullptr) ? new TypeInterfaces() : new TypeInterfaces(interfaces); 3280 return (const TypeInterfaces*)result->hashcons(); 3281 } 3282 3283 void TypeInterfaces::initialize() { 3284 compute_hash(); 3285 compute_exact_klass(); 3286 DEBUG_ONLY(_initialized = true;) 3287 } 3288 3289 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) { 3290 if ((intptr_t)k1 < (intptr_t)k2) { 3291 return -1; 3292 } else if ((intptr_t)k1 > (intptr_t)k2) { 3293 return 1; 3294 } 3295 return 0; 3296 } 3297 3298 void TypeInterfaces::add(ciInstanceKlass* interface) { 3299 assert(interface->is_interface(), "for interfaces only"); 3300 _list.insert_sorted<compare>(interface); 3301 verify(); 3302 } 3303 3304 bool TypeInterfaces::eq(const Type* t) const { 3305 const TypeInterfaces* other = (const TypeInterfaces*)t; 3306 if (_list.length() != other->_list.length()) { 3307 return false; 3308 } 3309 for (int i = 0; i < _list.length(); i++) { 3310 ciKlass* k1 = _list.at(i); 3311 ciKlass* k2 = other->_list.at(i); 3312 if (!k1->equals(k2)) { 3313 return false; 3314 } 3315 } 3316 return true; 3317 } 3318 3319 bool TypeInterfaces::eq(ciInstanceKlass* k) const { 3320 assert(k->is_loaded(), "should be loaded"); 3321 GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces(); 3322 if (_list.length() != interfaces->length()) { 3323 return false; 3324 } 3325 for (int i = 0; i < interfaces->length(); i++) { 3326 bool found = false; 3327 _list.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found); 3328 if (!found) { 3329 return false; 3330 } 3331 } 3332 return true; 3333 } 3334 3335 3336 uint TypeInterfaces::hash() const { 3337 assert(_initialized, "must be"); 3338 return _hash; 3339 } 3340 3341 const Type* TypeInterfaces::xdual() const { 3342 return this; 3343 } 3344 3345 void TypeInterfaces::compute_hash() { 3346 uint hash = 0; 3347 for (int i = 0; i < _list.length(); i++) { 3348 ciKlass* k = _list.at(i); 3349 hash += k->hash(); 3350 } 3351 _hash = hash; 3352 } 3353 3354 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) { 3355 return (int)((*k1)->ident() - (*k2)->ident()); 3356 } 3357 3358 void TypeInterfaces::dump(outputStream* st) const { 3359 if (_list.length() == 0) { 3360 return; 3361 } 3362 ResourceMark rm; 3363 st->print(" ("); 3364 GrowableArray<ciInstanceKlass*> interfaces; 3365 interfaces.appendAll(&_list); 3366 // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation 3367 interfaces.sort(compare_interfaces); 3368 for (int i = 0; i < interfaces.length(); i++) { 3369 if (i > 0) { 3370 st->print(","); 3371 } 3372 ciKlass* k = interfaces.at(i); 3373 k->print_name_on(st); 3374 } 3375 st->print(")"); 3376 } 3377 3378 #ifdef ASSERT 3379 void TypeInterfaces::verify() const { 3380 for (int i = 1; i < _list.length(); i++) { 3381 ciInstanceKlass* k1 = _list.at(i-1); 3382 ciInstanceKlass* k2 = _list.at(i); 3383 assert(compare(k2, k1) > 0, "should be ordered"); 3384 assert(k1 != k2, "no duplicate"); 3385 } 3386 } 3387 #endif 3388 3389 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const { 3390 GrowableArray<ciInstanceKlass*> result_list; 3391 int i = 0; 3392 int j = 0; 3393 while (i < _list.length() || j < other->_list.length()) { 3394 while (i < _list.length() && 3395 (j >= other->_list.length() || 3396 compare(_list.at(i), other->_list.at(j)) < 0)) { 3397 result_list.push(_list.at(i)); 3398 i++; 3399 } 3400 while (j < other->_list.length() && 3401 (i >= _list.length() || 3402 compare(other->_list.at(j), _list.at(i)) < 0)) { 3403 result_list.push(other->_list.at(j)); 3404 j++; 3405 } 3406 if (i < _list.length() && 3407 j < other->_list.length() && 3408 _list.at(i) == other->_list.at(j)) { 3409 result_list.push(_list.at(i)); 3410 i++; 3411 j++; 3412 } 3413 } 3414 const TypeInterfaces* result = TypeInterfaces::make(&result_list); 3415 #ifdef ASSERT 3416 result->verify(); 3417 for (int i = 0; i < _list.length(); i++) { 3418 assert(result->_list.contains(_list.at(i)), "missing"); 3419 } 3420 for (int i = 0; i < other->_list.length(); i++) { 3421 assert(result->_list.contains(other->_list.at(i)), "missing"); 3422 } 3423 for (int i = 0; i < result->_list.length(); i++) { 3424 assert(_list.contains(result->_list.at(i)) || other->_list.contains(result->_list.at(i)), "missing"); 3425 } 3426 #endif 3427 return result; 3428 } 3429 3430 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const { 3431 GrowableArray<ciInstanceKlass*> result_list; 3432 int i = 0; 3433 int j = 0; 3434 while (i < _list.length() || j < other->_list.length()) { 3435 while (i < _list.length() && 3436 (j >= other->_list.length() || 3437 compare(_list.at(i), other->_list.at(j)) < 0)) { 3438 i++; 3439 } 3440 while (j < other->_list.length() && 3441 (i >= _list.length() || 3442 compare(other->_list.at(j), _list.at(i)) < 0)) { 3443 j++; 3444 } 3445 if (i < _list.length() && 3446 j < other->_list.length() && 3447 _list.at(i) == other->_list.at(j)) { 3448 result_list.push(_list.at(i)); 3449 i++; 3450 j++; 3451 } 3452 } 3453 const TypeInterfaces* result = TypeInterfaces::make(&result_list); 3454 #ifdef ASSERT 3455 result->verify(); 3456 for (int i = 0; i < _list.length(); i++) { 3457 assert(!other->_list.contains(_list.at(i)) || result->_list.contains(_list.at(i)), "missing"); 3458 } 3459 for (int i = 0; i < other->_list.length(); i++) { 3460 assert(!_list.contains(other->_list.at(i)) || result->_list.contains(other->_list.at(i)), "missing"); 3461 } 3462 for (int i = 0; i < result->_list.length(); i++) { 3463 assert(_list.contains(result->_list.at(i)) && other->_list.contains(result->_list.at(i)), "missing"); 3464 } 3465 #endif 3466 return result; 3467 } 3468 3469 // Is there a single ciKlass* that can represent the interface set? 3470 ciInstanceKlass* TypeInterfaces::exact_klass() const { 3471 assert(_initialized, "must be"); 3472 return _exact_klass; 3473 } 3474 3475 void TypeInterfaces::compute_exact_klass() { 3476 if (_list.length() == 0) { 3477 _exact_klass = nullptr; 3478 return; 3479 } 3480 ciInstanceKlass* res = nullptr; 3481 for (int i = 0; i < _list.length(); i++) { 3482 ciInstanceKlass* interface = _list.at(i); 3483 if (eq(interface)) { 3484 assert(res == nullptr, ""); 3485 res = interface; 3486 } 3487 } 3488 _exact_klass = res; 3489 } 3490 3491 #ifdef ASSERT 3492 void TypeInterfaces::verify_is_loaded() const { 3493 for (int i = 0; i < _list.length(); i++) { 3494 ciKlass* interface = _list.at(i); 3495 assert(interface->is_loaded(), "Interface not loaded"); 3496 } 3497 } 3498 #endif 3499 3500 // Can't be implemented because there's no way to know if the type is above or below the center line. 3501 const Type* TypeInterfaces::xmeet(const Type* t) const { 3502 ShouldNotReachHere(); 3503 return Type::xmeet(t); 3504 } 3505 3506 bool TypeInterfaces::singleton(void) const { 3507 ShouldNotReachHere(); 3508 return Type::singleton(); 3509 } 3510 3511 //------------------------------TypeOopPtr------------------------------------- 3512 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, 3513 int instance_id, const TypePtr* speculative, int inline_depth) 3514 : TypePtr(t, ptr, offset, speculative, inline_depth), 3515 _const_oop(o), _klass(k), 3516 _interfaces(interfaces), 3517 _klass_is_exact(xk), 3518 _is_ptr_to_narrowoop(false), 3519 _is_ptr_to_narrowklass(false), 3520 _is_ptr_to_boxed_value(false), 3521 _instance_id(instance_id) { 3522 #ifdef ASSERT 3523 if (klass() != nullptr && klass()->is_loaded()) { 3524 interfaces->verify_is_loaded(); 3525 } 3526 #endif 3527 if (Compile::current()->eliminate_boxing() && (t == InstPtr) && 3528 (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) { 3529 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset); 3530 } 3531 #ifdef _LP64 3532 if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) { 3533 if (_offset == oopDesc::klass_offset_in_bytes()) { 3534 _is_ptr_to_narrowklass = UseCompressedClassPointers; 3535 } else if (klass() == nullptr) { 3536 // Array with unknown body type 3537 assert(this->isa_aryptr(), "only arrays without klass"); 3538 _is_ptr_to_narrowoop = UseCompressedOops; 3539 } else if (this->isa_aryptr()) { 3540 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() && 3541 _offset != arrayOopDesc::length_offset_in_bytes()); 3542 } else if (klass()->is_instance_klass()) { 3543 ciInstanceKlass* ik = klass()->as_instance_klass(); 3544 if (this->isa_klassptr()) { 3545 // Perm objects don't use compressed references 3546 } else if (_offset == OffsetBot || _offset == OffsetTop) { 3547 // unsafe access 3548 _is_ptr_to_narrowoop = UseCompressedOops; 3549 } else { 3550 assert(this->isa_instptr(), "must be an instance ptr."); 3551 3552 if (klass() == ciEnv::current()->Class_klass() && 3553 (_offset == java_lang_Class::klass_offset() || 3554 _offset == java_lang_Class::array_klass_offset())) { 3555 // Special hidden fields from the Class. 3556 assert(this->isa_instptr(), "must be an instance ptr."); 3557 _is_ptr_to_narrowoop = false; 3558 } else if (klass() == ciEnv::current()->Class_klass() && 3559 _offset >= InstanceMirrorKlass::offset_of_static_fields()) { 3560 // Static fields 3561 ciField* field = nullptr; 3562 if (const_oop() != nullptr) { 3563 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 3564 field = k->get_field_by_offset(_offset, true); 3565 } 3566 if (field != nullptr) { 3567 BasicType basic_elem_type = field->layout_type(); 3568 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type); 3569 } else { 3570 // unsafe access 3571 _is_ptr_to_narrowoop = UseCompressedOops; 3572 } 3573 } else { 3574 // Instance fields which contains a compressed oop references. 3575 ciField* field = ik->get_field_by_offset(_offset, false); 3576 if (field != nullptr) { 3577 BasicType basic_elem_type = field->layout_type(); 3578 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type); 3579 } else if (klass()->equals(ciEnv::current()->Object_klass())) { 3580 // Compile::find_alias_type() cast exactness on all types to verify 3581 // that it does not affect alias type. 3582 _is_ptr_to_narrowoop = UseCompressedOops; 3583 } else { 3584 // Type for the copy start in LibraryCallKit::inline_native_clone(). 3585 _is_ptr_to_narrowoop = UseCompressedOops; 3586 } 3587 } 3588 } 3589 } 3590 } 3591 #endif 3592 } 3593 3594 //------------------------------make------------------------------------------- 3595 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id, 3596 const TypePtr* speculative, int inline_depth) { 3597 assert(ptr != Constant, "no constant generic pointers"); 3598 ciKlass* k = Compile::current()->env()->Object_klass(); 3599 bool xk = false; 3600 ciObject* o = nullptr; 3601 const TypeInterfaces* interfaces = TypeInterfaces::make(); 3602 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons(); 3603 } 3604 3605 3606 //------------------------------cast_to_ptr_type------------------------------- 3607 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const { 3608 assert(_base == OopPtr, "subclass must override cast_to_ptr_type"); 3609 if( ptr == _ptr ) return this; 3610 return make(ptr, _offset, _instance_id, _speculative, _inline_depth); 3611 } 3612 3613 //-----------------------------cast_to_instance_id---------------------------- 3614 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const { 3615 // There are no instances of a general oop. 3616 // Return self unchanged. 3617 return this; 3618 } 3619 3620 //-----------------------------cast_to_exactness------------------------------- 3621 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const { 3622 // There is no such thing as an exact general oop. 3623 // Return self unchanged. 3624 return this; 3625 } 3626 3627 3628 //------------------------------as_klass_type---------------------------------- 3629 // Return the klass type corresponding to this instance or array type. 3630 // It is the type that is loaded from an object of this type. 3631 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const { 3632 ShouldNotReachHere(); 3633 return nullptr; 3634 } 3635 3636 //------------------------------meet------------------------------------------- 3637 // Compute the MEET of two types. It returns a new Type object. 3638 const Type *TypeOopPtr::xmeet_helper(const Type *t) const { 3639 // Perform a fast test for common case; meeting the same types together. 3640 if( this == t ) return this; // Meeting same type-rep? 3641 3642 // Current "this->_base" is OopPtr 3643 switch (t->base()) { // switch on original type 3644 3645 case Int: // Mixing ints & oops happens when javac 3646 case Long: // reuses local variables 3647 case FloatTop: 3648 case FloatCon: 3649 case FloatBot: 3650 case DoubleTop: 3651 case DoubleCon: 3652 case DoubleBot: 3653 case NarrowOop: 3654 case NarrowKlass: 3655 case Bottom: // Ye Olde Default 3656 return Type::BOTTOM; 3657 case Top: 3658 return this; 3659 3660 default: // All else is a mistake 3661 typerr(t); 3662 3663 case RawPtr: 3664 case MetadataPtr: 3665 case KlassPtr: 3666 case InstKlassPtr: 3667 case AryKlassPtr: 3668 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3669 3670 case AnyPtr: { 3671 // Found an AnyPtr type vs self-OopPtr type 3672 const TypePtr *tp = t->is_ptr(); 3673 int offset = meet_offset(tp->offset()); 3674 PTR ptr = meet_ptr(tp->ptr()); 3675 const TypePtr* speculative = xmeet_speculative(tp); 3676 int depth = meet_inline_depth(tp->inline_depth()); 3677 switch (tp->ptr()) { 3678 case Null: 3679 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3680 // else fall through: 3681 case TopPTR: 3682 case AnyNull: { 3683 int instance_id = meet_instance_id(InstanceTop); 3684 return make(ptr, offset, instance_id, speculative, depth); 3685 } 3686 case BotPTR: 3687 case NotNull: 3688 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3689 default: typerr(t); 3690 } 3691 } 3692 3693 case OopPtr: { // Meeting to other OopPtrs 3694 const TypeOopPtr *tp = t->is_oopptr(); 3695 int instance_id = meet_instance_id(tp->instance_id()); 3696 const TypePtr* speculative = xmeet_speculative(tp); 3697 int depth = meet_inline_depth(tp->inline_depth()); 3698 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth); 3699 } 3700 3701 case InstPtr: // For these, flip the call around to cut down 3702 case AryPtr: 3703 return t->xmeet(this); // Call in reverse direction 3704 3705 } // End of switch 3706 return this; // Return the double constant 3707 } 3708 3709 3710 //------------------------------xdual------------------------------------------ 3711 // Dual of a pure heap pointer. No relevant klass or oop information. 3712 const Type *TypeOopPtr::xdual() const { 3713 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here"); 3714 assert(const_oop() == nullptr, "no constants here"); 3715 return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 3716 } 3717 3718 //--------------------------make_from_klass_common----------------------------- 3719 // Computes the element-type given a klass. 3720 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) { 3721 if (klass->is_instance_klass()) { 3722 Compile* C = Compile::current(); 3723 Dependencies* deps = C->dependencies(); 3724 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 3725 // Element is an instance 3726 bool klass_is_exact = false; 3727 if (klass->is_loaded()) { 3728 // Try to set klass_is_exact. 