1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "ci/ciTypeFlow.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "libadt/dict.hpp" 32 #include "memory/oopFactory.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/instanceKlass.hpp" 35 #include "oops/instanceMirrorKlass.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "oops/typeArrayKlass.hpp" 38 #include "opto/matcher.hpp" 39 #include "opto/node.hpp" 40 #include "opto/opcodes.hpp" 41 #include "opto/type.hpp" 42 #include "utilities/checkedCast.hpp" 43 #include "utilities/powerOfTwo.hpp" 44 #include "utilities/stringUtils.hpp" 45 46 // Portions of code courtesy of Clifford Click 47 48 // Optimization - Graph Style 49 50 // Dictionary of types shared among compilations. 51 Dict* Type::_shared_type_dict = nullptr; 52 53 // Array which maps compiler types to Basic Types 54 const Type::TypeInfo Type::_type_info[Type::lastype] = { 55 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad 56 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control 57 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top 58 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int 59 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long 60 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half 61 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop 62 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass 63 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple 64 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array 65 { Bad, T_ARRAY, "interfaces:", false, Node::NotAMachineReg, relocInfo::none }, // Interfaces 66 67 #if defined(PPC64) 68 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 69 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 70 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 71 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 72 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 73 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 74 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 75 #elif defined(S390) 76 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 77 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 78 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 79 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 80 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX 81 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 82 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 83 #else // all other 84 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 85 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 86 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS 87 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD 88 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 89 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY 90 { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ 91 #endif 92 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr 93 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::external_word_type }, // RawPtr 94 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr 95 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr 96 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr 97 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr 98 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr 99 { Bad, T_METADATA, "instklass:", false, Op_RegP, relocInfo::metadata_type }, // InstKlassPtr 100 { Bad, T_METADATA, "aryklass:", false, Op_RegP, relocInfo::metadata_type }, // AryKlassPtr 101 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function 102 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio 103 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address 104 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory 105 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop 106 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon 107 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot 108 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop 109 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon 110 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot 111 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom 112 }; 113 114 // Map ideal registers (machine types) to ideal types 115 const Type *Type::mreg2type[_last_machine_leaf]; 116 117 // Map basic types to canonical Type* pointers. 118 const Type* Type:: _const_basic_type[T_CONFLICT+1]; 119 120 // Map basic types to constant-zero Types. 121 const Type* Type:: _zero_type[T_CONFLICT+1]; 122 123 // Map basic types to array-body alias types. 124 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1]; 125 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr; 126 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr; 127 128 //============================================================================= 129 // Convenience common pre-built types. 130 const Type *Type::ABIO; // State-of-machine only 131 const Type *Type::BOTTOM; // All values 132 const Type *Type::CONTROL; // Control only 133 const Type *Type::DOUBLE; // All doubles 134 const Type *Type::FLOAT; // All floats 135 const Type *Type::HALF; // Placeholder half of doublewide type 136 const Type *Type::MEMORY; // Abstract store only 137 const Type *Type::RETURN_ADDRESS; 138 const Type *Type::TOP; // No values in set 139 140 //------------------------------get_const_type--------------------------- 141 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) { 142 if (type == nullptr) { 143 return nullptr; 144 } else if (type->is_primitive_type()) { 145 return get_const_basic_type(type->basic_type()); 146 } else { 147 return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling); 148 } 149 } 150 151 //---------------------------array_element_basic_type--------------------------------- 152 // Mapping to the array element's basic type. 153 BasicType Type::array_element_basic_type() const { 154 BasicType bt = basic_type(); 155 if (bt == T_INT) { 156 if (this == TypeInt::INT) return T_INT; 157 if (this == TypeInt::CHAR) return T_CHAR; 158 if (this == TypeInt::BYTE) return T_BYTE; 159 if (this == TypeInt::BOOL) return T_BOOLEAN; 160 if (this == TypeInt::SHORT) return T_SHORT; 161 return T_VOID; 162 } 163 return bt; 164 } 165 166 // For two instance arrays of same dimension, return the base element types. 167 // Otherwise or if the arrays have different dimensions, return null. 168 void Type::get_arrays_base_elements(const Type *a1, const Type *a2, 169 const TypeInstPtr **e1, const TypeInstPtr **e2) { 170 171 if (e1) *e1 = nullptr; 172 if (e2) *e2 = nullptr; 173 const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr(); 174 const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr(); 175 176 if (a1tap != nullptr && a2tap != nullptr) { 177 // Handle multidimensional arrays 178 const TypePtr* a1tp = a1tap->elem()->make_ptr(); 179 const TypePtr* a2tp = a2tap->elem()->make_ptr(); 180 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) { 181 a1tap = a1tp->is_aryptr(); 182 a2tap = a2tp->is_aryptr(); 183 a1tp = a1tap->elem()->make_ptr(); 184 a2tp = a2tap->elem()->make_ptr(); 185 } 186 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) { 187 if (e1) *e1 = a1tp->is_instptr(); 188 if (e2) *e2 = a2tp->is_instptr(); 189 } 190 } 191 } 192 193 //---------------------------get_typeflow_type--------------------------------- 194 // Import a type produced by ciTypeFlow. 195 const Type* Type::get_typeflow_type(ciType* type) { 196 switch (type->basic_type()) { 197 198 case ciTypeFlow::StateVector::T_BOTTOM: 199 assert(type == ciTypeFlow::StateVector::bottom_type(), ""); 200 return Type::BOTTOM; 201 202 case ciTypeFlow::StateVector::T_TOP: 203 assert(type == ciTypeFlow::StateVector::top_type(), ""); 204 return Type::TOP; 205 206 case ciTypeFlow::StateVector::T_NULL: 207 assert(type == ciTypeFlow::StateVector::null_type(), ""); 208 return TypePtr::NULL_PTR; 209 210 case ciTypeFlow::StateVector::T_LONG2: 211 // The ciTypeFlow pass pushes a long, then the half. 212 // We do the same. 213 assert(type == ciTypeFlow::StateVector::long2_type(), ""); 214 return TypeInt::TOP; 215 216 case ciTypeFlow::StateVector::T_DOUBLE2: 217 // The ciTypeFlow pass pushes double, then the half. 218 // Our convention is the same. 219 assert(type == ciTypeFlow::StateVector::double2_type(), ""); 220 return Type::TOP; 221 222 case T_ADDRESS: 223 assert(type->is_return_address(), ""); 224 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci()); 225 226 default: 227 // make sure we did not mix up the cases: 228 assert(type != ciTypeFlow::StateVector::bottom_type(), ""); 229 assert(type != ciTypeFlow::StateVector::top_type(), ""); 230 assert(type != ciTypeFlow::StateVector::null_type(), ""); 231 assert(type != ciTypeFlow::StateVector::long2_type(), ""); 232 assert(type != ciTypeFlow::StateVector::double2_type(), ""); 233 assert(!type->is_return_address(), ""); 234 235 return Type::get_const_type(type); 236 } 237 } 238 239 240 //-----------------------make_from_constant------------------------------------ 241 const Type* Type::make_from_constant(ciConstant constant, bool require_constant, 242 int stable_dimension, bool is_narrow_oop, 243 bool is_autobox_cache) { 244 switch (constant.basic_type()) { 245 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 246 case T_CHAR: return TypeInt::make(constant.as_char()); 247 case T_BYTE: return TypeInt::make(constant.as_byte()); 248 case T_SHORT: return TypeInt::make(constant.as_short()); 249 case T_INT: return TypeInt::make(constant.as_int()); 250 case T_LONG: return TypeLong::make(constant.as_long()); 251 case T_FLOAT: return TypeF::make(constant.as_float()); 252 case T_DOUBLE: return TypeD::make(constant.as_double()); 253 case T_ARRAY: 254 case T_OBJECT: { 255 const Type* con_type = nullptr; 256 ciObject* oop_constant = constant.as_object(); 257 if (oop_constant->is_null_object()) { 258 con_type = Type::get_zero_type(T_OBJECT); 259 } else { 260 guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed"); 261 con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant); 262 if (Compile::current()->eliminate_boxing() && is_autobox_cache) { 263 con_type = con_type->is_aryptr()->cast_to_autobox_cache(); 264 } 265 if (stable_dimension > 0) { 266 assert(FoldStableValues, "sanity"); 267 assert(!con_type->is_zero_type(), "default value for stable field"); 268 con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension); 269 } 270 } 271 if (is_narrow_oop) { 272 con_type = con_type->make_narrowoop(); 273 } 274 return con_type; 275 } 276 case T_ILLEGAL: 277 // Invalid ciConstant returned due to OutOfMemoryError in the CI 278 assert(Compile::current()->env()->failing(), "otherwise should not see this"); 279 return nullptr; 280 default: 281 // Fall through to failure 282 return nullptr; 283 } 284 } 285 286 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) { 287 BasicType conbt = con.basic_type(); 288 switch (conbt) { 289 case T_BOOLEAN: conbt = T_BYTE; break; 290 case T_ARRAY: conbt = T_OBJECT; break; 291 default: break; 292 } 293 switch (loadbt) { 294 case T_BOOLEAN: loadbt = T_BYTE; break; 295 case T_NARROWOOP: loadbt = T_OBJECT; break; 296 case T_ARRAY: loadbt = T_OBJECT; break; 297 case T_ADDRESS: loadbt = T_OBJECT; break; 298 default: break; 299 } 300 if (conbt == loadbt) { 301 if (is_unsigned && conbt == T_BYTE) { 302 // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE). 303 return ciConstant(T_INT, con.as_int() & 0xFF); 304 } else { 305 return con; 306 } 307 } 308 if (conbt == T_SHORT && loadbt == T_CHAR) { 309 // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR). 310 return ciConstant(T_INT, con.as_int() & 0xFFFF); 311 } 312 return ciConstant(); // T_ILLEGAL 313 } 314 315 // Try to constant-fold a stable array element. 316 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension, 317 BasicType loadbt, bool is_unsigned_load) { 318 // Decode the results of GraphKit::array_element_address. 319 ciConstant element_value = array->element_value_by_offset(off); 320 if (element_value.basic_type() == T_ILLEGAL) { 321 return nullptr; // wrong offset 322 } 323 ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load); 324 325 assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d", 326 type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load); 327 328 if (con.is_valid() && // not a mismatched access 329 !con.is_null_or_zero()) { // not a default value 330 bool is_narrow_oop = (loadbt == T_NARROWOOP); 331 return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false); 332 } 333 return nullptr; 334 } 335 336 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) { 337 ciField* field; 338 ciType* type = holder->java_mirror_type(); 339 if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) { 340 // Static field 341 field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true); 342 } else { 343 // Instance field 344 field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false); 345 } 346 if (field == nullptr) { 347 return nullptr; // Wrong offset 348 } 349 return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load); 350 } 351 352 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder, 353 BasicType loadbt, bool is_unsigned_load) { 354 if (!field->is_constant()) { 355 return nullptr; // Non-constant field 356 } 357 ciConstant field_value; 358 if (field->is_static()) { 359 // final static field 360 field_value = field->constant_value(); 361 } else if (holder != nullptr) { 362 // final or stable non-static field 363 // Treat final non-static fields of trusted classes (classes in 364 // java.lang.invoke and sun.invoke packages and subpackages) as 365 // compile time constants. 366 field_value = field->constant_value_of(holder); 367 } 368 if (!field_value.is_valid()) { 369 return nullptr; // Not a constant 370 } 371 372 ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load); 373 374 assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d", 375 type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load); 376 377 bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass(); 378 int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0); 379 bool is_narrow_oop = (loadbt == T_NARROWOOP); 380 381 const Type* con_type = make_from_constant(con, /*require_constant=*/ true, 382 stable_dimension, is_narrow_oop, 383 field->is_autobox_cache()); 384 if (con_type != nullptr && field->is_call_site_target()) { 385 ciCallSite* call_site = holder->as_call_site(); 386 if (!call_site->is_fully_initialized_constant_call_site()) { 387 ciMethodHandle* target = con.as_object()->as_method_handle(); 388 Compile::current()->dependencies()->assert_call_site_target_value(call_site, target); 389 } 390 } 391 return con_type; 392 } 393 394 //------------------------------make------------------------------------------- 395 // Create a simple Type, with default empty symbol sets. Then hashcons it 396 // and look for an existing copy in the type dictionary. 397 const Type *Type::make( enum TYPES t ) { 398 return (new Type(t))->hashcons(); 399 } 400 401 //------------------------------cmp-------------------------------------------- 402 bool Type::equals(const Type* t1, const Type* t2) { 403 if (t1->_base != t2->_base) { 404 return false; // Missed badly 405 } 406 407 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive"); 408 return t1->eq(t2); 409 } 410 411 const Type* Type::maybe_remove_speculative(bool include_speculative) const { 412 if (!include_speculative) { 413 return remove_speculative(); 414 } 415 return this; 416 } 417 418 //------------------------------hash------------------------------------------- 419 int Type::uhash( const Type *const t ) { 420 return (int)t->hash(); 421 } 422 423 #define SMALLINT ((juint)3) // a value too insignificant to consider widening 424 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite 425 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite 426 427 //--------------------------Initialize_shared---------------------------------- 428 void Type::Initialize_shared(Compile* current) { 429 // This method does not need to be locked because the first system 430 // compilations (stub compilations) occur serially. If they are 431 // changed to proceed in parallel, then this section will need 432 // locking. 433 434 Arena* save = current->type_arena(); 435 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler); 436 437 current->set_type_arena(shared_type_arena); 438 439 // Map the boolean result of Type::equals into a comparator result that CmpKey expects. 440 CmpKey type_cmp = [](const void* t1, const void* t2) -> int32_t { 441 return Type::equals((Type*) t1, (Type*) t2) ? 0 : 1; 442 }; 443 444 _shared_type_dict = new (shared_type_arena) Dict(type_cmp, (Hash) Type::uhash, shared_type_arena, 128); 445 current->set_type_dict(_shared_type_dict); 446 447 // Make shared pre-built types. 448 CONTROL = make(Control); // Control only 449 TOP = make(Top); // No values in set 450 MEMORY = make(Memory); // Abstract store only 451 ABIO = make(Abio); // State-of-machine only 452 RETURN_ADDRESS=make(Return_Address); 453 FLOAT = make(FloatBot); // All floats 454 DOUBLE = make(DoubleBot); // All doubles 455 BOTTOM = make(Bottom); // Everything 456 HALF = make(Half); // Placeholder half of doublewide type 457 458 TypeF::MAX = TypeF::make(max_jfloat); // Float MAX 459 TypeF::MIN = TypeF::make(min_jfloat); // Float MIN 460 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero) 461 TypeF::ONE = TypeF::make(1.0); // Float 1 462 TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F)); 463 TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F)); 464 465 TypeD::MAX = TypeD::make(max_jdouble); // Double MAX 466 TypeD::MIN = TypeD::make(min_jdouble); // Double MIN 467 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero) 468 TypeD::ONE = TypeD::make(1.0); // Double 1 469 TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D)); 470 TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D)); 471 472 TypeInt::MAX = TypeInt::make(max_jint); // Int MAX 473 TypeInt::MIN = TypeInt::make(min_jint); // Int MIN 474 TypeInt::MINUS_1 = TypeInt::make(-1); // -1 475 TypeInt::ZERO = TypeInt::make( 0); // 0 476 TypeInt::ONE = TypeInt::make( 1); // 1 477 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE. 478 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes 479 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1 480 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE 481 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO 482 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin); 483 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL 484 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes 485 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes 486 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars 487 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts 488 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values 489 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values 490 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers 491 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range 492 TypeInt::TYPE_DOMAIN = TypeInt::INT; 493 // CmpL is overloaded both as the bytecode computation returning 494 // a trinary (-1,0,+1) integer result AND as an efficient long 495 // compare returning optimizer ideal-type flags. 496 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" ); 497 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" ); 498 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" ); 499 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" ); 500 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small"); 501 502 TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX 503 TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN 504 TypeLong::MINUS_1 = TypeLong::make(-1); // -1 505 TypeLong::ZERO = TypeLong::make( 0); // 0 506 TypeLong::ONE = TypeLong::make( 1); // 1 507 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values 508 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers 509 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin); 510 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin); 511 TypeLong::TYPE_DOMAIN = TypeLong::LONG; 512 513 const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 514 fboth[0] = Type::CONTROL; 515 fboth[1] = Type::CONTROL; 516 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth ); 517 518 const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 519 ffalse[0] = Type::CONTROL; 520 ffalse[1] = Type::TOP; 521 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse ); 522 523 const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 524 fneither[0] = Type::TOP; 525 fneither[1] = Type::TOP; 526 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither ); 527 528 const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 529 ftrue[0] = Type::TOP; 530 ftrue[1] = Type::CONTROL; 531 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue ); 532 533 const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 534 floop[0] = Type::CONTROL; 535 floop[1] = TypeInt::INT; 536 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop ); 537 538 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0); 539 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot); 540 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot); 541 542 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR ); 543 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull ); 544 545 const Type **fmembar = TypeTuple::fields(0); 546 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar); 547 548 const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 549 fsc[0] = TypeInt::CC; 550 fsc[1] = Type::MEMORY; 551 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc); 552 553 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass()); 554 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass()); 555 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass()); 556 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 557 false, nullptr, oopDesc::mark_offset_in_bytes()); 558 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 559 false, nullptr, oopDesc::klass_offset_in_bytes()); 560 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot); 561 562 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot); 563 564 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR ); 565 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM ); 566 567 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR ); 568 569 mreg2type[Op_Node] = Type::BOTTOM; 570 mreg2type[Op_Set ] = nullptr; 571 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM; 572 mreg2type[Op_RegI] = TypeInt::INT; 573 mreg2type[Op_RegP] = TypePtr::BOTTOM; 574 mreg2type[Op_RegF] = Type::FLOAT; 575 mreg2type[Op_RegD] = Type::DOUBLE; 576 mreg2type[Op_RegL] = TypeLong::LONG; 577 mreg2type[Op_RegFlags] = TypeInt::CC; 578 579 GrowableArray<ciInstanceKlass*> array_interfaces; 580 array_interfaces.push(current->env()->Cloneable_klass()); 581 array_interfaces.push(current->env()->Serializable_klass()); 582 TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces); 583 TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces; 584 585 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes()); 586 587 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); 588 589 #ifdef _LP64 590 if (UseCompressedOops) { 591 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop"); 592 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS; 593 } else 594 #endif 595 { 596 // There is no shared klass for Object[]. See note in TypeAryPtr::klass(). 597 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); 598 } 599 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot); 600 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot); 601 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot); 602 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot); 603 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot); 604 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot); 605 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot); 606 607 // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert. 608 TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr; 609 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS; 610 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays 611 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES; 612 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array 613 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS; 614 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS; 615 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS; 616 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS; 617 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS; 618 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES; 619 620 TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0); 621 TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0); 622 623 const Type **fi2c = TypeTuple::fields(2); 624 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method* 625 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer 626 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c); 627 628 const Type **intpair = TypeTuple::fields(2); 629 intpair[0] = TypeInt::INT; 630 intpair[1] = TypeInt::INT; 631 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair); 632 633 const Type **longpair = TypeTuple::fields(2); 634 longpair[0] = TypeLong::LONG; 635 longpair[1] = TypeLong::LONG; 636 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair); 637 638 const Type **intccpair = TypeTuple::fields(2); 639 intccpair[0] = TypeInt::INT; 640 intccpair[1] = TypeInt::CC; 641 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair); 642 643 const Type **longccpair = TypeTuple::fields(2); 644 longccpair[0] = TypeLong::LONG; 645 longccpair[1] = TypeInt::CC; 646 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair); 647 648 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM; 649 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM; 650 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL; 651 _const_basic_type[T_CHAR] = TypeInt::CHAR; 652 _const_basic_type[T_BYTE] = TypeInt::BYTE; 653 _const_basic_type[T_SHORT] = TypeInt::SHORT; 654 _const_basic_type[T_INT] = TypeInt::INT; 655 _const_basic_type[T_LONG] = TypeLong::LONG; 656 _const_basic_type[T_FLOAT] = Type::FLOAT; 657 _const_basic_type[T_DOUBLE] = Type::DOUBLE; 658 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM; 659 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays 660 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way 661 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs 662 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not? 663 664 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR; 665 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR; 666 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0 667 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0 668 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0 669 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0 670 _zero_type[T_INT] = TypeInt::ZERO; 671 _zero_type[T_LONG] = TypeLong::ZERO; 672 _zero_type[T_FLOAT] = TypeF::ZERO; 673 _zero_type[T_DOUBLE] = TypeD::ZERO; 674 _zero_type[T_OBJECT] = TypePtr::NULL_PTR; 675 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop 676 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null 677 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all 678 679 // get_zero_type() should not happen for T_CONFLICT 680 _zero_type[T_CONFLICT]= nullptr; 681 682 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons(); 683 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK; 684 685 if (Matcher::supports_scalable_vector()) { 686 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE)); 687 } 688 689 // Vector predefined types, it needs initialized _const_basic_type[]. 690 if (Matcher::vector_size_supported(T_BYTE, 4)) { 691 TypeVect::VECTS = TypeVect::make(T_BYTE, 4); 692 } 693 if (Matcher::vector_size_supported(T_FLOAT, 2)) { 694 TypeVect::VECTD = TypeVect::make(T_FLOAT, 2); 695 } 696 if (Matcher::vector_size_supported(T_FLOAT, 4)) { 697 TypeVect::VECTX = TypeVect::make(T_FLOAT, 4); 698 } 699 if (Matcher::vector_size_supported(T_FLOAT, 8)) { 700 TypeVect::VECTY = TypeVect::make(T_FLOAT, 8); 701 } 702 if (Matcher::vector_size_supported(T_FLOAT, 16)) { 703 TypeVect::VECTZ = TypeVect::make(T_FLOAT, 16); 704 } 705 706 mreg2type[Op_VecA] = TypeVect::VECTA; 707 mreg2type[Op_VecS] = TypeVect::VECTS; 708 mreg2type[Op_VecD] = TypeVect::VECTD; 709 mreg2type[Op_VecX] = TypeVect::VECTX; 710 mreg2type[Op_VecY] = TypeVect::VECTY; 711 mreg2type[Op_VecZ] = TypeVect::VECTZ; 712 713 // Restore working type arena. 714 current->set_type_arena(save); 715 current->set_type_dict(nullptr); 716 } 717 718 //------------------------------Initialize------------------------------------- 719 void Type::Initialize(Compile* current) { 720 assert(current->type_arena() != nullptr, "must have created type arena"); 721 722 if (_shared_type_dict == nullptr) { 723 Initialize_shared(current); 724 } 725 726 Arena* type_arena = current->type_arena(); 727 728 // Create the hash-cons'ing dictionary with top-level storage allocation 729 Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena); 730 current->set_type_dict(tdic); 731 } 732 733 //------------------------------hashcons--------------------------------------- 734 // Do the hash-cons trick. If the Type already exists in the type table, 735 // delete the current Type and return the existing Type. Otherwise stick the 736 // current Type in the Type table. 737 const Type *Type::hashcons(void) { 738 debug_only(base()); // Check the assertion in Type::base(). 