1 /* 2 * Copyright (c) 2020, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciSymbols.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "opto/library_call.hpp" 28 #include "opto/runtime.hpp" 29 #include "opto/vectornode.hpp" 30 #include "prims/vectorSupport.hpp" 31 #include "runtime/stubRoutines.hpp" 32 33 #ifdef ASSERT 34 static bool is_vector(ciKlass* klass) { 35 return klass->is_subclass_of(ciEnv::current()->vector_VectorPayload_klass()); 36 } 37 38 static bool check_vbox(const TypeInstPtr* vbox_type) { 39 assert(vbox_type->klass_is_exact(), ""); 40 41 ciInstanceKlass* ik = vbox_type->instance_klass(); 42 assert(is_vector(ik), "not a vector"); 43 44 ciField* fd1 = ik->get_field_by_name(ciSymbols::ETYPE_name(), ciSymbols::class_signature(), /* is_static */ true); 45 assert(fd1 != nullptr, "element type info is missing"); 46 47 ciConstant val1 = fd1->constant_value(); 48 BasicType elem_bt = val1.as_object()->as_instance()->java_mirror_type()->basic_type(); 49 assert(is_java_primitive(elem_bt), "element type info is missing"); 50 51 ciField* fd2 = ik->get_field_by_name(ciSymbols::VLENGTH_name(), ciSymbols::int_signature(), /* is_static */ true); 52 assert(fd2 != nullptr, "vector length info is missing"); 53 54 ciConstant val2 = fd2->constant_value(); 55 assert(val2.as_int() > 0, "vector length info is missing"); 56 57 return true; 58 } 59 #endif 60 61 #define log_if_needed(...) \ 62 if (C->print_intrinsics()) { \ 63 tty->print_cr(__VA_ARGS__); \ 64 } 65 66 #ifndef PRODUCT 67 #define non_product_log_if_needed(...) log_if_needed(__VA_ARGS__) 68 #else 69 #define non_product_log_if_needed(...) 70 #endif 71 72 static bool is_vector_mask(ciKlass* klass) { 73 return klass->is_subclass_of(ciEnv::current()->vector_VectorMask_klass()); 74 } 75 76 bool LibraryCallKit::arch_supports_vector_rotate(int opc, int num_elem, BasicType elem_bt, 77 VectorMaskUseType mask_use_type, bool has_scalar_args) { 78 bool is_supported = true; 79 80 // has_scalar_args flag is true only for non-constant scalar shift count, 81 // since in this case shift needs to be broadcasted. 82 if (!Matcher::match_rule_supported_vector(opc, num_elem, elem_bt) || 83 (has_scalar_args && !arch_supports_vector(Op_Replicate, num_elem, elem_bt, VecMaskNotUsed))) { 84 is_supported = false; 85 } 86 87 if (is_supported) { 88 // Check if mask unboxing is supported, this is a two step process which first loads the contents 89 // of boolean array into vector followed by either lane expansion to match the lane size of masked 90 // vector operation or populate the predicate register. 91 if ((mask_use_type & VecMaskUseLoad) != 0) { 92 if (!Matcher::match_rule_supported_vector(Op_VectorLoadMask, num_elem, elem_bt) || 93 !Matcher::match_rule_supported_vector(Op_LoadVector, num_elem, T_BOOLEAN)) { 94 non_product_log_if_needed(" ** Rejected vector mask loading (%s,%s,%d) because architecture does not support it", 95 NodeClassNames[Op_VectorLoadMask], type2name(elem_bt), num_elem); 96 return false; 97 } 98 } 99 100 if ((mask_use_type & VecMaskUsePred) != 0) { 101 if (!Matcher::has_predicated_vectors() || 102 !Matcher::match_rule_supported_vector_masked(opc, num_elem, elem_bt)) { 103 non_product_log_if_needed("Rejected vector mask predicate using (%s,%s,%d) because architecture does not support it", 104 NodeClassNames[opc], type2name(elem_bt), num_elem); 105 return false; 106 } 107 } 108 } 109 110 int lshiftopc, rshiftopc; 111 switch(elem_bt) { 112 case T_BYTE: 113 lshiftopc = Op_LShiftI; 114 rshiftopc = Op_URShiftB; 115 break; 116 case T_SHORT: 117 lshiftopc = Op_LShiftI; 118 rshiftopc = Op_URShiftS; 119 break; 120 case T_INT: 121 lshiftopc = Op_LShiftI; 122 rshiftopc = Op_URShiftI; 123 break; 124 case T_LONG: 125 lshiftopc = Op_LShiftL; 126 rshiftopc = Op_URShiftL; 127 break; 128 default: fatal("Unexpected type: %s", type2name(elem_bt)); 129 } 130 int lshiftvopc = VectorNode::opcode(lshiftopc, elem_bt); 131 int rshiftvopc = VectorNode::opcode(rshiftopc, elem_bt); 132 if (!is_supported && 133 arch_supports_vector(lshiftvopc, num_elem, elem_bt, VecMaskNotUsed, has_scalar_args) && 134 arch_supports_vector(rshiftvopc, num_elem, elem_bt, VecMaskNotUsed, has_scalar_args) && 135 arch_supports_vector(Op_OrV, num_elem, elem_bt, VecMaskNotUsed)) { 136 is_supported = true; 137 } 138 return is_supported; 139 } 140 141 Node* GraphKit::box_vector(Node* vector, const TypeInstPtr* vbox_type, BasicType elem_bt, int num_elem, bool deoptimize_on_exception) { 142 assert(EnableVectorSupport, ""); 143 144 PreserveReexecuteState preexecs(this); 145 jvms()->set_should_reexecute(true); 146 147 VectorBoxAllocateNode* alloc = new VectorBoxAllocateNode(C, vbox_type); 148 set_edges_for_java_call(alloc, /*must_throw=*/false, /*separate_io_proj=*/true); 149 make_slow_call_ex(alloc, env()->Throwable_klass(), /*separate_io_proj=*/true, deoptimize_on_exception); 150 set_i_o(gvn().transform( new ProjNode(alloc, TypeFunc::I_O) )); 151 set_all_memory(gvn().transform( new ProjNode(alloc, TypeFunc::Memory) )); 152 Node* ret = gvn().transform(new ProjNode(alloc, TypeFunc::Parms)); 153 154 assert(check_vbox(vbox_type), ""); 155 const TypeVect* vt = TypeVect::make(elem_bt, num_elem, is_vector_mask(vbox_type->instance_klass())); 156 VectorBoxNode* vbox = new VectorBoxNode(C, ret, vector, vbox_type, vt); 157 return gvn().transform(vbox); 158 } 159 160 Node* GraphKit::unbox_vector(Node* v, const TypeInstPtr* vbox_type, BasicType