3729 ciInstanceKlass* ik = klass->as_instance_klass(); 3730 klass_is_exact = ik->is_final(); 3731 if (!klass_is_exact && klass_change 3732 && deps != nullptr && UseUniqueSubclasses) { 3733 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 3734 if (sub != nullptr) { 3735 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 3736 klass = ik = sub; 3737 klass_is_exact = sub->is_final(); 3738 } 3739 } 3740 if (!klass_is_exact && try_for_exact && deps != nullptr && 3741 !ik->is_interface() && !ik->has_subklass()) { 3742 // Add a dependence; if concrete subclass added we need to recompile 3743 deps->assert_leaf_type(ik); 3744 klass_is_exact = true; 3745 } 3746 } 3747 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 3748 return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0); 3749 } else if (klass->is_obj_array_klass()) { 3750 // Element is an object array. Recursively call ourself. 3751 ciKlass* eklass = klass->as_obj_array_klass()->element_klass(); 3752 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling); 3753 bool xk = etype->klass_is_exact(); 3754 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3755 // We used to pass NotNull in here, asserting that the sub-arrays 3756 // are all not-null. This is not true in generally, as code can 3757 // slam nulls down in the subarrays. 3758 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0); 3759 return arr; 3760 } else if (klass->is_type_array_klass()) { 3761 // Element is an typeArray 3762 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); 3763 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3764 // We used to pass NotNull in here, asserting that the array pointer 3765 // is not-null. That was not true in general. 3766 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0); 3767 return arr; 3768 } else { 3769 ShouldNotReachHere(); 3770 return nullptr; 3771 } 3772 } 3773 3774 //------------------------------make_from_constant----------------------------- 3775 // Make a java pointer from an oop constant 3776 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) { 3777 assert(!o->is_null_object(), "null object not yet handled here."); 3778 3779 const bool make_constant = require_constant || o->should_be_constant(); 3780 3781 ciKlass* klass = o->klass(); 3782 if (klass->is_instance_klass()) { 3783 // Element is an instance 3784 if (make_constant) { 3785 return TypeInstPtr::make(o); 3786 } else { 3787 return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0); 3788 } 3789 } else if (klass->is_obj_array_klass()) { 3790 // Element is an object array. Recursively call ourself. 3791 const TypeOopPtr *etype = 3792 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces); 3793 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); 3794 // We used to pass NotNull in here, asserting that the sub-arrays 3795 // are all not-null. This is not true in generally, as code can 3796 // slam nulls down in the subarrays. 3797 if (make_constant) { 3798 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); 3799 } else { 3800 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); 3801 } 3802 } else if (klass->is_type_array_klass()) { 3803 // Element is an typeArray 3804 const Type* etype = 3805 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type()); 3806 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); 3807 // We used to pass NotNull in here, asserting that the array pointer 3808 // is not-null. That was not true in general. 3809 if (make_constant) { 3810 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); 3811 } else { 3812 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); 3813 } 3814 } 3815 3816 fatal("unhandled object type"); 3817 return nullptr; 3818 } 3819 3820 //------------------------------get_con---------------------------------------- 3821 intptr_t TypeOopPtr::get_con() const { 3822 assert( _ptr == Null || _ptr == Constant, "" ); 3823 assert( _offset >= 0, "" ); 3824 3825 if (_offset != 0) { 3826 // After being ported to the compiler interface, the compiler no longer 3827 // directly manipulates the addresses of oops. Rather, it only has a pointer 3828 // to a handle at compile time. This handle is embedded in the generated 3829 // code and dereferenced at the time the nmethod is made. Until that time, 3830 // it is not reasonable to do arithmetic with the addresses of oops (we don't 3831 // have access to the addresses!). This does not seem to currently happen, 3832 // but this assertion here is to help prevent its occurrence. 3833 tty->print_cr("Found oop constant with non-zero offset"); 3834 ShouldNotReachHere(); 3835 } 3836 3837 return (intptr_t)const_oop()->constant_encoding(); 3838 } 3839 3840 3841 //-----------------------------filter------------------------------------------ 3842 // Do not allow interface-vs.-noninterface joins to collapse to top. 3843 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const { 3844 3845 const Type* ft = join_helper(kills, include_speculative); 3846 const TypeInstPtr* ftip = ft->isa_instptr(); 3847 const TypeInstPtr* ktip = kills->isa_instptr(); 3848 3849 if (ft->empty()) { 3850 return Type::TOP; // Canonical empty value 3851 } 3852 3853 return ft; 3854 } 3855 3856 //------------------------------eq--------------------------------------------- 3857 // Structural equality check for Type representations 3858 bool TypeOopPtr::eq( const Type *t ) const { 3859 const TypeOopPtr *a = (const TypeOopPtr*)t; 3860 if (_klass_is_exact != a->_klass_is_exact || 3861 _instance_id != a->_instance_id) return false; 3862 ciObject* one = const_oop(); 3863 ciObject* two = a->const_oop(); 3864 if (one == nullptr || two == nullptr) { 3865 return (one == two) && TypePtr::eq(t); 3866 } else { 3867 return one->equals(two) && TypePtr::eq(t); 3868 } 3869 } 3870 3871 //------------------------------hash------------------------------------------- 3872 // Type-specific hashing function. 3873 uint TypeOopPtr::hash(void) const { 3874 return 3875 (uint)(const_oop() ? const_oop()->hash() : 0) + 3876 (uint)_klass_is_exact + 3877 (uint)_instance_id + TypePtr::hash(); 3878 } 3879 3880 //------------------------------dump2------------------------------------------ 3881 #ifndef PRODUCT 3882 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3883 st->print("oopptr:%s", ptr_msg[_ptr]); 3884 if( _klass_is_exact ) st->print(":exact"); 3885 if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop())); 3886 switch( _offset ) { 3887 case OffsetTop: st->print("+top"); break; 3888 case OffsetBot: st->print("+any"); break; 3889 case 0: break; 3890 default: st->print("+%d",_offset); break; 3891 } 3892 if (_instance_id == InstanceTop) 3893 st->print(",iid=top"); 3894 else if (_instance_id != InstanceBot) 3895 st->print(",iid=%d",_instance_id); 3896 3897 dump_inline_depth(st); 3898 dump_speculative(st); 3899 } 3900 #endif 3901 3902 //------------------------------singleton-------------------------------------- 3903 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 3904 // constants 3905 bool TypeOopPtr::singleton(void) const { 3906 // detune optimizer to not generate constant oop + constant offset as a constant! 3907 // TopPTR, Null, AnyNull, Constant are all singletons 3908 return (_offset == 0) && !below_centerline(_ptr); 3909 } 3910 3911 //------------------------------add_offset------------------------------------- 3912 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const { 3913 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 3914 } 3915 3916 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const { 3917 return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth); 3918 } 3919 3920 /** 3921 * Return same type without a speculative part 3922 */ 3923 const TypeOopPtr* TypeOopPtr::remove_speculative() const { 3924 if (_speculative == nullptr) { 3925 return this; 3926 } 3927 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 3928 return make(_ptr, _offset, _instance_id, nullptr, _inline_depth); 3929 } 3930 3931 /** 3932 * Return same type but drop speculative part if we know we won't use 3933 * it 3934 */ 3935 const Type* TypeOopPtr::cleanup_speculative() const { 3936 // If the klass is exact and the ptr is not null then there's 3937 // nothing that the speculative type can help us with 3938 if (klass_is_exact() && !maybe_null()) { 3939 return remove_speculative(); 3940 } 3941 return TypePtr::cleanup_speculative(); 3942 } 3943 3944 /** 3945 * Return same type but with a different inline depth (used for speculation) 3946 * 3947 * @param depth depth to meet with 3948 */ 3949 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const { 3950 if (!UseInlineDepthForSpeculativeTypes) { 3951 return this; 3952 } 3953 return make(_ptr, _offset, _instance_id, _speculative, depth); 3954 } 3955 3956 //------------------------------with_instance_id-------------------------------- 3957 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const { 3958 assert(_instance_id != -1, "should be known"); 3959 return make(_ptr, _offset, instance_id, _speculative, _inline_depth); 3960 } 3961 3962 //------------------------------meet_instance_id-------------------------------- 3963 int TypeOopPtr::meet_instance_id( int instance_id ) const { 3964 // Either is 'TOP' instance? Return the other instance! 3965 if( _instance_id == InstanceTop ) return instance_id; 3966 if( instance_id == InstanceTop ) return _instance_id; 3967 // If either is different, return 'BOTTOM' instance 3968 if( _instance_id != instance_id ) return InstanceBot; 3969 return _instance_id; 3970 } 3971 3972 //------------------------------dual_instance_id-------------------------------- 3973 int TypeOopPtr::dual_instance_id( ) const { 3974 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM 3975 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP 3976 return _instance_id; // Map everything else into self 3977 } 3978 3979 3980 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const { 3981 if (above_centerline(_ptr) && above_centerline(other->_ptr)) { 3982 return _interfaces->union_with(other->_interfaces); 3983 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) { 3984 return other->_interfaces; 3985 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) { 3986 return _interfaces; 3987 } 3988 return _interfaces->intersection_with(other->_interfaces); 3989 } 3990 3991 /** 3992 * Check whether new profiling would improve speculative type 3993 * 3994 * @param exact_kls class from profiling 3995 * @param inline_depth inlining depth of profile point 3996 * 3997 * @return true if type profile is valuable 3998 */ 3999 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 4000 // no way to improve an already exact type 4001 if (klass_is_exact()) { 4002 return false; 4003 } 4004 return TypePtr::would_improve_type(exact_kls, inline_depth); 4005 } 4006 4007 //============================================================================= 4008 // Convenience common pre-built types. 4009 const TypeInstPtr *TypeInstPtr::NOTNULL; 4010 const TypeInstPtr *TypeInstPtr::BOTTOM; 4011 const TypeInstPtr *TypeInstPtr::MIRROR; 4012 const TypeInstPtr *TypeInstPtr::MARK; 4013 const TypeInstPtr *TypeInstPtr::KLASS; 4014 4015 // Is there a single ciKlass* that can represent that type? 4016 ciKlass* TypeInstPtr::exact_klass_helper() const { 4017 if (_interfaces->empty()) { 4018 return _klass; 4019 } 4020 if (_klass != ciEnv::current()->Object_klass()) { 4021 if (_interfaces->eq(_klass->as_instance_klass())) { 4022 return _klass; 4023 } 4024 return nullptr; 4025 } 4026 return _interfaces->exact_klass(); 4027 } 4028 4029 //------------------------------TypeInstPtr------------------------------------- 4030 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, 4031 int instance_id, const TypePtr* speculative, int inline_depth) 4032 : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) { 4033 assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here"); 4034 assert(k != nullptr && 4035 (k->is_loaded() || o == nullptr), 4036 "cannot have constants with non-loaded klass"); 4037 }; 4038 4039 //------------------------------make------------------------------------------- 4040 const TypeInstPtr *TypeInstPtr::make(PTR ptr, 4041 ciKlass* k, 4042 const TypeInterfaces* interfaces, 4043 bool xk, 4044 ciObject* o, 4045 int offset, 4046 int instance_id, 4047 const TypePtr* speculative, 4048 int inline_depth) { 4049 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance"); 4050 // Either const_oop() is null or else ptr is Constant 4051 assert( (!o && ptr != Constant) || (o && ptr == Constant), 4052 "constant pointers must have a value supplied" ); 4053 // Ptr is never Null 4054 assert( ptr != Null, "null pointers are not typed" ); 4055 4056 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4057 if (ptr == Constant) { 4058 // Note: This case includes meta-object constants, such as methods. 4059 xk = true; 4060 } else if (k->is_loaded()) { 4061 ciInstanceKlass* ik = k->as_instance_klass(); 4062 if (!xk && ik->is_final()) xk = true; // no inexact final klass 4063 assert(!ik->is_interface(), "no interface here"); 4064 if (xk && ik->is_interface()) xk = false; // no exact interface 4065 } 4066 4067 // Now hash this baby 4068 TypeInstPtr *result = 4069 (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons(); 4070 4071 return result; 4072 } 4073 4074 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) { 4075 if (k->is_instance_klass()) { 4076 if (k->is_loaded()) { 4077 if (k->is_interface() && interface_handling == ignore_interfaces) { 4078 assert(interface, "no interface expected"); 4079 k = ciEnv::current()->Object_klass(); 4080 const TypeInterfaces* interfaces = TypeInterfaces::make(); 4081 return interfaces; 4082 } 4083 GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces(); 4084 const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces); 4085 if (k->is_interface()) { 4086 assert(interface, "no interface expected"); 4087 k = ciEnv::current()->Object_klass(); 4088 } else { 4089 assert(klass, "no instance klass expected"); 4090 } 4091 return interfaces; 4092 } 4093 const TypeInterfaces* interfaces = TypeInterfaces::make(); 4094 return interfaces; 4095 } 4096 assert(array, "no array expected"); 4097 assert(k->is_array_klass(), "Not an array?"); 4098 ciType* e = k->as_array_klass()->base_element_type(); 4099 if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) { 4100 if (interface_handling == ignore_interfaces) { 4101 k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension()); 4102 } 4103 } 4104 return TypeAryPtr::_array_interfaces; 4105 } 4106 4107 /** 4108 * Create constant type for a constant boxed value 4109 */ 4110 const Type* TypeInstPtr::get_const_boxed_value() const { 4111 assert(is_ptr_to_boxed_value(), "should be called only for boxed value"); 4112 assert((const_oop() != nullptr), "should be called only for constant object"); 4113 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset()); 4114 BasicType bt = constant.basic_type(); 4115 switch (bt) { 4116 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 4117 case T_INT: return TypeInt::make(constant.as_int()); 4118 case T_CHAR: return TypeInt::make(constant.as_char()); 4119 case T_BYTE: return TypeInt::make(constant.as_byte()); 4120 case T_SHORT: return TypeInt::make(constant.as_short()); 4121 case T_FLOAT: return TypeF::make(constant.as_float()); 4122 case T_DOUBLE: return TypeD::make(constant.as_double()); 4123 case T_LONG: return TypeLong::make(constant.as_long()); 4124 default: break; 4125 } 4126 fatal("Invalid boxed value type '%s'", type2name(bt)); 4127 return nullptr; 4128 } 4129 4130 //------------------------------cast_to_ptr_type------------------------------- 4131 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const { 4132 if( ptr == _ptr ) return this; 4133 // Reconstruct _sig info here since not a problem with later lazy 4134 // construction, _sig will show up on demand. 