739 // Look up the Type in the Type dictionary 740 Dict *tdic = type_dict(); 741 Type* old = (Type*)(tdic->Insert(this, this, false)); 742 if( old ) { // Pre-existing Type? 743 if( old != this ) // Yes, this guy is not the pre-existing? 744 delete this; // Yes, Nuke this guy 745 assert( old->_dual, "" ); 746 return old; // Return pre-existing 747 } 748 749 // Every type has a dual (to make my lattice symmetric). 750 // Since we just discovered a new Type, compute its dual right now. 751 assert( !_dual, "" ); // No dual yet 752 _dual = xdual(); // Compute the dual 753 if (equals(this, _dual)) { // Handle self-symmetric 754 if (_dual != this) { 755 delete _dual; 756 _dual = this; 757 } 758 return this; 759 } 760 assert( !_dual->_dual, "" ); // No reverse dual yet 761 assert( !(*tdic)[_dual], "" ); // Dual not in type system either 762 // New Type, insert into Type table 763 tdic->Insert((void*)_dual,(void*)_dual); 764 ((Type*)_dual)->_dual = this; // Finish up being symmetric 765 #ifdef ASSERT 766 Type *dual_dual = (Type*)_dual->xdual(); 767 assert( eq(dual_dual), "xdual(xdual()) should be identity" ); 768 delete dual_dual; 769 #endif 770 return this; // Return new Type 771 } 772 773 //------------------------------eq--------------------------------------------- 774 // Structural equality check for Type representations 775 bool Type::eq( const Type * ) const { 776 return true; // Nothing else can go wrong 777 } 778 779 //------------------------------hash------------------------------------------- 780 // Type-specific hashing function. 781 uint Type::hash(void) const { 782 return _base; 783 } 784 785 //------------------------------is_finite-------------------------------------- 786 // Has a finite value 787 bool Type::is_finite() const { 788 return false; 789 } 790 791 //------------------------------is_nan----------------------------------------- 792 // Is not a number (NaN) 793 bool Type::is_nan() const { 794 return false; 795 } 796 797 #ifdef ASSERT 798 class VerifyMeet; 799 class VerifyMeetResult : public ArenaObj { 800 friend class VerifyMeet; 801 friend class Type; 802 private: 803 class VerifyMeetResultEntry { 804 private: 805 const Type* _in1; 806 const Type* _in2; 807 const Type* _res; 808 public: 809 VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res): 810 _in1(in1), _in2(in2), _res(res) { 811 } 812 VerifyMeetResultEntry(): 813 _in1(nullptr), _in2(nullptr), _res(nullptr) { 814 } 815 816 bool operator==(const VerifyMeetResultEntry& rhs) const { 817 return _in1 == rhs._in1 && 818 _in2 == rhs._in2 && 819 _res == rhs._res; 820 } 821 822 bool operator!=(const VerifyMeetResultEntry& rhs) const { 823 return !(rhs == *this); 824 } 825 826 static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) { 827 if ((intptr_t) v1._in1 < (intptr_t) v2._in1) { 828 return -1; 829 } else if (v1._in1 == v2._in1) { 830 if ((intptr_t) v1._in2 < (intptr_t) v2._in2) { 831 return -1; 832 } else if (v1._in2 == v2._in2) { 833 assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result"); 834 return 0; 835 } 836 return 1; 837 } 838 return 1; 839 } 840 const Type* res() const { return _res; } 841 }; 842 uint _depth; 843 GrowableArray<VerifyMeetResultEntry> _cache; 844 845 // With verification code, the meet of A and B causes the computation of: 846 // 1- meet(A, B) 847 // 2- meet(B, A) 848 // 3- meet(dual(meet(A, B)), dual(A)) 849 // 4- meet(dual(meet(A, B)), dual(B)) 850 // 5- meet(dual(A), dual(B)) 851 // 6- meet(dual(B), dual(A)) 852 // 7- meet(dual(meet(dual(A), dual(B))), A) 853 // 8- meet(dual(meet(dual(A), dual(B))), B) 854 // 855 // In addition the meet of A[] and B[] requires the computation of the meet of A and B. 856 // 857 // The meet of A[] and B[] triggers the computation of: 858 // 1- meet(A[], B[][) 859 // 1.1- meet(A, B) 860 // 1.2- meet(B, A) 861 // 1.3- meet(dual(meet(A, B)), dual(A)) 862 // 1.4- meet(dual(meet(A, B)), dual(B)) 863 // 1.5- meet(dual(A), dual(B)) 864 // 1.6- meet(dual(B), dual(A)) 865 // 1.7- meet(dual(meet(dual(A), dual(B))), A) 866 // 1.8- meet(dual(meet(dual(A), dual(B))), B) 867 // 2- meet(B[], A[]) 868 // 2.1- meet(B, A) = 1.2 869 // 2.2- meet(A, B) = 1.1 870 // 2.3- meet(dual(meet(B, A)), dual(B)) = 1.4 871 // 2.4- meet(dual(meet(B, A)), dual(A)) = 1.3 872 // 2.5- meet(dual(B), dual(A)) = 1.6 873 // 2.6- meet(dual(A), dual(B)) = 1.5 874 // 2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8 875 // 2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7 876 // etc. 877 // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number 878 // of different meet operations is linear in the number of dimensions. The function below caches meet results for the 879 // duration of the meet at the root of the recursive calls. 880 // 881 const Type* meet(const Type* t1, const Type* t2) { 882 bool found = false; 883 const VerifyMeetResultEntry meet(t1, t2, nullptr); 884 int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found); 885 const Type* res = nullptr; 886 if (found) { 887 res = _cache.at(pos).res(); 888 } else { 889 res = t1->xmeet(t2); 890 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res)); 891 found = false; 892 _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found); 893 assert(found, "should be in table after it's added"); 894 } 895 return res; 896 } 897 898 void add(const Type* t1, const Type* t2, const Type* res) { 899 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res)); 900 } 901 902 bool empty_cache() const { 903 return _cache.length() == 0; 904 } 905 public: 906 VerifyMeetResult(Compile* C) : 907 _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) { 908 } 909 }; 910 911 void Type::assert_type_verify_empty() const { 912 assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded"); 913 } 914 915 class VerifyMeet { 916 private: 917 Compile* _C; 918 public: 919 VerifyMeet(Compile* C) : _C(C) { 920 if (C->_type_verify == nullptr) { 921 C->_type_verify = new (C->comp_arena())VerifyMeetResult(C); 922 } 923 _C->_type_verify->_depth++; 924 } 925 926 ~VerifyMeet() { 927 assert(_C->_type_verify->_depth != 0, ""); 928 _C->_type_verify->_depth--; 929 if (_C->_type_verify->_depth == 0) { 930 _C->_type_verify->_cache.trunc_to(0); 931 } 932 } 933 934 const Type* meet(const Type* t1, const Type* t2) const { 935 return _C->_type_verify->meet(t1, t2); 936 } 937 938 void add(const Type* t1, const Type* t2, const Type* res) const { 939 _C->_type_verify->add(t1, t2, res); 940 } 941 }; 942 943 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const { 944 Compile* C = Compile::current(); 945 const Type* mt2 = verify.meet(t, this); 946 if (mt != mt2) { 947 tty->print_cr("=== Meet Not Commutative ==="); 948 tty->print("t = "); t->dump(); tty->cr(); 949 tty->print("this = "); dump(); tty->cr(); 950 tty->print("t meet this = "); mt2->dump(); tty->cr(); 951 tty->print("this meet t = "); mt->dump(); tty->cr(); 952 fatal("meet not commutative"); 953 } 954 const Type* dual_join = mt->_dual; 955 const Type* t2t = verify.meet(dual_join,t->_dual); 956 const Type* t2this = verify.meet(dual_join,this->_dual); 957 958 // Interface meet Oop is Not Symmetric: 959 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull 960 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull 961 962 if (t2t != t->_dual || t2this != this->_dual) { 963 tty->print_cr("=== Meet Not Symmetric ==="); 964 tty->print("t = "); t->dump(); tty->cr(); 965 tty->print("this= "); dump(); tty->cr(); 966 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr(); 967 968 tty->print("t_dual= "); t->_dual->dump(); tty->cr(); 969 tty->print("this_dual= "); _dual->dump(); tty->cr(); 970 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr(); 971 972 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr(); 973 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr(); 974 975 fatal("meet not symmetric"); 976 } 977 } 978 #endif 979 980 //------------------------------meet------------------------------------------- 981 // Compute the MEET of two types. NOT virtual. It enforces that meet is 982 // commutative and the lattice is symmetric. 983 const Type *Type::meet_helper(const Type *t, bool include_speculative) const { 984 if (isa_narrowoop() && t->isa_narrowoop()) { 985 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 986 return result->make_narrowoop(); 987 } 988 if (isa_narrowklass() && t->isa_narrowklass()) { 989 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 990 return result->make_narrowklass(); 991 } 992 993 #ifdef ASSERT 994 Compile* C = Compile::current(); 995 VerifyMeet verify(C); 996 #endif 997 998 const Type *this_t = maybe_remove_speculative(include_speculative); 999 t = t->maybe_remove_speculative(include_speculative); 1000 1001 const Type *mt = this_t->xmeet(t); 1002 #ifdef ASSERT 1003 verify.add(this_t, t, mt); 1004 if (isa_narrowoop() || t->isa_narrowoop()) { 1005 return mt; 1006 } 1007 if (isa_narrowklass() || t->isa_narrowklass()) { 1008 return mt; 1009 } 1010 this_t->check_symmetrical(t, mt, verify); 1011 const Type *mt_dual = verify.meet(this_t->_dual, t->_dual); 1012 this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify); 1013 #endif 1014 return mt; 1015 } 1016 1017 //------------------------------xmeet------------------------------------------ 1018 // Compute the MEET of two types. It returns a new Type object. 1019 const Type *Type::xmeet( const Type *t ) const { 1020 // Perform a fast test for common case; meeting the same types together. 1021 if( this == t ) return this; // Meeting same type-rep? 1022 1023 // Meeting TOP with anything? 1024 if( _base == Top ) return t; 1025 1026 // Meeting BOTTOM with anything? 1027 if( _base == Bottom ) return BOTTOM; 1028 1029 // Current "this->_base" is one of: Bad, Multi, Control, Top, 1030 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype. 1031 switch (t->base()) { // Switch on original type 1032 1033 // Cut in half the number of cases I must handle. Only need cases for when 1034 // the given enum "t->type" is less than or equal to the local enum "type". 1035 case FloatCon: 1036 case DoubleCon: 1037 case Int: 1038 case Long: 1039 return t->xmeet(this); 1040 1041 case OopPtr: 1042 return t->xmeet(this); 1043 1044 case InstPtr: 1045 return t->xmeet(this); 1046 1047 case MetadataPtr: 1048 case KlassPtr: 1049 case InstKlassPtr: 1050 case AryKlassPtr: 1051 return t->xmeet(this); 1052 1053 case AryPtr: 1054 return t->xmeet(this); 1055 1056 case NarrowOop: 1057 return t->xmeet(this); 1058 1059 case NarrowKlass: 1060 return t->xmeet(this); 1061 1062 case Bad: // Type check 1063 default: // Bogus type not in lattice 1064 typerr(t); 1065 return Type::BOTTOM; 1066 1067 case Bottom: // Ye Olde Default 1068 return t; 1069 1070 case FloatTop: 1071 if( _base == FloatTop ) return this; 1072 case FloatBot: // Float 1073 if( _base == FloatBot || _base == FloatTop ) return FLOAT; 1074 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM; 1075 typerr(t); 1076 return Type::BOTTOM; 1077 1078 case DoubleTop: 1079 if( _base == DoubleTop ) return this; 1080 case DoubleBot: // Double 1081 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE; 1082 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM; 1083 typerr(t); 1084 return Type::BOTTOM; 1085 1086 // These next few cases must match exactly or it is a compile-time error. 1087 case Control: // Control of code 1088 case Abio: // State of world outside of program 1089 case Memory: 1090 if( _base == t->_base ) return this; 1091 typerr(t); 1092 return Type::BOTTOM; 1093 1094 case Top: // Top of the lattice 1095 return this; 1096 } 1097 1098 // The type is unchanged 1099 return this; 1100 } 1101 1102 //-----------------------------filter------------------------------------------ 1103 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const { 1104 const Type* ft = join_helper(kills, include_speculative); 1105 if (ft->empty()) 1106 return Type::TOP; // Canonical empty value 1107 return ft; 1108 } 1109 1110 //------------------------------xdual------------------------------------------ 1111 const Type *Type::xdual() const { 1112 // Note: the base() accessor asserts the sanity of _base. 1113 assert(_type_info[base()].dual_type != Bad, "implement with v-call"); 1114 return new Type(_type_info[_base].dual_type); 1115 } 1116 1117 //------------------------------has_memory------------------------------------- 1118 bool Type::has_memory() const { 1119 Type::TYPES tx = base(); 1120 if (tx == Memory) return true; 1121 if (tx == Tuple) { 1122 const TypeTuple *t = is_tuple(); 1123 for (uint i=0; i < t->cnt(); i++) { 1124 tx = t->field_at(i)->base(); 1125 if (tx == Memory) return true; 1126 } 1127 } 1128 return false; 1129 } 1130 1131 #ifndef PRODUCT 1132 //------------------------------dump2------------------------------------------ 1133 void Type::dump2( Dict &d, uint depth, outputStream *st ) const { 1134 st->print("%s", _type_info[_base].msg); 1135 } 1136 1137 //------------------------------dump------------------------------------------- 1138 void Type::dump_on(outputStream *st) const { 1139 ResourceMark rm; 1140 Dict d(cmpkey,hashkey); // Stop recursive type dumping 1141 dump2(d,1, st); 1142 if (is_ptr_to_narrowoop()) { 1143 st->print(" [narrow]"); 1144 } else if (is_ptr_to_narrowklass()) { 1145 st->print(" [narrowklass]"); 1146 } 1147 } 1148 1149 //----------------------------------------------------------------------------- 1150 const char* Type::str(const Type* t) { 1151 stringStream ss; 1152 t->dump_on(&ss); 1153 return ss.as_string(); 1154 } 1155 #endif 1156 1157 //------------------------------singleton-------------------------------------- 1158 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1159 // constants (Ldi nodes). Singletons are integer, float or double constants. 1160 bool Type::singleton(void) const { 1161 return _base == Top || _base == Half; 1162 } 1163 1164 //------------------------------empty------------------------------------------ 1165 // TRUE if Type is a type with no values, FALSE otherwise. 1166 bool Type::empty(void) const { 1167 switch (_base) { 1168 case DoubleTop: 1169 case FloatTop: 1170 case Top: 1171 return true; 1172 1173 case Half: 1174 case Abio: 1175 case Return_Address: 1176 case Memory: 1177 case Bottom: 1178 case FloatBot: 1179 case DoubleBot: 1180 return false; // never a singleton, therefore never empty 1181 1182 default: 1183 ShouldNotReachHere(); 1184 return false; 1185 } 1186 } 1187 1188 //------------------------------dump_stats------------------------------------- 1189 // Dump collected statistics to stderr 1190 #ifndef PRODUCT 1191 void Type::dump_stats() { 1192 tty->print("Types made: %d\n", type_dict()->Size()); 1193 } 1194 #endif 1195 1196 //------------------------------category--------------------------------------- 1197 #ifndef PRODUCT 1198 Type::Category Type::category() const { 1199 const TypeTuple* tuple; 1200 switch (base()) { 1201 case Type::Int: 1202 case Type::Long: 1203 case Type::Half: 1204 case Type::NarrowOop: 1205 case Type::NarrowKlass: 1206 case Type::Array: 1207 case Type::VectorA: 1208 case Type::VectorS: 1209 case Type::VectorD: 1210 case Type::VectorX: 1211 case Type::VectorY: 1212 case Type::VectorZ: 1213 case Type::VectorMask: 1214 case Type::AnyPtr: 1215 case Type::RawPtr: 1216 case Type::OopPtr: 1217 case Type::InstPtr: 1218 case Type::AryPtr: 1219 case Type::MetadataPtr: 1220 case Type::KlassPtr: 1221 case Type::InstKlassPtr: 1222 case Type::AryKlassPtr: 1223 case Type::Function: 1224 case Type::Return_Address: 1225 case Type::FloatTop: 1226 case Type::FloatCon: 1227 case Type::FloatBot: 1228 case Type::DoubleTop: 1229 case Type::DoubleCon: 1230 case Type::DoubleBot: 1231 return Category::Data; 1232 case Type::Memory: 1233 return Category::Memory; 1234 case Type::Control: 1235 return Category::Control; 1236 case Type::Top: 1237 case Type::Abio: 1238 case Type::Bottom: 1239 return Category::Other; 1240 case Type::Bad: 1241 case Type::lastype: 1242 return Category::Undef; 1243 case Type::Tuple: 1244 // Recursive case. Return CatMixed if the tuple contains types of 1245 // different categories (e.g. CallStaticJavaNode's type), or the specific 1246 // category if all types are of the same category (e.g. IfNode's type). 1247 tuple = is_tuple(); 1248 if (tuple->cnt() == 0) { 1249 return Category::Undef; 1250 } else { 1251 Category first = tuple->field_at(0)->category(); 1252 for (uint i = 1; i < tuple->cnt(); i++) { 1253 if (tuple->field_at(i)->category() != first) { 1254 return Category::Mixed; 1255 } 1256 } 1257 return first; 1258 } 1259 default: 1260 assert(false, "unmatched base type: all base types must be categorized"); 1261 } 1262 return Category::Undef; 1263 } 1264 1265 bool Type::has_category(Type::Category cat) const { 1266 if (category() == cat) { 1267 return true; 1268 } 1269 if (category() == Category::Mixed) { 1270 const TypeTuple* tuple = is_tuple(); 1271 for (uint i = 0; i < tuple->cnt(); i++) { 1272 if (tuple->field_at(i)->has_category(cat)) { 1273 return true; 1274 } 1275 } 1276 } 1277 return false; 1278 } 1279 #endif 1280 1281 //------------------------------typerr----------------------------------------- 1282 void Type::typerr( const Type *t ) const { 1283 #ifndef PRODUCT 1284 tty->print("\nError mixing types: "); 1285 dump(); 1286 tty->print(" and "); 1287 t->dump(); 1288 tty->print("\n"); 1289 #endif 1290 ShouldNotReachHere(); 1291 } 1292 1293 1294 //============================================================================= 1295 // Convenience common pre-built types. 1296 const TypeF *TypeF::MAX; // Floating point max 1297 const TypeF *TypeF::MIN; // Floating point min 1298 const TypeF *TypeF::ZERO; // Floating point zero 1299 const TypeF *TypeF::ONE; // Floating point one 1300 const TypeF *TypeF::POS_INF; // Floating point positive infinity 1301 const TypeF *TypeF::NEG_INF; // Floating point negative infinity 1302 1303 //------------------------------make------------------------------------------- 1304 // Create a float constant 1305 const TypeF *TypeF::make(float f) { 1306 return (TypeF*)(new TypeF(f))->hashcons(); 1307 } 1308 1309 //------------------------------meet------------------------------------------- 1310 // Compute the MEET of two types. It returns a new Type object. 1311 const Type *TypeF::xmeet( const Type *t ) const { 1312 // Perform a fast test for common case; meeting the same types together. 1313 if( this == t ) return this; // Meeting same type-rep? 1314 1315 // Current "this->_base" is FloatCon 1316 switch (t->base()) { // Switch on original type 1317 case AnyPtr: // Mixing with oops happens when javac 1318 case RawPtr: // reuses local variables 1319 case OopPtr: 1320 case InstPtr: 1321 case AryPtr: 1322 case MetadataPtr: 1323 case KlassPtr: 1324 case InstKlassPtr: 1325 case AryKlassPtr: 1326 case NarrowOop: 1327 case NarrowKlass: 1328 case Int: 1329 case Long: 1330 case DoubleTop: 1331 case DoubleCon: 1332 case DoubleBot: 1333 case Bottom: // Ye Olde Default 1334 return Type::BOTTOM; 1335 1336 case FloatBot: 1337 return t; 1338 1339 default: // All else is a mistake 1340 typerr(t); 1341 1342 case FloatCon: // Float-constant vs Float-constant? 1343 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants? 1344 // must compare bitwise as positive zero, negative zero and NaN have 1345 // all the same representation in C++ 1346 return FLOAT; // Return generic float 1347 // Equal constants 1348 case Top: 1349 case FloatTop: 1350 break; // Return the float constant 1351 } 1352 return this; // Return the float constant 1353 } 1354 1355 //------------------------------xdual------------------------------------------ 1356 // Dual: symmetric 1357 const Type *TypeF::xdual() const { 1358 return this; 1359 } 1360 1361 //------------------------------eq--------------------------------------------- 1362 // Structural equality check for Type representations 1363 bool TypeF::eq(const Type *t) const { 1364 // Bitwise comparison to distinguish between +/-0. These values must be treated 1365 // as different to be consistent with C1 and the interpreter. 1366 return (jint_cast(_f) == jint_cast(t->getf())); 1367 } 1368 1369 //------------------------------hash------------------------------------------- 1370 // Type-specific hashing function. 1371 uint TypeF::hash(void) const { 1372 return *(uint*)(&_f); 1373 } 1374 1375 //------------------------------is_finite-------------------------------------- 1376 // Has a finite value 1377 bool TypeF::is_finite() const { 1378 return g_isfinite(getf()) != 0; 1379 } 1380 1381 //------------------------------is_nan----------------------------------------- 1382 // Is not a number (NaN) 1383 bool TypeF::is_nan() const { 1384 return g_isnan(getf()) != 0; 1385 } 1386 1387 //------------------------------dump2------------------------------------------ 1388 // Dump float constant Type 1389 #ifndef PRODUCT 1390 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const { 1391 Type::dump2(d,depth, st); 1392 st->print("%f", _f); 1393 } 1394 #endif 1395 1396 //------------------------------singleton-------------------------------------- 1397 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1398 // constants (Ldi nodes). Singletons are integer, float or double constants 1399 // or a single symbol. 1400 bool TypeF::singleton(void) const { 1401 return true; // Always a singleton 1402 } 1403 1404 bool TypeF::empty(void) const { 1405 return false; // always exactly a singleton 1406 } 1407 1408 //============================================================================= 1409 // Convenience common pre-built types. 1410 const TypeD *TypeD::MAX; // Floating point max 1411 const TypeD *TypeD::MIN; // Floating point min 1412 const TypeD *TypeD::ZERO; // Floating point zero 1413 const TypeD *TypeD::ONE; // Floating point one 1414 const TypeD *TypeD::POS_INF; // Floating point positive infinity 1415 const TypeD *TypeD::NEG_INF; // Floating point negative infinity 1416 1417 //------------------------------make------------------------------------------- 1418 const TypeD *TypeD::make(double d) { 1419 return (TypeD*)(new TypeD(d))->hashcons(); 1420 } 1421 1422 //------------------------------meet------------------------------------------- 1423 // Compute the MEET of two types. It returns a new Type object. 1424 const Type *TypeD::xmeet( const Type *t ) const { 1425 // Perform a fast test for common case; meeting the same types together. 1426 if( this == t ) return this; // Meeting same type-rep? 1427 1428 // Current "this->_base" is DoubleCon 1429 switch (t->base()) { // Switch on original type 1430 case AnyPtr: // Mixing with oops happens when javac 1431 case RawPtr: // reuses local variables 1432 case OopPtr: 1433 case InstPtr: 1434 case AryPtr: 1435 case MetadataPtr: 1436 case KlassPtr: 1437 case InstKlassPtr: 1438 case AryKlassPtr: 1439 case NarrowOop: 1440 case NarrowKlass: 1441 case Int: 1442 case Long: 1443 case FloatTop: 1444 case FloatCon: 1445 case FloatBot: 1446 case Bottom: // Ye Olde Default 1447 return Type::BOTTOM; 1448 1449 case DoubleBot: 1450 return t; 1451 1452 default: // All else is a mistake 1453 typerr(t); 1454 1455 case DoubleCon: // Double-constant vs Double-constant? 1456 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet) 1457 return DOUBLE; // Return generic double 1458 case Top: 1459 case DoubleTop: 1460 break; 1461 } 1462 return this; // Return the double constant 1463 } 1464 1465 //------------------------------xdual------------------------------------------ 1466 // Dual: symmetric 1467 const Type *TypeD::xdual() const { 1468 return this; 1469 } 1470 1471 //------------------------------eq--------------------------------------------- 1472 // Structural equality check for Type representations 1473 bool TypeD::eq(const Type *t) const { 1474 // Bitwise comparison to distinguish between +/-0. These values must be treated 1475 // as different to be consistent with C1 and the interpreter. 1476 return (jlong_cast(_d) == jlong_cast(t->getd())); 1477 } 1478 1479 //------------------------------hash------------------------------------------- 1480 // Type-specific hashing function. 1481 uint TypeD::hash(void) const { 1482 return *(uint*)(&_d); 1483 } 1484 1485 //------------------------------is_finite-------------------------------------- 1486 // Has a finite value 1487 bool TypeD::is_finite() const { 1488 return g_isfinite(getd()) != 0; 1489 } 1490 1491 //------------------------------is_nan----------------------------------------- 1492 // Is not a number (NaN) 1493 bool TypeD::is_nan() const { 1494 return g_isnan(getd()) != 0; 1495 } 1496 1497 //------------------------------dump2------------------------------------------ 1498 // Dump double constant Type 1499 #ifndef PRODUCT 1500 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const { 1501 Type::dump2(d,depth,st); 1502 st->print("%f", _d); 1503 } 1504 #endif 1505 1506 //------------------------------singleton-------------------------------------- 1507 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1508 // constants (Ldi nodes). Singletons are integer, float or double constants 1509 // or a single symbol. 1510 bool TypeD::singleton(void) const { 1511 return true; // Always a singleton 1512 } 1513 1514 bool TypeD::empty(void) const { 1515 return false; // always exactly a singleton 1516 } 1517 1518 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) { 1519 if (bt == T_INT) { 1520 return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w); 1521 } 1522 assert(bt == T_LONG, "basic type not an int or long"); 1523 return TypeLong::make(lo, hi, w); 1524 } 1525 1526 jlong TypeInteger::get_con_as_long(BasicType bt) const { 1527 if (bt == T_INT) { 1528 return is_int()->get_con(); 1529 } 1530 assert(bt == T_LONG, "basic type not an int or long"); 1531 return is_long()->get_con(); 1532 } 1533 1534 const TypeInteger* TypeInteger::bottom(BasicType bt) { 1535 if (bt == T_INT) { 1536 return TypeInt::INT; 1537 } 1538 assert(bt == T_LONG, "basic type not an int or long"); 1539 return TypeLong::LONG; 1540 } 1541 1542 const TypeInteger* TypeInteger::zero(BasicType bt) { 1543 if (bt == T_INT) { 1544 return TypeInt::ZERO; 1545 } 1546 assert(bt == T_LONG, "basic type not an int or long"); 1547 return TypeLong::ZERO; 1548 } 1549 1550 const TypeInteger* TypeInteger::one(BasicType bt) { 1551 if (bt == T_INT) { 1552 return TypeInt::ONE; 1553 } 1554 assert(bt == T_LONG, "basic type not an int or long"); 1555 return TypeLong::ONE; 1556 } 1557 1558 const TypeInteger* TypeInteger::minus_1(BasicType bt) { 1559 if (bt == T_INT) { 1560 return TypeInt::MINUS_1; 1561 } 1562 assert(bt == T_LONG, "basic type not an int or long"); 1563 return TypeLong::MINUS_1; 1564 } 1565 1566 //============================================================================= 1567 // Convenience common pre-built types. 1568 const TypeInt *TypeInt::MAX; // INT_MAX 1569 const TypeInt *TypeInt::MIN; // INT_MIN 1570 const TypeInt *TypeInt::MINUS_1;// -1 1571 const TypeInt *TypeInt::ZERO; // 0 1572 const TypeInt *TypeInt::ONE; // 1 1573 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE. 1574 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes 1575 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1 1576 const TypeInt *TypeInt::CC_GT; // [1] == ONE 1577 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO 1578 const TypeInt *TypeInt::CC_LE; // [-1,0] 1579 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!) 1580 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127 1581 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255 1582 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535 1583 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767 1584 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero 1585 const TypeInt *TypeInt::POS1; // Positive 32-bit integers 1586 const TypeInt *TypeInt::INT; // 32-bit integers 1587 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint] 1588 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT 1589 1590 //------------------------------TypeInt---------------------------------------- 1591 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int, w), _lo(lo), _hi(hi) { 1592 } 1593 1594 //------------------------------make------------------------------------------- 1595 const TypeInt *TypeInt::make( jint lo ) { 1596 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons(); 1597 } 1598 1599 static int normalize_int_widen( jint lo, jint hi, int w ) { 1600 // Certain normalizations keep us sane when comparing types. 1601 // The 'SMALLINT' covers constants and also CC and its relatives. 1602 if (lo <= hi) { 1603 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin; 1604 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT 1605 } else { 1606 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin; 1607 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT 1608 } 1609 return w; 1610 } 1611 1612 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) { 1613 w = normalize_int_widen(lo, hi, w); 1614 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons(); 1615 } 1616 1617 //------------------------------meet------------------------------------------- 1618 // Compute the MEET of two types. It returns a new Type representation object 1619 // with reference count equal to the number of Types pointing at it. 1620 // Caller should wrap a Types around it. 1621 const Type *TypeInt::xmeet( const Type *t ) const { 1622 // Perform a fast test for common case; meeting the same types together. 