elem_bt, int num_elem) { 161 assert(EnableVectorSupport, ""); 162 const TypeInstPtr* vbox_type_v = gvn().type(v)->isa_instptr(); 163 if (vbox_type_v == nullptr || vbox_type->instance_klass() != vbox_type_v->instance_klass()) { 164 return nullptr; // arguments don't agree on vector shapes 165 } 166 if (vbox_type_v->maybe_null()) { 167 return nullptr; // no nulls are allowed 168 } 169 assert(check_vbox(vbox_type), ""); 170 const TypeVect* vt = TypeVect::make(elem_bt, num_elem, is_vector_mask(vbox_type->instance_klass())); 171 Node* unbox = gvn().transform(new VectorUnboxNode(C, vt, v, merged_memory())); 172 return unbox; 173 } 174 175 Node* GraphKit::vector_shift_count(Node* cnt, int shift_op, BasicType bt, int num_elem) { 176 assert(bt == T_INT || bt == T_LONG || bt == T_SHORT || bt == T_BYTE, "byte, short, long and int are supported"); 177 juint mask = (type2aelembytes(bt) * BitsPerByte - 1); 178 Node* nmask = gvn().transform(ConNode::make(TypeInt::make(mask))); 179 Node* mcnt = gvn().transform(new AndINode(cnt, nmask)); 180 return gvn().transform(VectorNode::shift_count(shift_op, mcnt, num_elem, bt)); 181 } 182 183 bool LibraryCallKit::arch_supports_vector(int sopc, int num_elem, BasicType type, VectorMaskUseType mask_use_type, bool has_scalar_args) { 184 // Check that the operation is valid. 185 if (sopc <= 0) { 186 non_product_log_if_needed(" ** Rejected intrinsification because no valid vector op could be extracted"); 187 return false; 188 } 189 190 if (VectorNode::is_vector_rotate(sopc)) { 191 if(!arch_supports_vector_rotate(sopc, num_elem, type, mask_use_type, has_scalar_args)) { 192 non_product_log_if_needed(" ** Rejected vector op (%s,%s,%d) because architecture does not support variable vector shifts", 193 NodeClassNames[sopc], type2name(type), num_elem); 194 return false; 195 } 196 } else if (VectorNode::is_vector_integral_negate(sopc)) { 197 if (!VectorNode::is_vector_integral_negate_supported(sopc, num_elem, type, false)) { 198 non_product_log_if_needed(" ** Rejected vector op (%s,%s,%d) because architecture does not support integral vector negate", 199 NodeClassNames[sopc], type2name(type), num_elem); 200 return false; 201 } 202 } else { 203 // Check that architecture supports this op-size-type combination. 204 if (!Matcher::match_rule_supported_vector(sopc, num_elem, type)) { 205 non_product_log_if_needed(" ** Rejected vector op (%s,%s,%d) because architecture does not support it", 206 NodeClassNames[sopc], type2name(type), num_elem); 207 return false; 208 } else { 209 assert(Matcher::match_rule_supported(sopc), "must be supported"); 210 } 211 } 212 213 if (num_elem == 1) { 214 if (mask_use_type != VecMaskNotUsed) { 215 non_product_log_if_needed(" ** Rejected vector mask op (%s,%s,%d) because architecture does not support it", 216 NodeClassNames[sopc], type2name(type), num_elem); 217 return false; 218 } 219 220 if (sopc != 0) { 221 if (sopc != Op_LoadVector && sopc != Op_StoreVector) { 222 non_product_log_if_needed(" ** Not a svml call or load/store vector op (%s,%s,%d)", 223 NodeClassNames[sopc], type2name(type), num_elem); 224 return false; 225 } 226 } 227 } 228 229 if (!has_scalar_args && VectorNode::is_vector_shift(sopc) && 230 Matcher::supports_vector_variable_shifts() == false) { 231 log_if_needed(" ** Rejected vector op (%s,%s,%d) because architecture does not support variable vector shifts", 232 NodeClassNames[sopc], type2name(type), num_elem); 233 return false; 234 } 235 236 // Check if mask unboxing is supported, this is a two step process which first loads the contents 237 // of boolean array into vector followed by either lane expansion to match the lane size of masked 238 // vector operation or populate the predicate register. 239 if ((mask_use_type & VecMaskUseLoad) != 0) { 240 if (!Matcher::match_rule_supported_vector(Op_VectorLoadMask, num_elem, type) || 241 !Matcher::match_rule_supported_vector(Op_LoadVector, num_elem, T_BOOLEAN)) { 242 non_product_log_if_needed(" ** Rejected vector mask loading (%s,%s,%d) because architecture does not support it", 243 NodeClassNames[Op_VectorLoadMask], type2name(type), num_elem); 244 return false; 245 } 246 } 247 248 // Check if mask boxing is supported, this is a two step process which first stores the contents 249 // of mask vector / predicate register into a boolean vector followed by vector store operation to 250 // transfer the contents to underlined storage of mask boxes which is a boolean array. 251 if ((mask_use_type & VecMaskUseStore) != 0) { 252 if (!Matcher::match_rule_supported_vector(Op_VectorStoreMask, num_elem, type) || 253 !Matcher::match_rule_supported_vector(Op_StoreVector, num_elem, T_BOOLEAN)) { 254 non_product_log_if_needed("Rejected vector mask storing (%s,%s,%d) because architecture does not support it", 255 NodeClassNames[Op_VectorStoreMask], type2name(type), num_elem); 256 return false; 257 } 258 } 259 260 if ((mask_use_type & VecMaskUsePred) != 0) { 261 bool is_supported = false; 262 if (Matcher::has_predicated_vectors()) { 263 if (VectorNode::is_vector_integral_negate(sopc)) { 264 is_supported = VectorNode::is_vector_integral_negate_supported(sopc, num_elem, type, true); 265 } else { 266 is_supported = Matcher::match_rule_supported_vector_masked(sopc, num_elem, type); 267 } 268 } 269 is_supported |= Matcher::supports_vector_predicate_op_emulation(sopc, num_elem, type); 270 271 if (!is_supported) { 272 non_product_log_if_needed("Rejected