4135 return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth); 4136 } 4137 4138 4139 //-----------------------------cast_to_exactness------------------------------- 4140 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const { 4141 if( klass_is_exact == _klass_is_exact ) return this; 4142 if (!_klass->is_loaded()) return this; 4143 ciInstanceKlass* ik = _klass->as_instance_klass(); 4144 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk 4145 assert(!ik->is_interface(), "no interface here"); 4146 return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth); 4147 } 4148 4149 //-----------------------------cast_to_instance_id---------------------------- 4150 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const { 4151 if( instance_id == _instance_id ) return this; 4152 return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth); 4153 } 4154 4155 //------------------------------xmeet_unloaded--------------------------------- 4156 // Compute the MEET of two InstPtrs when at least one is unloaded. 4157 // Assume classes are different since called after check for same name/class-loader 4158 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const { 4159 int off = meet_offset(tinst->offset()); 4160 PTR ptr = meet_ptr(tinst->ptr()); 4161 int instance_id = meet_instance_id(tinst->instance_id()); 4162 const TypePtr* speculative = xmeet_speculative(tinst); 4163 int depth = meet_inline_depth(tinst->inline_depth()); 4164 4165 const TypeInstPtr *loaded = is_loaded() ? this : tinst; 4166 const TypeInstPtr *unloaded = is_loaded() ? tinst : this; 4167 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) { 4168 // 4169 // Meet unloaded class with java/lang/Object 4170 // 4171 // Meet 4172 // | Unloaded Class 4173 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM | 4174 // =================================================================== 4175 // TOP | ..........................Unloaded......................| 4176 // AnyNull | U-AN |................Unloaded......................| 4177 // Constant | ... O-NN .................................. | O-BOT | 4178 // NotNull | ... O-NN .................................. | O-BOT | 4179 // BOTTOM | ........................Object-BOTTOM ..................| 4180 // 4181 assert(loaded->ptr() != TypePtr::Null, "insanity check"); 4182 // 4183 if (loaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); } 4184 else if (loaded->ptr() == TypePtr::AnyNull) { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); } 4185 else if (loaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); } 4186 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) { 4187 if (unloaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); } 4188 else { return TypeInstPtr::NOTNULL->with_speculative(speculative); } 4189 } 4190 else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); } 4191 4192 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative); 4193 } 4194 4195 // Both are unloaded, not the same class, not Object 4196 // Or meet unloaded with a different loaded class, not java/lang/Object 4197 if (ptr != TypePtr::BotPTR) { 4198 return TypeInstPtr::NOTNULL->with_speculative(speculative); 4199 } 4200 return TypeInstPtr::BOTTOM->with_speculative(speculative); 4201 } 4202 4203 4204 //------------------------------meet------------------------------------------- 4205 // Compute the MEET of two types. It returns a new Type object. 4206 const Type *TypeInstPtr::xmeet_helper(const Type *t) const { 4207 // Perform a fast test for common case; meeting the same types together. 4208 if( this == t ) return this; // Meeting same type-rep? 4209 4210 // Current "this->_base" is Pointer 4211 switch (t->base()) { // switch on original type 4212 4213 case Int: // Mixing ints & oops happens when javac 4214 case Long: // reuses local variables 4215 case FloatTop: 4216 case FloatCon: 4217 case FloatBot: 4218 case DoubleTop: 4219 case DoubleCon: 4220 case DoubleBot: 4221 case NarrowOop: 4222 case NarrowKlass: 4223 case Bottom: // Ye Olde Default 4224 return Type::BOTTOM; 4225 case Top: 4226 return this; 4227 4228 default: // All else is a mistake 4229 typerr(t); 4230 4231 case MetadataPtr: 4232 case KlassPtr: 4233 case InstKlassPtr: 4234 case AryKlassPtr: 4235 case RawPtr: return TypePtr::BOTTOM; 4236 4237 case AryPtr: { // All arrays inherit from Object class 4238 // Call in reverse direction to avoid duplication 4239 return t->is_aryptr()->xmeet_helper(this); 4240 } 4241 4242 case OopPtr: { // Meeting to OopPtrs 4243 // Found a OopPtr type vs self-InstPtr type 4244 const TypeOopPtr *tp = t->is_oopptr(); 4245 int offset = meet_offset(tp->offset()); 4246 PTR ptr = meet_ptr(tp->ptr()); 4247 switch (tp->ptr()) { 4248 case TopPTR: 4249 case AnyNull: { 4250 int instance_id = meet_instance_id(InstanceTop); 4251 const TypePtr* speculative = xmeet_speculative(tp); 4252 int depth = meet_inline_depth(tp->inline_depth()); 4253 return make(ptr, klass(), _interfaces, klass_is_exact(), 4254 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth); 4255 } 4256 case NotNull: 4257 case BotPTR: { 4258 int instance_id = meet_instance_id(tp->instance_id()); 4259 const TypePtr* speculative = xmeet_speculative(tp); 4260 int depth = meet_inline_depth(tp->inline_depth()); 4261 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4262 } 4263 default: typerr(t); 4264 } 4265 } 4266 4267 case AnyPtr: { // Meeting to AnyPtrs 4268 // Found an AnyPtr type vs self-InstPtr type 4269 const TypePtr *tp = t->is_ptr(); 4270 int offset = meet_offset(tp->offset()); 4271 PTR ptr = meet_ptr(tp->ptr()); 4272 int instance_id = meet_instance_id(InstanceTop); 4273 const TypePtr* speculative = xmeet_speculative(tp); 4274 int depth = meet_inline_depth(tp->inline_depth()); 4275 switch (tp->ptr()) { 4276 case Null: 4277 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4278 // else fall through to AnyNull 4279 case TopPTR: 4280 case AnyNull: { 4281 return make(ptr, klass(), _interfaces, klass_is_exact(), 4282 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth); 4283 } 4284 case NotNull: 4285 case BotPTR: 4286 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth); 4287 default: typerr(t); 4288 } 4289 } 4290 4291 /* 4292 A-top } 4293 / | \ } Tops 4294 B-top A-any C-top } 4295 | / | \ | } Any-nulls 4296 B-any | C-any } 4297 | | | 4298 B-con A-con C-con } constants; not comparable across classes 4299 | | | 4300 B-not | C-not } 4301 | \ | / | } not-nulls 4302 B-bot A-not C-bot } 4303 \ | / } Bottoms 4304 A-bot } 4305 */ 4306 4307 case InstPtr: { // Meeting 2 Oops? 4308 // Found an InstPtr sub-type vs self-InstPtr type 4309 const TypeInstPtr *tinst = t->is_instptr(); 4310 int off = meet_offset(tinst->offset()); 4311 PTR ptr = meet_ptr(tinst->ptr()); 4312 int instance_id = meet_instance_id(tinst->instance_id()); 4313 const TypePtr* speculative = xmeet_speculative(tinst); 4314 int depth = meet_inline_depth(tinst->inline_depth()); 4315 const TypeInterfaces* interfaces = meet_interfaces(tinst); 4316 4317 ciKlass* tinst_klass = tinst->klass(); 4318 ciKlass* this_klass = klass(); 4319 4320 ciKlass* res_klass = nullptr; 4321 bool res_xk = false; 4322 const Type* res; 4323 MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk); 4324 4325 if (kind == UNLOADED) { 4326 // One of these classes has not been loaded 4327 const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces); 4328 #ifndef PRODUCT 4329 if (PrintOpto && Verbose) { 4330 tty->print("meet of unloaded classes resulted in: "); 4331 unloaded_meet->dump(); 4332 tty->cr(); 4333 tty->print(" this == "); 4334 dump(); 4335 tty->cr(); 4336 tty->print(" tinst == "); 4337 tinst->dump(); 4338 tty->cr(); 4339 } 4340 #endif 4341 res = unloaded_meet; 4342 } else { 4343 if (kind == NOT_SUBTYPE && instance_id > 0) { 4344 instance_id = InstanceBot; 4345 } else if (kind == LCA) { 4346 instance_id = InstanceBot; 4347 } 4348 ciObject* o = nullptr; // Assume not constant when done 4349 ciObject* this_oop = const_oop(); 4350 ciObject* tinst_oop = tinst->const_oop(); 4351 if (ptr == Constant) { 4352 if (this_oop != nullptr && tinst_oop != nullptr && 4353 this_oop->equals(tinst_oop)) 4354 o = this_oop; 4355 else if (above_centerline(_ptr)) { 4356 assert(!tinst_klass->is_interface(), ""); 4357 o = tinst_oop; 4358 } else if (above_centerline(tinst->_ptr)) { 4359 assert(!this_klass->is_interface(), ""); 4360 o = this_oop; 4361 } else 4362 ptr = NotNull; 4363 } 4364 res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth); 4365 } 4366 4367 return res; 4368 4369 } // End of case InstPtr 4370 4371 } // End of switch 4372 return this; // Return the double constant 4373 } 4374 4375 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type, 4376 ciKlass*& res_klass, bool& res_xk) { 4377 ciKlass* this_klass = this_type->klass(); 4378 ciKlass* other_klass = other_type->klass(); 4379 bool this_xk = this_type->klass_is_exact(); 4380 bool other_xk = other_type->klass_is_exact(); 4381 PTR this_ptr = this_type->ptr(); 4382 PTR other_ptr = other_type->ptr(); 4383 const TypeInterfaces* this_interfaces = this_type->interfaces(); 4384 const TypeInterfaces* other_interfaces = other_type->interfaces(); 4385 // Check for easy case; klasses are equal (and perhaps not loaded!) 4386 // If we have constants, then we created oops so classes are loaded 4387 // and we can handle the constants further down. This case handles 4388 // both-not-loaded or both-loaded classes 4389 if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) { 4390 res_klass = this_klass; 4391 res_xk = this_xk; 4392 return QUICK; 4393 } 4394 4395 // Classes require inspection in the Java klass hierarchy. Must be loaded. 4396 if (!other_klass->is_loaded() || !this_klass->is_loaded()) { 4397 return UNLOADED; 4398 } 4399 4400 // !!! Here's how the symmetry requirement breaks down into invariants: 4401 // If we split one up & one down AND they subtype, take the down man. 4402 // If we split one up & one down AND they do NOT subtype, "fall hard". 4403 // If both are up and they subtype, take the subtype class. 4404 // If both are up and they do NOT subtype, "fall hard". 4405 // If both are down and they subtype, take the supertype class. 4406 // If both are down and they do NOT subtype, "fall hard". 4407 // Constants treated as down. 4408 4409 // Now, reorder the above list; observe that both-down+subtype is also 4410 // "fall hard"; "fall hard" becomes the default case: 4411 // If we split one up & one down AND they subtype, take the down man. 4412 // If both are up and they subtype, take the subtype class. 4413 4414 // If both are down and they subtype, "fall hard". 4415 // If both are down and they do NOT subtype, "fall hard". 4416 // If both are up and they do NOT subtype, "fall hard". 4417 // If we split one up & one down AND they do NOT subtype, "fall hard". 4418 4419 // If a proper subtype is exact, and we return it, we return it exactly. 4420 // If a proper supertype is exact, there can be no subtyping relationship! 4421 // If both types are equal to the subtype, exactness is and-ed below the 4422 // centerline and or-ed above it. (N.B. Constants are always exact.) 4423 4424 // Check for subtyping: 4425 const T* subtype = nullptr; 4426 bool subtype_exact = false; 4427 if (this_type->is_same_java_type_as(other_type)) { 4428 subtype = this_type; 4429 subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk); 4430 } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) { 4431 subtype = this_type; // Pick subtyping class 4432 subtype_exact = this_xk; 4433 } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) { 4434 subtype = other_type; // Pick subtyping class 4435 subtype_exact = other_xk; 4436 } 4437 4438 if (subtype) { 4439 if (above_centerline(ptr)) { // both are up? 4440 this_type = other_type = subtype; 4441 this_xk = other_xk = subtype_exact; 4442 } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) { 4443 this_type = other_type; // tinst is down; keep down man 4444 this_xk = other_xk; 4445 } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) { 4446 other_type = this_type; // this is down; keep down man 4447 other_xk = this_xk; 4448 } else { 4449 this_xk = subtype_exact; // either they are equal, or we'll do an LCA 4450 } 4451 } 4452 4453 // Check for classes now being equal 4454 if (this_type->is_same_java_type_as(other_type)) { 4455 // If the klasses are equal, the constants may still differ. Fall to 4456 // NotNull if they do (neither constant is null; that is a special case 4457 // handled elsewhere). 4458 res_klass = this_type->klass(); 4459 res_xk = this_xk; 4460 return SUBTYPE; 4461 } // Else classes are not equal 4462 4463 // Since klasses are different, we require a LCA in the Java 4464 // class hierarchy - which means we have to fall to at least NotNull. 4465 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) { 4466 ptr = NotNull; 4467 } 4468 4469 interfaces = this_interfaces->intersection_with(other_interfaces); 4470 4471 // Now we find the LCA of Java classes 4472 ciKlass* k = this_klass->least_common_ancestor(other_klass); 4473 4474 res_klass = k; 4475 res_xk = false; 4476 4477 return LCA; 4478 } 4479 4480 //------------------------java_mirror_type-------------------------------------- 4481 ciType* TypeInstPtr::java_mirror_type() const { 4482 // must be a singleton type 4483 if( const_oop() == nullptr ) return nullptr; 4484 4485 // must be of type java.lang.Class 4486 if( klass() != ciEnv::current()->Class_klass() ) return nullptr; 4487 4488 return const_oop()->as_instance()->java_mirror_type(); 4489 } 4490 4491 4492 //------------------------------xdual------------------------------------------ 4493 // Dual: do NOT dual on klasses. This means I do NOT understand the Java 4494 // inheritance mechanism. 4495 const Type *TypeInstPtr::xdual() const { 4496 return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 4497 } 4498 4499 //------------------------------eq--------------------------------------------- 4500 // Structural equality check for Type representations 4501 bool TypeInstPtr::eq( const Type *t ) const { 4502 const TypeInstPtr *p = t->is_instptr(); 4503 return 4504 klass()->equals(p->klass()) && 4505 _interfaces->eq(p->_interfaces) && 4506 TypeOopPtr::eq(p); // Check sub-type stuff 4507 } 4508 4509 //------------------------------hash------------------------------------------- 4510 // Type-specific hashing function. 