1623 if( this == t ) return this; // Meeting same type? 1624 1625 // Currently "this->_base" is a TypeInt 1626 switch (t->base()) { // Switch on original type 1627 case AnyPtr: // Mixing with oops happens when javac 1628 case RawPtr: // reuses local variables 1629 case OopPtr: 1630 case InstPtr: 1631 case AryPtr: 1632 case MetadataPtr: 1633 case KlassPtr: 1634 case InstKlassPtr: 1635 case AryKlassPtr: 1636 case NarrowOop: 1637 case NarrowKlass: 1638 case Long: 1639 case FloatTop: 1640 case FloatCon: 1641 case FloatBot: 1642 case DoubleTop: 1643 case DoubleCon: 1644 case DoubleBot: 1645 case Bottom: // Ye Olde Default 1646 return Type::BOTTOM; 1647 default: // All else is a mistake 1648 typerr(t); 1649 case Top: // No change 1650 return this; 1651 case Int: // Int vs Int? 1652 break; 1653 } 1654 1655 // Expand covered set 1656 const TypeInt *r = t->is_int(); 1657 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1658 } 1659 1660 //------------------------------xdual------------------------------------------ 1661 // Dual: reverse hi & lo; flip widen 1662 const Type *TypeInt::xdual() const { 1663 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen); 1664 return new TypeInt(_hi,_lo,w); 1665 } 1666 1667 //------------------------------widen------------------------------------------ 1668 // Only happens for optimistic top-down optimizations. 1669 const Type *TypeInt::widen( const Type *old, const Type* limit ) const { 1670 // Coming from TOP or such; no widening 1671 if( old->base() != Int ) return this; 1672 const TypeInt *ot = old->is_int(); 1673 1674 // If new guy is equal to old guy, no widening 1675 if( _lo == ot->_lo && _hi == ot->_hi ) 1676 return old; 1677 1678 // If new guy contains old, then we widened 1679 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1680 // New contains old 1681 // If new guy is already wider than old, no widening 1682 if( _widen > ot->_widen ) return this; 1683 // If old guy was a constant, do not bother 1684 if (ot->_lo == ot->_hi) return this; 1685 // Now widen new guy. 1686 // Check for widening too far 1687 if (_widen == WidenMax) { 1688 int max = max_jint; 1689 int min = min_jint; 1690 if (limit->isa_int()) { 1691 max = limit->is_int()->_hi; 1692 min = limit->is_int()->_lo; 1693 } 1694 if (min < _lo && _hi < max) { 1695 // If neither endpoint is extremal yet, push out the endpoint 1696 // which is closer to its respective limit. 1697 if (_lo >= 0 || // easy common case 1698 ((juint)_lo - min) >= ((juint)max - _hi)) { 1699 // Try to widen to an unsigned range type of 31 bits: 1700 return make(_lo, max, WidenMax); 1701 } else { 1702 return make(min, _hi, WidenMax); 1703 } 1704 } 1705 return TypeInt::INT; 1706 } 1707 // Returned widened new guy 1708 return make(_lo,_hi,_widen+1); 1709 } 1710 1711 // If old guy contains new, then we probably widened too far & dropped to 1712 // bottom. Return the wider fellow. 1713 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1714 return old; 1715 1716 //fatal("Integer value range is not subset"); 1717 //return this; 1718 return TypeInt::INT; 1719 } 1720 1721 //------------------------------narrow--------------------------------------- 1722 // Only happens for pessimistic optimizations. 1723 const Type *TypeInt::narrow( const Type *old ) const { 1724 if (_lo >= _hi) return this; // already narrow enough 1725 if (old == nullptr) return this; 1726 const TypeInt* ot = old->isa_int(); 1727 if (ot == nullptr) return this; 1728 jint olo = ot->_lo; 1729 jint ohi = ot->_hi; 1730 1731 // If new guy is equal to old guy, no narrowing 1732 if (_lo == olo && _hi == ohi) return old; 1733 1734 // If old guy was maximum range, allow the narrowing 1735 if (olo == min_jint && ohi == max_jint) return this; 1736 1737 if (_lo < olo || _hi > ohi) 1738 return this; // doesn't narrow; pretty weird 1739 1740 // The new type narrows the old type, so look for a "death march". 1741 // See comments on PhaseTransform::saturate. 1742 juint nrange = (juint)_hi - _lo; 1743 juint orange = (juint)ohi - olo; 1744 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 1745 // Use the new type only if the range shrinks a lot. 1746 // We do not want the optimizer computing 2^31 point by point. 1747 return old; 1748 } 1749 1750 return this; 1751 } 1752 1753 //-----------------------------filter------------------------------------------ 1754 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const { 1755 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int(); 1756 if (ft == nullptr || ft->empty()) 1757 return Type::TOP; // Canonical empty value 1758 if (ft->_widen < this->_widen) { 1759 // Do not allow the value of kill->_widen to affect the outcome. 1760 // The widen bits must be allowed to run freely through the graph. 1761 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen); 1762 } 1763 return ft; 1764 } 1765 1766 //------------------------------eq--------------------------------------------- 1767 // Structural equality check for Type representations 1768 bool TypeInt::eq( const Type *t ) const { 1769 const TypeInt *r = t->is_int(); // Handy access 1770 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 1771 } 1772 1773 //------------------------------hash------------------------------------------- 1774 // Type-specific hashing function. 1775 uint TypeInt::hash(void) const { 1776 return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Int; 1777 } 1778 1779 //------------------------------is_finite-------------------------------------- 1780 // Has a finite value 1781 bool TypeInt::is_finite() const { 1782 return true; 1783 } 1784 1785 //------------------------------dump2------------------------------------------ 1786 // Dump TypeInt 1787 #ifndef PRODUCT 1788 static const char* intname(char* buf, size_t buf_size, jint n) { 1789 if (n == min_jint) 1790 return "min"; 1791 else if (n < min_jint + 10000) 1792 os::snprintf_checked(buf, buf_size, "min+" INT32_FORMAT, n - min_jint); 1793 else if (n == max_jint) 1794 return "max"; 1795 else if (n > max_jint - 10000) 1796 os::snprintf_checked(buf, buf_size, "max-" INT32_FORMAT, max_jint - n); 1797 else 1798 os::snprintf_checked(buf, buf_size, INT32_FORMAT, n); 1799 return buf; 1800 } 1801 1802 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const { 1803 char buf[40], buf2[40]; 1804 if (_lo == min_jint && _hi == max_jint) 1805 st->print("int"); 1806 else if (is_con()) 1807 st->print("int:%s", intname(buf, sizeof(buf), get_con())); 1808 else if (_lo == BOOL->_lo && _hi == BOOL->_hi) 1809 st->print("bool"); 1810 else if (_lo == BYTE->_lo && _hi == BYTE->_hi) 1811 st->print("byte"); 1812 else if (_lo == CHAR->_lo && _hi == CHAR->_hi) 1813 st->print("char"); 1814 else if (_lo == SHORT->_lo && _hi == SHORT->_hi) 1815 st->print("short"); 1816 else if (_hi == max_jint) 1817 st->print("int:>=%s", intname(buf, sizeof(buf), _lo)); 1818 else if (_lo == min_jint) 1819 st->print("int:<=%s", intname(buf, sizeof(buf), _hi)); 1820 else 1821 st->print("int:%s..%s", intname(buf, sizeof(buf), _lo), intname(buf2, sizeof(buf2), _hi)); 1822 1823 if (_widen != 0 && this != TypeInt::INT) 1824 st->print(":%.*s", _widen, "wwww"); 1825 } 1826 #endif 1827 1828 //------------------------------singleton-------------------------------------- 1829 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1830 // constants. 1831 bool TypeInt::singleton(void) const { 1832 return _lo >= _hi; 1833 } 1834 1835 bool TypeInt::empty(void) const { 1836 return _lo > _hi; 1837 } 1838 1839 //============================================================================= 1840 // Convenience common pre-built types. 1841 const TypeLong *TypeLong::MAX; 1842 const TypeLong *TypeLong::MIN; 1843 const TypeLong *TypeLong::MINUS_1;// -1 1844 const TypeLong *TypeLong::ZERO; // 0 1845 const TypeLong *TypeLong::ONE; // 1 1846 const TypeLong *TypeLong::POS; // >=0 1847 const TypeLong *TypeLong::LONG; // 64-bit integers 1848 const TypeLong *TypeLong::INT; // 32-bit subrange 1849 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange 1850 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG 1851 1852 //------------------------------TypeLong--------------------------------------- 1853 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long, w), _lo(lo), _hi(hi) { 1854 } 1855 1856 //------------------------------make------------------------------------------- 1857 const TypeLong *TypeLong::make( jlong lo ) { 1858 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons(); 1859 } 1860 1861 static int normalize_long_widen( jlong lo, jlong hi, int w ) { 1862 // Certain normalizations keep us sane when comparing types. 1863 // The 'SMALLINT' covers constants. 1864 if (lo <= hi) { 1865 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin; 1866 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG 1867 } else { 1868 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin; 1869 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG 1870 } 1871 return w; 1872 } 1873 1874 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) { 1875 w = normalize_long_widen(lo, hi, w); 1876 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons(); 1877 } 1878 1879 1880 //------------------------------meet------------------------------------------- 1881 // Compute the MEET of two types. It returns a new Type representation object 1882 // with reference count equal to the number of Types pointing at it. 1883 // Caller should wrap a Types around it. 1884 const Type *TypeLong::xmeet( const Type *t ) const { 1885 // Perform a fast test for common case; meeting the same types together. 1886 if( this == t ) return this; // Meeting same type? 1887 1888 // Currently "this->_base" is a TypeLong 1889 switch (t->base()) { // Switch on original type 1890 case AnyPtr: // Mixing with oops happens when javac 1891 case RawPtr: // reuses local variables 1892 case OopPtr: 1893 case InstPtr: 1894 case AryPtr: 1895 case MetadataPtr: 1896 case KlassPtr: 1897 case InstKlassPtr: 1898 case AryKlassPtr: 1899 case NarrowOop: 1900 case NarrowKlass: 1901 case Int: 1902 case FloatTop: 1903 case FloatCon: 1904 case FloatBot: 1905 case DoubleTop: 1906 case DoubleCon: 1907 case DoubleBot: 1908 case Bottom: // Ye Olde Default 1909 return Type::BOTTOM; 1910 default: // All else is a mistake 1911 typerr(t); 1912 case Top: // No change 1913 return this; 1914 case Long: // Long vs Long? 1915 break; 1916 } 1917 1918 // Expand covered set 1919 const TypeLong *r = t->is_long(); // Turn into a TypeLong 1920 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1921 } 1922 1923 //------------------------------xdual------------------------------------------ 1924 // Dual: reverse hi & lo; flip widen 1925 const Type *TypeLong::xdual() const { 1926 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen); 1927 return new TypeLong(_hi,_lo,w); 1928 } 1929 1930 //------------------------------widen------------------------------------------ 1931 // Only happens for optimistic top-down optimizations. 1932 const Type *TypeLong::widen( const Type *old, const Type* limit ) const { 1933 // Coming from TOP or such; no widening 1934 if( old->base() != Long ) return this; 1935 const TypeLong *ot = old->is_long(); 1936 1937 // If new guy is equal to old guy, no widening 1938 if( _lo == ot->_lo && _hi == ot->_hi ) 1939 return old; 1940 1941 // If new guy contains old, then we widened 1942 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1943 // New contains old 1944 // If new guy is already wider than old, no widening 1945 if( _widen > ot->_widen ) return this; 1946 // If old guy was a constant, do not bother 1947 if (ot->_lo == ot->_hi) return this; 1948 // Now widen new guy. 1949 // Check for widening too far 1950 if (_widen == WidenMax) { 1951 jlong max = max_jlong; 1952 jlong min = min_jlong; 1953 if (limit->isa_long()) { 1954 max = limit->is_long()->_hi; 1955 min = limit->is_long()->_lo; 1956 } 1957 if (min < _lo && _hi < max) { 1958 // If neither endpoint is extremal yet, push out the endpoint 1959 // which is closer to its respective limit. 1960 if (_lo >= 0 || // easy common case 1961 ((julong)_lo - min) >= ((julong)max - _hi)) { 1962 // Try to widen to an unsigned range type of 32/63 bits: 1963 if (max >= max_juint && _hi < max_juint) 1964 return make(_lo, max_juint, WidenMax); 1965 else 1966 return make(_lo, max, WidenMax); 1967 } else { 1968 return make(min, _hi, WidenMax); 1969 } 1970 } 1971 return TypeLong::LONG; 1972 } 1973 // Returned widened new guy 1974 return make(_lo,_hi,_widen+1); 1975 } 1976 1977 // If old guy contains new, then we probably widened too far & dropped to 1978 // bottom. Return the wider fellow. 1979 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1980 return old; 1981 1982 // fatal("Long value range is not subset"); 1983 // return this; 1984 return TypeLong::LONG; 1985 } 1986 1987 //------------------------------narrow---------------------------------------- 1988 // Only happens for pessimistic optimizations. 1989 const Type *TypeLong::narrow( const Type *old ) const { 1990 if (_lo >= _hi) return this; // already narrow enough 1991 if (old == nullptr) return this; 1992 const TypeLong* ot = old->isa_long(); 1993 if (ot == nullptr) return this; 1994 jlong olo = ot->_lo; 1995 jlong ohi = ot->_hi; 1996 1997 // If new guy is equal to old guy, no narrowing 1998 if (_lo == olo && _hi == ohi) return old; 1999 2000 // If old guy was maximum range, allow the narrowing 2001 if (olo == min_jlong && ohi == max_jlong) return this; 2002 2003 if (_lo < olo || _hi > ohi) 2004 return this; // doesn't narrow; pretty weird 2005 2006 // The new type narrows the old type, so look for a "death march". 2007 // See comments on PhaseTransform::saturate. 2008 julong nrange = (julong)_hi - _lo; 2009 julong orange = (julong)ohi - olo; 2010 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 2011 // Use the new type only if the range shrinks a lot. 2012 // We do not want the optimizer computing 2^31 point by point. 2013 return old; 2014 } 2015 2016 return this; 2017 } 2018 2019 //-----------------------------filter------------------------------------------ 2020 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const { 2021 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long(); 2022 if (ft == nullptr || ft->empty()) 2023 return Type::TOP; // Canonical empty value 2024 if (ft->_widen < this->_widen) { 2025 // Do not allow the value of kill->_widen to affect the outcome. 2026 // The widen bits must be allowed to run freely through the graph. 2027 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen); 2028 } 2029 return ft; 2030 } 2031 2032 //------------------------------eq--------------------------------------------- 2033 // Structural equality check for Type representations 2034 bool TypeLong::eq( const Type *t ) const { 2035 const TypeLong *r = t->is_long(); // Handy access 2036 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 2037 } 2038 2039 //------------------------------hash------------------------------------------- 2040 // Type-specific hashing function. 2041 uint TypeLong::hash(void) const { 2042 return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Long; 2043 } 2044 2045 //------------------------------is_finite-------------------------------------- 2046 // Has a finite value 2047 bool TypeLong::is_finite() const { 2048 return true; 2049 } 2050 2051 //------------------------------dump2------------------------------------------ 2052 // Dump TypeLong 2053 #ifndef PRODUCT 2054 static const char* longnamenear(jlong x, const char* xname, char* buf, size_t buf_size, jlong n) { 2055 if (n > x) { 2056 if (n >= x + 10000) return nullptr; 2057 os::snprintf_checked(buf, buf_size, "%s+" JLONG_FORMAT, xname, n - x); 2058 } else if (n < x) { 2059 if (n <= x - 10000) return nullptr; 2060 os::snprintf_checked(buf, buf_size, "%s-" JLONG_FORMAT, xname, x - n); 2061 } else { 2062 return xname; 2063 } 2064 return buf; 2065 } 2066 2067 static const char* longname(char* buf, size_t buf_size, jlong n) { 2068 const char* str; 2069 if (n == min_jlong) 2070 return "min"; 2071 else if (n < min_jlong + 10000) 2072 os::snprintf_checked(buf, buf_size, "min+" JLONG_FORMAT, n - min_jlong); 2073 else if (n == max_jlong) 2074 return "max"; 2075 else if (n > max_jlong - 10000) 2076 os::snprintf_checked(buf, buf_size, "max-" JLONG_FORMAT, max_jlong - n); 2077 else if ((str = longnamenear(max_juint, "maxuint", buf, buf_size, n)) != nullptr) 2078 return str; 2079 else if ((str = longnamenear(max_jint, "maxint", buf, buf_size, n)) != nullptr) 2080 return str; 2081 else if ((str = longnamenear(min_jint, "minint", buf, buf_size, n)) != nullptr) 2082 return str; 2083 else 2084 os::snprintf_checked(buf, buf_size, JLONG_FORMAT, n); 2085 return buf; 2086 } 2087 2088 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const { 2089 char buf[80], buf2[80]; 2090 if (_lo == min_jlong && _hi == max_jlong) 2091 st->print("long"); 2092 else if (is_con()) 2093 st->print("long:%s", longname(buf, sizeof(buf), get_con())); 2094 else if (_hi == max_jlong) 2095 st->print("long:>=%s", longname(buf, sizeof(buf), _lo)); 2096 else if (_lo == min_jlong) 2097 st->print("long:<=%s", longname(buf, sizeof(buf), _hi)); 2098 else 2099 st->print("long:%s..%s", longname(buf, sizeof(buf), _lo), longname(buf2,sizeof(buf2), _hi)); 2100 2101 if (_widen != 0 && this != TypeLong::LONG) 2102 st->print(":%.*s", _widen, "wwww"); 2103 } 2104 #endif 2105 2106 //------------------------------singleton-------------------------------------- 2107 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2108 // constants 2109 bool TypeLong::singleton(void) const { 2110 return _lo >= _hi; 2111 } 2112 2113 bool TypeLong::empty(void) const { 2114 return _lo > _hi; 2115 } 2116 2117 //============================================================================= 2118 // Convenience common pre-built types. 2119 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable 2120 const TypeTuple *TypeTuple::IFFALSE; 2121 const TypeTuple *TypeTuple::IFTRUE; 2122 const TypeTuple *TypeTuple::IFNEITHER; 2123 const TypeTuple *TypeTuple::LOOPBODY; 2124 const TypeTuple *TypeTuple::MEMBAR; 2125 const TypeTuple *TypeTuple::STORECONDITIONAL; 2126 const TypeTuple *TypeTuple::START_I2C; 2127 const TypeTuple *TypeTuple::INT_PAIR; 2128 const TypeTuple *TypeTuple::LONG_PAIR; 2129 const TypeTuple *TypeTuple::INT_CC_PAIR; 2130 const TypeTuple *TypeTuple::LONG_CC_PAIR; 2131 2132 //------------------------------make------------------------------------------- 2133 // Make a TypeTuple from the range of a method signature 2134 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) { 2135 ciType* return_type = sig->return_type(); 2136 uint arg_cnt = return_type->size(); 2137 const Type **field_array = fields(arg_cnt); 2138 switch (return_type->basic_type()) { 2139 case T_LONG: 2140 field_array[TypeFunc::Parms] = TypeLong::LONG; 2141 field_array[TypeFunc::Parms+1] = Type::HALF; 2142 break; 2143 case T_DOUBLE: 2144 field_array[TypeFunc::Parms] = Type::DOUBLE; 2145 field_array[TypeFunc::Parms+1] = Type::HALF; 2146 break; 2147 case T_OBJECT: 2148 case T_ARRAY: 2149 case T_BOOLEAN: 2150 case T_CHAR: 2151 case T_FLOAT: 2152 case T_BYTE: 2153 case T_SHORT: 2154 case T_INT: 2155 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling); 2156 break; 2157 case T_VOID: 2158 break; 2159 default: 2160 ShouldNotReachHere(); 2161 } 2162 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2163 } 2164 2165 // Make a TypeTuple from the domain of a method signature 2166 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) { 2167 uint arg_cnt = sig->size(); 2168 2169 uint pos = TypeFunc::Parms; 2170 const Type **field_array; 2171 if (recv != nullptr) { 2172 arg_cnt++; 2173 field_array = fields(arg_cnt); 2174 // Use get_const_type here because it respects UseUniqueSubclasses: 2175 field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL); 2176 } else { 2177 field_array = fields(arg_cnt); 2178 } 2179 2180 int i = 0; 2181 while (pos < TypeFunc::Parms + arg_cnt) { 2182 ciType* type = sig->type_at(i); 2183 2184 switch (type->basic_type()) { 2185 case T_LONG: 2186 field_array[pos++] = TypeLong::LONG; 2187 field_array[pos++] = Type::HALF; 2188 break; 2189 case T_DOUBLE: 2190 field_array[pos++] = Type::DOUBLE; 2191 field_array[pos++] = Type::HALF; 2192 break; 2193 case T_OBJECT: 2194 case T_ARRAY: 2195 case T_FLOAT: 2196 case T_INT: 2197 field_array[pos++] = get_const_type(type, interface_handling); 2198 break; 2199 case T_BOOLEAN: 2200 case T_CHAR: 2201 case T_BYTE: 2202 case T_SHORT: 2203 field_array[pos++] = TypeInt::INT; 2204 break; 2205 default: 2206 ShouldNotReachHere(); 2207 } 2208 i++; 2209 } 2210 2211 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2212 } 2213 2214 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) { 2215 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons(); 2216 } 2217 2218 //------------------------------fields----------------------------------------- 2219 // Subroutine call type with space allocated for argument types 2220 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly 2221 const Type **TypeTuple::fields( uint arg_cnt ) { 2222 const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) )); 2223 flds[TypeFunc::Control ] = Type::CONTROL; 2224 flds[TypeFunc::I_O ] = Type::ABIO; 2225 flds[TypeFunc::Memory ] = Type::MEMORY; 2226 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM; 2227 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS; 2228 2229 return flds; 2230 } 2231 2232 //------------------------------meet------------------------------------------- 2233 // Compute the MEET of two types. It returns a new Type object. 2234 const Type *TypeTuple::xmeet( const Type *t ) const { 2235 // Perform a fast test for common case; meeting the same types together. 2236 if( this == t ) return this; // Meeting same type-rep? 2237 2238 // Current "this->_base" is Tuple 2239 switch (t->base()) { // switch on original type 2240 2241 case Bottom: // Ye Olde Default 2242 return t; 2243 2244 default: // All else is a mistake 2245 typerr(t); 2246 2247 case Tuple: { // Meeting 2 signatures? 2248 const TypeTuple *x = t->is_tuple(); 2249 assert( _cnt == x->_cnt, "" ); 2250 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2251 for( uint i=0; i<_cnt; i++ ) 2252 fields[i] = field_at(i)->xmeet( x->field_at(i) ); 2253 return TypeTuple::make(_cnt,fields); 2254 } 2255 case Top: 2256 break; 2257 } 2258 return this; // Return the double constant 2259 } 2260 2261 //------------------------------xdual------------------------------------------ 2262 // Dual: compute field-by-field dual 2263 const Type *TypeTuple::xdual() const { 2264 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2265 for( uint i=0; i<_cnt; i++ ) 2266 fields[i] = _fields[i]->dual(); 2267 return new TypeTuple(_cnt,fields); 2268 } 2269 2270 //------------------------------eq--------------------------------------------- 2271 // Structural equality check for Type representations 2272 bool TypeTuple::eq( const Type *t ) const { 2273 const TypeTuple *s = (const TypeTuple *)t; 2274 if (_cnt != s->_cnt) return false; // Unequal field counts 2275 for (uint i = 0; i < _cnt; i++) 2276 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION! 2277 return false; // Missed 2278 return true; 2279 } 2280 2281 //------------------------------hash------------------------------------------- 2282 // Type-specific hashing function. 2283 uint TypeTuple::hash(void) const { 2284 uintptr_t sum = _cnt; 2285 for( uint i=0; i<_cnt; i++ ) 2286 sum += (uintptr_t)_fields[i]; // Hash on pointers directly 2287 return (uint)sum; 2288 } 2289 2290 //------------------------------dump2------------------------------------------ 2291 // Dump signature Type 2292 #ifndef PRODUCT 2293 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const { 2294 st->print("{"); 2295 if( !depth || d[this] ) { // Check for recursive print 2296 st->print("...}"); 2297 return; 2298 } 2299 d.Insert((void*)this, (void*)this); // Stop recursion 2300 if( _cnt ) { 2301 uint i; 2302 for( i=0; i<_cnt-1; i++ ) { 2303 st->print("%d:", i); 2304 _fields[i]->dump2(d, depth-1, st); 2305 st->print(", "); 2306 } 2307 st->print("%d:", i); 2308 _fields[i]->dump2(d, depth-1, st); 2309 } 2310 st->print("}"); 2311 } 2312 #endif 2313 2314 //------------------------------singleton-------------------------------------- 2315 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2316 // constants (Ldi nodes). Singletons are integer, float or double constants 2317 // or a single symbol. 2318 bool TypeTuple::singleton(void) const { 2319 return false; // Never a singleton 2320 } 2321 2322 bool TypeTuple::empty(void) const { 2323 for( uint i=0; i<_cnt; i++ ) { 2324 if (_fields[i]->empty()) return true; 2325 } 2326 return false; 2327 } 2328 2329 //============================================================================= 2330 // Convenience common pre-built types. 2331 2332 inline const TypeInt* normalize_array_size(const TypeInt* size) { 2333 // Certain normalizations keep us sane when comparing types. 2334 // We do not want arrayOop variables to differ only by the wideness 2335 // of their index types. Pick minimum wideness, since that is the 2336 // forced wideness of small ranges anyway. 2337 if (size->_widen != Type::WidenMin) 2338 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin); 2339 else 2340 return size; 2341 } 2342 2343 //------------------------------make------------------------------------------- 2344 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) { 2345 if (UseCompressedOops && elem->isa_oopptr()) { 2346 elem = elem->make_narrowoop(); 2347 } 2348 size = normalize_array_size(size); 2349 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons(); 2350 } 2351 2352 //------------------------------meet------------------------------------------- 2353 // Compute the MEET of two types. It returns a new Type object. 2354 const Type *TypeAry::xmeet( const Type *t ) const { 2355 // Perform a fast test for common case; meeting the same types together. 2356 if( this == t ) return this; // Meeting same type-rep? 2357 2358 // Current "this->_base" is Ary 2359 switch (t->base()) { // switch on original type 2360 2361 case Bottom: // Ye Olde Default 2362 return t; 2363 2364 default: // All else is a mistake 2365 typerr(t); 2366 2367 case Array: { // Meeting 2 arrays? 2368 const TypeAry *a = t->is_ary(); 2369 return TypeAry::make(_elem->meet_speculative(a->_elem), 2370 _size->xmeet(a->_size)->is_int(), 2371 _stable && a->_stable); 2372 } 2373 case Top: 2374 break; 2375 } 2376 return this; // Return the double constant 2377 } 2378 2379 //------------------------------xdual------------------------------------------ 2380 // Dual: compute field-by-field dual 2381 const Type *TypeAry::xdual() const { 2382 const TypeInt* size_dual = _size->dual()->is_int(); 2383 size_dual = normalize_array_size(size_dual); 2384 return new TypeAry(_elem->dual(), size_dual, !_stable); 2385 } 2386 2387 //------------------------------eq--------------------------------------------- 2388 // Structural equality check for Type representations 2389 bool TypeAry::eq( const Type *t ) const { 2390 const TypeAry *a = (const TypeAry*)t; 2391 return _elem == a->_elem && 2392 _stable == a->_stable && 2393 _size == a->_size; 2394 } 2395 2396 //------------------------------hash------------------------------------------- 2397 // Type-specific hashing function. 2398 uint TypeAry::hash(void) const { 2399 return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0); 2400 } 2401 2402 /** 2403 * Return same type without a speculative part in the element 2404 */ 2405 const TypeAry* TypeAry::remove_speculative() const { 2406 return make(_elem->remove_speculative(), _size, _stable); 2407 } 2408 2409 /** 2410 * Return same type with cleaned up speculative part of element 2411 */ 2412 const Type* TypeAry::cleanup_speculative() const { 2413 return make(_elem->cleanup_speculative(), _size, _stable); 2414 } 2415 2416 /** 2417 * Return same type but with a different inline depth (used for speculation) 2418 * 2419 * @param depth depth to meet with 2420 */ 2421 const TypePtr* TypePtr::with_inline_depth(int depth) const { 2422 if (!UseInlineDepthForSpeculativeTypes) { 2423 return this; 2424 } 2425 return make(AnyPtr, _ptr, _offset, _speculative, depth); 2426 } 2427 2428 //------------------------------dump2------------------------------------------ 2429 #ifndef PRODUCT 2430 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const { 2431 if (_stable) st->print("stable:"); 2432 _elem->dump2(d, depth, st); 2433 st->print("["); 2434 _size->dump2(d, depth, st); 2435 st->print("]"); 2436 } 2437 #endif 2438 2439 //------------------------------singleton-------------------------------------- 2440 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2441 // constants (Ldi nodes). Singletons are integer, float or double constants 2442 // or a single symbol. 2443 bool TypeAry::singleton(void) const { 2444 return false; // Never a singleton 2445 } 2446 2447 bool TypeAry::empty(void) const { 2448 return _elem->empty() || _size->empty(); 2449 } 2450 2451 //--------------------------ary_must_be_exact---------------------------------- 2452 bool TypeAry::ary_must_be_exact() const { 2453 // This logic looks at the element type of an array, and returns true 2454 // if the element type is either a primitive or a final instance class. 2455 // In such cases, an array built on this ary must have no subclasses. 2456 if (_elem == BOTTOM) return false; // general array not exact 2457 if (_elem == TOP ) return false; // inverted general array not exact 2458 const TypeOopPtr* toop = nullptr; 2459 if (UseCompressedOops && _elem->isa_narrowoop()) { 2460 toop = _elem->make_ptr()->isa_oopptr(); 2461 } else { 2462 toop = _elem->isa_oopptr(); 2463 } 2464 if (!toop) return true; // a primitive type, like int 2465 if (!toop->is_loaded()) return false; // unloaded class 2466 const TypeInstPtr* tinst; 2467 if (_elem->isa_narrowoop()) 2468 tinst = _elem->make_ptr()->isa_instptr(); 2469 else 2470 tinst = _elem->isa_instptr(); 2471 if (tinst) 2472 return tinst->instance_klass()->is_final(); 2473 const TypeAryPtr* tap; 2474 if (_elem->isa_narrowoop()) 2475 tap = _elem->make_ptr()->isa_aryptr(); 2476 else 2477 tap = _elem->isa_aryptr(); 2478 if (tap) 2479 return tap->ary()->ary_must_be_exact(); 2480 return false; 2481 } 2482 2483 //==============================TypeVect======================================= 2484 // Convenience common pre-built types. 