vector mask predicate using (%s,%s,%d) because architecture does not support it", 273 NodeClassNames[sopc], type2name(type), num_elem); 274 return false; 275 } 276 } 277 278 return true; 279 } 280 281 static bool is_klass_initialized(const TypeInstPtr* vec_klass) { 282 if (vec_klass->const_oop() == nullptr) { 283 return false; // uninitialized or some kind of unsafe access 284 } 285 assert(vec_klass->const_oop()->as_instance()->java_lang_Class_klass() != nullptr, "klass instance expected"); 286 ciInstanceKlass* klass = vec_klass->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 287 return klass->is_initialized(); 288 } 289 290 // public static 291 // <V extends Vector<E>, 292 // M extends VectorMask<E>, 293 // E> 294 // V unaryOp(int oprId, Class<? extends V> vmClass, Class<? extends M> maskClass, Class<E> elementType, 295 // int length, V v, M m, 296 // UnaryOperation<V, M> defaultImpl) 297 // 298 // public static 299 // <V, 300 // M extends VectorMask<E>, 301 // E> 302 // V binaryOp(int oprId, Class<? extends V> vmClass, Class<? extends M> maskClass, Class<E> elementType, 303 // int length, V v1, V v2, M m, 304 // BinaryOperation<V, M> defaultImpl) 305 // 306 // public static 307 // <V extends Vector<E>, 308 // M extends VectorMask<E>, 309 // E> 310 // V ternaryOp(int oprId, Class<? extends V> vmClass, Class<? extends M> maskClass, Class<E> elementType, 311 // int length, V v1, V v2, V v3, M m, 312 // TernaryOperation<V, M> defaultImpl) 313 // 314 bool LibraryCallKit::inline_vector_nary_operation(int n) { 315 const TypeInt* opr = gvn().type(argument(0))->isa_int(); 316 const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr(); 317 const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr(); 318 const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); 319 const TypeInt* vlen = gvn().type(argument(4))->isa_int(); 320 321 if (opr == nullptr || !opr->is_con() || 322 vector_klass == nullptr || vector_klass->const_oop() == nullptr || 323 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 324 vlen == nullptr || !vlen->is_con()) { 325 log_if_needed(" ** missing constant: opr=%s vclass=%s etype=%s vlen=%s", 326 NodeClassNames[argument(0)->Opcode()], 327 NodeClassNames[argument(1)->Opcode()], 328 NodeClassNames[argument(3)->Opcode()], 329 NodeClassNames[argument(4)->Opcode()]); 330 return false; // not enough info for intrinsification 331 } 332 333 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 334 if (!elem_type->is_primitive_type()) { 335 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 336 return false; // should be primitive type 337 } 338 if (!is_klass_initialized(vector_klass)) { 339 log_if_needed(" ** klass argument not initialized"); 340 return false; 341 } 342 343 // "argument(n + 5)" should be the mask object. We assume it is "null" when no mask 344 // is used to control this operation. 345 const Type* vmask_type = gvn().type(argument(n + 5)); 346 bool is_masked_op = vmask_type != TypePtr::NULL_PTR; 347 if (is_masked_op) { 348 if (mask_klass == nullptr || mask_klass->const_oop() == nullptr) { 349 log_if_needed(" ** missing constant: maskclass=%s", NodeClassNames[argument(2)->Opcode()]); 350 return false; // not enough info for intrinsification 351 } 352 353 if (!is_klass_initialized(mask_klass)) { 354 log_if_needed(" ** mask klass argument not initialized"); 355 return false; 356 } 357 358 if (vmask_type->maybe_null()) { 359 log_if_needed(" ** null mask values are not allowed for masked op"); 360 return false; 361 } 362 } 363 364 BasicType elem_bt = elem_type->basic_type(); 365 bool has_scalar_op = VectorSupport::has_scalar_op(opr->get_con()); 366 bool is_unsigned = VectorSupport::is_unsigned_op(opr->get_con()); 367 368 int num_elem = vlen->get_con(); 369 int opc = VectorSupport::vop2ideal(opr->get_con(), elem_bt); 370 int sopc = has_scalar_op ? VectorNode::opcode(opc, elem_bt) : opc; 371 if (sopc == 0 || num_elem == 1) { 372 log_if_needed(" ** operation not supported: arity=%d opc=%s[%d] vlen=%d etype=%s", 373 n, NodeClassNames[opc], opc, num_elem, type2name(elem_bt)); 374 return false; // operation not supported 375 } 376 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 377 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 378 379 if (is_vector_mask(vbox_klass)) { 380 assert(!is_masked_op, "mask operations do not need mask to control"); 381 } 382 383 // When using mask, mask use type needs to be VecMaskUseLoad. 384 VectorMaskUseType mask_use_type = is_vector_mask(vbox_klass) ? VecMaskUseAll 385 : is_masked_op ? VecMaskUseLoad : VecMaskNotUsed; 386 if (!arch_supports_vector(sopc, num_elem, elem_bt, mask_use_type)) { 387 log_if_needed(" ** not supported: arity=%d opc=%d vlen=%d etype=%s ismask=%d is_masked_op=%d", 388 n, sopc, num_elem, type2name(elem_bt), 389 is_vector_mask(vbox_klass) ? 1 : 0, is_masked_op ? 1 : 0); 390 return false; // not supported 391 } 392 393 // Return true if current platform has implemented the masked operation with predicate feature. 