4511 uint TypeInstPtr::hash(void) const { 4512 return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash(); 4513 } 4514 4515 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4516 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 4517 } 4518 4519 4520 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const { 4521 return TypePtr::is_same_java_type_as_helper_for_instance(this, other); 4522 } 4523 4524 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4525 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 4526 } 4527 4528 4529 //------------------------------dump2------------------------------------------ 4530 // Dump oop Type 4531 #ifndef PRODUCT 4532 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const { 4533 // Print the name of the klass. 4534 klass()->print_name_on(st); 4535 _interfaces->dump(st); 4536 4537 switch( _ptr ) { 4538 case Constant: 4539 if (WizardMode || Verbose) { 4540 ResourceMark rm; 4541 stringStream ss; 4542 4543 st->print(" " INTPTR_FORMAT, p2i(const_oop())); 4544 const_oop()->print_oop(&ss); 4545 // 'const_oop->print_oop()' may emit newlines('\n') into ss. 4546 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node. 4547 char* buf = ss.as_string(/* c_heap= */false); 4548 StringUtils::replace_no_expand(buf, "\n", ""); 4549 st->print_raw(buf); 4550 } 4551 case BotPTR: 4552 if (!WizardMode && !Verbose) { 4553 if( _klass_is_exact ) st->print(":exact"); 4554 break; 4555 } 4556 case TopPTR: 4557 case AnyNull: 4558 case NotNull: 4559 st->print(":%s", ptr_msg[_ptr]); 4560 if( _klass_is_exact ) st->print(":exact"); 4561 break; 4562 default: 4563 break; 4564 } 4565 4566 if( _offset ) { // Dump offset, if any 4567 if( _offset == OffsetBot ) st->print("+any"); 4568 else if( _offset == OffsetTop ) st->print("+unknown"); 4569 else st->print("+%d", _offset); 4570 } 4571 4572 st->print(" *"); 4573 if (_instance_id == InstanceTop) 4574 st->print(",iid=top"); 4575 else if (_instance_id != InstanceBot) 4576 st->print(",iid=%d",_instance_id); 4577 4578 dump_inline_depth(st); 4579 dump_speculative(st); 4580 } 4581 #endif 4582 4583 //------------------------------add_offset------------------------------------- 4584 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const { 4585 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), 4586 _instance_id, add_offset_speculative(offset), _inline_depth); 4587 } 4588 4589 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const { 4590 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset, 4591 _instance_id, with_offset_speculative(offset), _inline_depth); 4592 } 4593 4594 const TypeInstPtr* TypeInstPtr::remove_speculative() const { 4595 if (_speculative == nullptr) { 4596 return this; 4597 } 4598 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 4599 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, 4600 _instance_id, nullptr, _inline_depth); 4601 } 4602 4603 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const { 4604 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth); 4605 } 4606 4607 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const { 4608 if (!UseInlineDepthForSpeculativeTypes) { 4609 return this; 4610 } 4611 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth); 4612 } 4613 4614 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const { 4615 assert(is_known_instance(), "should be known"); 4616 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth); 4617 } 4618 4619 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const { 4620 bool xk = klass_is_exact(); 4621 ciInstanceKlass* ik = klass()->as_instance_klass(); 4622 if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) { 4623 if (_interfaces->eq(ik)) { 4624 Compile* C = Compile::current(); 4625 Dependencies* deps = C->dependencies(); 4626 deps->assert_leaf_type(ik); 4627 xk = true; 4628 } 4629 } 4630 return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0); 4631 } 4632 4633 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) { 4634 static_assert(std::is_base_of<T2, T1>::value, ""); 4635 4636 if (!this_one->is_instance_type(other)) { 4637 return false; 4638 } 4639 4640 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) { 4641 return true; 4642 } 4643 4644 return this_one->klass()->is_subtype_of(other->klass()) && 4645 (!this_xk || this_one->_interfaces->contains(other->_interfaces)); 4646 } 4647 4648 4649 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const { 4650 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk); 4651 } 4652 4653 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) { 4654 static_assert(std::is_base_of<T2, T1>::value, ""); 4655 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) { 4656 return true; 4657 } 4658 4659 if (this_one->is_instance_type(other)) { 4660 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces); 4661 } 4662 4663 int dummy; 4664 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 4665 if (this_top_or_bottom) { 4666 return false; 4667 } 4668 4669 const T1* other_ary = this_one->is_array_type(other); 4670 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 4671 const TypePtr* this_elem = this_one->elem()->make_ptr(); 4672 if (other_elem != nullptr && this_elem != nullptr) { 4673 return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk); 4674 } 4675 4676 if (other_elem == nullptr && this_elem == nullptr) { 4677 return this_one->klass()->is_subtype_of(other->klass()); 4678 } 4679 4680 return false; 4681 } 4682 4683 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const { 4684 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk); 4685 } 4686 4687 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const { 4688 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk); 4689 } 4690 4691 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const { 4692 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk); 4693 } 4694 4695 //============================================================================= 4696 // Convenience common pre-built types. 4697 const TypeAryPtr *TypeAryPtr::RANGE; 4698 const TypeAryPtr *TypeAryPtr::OOPS; 4699 const TypeAryPtr *TypeAryPtr::NARROWOOPS; 4700 const TypeAryPtr *TypeAryPtr::BYTES; 4701 const TypeAryPtr *TypeAryPtr::SHORTS; 4702 const TypeAryPtr *TypeAryPtr::CHARS; 4703 const TypeAryPtr *TypeAryPtr::INTS; 4704 const TypeAryPtr *TypeAryPtr::LONGS; 4705 const TypeAryPtr *TypeAryPtr::FLOATS; 4706 const TypeAryPtr *TypeAryPtr::DOUBLES; 4707 4708 //------------------------------make------------------------------------------- 4709 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, 4710 int instance_id, const TypePtr* speculative, int inline_depth) { 4711 assert(!(k == nullptr && ary->_elem->isa_int()), 4712 "integral arrays must be pre-equipped with a class"); 4713 if (!xk) xk = ary->ary_must_be_exact(); 4714 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4715 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() && 4716 k->as_obj_array_klass()->base_element_klass()->is_interface()) { 4717 k = nullptr; 4718 } 4719 return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons(); 4720 } 4721 4722 //------------------------------make------------------------------------------- 4723 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, 4724 int instance_id, const TypePtr* speculative, int inline_depth, 4725 bool is_autobox_cache) { 4726 assert(!(k == nullptr && ary->_elem->isa_int()), 4727 "integral arrays must be pre-equipped with a class"); 4728 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" ); 4729 if (!xk) xk = (o != nullptr) || ary->ary_must_be_exact(); 4730 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4731 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() && 4732 k->as_obj_array_klass()->base_element_klass()->is_interface()) { 4733 k = nullptr; 4734 } 4735 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons(); 4736 } 4737 4738 //------------------------------cast_to_ptr_type------------------------------- 4739 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const { 4740 if( ptr == _ptr ) return this; 4741 return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4742 } 4743 4744 4745 //-----------------------------cast_to_exactness------------------------------- 4746 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const { 4747 if( klass_is_exact == _klass_is_exact ) return this; 4748 if (_ary->ary_must_be_exact()) return this; // cannot clear xk 4749 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); 4750 } 4751 4752 //-----------------------------cast_to_instance_id---------------------------- 4753 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const { 4754 if( instance_id == _instance_id ) return this; 4755 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); 4756 } 4757 4758 4759 //-----------------------------max_array_length------------------------------- 4760 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization. 4761 jint TypeAryPtr::max_array_length(BasicType etype) { 4762 if (!is_java_primitive(etype) && !::is_reference_type(etype)) { 4763 if (etype == T_NARROWOOP) { 4764 etype = T_OBJECT; 4765 } else if (etype == T_ILLEGAL) { // bottom[] 4766 etype = T_BYTE; // will produce conservatively high value 4767 } else { 4768 fatal("not an element type: %s", type2name(etype)); 4769 } 4770 } 4771 return arrayOopDesc::max_array_length(etype); 4772 } 4773 4774 //-----------------------------narrow_size_type------------------------------- 4775 // Narrow the given size type to the index range for the given array base type. 4776 // Return null if the resulting int type becomes empty. 4777 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const { 4778 jint hi = size->_hi; 4779 jint lo = size->_lo; 4780 jint min_lo = 0; 4781 jint max_hi = max_array_length(elem()->array_element_basic_type()); 4782 //if (index_not_size) --max_hi; // type of a valid array index, FTR 4783 bool chg = false; 4784 if (lo < min_lo) { 4785 lo = min_lo; 4786 if (size->is_con()) { 4787 hi = lo; 4788 } 4789 chg = true; 4790 } 4791 if (hi > max_hi) { 4792 hi = max_hi; 4793 if (size->is_con()) { 4794 lo = hi; 4795 } 4796 chg = true; 4797 } 4798 // Negative length arrays will produce weird intermediate dead fast-path code 4799 if (lo > hi) 4800 return TypeInt::ZERO; 4801 if (!chg) 4802 return size; 4803 return TypeInt::make(lo, hi, Type::WidenMin); 4804 } 4805 4806 //-------------------------------cast_to_size---------------------------------- 4807 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const { 4808 assert(new_size != nullptr, ""); 4809 new_size = narrow_size_type(new_size); 4810 if (new_size == size()) return this; 4811 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable()); 4812 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4813 } 4814 4815 //------------------------------cast_to_stable--------------------------------- 4816 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const { 4817 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable())) 4818 return this; 4819 4820 const Type* elem = this->elem(); 4821 const TypePtr* elem_ptr = elem->make_ptr(); 4822 4823 if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) { 4824 // If this is widened from a narrow oop, TypeAry::make will re-narrow it. 4825 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1); 4826 } 4827 4828 const TypeAry* new_ary = TypeAry::make(elem, size(), stable); 4829 4830 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4831 } 4832 4833 //-----------------------------stable_dimension-------------------------------- 4834 int TypeAryPtr::stable_dimension() const { 4835 if (!is_stable()) return 0; 4836 int dim = 1; 4837 const TypePtr* elem_ptr = elem()->make_ptr(); 4838 if (elem_ptr != nullptr && elem_ptr->isa_aryptr()) 4839 dim += elem_ptr->is_aryptr()->stable_dimension(); 4840 return dim; 4841 } 4842 4843 //----------------------cast_to_autobox_cache----------------------------------- 4844 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const { 4845 if (is_autobox_cache()) return this; 4846 const TypeOopPtr* etype = elem()->make_oopptr(); 4847 if (etype == nullptr) return this; 4848 // The pointers in the autobox arrays are always non-null. 4849 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); 4850 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable()); 4851 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true); 4852 } 4853 4854 //------------------------------eq--------------------------------------------- 4855 // Structural equality check for Type representations 4856 bool TypeAryPtr::eq( const Type *t ) const { 4857 const TypeAryPtr *p = t->is_aryptr(); 4858 return 4859 _ary == p->_ary && // Check array 4860 TypeOopPtr::eq(p); // Check sub-parts 4861 } 4862 4863 //------------------------------hash------------------------------------------- 4864 // Type-specific hashing function. 4865 uint TypeAryPtr::hash(void) const { 4866 return (uint)(uintptr_t)_ary + TypeOopPtr::hash(); 4867 } 4868 4869 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4870 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 4871 } 4872 4873 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const { 4874 return TypePtr::is_same_java_type_as_helper_for_array(this, other); 4875 } 4876 4877 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4878 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 4879 } 4880 //------------------------------meet------------------------------------------- 4881 // Compute the MEET of two types. It returns a new Type object. 4882 const Type *TypeAryPtr::xmeet_helper(const Type *t) const { 4883 // Perform a fast test for common case; meeting the same types together. 4884 if( this == t ) return this; // Meeting same type-rep? 4885 // Current "this->_base" is Pointer 4886 switch (t->base()) { // switch on original type 4887 4888 // Mixing ints & oops happens when javac reuses local variables 4889 case Int: 4890 case Long: 4891 case FloatTop: 4892 case FloatCon: 4893 case FloatBot: 4894 case DoubleTop: 4895 case DoubleCon: 4896 case DoubleBot: 4897 case NarrowOop: 4898 case NarrowKlass: 4899 case Bottom: // Ye Olde Default 4900 return Type::BOTTOM; 4901 case Top: 4902 return this; 4903 4904 default: // All else is a mistake 4905 typerr(t); 4906 4907 case OopPtr: { // Meeting to OopPtrs 4908 // Found a OopPtr type vs self-AryPtr type 4909 const TypeOopPtr *tp = t->is_oopptr(); 4910 int offset = meet_offset(tp->offset()); 4911 PTR ptr = meet_ptr(tp->ptr()); 4912 int depth = meet_inline_depth(tp->inline_depth()); 4913 const TypePtr* speculative = xmeet_speculative(tp); 4914 switch (tp->ptr()) { 4915 case TopPTR: 4916 case AnyNull: { 4917 int instance_id = meet_instance_id(InstanceTop); 4918 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 4919 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4920 } 4921 case BotPTR: 4922 case NotNull: { 4923 int instance_id = meet_instance_id(tp->instance_id()); 4924 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4925 } 4926 default: ShouldNotReachHere(); 4927 } 4928 } 4929 4930 case AnyPtr: { // Meeting two AnyPtrs 4931 // Found an AnyPtr type vs self-AryPtr type 4932 const TypePtr *tp = t->is_ptr(); 4933 int offset = meet_offset(tp->offset()); 4934 PTR ptr = meet_ptr(tp->ptr()); 4935 const TypePtr* speculative = xmeet_speculative(tp); 4936 int depth = meet_inline_depth(tp->inline_depth()); 4937 switch (tp->ptr()) { 4938 case TopPTR: 4939 return this; 4940 case BotPTR: 4941 case NotNull: 4942 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4943 case Null: 4944 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4945 // else fall through to AnyNull 4946 case AnyNull: { 4947 int instance_id = meet_instance_id(InstanceTop); 4948 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 4949 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4950 } 4951 default: ShouldNotReachHere(); 4952 } 4953 } 4954 4955 case MetadataPtr: 4956 case KlassPtr: 4957 case InstKlassPtr: 4958 case AryKlassPtr: 4959 case RawPtr: return TypePtr::BOTTOM; 4960 4961 case AryPtr: { // Meeting 2 references? 