2485 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic 2486 const TypeVect* TypeVect::VECTS = nullptr; // 32-bit vectors 2487 const TypeVect* TypeVect::VECTD = nullptr; // 64-bit vectors 2488 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors 2489 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors 2490 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors 2491 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector 2492 2493 //------------------------------make------------------------------------------- 2494 const TypeVect* TypeVect::make(BasicType elem_bt, uint length, bool is_mask) { 2495 if (is_mask) { 2496 return makemask(elem_bt, length); 2497 } 2498 assert(is_java_primitive(elem_bt), "only primitive types in vector"); 2499 assert(Matcher::vector_size_supported(elem_bt, length), "length in range"); 2500 int size = length * type2aelembytes(elem_bt); 2501 switch (Matcher::vector_ideal_reg(size)) { 2502 case Op_VecA: 2503 return (TypeVect*)(new TypeVectA(elem_bt, length))->hashcons(); 2504 case Op_VecS: 2505 return (TypeVect*)(new TypeVectS(elem_bt, length))->hashcons(); 2506 case Op_RegL: 2507 case Op_VecD: 2508 case Op_RegD: 2509 return (TypeVect*)(new TypeVectD(elem_bt, length))->hashcons(); 2510 case Op_VecX: 2511 return (TypeVect*)(new TypeVectX(elem_bt, length))->hashcons(); 2512 case Op_VecY: 2513 return (TypeVect*)(new TypeVectY(elem_bt, length))->hashcons(); 2514 case Op_VecZ: 2515 return (TypeVect*)(new TypeVectZ(elem_bt, length))->hashcons(); 2516 } 2517 ShouldNotReachHere(); 2518 return nullptr; 2519 } 2520 2521 const TypeVect* TypeVect::makemask(BasicType elem_bt, uint length) { 2522 if (Matcher::has_predicated_vectors() && 2523 Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) { 2524 return TypeVectMask::make(elem_bt, length); 2525 } else { 2526 return make(elem_bt, length); 2527 } 2528 } 2529 2530 //------------------------------meet------------------------------------------- 2531 // Compute the MEET of two types. Since each TypeVect is the only instance of 2532 // its species, meeting often returns itself 2533 const Type* TypeVect::xmeet(const Type* t) const { 2534 // Perform a fast test for common case; meeting the same types together. 2535 if (this == t) { 2536 return this; 2537 } 2538 2539 // Current "this->_base" is Vector 2540 switch (t->base()) { // switch on original type 2541 2542 case Bottom: // Ye Olde Default 2543 return t; 2544 2545 default: // All else is a mistake 2546 typerr(t); 2547 case VectorMask: 2548 case VectorA: 2549 case VectorS: 2550 case VectorD: 2551 case VectorX: 2552 case VectorY: 2553 case VectorZ: { // Meeting 2 vectors? 2554 const TypeVect* v = t->is_vect(); 2555 assert(base() == v->base(), ""); 2556 assert(length() == v->length(), ""); 2557 assert(element_basic_type() == v->element_basic_type(), ""); 2558 return this; 2559 } 2560 case Top: 2561 break; 2562 } 2563 return this; 2564 } 2565 2566 //------------------------------xdual------------------------------------------ 2567 // Since each TypeVect is the only instance of its species, it is self-dual 2568 const Type* TypeVect::xdual() const { 2569 return this; 2570 } 2571 2572 //------------------------------eq--------------------------------------------- 2573 // Structural equality check for Type representations 2574 bool TypeVect::eq(const Type* t) const { 2575 const TypeVect* v = t->is_vect(); 2576 return (element_basic_type() == v->element_basic_type()) && (length() == v->length()); 2577 } 2578 2579 //------------------------------hash------------------------------------------- 2580 // Type-specific hashing function. 2581 uint TypeVect::hash(void) const { 2582 return (uint)base() + (uint)(uintptr_t)_elem_bt + (uint)(uintptr_t)_length; 2583 } 2584 2585 //------------------------------singleton-------------------------------------- 2586 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2587 // constants (Ldi nodes). Vector is singleton if all elements are the same 2588 // constant value (when vector is created with Replicate code). 2589 bool TypeVect::singleton(void) const { 2590 // There is no Con node for vectors yet. 2591 // return _elem->singleton(); 2592 return false; 2593 } 2594 2595 bool TypeVect::empty(void) const { 2596 return false; 2597 } 2598 2599 //------------------------------dump2------------------------------------------ 2600 #ifndef PRODUCT 2601 void TypeVect::dump2(Dict& d, uint depth, outputStream* st) const { 2602 switch (base()) { 2603 case VectorA: 2604 st->print("vectora"); break; 2605 case VectorS: 2606 st->print("vectors"); break; 2607 case VectorD: 2608 st->print("vectord"); break; 2609 case VectorX: 2610 st->print("vectorx"); break; 2611 case VectorY: 2612 st->print("vectory"); break; 2613 case VectorZ: 2614 st->print("vectorz"); break; 2615 case VectorMask: 2616 st->print("vectormask"); break; 2617 default: 2618 ShouldNotReachHere(); 2619 } 2620 st->print("<%c,%u>", type2char(element_basic_type()), length()); 2621 } 2622 #endif 2623 2624 const TypeVectMask* TypeVectMask::make(const BasicType elem_bt, uint length) { 2625 return (TypeVectMask*) (new TypeVectMask(elem_bt, length))->hashcons(); 2626 } 2627 2628 //============================================================================= 2629 // Convenience common pre-built types. 2630 const TypePtr *TypePtr::NULL_PTR; 2631 const TypePtr *TypePtr::NOTNULL; 2632 const TypePtr *TypePtr::BOTTOM; 2633 2634 //------------------------------meet------------------------------------------- 2635 // Meet over the PTR enum 2636 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = { 2637 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, 2638 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,}, 2639 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,}, 2640 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,}, 2641 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,}, 2642 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,}, 2643 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,} 2644 }; 2645 2646 //------------------------------make------------------------------------------- 2647 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) { 2648 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons(); 2649 } 2650 2651 //------------------------------cast_to_ptr_type------------------------------- 2652 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const { 2653 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type"); 2654 if( ptr == _ptr ) return this; 2655 return make(_base, ptr, _offset, _speculative, _inline_depth); 2656 } 2657 2658 //------------------------------get_con---------------------------------------- 2659 intptr_t TypePtr::get_con() const { 2660 assert( _ptr == Null, "" ); 2661 return _offset; 2662 } 2663 2664 //------------------------------meet------------------------------------------- 2665 // Compute the MEET of two types. It returns a new Type object. 2666 const Type *TypePtr::xmeet(const Type *t) const { 2667 const Type* res = xmeet_helper(t); 2668 if (res->isa_ptr() == nullptr) { 2669 return res; 2670 } 2671 2672 const TypePtr* res_ptr = res->is_ptr(); 2673 if (res_ptr->speculative() != nullptr) { 2674 // type->speculative() is null means that speculation is no better 2675 // than type, i.e. type->speculative() == type. So there are 2 2676 // ways to represent the fact that we have no useful speculative 2677 // data and we should use a single one to be able to test for 2678 // equality between types. Check whether type->speculative() == 2679 // type and set speculative to null if it is the case. 2680 if (res_ptr->remove_speculative() == res_ptr->speculative()) { 2681 return res_ptr->remove_speculative(); 2682 } 2683 } 2684 2685 return res; 2686 } 2687 2688 const Type *TypePtr::xmeet_helper(const Type *t) const { 2689 // Perform a fast test for common case; meeting the same types together. 2690 if( this == t ) return this; // Meeting same type-rep? 2691 2692 // Current "this->_base" is AnyPtr 2693 switch (t->base()) { // switch on original type 2694 case Int: // Mixing ints & oops happens when javac 2695 case Long: // reuses local variables 2696 case FloatTop: 2697 case FloatCon: 2698 case FloatBot: 2699 case DoubleTop: 2700 case DoubleCon: 2701 case DoubleBot: 2702 case NarrowOop: 2703 case NarrowKlass: 2704 case Bottom: // Ye Olde Default 2705 return Type::BOTTOM; 2706 case Top: 2707 return this; 2708 2709 case AnyPtr: { // Meeting to AnyPtrs 2710 const TypePtr *tp = t->is_ptr(); 2711 const TypePtr* speculative = xmeet_speculative(tp); 2712 int depth = meet_inline_depth(tp->inline_depth()); 2713 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth); 2714 } 2715 case RawPtr: // For these, flip the call around to cut down 2716 case OopPtr: 2717 case InstPtr: // on the cases I have to handle. 2718 case AryPtr: 2719 case MetadataPtr: 2720 case KlassPtr: 2721 case InstKlassPtr: 2722 case AryKlassPtr: 2723 return t->xmeet(this); // Call in reverse direction 2724 default: // All else is a mistake 2725 typerr(t); 2726 2727 } 2728 return this; 2729 } 2730 2731 //------------------------------meet_offset------------------------------------ 2732 int TypePtr::meet_offset( int offset ) const { 2733 // Either is 'TOP' offset? Return the other offset! 2734 if( _offset == OffsetTop ) return offset; 2735 if( offset == OffsetTop ) return _offset; 2736 // If either is different, return 'BOTTOM' offset 2737 if( _offset != offset ) return OffsetBot; 2738 return _offset; 2739 } 2740 2741 //------------------------------dual_offset------------------------------------ 2742 int TypePtr::dual_offset( ) const { 2743 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM' 2744 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP' 2745 return _offset; // Map everything else into self 2746 } 2747 2748 //------------------------------xdual------------------------------------------ 2749 // Dual: compute field-by-field dual 2750 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = { 2751 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR 2752 }; 2753 const Type *TypePtr::xdual() const { 2754 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth()); 2755 } 2756 2757 //------------------------------xadd_offset------------------------------------ 2758 int TypePtr::xadd_offset( intptr_t offset ) const { 2759 // Adding to 'TOP' offset? Return 'TOP'! 2760 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop; 2761 // Adding to 'BOTTOM' offset? Return 'BOTTOM'! 2762 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot; 2763 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'! 2764 offset += (intptr_t)_offset; 2765 if (offset != (int)offset || offset == OffsetTop) return OffsetBot; 2766 2767 // assert( _offset >= 0 && _offset+offset >= 0, "" ); 2768 // It is possible to construct a negative offset during PhaseCCP 2769 2770 return (int)offset; // Sum valid offsets 2771 } 2772 2773 //------------------------------add_offset------------------------------------- 2774 const TypePtr *TypePtr::add_offset( intptr_t offset ) const { 2775 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth); 2776 } 2777 2778 const TypePtr *TypePtr::with_offset(intptr_t offset) const { 2779 return make(AnyPtr, _ptr, offset, _speculative, _inline_depth); 2780 } 2781 2782 //------------------------------eq--------------------------------------------- 2783 // Structural equality check for Type representations 2784 bool TypePtr::eq( const Type *t ) const { 2785 const TypePtr *a = (const TypePtr*)t; 2786 return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth; 2787 } 2788 2789 //------------------------------hash------------------------------------------- 2790 // Type-specific hashing function. 2791 uint TypePtr::hash(void) const { 2792 return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth; 2793 } 2794 2795 /** 2796 * Return same type without a speculative part 2797 */ 2798 const TypePtr* TypePtr::remove_speculative() const { 2799 if (_speculative == nullptr) { 2800 return this; 2801 } 2802 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 2803 return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth); 2804 } 2805 2806 /** 2807 * Return same type but drop speculative part if we know we won't use 2808 * it 2809 */ 2810 const Type* TypePtr::cleanup_speculative() const { 2811 if (speculative() == nullptr) { 2812 return this; 2813 } 2814 const Type* no_spec = remove_speculative(); 2815 // If this is NULL_PTR then we don't need the speculative type 2816 // (with_inline_depth in case the current type inline depth is 2817 // InlineDepthTop) 2818 if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) { 2819 return no_spec; 2820 } 2821 if (above_centerline(speculative()->ptr())) { 2822 return no_spec; 2823 } 2824 const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr(); 2825 // If the speculative may be null and is an inexact klass then it 2826 // doesn't help 2827 if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() && 2828 (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) { 2829 return no_spec; 2830 } 2831 return this; 2832 } 2833 2834 /** 2835 * dual of the speculative part of the type 2836 */ 2837 const TypePtr* TypePtr::dual_speculative() const { 2838 if (_speculative == nullptr) { 2839 return nullptr; 2840 } 2841 return _speculative->dual()->is_ptr(); 2842 } 2843 2844 /** 2845 * meet of the speculative parts of 2 types 2846 * 2847 * @param other type to meet with 2848 */ 2849 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const { 2850 bool this_has_spec = (_speculative != nullptr); 2851 bool other_has_spec = (other->speculative() != nullptr); 2852 2853 if (!this_has_spec && !other_has_spec) { 2854 return nullptr; 2855 } 2856 2857 // If we are at a point where control flow meets and one branch has 2858 // a speculative type and the other has not, we meet the speculative 2859 // type of one branch with the actual type of the other. If the 2860 // actual type is exact and the speculative is as well, then the 2861 // result is a speculative type which is exact and we can continue 2862 // speculation further. 2863 const TypePtr* this_spec = _speculative; 2864 const TypePtr* other_spec = other->speculative(); 2865 2866 if (!this_has_spec) { 2867 this_spec = this; 2868 } 2869 2870 if (!other_has_spec) { 2871 other_spec = other; 2872 } 2873 2874 return this_spec->meet(other_spec)->is_ptr(); 2875 } 2876 2877 /** 2878 * dual of the inline depth for this type (used for speculation) 2879 */ 2880 int TypePtr::dual_inline_depth() const { 2881 return -inline_depth(); 2882 } 2883 2884 /** 2885 * meet of 2 inline depths (used for speculation) 2886 * 2887 * @param depth depth to meet with 2888 */ 2889 int TypePtr::meet_inline_depth(int depth) const { 2890 return MAX2(inline_depth(), depth); 2891 } 2892 2893 /** 2894 * Are the speculative parts of 2 types equal? 2895 * 2896 * @param other type to compare this one to 2897 */ 2898 bool TypePtr::eq_speculative(const TypePtr* other) const { 2899 if (_speculative == nullptr || other->speculative() == nullptr) { 2900 return _speculative == other->speculative(); 2901 } 2902 2903 if (_speculative->base() != other->speculative()->base()) { 2904 return false; 2905 } 2906 2907 return _speculative->eq(other->speculative()); 2908 } 2909 2910 /** 2911 * Hash of the speculative part of the type 2912 */ 2913 int TypePtr::hash_speculative() const { 2914 if (_speculative == nullptr) { 2915 return 0; 2916 } 2917 2918 return _speculative->hash(); 2919 } 2920 2921 /** 2922 * add offset to the speculative part of the type 2923 * 2924 * @param offset offset to add 2925 */ 2926 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const { 2927 if (_speculative == nullptr) { 2928 return nullptr; 2929 } 2930 return _speculative->add_offset(offset)->is_ptr(); 2931 } 2932 2933 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const { 2934 if (_speculative == nullptr) { 2935 return nullptr; 2936 } 2937 return _speculative->with_offset(offset)->is_ptr(); 2938 } 2939 2940 /** 2941 * return exact klass from the speculative type if there's one 2942 */ 2943 ciKlass* TypePtr::speculative_type() const { 2944 if (_speculative != nullptr && _speculative->isa_oopptr()) { 2945 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr(); 2946 if (speculative->klass_is_exact()) { 2947 return speculative->exact_klass(); 2948 } 2949 } 2950 return nullptr; 2951 } 2952 2953 /** 2954 * return true if speculative type may be null 2955 */ 2956 bool TypePtr::speculative_maybe_null() const { 2957 if (_speculative != nullptr) { 2958 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 2959 return speculative->maybe_null(); 2960 } 2961 return true; 2962 } 2963 2964 bool TypePtr::speculative_always_null() const { 2965 if (_speculative != nullptr) { 2966 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 2967 return speculative == TypePtr::NULL_PTR; 2968 } 2969 return false; 2970 } 2971 2972 /** 2973 * Same as TypePtr::speculative_type() but return the klass only if 2974 * the speculative tells us is not null 2975 */ 2976 ciKlass* TypePtr::speculative_type_not_null() const { 2977 if (speculative_maybe_null()) { 2978 return nullptr; 2979 } 2980 return speculative_type(); 2981 } 2982 2983 /** 2984 * Check whether new profiling would improve speculative type 2985 * 2986 * @param exact_kls class from profiling 2987 * @param inline_depth inlining depth of profile point 2988 * 2989 * @return true if type profile is valuable 2990 */ 2991 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 2992 // no profiling? 2993 if (exact_kls == nullptr) { 2994 return false; 2995 } 2996 if (speculative() == TypePtr::NULL_PTR) { 2997 return false; 2998 } 2999 // no speculative type or non exact speculative type? 3000 if (speculative_type() == nullptr) { 3001 return true; 3002 } 3003 // If the node already has an exact speculative type keep it, 3004 // unless it was provided by profiling that is at a deeper 3005 // inlining level. Profiling at a higher inlining depth is 3006 // expected to be less accurate. 3007 if (_speculative->inline_depth() == InlineDepthBottom) { 3008 return false; 3009 } 3010 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison"); 3011 return inline_depth < _speculative->inline_depth(); 3012 } 3013 3014 /** 3015 * Check whether new profiling would improve ptr (= tells us it is non 3016 * null) 3017 * 3018 * @param ptr_kind always null or not null? 3019 * 3020 * @return true if ptr profile is valuable 3021 */ 3022 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const { 3023 // profiling doesn't tell us anything useful 3024 if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) { 3025 return false; 3026 } 3027 // We already know this is not null 3028 if (!this->maybe_null()) { 3029 return false; 3030 } 3031 // We already know the speculative type cannot be null 3032 if (!speculative_maybe_null()) { 3033 return false; 3034 } 3035 // We already know this is always null 3036 if (this == TypePtr::NULL_PTR) { 3037 return false; 3038 } 3039 // We already know the speculative type is always null 3040 if (speculative_always_null()) { 3041 return false; 3042 } 3043 if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) { 3044 return false; 3045 } 3046 return true; 3047 } 3048 3049 //------------------------------dump2------------------------------------------ 3050 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = { 3051 "TopPTR","AnyNull","Constant","null","NotNull","BotPTR" 3052 }; 3053 3054 #ifndef PRODUCT 3055 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3056 if( _ptr == Null ) st->print("null"); 3057 else st->print("%s *", ptr_msg[_ptr]); 3058 if( _offset == OffsetTop ) st->print("+top"); 3059 else if( _offset == OffsetBot ) st->print("+bot"); 3060 else if( _offset ) st->print("+%d", _offset); 3061 dump_inline_depth(st); 3062 dump_speculative(st); 3063 } 3064 3065 /** 3066 *dump the speculative part of the type 3067 */ 3068 void TypePtr::dump_speculative(outputStream *st) const { 3069 if (_speculative != nullptr) { 3070 st->print(" (speculative="); 3071 _speculative->dump_on(st); 3072 st->print(")"); 3073 } 3074 } 3075 3076 /** 3077 *dump the inline depth of the type 3078 */ 3079 void TypePtr::dump_inline_depth(outputStream *st) const { 3080 if (_inline_depth != InlineDepthBottom) { 3081 if (_inline_depth == InlineDepthTop) { 3082 st->print(" (inline_depth=InlineDepthTop)"); 3083 } else { 3084 st->print(" (inline_depth=%d)", _inline_depth); 3085 } 3086 } 3087 } 3088 #endif 3089 3090 //------------------------------singleton-------------------------------------- 3091 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 3092 // constants 3093 bool TypePtr::singleton(void) const { 3094 // TopPTR, Null, AnyNull, Constant are all singletons 3095 return (_offset != OffsetBot) && !below_centerline(_ptr); 3096 } 3097 3098 bool TypePtr::empty(void) const { 3099 return (_offset == OffsetTop) || above_centerline(_ptr); 3100 } 3101 3102 //============================================================================= 3103 // Convenience common pre-built types. 3104 const TypeRawPtr *TypeRawPtr::BOTTOM; 3105 const TypeRawPtr *TypeRawPtr::NOTNULL; 3106 3107 //------------------------------make------------------------------------------- 3108 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) { 3109 assert( ptr != Constant, "what is the constant?" ); 3110 assert( ptr != Null, "Use TypePtr for null" ); 3111 return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons(); 3112 } 3113 3114 const TypeRawPtr *TypeRawPtr::make(address bits) { 3115 assert(bits != nullptr, "Use TypePtr for null"); 3116 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons(); 3117 } 3118 3119 //------------------------------cast_to_ptr_type------------------------------- 3120 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const { 3121 assert( ptr != Constant, "what is the constant?" ); 3122 assert( ptr != Null, "Use TypePtr for null" ); 3123 assert( _bits == nullptr, "Why cast a constant address?"); 3124 if( ptr == _ptr ) return this; 3125 return make(ptr); 3126 } 3127 3128 //------------------------------get_con---------------------------------------- 3129 intptr_t TypeRawPtr::get_con() const { 3130 assert( _ptr == Null || _ptr == Constant, "" ); 3131 return (intptr_t)_bits; 3132 } 3133 3134 //------------------------------meet------------------------------------------- 3135 // Compute the MEET of two types. It returns a new Type object. 3136 const Type *TypeRawPtr::xmeet( const Type *t ) const { 3137 // Perform a fast test for common case; meeting the same types together. 3138 if( this == t ) return this; // Meeting same type-rep? 3139 3140 // Current "this->_base" is RawPtr 3141 switch( t->base() ) { // switch on original type 3142 case Bottom: // Ye Olde Default 3143 return t; 3144 case Top: 3145 return this; 3146 case AnyPtr: // Meeting to AnyPtrs 3147 break; 3148 case RawPtr: { // might be top, bot, any/not or constant 3149 enum PTR tptr = t->is_ptr()->ptr(); 3150 enum PTR ptr = meet_ptr( tptr ); 3151 if( ptr == Constant ) { // Cannot be equal constants, so... 3152 if( tptr == Constant && _ptr != Constant) return t; 3153 if( _ptr == Constant && tptr != Constant) return this; 3154 ptr = NotNull; // Fall down in lattice 3155 } 3156 return make( ptr ); 3157 } 3158 3159 case OopPtr: 3160 case InstPtr: 3161 case AryPtr: 3162 case MetadataPtr: 3163 case KlassPtr: 3164 case InstKlassPtr: 3165 case AryKlassPtr: 3166 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3167 default: // All else is a mistake 3168 typerr(t); 3169 } 3170 3171 // Found an AnyPtr type vs self-RawPtr type 3172 const TypePtr *tp = t->is_ptr(); 3173 switch (tp->ptr()) { 3174 case TypePtr::TopPTR: return this; 3175 case TypePtr::BotPTR: return t; 3176 case TypePtr::Null: 3177 if( _ptr == TypePtr::TopPTR ) return t; 3178 return TypeRawPtr::BOTTOM; 3179 case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth()); 3180 case TypePtr::AnyNull: 3181 if( _ptr == TypePtr::Constant) return this; 3182 return make( meet_ptr(TypePtr::AnyNull) ); 3183 default: ShouldNotReachHere(); 3184 } 3185 return this; 3186 } 3187 3188 //------------------------------xdual------------------------------------------ 3189 // Dual: compute field-by-field dual 3190 const Type *TypeRawPtr::xdual() const { 3191 return new TypeRawPtr( dual_ptr(), _bits ); 3192 } 3193 3194 //------------------------------add_offset------------------------------------- 3195 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const { 3196 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer 3197 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer 3198 if( offset == 0 ) return this; // No change 3199 switch (_ptr) { 3200 case TypePtr::TopPTR: 3201 case TypePtr::BotPTR: 3202 case TypePtr::NotNull: 3203 return this; 3204 case TypePtr::Constant: { 3205 uintptr_t bits = (uintptr_t)_bits; 3206 uintptr_t sum = bits + offset; 3207 if (( offset < 0 ) 3208 ? ( sum > bits ) // Underflow? 3209 : ( sum < bits )) { // Overflow? 3210 return BOTTOM; 3211 } else if ( sum == 0 ) { 3212 return TypePtr::NULL_PTR; 3213 } else { 3214 return make( (address)sum ); 3215 } 3216 } 3217 default: ShouldNotReachHere(); 3218 } 3219 } 3220 3221 //------------------------------eq--------------------------------------------- 3222 // Structural equality check for Type representations 3223 bool TypeRawPtr::eq( const Type *t ) const { 3224 const TypeRawPtr *a = (const TypeRawPtr*)t; 3225 return _bits == a->_bits && TypePtr::eq(t); 3226 } 3227 3228 //------------------------------hash------------------------------------------- 3229 // Type-specific hashing function. 3230 uint TypeRawPtr::hash(void) const { 3231 return (uint)(uintptr_t)_bits + (uint)TypePtr::hash(); 3232 } 3233 3234 //------------------------------dump2------------------------------------------ 3235 #ifndef PRODUCT 3236 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3237 if( _ptr == Constant ) 3238 st->print(INTPTR_FORMAT, p2i(_bits)); 3239 else 3240 st->print("rawptr:%s", ptr_msg[_ptr]); 3241 } 3242 #endif 3243 3244 //============================================================================= 3245 // Convenience common pre-built type. 3246 const TypeOopPtr *TypeOopPtr::BOTTOM; 3247 3248 TypeInterfaces::TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces) 3249 : Type(Interfaces), _interfaces(interfaces_base, nb_interfaces), 3250 _hash(0), _exact_klass(nullptr) { 3251 _interfaces.sort(compare); 3252 initialize(); 3253 } 3254 3255 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) { 3256 // hashcons() can only delete the last thing that was allocated: to 3257 // make sure all memory for the newly created TypeInterfaces can be 3258 // freed if an identical one exists, allocate space for the array of 3259 // interfaces right after the TypeInterfaces object so that they 3260 // form a contiguous piece of memory. 3261 int nb_interfaces = interfaces == nullptr ? 0 : interfaces->length(); 3262 size_t total_size = sizeof(TypeInterfaces) + nb_interfaces * sizeof(ciInstanceKlass*); 3263 3264 void* allocated_mem = operator new(total_size); 3265 ciInstanceKlass** interfaces_base = (ciInstanceKlass**)((char*)allocated_mem + sizeof(TypeInterfaces)); 3266 for (int i = 0; i < nb_interfaces; ++i) { 3267 interfaces_base[i] = interfaces->at(i); 3268 } 3269 TypeInterfaces* result = ::new (allocated_mem) TypeInterfaces(interfaces_base, nb_interfaces); 3270 return (const TypeInterfaces*)result->hashcons(); 3271 } 3272 3273 void TypeInterfaces::initialize() { 3274 compute_hash(); 3275 compute_exact_klass(); 3276 DEBUG_ONLY(_initialized = true;) 3277 } 3278 3279 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) { 3280 if ((intptr_t)k1 < (intptr_t)k2) { 3281 return -1; 3282 } else if ((intptr_t)k1 > (intptr_t)k2) { 3283 return 1; 3284 } 3285 return 0; 3286 } 3287 3288 int TypeInterfaces::compare(ciInstanceKlass** k1, ciInstanceKlass** k2) { 3289 return compare(*k1, *k2); 3290 } 3291 3292 bool TypeInterfaces::eq(const Type* t) const { 3293 const TypeInterfaces* other = (const TypeInterfaces*)t; 3294 if (_interfaces.length() != other->_interfaces.length()) { 3295 return false; 3296 } 3297 for (int i = 0; i < _interfaces.length(); i++) { 3298 ciKlass* k1 = _interfaces.at(i); 3299 ciKlass* k2 = other->_interfaces.at(i); 3300 if (!k1->equals(k2)) { 3301 return false; 3302 } 3303 } 3304 return true; 3305 } 3306 3307 bool TypeInterfaces::eq(ciInstanceKlass* k) const { 3308 assert(k->is_loaded(), "should be loaded"); 3309 GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces(); 3310 if (_interfaces.length() != interfaces->length()) { 3311 return false; 3312 } 3313 for (int i = 0; i < interfaces->length(); i++) { 3314 bool found = false; 3315 _interfaces.