394 bool use_predicate = is_masked_op && arch_supports_vector(sopc, num_elem, elem_bt, VecMaskUsePred); 395 if (is_masked_op && !use_predicate && !arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad)) { 396 log_if_needed(" ** not supported: arity=%d opc=%d vlen=%d etype=%s ismask=0 is_masked_op=1", 397 n, sopc, num_elem, type2name(elem_bt)); 398 return false; 399 } 400 401 Node* opd1 = nullptr; Node* opd2 = nullptr; Node* opd3 = nullptr; 402 switch (n) { 403 case 3: { 404 opd3 = unbox_vector(argument(7), vbox_type, elem_bt, num_elem); 405 if (opd3 == nullptr) { 406 log_if_needed(" ** unbox failed v3=%s", 407 NodeClassNames[argument(7)->Opcode()]); 408 return false; 409 } 410 // fall-through 411 } 412 case 2: { 413 opd2 = unbox_vector(argument(6), vbox_type, elem_bt, num_elem); 414 if (opd2 == nullptr) { 415 log_if_needed(" ** unbox failed v2=%s", 416 NodeClassNames[argument(6)->Opcode()]); 417 return false; 418 } 419 // fall-through 420 } 421 case 1: { 422 opd1 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); 423 if (opd1 == nullptr) { 424 log_if_needed(" ** unbox failed v1=%s", 425 NodeClassNames[argument(5)->Opcode()]); 426 return false; 427 } 428 break; 429 } 430 default: fatal("unsupported arity: %d", n); 431 } 432 433 Node* mask = nullptr; 434 if (is_masked_op) { 435 ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); 436 assert(is_vector_mask(mbox_klass), "argument(2) should be a mask class"); 437 const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); 438 mask = unbox_vector(argument(n + 5), mbox_type, elem_bt, num_elem); 439 if (mask == nullptr) { 440 log_if_needed(" ** unbox failed mask=%s", 441 NodeClassNames[argument(n + 5)->Opcode()]); 442 return false; 443 } 444 } 445 446 Node* operation = nullptr; 447 const TypeVect* vt = TypeVect::make(elem_bt, num_elem, is_vector_mask(vbox_klass)); 448 switch (n) { 449 case 1: 450 case 2: { 451 operation = VectorNode::make(sopc, opd1, opd2, vt, is_vector_mask(vbox_klass), VectorNode::is_shift_opcode(opc), is_unsigned); 452 break; 453 } 454 case 3: { 455 operation = VectorNode::make(sopc, opd1, opd2, opd3, vt); 456 break; 457 } 458 default: fatal("unsupported arity: %d", n); 459 } 460 461 if (is_masked_op && mask != nullptr) { 462 if (use_predicate) { 463 operation->add_req(mask); 464 operation->add_flag(Node::Flag_is_predicated_vector); 465 } else { 466 operation->add_flag(Node::Flag_is_predicated_using_blend); 467 operation = gvn().transform(operation); 468 operation = new VectorBlendNode(opd1, operation, mask); 469 } 470 } 471 operation = gvn().transform(operation); 472 473 // Wrap it up in VectorBox to keep object type information. 474 Node* vbox = box_vector(operation, vbox_type, elem_bt, num_elem); 475 set_result(vbox); 476 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 477 return true; 478 } 479 480 // public static 481 // <V extends Vector<E>, E> 482 // V libraryUnaryOp(long address, Class<? extends V> vClass, Class<E> elementType, int length, String debugName, 483 // V v, 484 // UnaryOperation<V, ?> defaultImpl) 485 // 486 // public static 487 // <V extends VectorPayload, E> 488 // V libraryBinaryOp(long address, Class<? extends V> vClass, Class<E> elementType, int length, String debugName, 489 // V v1, V v2, 490 // BinaryOperation<V, ?> defaultImpl) 491 bool LibraryCallKit::inline_vector_call(int arity) { 492 assert(Matcher::supports_vector_calling_convention(), "required"); 493 494 const TypeLong* entry = gvn().type(argument(0))->isa_long(); 495 const TypeInstPtr* vector_klass = gvn().type(argument(2))->isa_instptr(); 496 const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); 497 const TypeInt* vlen = gvn().type(argument(4))->isa_int(); 498 const TypeInstPtr* debug_name_oop = gvn().type(argument(5))->isa_instptr(); 499 500 if (entry == nullptr || !entry->is_con() || 501 vector_klass == nullptr || vector_klass->const_oop() == nullptr || 502 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 503 vlen == nullptr || !vlen->is_con() || 504 debug_name_oop == nullptr || debug_name_oop->const_oop() == nullptr) { 505 log_if_needed(" ** missing constant: opr=%s vclass=%s etype=%s vlen=%s debug_name=%s", 506 NodeClassNames[argument(0)->Opcode()], 507 NodeClassNames[argument(2)->Opcode()], 508 NodeClassNames[argument(3)->Opcode()], 509 NodeClassNames[argument(4)->Opcode()], 510 NodeClassNames[argument(5)->Opcode()]); 511 return false; // not enough info for intrinsification 512 } 513 514 if (entry->get_con() == 0) { 515 log_if_needed(" ** missing entry point"); 516 return false; 517 } 518 519 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 520 if (!elem_type->is_primitive_type()) { 521 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 522 return false; // should be primitive type 523 } 524 if (!is_klass_initialized(vector_klass)) { 525 log_if_needed(" ** klass argument not initialized"); 526 return false; 527 } 528 529 BasicType elem_bt = elem_type->basic_type(); 530 int num_elem = vlen->get_con(); 531 if (!Matcher::vector_size_supported(elem_bt, num_elem)) { 532 log_if_needed(" ** vector size (vlen=%d, etype=%s) is not supported", 533 num_elem, type2name(elem_bt)); 534 return false; 535 } 536 537 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 538 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 539 540 Node* opd1 = unbox_vector(argument(6), vbox_type, elem_bt, num_elem); 541 if (opd1 == nullptr) { 542 log_if_needed(" ** unbox failed v1=%s", NodeClassNames[argument(6)->Opcode()]); 543 return false; 544 } 545 546 Node* opd2 = nullptr; 547 if (arity > 1) { 548 opd2 = unbox_vector(argument(7), vbox_type, elem_bt, num_elem); 549 if (opd2 == nullptr) { 550 log_if_needed(" ** unbox failed v2=%s", NodeClassNames[argument(7)->Opcode()]); 551 return false; 552 } 553 } 554 assert(arity == 1 || arity == 2, "arity %d not supported", arity); 555 const TypeVect* vt = TypeVect::make(elem_bt, num_elem); 556 const TypeFunc* call_type = OptoRuntime::Math_Vector_Vector_Type(arity, vt, vt); 557 address entry_addr = (address)entry->get_con(); 558 559 const char* debug_name = "<unknown>"; 560 if (!debug_name_oop->const_oop()->is_null_object()) { 561 size_t buflen = 100; 562 char* buf = NEW_ARENA_ARRAY(C->comp_arena(), char, buflen); 563 debug_name = debug_name_oop->const_oop()->as_instance()->java_lang_String_str(buf, buflen); 564 } 565 Node* vcall = make_runtime_call(RC_VECTOR, 566 call_type, 567 entry_addr, 568 debug_name, 569 TypePtr::BOTTOM, 570 opd1, 571 opd2); 572 573 vcall = gvn().transform(new ProjNode(gvn().transform(vcall), TypeFunc::Parms)); 574 575 // Wrap it up in VectorBox to keep object type information. 