4962 const TypeAryPtr *tap = t->is_aryptr(); 4963 int off = meet_offset(tap->offset()); 4964 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary(); 4965 PTR ptr = meet_ptr(tap->ptr()); 4966 int instance_id = meet_instance_id(tap->instance_id()); 4967 const TypePtr* speculative = xmeet_speculative(tap); 4968 int depth = meet_inline_depth(tap->inline_depth()); 4969 4970 ciKlass* res_klass = nullptr; 4971 bool res_xk = false; 4972 const Type* elem = tary->_elem; 4973 if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) { 4974 instance_id = InstanceBot; 4975 } 4976 4977 ciObject* o = nullptr; // Assume not constant when done 4978 ciObject* this_oop = const_oop(); 4979 ciObject* tap_oop = tap->const_oop(); 4980 if (ptr == Constant) { 4981 if (this_oop != nullptr && tap_oop != nullptr && 4982 this_oop->equals(tap_oop)) { 4983 o = tap_oop; 4984 } else if (above_centerline(_ptr)) { 4985 o = tap_oop; 4986 } else if (above_centerline(tap->_ptr)) { 4987 o = this_oop; 4988 } else { 4989 ptr = NotNull; 4990 } 4991 } 4992 return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth); 4993 } 4994 4995 // All arrays inherit from Object class 4996 case InstPtr: { 4997 const TypeInstPtr *tp = t->is_instptr(); 4998 int offset = meet_offset(tp->offset()); 4999 PTR ptr = meet_ptr(tp->ptr()); 5000 int instance_id = meet_instance_id(tp->instance_id()); 5001 const TypePtr* speculative = xmeet_speculative(tp); 5002 int depth = meet_inline_depth(tp->inline_depth()); 5003 const TypeInterfaces* interfaces = meet_interfaces(tp); 5004 const TypeInterfaces* tp_interfaces = tp->_interfaces; 5005 const TypeInterfaces* this_interfaces = _interfaces; 5006 5007 switch (ptr) { 5008 case TopPTR: 5009 case AnyNull: // Fall 'down' to dual of object klass 5010 // For instances when a subclass meets a superclass we fall 5011 // below the centerline when the superclass is exact. We need to 5012 // do the same here. 5013 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) { 5014 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 5015 } else { 5016 // cannot subclass, so the meet has to fall badly below the centerline 5017 ptr = NotNull; 5018 instance_id = InstanceBot; 5019 interfaces = this_interfaces->intersection_with(tp_interfaces); 5020 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth); 5021 } 5022 case Constant: 5023 case NotNull: 5024 case BotPTR: // Fall down to object klass 5025 // LCA is object_klass, but if we subclass from the top we can do better 5026 if (above_centerline(tp->ptr())) { 5027 // If 'tp' is above the centerline and it is Object class 5028 // then we can subclass in the Java class hierarchy. 5029 // For instances when a subclass meets a superclass we fall 5030 // below the centerline when the superclass is exact. We need 5031 // to do the same here. 5032 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) { 5033 // that is, my array type is a subtype of 'tp' klass 5034 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 5035 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 5036 } 5037 } 5038 // The other case cannot happen, since t cannot be a subtype of an array. 5039 // The meet falls down to Object class below centerline. 5040 if (ptr == Constant) { 5041 ptr = NotNull; 5042 } 5043 if (instance_id > 0) { 5044 instance_id = InstanceBot; 5045 } 5046 interfaces = this_interfaces->intersection_with(tp_interfaces); 5047 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth); 5048 default: typerr(t); 5049 } 5050 } 5051 } 5052 return this; // Lint noise 5053 } 5054 5055 5056 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, 5057 const T* other_ary, ciKlass*& res_klass, bool& res_xk) { 5058 int dummy; 5059 bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM); 5060 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 5061 ciKlass* this_klass = this_ary->klass(); 5062 ciKlass* other_klass = other_ary->klass(); 5063 bool this_xk = this_ary->klass_is_exact(); 5064 bool other_xk = other_ary->klass_is_exact(); 5065 PTR this_ptr = this_ary->ptr(); 5066 PTR other_ptr = other_ary->ptr(); 5067 res_klass = nullptr; 5068 MeetResult result = SUBTYPE; 5069 if (elem->isa_int()) { 5070 // Integral array element types have irrelevant lattice relations. 5071 // It is the klass that determines array layout, not the element type. 5072 if (this_top_or_bottom) 5073 res_klass = other_klass; 5074 else if (other_top_or_bottom || other_klass == this_klass) { 5075 res_klass = this_klass; 5076 } else { 5077 // Something like byte[int+] meets char[int+]. 5078 // This must fall to bottom, not (int[-128..65535])[int+]. 5079 // instance_id = InstanceBot; 5080 elem = Type::BOTTOM; 5081 result = NOT_SUBTYPE; 5082 if (above_centerline(ptr) || ptr == Constant) { 5083 ptr = NotNull; 5084 res_xk = false; 5085 return NOT_SUBTYPE; 5086 } 5087 } 5088 } else {// Non integral arrays. 5089 // Must fall to bottom if exact klasses in upper lattice 5090 // are not equal or super klass is exact. 5091 if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) && 5092 // meet with top[] and bottom[] are processed further down: 5093 !this_top_or_bottom && !other_top_or_bottom && 5094 // both are exact and not equal: 5095 ((other_xk && this_xk) || 5096 // 'tap' is exact and super or unrelated: 5097 (other_xk && !other_ary->is_meet_subtype_of(this_ary)) || 5098 // 'this' is exact and super or unrelated: 5099 (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) { 5100 if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) { 5101 elem = Type::BOTTOM; 5102 } 5103 ptr = NotNull; 5104 res_xk = false; 5105 return NOT_SUBTYPE; 5106 } 5107 } 5108 5109 res_xk = false; 5110 switch (other_ptr) { 5111 case AnyNull: 5112 case TopPTR: 5113 // Compute new klass on demand, do not use tap->_klass 5114 if (below_centerline(this_ptr)) { 5115 res_xk = this_xk; 5116 } else { 5117 res_xk = (other_xk || this_xk); 5118 } 5119 return result; 5120 case Constant: { 5121 if (this_ptr == Constant) { 5122 res_xk = true; 5123 } else if(above_centerline(this_ptr)) { 5124 res_xk = true; 5125 } else { 5126 // Only precise for identical arrays 5127 res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); 5128 } 5129 return result; 5130 } 5131 case NotNull: 5132 case BotPTR: 5133 // Compute new klass on demand, do not use tap->_klass 5134 if (above_centerline(this_ptr)) { 5135 res_xk = other_xk; 5136 } else { 5137 res_xk = (other_xk && this_xk) && 5138 (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays 5139 } 5140 return result; 5141 default: { 5142 ShouldNotReachHere(); 5143 return result; 5144 } 5145 } 5146 return result; 5147 } 5148 5149 5150 //------------------------------xdual------------------------------------------ 5151 // Dual: compute field-by-field dual 5152 const Type *TypeAryPtr::xdual() const { 5153 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth()); 5154 } 5155 5156 //------------------------------dump2------------------------------------------ 5157 #ifndef PRODUCT 5158 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 5159 _ary->dump2(d,depth,st); 5160 _interfaces->dump(st); 5161 5162 switch( _ptr ) { 5163 case Constant: 5164 st->print(" " INTPTR_FORMAT " ", p2i(const_oop())); 5165 const_oop()->print(st); 5166 break; 5167 case BotPTR: 5168 if (!WizardMode && !Verbose) { 5169 if( _klass_is_exact ) st->print(":exact"); 5170 break; 5171 } 5172 case TopPTR: 5173 case AnyNull: 5174 case NotNull: 5175 st->print(":%s", ptr_msg[_ptr]); 5176 if( _klass_is_exact ) st->print(":exact"); 5177 break; 5178 default: 5179 break; 5180 } 5181 5182 if( _offset != 0 ) { 5183 BasicType basic_elem_type = elem()->basic_type(); 5184 int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 5185 if( _offset == OffsetTop ) st->print("+undefined"); 5186 else if( _offset == OffsetBot ) st->print("+any"); 5187 else if( _offset < header_size ) st->print("+%d", _offset); 5188 else { 5189 if (basic_elem_type == T_ILLEGAL) { 5190 st->print("+any"); 5191 } else { 5192 int elem_size = type2aelembytes(basic_elem_type); 5193 st->print("[%d]", (_offset - header_size)/elem_size); 5194 } 5195 } 5196 } 5197 st->print(" *"); 5198 if (_instance_id == InstanceTop) 5199 st->print(",iid=top"); 5200 else if (_instance_id != InstanceBot) 5201 st->print(",iid=%d",_instance_id); 5202 5203 dump_inline_depth(st); 5204 dump_speculative(st); 5205 } 5206 #endif 5207 5208 bool TypeAryPtr::empty(void) const { 5209 if (_ary->empty()) return true; 5210 return TypeOopPtr::empty(); 5211 } 5212 5213 //------------------------------add_offset------------------------------------- 5214 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const { 5215 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 5216 } 5217 5218 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const { 5219 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth); 5220 } 5221 5222 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const { 5223 return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); 5224 } 5225 5226 const TypeAryPtr* TypeAryPtr::remove_speculative() const { 5227 if (_speculative == nullptr) { 5228 return this; 5229 } 5230 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 5231 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth); 5232 } 5233 5234 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const { 5235 if (!UseInlineDepthForSpeculativeTypes) { 5236 return this; 5237 } 5238 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth); 5239 } 5240 5241 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const { 5242 assert(is_known_instance(), "should be known"); 5243 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); 5244 } 5245 5246 //============================================================================= 5247 5248 //------------------------------hash------------------------------------------- 5249 // Type-specific hashing function. 5250 uint TypeNarrowPtr::hash(void) const { 5251 return _ptrtype->hash() + 7; 5252 } 5253 5254 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton 5255 return _ptrtype->singleton(); 5256 } 5257 5258 bool TypeNarrowPtr::empty(void) const { 5259 return _ptrtype->empty(); 5260 } 5261 5262 intptr_t TypeNarrowPtr::get_con() const { 5263 return _ptrtype->get_con(); 5264 } 5265 5266 bool TypeNarrowPtr::eq( const Type *t ) const { 5267 const TypeNarrowPtr* tc = isa_same_narrowptr(t); 5268 if (tc != nullptr) { 5269 if (_ptrtype->base() != tc->_ptrtype->base()) { 5270 return false; 5271 } 5272 return tc->_ptrtype->eq(_ptrtype); 5273 } 5274 return false; 5275 } 5276 5277 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now. 5278 const TypePtr* odual = _ptrtype->dual()->is_ptr(); 5279 return make_same_narrowptr(odual); 5280 } 5281 5282 5283 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const { 5284 if (isa_same_narrowptr(kills)) { 5285 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative); 5286 if (ft->empty()) 5287 return Type::TOP; // Canonical empty value 5288 if (ft->isa_ptr()) { 5289 return make_hash_same_narrowptr(ft->isa_ptr()); 5290 } 5291 return ft; 5292 } else if (kills->isa_ptr()) { 5293 const Type* ft = _ptrtype->join_helper(kills, include_speculative); 5294 if (ft->empty()) 5295 return Type::TOP; // Canonical empty value 5296 return ft; 5297 } else { 5298 return Type::TOP; 5299 } 5300 } 5301 5302 //------------------------------xmeet------------------------------------------ 5303 // Compute the MEET of two types. It returns a new Type object. 5304 const Type *TypeNarrowPtr::xmeet( const Type *t ) const { 5305 // Perform a fast test for common case; meeting the same types together. 5306 if( this == t ) return this; // Meeting same type-rep? 5307 5308 if (t->base() == base()) { 5309 const Type* result = _ptrtype->xmeet(t->make_ptr()); 5310 if (result->isa_ptr()) { 5311 return make_hash_same_narrowptr(result->is_ptr()); 5312 } 5313 return result; 5314 } 5315 5316 // Current "this->_base" is NarrowKlass or NarrowOop 5317 switch (t->base()) { // switch on original type 5318 5319 case Int: // Mixing ints & oops happens when javac 5320 case Long: // reuses local variables 5321 case FloatTop: 5322 case FloatCon: 5323 case FloatBot: 5324 case DoubleTop: 5325 case DoubleCon: 5326 case DoubleBot: 5327 case AnyPtr: 5328 case RawPtr: 5329 case OopPtr: 5330 case InstPtr: 5331 case AryPtr: 5332 case MetadataPtr: 5333 case KlassPtr: 5334 case InstKlassPtr: 5335 case AryKlassPtr: 5336 case NarrowOop: 5337 case NarrowKlass: 5338 5339 case Bottom: // Ye Olde Default 5340 return Type::BOTTOM; 5341 case Top: 5342 return this; 5343 5344 default: // All else is a mistake 5345 typerr(t); 5346 5347 } // End of switch 5348 5349 return this; 5350 } 5351 5352 #ifndef PRODUCT 5353 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 5354 _ptrtype->dump2(d, depth, st); 5355 } 5356 #endif 5357 5358 const TypeNarrowOop *TypeNarrowOop::BOTTOM; 5359 const TypeNarrowOop *TypeNarrowOop::NULL_PTR; 5360 5361 5362 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) { 5363 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons(); 5364 } 5365 5366 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const { 5367 return make(_ptrtype->remove_speculative()->is_ptr()); 5368 } 5369 5370 const Type* TypeNarrowOop::cleanup_speculative() const { 5371 return make(_ptrtype->cleanup_speculative()->is_ptr()); 5372 } 5373 5374 #ifndef PRODUCT 5375 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const { 5376 st->print("narrowoop: "); 5377 TypeNarrowPtr::dump2(d, depth, st); 5378 } 5379 #endif 5380 5381 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR; 5382 5383 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) { 5384 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons(); 5385 } 5386 5387 #ifndef PRODUCT 5388 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const { 5389 st->print("narrowklass: "); 5390 TypeNarrowPtr::dump2(d, depth, st); 5391 } 5392 #endif 5393 5394 5395 //------------------------------eq--------------------------------------------- 5396 // Structural equality check for Type representations 5397 bool TypeMetadataPtr::eq( const Type *t ) const { 5398 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t; 5399 ciMetadata* one = metadata(); 5400 ciMetadata* two = a->metadata(); 5401 if (one == nullptr || two == nullptr) { 5402 return (one == two) && TypePtr::eq(t); 5403 } else { 5404 return one->equals(two) && TypePtr::eq(t); 5405 } 5406 } 5407 5408 //------------------------------hash------------------------------------------- 5409 // Type-specific hashing function. 