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found); 3316 if (!found) { 3317 return false; 3318 } 3319 } 3320 return true; 3321 } 3322 3323 3324 uint TypeInterfaces::hash() const { 3325 assert(_initialized, "must be"); 3326 return _hash; 3327 } 3328 3329 const Type* TypeInterfaces::xdual() const { 3330 return this; 3331 } 3332 3333 void TypeInterfaces::compute_hash() { 3334 uint hash = 0; 3335 for (int i = 0; i < _interfaces.length(); i++) { 3336 ciKlass* k = _interfaces.at(i); 3337 hash += k->hash(); 3338 } 3339 _hash = hash; 3340 } 3341 3342 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) { 3343 return (int)((*k1)->ident() - (*k2)->ident()); 3344 } 3345 3346 void TypeInterfaces::dump(outputStream* st) const { 3347 if (_interfaces.length() == 0) { 3348 return; 3349 } 3350 ResourceMark rm; 3351 st->print(" ("); 3352 GrowableArray<ciInstanceKlass*> interfaces; 3353 interfaces.appendAll(&_interfaces); 3354 // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation 3355 interfaces.sort(compare_interfaces); 3356 for (int i = 0; i < interfaces.length(); i++) { 3357 if (i > 0) { 3358 st->print(","); 3359 } 3360 ciKlass* k = interfaces.at(i); 3361 k->print_name_on(st); 3362 } 3363 st->print(")"); 3364 } 3365 3366 #ifdef ASSERT 3367 void TypeInterfaces::verify() const { 3368 for (int i = 1; i < _interfaces.length(); i++) { 3369 ciInstanceKlass* k1 = _interfaces.at(i-1); 3370 ciInstanceKlass* k2 = _interfaces.at(i); 3371 assert(compare(k2, k1) > 0, "should be ordered"); 3372 assert(k1 != k2, "no duplicate"); 3373 } 3374 } 3375 #endif 3376 3377 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const { 3378 GrowableArray<ciInstanceKlass*> result_list; 3379 int i = 0; 3380 int j = 0; 3381 while (i < _interfaces.length() || j < other->_interfaces.length()) { 3382 while (i < _interfaces.length() && 3383 (j >= other->_interfaces.length() || 3384 compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) { 3385 result_list.push(_interfaces.at(i)); 3386 i++; 3387 } 3388 while (j < other->_interfaces.length() && 3389 (i >= _interfaces.length() || 3390 compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) { 3391 result_list.push(other->_interfaces.at(j)); 3392 j++; 3393 } 3394 if (i < _interfaces.length() && 3395 j < other->_interfaces.length() && 3396 _interfaces.at(i) == other->_interfaces.at(j)) { 3397 result_list.push(_interfaces.at(i)); 3398 i++; 3399 j++; 3400 } 3401 } 3402 const TypeInterfaces* result = TypeInterfaces::make(&result_list); 3403 #ifdef ASSERT 3404 result->verify(); 3405 for (int i = 0; i < _interfaces.length(); i++) { 3406 assert(result->_interfaces.contains(_interfaces.at(i)), "missing"); 3407 } 3408 for (int i = 0; i < other->_interfaces.length(); i++) { 3409 assert(result->_interfaces.contains(other->_interfaces.at(i)), "missing"); 3410 } 3411 for (int i = 0; i < result->_interfaces.length(); i++) { 3412 assert(_interfaces.contains(result->_interfaces.at(i)) || other->_interfaces.contains(result->_interfaces.at(i)), "missing"); 3413 } 3414 #endif 3415 return result; 3416 } 3417 3418 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const { 3419 GrowableArray<ciInstanceKlass*> result_list; 3420 int i = 0; 3421 int j = 0; 3422 while (i < _interfaces.length() || j < other->_interfaces.length()) { 3423 while (i < _interfaces.length() && 3424 (j >= other->_interfaces.length() || 3425 compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) { 3426 i++; 3427 } 3428 while (j < other->_interfaces.length() && 3429 (i >= _interfaces.length() || 3430 compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) { 3431 j++; 3432 } 3433 if (i < _interfaces.length() && 3434 j < other->_interfaces.length() && 3435 _interfaces.at(i) == other->_interfaces.at(j)) { 3436 result_list.push(_interfaces.at(i)); 3437 i++; 3438 j++; 3439 } 3440 } 3441 const TypeInterfaces* result = TypeInterfaces::make(&result_list); 3442 #ifdef ASSERT 3443 result->verify(); 3444 for (int i = 0; i < _interfaces.length(); i++) { 3445 assert(!other->_interfaces.contains(_interfaces.at(i)) || result->_interfaces.contains(_interfaces.at(i)), "missing"); 3446 } 3447 for (int i = 0; i < other->_interfaces.length(); i++) { 3448 assert(!_interfaces.contains(other->_interfaces.at(i)) || result->_interfaces.contains(other->_interfaces.at(i)), "missing"); 3449 } 3450 for (int i = 0; i < result->_interfaces.length(); i++) { 3451 assert(_interfaces.contains(result->_interfaces.at(i)) && other->_interfaces.contains(result->_interfaces.at(i)), "missing"); 3452 } 3453 #endif 3454 return result; 3455 } 3456 3457 // Is there a single ciKlass* that can represent the interface set? 3458 ciInstanceKlass* TypeInterfaces::exact_klass() const { 3459 assert(_initialized, "must be"); 3460 return _exact_klass; 3461 } 3462 3463 void TypeInterfaces::compute_exact_klass() { 3464 if (_interfaces.length() == 0) { 3465 _exact_klass = nullptr; 3466 return; 3467 } 3468 ciInstanceKlass* res = nullptr; 3469 for (int i = 0; i < _interfaces.length(); i++) { 3470 ciInstanceKlass* interface = _interfaces.at(i); 3471 if (eq(interface)) { 3472 assert(res == nullptr, ""); 3473 res = interface; 3474 } 3475 } 3476 _exact_klass = res; 3477 } 3478 3479 #ifdef ASSERT 3480 void TypeInterfaces::verify_is_loaded() const { 3481 for (int i = 0; i < _interfaces.length(); i++) { 3482 ciKlass* interface = _interfaces.at(i); 3483 assert(interface->is_loaded(), "Interface not loaded"); 3484 } 3485 } 3486 #endif 3487 3488 // Can't be implemented because there's no way to know if the type is above or below the center line. 3489 const Type* TypeInterfaces::xmeet(const Type* t) const { 3490 ShouldNotReachHere(); 3491 return Type::xmeet(t); 3492 } 3493 3494 bool TypeInterfaces::singleton(void) const { 3495 ShouldNotReachHere(); 3496 return Type::singleton(); 3497 } 3498 3499 //------------------------------TypeOopPtr------------------------------------- 3500 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, 3501 int instance_id, const TypePtr* speculative, int inline_depth) 3502 : TypePtr(t, ptr, offset, speculative, inline_depth), 3503 _const_oop(o), _klass(k), 3504 _interfaces(interfaces), 3505 _klass_is_exact(xk), 3506 _is_ptr_to_narrowoop(false), 3507 _is_ptr_to_narrowklass(false), 3508 _is_ptr_to_boxed_value(false), 3509 _instance_id(instance_id) { 3510 #ifdef ASSERT 3511 if (klass() != nullptr && klass()->is_loaded()) { 3512 interfaces->verify_is_loaded(); 3513 } 3514 #endif 3515 if (Compile::current()->eliminate_boxing() && (t == InstPtr) && 3516 (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) { 3517 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset); 3518 } 3519 #ifdef _LP64 3520 if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) { 3521 if (_offset == oopDesc::klass_offset_in_bytes()) { 3522 _is_ptr_to_narrowklass = UseCompressedClassPointers; 3523 } else if (klass() == nullptr) { 3524 // Array with unknown body type 3525 assert(this->isa_aryptr(), "only arrays without klass"); 3526 _is_ptr_to_narrowoop = UseCompressedOops; 3527 } else if (this->isa_aryptr()) { 3528 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() && 3529 _offset != arrayOopDesc::length_offset_in_bytes()); 3530 } else if (klass()->is_instance_klass()) { 3531 ciInstanceKlass* ik = klass()->as_instance_klass(); 3532 if (this->isa_klassptr()) { 3533 // Perm objects don't use compressed references 3534 } else if (_offset == OffsetBot || _offset == OffsetTop) { 3535 // unsafe access 3536 _is_ptr_to_narrowoop = UseCompressedOops; 3537 } else { 3538 assert(this->isa_instptr(), "must be an instance ptr."); 3539 3540 if (klass() == ciEnv::current()->Class_klass() && 3541 (_offset == java_lang_Class::klass_offset() || 3542 _offset == java_lang_Class::array_klass_offset())) { 3543 // Special hidden fields from the Class. 3544 assert(this->isa_instptr(), "must be an instance ptr."); 3545 _is_ptr_to_narrowoop = false; 3546 } else if (klass() == ciEnv::current()->Class_klass() && 3547 _offset >= InstanceMirrorKlass::offset_of_static_fields()) { 3548 // Static fields 3549 ciField* field = nullptr; 3550 if (const_oop() != nullptr) { 3551 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 3552 field = k->get_field_by_offset(_offset, true); 3553 } 3554 if (field != nullptr) { 3555 BasicType basic_elem_type = field->layout_type(); 3556 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type); 3557 } else { 3558 // unsafe access 3559 _is_ptr_to_narrowoop = UseCompressedOops; 3560 } 3561 } else { 3562 // Instance fields which contains a compressed oop references. 3563 ciField* field = ik->get_field_by_offset(_offset, false); 3564 if (field != nullptr) { 3565 BasicType basic_elem_type = field->layout_type(); 3566 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type); 3567 } else if (klass()->equals(ciEnv::current()->Object_klass())) { 3568 // Compile::find_alias_type() cast exactness on all types to verify 3569 // that it does not affect alias type. 3570 _is_ptr_to_narrowoop = UseCompressedOops; 3571 } else { 3572 // Type for the copy start in LibraryCallKit::inline_native_clone(). 3573 _is_ptr_to_narrowoop = UseCompressedOops; 3574 } 3575 } 3576 } 3577 } 3578 } 3579 #endif 3580 } 3581 3582 //------------------------------make------------------------------------------- 3583 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id, 3584 const TypePtr* speculative, int inline_depth) { 3585 assert(ptr != Constant, "no constant generic pointers"); 3586 ciKlass* k = Compile::current()->env()->Object_klass(); 3587 bool xk = false; 3588 ciObject* o = nullptr; 3589 const TypeInterfaces* interfaces = TypeInterfaces::make(); 3590 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons(); 3591 } 3592 3593 3594 //------------------------------cast_to_ptr_type------------------------------- 3595 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const { 3596 assert(_base == OopPtr, "subclass must override cast_to_ptr_type"); 3597 if( ptr == _ptr ) return this; 3598 return make(ptr, _offset, _instance_id, _speculative, _inline_depth); 3599 } 3600 3601 //-----------------------------cast_to_instance_id---------------------------- 3602 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const { 3603 // There are no instances of a general oop. 3604 // Return self unchanged. 3605 return this; 3606 } 3607 3608 //-----------------------------cast_to_exactness------------------------------- 3609 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const { 3610 // There is no such thing as an exact general oop. 3611 // Return self unchanged. 3612 return this; 3613 } 3614 3615 3616 //------------------------------as_klass_type---------------------------------- 3617 // Return the klass type corresponding to this instance or array type. 3618 // It is the type that is loaded from an object of this type. 3619 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const { 3620 ShouldNotReachHere(); 3621 return nullptr; 3622 } 3623 3624 //------------------------------meet------------------------------------------- 3625 // Compute the MEET of two types. It returns a new Type object. 3626 const Type *TypeOopPtr::xmeet_helper(const Type *t) const { 3627 // Perform a fast test for common case; meeting the same types together. 3628 if( this == t ) return this; // Meeting same type-rep? 3629 3630 // Current "this->_base" is OopPtr 3631 switch (t->base()) { // switch on original type 3632 3633 case Int: // Mixing ints & oops happens when javac 3634 case Long: // reuses local variables 3635 case FloatTop: 3636 case FloatCon: 3637 case FloatBot: 3638 case DoubleTop: 3639 case DoubleCon: 3640 case DoubleBot: 3641 case NarrowOop: 3642 case NarrowKlass: 3643 case Bottom: // Ye Olde Default 3644 return Type::BOTTOM; 3645 case Top: 3646 return this; 3647 3648 default: // All else is a mistake 3649 typerr(t); 3650 3651 case RawPtr: 3652 case MetadataPtr: 3653 case KlassPtr: 3654 case InstKlassPtr: 3655 case AryKlassPtr: 3656 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3657 3658 case AnyPtr: { 3659 // Found an AnyPtr type vs self-OopPtr type 3660 const TypePtr *tp = t->is_ptr(); 3661 int offset = meet_offset(tp->offset()); 3662 PTR ptr = meet_ptr(tp->ptr()); 3663 const TypePtr* speculative = xmeet_speculative(tp); 3664 int depth = meet_inline_depth(tp->inline_depth()); 3665 switch (tp->ptr()) { 3666 case Null: 3667 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3668 // else fall through: 3669 case TopPTR: 3670 case AnyNull: { 3671 int instance_id = meet_instance_id(InstanceTop); 3672 return make(ptr, offset, instance_id, speculative, depth); 3673 } 3674 case BotPTR: 3675 case NotNull: 3676 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3677 default: typerr(t); 3678 } 3679 } 3680 3681 case OopPtr: { // Meeting to other OopPtrs 3682 const TypeOopPtr *tp = t->is_oopptr(); 3683 int instance_id = meet_instance_id(tp->instance_id()); 3684 const TypePtr* speculative = xmeet_speculative(tp); 3685 int depth = meet_inline_depth(tp->inline_depth()); 3686 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth); 3687 } 3688 3689 case InstPtr: // For these, flip the call around to cut down 3690 case AryPtr: 3691 return t->xmeet(this); // Call in reverse direction 3692 3693 } // End of switch 3694 return this; // Return the double constant 3695 } 3696 3697 3698 //------------------------------xdual------------------------------------------ 3699 // Dual of a pure heap pointer. No relevant klass or oop information. 3700 const Type *TypeOopPtr::xdual() const { 3701 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here"); 3702 assert(const_oop() == nullptr, "no constants here"); 3703 return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 3704 } 3705 3706 //--------------------------make_from_klass_common----------------------------- 3707 // Computes the element-type given a klass. 3708 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) { 3709 if (klass->is_instance_klass()) { 3710 Compile* C = Compile::current(); 3711 Dependencies* deps = C->dependencies(); 3712 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 3713 // Element is an instance 3714 bool klass_is_exact = false; 3715 if (klass->is_loaded()) { 3716 // Try to set klass_is_exact. 3717 ciInstanceKlass* ik = klass->as_instance_klass(); 3718 klass_is_exact = ik->is_final(); 3719 if (!klass_is_exact && klass_change 3720 && deps != nullptr && UseUniqueSubclasses) { 3721 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 3722 if (sub != nullptr) { 3723 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 3724 klass = ik = sub; 3725 klass_is_exact = sub->is_final(); 3726 } 3727 } 3728 if (!klass_is_exact && try_for_exact && deps != nullptr && 3729 !ik->is_interface() && !ik->has_subklass()) { 3730 // Add a dependence; if concrete subclass added we need to recompile 3731 deps->assert_leaf_type(ik); 3732 klass_is_exact = true; 3733 } 3734 } 3735 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 3736 return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0); 3737 } else if (klass->is_obj_array_klass()) { 3738 // Element is an object array. Recursively call ourself. 3739 ciKlass* eklass = klass->as_obj_array_klass()->element_klass(); 3740 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling); 3741 bool xk = etype->klass_is_exact(); 3742 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3743 // We used to pass NotNull in here, asserting that the sub-arrays 3744 // are all not-null. This is not true in generally, as code can 3745 // slam nulls down in the subarrays. 3746 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0); 3747 return arr; 3748 } else if (klass->is_type_array_klass()) { 3749 // Element is an typeArray 3750 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); 3751 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3752 // We used to pass NotNull in here, asserting that the array pointer 3753 // is not-null. That was not true in general. 3754 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0); 3755 return arr; 3756 } else { 3757 ShouldNotReachHere(); 3758 return nullptr; 3759 } 3760 } 3761 3762 //------------------------------make_from_constant----------------------------- 3763 // Make a java pointer from an oop constant 3764 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) { 3765 assert(!o->is_null_object(), "null object not yet handled here."); 3766 3767 const bool make_constant = require_constant || o->should_be_constant(); 3768 3769 ciKlass* klass = o->klass(); 3770 if (klass->is_instance_klass()) { 3771 // Element is an instance 3772 if (make_constant) { 3773 return TypeInstPtr::make(o); 3774 } else { 3775 return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0); 3776 } 3777 } else if (klass->is_obj_array_klass()) { 3778 // Element is an object array. Recursively call ourself. 3779 const TypeOopPtr *etype = 3780 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces); 3781 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); 3782 // We used to pass NotNull in here, asserting that the sub-arrays 3783 // are all not-null. This is not true in generally, as code can 3784 // slam nulls down in the subarrays. 3785 if (make_constant) { 3786 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); 3787 } else { 3788 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); 3789 } 3790 } else if (klass->is_type_array_klass()) { 3791 // Element is an typeArray 3792 const Type* etype = 3793 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type()); 3794 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); 3795 // We used to pass NotNull in here, asserting that the array pointer 3796 // is not-null. That was not true in general. 3797 if (make_constant) { 3798 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); 3799 } else { 3800 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); 3801 } 3802 } 3803 3804 fatal("unhandled object type"); 3805 return nullptr; 3806 } 3807 3808 //------------------------------get_con---------------------------------------- 3809 intptr_t TypeOopPtr::get_con() const { 3810 assert( _ptr == Null || _ptr == Constant, "" ); 3811 assert( _offset >= 0, "" ); 3812 3813 if (_offset != 0) { 3814 // After being ported to the compiler interface, the compiler no longer 3815 // directly manipulates the addresses of oops. Rather, it only has a pointer 3816 // to a handle at compile time. This handle is embedded in the generated 3817 // code and dereferenced at the time the nmethod is made. Until that time, 3818 // it is not reasonable to do arithmetic with the addresses of oops (we don't 3819 // have access to the addresses!). This does not seem to currently happen, 3820 // but this assertion here is to help prevent its occurrence. 3821 tty->print_cr("Found oop constant with non-zero offset"); 3822 ShouldNotReachHere(); 3823 } 3824 3825 return (intptr_t)const_oop()->constant_encoding(); 3826 } 3827 3828 3829 //-----------------------------filter------------------------------------------ 3830 // Do not allow interface-vs.-noninterface joins to collapse to top. 3831 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const { 3832 3833 const Type* ft = join_helper(kills, include_speculative); 3834 const TypeInstPtr* ftip = ft->isa_instptr(); 3835 const TypeInstPtr* ktip = kills->isa_instptr(); 3836 3837 if (ft->empty()) { 3838 return Type::TOP; // Canonical empty value 3839 } 3840 3841 return ft; 3842 } 3843 3844 //------------------------------eq--------------------------------------------- 3845 // Structural equality check for Type representations 3846 bool TypeOopPtr::eq( const Type *t ) const { 3847 const TypeOopPtr *a = (const TypeOopPtr*)t; 3848 if (_klass_is_exact != a->_klass_is_exact || 3849 _instance_id != a->_instance_id) return false; 3850 ciObject* one = const_oop(); 3851 ciObject* two = a->const_oop(); 3852 if (one == nullptr || two == nullptr) { 3853 return (one == two) && TypePtr::eq(t); 3854 } else { 3855 return one->equals(two) && TypePtr::eq(t); 3856 } 3857 } 3858 3859 //------------------------------hash------------------------------------------- 3860 // Type-specific hashing function. 3861 uint TypeOopPtr::hash(void) const { 3862 return 3863 (uint)(const_oop() ? const_oop()->hash() : 0) + 3864 (uint)_klass_is_exact + 3865 (uint)_instance_id + TypePtr::hash(); 3866 } 3867 3868 //------------------------------dump2------------------------------------------ 3869 #ifndef PRODUCT 3870 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3871 st->print("oopptr:%s", ptr_msg[_ptr]); 3872 if( _klass_is_exact ) st->print(":exact"); 3873 if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop())); 3874 switch( _offset ) { 3875 case OffsetTop: st->print("+top"); break; 3876 case OffsetBot: st->print("+any"); break; 3877 case 0: break; 3878 default: st->print("+%d",_offset); break; 3879 } 3880 if (_instance_id == InstanceTop) 3881 st->print(",iid=top"); 3882 else if (_instance_id != InstanceBot) 3883 st->print(",iid=%d",_instance_id); 3884 3885 dump_inline_depth(st); 3886 dump_speculative(st); 3887 } 3888 #endif 3889 3890 //------------------------------singleton-------------------------------------- 3891 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 3892 // constants 3893 bool TypeOopPtr::singleton(void) const { 3894 // detune optimizer to not generate constant oop + constant offset as a constant! 3895 // TopPTR, Null, AnyNull, Constant are all singletons 3896 return (_offset == 0) && !below_centerline(_ptr); 3897 } 3898 3899 //------------------------------add_offset------------------------------------- 3900 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const { 3901 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 3902 } 3903 3904 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const { 3905 return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth); 3906 } 3907 3908 /** 3909 * Return same type without a speculative part 3910 */ 3911 const TypeOopPtr* TypeOopPtr::remove_speculative() const { 3912 if (_speculative == nullptr) { 3913 return this; 3914 } 3915 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 3916 return make(_ptr, _offset, _instance_id, nullptr, _inline_depth); 3917 } 3918 3919 /** 3920 * Return same type but drop speculative part if we know we won't use 3921 * it 3922 */ 3923 const Type* TypeOopPtr::cleanup_speculative() const { 3924 // If the klass is exact and the ptr is not null then there's 3925 // nothing that the speculative type can help us with 3926 if (klass_is_exact() && !maybe_null()) { 3927 return remove_speculative(); 3928 } 3929 return TypePtr::cleanup_speculative(); 3930 } 3931 3932 /** 3933 * Return same type but with a different inline depth (used for speculation) 3934 * 3935 * @param depth depth to meet with 3936 */ 3937 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const { 3938 if (!UseInlineDepthForSpeculativeTypes) { 3939 return this; 3940 } 3941 return make(_ptr, _offset, _instance_id, _speculative, depth); 3942 } 3943 3944 //------------------------------with_instance_id-------------------------------- 3945 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const { 3946 assert(_instance_id != -1, "should be known"); 3947 return make(_ptr, _offset, instance_id, _speculative, _inline_depth); 3948 } 3949 3950 //------------------------------meet_instance_id-------------------------------- 3951 int TypeOopPtr::meet_instance_id( int instance_id ) const { 3952 // Either is 'TOP' instance? Return the other instance! 3953 if( _instance_id == InstanceTop ) return instance_id; 3954 if( instance_id == InstanceTop ) return _instance_id; 3955 // If either is different, return 'BOTTOM' instance 3956 if( _instance_id != instance_id ) return InstanceBot; 3957 return _instance_id; 3958 } 3959 3960 //------------------------------dual_instance_id-------------------------------- 3961 int TypeOopPtr::dual_instance_id( ) const { 3962 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM 3963 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP 3964 return _instance_id; // Map everything else into self 3965 } 3966 3967 3968 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const { 3969 if (above_centerline(_ptr) && above_centerline(other->_ptr)) { 3970 return _interfaces->union_with(other->_interfaces); 3971 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) { 3972 return other->_interfaces; 3973 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) { 3974 return _interfaces; 3975 } 3976 return _interfaces->intersection_with(other->_interfaces); 3977 } 3978 3979 /** 3980 * Check whether new profiling would improve speculative type 3981 * 3982 * @param exact_kls class from profiling 3983 * @param inline_depth inlining depth of profile point 3984 * 3985 * @return true if type profile is valuable 3986 */ 3987 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 3988 // no way to improve an already exact type 3989 if (klass_is_exact()) { 3990 return false; 3991 } 3992 return TypePtr::would_improve_type(exact_kls, inline_depth); 3993 } 3994 3995 //============================================================================= 3996 // Convenience common pre-built types. 3997 const TypeInstPtr *TypeInstPtr::NOTNULL; 3998 const TypeInstPtr *TypeInstPtr::BOTTOM; 3999 const TypeInstPtr *TypeInstPtr::MIRROR; 4000 const TypeInstPtr *TypeInstPtr::MARK; 4001 const TypeInstPtr *TypeInstPtr::KLASS; 4002 4003 // Is there a single ciKlass* that can represent that type? 4004 ciKlass* TypeInstPtr::exact_klass_helper() const { 4005 if (_interfaces->empty()) { 4006 return _klass; 4007 } 4008 if (_klass != ciEnv::current()->Object_klass()) { 4009 if (_interfaces->eq(_klass->as_instance_klass())) { 4010 return _klass; 4011 } 4012 return nullptr; 4013 } 4014 return _interfaces->exact_klass(); 4015 } 4016 4017 //------------------------------TypeInstPtr------------------------------------- 4018 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, 4019 int instance_id, const TypePtr* speculative, int inline_depth) 4020 : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) { 4021 assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here"); 4022 assert(k != nullptr && 4023 (k->is_loaded() || o == nullptr), 4024 "cannot have constants with non-loaded klass"); 4025 }; 4026 4027 //------------------------------make------------------------------------------- 4028 const TypeInstPtr *TypeInstPtr::make(PTR ptr, 4029 ciKlass* k, 4030 const TypeInterfaces* interfaces, 4031 bool xk, 4032 ciObject* o, 4033 int offset, 4034 int instance_id, 4035 const TypePtr* speculative, 4036 int inline_depth) { 4037 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance"); 4038 // Either const_oop() is null or else ptr is Constant 4039 assert( (!o && ptr != Constant) || (o && ptr == Constant), 4040 "constant pointers must have a value supplied" ); 4041 // Ptr is never Null 4042 assert( ptr != Null, "null pointers are not typed" ); 4043 4044 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4045 if (ptr == Constant) { 4046 // Note: This case includes meta-object constants, such as methods. 4047 xk = true; 4048 } else if (k->is_loaded()) { 4049 ciInstanceKlass* ik = k->as_instance_klass(); 4050 if (!xk && ik->is_final()) xk = true; // no inexact final klass 4051 assert(!ik->is_interface(), "no interface here"); 4052 if (xk && ik->is_interface()) xk = false; // no exact interface 4053 } 4054 4055 // Now hash this baby 4056 TypeInstPtr *result = 4057 (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons(); 4058 4059 return result; 4060 } 4061 4062 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) { 4063 if (k->is_instance_klass()) { 4064 if (k->is_loaded()) { 4065 if (k->is_interface() && interface_handling == ignore_interfaces) { 4066 assert(interface, "no interface expected"); 4067 k = ciEnv::current()->Object_klass(); 4068 const TypeInterfaces* interfaces = TypeInterfaces::make(); 4069 return interfaces; 4070 } 4071 GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces(); 4072 const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces); 4073 if (k->is_interface()) { 4074 assert(interface, "no interface expected"); 4075 k = ciEnv::current()->Object_klass(); 4076 } else { 4077 assert(klass, "no instance klass expected"); 4078 } 4079 return interfaces; 4080 } 4081 const TypeInterfaces* interfaces = TypeInterfaces::make(); 4082 return interfaces; 4083 } 4084 assert(array, "no array expected"); 4085 assert(k->is_array_klass(), "Not an array?"); 4086 ciType* e = k->as_array_klass()->base_element_type(); 4087 if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) { 4088 if (interface_handling == ignore_interfaces) { 4089 k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension()); 4090 } 4091 } 4092 return TypeAryPtr::_array_interfaces; 4093 } 4094 4095 /** 4096 * Create constant type for a constant boxed value 4097 */ 4098 const Type* TypeInstPtr::get_const_boxed_value() const { 4099 assert(is_ptr_to_boxed_value(), "should be called only for boxed value"); 4100 assert((const_oop() != nullptr), "should be called only for constant object"); 4101 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset()); 4102 BasicType bt = constant.basic_type(); 4103 switch (bt) { 4104 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 4105 case T_INT: return TypeInt::make(constant.as_int()); 4106 case T_CHAR: return TypeInt::make(constant.as_char()); 4107 case T_BYTE: return TypeInt::make(constant.as_byte()); 4108 case T_SHORT: return TypeInt::make(constant.as_short()); 4109 case T_FLOAT: return TypeF::make(constant.as_float()); 4110 case T_DOUBLE: return TypeD::make(constant.as_double()); 4111 case T_LONG: return TypeLong::make(constant.as_long()); 4112 default: break; 4113 } 4114 fatal("Invalid boxed value type '%s'", type2name(bt)); 4115 return nullptr; 4116 } 4117 4118 //------------------------------cast_to_ptr_type------------------------------- 4119 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const { 4120 if( ptr == _ptr ) return this; 4121 // Reconstruct _sig info here since not a problem with later lazy 4122 // construction, _sig will show up on demand. 4123 return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth); 4124 } 4125 4126 4127 //-----------------------------cast_to_exactness------------------------------- 4128 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const { 4129 if( klass_is_exact == _klass_is_exact ) return this; 4130 if (!