576 Node* vbox = box_vector(vcall, vbox_type, elem_bt, num_elem); 577 set_result(vbox); 578 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 579 return true; 580 } 581 582 // <E, M> 583 // long maskReductionCoerced(int oper, Class<? extends M> maskClass, Class<?> elemClass, 584 // int length, M m, VectorMaskOp<M> defaultImpl) 585 bool LibraryCallKit::inline_vector_mask_operation() { 586 const TypeInt* oper = gvn().type(argument(0))->isa_int(); 587 const TypeInstPtr* mask_klass = gvn().type(argument(1))->isa_instptr(); 588 const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr(); 589 const TypeInt* vlen = gvn().type(argument(3))->isa_int(); 590 Node* mask = argument(4); 591 592 if (mask_klass == nullptr || mask_klass->const_oop() == nullptr || 593 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 594 vlen == nullptr || !vlen->is_con() || 595 oper == nullptr || !oper->is_con() || 596 mask->is_top()) { 597 return false; // dead code 598 } 599 600 if (!is_klass_initialized(mask_klass)) { 601 log_if_needed(" ** klass argument not initialized"); 602 return false; 603 } 604 605 int num_elem = vlen->get_con(); 606 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 607 BasicType elem_bt = elem_type->basic_type(); 608 609 int mopc = VectorSupport::vop2ideal(oper->get_con(), elem_bt); 610 if (!arch_supports_vector(mopc, num_elem, elem_bt, VecMaskUseLoad)) { 611 log_if_needed(" ** not supported: arity=1 op=cast#%d/3 vlen2=%d etype2=%s", 612 mopc, num_elem, type2name(elem_bt)); 613 return false; // not supported 614 } 615 616 ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); 617 const TypeInstPtr* mask_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); 618 Node* mask_vec = unbox_vector(mask, mask_box_type, elem_bt, num_elem); 619 if (mask_vec == nullptr) { 620 log_if_needed(" ** unbox failed mask=%s", 621 NodeClassNames[argument(4)->Opcode()]); 622 return false; 623 } 624 625 if (mask_vec->bottom_type()->isa_vectmask() == nullptr) { 626 mask_vec = gvn().transform(VectorStoreMaskNode::make(gvn(), mask_vec, elem_bt, num_elem)); 627 } 628 const Type* maskoper_ty = mopc == Op_VectorMaskToLong ? (const Type*)TypeLong::LONG : (const Type*)TypeInt::INT; 629 Node* maskoper = gvn().transform(VectorMaskOpNode::make(mask_vec, maskoper_ty, mopc)); 630 if (mopc != Op_VectorMaskToLong) { 631 maskoper = ConvI2L(maskoper); 632 } 633 set_result(maskoper); 634 635 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 636 return true; 637 } 638 639 // public static 640 // <M, 641 // S extends VectorSpecies<E>, 642 // E> 643 // M fromBitsCoerced(Class<? extends M> vmClass, Class<E> elementType, int length, 644 // long bits, int mode, S s, 645 // BroadcastOperation<M, E, S> defaultImpl) 646 bool LibraryCallKit::inline_vector_frombits_coerced() { 647 const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); 648 const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); 649 const TypeInt* vlen = gvn().type(argument(2))->isa_int(); 650 const TypeLong* bits_type = gvn().type(argument(3))->isa_long(); 651 // Mode argument determines the mode of operation it can take following values:- 652 // MODE_BROADCAST for vector Vector.broadcast and VectorMask.maskAll operations. 653 // MODE_BITS_COERCED_LONG_TO_MASK for VectorMask.fromLong operation. 654 const TypeInt* mode = gvn().type(argument(5))->isa_int(); 655 656 if (vector_klass == nullptr || vector_klass->const_oop() == nullptr || 657 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 658 vlen == nullptr || !vlen->is_con() || 659 bits_type == nullptr || 660 mode == nullptr || !mode->is_con()) { 661 log_if_needed(" ** missing constant: vclass=%s etype=%s vlen=%s bitwise=%s", 662 NodeClassNames[argument(0)->Opcode()], 663 NodeClassNames[argument(1)->Opcode()], 664 NodeClassNames[argument(2)->Opcode()], 665 NodeClassNames[argument(5)->Opcode()]); 666 return false; // not enough info for intrinsification 667 } 668 669 if (!is_klass_initialized(vector_klass)) { 670 log_if_needed(" ** klass argument not initialized"); 671 return false; 672 } 673 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 674 if (!elem_type->is_primitive_type()) { 675 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 676 return false; // should be primitive type 677 } 678 BasicType elem_bt = elem_type->basic_type(); 679 int num_elem = vlen->get_con(); 680 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 681 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 682 683 bool is_mask = is_vector_mask(vbox_klass); 684 int bcast_mode = mode->get_con(); 685 VectorMaskUseType checkFlags = (VectorMaskUseType)(is_mask ? VecMaskUseAll : VecMaskNotUsed); 686 int opc = bcast_mode == VectorSupport::MODE_BITS_COERCED_LONG_TO_MASK ? Op_VectorLongToMask : Op_Replicate; 687 688 if (!arch_supports_vector(opc, num_elem, elem_bt, checkFlags, true /*has_scalar_args*/)) { 689 // If the input long sets or unsets all lanes and Replicate is supported, 690 // generate a MaskAll or Replicate instead. 