5410 uint TypeMetadataPtr::hash(void) const { 5411 return 5412 (metadata() ? metadata()->hash() : 0) + 5413 TypePtr::hash(); 5414 } 5415 5416 //------------------------------singleton-------------------------------------- 5417 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5418 // constants 5419 bool TypeMetadataPtr::singleton(void) const { 5420 // detune optimizer to not generate constant metadata + constant offset as a constant! 5421 // TopPTR, Null, AnyNull, Constant are all singletons 5422 return (_offset == 0) && !below_centerline(_ptr); 5423 } 5424 5425 //------------------------------add_offset------------------------------------- 5426 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const { 5427 return make( _ptr, _metadata, xadd_offset(offset)); 5428 } 5429 5430 //-----------------------------filter------------------------------------------ 5431 // Do not allow interface-vs.-noninterface joins to collapse to top. 5432 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const { 5433 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr(); 5434 if (ft == nullptr || ft->empty()) 5435 return Type::TOP; // Canonical empty value 5436 return ft; 5437 } 5438 5439 //------------------------------get_con---------------------------------------- 5440 intptr_t TypeMetadataPtr::get_con() const { 5441 assert( _ptr == Null || _ptr == Constant, "" ); 5442 assert( _offset >= 0, "" ); 5443 5444 if (_offset != 0) { 5445 // After being ported to the compiler interface, the compiler no longer 5446 // directly manipulates the addresses of oops. Rather, it only has a pointer 5447 // to a handle at compile time. This handle is embedded in the generated 5448 // code and dereferenced at the time the nmethod is made. Until that time, 5449 // it is not reasonable to do arithmetic with the addresses of oops (we don't 5450 // have access to the addresses!). This does not seem to currently happen, 5451 // but this assertion here is to help prevent its occurrence. 5452 tty->print_cr("Found oop constant with non-zero offset"); 5453 ShouldNotReachHere(); 5454 } 5455 5456 return (intptr_t)metadata()->constant_encoding(); 5457 } 5458 5459 //------------------------------cast_to_ptr_type------------------------------- 5460 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const { 5461 if( ptr == _ptr ) return this; 5462 return make(ptr, metadata(), _offset); 5463 } 5464 5465 //------------------------------meet------------------------------------------- 5466 // Compute the MEET of two types. It returns a new Type object. 5467 const Type *TypeMetadataPtr::xmeet( const Type *t ) const { 5468 // Perform a fast test for common case; meeting the same types together. 5469 if( this == t ) return this; // Meeting same type-rep? 5470 5471 // Current "this->_base" is OopPtr 5472 switch (t->base()) { // switch on original type 5473 5474 case Int: // Mixing ints & oops happens when javac 5475 case Long: // reuses local variables 5476 case FloatTop: 5477 case FloatCon: 5478 case FloatBot: 5479 case DoubleTop: 5480 case DoubleCon: 5481 case DoubleBot: 5482 case NarrowOop: 5483 case NarrowKlass: 5484 case Bottom: // Ye Olde Default 5485 return Type::BOTTOM; 5486 case Top: 5487 return this; 5488 5489 default: // All else is a mistake 5490 typerr(t); 5491 5492 case AnyPtr: { 5493 // Found an AnyPtr type vs self-OopPtr type 5494 const TypePtr *tp = t->is_ptr(); 5495 int offset = meet_offset(tp->offset()); 5496 PTR ptr = meet_ptr(tp->ptr()); 5497 switch (tp->ptr()) { 5498 case Null: 5499 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5500 // else fall through: 5501 case TopPTR: 5502 case AnyNull: { 5503 return make(ptr, _metadata, offset); 5504 } 5505 case BotPTR: 5506 case NotNull: 5507 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5508 default: typerr(t); 5509 } 5510 } 5511 5512 case RawPtr: 5513 case KlassPtr: 5514 case InstKlassPtr: 5515 case AryKlassPtr: 5516 case OopPtr: 5517 case InstPtr: 5518 case AryPtr: 5519 return TypePtr::BOTTOM; // Oop meet raw is not well defined 5520 5521 case MetadataPtr: { 5522 const TypeMetadataPtr *tp = t->is_metadataptr(); 5523 int offset = meet_offset(tp->offset()); 5524 PTR tptr = tp->ptr(); 5525 PTR ptr = meet_ptr(tptr); 5526 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata(); 5527 if (tptr == TopPTR || _ptr == TopPTR || 5528 metadata()->equals(tp->metadata())) { 5529 return make(ptr, md, offset); 5530 } 5531 // metadata is different 5532 if( ptr == Constant ) { // Cannot be equal constants, so... 5533 if( tptr == Constant && _ptr != Constant) return t; 5534 if( _ptr == Constant && tptr != Constant) return this; 5535 ptr = NotNull; // Fall down in lattice 5536 } 5537 return make(ptr, nullptr, offset); 5538 break; 5539 } 5540 } // End of switch 5541 return this; // Return the double constant 5542 } 5543 5544 5545 //------------------------------xdual------------------------------------------ 5546 // Dual of a pure metadata pointer. 5547 const Type *TypeMetadataPtr::xdual() const { 5548 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset()); 5549 } 5550 5551 //------------------------------dump2------------------------------------------ 5552 #ifndef PRODUCT 5553 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 5554 st->print("metadataptr:%s", ptr_msg[_ptr]); 5555 if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata())); 5556 switch( _offset ) { 5557 case OffsetTop: st->print("+top"); break; 5558 case OffsetBot: st->print("+any"); break; 5559 case 0: break; 5560 default: st->print("+%d",_offset); break; 5561 } 5562 } 5563 #endif 5564 5565 5566 //============================================================================= 5567 // Convenience common pre-built type. 5568 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM; 5569 5570 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset): 5571 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) { 5572 } 5573 5574 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) { 5575 return make(Constant, m, 0); 5576 } 5577 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) { 5578 return make(Constant, m, 0); 5579 } 5580 5581 //------------------------------make------------------------------------------- 5582 // Create a meta data constant 5583 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) { 5584 assert(m == nullptr || !m->is_klass(), "wrong type"); 5585 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons(); 5586 } 5587 5588 5589 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const { 5590 const Type* elem = _ary->_elem; 5591 bool xk = klass_is_exact(); 5592 if (elem->make_oopptr() != nullptr) { 5593 elem = elem->make_oopptr()->as_klass_type(try_for_exact); 5594 if (elem->is_klassptr()->klass_is_exact()) { 5595 xk = true; 5596 } 5597 } 5598 return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0); 5599 } 5600 5601 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) { 5602 if (klass->is_instance_klass()) { 5603 return TypeInstKlassPtr::make(klass, interface_handling); 5604 } 5605 return TypeAryKlassPtr::make(klass, interface_handling); 5606 } 5607 5608 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) { 5609 if (klass->is_instance_klass()) { 5610 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 5611 return TypeInstKlassPtr::make(ptr, klass, interfaces, offset); 5612 } 5613 return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling); 5614 } 5615 5616 5617 //------------------------------TypeKlassPtr----------------------------------- 5618 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset) 5619 : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) { 5620 assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) || 5621 klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here"); 5622 } 5623 5624 // Is there a single ciKlass* that can represent that type? 5625 ciKlass* TypeKlassPtr::exact_klass_helper() const { 5626 assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface"); 5627 if (_interfaces->empty()) { 5628 return _klass; 5629 } 5630 if (_klass != ciEnv::current()->Object_klass()) { 5631 if (_interfaces->eq(_klass->as_instance_klass())) { 5632 return _klass; 5633 } 5634 return nullptr; 5635 } 5636 return _interfaces->exact_klass(); 5637 } 5638 5639 //------------------------------eq--------------------------------------------- 5640 // Structural equality check for Type representations 5641 bool TypeKlassPtr::eq(const Type *t) const { 5642 const TypeKlassPtr *p = t->is_klassptr(); 5643 return 5644 _interfaces->eq(p->_interfaces) && 5645 TypePtr::eq(p); 5646 } 5647 5648 //------------------------------hash------------------------------------------- 5649 // Type-specific hashing function. 5650 uint TypeKlassPtr::hash(void) const { 5651 return TypePtr::hash() + _interfaces->hash(); 5652 } 5653 5654 //------------------------------singleton-------------------------------------- 5655 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5656 // constants 5657 bool TypeKlassPtr::singleton(void) const { 5658 // detune optimizer to not generate constant klass + constant offset as a constant! 5659 // TopPTR, Null, AnyNull, Constant are all singletons 5660 return (_offset == 0) && !below_centerline(_ptr); 5661 } 5662 5663 // Do not allow interface-vs.-noninterface joins to collapse to top. 5664 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const { 5665 // logic here mirrors the one from TypeOopPtr::filter. See comments 5666 // there. 5667 const Type* ft = join_helper(kills, include_speculative); 5668 const TypeKlassPtr* ftkp = ft->isa_instklassptr(); 5669 const TypeKlassPtr* ktkp = kills->isa_instklassptr(); 5670 5671 if (ft->empty()) { 5672 return Type::TOP; // Canonical empty value 5673 } 5674 5675 return ft; 5676 } 5677 5678 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const { 5679 if (above_centerline(_ptr) && above_centerline(other->_ptr)) { 5680 return _interfaces->union_with(other->_interfaces); 5681 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) { 5682 return other->_interfaces; 5683 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) { 5684 return _interfaces; 5685 } 5686 return _interfaces->intersection_with(other->_interfaces); 5687 } 5688 5689 //------------------------------get_con---------------------------------------- 5690 intptr_t TypeKlassPtr::get_con() const { 5691 assert( _ptr == Null || _ptr == Constant, "" ); 5692 assert( _offset >= 0, "" ); 5693 5694 if (_offset != 0) { 5695 // After being ported to the compiler interface, the compiler no longer 5696 // directly manipulates the addresses of oops. Rather, it only has a pointer 5697 // to a handle at compile time. This handle is embedded in the generated 5698 // code and dereferenced at the time the nmethod is made. Until that time, 5699 // it is not reasonable to do arithmetic with the addresses of oops (we don't 5700 // have access to the addresses!). This does not seem to currently happen, 5701 // but this assertion here is to help prevent its occurrence. 5702 tty->print_cr("Found oop constant with non-zero offset"); 5703 ShouldNotReachHere(); 5704 } 5705 5706 ciKlass* k = exact_klass(); 5707 5708 return (intptr_t)k->constant_encoding(); 5709 } 5710 5711 //------------------------------dump2------------------------------------------ 5712 // Dump Klass Type 5713 #ifndef PRODUCT 5714 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const { 5715 switch(_ptr) { 5716 case Constant: 5717 st->print("precise "); 5718 case NotNull: 5719 { 5720 const char *name = klass()->name()->as_utf8(); 5721 if (name) { 5722 st->print("%s: " INTPTR_FORMAT, name, p2i(klass())); 5723 } else { 5724 ShouldNotReachHere(); 5725 } 5726 _interfaces->dump(st); 5727 } 5728 case BotPTR: 5729 if (!WizardMode && !Verbose && _ptr != Constant) break; 5730 case TopPTR: 5731 case AnyNull: 5732 st->print(":%s", ptr_msg[_ptr]); 5733 if (_ptr == Constant) st->print(":exact"); 5734 break; 5735 default: 5736 break; 5737 } 5738 5739 if (_offset) { // Dump offset, if any 5740 if (_offset == OffsetBot) { st->print("+any"); } 5741 else if (_offset == OffsetTop) { st->print("+unknown"); } 5742 else { st->print("+%d", _offset); } 5743 } 5744 5745 st->print(" *"); 5746 } 5747 #endif 5748 5749 //============================================================================= 5750 // Convenience common pre-built types. 5751 5752 // Not-null object klass or below 5753 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT; 5754 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL; 5755 5756 bool TypeInstKlassPtr::eq(const Type *t) const { 5757 const TypeKlassPtr *p = t->is_klassptr(); 5758 return 5759 klass()->equals(p->klass()) && 5760 TypeKlassPtr::eq(p); 5761 } 5762 5763 uint TypeInstKlassPtr::hash(void) const { 5764 return klass()->hash() + TypeKlassPtr::hash(); 5765 } 5766 5767 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) { 5768 TypeInstKlassPtr *r = 5769 (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons(); 5770 5771 return r; 5772 } 5773 5774 //------------------------------add_offset------------------------------------- 5775 // Access internals of klass object 5776 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const { 5777 return make( _ptr, klass(), _interfaces, xadd_offset(offset) ); 5778 } 5779 5780 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const { 5781 return make(_ptr, klass(), _interfaces, offset); 5782 } 5783 5784 //------------------------------cast_to_ptr_type------------------------------- 5785 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const { 5786 assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type"); 5787 if( ptr == _ptr ) return this; 5788 return make(ptr, _klass, _interfaces, _offset); 5789 } 5790 5791 5792 bool TypeInstKlassPtr::must_be_exact() const { 5793 if (!_klass->is_loaded()) return false; 5794 ciInstanceKlass* ik = _klass->as_instance_klass(); 5795 if (ik->is_final()) return true; // cannot clear xk 5796 return false; 5797 } 5798 5799 //-----------------------------cast_to_exactness------------------------------- 5800 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const { 5801 if (klass_is_exact == (_ptr == Constant)) return this; 5802 if (must_be_exact()) return this; 5803 ciKlass* k = klass(); 5804 return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset); 5805 } 5806 5807 5808 //-----------------------------as_instance_type-------------------------------- 5809 // Corresponding type for an instance of the given class. 5810 // It will be NotNull, and exact if and only if the klass type is exact. 