_klass->is_loaded()) return this; 4131 ciInstanceKlass* ik = _klass->as_instance_klass(); 4132 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk 4133 assert(!ik->is_interface(), "no interface here"); 4134 return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth); 4135 } 4136 4137 //-----------------------------cast_to_instance_id---------------------------- 4138 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const { 4139 if( instance_id == _instance_id ) return this; 4140 return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth); 4141 } 4142 4143 //------------------------------xmeet_unloaded--------------------------------- 4144 // Compute the MEET of two InstPtrs when at least one is unloaded. 4145 // Assume classes are different since called after check for same name/class-loader 4146 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const { 4147 int off = meet_offset(tinst->offset()); 4148 PTR ptr = meet_ptr(tinst->ptr()); 4149 int instance_id = meet_instance_id(tinst->instance_id()); 4150 const TypePtr* speculative = xmeet_speculative(tinst); 4151 int depth = meet_inline_depth(tinst->inline_depth()); 4152 4153 const TypeInstPtr *loaded = is_loaded() ? this : tinst; 4154 const TypeInstPtr *unloaded = is_loaded() ? tinst : this; 4155 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) { 4156 // 4157 // Meet unloaded class with java/lang/Object 4158 // 4159 // Meet 4160 // | Unloaded Class 4161 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM | 4162 // =================================================================== 4163 // TOP | ..........................Unloaded......................| 4164 // AnyNull | U-AN |................Unloaded......................| 4165 // Constant | ... O-NN .................................. | O-BOT | 4166 // NotNull | ... O-NN .................................. | O-BOT | 4167 // BOTTOM | ........................Object-BOTTOM ..................| 4168 // 4169 assert(loaded->ptr() != TypePtr::Null, "insanity check"); 4170 // 4171 if (loaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); } 4172 else if (loaded->ptr() == TypePtr::AnyNull) { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); } 4173 else if (loaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); } 4174 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) { 4175 if (unloaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); } 4176 else { return TypeInstPtr::NOTNULL->with_speculative(speculative); } 4177 } 4178 else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); } 4179 4180 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative); 4181 } 4182 4183 // Both are unloaded, not the same class, not Object 4184 // Or meet unloaded with a different loaded class, not java/lang/Object 4185 if (ptr != TypePtr::BotPTR) { 4186 return TypeInstPtr::NOTNULL->with_speculative(speculative); 4187 } 4188 return TypeInstPtr::BOTTOM->with_speculative(speculative); 4189 } 4190 4191 4192 //------------------------------meet------------------------------------------- 4193 // Compute the MEET of two types. It returns a new Type object. 4194 const Type *TypeInstPtr::xmeet_helper(const Type *t) const { 4195 // Perform a fast test for common case; meeting the same types together. 4196 if( this == t ) return this; // Meeting same type-rep? 4197 4198 // Current "this->_base" is Pointer 4199 switch (t->base()) { // switch on original type 4200 4201 case Int: // Mixing ints & oops happens when javac 4202 case Long: // reuses local variables 4203 case FloatTop: 4204 case FloatCon: 4205 case FloatBot: 4206 case DoubleTop: 4207 case DoubleCon: 4208 case DoubleBot: 4209 case NarrowOop: 4210 case NarrowKlass: 4211 case Bottom: // Ye Olde Default 4212 return Type::BOTTOM; 4213 case Top: 4214 return this; 4215 4216 default: // All else is a mistake 4217 typerr(t); 4218 4219 case MetadataPtr: 4220 case KlassPtr: 4221 case InstKlassPtr: 4222 case AryKlassPtr: 4223 case RawPtr: return TypePtr::BOTTOM; 4224 4225 case AryPtr: { // All arrays inherit from Object class 4226 // Call in reverse direction to avoid duplication 4227 return t->is_aryptr()->xmeet_helper(this); 4228 } 4229 4230 case OopPtr: { // Meeting to OopPtrs 4231 // Found a OopPtr type vs self-InstPtr type 4232 const TypeOopPtr *tp = t->is_oopptr(); 4233 int offset = meet_offset(tp->offset()); 4234 PTR ptr = meet_ptr(tp->ptr()); 4235 switch (tp->ptr()) { 4236 case TopPTR: 4237 case AnyNull: { 4238 int instance_id = meet_instance_id(InstanceTop); 4239 const TypePtr* speculative = xmeet_speculative(tp); 4240 int depth = meet_inline_depth(tp->inline_depth()); 4241 return make(ptr, klass(), _interfaces, klass_is_exact(), 4242 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth); 4243 } 4244 case NotNull: 4245 case BotPTR: { 4246 int instance_id = meet_instance_id(tp->instance_id()); 4247 const TypePtr* speculative = xmeet_speculative(tp); 4248 int depth = meet_inline_depth(tp->inline_depth()); 4249 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4250 } 4251 default: typerr(t); 4252 } 4253 } 4254 4255 case AnyPtr: { // Meeting to AnyPtrs 4256 // Found an AnyPtr type vs self-InstPtr type 4257 const TypePtr *tp = t->is_ptr(); 4258 int offset = meet_offset(tp->offset()); 4259 PTR ptr = meet_ptr(tp->ptr()); 4260 int instance_id = meet_instance_id(InstanceTop); 4261 const TypePtr* speculative = xmeet_speculative(tp); 4262 int depth = meet_inline_depth(tp->inline_depth()); 4263 switch (tp->ptr()) { 4264 case Null: 4265 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4266 // else fall through to AnyNull 4267 case TopPTR: 4268 case AnyNull: { 4269 return make(ptr, klass(), _interfaces, klass_is_exact(), 4270 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth); 4271 } 4272 case NotNull: 4273 case BotPTR: 4274 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth); 4275 default: typerr(t); 4276 } 4277 } 4278 4279 /* 4280 A-top } 4281 / | \ } Tops 4282 B-top A-any C-top } 4283 | / | \ | } Any-nulls 4284 B-any | C-any } 4285 | | | 4286 B-con A-con C-con } constants; not comparable across classes 4287 | | | 4288 B-not | C-not } 4289 | \ | / | } not-nulls 4290 B-bot A-not C-bot } 4291 \ | / } Bottoms 4292 A-bot } 4293 */ 4294 4295 case InstPtr: { // Meeting 2 Oops? 4296 // Found an InstPtr sub-type vs self-InstPtr type 4297 const TypeInstPtr *tinst = t->is_instptr(); 4298 int off = meet_offset(tinst->offset()); 4299 PTR ptr = meet_ptr(tinst->ptr()); 4300 int instance_id = meet_instance_id(tinst->instance_id()); 4301 const TypePtr* speculative = xmeet_speculative(tinst); 4302 int depth = meet_inline_depth(tinst->inline_depth()); 4303 const TypeInterfaces* interfaces = meet_interfaces(tinst); 4304 4305 ciKlass* tinst_klass = tinst->klass(); 4306 ciKlass* this_klass = klass(); 4307 4308 ciKlass* res_klass = nullptr; 4309 bool res_xk = false; 4310 const Type* res; 4311 MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk); 4312 4313 if (kind == UNLOADED) { 4314 // One of these classes has not been loaded 4315 const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces); 4316 #ifndef PRODUCT 4317 if (PrintOpto && Verbose) { 4318 tty->print("meet of unloaded classes resulted in: "); 4319 unloaded_meet->dump(); 4320 tty->cr(); 4321 tty->print(" this == "); 4322 dump(); 4323 tty->cr(); 4324 tty->print(" tinst == "); 4325 tinst->dump(); 4326 tty->cr(); 4327 } 4328 #endif 4329 res = unloaded_meet; 4330 } else { 4331 if (kind == NOT_SUBTYPE && instance_id > 0) { 4332 instance_id = InstanceBot; 4333 } else if (kind == LCA) { 4334 instance_id = InstanceBot; 4335 } 4336 ciObject* o = nullptr; // Assume not constant when done 4337 ciObject* this_oop = const_oop(); 4338 ciObject* tinst_oop = tinst->const_oop(); 4339 if (ptr == Constant) { 4340 if (this_oop != nullptr && tinst_oop != nullptr && 4341 this_oop->equals(tinst_oop)) 4342 o = this_oop; 4343 else if (above_centerline(_ptr)) { 4344 assert(!tinst_klass->is_interface(), ""); 4345 o = tinst_oop; 4346 } else if (above_centerline(tinst->_ptr)) { 4347 assert(!this_klass->is_interface(), ""); 4348 o = this_oop; 4349 } else 4350 ptr = NotNull; 4351 } 4352 res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth); 4353 } 4354 4355 return res; 4356 4357 } // End of case InstPtr 4358 4359 } // End of switch 4360 return this; // Return the double constant 4361 } 4362 4363 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type, 4364 ciKlass*& res_klass, bool& res_xk) { 4365 ciKlass* this_klass = this_type->klass(); 4366 ciKlass* other_klass = other_type->klass(); 4367 bool this_xk = this_type->klass_is_exact(); 4368 bool other_xk = other_type->klass_is_exact(); 4369 PTR this_ptr = this_type->ptr(); 4370 PTR other_ptr = other_type->ptr(); 4371 const TypeInterfaces* this_interfaces = this_type->interfaces(); 4372 const TypeInterfaces* other_interfaces = other_type->interfaces(); 4373 // Check for easy case; klasses are equal (and perhaps not loaded!) 4374 // If we have constants, then we created oops so classes are loaded 4375 // and we can handle the constants further down. This case handles 4376 // both-not-loaded or both-loaded classes 4377 if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) { 4378 res_klass = this_klass; 4379 res_xk = this_xk; 4380 return QUICK; 4381 } 4382 4383 // Classes require inspection in the Java klass hierarchy. Must be loaded. 4384 if (!other_klass->is_loaded() || !this_klass->is_loaded()) { 4385 return UNLOADED; 4386 } 4387 4388 // !!! Here's how the symmetry requirement breaks down into invariants: 4389 // If we split one up & one down AND they subtype, take the down man. 4390 // If we split one up & one down AND they do NOT subtype, "fall hard". 4391 // If both are up and they subtype, take the subtype class. 4392 // If both are up and they do NOT subtype, "fall hard". 4393 // If both are down and they subtype, take the supertype class. 4394 // If both are down and they do NOT subtype, "fall hard". 4395 // Constants treated as down. 4396 4397 // Now, reorder the above list; observe that both-down+subtype is also 4398 // "fall hard"; "fall hard" becomes the default case: 4399 // If we split one up & one down AND they subtype, take the down man. 4400 // If both are up and they subtype, take the subtype class. 4401 4402 // If both are down and they subtype, "fall hard". 4403 // If both are down and they do NOT subtype, "fall hard". 4404 // If both are up and they do NOT subtype, "fall hard". 4405 // If we split one up & one down AND they do NOT subtype, "fall hard". 4406 4407 // If a proper subtype is exact, and we return it, we return it exactly. 4408 // If a proper supertype is exact, there can be no subtyping relationship! 4409 // If both types are equal to the subtype, exactness is and-ed below the 4410 // centerline and or-ed above it. (N.B. Constants are always exact.) 4411 4412 // Check for subtyping: 4413 const T* subtype = nullptr; 4414 bool subtype_exact = false; 4415 if (this_type->is_same_java_type_as(other_type)) { 4416 subtype = this_type; 4417 subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk); 4418 } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) { 4419 subtype = this_type; // Pick subtyping class 4420 subtype_exact = this_xk; 4421 } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) { 4422 subtype = other_type; // Pick subtyping class 4423 subtype_exact = other_xk; 4424 } 4425 4426 if (subtype) { 4427 if (above_centerline(ptr)) { // both are up? 4428 this_type = other_type = subtype; 4429 this_xk = other_xk = subtype_exact; 4430 } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) { 4431 this_type = other_type; // tinst is down; keep down man 4432 this_xk = other_xk; 4433 } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) { 4434 other_type = this_type; // this is down; keep down man 4435 other_xk = this_xk; 4436 } else { 4437 this_xk = subtype_exact; // either they are equal, or we'll do an LCA 4438 } 4439 } 4440 4441 // Check for classes now being equal 4442 if (this_type->is_same_java_type_as(other_type)) { 4443 // If the klasses are equal, the constants may still differ. Fall to 4444 // NotNull if they do (neither constant is null; that is a special case 4445 // handled elsewhere). 4446 res_klass = this_type->klass(); 4447 res_xk = this_xk; 4448 return SUBTYPE; 4449 } // Else classes are not equal 4450 4451 // Since klasses are different, we require a LCA in the Java 4452 // class hierarchy - which means we have to fall to at least NotNull. 4453 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) { 4454 ptr = NotNull; 4455 } 4456 4457 interfaces = this_interfaces->intersection_with(other_interfaces); 4458 4459 // Now we find the LCA of Java classes 4460 ciKlass* k = this_klass->least_common_ancestor(other_klass); 4461 4462 res_klass = k; 4463 res_xk = false; 4464 4465 return LCA; 4466 } 4467 4468 //------------------------java_mirror_type-------------------------------------- 4469 ciType* TypeInstPtr::java_mirror_type() const { 4470 // must be a singleton type 4471 if( const_oop() == nullptr ) return nullptr; 4472 4473 // must be of type java.lang.Class 4474 if( klass() != ciEnv::current()->Class_klass() ) return nullptr; 4475 4476 return const_oop()->as_instance()->java_mirror_type(); 4477 } 4478 4479 4480 //------------------------------xdual------------------------------------------ 4481 // Dual: do NOT dual on klasses. This means I do NOT understand the Java 4482 // inheritance mechanism. 4483 const Type *TypeInstPtr::xdual() const { 4484 return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 4485 } 4486 4487 //------------------------------eq--------------------------------------------- 4488 // Structural equality check for Type representations 4489 bool TypeInstPtr::eq( const Type *t ) const { 4490 const TypeInstPtr *p = t->is_instptr(); 4491 return 4492 klass()->equals(p->klass()) && 4493 _interfaces->eq(p->_interfaces) && 4494 TypeOopPtr::eq(p); // Check sub-type stuff 4495 } 4496 4497 //------------------------------hash------------------------------------------- 4498 // Type-specific hashing function. 4499 uint TypeInstPtr::hash(void) const { 4500 return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash(); 4501 } 4502 4503 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4504 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 4505 } 4506 4507 4508 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const { 4509 return TypePtr::is_same_java_type_as_helper_for_instance(this, other); 4510 } 4511 4512 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4513 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 4514 } 4515 4516 4517 //------------------------------dump2------------------------------------------ 4518 // Dump oop Type 4519 #ifndef PRODUCT 4520 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const { 4521 // Print the name of the klass. 4522 klass()->print_name_on(st); 4523 _interfaces->dump(st); 4524 4525 switch( _ptr ) { 4526 case Constant: 4527 if (WizardMode || Verbose) { 4528 ResourceMark rm; 4529 stringStream ss; 4530 4531 st->print(" " INTPTR_FORMAT, p2i(const_oop())); 4532 const_oop()->print_oop(&ss); 4533 // 'const_oop->print_oop()' may emit newlines('\n') into ss. 4534 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node. 4535 char* buf = ss.as_string(/* c_heap= */false); 4536 StringUtils::replace_no_expand(buf, "\n", ""); 4537 st->print_raw(buf); 4538 } 4539 case BotPTR: 4540 if (!WizardMode && !Verbose) { 4541 if( _klass_is_exact ) st->print(":exact"); 4542 break; 4543 } 4544 case TopPTR: 4545 case AnyNull: 4546 case NotNull: 4547 st->print(":%s", ptr_msg[_ptr]); 4548 if( _klass_is_exact ) st->print(":exact"); 4549 break; 4550 default: 4551 break; 4552 } 4553 4554 if( _offset ) { // Dump offset, if any 4555 if( _offset == OffsetBot ) st->print("+any"); 4556 else if( _offset == OffsetTop ) st->print("+unknown"); 4557 else st->print("+%d", _offset); 4558 } 4559 4560 st->print(" *"); 4561 if (_instance_id == InstanceTop) 4562 st->print(",iid=top"); 4563 else if (_instance_id != InstanceBot) 4564 st->print(",iid=%d",_instance_id); 4565 4566 dump_inline_depth(st); 4567 dump_speculative(st); 4568 } 4569 #endif 4570 4571 //------------------------------add_offset------------------------------------- 4572 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const { 4573 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), 4574 _instance_id, add_offset_speculative(offset), _inline_depth); 4575 } 4576 4577 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const { 4578 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset, 4579 _instance_id, with_offset_speculative(offset), _inline_depth); 4580 } 4581 4582 const TypeInstPtr* TypeInstPtr::remove_speculative() const { 4583 if (_speculative == nullptr) { 4584 return this; 4585 } 4586 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 4587 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, 4588 _instance_id, nullptr, _inline_depth); 4589 } 4590 4591 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const { 4592 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth); 4593 } 4594 4595 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const { 4596 if (!UseInlineDepthForSpeculativeTypes) { 4597 return this; 4598 } 4599 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth); 4600 } 4601 4602 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const { 4603 assert(is_known_instance(), "should be known"); 4604 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth); 4605 } 4606 4607 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const { 4608 bool xk = klass_is_exact(); 4609 ciInstanceKlass* ik = klass()->as_instance_klass(); 4610 if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) { 4611 if (_interfaces->eq(ik)) { 4612 Compile* C = Compile::current(); 4613 Dependencies* deps = C->dependencies(); 4614 deps->assert_leaf_type(ik); 4615 xk = true; 4616 } 4617 } 4618 return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0); 4619 } 4620 4621 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) { 4622 static_assert(std::is_base_of<T2, T1>::value, ""); 4623 4624 if (!this_one->is_instance_type(other)) { 4625 return false; 4626 } 4627 4628 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) { 4629 return true; 4630 } 4631 4632 return this_one->klass()->is_subtype_of(other->klass()) && 4633 (!this_xk || this_one->_interfaces->contains(other->_interfaces)); 4634 } 4635 4636 4637 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const { 4638 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk); 4639 } 4640 4641 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) { 4642 static_assert(std::is_base_of<T2, T1>::value, ""); 4643 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) { 4644 return true; 4645 } 4646 4647 if (this_one->is_instance_type(other)) { 4648 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces); 4649 } 4650 4651 int dummy; 4652 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 4653 if (this_top_or_bottom) { 4654 return false; 4655 } 4656 4657 const T1* other_ary = this_one->is_array_type(other); 4658 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 4659 const TypePtr* this_elem = this_one->elem()->make_ptr(); 4660 if (other_elem != nullptr && this_elem != nullptr) { 4661 return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk); 4662 } 4663 4664 if (other_elem == nullptr && this_elem == nullptr) { 4665 return this_one->klass()->is_subtype_of(other->klass()); 4666 } 4667 4668 return false; 4669 } 4670 4671 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const { 4672 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk); 4673 } 4674 4675 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const { 4676 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk); 4677 } 4678 4679 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const { 4680 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk); 4681 } 4682 4683 //============================================================================= 4684 // Convenience common pre-built types. 4685 const TypeAryPtr *TypeAryPtr::RANGE; 4686 const TypeAryPtr *TypeAryPtr::OOPS; 4687 const TypeAryPtr *TypeAryPtr::NARROWOOPS; 4688 const TypeAryPtr *TypeAryPtr::BYTES; 4689 const TypeAryPtr *TypeAryPtr::SHORTS; 4690 const TypeAryPtr *TypeAryPtr::CHARS; 4691 const TypeAryPtr *TypeAryPtr::INTS; 4692 const TypeAryPtr *TypeAryPtr::LONGS; 4693 const TypeAryPtr *TypeAryPtr::FLOATS; 4694 const TypeAryPtr *TypeAryPtr::DOUBLES; 4695 4696 //------------------------------make------------------------------------------- 4697 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, 4698 int instance_id, const TypePtr* speculative, int inline_depth) { 4699 assert(!(k == nullptr && ary->_elem->isa_int()), 4700 "integral arrays must be pre-equipped with a class"); 4701 if (!xk) xk = ary->ary_must_be_exact(); 4702 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4703 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() && 4704 k->as_obj_array_klass()->base_element_klass()->is_interface()) { 4705 k = nullptr; 4706 } 4707 return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons(); 4708 } 4709 4710 //------------------------------make------------------------------------------- 4711 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, 4712 int instance_id, const TypePtr* speculative, int inline_depth, 4713 bool is_autobox_cache) { 4714 assert(!(k == nullptr && ary->_elem->isa_int()), 4715 "integral arrays must be pre-equipped with a class"); 4716 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" ); 4717 if (!xk) xk = (o != nullptr) || ary->ary_must_be_exact(); 4718 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4719 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() && 4720 k->as_obj_array_klass()->base_element_klass()->is_interface()) { 4721 k = nullptr; 4722 } 4723 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons(); 4724 } 4725 4726 //------------------------------cast_to_ptr_type------------------------------- 4727 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const { 4728 if( ptr == _ptr ) return this; 4729 return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4730 } 4731 4732 4733 //-----------------------------cast_to_exactness------------------------------- 4734 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const { 4735 if( klass_is_exact == _klass_is_exact ) return this; 4736 if (_ary->ary_must_be_exact()) return this; // cannot clear xk 4737 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); 4738 } 4739 4740 //-----------------------------cast_to_instance_id---------------------------- 4741 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const { 4742 if( instance_id == _instance_id ) return this; 4743 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); 4744 } 4745 4746 4747 //-----------------------------max_array_length------------------------------- 4748 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization. 4749 jint TypeAryPtr::max_array_length(BasicType etype) { 4750 if (!is_java_primitive(etype) && !::is_reference_type(etype)) { 4751 if (etype == T_NARROWOOP) { 4752 etype = T_OBJECT; 4753 } else if (etype == T_ILLEGAL) { // bottom[] 4754 etype = T_BYTE; // will produce conservatively high value 4755 } else { 4756 fatal("not an element type: %s", type2name(etype)); 4757 } 4758 } 4759 return arrayOopDesc::max_array_length(etype); 4760 } 4761 4762 //-----------------------------narrow_size_type------------------------------- 4763 // Narrow the given size type to the index range for the given array base type. 4764 // Return null if the resulting int type becomes empty. 4765 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const { 4766 jint hi = size->_hi; 4767 jint lo = size->_lo; 4768 jint min_lo = 0; 4769 jint max_hi = max_array_length(elem()->array_element_basic_type()); 4770 //if (index_not_size) --max_hi; // type of a valid array index, FTR 4771 bool chg = false; 4772 if (lo < min_lo) { 4773 lo = min_lo; 4774 if (size->is_con()) { 4775 hi = lo; 4776 } 4777 chg = true; 4778 } 4779 if (hi > max_hi) { 4780 hi = max_hi; 4781 if (size->is_con()) { 4782 lo = hi; 4783 } 4784 chg = true; 4785 } 4786 // Negative length arrays will produce weird intermediate dead fast-path code 4787 if (lo > hi) 4788 return TypeInt::ZERO; 4789 if (!chg) 4790 return size; 4791 return TypeInt::make(lo, hi, Type::WidenMin); 4792 } 4793 4794 //-------------------------------cast_to_size---------------------------------- 4795 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const { 4796 assert(new_size != nullptr, ""); 4797 new_size = narrow_size_type(new_size); 4798 if (new_size == size()) return this; 4799 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable()); 4800 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4801 } 4802 4803 //------------------------------cast_to_stable--------------------------------- 4804 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const { 4805 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable())) 4806 return this; 4807 4808 const Type* elem = this->elem(); 4809 const TypePtr* elem_ptr = elem->make_ptr(); 4810 4811 if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) { 4812 // If this is widened from a narrow oop, TypeAry::make will re-narrow it. 4813 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1); 4814 } 4815 4816 const TypeAry* new_ary = TypeAry::make(elem, size(), stable); 4817 4818 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4819 } 4820 4821 //-----------------------------stable_dimension-------------------------------- 4822 int TypeAryPtr::stable_dimension() const { 4823 if (!is_stable()) return 0; 4824 int dim = 1; 4825 const TypePtr* elem_ptr = elem()->make_ptr(); 4826 if (elem_ptr != nullptr && elem_ptr->isa_aryptr()) 4827 dim += elem_ptr->is_aryptr()->stable_dimension(); 4828 return dim; 4829 } 4830 4831 //----------------------cast_to_autobox_cache----------------------------------- 4832 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const { 4833 if (is_autobox_cache()) return this; 4834 const TypeOopPtr* etype = elem()->make_oopptr(); 4835 if (etype == nullptr) return this; 4836 // The pointers in the autobox arrays are always non-null. 4837 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); 4838 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable()); 4839 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true); 4840 } 4841 4842 //------------------------------eq--------------------------------------------- 4843 // Structural equality check for Type representations 4844 bool TypeAryPtr::eq( const Type *t ) const { 4845 const TypeAryPtr *p = t->is_aryptr(); 4846 return 4847 _ary == p->_ary && // Check array 4848 TypeOopPtr::eq(p); // Check sub-parts 4849 } 4850 4851 //------------------------------hash------------------------------------------- 4852 // Type-specific hashing function. 4853 uint TypeAryPtr::hash(void) const { 4854 return (uint)(uintptr_t)_ary + TypeOopPtr::hash(); 4855 } 4856 4857 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4858 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 4859 } 4860 4861 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const { 4862 return TypePtr::is_same_java_type_as_helper_for_array(this, other); 4863 } 4864 4865 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4866 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 4867 } 4868 //------------------------------meet------------------------------------------- 4869 // Compute the MEET of two types. It returns a new Type object. 4870 const Type *TypeAryPtr::xmeet_helper(const Type *t) const { 4871 // Perform a fast test for common case; meeting the same types together. 4872 if( this == t ) return this; // Meeting same type-rep? 4873 // Current "this->_base" is Pointer 4874 switch (t->base()) { // switch on original type 4875 4876 // Mixing ints & oops happens when javac reuses local variables 4877 case Int: 4878 case Long: 4879 case FloatTop: 4880 case FloatCon: 4881 case FloatBot: 4882 case DoubleTop: 4883 case DoubleCon: 4884 case DoubleBot: 4885 case NarrowOop: 4886 case NarrowKlass: 4887 case Bottom: // Ye Olde Default 4888 return Type::BOTTOM; 4889 case Top: 4890 return this; 4891 4892 default: // All else is a mistake 4893 typerr(t); 4894 4895 case OopPtr: { // Meeting to OopPtrs 4896 // Found a OopPtr type vs self-AryPtr type 4897 const TypeOopPtr *tp = t->is_oopptr(); 4898 int offset = meet_offset(tp->offset()); 4899 PTR ptr = meet_ptr(tp->ptr()); 4900 int depth = meet_inline_depth(tp->inline_depth()); 4901 const TypePtr* speculative = xmeet_speculative(tp); 4902 switch (tp->ptr()) { 4903 case TopPTR: 4904 case AnyNull: { 4905 int instance_id = meet_instance_id(InstanceTop); 4906 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 4907 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4908 } 4909 case BotPTR: 4910 case NotNull: { 4911 int instance_id = meet_instance_id(tp->instance_id()); 4912 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4913 } 4914 default: ShouldNotReachHere(); 4915 } 4916 } 4917 4918 case AnyPtr: { // Meeting two AnyPtrs 4919 // Found an AnyPtr type vs self-AryPtr type 4920 const TypePtr *tp = t->is_ptr(); 4921 int offset = meet_offset(tp->offset()); 4922 PTR ptr = meet_ptr(tp->ptr()); 4923 const TypePtr* speculative = xmeet_speculative(tp); 4924 int depth = meet_inline_depth(tp->inline_depth()); 4925 switch (tp->ptr()) { 4926 case TopPTR: 4927 return this; 4928 case BotPTR: 4929 case NotNull: 4930 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4931 case Null: 4932 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4933 // else fall through to AnyNull 4934 case AnyNull: { 4935 int instance_id = meet_instance_id(InstanceTop); 4936 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 4937 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4938 } 4939 default: ShouldNotReachHere(); 4940 } 4941 } 4942 4943 case MetadataPtr: 4944 case KlassPtr: 4945 case InstKlassPtr: 4946 case AryKlassPtr: 4947 case RawPtr: return TypePtr::BOTTOM; 4948 4949 case AryPtr: { // Meeting 2 references? 