691 692 // The "maskAll" API uses the corresponding integer types for floating-point data. 693 BasicType maskall_bt = elem_bt == T_DOUBLE ? T_LONG : (elem_bt == T_FLOAT ? T_INT: elem_bt); 694 if (!(opc == Op_VectorLongToMask && 695 VectorNode::is_maskall_type(bits_type, num_elem) && 696 arch_supports_vector(Op_Replicate, num_elem, maskall_bt, checkFlags, true /*has_scalar_args*/))) { 697 log_if_needed(" ** not supported: arity=0 op=broadcast vlen=%d etype=%s ismask=%d bcast_mode=%d", 698 num_elem, type2name(elem_bt), 699 is_mask ? 1 : 0, 700 bcast_mode); 701 return false; // not supported 702 } 703 } 704 705 Node* broadcast = nullptr; 706 Node* bits = argument(3); 707 Node* elem = bits; 708 709 if (opc == Op_VectorLongToMask) { 710 const TypeVect* vt = TypeVect::makemask(elem_bt, num_elem); 711 if (vt->isa_vectmask()) { 712 broadcast = gvn().transform(new VectorLongToMaskNode(elem, vt)); 713 } else { 714 const TypeVect* mvt = TypeVect::make(T_BOOLEAN, num_elem); 715 broadcast = gvn().transform(new VectorLongToMaskNode(elem, mvt)); 716 broadcast = gvn().transform(new VectorLoadMaskNode(broadcast, vt)); 717 } 718 } else { 719 switch (elem_bt) { 720 case T_BOOLEAN: // fall-through 721 case T_BYTE: // fall-through 722 case T_SHORT: // fall-through 723 case T_CHAR: // fall-through 724 case T_INT: { 725 elem = gvn().transform(new ConvL2INode(bits)); 726 break; 727 } 728 case T_DOUBLE: { 729 elem = gvn().transform(new MoveL2DNode(bits)); 730 break; 731 } 732 case T_FLOAT: { 733 bits = gvn().transform(new ConvL2INode(bits)); 734 elem = gvn().transform(new MoveI2FNode(bits)); 735 break; 736 } 737 case T_LONG: { 738 // no conversion needed 739 break; 740 } 741 default: fatal("%s", type2name(elem_bt)); 742 } 743 broadcast = VectorNode::scalar2vector(elem, num_elem, elem_bt, is_mask); 744 broadcast = gvn().transform(broadcast); 745 } 746 747 Node* box = box_vector(broadcast, vbox_type, elem_bt, num_elem); 748 set_result(box); 749 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 750 return true; 751 } 752 753 static bool elem_consistent_with_arr(BasicType elem_bt, const TypeAryPtr* arr_type, bool mismatched_ms) { 754 assert(arr_type != nullptr, "unexpected"); 755 BasicType arr_elem_bt = arr_type->elem()->array_element_basic_type(); 756 if (elem_bt == arr_elem_bt) { 757 return true; 758 } else if (elem_bt == T_SHORT && arr_elem_bt == T_CHAR) { 759 // Load/store of short vector from/to char[] is supported 760 return true; 761 } else if (elem_bt == T_BYTE && arr_elem_bt == T_BOOLEAN) { 762 // Load/store of byte vector from/to boolean[] is supported 763 return true; 764 } else { 765 return mismatched_ms; 766 } 767 } 768 769 // public static 770 // <C, 771 // VM extends VectorPayload, 772 // E, 773 // S extends VectorSpecies<E>> 774 // VM load(Class<? extends VM> vmClass, Class<E> eClass, 775 // int length, 776 // Object base, long offset, // Unsafe addressing 777 // boolean fromSegment, 778 // C container, long index, S s, // Arguments for default implementation 779 // LoadOperation<C, VM, S> defaultImpl) { 780 // public static 781 // <C, 782 // V extends VectorPayload> 783 // void store(Class<?> vClass, Class<?> eClass, 784 // int length, 785 // Object base, long offset, // Unsafe addressing 786 // boolean fromSegment, 787 // V v, C container, long index, // Arguments for default implementation 788 // StoreVectorOperation<C, V> defaultImpl) { 789 bool LibraryCallKit::inline_vector_mem_operation(bool is_store) { 790 const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); 791 const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); 792 const TypeInt* vlen = gvn().type(argument(2))->isa_int(); 793 const TypeInt* from_ms = gvn().type(argument(6))->isa_int(); 794 795 if (vector_klass == nullptr || vector_klass->const_oop() == nullptr || 796 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 797 vlen == nullptr || !vlen->is_con() || 798 from_ms == nullptr || !from_ms->is_con()) { 799 log_if_needed(" ** missing constant: vclass=%s etype=%s vlen=%s from_ms=%s", 800 NodeClassNames[argument(0)->Opcode()], 801 NodeClassNames[argument(1)->Opcode()], 802 NodeClassNames[argument(2)->Opcode()], 803 NodeClassNames[argument(6)->Opcode()]); 804 return false; // not enough info for intrinsification 805 } 806 if (!is_klass_initialized(vector_klass)) { 807 log_if_needed(" ** klass argument not initialized"); 808 return false; 809 } 810 811 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 812 if (!elem_type->is_primitive_type()) { 813 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 814 return false; // should be primitive type 815 } 816 BasicType elem_bt = elem_type->basic_type(); 817 int num_elem = vlen->get_con(); 818 819 // TODO When mask usage is supported, VecMaskNotUsed needs to be VecMaskUseLoad. 