5811 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const { 5812 ciKlass* k = klass(); 5813 bool xk = klass_is_exact(); 5814 Compile* C = Compile::current(); 5815 Dependencies* deps = C->dependencies(); 5816 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 5817 // Element is an instance 5818 bool klass_is_exact = false; 5819 const TypeInterfaces* interfaces = _interfaces; 5820 if (k->is_loaded()) { 5821 // Try to set klass_is_exact. 5822 ciInstanceKlass* ik = k->as_instance_klass(); 5823 klass_is_exact = ik->is_final(); 5824 if (!klass_is_exact && klass_change 5825 && deps != nullptr && UseUniqueSubclasses) { 5826 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 5827 if (sub != nullptr) { 5828 if (_interfaces->eq(sub)) { 5829 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 5830 k = ik = sub; 5831 xk = sub->is_final(); 5832 } 5833 } 5834 } 5835 } 5836 return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0); 5837 } 5838 5839 //------------------------------xmeet------------------------------------------ 5840 // Compute the MEET of two types, return a new Type object. 5841 const Type *TypeInstKlassPtr::xmeet( const Type *t ) const { 5842 // Perform a fast test for common case; meeting the same types together. 5843 if( this == t ) return this; // Meeting same type-rep? 5844 5845 // Current "this->_base" is Pointer 5846 switch (t->base()) { // switch on original type 5847 5848 case Int: // Mixing ints & oops happens when javac 5849 case Long: // reuses local variables 5850 case FloatTop: 5851 case FloatCon: 5852 case FloatBot: 5853 case DoubleTop: 5854 case DoubleCon: 5855 case DoubleBot: 5856 case NarrowOop: 5857 case NarrowKlass: 5858 case Bottom: // Ye Olde Default 5859 return Type::BOTTOM; 5860 case Top: 5861 return this; 5862 5863 default: // All else is a mistake 5864 typerr(t); 5865 5866 case AnyPtr: { // Meeting to AnyPtrs 5867 // Found an AnyPtr type vs self-KlassPtr type 5868 const TypePtr *tp = t->is_ptr(); 5869 int offset = meet_offset(tp->offset()); 5870 PTR ptr = meet_ptr(tp->ptr()); 5871 switch (tp->ptr()) { 5872 case TopPTR: 5873 return this; 5874 case Null: 5875 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5876 case AnyNull: 5877 return make( ptr, klass(), _interfaces, offset ); 5878 case BotPTR: 5879 case NotNull: 5880 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5881 default: typerr(t); 5882 } 5883 } 5884 5885 case RawPtr: 5886 case MetadataPtr: 5887 case OopPtr: 5888 case AryPtr: // Meet with AryPtr 5889 case InstPtr: // Meet with InstPtr 5890 return TypePtr::BOTTOM; 5891 5892 // 5893 // A-top } 5894 // / | \ } Tops 5895 // B-top A-any C-top } 5896 // | / | \ | } Any-nulls 5897 // B-any | C-any } 5898 // | | | 5899 // B-con A-con C-con } constants; not comparable across classes 5900 // | | | 5901 // B-not | C-not } 5902 // | \ | / | } not-nulls 5903 // B-bot A-not C-bot } 5904 // \ | / } Bottoms 5905 // A-bot } 5906 // 5907 5908 case InstKlassPtr: { // Meet two KlassPtr types 5909 const TypeInstKlassPtr *tkls = t->is_instklassptr(); 5910 int off = meet_offset(tkls->offset()); 5911 PTR ptr = meet_ptr(tkls->ptr()); 5912 const TypeInterfaces* interfaces = meet_interfaces(tkls); 5913 5914 ciKlass* res_klass = nullptr; 5915 bool res_xk = false; 5916 switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) { 5917 case UNLOADED: 5918 ShouldNotReachHere(); 5919 case SUBTYPE: 5920 case NOT_SUBTYPE: 5921 case LCA: 5922 case QUICK: { 5923 assert(res_xk == (ptr == Constant), ""); 5924 const Type* res = make(ptr, res_klass, interfaces, off); 5925 return res; 5926 } 5927 default: 5928 ShouldNotReachHere(); 5929 } 5930 } // End of case KlassPtr 5931 case AryKlassPtr: { // All arrays inherit from Object class 5932 const TypeAryKlassPtr *tp = t->is_aryklassptr(); 5933 int offset = meet_offset(tp->offset()); 5934 PTR ptr = meet_ptr(tp->ptr()); 5935 const TypeInterfaces* interfaces = meet_interfaces(tp); 5936 const TypeInterfaces* tp_interfaces = tp->_interfaces; 5937 const TypeInterfaces* this_interfaces = _interfaces; 5938 5939 switch (ptr) { 5940 case TopPTR: 5941 case AnyNull: // Fall 'down' to dual of object klass 5942 // For instances when a subclass meets a superclass we fall 5943 // below the centerline when the superclass is exact. We need to 5944 // do the same here. 5945 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) { 5946 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset); 5947 } else { 5948 // cannot subclass, so the meet has to fall badly below the centerline 5949 ptr = NotNull; 5950 interfaces = _interfaces->intersection_with(tp->_interfaces); 5951 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 5952 } 5953 case Constant: 5954 case NotNull: 5955 case BotPTR: // Fall down to object klass 5956 // LCA is object_klass, but if we subclass from the top we can do better 5957 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull ) 5958 // If 'this' (InstPtr) is above the centerline and it is Object class 5959 // then we can subclass in the Java class hierarchy. 5960 // For instances when a subclass meets a superclass we fall 5961 // below the centerline when the superclass is exact. We need 5962 // to do the same here. 5963 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) { 5964 // that is, tp's array type is a subtype of my klass 5965 return TypeAryKlassPtr::make(ptr, 5966 tp->elem(), tp->klass(), offset); 5967 } 5968 } 5969 // The other case cannot happen, since I cannot be a subtype of an array. 5970 // The meet falls down to Object class below centerline. 5971 if( ptr == Constant ) 5972 ptr = NotNull; 5973 interfaces = this_interfaces->intersection_with(tp_interfaces); 5974 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 5975 default: typerr(t); 5976 } 5977 } 5978 5979 } // End of switch 5980 return this; // Return the double constant 5981 } 5982 5983 //------------------------------xdual------------------------------------------ 5984 // Dual: compute field-by-field dual 5985 const Type *TypeInstKlassPtr::xdual() const { 5986 return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset()); 5987 } 5988 5989 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 5990 static_assert(std::is_base_of<T2, T1>::value, ""); 5991 if (!this_one->is_loaded() || !other->is_loaded()) { 5992 return false; 5993 } 5994 if (!this_one->is_instance_type(other)) { 5995 return false; 5996 } 5997 5998 if (!other_exact) { 5999 return false; 6000 } 6001 6002 if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) { 6003 return true; 6004 } 6005 6006 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces); 6007 } 6008 6009 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6010 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 6011 } 6012 6013 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) { 6014 static_assert(std::is_base_of<T2, T1>::value, ""); 6015 if (!this_one->is_loaded() || !other->is_loaded()) { 6016 return false; 6017 } 6018 if (!this_one->is_instance_type(other)) { 6019 return false; 6020 } 6021 return this_one->klass()->equals(other->klass()) && this_one->_interfaces->eq(other->_interfaces); 6022 } 6023 6024 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const { 6025 return TypePtr::is_same_java_type_as_helper_for_instance(this, other); 6026 } 6027 6028 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6029 static_assert(std::is_base_of<T2, T1>::value, ""); 6030 if (!this_one->is_loaded() || !other->is_loaded()) { 6031 return true; 6032 } 6033 6034 if (this_one->is_array_type(other)) { 6035 return !this_exact && this_one->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->contains(this_one->_interfaces); 6036 } 6037 6038 assert(this_one->is_instance_type(other), "unsupported"); 6039 6040 if (this_exact && other_exact) { 6041 return this_one->is_java_subtype_of(other); 6042 } 6043 6044 if (!this_one->klass()->is_subtype_of(other->klass()) && !other->klass()->is_subtype_of(this_one->klass())) { 6045 return false; 6046 } 6047 6048 if (this_exact) { 6049 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces); 6050 } 6051 6052 return true; 6053 } 6054 6055 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6056 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 6057 } 6058 6059 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const { 6060 if (!UseUniqueSubclasses) { 6061 return this; 6062 } 6063 ciKlass* k = klass(); 6064 Compile* C = Compile::current(); 6065 Dependencies* deps = C->dependencies(); 6066 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 6067 const TypeInterfaces* interfaces = _interfaces; 6068 if (k->is_loaded()) { 6069 ciInstanceKlass* ik = k->as_instance_klass(); 6070 bool klass_is_exact = ik->is_final(); 6071 if (!klass_is_exact && 6072 deps != nullptr) { 6073 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 6074 if (sub != nullptr) { 6075 if (_interfaces->eq(sub)) { 6076 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 6077 k = ik = sub; 6078 klass_is_exact = sub->is_final(); 6079 return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset); 6080 } 6081 } 6082 } 6083 } 6084 return this; 6085 } 6086 6087 6088 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) { 6089 return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons(); 6090 } 6091 6092 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) { 6093 if (k->is_obj_array_klass()) { 6094 // Element is an object array. Recursively call ourself. 6095 ciKlass* eklass = k->as_obj_array_klass()->element_klass(); 6096 const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false); 6097 return TypeAryKlassPtr::make(ptr, etype, nullptr, offset); 6098 } else if (k->is_type_array_klass()) { 6099 // Element is an typeArray 6100 const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type()); 6101 return TypeAryKlassPtr::make(ptr, etype, k, offset); 6102 } else { 6103 ShouldNotReachHere(); 6104 return nullptr; 6105 } 6106 } 6107 6108 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) { 6109 return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling); 6110 } 6111 6112 //------------------------------eq--------------------------------------------- 6113 // Structural equality check for Type representations 6114 bool TypeAryKlassPtr::eq(const Type *t) const { 6115 const TypeAryKlassPtr *p = t->is_aryklassptr(); 6116 return 6117 _elem == p->_elem && // Check array 6118 TypeKlassPtr::eq(p); // Check sub-parts 6119 } 6120 6121 //------------------------------hash------------------------------------------- 6122 // Type-specific hashing function. 6123 uint TypeAryKlassPtr::hash(void) const { 6124 return (uint)(uintptr_t)_elem + TypeKlassPtr::hash(); 6125 } 6126 6127 //----------------------compute_klass------------------------------------------ 6128 // Compute the defining klass for this class 6129 ciKlass* TypeAryPtr::compute_klass() const { 6130 // Compute _klass based on element type. 6131 ciKlass* k_ary = nullptr; 6132 const TypeInstPtr *tinst; 6133 const TypeAryPtr *tary; 6134 const Type* el = elem(); 6135 if (el->isa_narrowoop()) { 6136 el = el->make_ptr(); 6137 } 6138 6139 // Get element klass 6140 if ((tinst = el->isa_instptr()) != nullptr) { 6141 // Leave k_ary at null. 6142 } else if ((tary = el->isa_aryptr()) != nullptr) { 6143 // Leave k_ary at null. 6144 } else if ((el->base() == Type::Top) || 6145 (el->base() == Type::Bottom)) { 6146 // element type of Bottom occurs from meet of basic type 6147 // and object; Top occurs when doing join on Bottom. 6148 // Leave k_ary at null. 6149 } else { 6150 assert(!el->isa_int(), "integral arrays must be pre-equipped with a class"); 6151 // Compute array klass directly from basic type 6152 k_ary = ciTypeArrayKlass::make(el->basic_type()); 6153 } 6154 return k_ary; 6155 } 6156 6157 //------------------------------klass------------------------------------------ 6158 // Return the defining klass for this class 6159 ciKlass* TypeAryPtr::klass() const { 6160 if( _klass ) return _klass; // Return cached value, if possible 6161 6162 // Oops, need to compute _klass and cache it 6163 ciKlass* k_ary = compute_klass(); 6164 6165 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) { 6166 // The _klass field acts as a cache of the underlying 6167 // ciKlass for this array type. In order to set the field, 6168 // we need to cast away const-ness. 6169 // 6170 // IMPORTANT NOTE: we *never* set the _klass field for the 6171 // type TypeAryPtr::OOPS. This Type is shared between all 6172 // active compilations. However, the ciKlass which represents 6173 // this Type is *not* shared between compilations, so caching 6174 // this value would result in fetching a dangling pointer. 6175 // 6176 // Recomputing the underlying ciKlass for each request is 6177 // a bit less efficient than caching, but calls to 6178 // TypeAryPtr::OOPS->klass() are not common enough to matter. 6179 ((TypeAryPtr*)this)->_klass = k_ary; 6180 } 6181 return k_ary; 6182 } 6183 6184 // Is there a single ciKlass* that can represent that type? 6185 ciKlass* TypeAryPtr::exact_klass_helper() const { 6186 if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) { 6187 ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper(); 6188 if (k == nullptr) { 6189 return nullptr; 6190 } 6191 k = ciObjArrayKlass::make(k); 6192 return k; 6193 } 6194 6195 return klass(); 6196 } 6197 6198 const Type* TypeAryPtr::base_element_type(int& dims) const { 6199 const Type* elem = this->elem(); 6200 dims = 1; 6201 while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) { 6202 elem = elem->make_ptr()->is_aryptr()->elem(); 6203 dims++; 6204 } 6205 return elem; 6206 } 6207 6208 //------------------------------add_offset------------------------------------- 6209 // Access internals of klass object 6210 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const { 6211 return make(_ptr, elem(), klass(), xadd_offset(offset)); 6212 } 6213 6214 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const { 6215 return make(_ptr, elem(), klass(), offset); 6216 } 6217 6218 //------------------------------cast_to_ptr_type------------------------------- 6219 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const { 6220 assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type"); 6221 if (ptr == _ptr) return this; 6222 return make(ptr, elem(), _klass, _offset); 6223 } 6224 6225 bool TypeAryKlassPtr::must_be_exact() const { 6226 if (_elem == Type::BOTTOM) return false; 6227 if (_elem == Type::TOP ) return false; 6228 const TypeKlassPtr* tk = _elem->isa_klassptr(); 6229 if (!tk) return true; // a primitive type, like int 6230 return tk->must_be_exact(); 6231 } 6232 6233 6234 //-----------------------------cast_to_exactness------------------------------- 6235 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const { 6236 if (must_be_exact()) return this; // cannot clear xk 6237 ciKlass* k = _klass; 6238 const Type* elem = this->elem(); 6239 if (elem->isa_klassptr() && !klass_is_exact) { 6240 elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact); 6241 } 6242 return make(klass_is_exact ? Constant : NotNull, elem, k, _offset); 6243 } 6244 6245 6246 //-----------------------------as_instance_type-------------------------------- 6247 // Corresponding type for an instance of the given class. 6248 // It will be NotNull, and exact if and only if the klass type is exact. 