4950 const TypeAryPtr *tap = t->is_aryptr(); 4951 int off = meet_offset(tap->offset()); 4952 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary(); 4953 PTR ptr = meet_ptr(tap->ptr()); 4954 int instance_id = meet_instance_id(tap->instance_id()); 4955 const TypePtr* speculative = xmeet_speculative(tap); 4956 int depth = meet_inline_depth(tap->inline_depth()); 4957 4958 ciKlass* res_klass = nullptr; 4959 bool res_xk = false; 4960 const Type* elem = tary->_elem; 4961 if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) { 4962 instance_id = InstanceBot; 4963 } 4964 4965 ciObject* o = nullptr; // Assume not constant when done 4966 ciObject* this_oop = const_oop(); 4967 ciObject* tap_oop = tap->const_oop(); 4968 if (ptr == Constant) { 4969 if (this_oop != nullptr && tap_oop != nullptr && 4970 this_oop->equals(tap_oop)) { 4971 o = tap_oop; 4972 } else if (above_centerline(_ptr)) { 4973 o = tap_oop; 4974 } else if (above_centerline(tap->_ptr)) { 4975 o = this_oop; 4976 } else { 4977 ptr = NotNull; 4978 } 4979 } 4980 return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth); 4981 } 4982 4983 // All arrays inherit from Object class 4984 case InstPtr: { 4985 const TypeInstPtr *tp = t->is_instptr(); 4986 int offset = meet_offset(tp->offset()); 4987 PTR ptr = meet_ptr(tp->ptr()); 4988 int instance_id = meet_instance_id(tp->instance_id()); 4989 const TypePtr* speculative = xmeet_speculative(tp); 4990 int depth = meet_inline_depth(tp->inline_depth()); 4991 const TypeInterfaces* interfaces = meet_interfaces(tp); 4992 const TypeInterfaces* tp_interfaces = tp->_interfaces; 4993 const TypeInterfaces* this_interfaces = _interfaces; 4994 4995 switch (ptr) { 4996 case TopPTR: 4997 case AnyNull: // Fall 'down' to dual of object klass 4998 // For instances when a subclass meets a superclass we fall 4999 // below the centerline when the superclass is exact. We need to 5000 // do the same here. 5001 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) { 5002 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 5003 } else { 5004 // cannot subclass, so the meet has to fall badly below the centerline 5005 ptr = NotNull; 5006 instance_id = InstanceBot; 5007 interfaces = this_interfaces->intersection_with(tp_interfaces); 5008 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth); 5009 } 5010 case Constant: 5011 case NotNull: 5012 case BotPTR: // Fall down to object klass 5013 // LCA is object_klass, but if we subclass from the top we can do better 5014 if (above_centerline(tp->ptr())) { 5015 // If 'tp' is above the centerline and it is Object class 5016 // then we can subclass in the Java class hierarchy. 5017 // For instances when a subclass meets a superclass we fall 5018 // below the centerline when the superclass is exact. We need 5019 // to do the same here. 5020 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) { 5021 // that is, my array type is a subtype of 'tp' klass 5022 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 5023 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 5024 } 5025 } 5026 // The other case cannot happen, since t cannot be a subtype of an array. 5027 // The meet falls down to Object class below centerline. 5028 if (ptr == Constant) { 5029 ptr = NotNull; 5030 } 5031 if (instance_id > 0) { 5032 instance_id = InstanceBot; 5033 } 5034 interfaces = this_interfaces->intersection_with(tp_interfaces); 5035 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth); 5036 default: typerr(t); 5037 } 5038 } 5039 } 5040 return this; // Lint noise 5041 } 5042 5043 5044 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, 5045 const T* other_ary, ciKlass*& res_klass, bool& res_xk) { 5046 int dummy; 5047 bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM); 5048 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 5049 ciKlass* this_klass = this_ary->klass(); 5050 ciKlass* other_klass = other_ary->klass(); 5051 bool this_xk = this_ary->klass_is_exact(); 5052 bool other_xk = other_ary->klass_is_exact(); 5053 PTR this_ptr = this_ary->ptr(); 5054 PTR other_ptr = other_ary->ptr(); 5055 res_klass = nullptr; 5056 MeetResult result = SUBTYPE; 5057 if (elem->isa_int()) { 5058 // Integral array element types have irrelevant lattice relations. 5059 // It is the klass that determines array layout, not the element type. 5060 if (this_top_or_bottom) 5061 res_klass = other_klass; 5062 else if (other_top_or_bottom || other_klass == this_klass) { 5063 res_klass = this_klass; 5064 } else { 5065 // Something like byte[int+] meets char[int+]. 5066 // This must fall to bottom, not (int[-128..65535])[int+]. 5067 // instance_id = InstanceBot; 5068 elem = Type::BOTTOM; 5069 result = NOT_SUBTYPE; 5070 if (above_centerline(ptr) || ptr == Constant) { 5071 ptr = NotNull; 5072 res_xk = false; 5073 return NOT_SUBTYPE; 5074 } 5075 } 5076 } else {// Non integral arrays. 5077 // Must fall to bottom if exact klasses in upper lattice 5078 // are not equal or super klass is exact. 5079 if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) && 5080 // meet with top[] and bottom[] are processed further down: 5081 !this_top_or_bottom && !other_top_or_bottom && 5082 // both are exact and not equal: 5083 ((other_xk && this_xk) || 5084 // 'tap' is exact and super or unrelated: 5085 (other_xk && !other_ary->is_meet_subtype_of(this_ary)) || 5086 // 'this' is exact and super or unrelated: 5087 (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) { 5088 if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) { 5089 elem = Type::BOTTOM; 5090 } 5091 ptr = NotNull; 5092 res_xk = false; 5093 return NOT_SUBTYPE; 5094 } 5095 } 5096 5097 res_xk = false; 5098 switch (other_ptr) { 5099 case AnyNull: 5100 case TopPTR: 5101 // Compute new klass on demand, do not use tap->_klass 5102 if (below_centerline(this_ptr)) { 5103 res_xk = this_xk; 5104 } else { 5105 res_xk = (other_xk || this_xk); 5106 } 5107 return result; 5108 case Constant: { 5109 if (this_ptr == Constant) { 5110 res_xk = true; 5111 } else if(above_centerline(this_ptr)) { 5112 res_xk = true; 5113 } else { 5114 // Only precise for identical arrays 5115 res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); 5116 } 5117 return result; 5118 } 5119 case NotNull: 5120 case BotPTR: 5121 // Compute new klass on demand, do not use tap->_klass 5122 if (above_centerline(this_ptr)) { 5123 res_xk = other_xk; 5124 } else { 5125 res_xk = (other_xk && this_xk) && 5126 (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays 5127 } 5128 return result; 5129 default: { 5130 ShouldNotReachHere(); 5131 return result; 5132 } 5133 } 5134 return result; 5135 } 5136 5137 5138 //------------------------------xdual------------------------------------------ 5139 // Dual: compute field-by-field dual 5140 const Type *TypeAryPtr::xdual() const { 5141 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth()); 5142 } 5143 5144 //------------------------------dump2------------------------------------------ 5145 #ifndef PRODUCT 5146 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 5147 _ary->dump2(d,depth,st); 5148 _interfaces->dump(st); 5149 5150 switch( _ptr ) { 5151 case Constant: 5152 st->print(" " INTPTR_FORMAT " ", p2i(const_oop())); 5153 const_oop()->print(st); 5154 break; 5155 case BotPTR: 5156 if (!WizardMode && !Verbose) { 5157 if( _klass_is_exact ) st->print(":exact"); 5158 break; 5159 } 5160 case TopPTR: 5161 case AnyNull: 5162 case NotNull: 5163 st->print(":%s", ptr_msg[_ptr]); 5164 if( _klass_is_exact ) st->print(":exact"); 5165 break; 5166 default: 5167 break; 5168 } 5169 5170 if( _offset != 0 ) { 5171 BasicType basic_elem_type = elem()->basic_type(); 5172 int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 5173 if( _offset == OffsetTop ) st->print("+undefined"); 5174 else if( _offset == OffsetBot ) st->print("+any"); 5175 else if( _offset < header_size ) st->print("+%d", _offset); 5176 else { 5177 if (basic_elem_type == T_ILLEGAL) { 5178 st->print("+any"); 5179 } else { 5180 int elem_size = type2aelembytes(basic_elem_type); 5181 st->print("[%d]", (_offset - header_size)/elem_size); 5182 } 5183 } 5184 } 5185 st->print(" *"); 5186 if (_instance_id == InstanceTop) 5187 st->print(",iid=top"); 5188 else if (_instance_id != InstanceBot) 5189 st->print(",iid=%d",_instance_id); 5190 5191 dump_inline_depth(st); 5192 dump_speculative(st); 5193 } 5194 #endif 5195 5196 bool TypeAryPtr::empty(void) const { 5197 if (_ary->empty()) return true; 5198 return TypeOopPtr::empty(); 5199 } 5200 5201 //------------------------------add_offset------------------------------------- 5202 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const { 5203 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 5204 } 5205 5206 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const { 5207 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth); 5208 } 5209 5210 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const { 5211 return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); 5212 } 5213 5214 const TypeAryPtr* TypeAryPtr::remove_speculative() const { 5215 if (_speculative == nullptr) { 5216 return this; 5217 } 5218 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 5219 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth); 5220 } 5221 5222 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const { 5223 if (!UseInlineDepthForSpeculativeTypes) { 5224 return this; 5225 } 5226 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth); 5227 } 5228 5229 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const { 5230 assert(is_known_instance(), "should be known"); 5231 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); 5232 } 5233 5234 //============================================================================= 5235 5236 //------------------------------hash------------------------------------------- 5237 // Type-specific hashing function. 5238 uint TypeNarrowPtr::hash(void) const { 5239 return _ptrtype->hash() + 7; 5240 } 5241 5242 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton 5243 return _ptrtype->singleton(); 5244 } 5245 5246 bool TypeNarrowPtr::empty(void) const { 5247 return _ptrtype->empty(); 5248 } 5249 5250 intptr_t TypeNarrowPtr::get_con() const { 5251 return _ptrtype->get_con(); 5252 } 5253 5254 bool TypeNarrowPtr::eq( const Type *t ) const { 5255 const TypeNarrowPtr* tc = isa_same_narrowptr(t); 5256 if (tc != nullptr) { 5257 if (_ptrtype->base() != tc->_ptrtype->base()) { 5258 return false; 5259 } 5260 return tc->_ptrtype->eq(_ptrtype); 5261 } 5262 return false; 5263 } 5264 5265 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now. 5266 const TypePtr* odual = _ptrtype->dual()->is_ptr(); 5267 return make_same_narrowptr(odual); 5268 } 5269 5270 5271 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const { 5272 if (isa_same_narrowptr(kills)) { 5273 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative); 5274 if (ft->empty()) 5275 return Type::TOP; // Canonical empty value 5276 if (ft->isa_ptr()) { 5277 return make_hash_same_narrowptr(ft->isa_ptr()); 5278 } 5279 return ft; 5280 } else if (kills->isa_ptr()) { 5281 const Type* ft = _ptrtype->join_helper(kills, include_speculative); 5282 if (ft->empty()) 5283 return Type::TOP; // Canonical empty value 5284 return ft; 5285 } else { 5286 return Type::TOP; 5287 } 5288 } 5289 5290 //------------------------------xmeet------------------------------------------ 5291 // Compute the MEET of two types. It returns a new Type object. 5292 const Type *TypeNarrowPtr::xmeet( const Type *t ) const { 5293 // Perform a fast test for common case; meeting the same types together. 5294 if( this == t ) return this; // Meeting same type-rep? 5295 5296 if (t->base() == base()) { 5297 const Type* result = _ptrtype->xmeet(t->make_ptr()); 5298 if (result->isa_ptr()) { 5299 return make_hash_same_narrowptr(result->is_ptr()); 5300 } 5301 return result; 5302 } 5303 5304 // Current "this->_base" is NarrowKlass or NarrowOop 5305 switch (t->base()) { // switch on original type 5306 5307 case Int: // Mixing ints & oops happens when javac 5308 case Long: // reuses local variables 5309 case FloatTop: 5310 case FloatCon: 5311 case FloatBot: 5312 case DoubleTop: 5313 case DoubleCon: 5314 case DoubleBot: 5315 case AnyPtr: 5316 case RawPtr: 5317 case OopPtr: 5318 case InstPtr: 5319 case AryPtr: 5320 case MetadataPtr: 5321 case KlassPtr: 5322 case InstKlassPtr: 5323 case AryKlassPtr: 5324 case NarrowOop: 5325 case NarrowKlass: 5326 5327 case Bottom: // Ye Olde Default 5328 return Type::BOTTOM; 5329 case Top: 5330 return this; 5331 5332 default: // All else is a mistake 5333 typerr(t); 5334 5335 } // End of switch 5336 5337 return this; 5338 } 5339 5340 #ifndef PRODUCT 5341 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 5342 _ptrtype->dump2(d, depth, st); 5343 } 5344 #endif 5345 5346 const TypeNarrowOop *TypeNarrowOop::BOTTOM; 5347 const TypeNarrowOop *TypeNarrowOop::NULL_PTR; 5348 5349 5350 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) { 5351 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons(); 5352 } 5353 5354 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const { 5355 return make(_ptrtype->remove_speculative()->is_ptr()); 5356 } 5357 5358 const Type* TypeNarrowOop::cleanup_speculative() const { 5359 return make(_ptrtype->cleanup_speculative()->is_ptr()); 5360 } 5361 5362 #ifndef PRODUCT 5363 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const { 5364 st->print("narrowoop: "); 5365 TypeNarrowPtr::dump2(d, depth, st); 5366 } 5367 #endif 5368 5369 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR; 5370 5371 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) { 5372 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons(); 5373 } 5374 5375 #ifndef PRODUCT 5376 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const { 5377 st->print("narrowklass: "); 5378 TypeNarrowPtr::dump2(d, depth, st); 5379 } 5380 #endif 5381 5382 5383 //------------------------------eq--------------------------------------------- 5384 // Structural equality check for Type representations 5385 bool TypeMetadataPtr::eq( const Type *t ) const { 5386 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t; 5387 ciMetadata* one = metadata(); 5388 ciMetadata* two = a->metadata(); 5389 if (one == nullptr || two == nullptr) { 5390 return (one == two) && TypePtr::eq(t); 5391 } else { 5392 return one->equals(two) && TypePtr::eq(t); 5393 } 5394 } 5395 5396 //------------------------------hash------------------------------------------- 5397 // Type-specific hashing function. 5398 uint TypeMetadataPtr::hash(void) const { 5399 return 5400 (metadata() ? metadata()->hash() : 0) + 5401 TypePtr::hash(); 5402 } 5403 5404 //------------------------------singleton-------------------------------------- 5405 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5406 // constants 5407 bool TypeMetadataPtr::singleton(void) const { 5408 // detune optimizer to not generate constant metadata + constant offset as a constant! 5409 // TopPTR, Null, AnyNull, Constant are all singletons 5410 return (_offset == 0) && !below_centerline(_ptr); 5411 } 5412 5413 //------------------------------add_offset------------------------------------- 5414 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const { 5415 return make( _ptr, _metadata, xadd_offset(offset)); 5416 } 5417 5418 //-----------------------------filter------------------------------------------ 5419 // Do not allow interface-vs.-noninterface joins to collapse to top. 5420 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const { 5421 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr(); 5422 if (ft == nullptr || ft->empty()) 5423 return Type::TOP; // Canonical empty value 5424 return ft; 5425 } 5426 5427 //------------------------------get_con---------------------------------------- 5428 intptr_t TypeMetadataPtr::get_con() const { 5429 assert( _ptr == Null || _ptr == Constant, "" ); 5430 assert( _offset >= 0, "" ); 5431 5432 if (_offset != 0) { 5433 // After being ported to the compiler interface, the compiler no longer 5434 // directly manipulates the addresses of oops. Rather, it only has a pointer 5435 // to a handle at compile time. This handle is embedded in the generated 5436 // code and dereferenced at the time the nmethod is made. Until that time, 5437 // it is not reasonable to do arithmetic with the addresses of oops (we don't 5438 // have access to the addresses!). This does not seem to currently happen, 5439 // but this assertion here is to help prevent its occurrence. 5440 tty->print_cr("Found oop constant with non-zero offset"); 5441 ShouldNotReachHere(); 5442 } 5443 5444 return (intptr_t)metadata()->constant_encoding(); 5445 } 5446 5447 //------------------------------cast_to_ptr_type------------------------------- 5448 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const { 5449 if( ptr == _ptr ) return this; 5450 return make(ptr, metadata(), _offset); 5451 } 5452 5453 //------------------------------meet------------------------------------------- 5454 // Compute the MEET of two types. It returns a new Type object. 5455 const Type *TypeMetadataPtr::xmeet( const Type *t ) const { 5456 // Perform a fast test for common case; meeting the same types together. 5457 if( this == t ) return this; // Meeting same type-rep? 5458 5459 // Current "this->_base" is OopPtr 5460 switch (t->base()) { // switch on original type 5461 5462 case Int: // Mixing ints & oops happens when javac 5463 case Long: // reuses local variables 5464 case FloatTop: 5465 case FloatCon: 5466 case FloatBot: 5467 case DoubleTop: 5468 case DoubleCon: 5469 case DoubleBot: 5470 case NarrowOop: 5471 case NarrowKlass: 5472 case Bottom: // Ye Olde Default 5473 return Type::BOTTOM; 5474 case Top: 5475 return this; 5476 5477 default: // All else is a mistake 5478 typerr(t); 5479 5480 case AnyPtr: { 5481 // Found an AnyPtr type vs self-OopPtr type 5482 const TypePtr *tp = t->is_ptr(); 5483 int offset = meet_offset(tp->offset()); 5484 PTR ptr = meet_ptr(tp->ptr()); 5485 switch (tp->ptr()) { 5486 case Null: 5487 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5488 // else fall through: 5489 case TopPTR: 5490 case AnyNull: { 5491 return make(ptr, _metadata, offset); 5492 } 5493 case BotPTR: 5494 case NotNull: 5495 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5496 default: typerr(t); 5497 } 5498 } 5499 5500 case RawPtr: 5501 case KlassPtr: 5502 case InstKlassPtr: 5503 case AryKlassPtr: 5504 case OopPtr: 5505 case InstPtr: 5506 case AryPtr: 5507 return TypePtr::BOTTOM; // Oop meet raw is not well defined 5508 5509 case MetadataPtr: { 5510 const TypeMetadataPtr *tp = t->is_metadataptr(); 5511 int offset = meet_offset(tp->offset()); 5512 PTR tptr = tp->ptr(); 5513 PTR ptr = meet_ptr(tptr); 5514 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata(); 5515 if (tptr == TopPTR || _ptr == TopPTR || 5516 metadata()->equals(tp->metadata())) { 5517 return make(ptr, md, offset); 5518 } 5519 // metadata is different 5520 if( ptr == Constant ) { // Cannot be equal constants, so... 5521 if( tptr == Constant && _ptr != Constant) return t; 5522 if( _ptr == Constant && tptr != Constant) return this; 5523 ptr = NotNull; // Fall down in lattice 5524 } 5525 return make(ptr, nullptr, offset); 5526 break; 5527 } 5528 } // End of switch 5529 return this; // Return the double constant 5530 } 5531 5532 5533 //------------------------------xdual------------------------------------------ 5534 // Dual of a pure metadata pointer. 5535 const Type *TypeMetadataPtr::xdual() const { 5536 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset()); 5537 } 5538 5539 //------------------------------dump2------------------------------------------ 5540 #ifndef PRODUCT 5541 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 5542 st->print("metadataptr:%s", ptr_msg[_ptr]); 5543 if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata())); 5544 switch( _offset ) { 5545 case OffsetTop: st->print("+top"); break; 5546 case OffsetBot: st->print("+any"); break; 5547 case 0: break; 5548 default: st->print("+%d",_offset); break; 5549 } 5550 } 5551 #endif 5552 5553 5554 //============================================================================= 5555 // Convenience common pre-built type. 5556 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM; 5557 5558 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset): 5559 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) { 5560 } 5561 5562 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) { 5563 return make(Constant, m, 0); 5564 } 5565 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) { 5566 return make(Constant, m, 0); 5567 } 5568 5569 //------------------------------make------------------------------------------- 5570 // Create a meta data constant 5571 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) { 5572 assert(m == nullptr || !m->is_klass(), "wrong type"); 5573 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons(); 5574 } 5575 5576 5577 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const { 5578 const Type* elem = _ary->_elem; 5579 bool xk = klass_is_exact(); 5580 if (elem->make_oopptr() != nullptr) { 5581 elem = elem->make_oopptr()->as_klass_type(try_for_exact); 5582 if (elem->is_klassptr()->klass_is_exact()) { 5583 xk = true; 5584 } 5585 } 5586 return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0); 5587 } 5588 5589 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) { 5590 if (klass->is_instance_klass()) { 5591 return TypeInstKlassPtr::make(klass, interface_handling); 5592 } 5593 return TypeAryKlassPtr::make(klass, interface_handling); 5594 } 5595 5596 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) { 5597 if (klass->is_instance_klass()) { 5598 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 5599 return TypeInstKlassPtr::make(ptr, klass, interfaces, offset); 5600 } 5601 return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling); 5602 } 5603 5604 5605 //------------------------------TypeKlassPtr----------------------------------- 5606 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset) 5607 : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) { 5608 assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) || 5609 klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here"); 5610 } 5611 5612 // Is there a single ciKlass* that can represent that type? 5613 ciKlass* TypeKlassPtr::exact_klass_helper() const { 5614 assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface"); 5615 if (_interfaces->empty()) { 5616 return _klass; 5617 } 5618 if (_klass != ciEnv::current()->Object_klass()) { 5619 if (_interfaces->eq(_klass->as_instance_klass())) { 5620 return _klass; 5621 } 5622 return nullptr; 5623 } 5624 return _interfaces->exact_klass(); 5625 } 5626 5627 //------------------------------eq--------------------------------------------- 5628 // Structural equality check for Type representations 5629 bool TypeKlassPtr::eq(const Type *t) const { 5630 const TypeKlassPtr *p = t->is_klassptr(); 5631 return 5632 _interfaces->eq(p->_interfaces) && 5633 TypePtr::eq(p); 5634 } 5635 5636 //------------------------------hash------------------------------------------- 5637 // Type-specific hashing function. 5638 uint TypeKlassPtr::hash(void) const { 5639 return TypePtr::hash() + _interfaces->hash(); 5640 } 5641 5642 //------------------------------singleton-------------------------------------- 5643 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5644 // constants 5645 bool TypeKlassPtr::singleton(void) const { 5646 // detune optimizer to not generate constant klass + constant offset as a constant! 5647 // TopPTR, Null, AnyNull, Constant are all singletons 5648 return (_offset == 0) && !below_centerline(_ptr); 5649 } 5650 5651 // Do not allow interface-vs.-noninterface joins to collapse to top. 5652 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const { 5653 // logic here mirrors the one from TypeOopPtr::filter. See comments 5654 // there. 5655 const Type* ft = join_helper(kills, include_speculative); 5656 const TypeKlassPtr* ftkp = ft->isa_instklassptr(); 5657 const TypeKlassPtr* ktkp = kills->isa_instklassptr(); 5658 5659 if (ft->empty()) { 5660 return Type::TOP; // Canonical empty value 5661 } 5662 5663 return ft; 5664 } 5665 5666 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const { 5667 if (above_centerline(_ptr) && above_centerline(other->_ptr)) { 5668 return _interfaces->union_with(other->_interfaces); 5669 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) { 5670 return other->_interfaces; 5671 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) { 5672 return _interfaces; 5673 } 5674 return _interfaces->intersection_with(other->_interfaces); 5675 } 5676 5677 //------------------------------get_con---------------------------------------- 5678 intptr_t TypeKlassPtr::get_con() const { 5679 assert( _ptr == Null || _ptr == Constant, "" ); 5680 assert( _offset >= 0, "" ); 5681 5682 if (_offset != 0) { 5683 // After being ported to the compiler interface, the compiler no longer 5684 // directly manipulates the addresses of oops. Rather, it only has a pointer 5685 // to a handle at compile time. This handle is embedded in the generated 5686 // code and dereferenced at the time the nmethod is made. Until that time, 5687 // it is not reasonable to do arithmetic with the addresses of oops (we don't 5688 // have access to the addresses!). This does not seem to currently happen, 5689 // but this assertion here is to help prevent its occurrence. 5690 tty->print_cr("Found oop constant with non-zero offset"); 5691 ShouldNotReachHere(); 5692 } 5693 5694 ciKlass* k = exact_klass(); 5695 5696 return (intptr_t)k->constant_encoding(); 5697 } 5698 5699 //------------------------------dump2------------------------------------------ 5700 // Dump Klass Type 5701 #ifndef PRODUCT 5702 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const { 5703 switch(_ptr) { 5704 case Constant: 5705 st->print("precise "); 5706 case NotNull: 5707 { 5708 const char *name = klass()->name()->as_utf8(); 5709 if (name) { 5710 st->print("%s: " INTPTR_FORMAT, name, p2i(klass())); 5711 } else { 5712 ShouldNotReachHere(); 5713 } 5714 _interfaces->dump(st); 5715 } 5716 case BotPTR: 5717 if (!WizardMode && !Verbose && _ptr != Constant) break; 5718 case TopPTR: 5719 case AnyNull: 5720 st->print(":%s", ptr_msg[_ptr]); 5721 if (_ptr == Constant) st->print(":exact"); 5722 break; 5723 default: 5724 break; 5725 } 5726 5727 if (_offset) { // Dump offset, if any 5728 if (_offset == OffsetBot) { st->print("+any"); } 5729 else if (_offset == OffsetTop) { st->print("+unknown"); } 5730 else { st->print("+%d", _offset); } 5731 } 5732 5733 st->print(" *"); 5734 } 5735 #endif 5736 5737 //============================================================================= 5738 // Convenience common pre-built types. 5739 5740 // Not-null object klass or below 5741 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT; 5742 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL; 5743 5744 bool TypeInstKlassPtr::eq(const Type *t) const { 5745 const TypeKlassPtr *p = t->is_klassptr(); 5746 return 5747 klass()->equals(p->klass()) && 5748 TypeKlassPtr::eq(p); 5749 } 5750 5751 uint TypeInstKlassPtr::hash(void) const { 5752 return klass()->hash() + TypeKlassPtr::hash(); 5753 } 5754 5755 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) { 5756 TypeInstKlassPtr *r = 5757 (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons(); 5758 5759 return r; 5760 } 5761 5762 //------------------------------add_offset------------------------------------- 5763 // Access internals of klass object 5764 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const { 5765 return make( _ptr, klass(), _interfaces, xadd_offset(offset) ); 5766 } 5767 5768 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const { 5769 return make(_ptr, klass(), _interfaces, offset); 5770 } 5771 5772 //------------------------------cast_to_ptr_type------------------------------- 5773 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const { 5774 assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type"); 5775 if( ptr == _ptr ) return this; 5776 return make(ptr, _klass, _interfaces, _offset); 5777 } 5778 5779 5780 bool TypeInstKlassPtr::must_be_exact() const { 5781 if (!_klass->is_loaded()) return false; 5782 ciInstanceKlass* ik = _klass->as_instance_klass(); 5783 if (ik->is_final()) return true; // cannot clear xk 5784 return false; 5785 } 5786 5787 //-----------------------------cast_to_exactness------------------------------- 5788 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const { 5789 if (klass_is_exact == (_ptr == Constant)) return this; 5790 if (must_be_exact()) return this; 5791 ciKlass* k = klass(); 5792 return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset); 5793 } 5794 5795 5796 //-----------------------------as_instance_type-------------------------------- 5797 // Corresponding type for an instance of the given class. 5798 // It will be NotNull, and exact if and only if the klass type is exact. 5799 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const { 5800 ciKlass* k = klass(); 5801 bool xk = klass_is_exact(); 5802 Compile* C = Compile::current(); 5803 Dependencies* deps = C->dependencies(); 5804 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 5805 // Element is an instance 5806 bool klass_is_exact = false; 5807 const TypeInterfaces* interfaces = _interfaces; 5808 if (k->is_loaded()) { 5809 // Try to set klass_is_exact. 