820 if (!arch_supports_vector(is_store ? Op_StoreVector : Op_LoadVector, num_elem, elem_bt, VecMaskNotUsed)) { 821 log_if_needed(" ** not supported: arity=%d op=%s vlen=%d etype=%s ismask=no", 822 is_store, is_store ? "store" : "load", 823 num_elem, type2name(elem_bt)); 824 return false; // not supported 825 } 826 827 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 828 bool is_mask = is_vector_mask(vbox_klass); 829 830 Node* base = argument(3); 831 Node* offset = ConvL2X(argument(4)); 832 833 // Save state and restore on bailout 834 SavedState old_state(this); 835 836 Node* addr = make_unsafe_address(base, offset, (is_mask ? T_BOOLEAN : elem_bt), true); 837 838 // The memory barrier checks are based on ones for unsafe access. 839 // This is not 1-1 implementation. 840 const Type *const base_type = gvn().type(base); 841 842 const TypePtr *addr_type = gvn().type(addr)->isa_ptr(); 843 const TypeAryPtr* arr_type = addr_type->isa_aryptr(); 844 845 const bool in_native = TypePtr::NULL_PTR == base_type; // base always null 846 const bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_type); // base never null 847 848 const bool is_mixed_access = !in_heap && !in_native; 849 850 const bool is_mismatched_access = in_heap && (addr_type->isa_aryptr() == nullptr); 851 852 const bool needs_cpu_membar = is_mixed_access || is_mismatched_access; 853 854 // For non-masked mismatched memory segment vector read/write accesses, intrinsification can continue 855 // with unknown backing storage type and compiler can skip inserting explicit reinterpretation IR after 856 // loading from or before storing to backing storage which is mandatory for semantic correctness of 857 // big-endian memory layout. 858 bool mismatched_ms = LITTLE_ENDIAN_ONLY(false) 859 BIG_ENDIAN_ONLY(from_ms->get_con() && !is_mask && arr_type != nullptr && 860 arr_type->elem()->array_element_basic_type() != elem_bt); 861 BasicType mem_elem_bt = mismatched_ms ? arr_type->elem()->array_element_basic_type() : elem_bt; 862 if (!is_java_primitive(mem_elem_bt)) { 863 log_if_needed(" ** non-primitive array element type"); 864 return false; 865 } 866 int mem_num_elem = mismatched_ms ? (num_elem * type2aelembytes(elem_bt)) / type2aelembytes(mem_elem_bt) : num_elem; 867 if (arr_type != nullptr && !is_mask && !elem_consistent_with_arr(elem_bt, arr_type, mismatched_ms)) { 868 log_if_needed(" ** not supported: arity=%d op=%s vlen=%d etype=%s atype=%s ismask=no", 869 is_store, is_store ? "store" : "load", 870 num_elem, type2name(elem_bt), type2name(arr_type->elem()->array_element_basic_type())); 871 return false; 872 } 873 874 // In case of mismatched memory segment accesses, we need to double check that the source type memory operations are supported by backend. 875 if (mismatched_ms) { 876 if (is_store) { 877 if (!arch_supports_vector(Op_StoreVector, num_elem, elem_bt, VecMaskNotUsed) 878 || !arch_supports_vector(Op_VectorReinterpret, mem_num_elem, mem_elem_bt, VecMaskNotUsed)) { 879 log_if_needed(" ** not supported: arity=%d op=%s vlen=%d*8 etype=%s/8 ismask=no", 880 is_store, "store", 881 num_elem, type2name(elem_bt)); 882 return false; // not supported 883 } 884 } else { 885 if (!arch_supports_vector(Op_LoadVector, mem_num_elem, mem_elem_bt, VecMaskNotUsed) 886 || !arch_supports_vector(Op_VectorReinterpret, num_elem, elem_bt, VecMaskNotUsed)) { 887 log_if_needed(" ** not supported: arity=%d op=%s vlen=%d*8 etype=%s/8 ismask=no", 888 is_store, "load", 889 mem_num_elem, type2name(mem_elem_bt)); 890 return false; // not supported 891 } 892 } 893 } 894 if (is_mask) { 895 if (!is_store) { 896 if (!arch_supports_vector(Op_LoadVector, num_elem, elem_bt, VecMaskUseLoad)) { 897 return false; // not supported 898 } 899 } else { 900 if (!arch_supports_vector(Op_StoreVector, num_elem, elem_bt, VecMaskUseStore)) { 901 return false; // not supported 902 } 903 } 904 } 905 906 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 907 908 if (needs_cpu_membar) { 909 insert_mem_bar(Op_MemBarCPUOrder); 910 } 911 912 if (is_store) { 913 Node* val = unbox_vector(argument(7), vbox_type, elem_bt, num_elem); 914 if (val == nullptr) { 915 return false; // operand unboxing failed 916 } 917 set_all_memory(reset_memory()); 918 919 // In case the store needs to happen to byte array, reinterpret the incoming vector to byte vector. 920 int store_num_elem = num_elem; 921 if (mismatched_ms) { 922 store_num_elem = mem_num_elem; 923 const TypeVect* to_vect_type = TypeVect::make(mem_elem_bt, store_num_elem); 924 val = gvn().transform(new VectorReinterpretNode(val, val->bottom_type()->is_vect(), to_vect_type)); 925 } 926 if (is_mask) { 927 val = gvn().transform(VectorStoreMaskNode::make(gvn(), val, elem_bt, num_elem)); 928 } 929 Node* vstore = gvn().transform(StoreVectorNode::make(0, control(), memory(addr), addr, addr_type, val, store_num_elem)); 930 set_memory(vstore, addr_type); 931 } else { 932 // When using byte array, we need to load as byte then reinterpret the value. Otherwise, do a simple vector load. 933 Node* vload = nullptr; 934 if (mismatched_ms) { 935 vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, mem_num_elem, mem_elem_bt)); 936 const TypeVect* to_vect_type = TypeVect::make(elem_bt, num_elem); 937 vload = gvn().transform(new VectorReinterpretNode(vload, vload->bottom_type()->is_vect(), to_vect_type)); 938 } else { 939 // Special handle for masks 940 if (is_mask) { 941 vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, num_elem, T_BOOLEAN)); 942 vload = gvn().transform(new VectorLoadMaskNode(vload, TypeVect::makemask(elem_bt, num_elem))); 943 } else { 944 vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, num_elem, elem_bt)); 945 } 946 } 947 Node* box = box_vector(vload, vbox_type, elem_bt, num_elem); 948 set_result(box); 949 } 950 951 old_state.discard(); 952 953 if (needs_cpu_membar) { 954 insert_mem_bar(Op_MemBarCPUOrder); 955 } 956 957 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 958 return true; 959 } 960 961 // public static 962 // <C, 963 // V extends Vector<?