6249 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const { 6250 ciKlass* k = klass(); 6251 bool xk = klass_is_exact(); 6252 const Type* el = nullptr; 6253 if (elem()->isa_klassptr()) { 6254 el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false); 6255 k = nullptr; 6256 } else { 6257 el = elem(); 6258 } 6259 return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0); 6260 } 6261 6262 6263 //------------------------------xmeet------------------------------------------ 6264 // Compute the MEET of two types, return a new Type object. 6265 const Type *TypeAryKlassPtr::xmeet( const Type *t ) const { 6266 // Perform a fast test for common case; meeting the same types together. 6267 if( this == t ) return this; // Meeting same type-rep? 6268 6269 // Current "this->_base" is Pointer 6270 switch (t->base()) { // switch on original type 6271 6272 case Int: // Mixing ints & oops happens when javac 6273 case Long: // reuses local variables 6274 case FloatTop: 6275 case FloatCon: 6276 case FloatBot: 6277 case DoubleTop: 6278 case DoubleCon: 6279 case DoubleBot: 6280 case NarrowOop: 6281 case NarrowKlass: 6282 case Bottom: // Ye Olde Default 6283 return Type::BOTTOM; 6284 case Top: 6285 return this; 6286 6287 default: // All else is a mistake 6288 typerr(t); 6289 6290 case AnyPtr: { // Meeting to AnyPtrs 6291 // Found an AnyPtr type vs self-KlassPtr type 6292 const TypePtr *tp = t->is_ptr(); 6293 int offset = meet_offset(tp->offset()); 6294 PTR ptr = meet_ptr(tp->ptr()); 6295 switch (tp->ptr()) { 6296 case TopPTR: 6297 return this; 6298 case Null: 6299 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6300 case AnyNull: 6301 return make( ptr, _elem, klass(), offset ); 6302 case BotPTR: 6303 case NotNull: 6304 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6305 default: typerr(t); 6306 } 6307 } 6308 6309 case RawPtr: 6310 case MetadataPtr: 6311 case OopPtr: 6312 case AryPtr: // Meet with AryPtr 6313 case InstPtr: // Meet with InstPtr 6314 return TypePtr::BOTTOM; 6315 6316 // 6317 // A-top } 6318 // / | \ } Tops 6319 // B-top A-any C-top } 6320 // | / | \ | } Any-nulls 6321 // B-any | C-any } 6322 // | | | 6323 // B-con A-con C-con } constants; not comparable across classes 6324 // | | | 6325 // B-not | C-not } 6326 // | \ | / | } not-nulls 6327 // B-bot A-not C-bot } 6328 // \ | / } Bottoms 6329 // A-bot } 6330 // 6331 6332 case AryKlassPtr: { // Meet two KlassPtr types 6333 const TypeAryKlassPtr *tap = t->is_aryklassptr(); 6334 int off = meet_offset(tap->offset()); 6335 const Type* elem = _elem->meet(tap->_elem); 6336 6337 PTR ptr = meet_ptr(tap->ptr()); 6338 ciKlass* res_klass = nullptr; 6339 bool res_xk = false; 6340 meet_aryptr(ptr, elem, this, tap, res_klass, res_xk); 6341 assert(res_xk == (ptr == Constant), ""); 6342 return make(ptr, elem, res_klass, off); 6343 } // End of case KlassPtr 6344 case InstKlassPtr: { 6345 const TypeInstKlassPtr *tp = t->is_instklassptr(); 6346 int offset = meet_offset(tp->offset()); 6347 PTR ptr = meet_ptr(tp->ptr()); 6348 const TypeInterfaces* interfaces = meet_interfaces(tp); 6349 const TypeInterfaces* tp_interfaces = tp->_interfaces; 6350 const TypeInterfaces* this_interfaces = _interfaces; 6351 6352 switch (ptr) { 6353 case TopPTR: 6354 case AnyNull: // Fall 'down' to dual of object klass 6355 // For instances when a subclass meets a superclass we fall 6356 // below the centerline when the superclass is exact. We need to 6357 // do the same here. 6358 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && 6359 !tp->klass_is_exact()) { 6360 return TypeAryKlassPtr::make(ptr, _elem, _klass, offset); 6361 } else { 6362 // cannot subclass, so the meet has to fall badly below the centerline 6363 ptr = NotNull; 6364 interfaces = this_interfaces->intersection_with(tp->_interfaces); 6365 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 6366 } 6367 case Constant: 6368 case NotNull: 6369 case BotPTR: // Fall down to object klass 6370 // LCA is object_klass, but if we subclass from the top we can do better 6371 if (above_centerline(tp->ptr())) { 6372 // If 'tp' is above the centerline and it is Object class 6373 // then we can subclass in the Java class hierarchy. 6374 // For instances when a subclass meets a superclass we fall 6375 // below the centerline when the superclass is exact. We need 6376 // to do the same here. 6377 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && 6378 !tp->klass_is_exact()) { 6379 // that is, my array type is a subtype of 'tp' klass 6380 return make(ptr, _elem, _klass, offset); 6381 } 6382 } 6383 // The other case cannot happen, since t cannot be a subtype of an array. 6384 // The meet falls down to Object class below centerline. 6385 if (ptr == Constant) 6386 ptr = NotNull; 6387 interfaces = this_interfaces->intersection_with(tp_interfaces); 6388 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 6389 default: typerr(t); 6390 } 6391 } 6392 6393 } // End of switch 6394 return this; // Return the double constant 6395 } 6396 6397 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6398 static_assert(std::is_base_of<T2, T1>::value, ""); 6399 6400 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) { 6401 return true; 6402 } 6403 6404 int dummy; 6405 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6406 6407 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 6408 return false; 6409 } 6410 6411 if (this_one->is_instance_type(other)) { 6412 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) && 6413 other_exact; 6414 } 6415 6416 assert(this_one->is_array_type(other), ""); 6417 const T1* other_ary = this_one->is_array_type(other); 6418 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6419 if (other_top_or_bottom) { 6420 return false; 6421 } 6422 6423 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6424 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6425 if (this_elem != nullptr && other_elem != nullptr) { 6426 return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact); 6427 } 6428 if (this_elem == nullptr && other_elem == nullptr) { 6429 return this_one->klass()->is_subtype_of(other->klass()); 6430 } 6431 return false; 6432 } 6433 6434 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6435 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 6436 } 6437 6438 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) { 6439 static_assert(std::is_base_of<T2, T1>::value, ""); 6440 6441 int dummy; 6442 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6443 6444 if (!this_one->is_array_type(other) || 6445 !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 6446 return false; 6447 } 6448 const T1* other_ary = this_one->is_array_type(other); 6449 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6450 6451 if (other_top_or_bottom) { 6452 return false; 6453 } 6454 6455 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6456 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6457 if (other_elem != nullptr && this_elem != nullptr) { 6458 return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem)); 6459 } 6460 if (other_elem == nullptr && this_elem == nullptr) { 6461 return this_one->klass()->equals(other->klass()); 6462 } 6463 return false; 6464 } 6465 6466 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const { 6467 return TypePtr::is_same_java_type_as_helper_for_array(this, other); 6468 } 6469 6470 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6471 static_assert(std::is_base_of<T2, T1>::value, ""); 6472 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) { 6473 return true; 6474 } 6475 if (!this_one->is_loaded() || !other->is_loaded()) { 6476 return true; 6477 } 6478 if (this_one->is_instance_type(other)) { 6479 return other->klass()->equals(ciEnv::current()->Object_klass()) && 6480 this_one->_interfaces->contains(other->_interfaces); 6481 } 6482 6483 int dummy; 6484 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6485 if (this_top_or_bottom) { 6486 return true; 6487 } 6488 6489 assert(this_one->is_array_type(other), ""); 6490 6491 const T1* other_ary = this_one->is_array_type(other); 6492 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6493 if (other_top_or_bottom) { 6494 return true; 6495 } 6496 if (this_exact && other_exact) { 6497 return this_one->is_java_subtype_of(other); 6498 } 6499 6500 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6501 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6502 if (other_elem != nullptr && this_elem != nullptr) { 6503 return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact); 6504 } 6505 if (other_elem == nullptr && this_elem == nullptr) { 6506 return this_one->klass()->is_subtype_of(other->klass()); 6507 } 6508 return false; 6509 } 6510 6511 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6512 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 6513 } 6514 6515 //------------------------------xdual------------------------------------------ 6516 // Dual: compute field-by-field dual 6517 const Type *TypeAryKlassPtr::xdual() const { 6518 return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset()); 6519 } 6520 6521 // Is there a single ciKlass* that can represent that type? 6522 ciKlass* TypeAryKlassPtr::exact_klass_helper() const { 6523 if (elem()->isa_klassptr()) { 6524 ciKlass* k = elem()->is_klassptr()->exact_klass_helper(); 6525 if (k == nullptr) { 6526 return nullptr; 6527 } 6528 k = ciObjArrayKlass::make(k); 6529 return k; 6530 } 6531 6532 return klass(); 6533 } 6534 6535 ciKlass* TypeAryKlassPtr::klass() const { 6536 if (_klass != nullptr) { 6537 return _klass; 6538 } 6539 ciKlass* k = nullptr; 6540 if (elem()->isa_klassptr()) { 6541 // leave null 6542 } else if ((elem()->base() == Type::Top) || 6543 (elem()->base() == Type::Bottom)) { 6544 } else { 6545 k = ciTypeArrayKlass::make(elem()->basic_type()); 6546 ((TypeAryKlassPtr*)this)->_klass = k; 6547 } 6548 return k; 6549 } 6550 6551 //------------------------------dump2------------------------------------------ 6552 // Dump Klass Type 6553 #ifndef PRODUCT 6554 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 6555 switch( _ptr ) { 6556 case Constant: 6557 st->print("precise "); 6558 case NotNull: 6559 { 6560 st->print("["); 6561 _elem->dump2(d, depth, st); 6562 _interfaces->dump(st); 6563 st->print(": "); 6564 } 6565 case BotPTR: 6566 if( !WizardMode && !Verbose && _ptr != Constant ) break; 6567 case TopPTR: 6568 case AnyNull: 6569 st->print(":%s", ptr_msg[_ptr]); 6570 if( _ptr == Constant ) st->print(":exact"); 6571 break; 6572 default: 6573 break; 6574 } 6575 6576 if( _offset ) { // Dump offset, if any 6577 if( _offset == OffsetBot ) { st->print("+any"); } 6578 else if( _offset == OffsetTop ) { st->print("+unknown"); } 6579 else { st->print("+%d", _offset); } 6580 } 6581 6582 st->print(" *"); 6583 } 6584 #endif 6585 6586 const Type* TypeAryKlassPtr::base_element_type(int& dims) const { 6587 const Type* elem = this->elem(); 6588 dims = 1; 6589 while (elem->isa_aryklassptr()) { 6590 elem = elem->is_aryklassptr()->elem(); 6591 dims++; 6592 } 6593 return elem; 6594 } 6595 6596 //============================================================================= 6597 // Convenience common pre-built types. 6598 6599 //------------------------------make------------------------------------------- 6600 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) { 6601 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons(); 6602 } 6603 6604 //------------------------------make------------------------------------------- 6605 const TypeFunc *TypeFunc::make(ciMethod* method) { 6606 Compile* C = Compile::current(); 6607 const TypeFunc* tf = C->last_tf(method); // check cache 6608 if (tf != nullptr) return tf; // The hit rate here is almost 50%. 6609 const TypeTuple *domain; 6610 if (method->is_static()) { 6611 domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces); 6612 } else { 6613 domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces); 6614 } 6615 const TypeTuple *range = TypeTuple::make_range(method->signature(), ignore_interfaces); 6616 tf = TypeFunc::make(domain, range); 6617 C->set_last_tf(method, tf); // fill cache 6618 return tf; 6619 } 6620 6621 //------------------------------meet------------------------------------------- 6622 // Compute the MEET of two types. It returns a new Type object. 6623 const Type *TypeFunc::xmeet( const Type *t ) const { 6624 // Perform a fast test for common case; meeting the same types together. 6625 if( this == t ) return this; // Meeting same type-rep? 6626 6627 // Current "this->_base" is Func 6628 switch (t->base()) { // switch on original type 6629 6630 case Bottom: // Ye Olde Default 6631 return t; 6632 6633 default: // All else is a mistake 6634 typerr(t); 6635 6636 case Top: 6637 break; 6638 } 6639 return this; // Return the double constant 6640 } 6641 6642 //------------------------------xdual------------------------------------------ 6643 // Dual: compute field-by-field dual 6644 const Type *TypeFunc::xdual() const { 6645 return this; 6646 } 6647 6648 //------------------------------eq--------------------------------------------- 6649 // Structural equality check for Type representations 6650 bool TypeFunc::eq( const Type *t ) const { 6651 const TypeFunc *a = (const TypeFunc*)t; 6652 return _domain == a->_domain && 6653 _range == a->_range; 6654 } 6655 6656 //------------------------------hash------------------------------------------- 6657 // Type-specific hashing function. 6658 uint TypeFunc::hash(void) const { 6659 return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range; 6660 } 6661 6662 //------------------------------dump2------------------------------------------ 6663 // Dump Function Type 6664 #ifndef PRODUCT 6665 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const { 6666 if( _range->cnt() <= Parms ) 6667 st->print("void"); 6668 else { 6669 uint i; 6670 for (i = Parms; i < _range->cnt()-1; i++) { 6671 _range->field_at(i)->dump2(d,depth,st); 6672 st->print("/"); 6673 } 6674 _range->field_at(i)->dump2(d,depth,st); 6675 } 6676 st->print(" "); 6677 st->print("( "); 6678 if( !depth || d[this] ) { // Check for recursive dump 6679 st->print("...)"); 6680 return; 6681 } 6682 d.Insert((void*)this,(void*)this); // Stop recursion 6683 if (Parms < _domain->cnt()) 6684 _domain->field_at(Parms)->dump2(d,depth-1,st); 6685 for (uint i = Parms+1; i < _domain->cnt(); i++) { 6686 st->print(", "); 6687 _domain->field_at(i)->dump2(d,depth-1,st); 6688 } 6689 st->print(" )"); 6690 } 6691 #endif 6692 6693 //------------------------------singleton-------------------------------------- 6694 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 6695 // constants (Ldi nodes). Singletons are integer, float or double constants 6696 // or a single symbol. 6697 bool TypeFunc::singleton(void) const { 6698 return false; // Never a singleton 6699 } 6700 6701 bool TypeFunc::empty(void) const { 6702 return false; // Never empty 6703 } 6704 6705 6706 BasicType TypeFunc::return_type() const{ 6707 if (range()->cnt() == TypeFunc::Parms) { 6708 return T_VOID; 6709 } 6710 return range()->field_at(TypeFunc::Parms)->basic_type(); 6711 }