5810 ciInstanceKlass* ik = k->as_instance_klass(); 5811 klass_is_exact = ik->is_final(); 5812 if (!klass_is_exact && klass_change 5813 && deps != nullptr && UseUniqueSubclasses) { 5814 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 5815 if (sub != nullptr) { 5816 if (_interfaces->eq(sub)) { 5817 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 5818 k = ik = sub; 5819 xk = sub->is_final(); 5820 } 5821 } 5822 } 5823 } 5824 return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0); 5825 } 5826 5827 //------------------------------xmeet------------------------------------------ 5828 // Compute the MEET of two types, return a new Type object. 5829 const Type *TypeInstKlassPtr::xmeet( const Type *t ) const { 5830 // Perform a fast test for common case; meeting the same types together. 5831 if( this == t ) return this; // Meeting same type-rep? 5832 5833 // Current "this->_base" is Pointer 5834 switch (t->base()) { // switch on original type 5835 5836 case Int: // Mixing ints & oops happens when javac 5837 case Long: // reuses local variables 5838 case FloatTop: 5839 case FloatCon: 5840 case FloatBot: 5841 case DoubleTop: 5842 case DoubleCon: 5843 case DoubleBot: 5844 case NarrowOop: 5845 case NarrowKlass: 5846 case Bottom: // Ye Olde Default 5847 return Type::BOTTOM; 5848 case Top: 5849 return this; 5850 5851 default: // All else is a mistake 5852 typerr(t); 5853 5854 case AnyPtr: { // Meeting to AnyPtrs 5855 // Found an AnyPtr type vs self-KlassPtr type 5856 const TypePtr *tp = t->is_ptr(); 5857 int offset = meet_offset(tp->offset()); 5858 PTR ptr = meet_ptr(tp->ptr()); 5859 switch (tp->ptr()) { 5860 case TopPTR: 5861 return this; 5862 case Null: 5863 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5864 case AnyNull: 5865 return make( ptr, klass(), _interfaces, offset ); 5866 case BotPTR: 5867 case NotNull: 5868 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5869 default: typerr(t); 5870 } 5871 } 5872 5873 case RawPtr: 5874 case MetadataPtr: 5875 case OopPtr: 5876 case AryPtr: // Meet with AryPtr 5877 case InstPtr: // Meet with InstPtr 5878 return TypePtr::BOTTOM; 5879 5880 // 5881 // A-top } 5882 // / | \ } Tops 5883 // B-top A-any C-top } 5884 // | / | \ | } Any-nulls 5885 // B-any | C-any } 5886 // | | | 5887 // B-con A-con C-con } constants; not comparable across classes 5888 // | | | 5889 // B-not | C-not } 5890 // | \ | / | } not-nulls 5891 // B-bot A-not C-bot } 5892 // \ | / } Bottoms 5893 // A-bot } 5894 // 5895 5896 case InstKlassPtr: { // Meet two KlassPtr types 5897 const TypeInstKlassPtr *tkls = t->is_instklassptr(); 5898 int off = meet_offset(tkls->offset()); 5899 PTR ptr = meet_ptr(tkls->ptr()); 5900 const TypeInterfaces* interfaces = meet_interfaces(tkls); 5901 5902 ciKlass* res_klass = nullptr; 5903 bool res_xk = false; 5904 switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) { 5905 case UNLOADED: 5906 ShouldNotReachHere(); 5907 case SUBTYPE: 5908 case NOT_SUBTYPE: 5909 case LCA: 5910 case QUICK: { 5911 assert(res_xk == (ptr == Constant), ""); 5912 const Type* res = make(ptr, res_klass, interfaces, off); 5913 return res; 5914 } 5915 default: 5916 ShouldNotReachHere(); 5917 } 5918 } // End of case KlassPtr 5919 case AryKlassPtr: { // All arrays inherit from Object class 5920 const TypeAryKlassPtr *tp = t->is_aryklassptr(); 5921 int offset = meet_offset(tp->offset()); 5922 PTR ptr = meet_ptr(tp->ptr()); 5923 const TypeInterfaces* interfaces = meet_interfaces(tp); 5924 const TypeInterfaces* tp_interfaces = tp->_interfaces; 5925 const TypeInterfaces* this_interfaces = _interfaces; 5926 5927 switch (ptr) { 5928 case TopPTR: 5929 case AnyNull: // Fall 'down' to dual of object klass 5930 // For instances when a subclass meets a superclass we fall 5931 // below the centerline when the superclass is exact. We need to 5932 // do the same here. 5933 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) { 5934 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset); 5935 } else { 5936 // cannot subclass, so the meet has to fall badly below the centerline 5937 ptr = NotNull; 5938 interfaces = _interfaces->intersection_with(tp->_interfaces); 5939 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 5940 } 5941 case Constant: 5942 case NotNull: 5943 case BotPTR: // Fall down to object klass 5944 // LCA is object_klass, but if we subclass from the top we can do better 5945 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull ) 5946 // If 'this' (InstPtr) is above the centerline and it is Object class 5947 // then we can subclass in the Java class hierarchy. 5948 // For instances when a subclass meets a superclass we fall 5949 // below the centerline when the superclass is exact. We need 5950 // to do the same here. 5951 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) { 5952 // that is, tp's array type is a subtype of my klass 5953 return TypeAryKlassPtr::make(ptr, 5954 tp->elem(), tp->klass(), offset); 5955 } 5956 } 5957 // The other case cannot happen, since I cannot be a subtype of an array. 5958 // The meet falls down to Object class below centerline. 5959 if( ptr == Constant ) 5960 ptr = NotNull; 5961 interfaces = this_interfaces->intersection_with(tp_interfaces); 5962 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 5963 default: typerr(t); 5964 } 5965 } 5966 5967 } // End of switch 5968 return this; // Return the double constant 5969 } 5970 5971 //------------------------------xdual------------------------------------------ 5972 // Dual: compute field-by-field dual 5973 const Type *TypeInstKlassPtr::xdual() const { 5974 return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset()); 5975 } 5976 5977 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 5978 static_assert(std::is_base_of<T2, T1>::value, ""); 5979 if (!this_one->is_loaded() || !other->is_loaded()) { 5980 return false; 5981 } 5982 if (!this_one->is_instance_type(other)) { 5983 return false; 5984 } 5985 5986 if (!other_exact) { 5987 return false; 5988 } 5989 5990 if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) { 5991 return true; 5992 } 5993 5994 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces); 5995 } 5996 5997 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 5998 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 5999 } 6000 6001 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) { 6002 static_assert(std::is_base_of<T2, T1>::value, ""); 6003 if (!this_one->is_loaded() || !other->is_loaded()) { 6004 return false; 6005 } 6006 if (!this_one->is_instance_type(other)) { 6007 return false; 6008 } 6009 return this_one->klass()->equals(other->klass()) && this_one->_interfaces->eq(other->_interfaces); 6010 } 6011 6012 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const { 6013 return TypePtr::is_same_java_type_as_helper_for_instance(this, other); 6014 } 6015 6016 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6017 static_assert(std::is_base_of<T2, T1>::value, ""); 6018 if (!this_one->is_loaded() || !other->is_loaded()) { 6019 return true; 6020 } 6021 6022 if (this_one->is_array_type(other)) { 6023 return !this_exact && this_one->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->contains(this_one->_interfaces); 6024 } 6025 6026 assert(this_one->is_instance_type(other), "unsupported"); 6027 6028 if (this_exact && other_exact) { 6029 return this_one->is_java_subtype_of(other); 6030 } 6031 6032 if (!this_one->klass()->is_subtype_of(other->klass()) && !other->klass()->is_subtype_of(this_one->klass())) { 6033 return false; 6034 } 6035 6036 if (this_exact) { 6037 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces); 6038 } 6039 6040 return true; 6041 } 6042 6043 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6044 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 6045 } 6046 6047 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const { 6048 if (!UseUniqueSubclasses) { 6049 return this; 6050 } 6051 ciKlass* k = klass(); 6052 Compile* C = Compile::current(); 6053 Dependencies* deps = C->dependencies(); 6054 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 6055 const TypeInterfaces* interfaces = _interfaces; 6056 if (k->is_loaded()) { 6057 ciInstanceKlass* ik = k->as_instance_klass(); 6058 bool klass_is_exact = ik->is_final(); 6059 if (!klass_is_exact && 6060 deps != nullptr) { 6061 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 6062 if (sub != nullptr) { 6063 if (_interfaces->eq(sub)) { 6064 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 6065 k = ik = sub; 6066 klass_is_exact = sub->is_final(); 6067 return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset); 6068 } 6069 } 6070 } 6071 } 6072 return this; 6073 } 6074 6075 6076 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) { 6077 return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons(); 6078 } 6079 6080 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) { 6081 if (k->is_obj_array_klass()) { 6082 // Element is an object array. Recursively call ourself. 6083 ciKlass* eklass = k->as_obj_array_klass()->element_klass(); 6084 const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false); 6085 return TypeAryKlassPtr::make(ptr, etype, nullptr, offset); 6086 } else if (k->is_type_array_klass()) { 6087 // Element is an typeArray 6088 const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type()); 6089 return TypeAryKlassPtr::make(ptr, etype, k, offset); 6090 } else { 6091 ShouldNotReachHere(); 6092 return nullptr; 6093 } 6094 } 6095 6096 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) { 6097 return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling); 6098 } 6099 6100 //------------------------------eq--------------------------------------------- 6101 // Structural equality check for Type representations 6102 bool TypeAryKlassPtr::eq(const Type *t) const { 6103 const TypeAryKlassPtr *p = t->is_aryklassptr(); 6104 return 6105 _elem == p->_elem && // Check array 6106 TypeKlassPtr::eq(p); // Check sub-parts 6107 } 6108 6109 //------------------------------hash------------------------------------------- 6110 // Type-specific hashing function. 6111 uint TypeAryKlassPtr::hash(void) const { 6112 return (uint)(uintptr_t)_elem + TypeKlassPtr::hash(); 6113 } 6114 6115 //----------------------compute_klass------------------------------------------ 6116 // Compute the defining klass for this class 6117 ciKlass* TypeAryPtr::compute_klass() const { 6118 // Compute _klass based on element type. 6119 ciKlass* k_ary = nullptr; 6120 const TypeInstPtr *tinst; 6121 const TypeAryPtr *tary; 6122 const Type* el = elem(); 6123 if (el->isa_narrowoop()) { 6124 el = el->make_ptr(); 6125 } 6126 6127 // Get element klass 6128 if ((tinst = el->isa_instptr()) != nullptr) { 6129 // Leave k_ary at null. 6130 } else if ((tary = el->isa_aryptr()) != nullptr) { 6131 // Leave k_ary at null. 6132 } else if ((el->base() == Type::Top) || 6133 (el->base() == Type::Bottom)) { 6134 // element type of Bottom occurs from meet of basic type 6135 // and object; Top occurs when doing join on Bottom. 6136 // Leave k_ary at null. 6137 } else { 6138 assert(!el->isa_int(), "integral arrays must be pre-equipped with a class"); 6139 // Compute array klass directly from basic type 6140 k_ary = ciTypeArrayKlass::make(el->basic_type()); 6141 } 6142 return k_ary; 6143 } 6144 6145 //------------------------------klass------------------------------------------ 6146 // Return the defining klass for this class 6147 ciKlass* TypeAryPtr::klass() const { 6148 if( _klass ) return _klass; // Return cached value, if possible 6149 6150 // Oops, need to compute _klass and cache it 6151 ciKlass* k_ary = compute_klass(); 6152 6153 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) { 6154 // The _klass field acts as a cache of the underlying 6155 // ciKlass for this array type. In order to set the field, 6156 // we need to cast away const-ness. 6157 // 6158 // IMPORTANT NOTE: we *never* set the _klass field for the 6159 // type TypeAryPtr::OOPS. This Type is shared between all 6160 // active compilations. However, the ciKlass which represents 6161 // this Type is *not* shared between compilations, so caching 6162 // this value would result in fetching a dangling pointer. 6163 // 6164 // Recomputing the underlying ciKlass for each request is 6165 // a bit less efficient than caching, but calls to 6166 // TypeAryPtr::OOPS->klass() are not common enough to matter. 6167 ((TypeAryPtr*)this)->_klass = k_ary; 6168 } 6169 return k_ary; 6170 } 6171 6172 // Is there a single ciKlass* that can represent that type? 6173 ciKlass* TypeAryPtr::exact_klass_helper() const { 6174 if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) { 6175 ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper(); 6176 if (k == nullptr) { 6177 return nullptr; 6178 } 6179 k = ciObjArrayKlass::make(k); 6180 return k; 6181 } 6182 6183 return klass(); 6184 } 6185 6186 const Type* TypeAryPtr::base_element_type(int& dims) const { 6187 const Type* elem = this->elem(); 6188 dims = 1; 6189 while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) { 6190 elem = elem->make_ptr()->is_aryptr()->elem(); 6191 dims++; 6192 } 6193 return elem; 6194 } 6195 6196 //------------------------------add_offset------------------------------------- 6197 // Access internals of klass object 6198 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const { 6199 return make(_ptr, elem(), klass(), xadd_offset(offset)); 6200 } 6201 6202 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const { 6203 return make(_ptr, elem(), klass(), offset); 6204 } 6205 6206 //------------------------------cast_to_ptr_type------------------------------- 6207 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const { 6208 assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type"); 6209 if (ptr == _ptr) return this; 6210 return make(ptr, elem(), _klass, _offset); 6211 } 6212 6213 bool TypeAryKlassPtr::must_be_exact() const { 6214 if (_elem == Type::BOTTOM) return false; 6215 if (_elem == Type::TOP ) return false; 6216 const TypeKlassPtr* tk = _elem->isa_klassptr(); 6217 if (!tk) return true; // a primitive type, like int 6218 return tk->must_be_exact(); 6219 } 6220 6221 6222 //-----------------------------cast_to_exactness------------------------------- 6223 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const { 6224 if (must_be_exact()) return this; // cannot clear xk 6225 ciKlass* k = _klass; 6226 const Type* elem = this->elem(); 6227 if (elem->isa_klassptr() && !klass_is_exact) { 6228 elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact); 6229 } 6230 return make(klass_is_exact ? Constant : NotNull, elem, k, _offset); 6231 } 6232 6233 6234 //-----------------------------as_instance_type-------------------------------- 6235 // Corresponding type for an instance of the given class. 6236 // It will be NotNull, and exact if and only if the klass type is exact. 6237 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const { 6238 ciKlass* k = klass(); 6239 bool xk = klass_is_exact(); 6240 const Type* el = nullptr; 6241 if (elem()->isa_klassptr()) { 6242 el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false); 6243 k = nullptr; 6244 } else { 6245 el = elem(); 6246 } 6247 return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0); 6248 } 6249 6250 6251 //------------------------------xmeet------------------------------------------ 6252 // Compute the MEET of two types, return a new Type object. 6253 const Type *TypeAryKlassPtr::xmeet( const Type *t ) const { 6254 // Perform a fast test for common case; meeting the same types together. 6255 if( this == t ) return this; // Meeting same type-rep? 6256 6257 // Current "this->_base" is Pointer 6258 switch (t->base()) { // switch on original type 6259 6260 case Int: // Mixing ints & oops happens when javac 6261 case Long: // reuses local variables 6262 case FloatTop: 6263 case FloatCon: 6264 case FloatBot: 6265 case DoubleTop: 6266 case DoubleCon: 6267 case DoubleBot: 6268 case NarrowOop: 6269 case NarrowKlass: 6270 case Bottom: // Ye Olde Default 6271 return Type::BOTTOM; 6272 case Top: 6273 return this; 6274 6275 default: // All else is a mistake 6276 typerr(t); 6277 6278 case AnyPtr: { // Meeting to AnyPtrs 6279 // Found an AnyPtr type vs self-KlassPtr type 6280 const TypePtr *tp = t->is_ptr(); 6281 int offset = meet_offset(tp->offset()); 6282 PTR ptr = meet_ptr(tp->ptr()); 6283 switch (tp->ptr()) { 6284 case TopPTR: 6285 return this; 6286 case Null: 6287 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6288 case AnyNull: 6289 return make( ptr, _elem, klass(), offset ); 6290 case BotPTR: 6291 case NotNull: 6292 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6293 default: typerr(t); 6294 } 6295 } 6296 6297 case RawPtr: 6298 case MetadataPtr: 6299 case OopPtr: 6300 case AryPtr: // Meet with AryPtr 6301 case InstPtr: // Meet with InstPtr 6302 return TypePtr::BOTTOM; 6303 6304 // 6305 // A-top } 6306 // / | \ } Tops 6307 // B-top A-any C-top } 6308 // | / | \ | } Any-nulls 6309 // B-any | C-any } 6310 // | | | 6311 // B-con A-con C-con } constants; not comparable across classes 6312 // | | | 6313 // B-not | C-not } 6314 // | \ | / | } not-nulls 6315 // B-bot A-not C-bot } 6316 // \ | / } Bottoms 6317 // A-bot } 6318 // 6319 6320 case AryKlassPtr: { // Meet two KlassPtr types 6321 const TypeAryKlassPtr *tap = t->is_aryklassptr(); 6322 int off = meet_offset(tap->offset()); 6323 const Type* elem = _elem->meet(tap->_elem); 6324 6325 PTR ptr = meet_ptr(tap->ptr()); 6326 ciKlass* res_klass = nullptr; 6327 bool res_xk = false; 6328 meet_aryptr(ptr, elem, this, tap, res_klass, res_xk); 6329 assert(res_xk == (ptr == Constant), ""); 6330 return make(ptr, elem, res_klass, off); 6331 } // End of case KlassPtr 6332 case InstKlassPtr: { 6333 const TypeInstKlassPtr *tp = t->is_instklassptr(); 6334 int offset = meet_offset(tp->offset()); 6335 PTR ptr = meet_ptr(tp->ptr()); 6336 const TypeInterfaces* interfaces = meet_interfaces(tp); 6337 const TypeInterfaces* tp_interfaces = tp->_interfaces; 6338 const TypeInterfaces* this_interfaces = _interfaces; 6339 6340 switch (ptr) { 6341 case TopPTR: 6342 case AnyNull: // Fall 'down' to dual of object klass 6343 // For instances when a subclass meets a superclass we fall 6344 // below the centerline when the superclass is exact. We need to 6345 // do the same here. 6346 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && 6347 !tp->klass_is_exact()) { 6348 return TypeAryKlassPtr::make(ptr, _elem, _klass, offset); 6349 } else { 6350 // cannot subclass, so the meet has to fall badly below the centerline 6351 ptr = NotNull; 6352 interfaces = this_interfaces->intersection_with(tp->_interfaces); 6353 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 6354 } 6355 case Constant: 6356 case NotNull: 6357 case BotPTR: // Fall down to object klass 6358 // LCA is object_klass, but if we subclass from the top we can do better 6359 if (above_centerline(tp->ptr())) { 6360 // If 'tp' is above the centerline and it is Object class 6361 // then we can subclass in the Java class hierarchy. 6362 // For instances when a subclass meets a superclass we fall 6363 // below the centerline when the superclass is exact. We need 6364 // to do the same here. 6365 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && 6366 !tp->klass_is_exact()) { 6367 // that is, my array type is a subtype of 'tp' klass 6368 return make(ptr, _elem, _klass, offset); 6369 } 6370 } 6371 // The other case cannot happen, since t cannot be a subtype of an array. 6372 // The meet falls down to Object class below centerline. 6373 if (ptr == Constant) 6374 ptr = NotNull; 6375 interfaces = this_interfaces->intersection_with(tp_interfaces); 6376 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 6377 default: typerr(t); 6378 } 6379 } 6380 6381 } // End of switch 6382 return this; // Return the double constant 6383 } 6384 6385 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6386 static_assert(std::is_base_of<T2, T1>::value, ""); 6387 6388 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) { 6389 return true; 6390 } 6391 6392 int dummy; 6393 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6394 6395 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 6396 return false; 6397 } 6398 6399 if (this_one->is_instance_type(other)) { 6400 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) && 6401 other_exact; 6402 } 6403 6404 assert(this_one->is_array_type(other), ""); 6405 const T1* other_ary = this_one->is_array_type(other); 6406 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6407 if (other_top_or_bottom) { 6408 return false; 6409 } 6410 6411 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6412 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6413 if (this_elem != nullptr && other_elem != nullptr) { 6414 return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact); 6415 } 6416 if (this_elem == nullptr && other_elem == nullptr) { 6417 return this_one->klass()->is_subtype_of(other->klass()); 6418 } 6419 return false; 6420 } 6421 6422 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6423 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 6424 } 6425 6426 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) { 6427 static_assert(std::is_base_of<T2, T1>::value, ""); 6428 6429 int dummy; 6430 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6431 6432 if (!this_one->is_array_type(other) || 6433 !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 6434 return false; 6435 } 6436 const T1* other_ary = this_one->is_array_type(other); 6437 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6438 6439 if (other_top_or_bottom) { 6440 return false; 6441 } 6442 6443 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6444 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6445 if (other_elem != nullptr && this_elem != nullptr) { 6446 return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem)); 6447 } 6448 if (other_elem == nullptr && this_elem == nullptr) { 6449 return this_one->klass()->equals(other->klass()); 6450 } 6451 return false; 6452 } 6453 6454 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const { 6455 return TypePtr::is_same_java_type_as_helper_for_array(this, other); 6456 } 6457 6458 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6459 static_assert(std::is_base_of<T2, T1>::value, ""); 6460 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) { 6461 return true; 6462 } 6463 if (!this_one->is_loaded() || !other->is_loaded()) { 6464 return true; 6465 } 6466 if (this_one->is_instance_type(other)) { 6467 return other->klass()->equals(ciEnv::current()->Object_klass()) && 6468 this_one->_interfaces->contains(other->_interfaces); 6469 } 6470 6471 int dummy; 6472 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6473 if (this_top_or_bottom) { 6474 return true; 6475 } 6476 6477 assert(this_one->is_array_type(other), ""); 6478 6479 const T1* other_ary = this_one->is_array_type(other); 6480 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6481 if (other_top_or_bottom) { 6482 return true; 6483 } 6484 if (this_exact && other_exact) { 6485 return this_one->is_java_subtype_of(other); 6486 } 6487 6488 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6489 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6490 if (other_elem != nullptr && this_elem != nullptr) { 6491 return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact); 6492 } 6493 if (other_elem == nullptr && this_elem == nullptr) { 6494 return this_one->klass()->is_subtype_of(other->klass()); 6495 } 6496 return false; 6497 } 6498 6499 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6500 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 6501 } 6502 6503 //------------------------------xdual------------------------------------------ 6504 // Dual: compute field-by-field dual 6505 const Type *TypeAryKlassPtr::xdual() const { 6506 return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset()); 6507 } 6508 6509 // Is there a single ciKlass* that can represent that type? 6510 ciKlass* TypeAryKlassPtr::exact_klass_helper() const { 6511 if (elem()->isa_klassptr()) { 6512 ciKlass* k = elem()->is_klassptr()->exact_klass_helper(); 6513 if (k == nullptr) { 6514 return nullptr; 6515 } 6516 k = ciObjArrayKlass::make(k); 6517 return k; 6518 } 6519 6520 return klass(); 6521 } 6522 6523 ciKlass* TypeAryKlassPtr::klass() const { 6524 if (_klass != nullptr) { 6525 return _klass; 6526 } 6527 ciKlass* k = nullptr; 6528 if (elem()->isa_klassptr()) { 6529 // leave null 6530 } else if ((elem()->base() == Type::Top) || 6531 (elem()->base() == Type::Bottom)) { 6532 } else { 6533 k = ciTypeArrayKlass::make(elem()->basic_type()); 6534 ((TypeAryKlassPtr*)this)->_klass = k; 6535 } 6536 return k; 6537 } 6538 6539 //------------------------------dump2------------------------------------------ 6540 // Dump Klass Type 6541 #ifndef PRODUCT 6542 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 6543 switch( _ptr ) { 6544 case Constant: 6545 st->print("precise "); 6546 case NotNull: 6547 { 6548 st->print("["); 6549 _elem->dump2(d, depth, st); 6550 _interfaces->dump(st); 6551 st->print(": "); 6552 } 6553 case BotPTR: 6554 if( !WizardMode && !Verbose && _ptr != Constant ) break; 6555 case TopPTR: 6556 case AnyNull: 6557 st->print(":%s", ptr_msg[_ptr]); 6558 if( _ptr == Constant ) st->print(":exact"); 6559 break; 6560 default: 6561 break; 6562 } 6563 6564 if( _offset ) { // Dump offset, if any 6565 if( _offset == OffsetBot ) { st->print("+any"); } 6566 else if( _offset == OffsetTop ) { st->print("+unknown"); } 6567 else { st->print("+%d", _offset); } 6568 } 6569 6570 st->print(" *"); 6571 } 6572 #endif 6573 6574 const Type* TypeAryKlassPtr::base_element_type(int& dims) const { 6575 const Type* elem = this->elem(); 6576 dims = 1; 6577 while (elem->isa_aryklassptr()) { 6578 elem = elem->is_aryklassptr()->elem(); 6579 dims++; 6580 } 6581 return elem; 6582 } 6583 6584 //============================================================================= 6585 // Convenience common pre-built types. 6586 6587 //------------------------------make------------------------------------------- 6588 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) { 6589 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons(); 6590 } 6591 6592 //------------------------------make------------------------------------------- 6593 const TypeFunc *TypeFunc::make(ciMethod* method) { 6594 Compile* C = Compile::current(); 6595 const TypeFunc* tf = C->last_tf(method); // check cache 6596 if (tf != nullptr) return tf; // The hit rate here is almost 50%. 6597 const TypeTuple *domain; 6598 if (method->is_static()) { 6599 domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces); 6600 } else { 6601 domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces); 6602 } 6603 const TypeTuple *range = TypeTuple::make_range(method->signature(), ignore_interfaces); 6604 tf = TypeFunc::make(domain, range); 6605 C->set_last_tf(method, tf); // fill cache 6606 return tf; 6607 } 6608 6609 //------------------------------meet------------------------------------------- 6610 // Compute the MEET of two types. It returns a new Type object. 6611 const Type *TypeFunc::xmeet( const Type *t ) const { 6612 // Perform a fast test for common case; meeting the same types together. 6613 if( this == t ) return this; // Meeting same type-rep? 6614 6615 // Current "this->_base" is Func 6616 switch (t->base()) { // switch on original type 6617 6618 case Bottom: // Ye Olde Default 6619 return t; 6620 6621 default: // All else is a mistake 6622 typerr(t); 6623 6624 case Top: 6625 break; 6626 } 6627 return this; // Return the double constant 6628 } 6629 6630 //------------------------------xdual------------------------------------------ 6631 // Dual: compute field-by-field dual 6632 const Type *TypeFunc::xdual() const { 6633 return this; 6634 } 6635 6636 //------------------------------eq--------------------------------------------- 6637 // Structural equality check for Type representations 6638 bool TypeFunc::eq( const Type *t ) const { 6639 const TypeFunc *a = (const TypeFunc*)t; 6640 return _domain == a->_domain && 6641 _range == a->_range; 6642 } 6643 6644 //------------------------------hash------------------------------------------- 6645 // Type-specific hashing function. 6646 uint TypeFunc::hash(void) const { 6647 return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range; 6648 } 6649 6650 //------------------------------dump2------------------------------------------ 6651 // Dump Function Type 6652 #ifndef PRODUCT 6653 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const { 6654 if( _range->cnt() <= Parms ) 6655 st->print("void"); 6656 else { 6657 uint i; 6658 for (i = Parms; i < _range->cnt()-1; i++) { 6659 _range->field_at(i)->dump2(d,depth,st); 6660 st->print("/"); 6661 } 6662 _range->field_at(i)->dump2(d,depth,st); 6663 } 6664 st->print(" "); 6665 st->print("( "); 6666 if( !depth || d[this] ) { // Check for recursive dump 6667 st->print("...)"); 6668 return; 6669 } 6670 d.Insert((void*)this,(void*)this); // Stop recursion 6671 if (Parms < _domain->cnt()) 6672 _domain->field_at(Parms)->dump2(d,depth-1,st); 6673 for (uint i = Parms+1; i < _domain->cnt(); i++) { 6674 st->print(", "); 6675 _domain->field_at(i)->dump2(d,depth-1,st); 6676 } 6677 st->print(" )"); 6678 } 6679 #endif 6680 6681 //------------------------------singleton-------------------------------------- 6682 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 6683 // constants (Ldi nodes). Singletons are integer, float or double constants 6684 // or a single symbol. 6685 bool TypeFunc::singleton(void) const { 6686 return false; // Never a singleton 6687 } 6688 6689 bool TypeFunc::empty(void) const { 6690 return false; // Never empty 6691 } 6692 6693 6694 BasicType TypeFunc::return_type() const{ 6695 if (range()->cnt() == TypeFunc::Parms) { 6696 return T_VOID; 6697 } 6698 return range()->field_at(TypeFunc::Parms)->basic_type(); 6699 }