>, 964 // E, 965 // S extends VectorSpecies<E>, 966 // M extends VectorMask<E>> 967 // V loadMasked(Class<? extends V> vClass, Class<M> mClass, Class<E> eClass, 968 // int length, Object base, long offset, // Unsafe addressing 969 // boolean fromSegment, 970 // M m, int offsetInRange, 971 // C container, long index, S s, // Arguments for default implementation 972 // LoadVectorMaskedOperation<C, V, S, M> defaultImpl) { 973 // public static 974 // <C, 975 // V extends Vector<E>, 976 // M extends VectorMask<E>, 977 // E> 978 // void storeMasked(Class<? extends V> vClass, Class<M> mClass, Class<E> eClass, 979 // int length, 980 // Object base, long offset, // Unsafe addressing 981 // boolean fromSegment, 982 // V v, M m, C container, long index, // Arguments for default implementation 983 // StoreVectorMaskedOperation<C, V, M> defaultImpl) { 984 985 bool LibraryCallKit::inline_vector_mem_masked_operation(bool is_store) { 986 const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); 987 const TypeInstPtr* mask_klass = gvn().type(argument(1))->isa_instptr(); 988 const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr(); 989 const TypeInt* vlen = gvn().type(argument(3))->isa_int(); 990 const TypeInt* from_ms = gvn().type(argument(7))->isa_int(); 991 992 if (vector_klass == nullptr || vector_klass->const_oop() == nullptr || 993 mask_klass == nullptr || mask_klass->const_oop() == nullptr || 994 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 995 vlen == nullptr || !vlen->is_con() || 996 from_ms == nullptr || !from_ms->is_con()) { 997 log_if_needed(" ** missing constant: vclass=%s mclass=%s etype=%s vlen=%s from_ms=%s", 998 NodeClassNames[argument(0)->Opcode()], 999 NodeClassNames[argument(1)->Opcode()], 1000 NodeClassNames[argument(2)->Opcode()], 1001 NodeClassNames[argument(3)->Opcode()], 1002 NodeClassNames[argument(7)->Opcode()]); 1003 return false; // not enough info for intrinsification 1004 } 1005 if (!is_klass_initialized(vector_klass)) { 1006 log_if_needed(" ** klass argument not initialized"); 1007 return false; 1008 } 1009 1010 if (!is_klass_initialized(mask_klass)) { 1011 log_if_needed(" ** mask klass argument not initialized"); 1012 return false; 1013 } 1014 1015 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 1016 if (!elem_type->is_primitive_type()) { 1017 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 1018 return false; // should be primitive type 1019 } 1020 1021 BasicType elem_bt = elem_type->basic_type(); 1022 int num_elem = vlen->get_con(); 1023 1024 Node* base = argument(4); 1025 Node* offset = ConvL2X(argument(5)); 1026 1027 // Save state and restore on bailout 1028 SavedState old_state(this); 1029 1030 Node* addr = make_unsafe_address(base, offset, elem_bt, true); 1031 const TypePtr *addr_type = gvn().type(addr)->isa_ptr(); 1032 const TypeAryPtr* arr_type = addr_type->isa_aryptr(); 1033 1034 bool mismatched_ms = from_ms->get_con() && arr_type != nullptr && arr_type->elem()->array_element_basic_type() != elem_bt; 1035 BIG_ENDIAN_ONLY(if (mismatched_ms) return false;) 1036 // If there is no consistency between array and vector element types, it must be special byte array case 1037 if (arr_type != nullptr && !elem_consistent_with_arr(elem_bt, arr_type, mismatched_ms)) { 1038 log_if_needed(" ** not supported: arity=%d op=%s vlen=%d etype=%s atype=%s", 1039 is_store, is_store ? "storeMasked" : "loadMasked", 1040 num_elem, type2name(elem_bt), type2name(arr_type->elem()->array_element_basic_type())); 1041 return false; 1042 } 1043 1044 int mem_num_elem = mismatched_ms ? num_elem * type2aelembytes(elem_bt) : num_elem; 1045 BasicType mem_elem_bt = mismatched_ms ? T_BYTE : elem_bt; 1046 bool supports_predicate = arch_supports_vector(is_store ? Op_StoreVectorMasked : Op_LoadVectorMasked, 1047 mem_num_elem, mem_elem_bt, VecMaskUseLoad); 1048 1049 // If current arch does not support the predicated operations, we have to bail 1050 // out when current case uses the predicate feature. 1051 if (!supports_predicate) { 1052 bool needs_predicate = false; 1053 if (is_store) { 1054 // Masked vector store always uses the predicated store. 1055 needs_predicate = true; 1056 } else { 1057 // Masked vector load with IOOBE always uses the predicated load. 1058 const TypeInt* offset_in_range = gvn().type(argument(9))->isa_int(); 1059 if (!offset_in_range->is_con()) { 1060 log_if_needed(" ** missing constant: offsetInRange=%s", 1061 NodeClassNames[argument(8)->Opcode()]); 1062 return false; 1063 } 1064 needs_predicate = (offset_in_range->get_con() == 0); 1065 } 1066 1067 if (needs_predicate) { 1068 log_if_needed(" ** not supported: op=%s vlen=%d etype=%s mismatched_ms=%d", 1069 is_store ? "storeMasked" : "loadMasked", 1070 num_elem, type2name(elem_bt), mismatched_ms ? 1 : 0); 1071 return false; 1072 } 1073 } 1074 1075 // This only happens for masked vector load. If predicate is not supported, then check whether 1076 // the normal vector load and blend operations are supported by backend. 1077 if (!supports_predicate && (!arch_supports_vector(Op_LoadVector, mem_num_elem, mem_elem_bt, VecMaskNotUsed) || 1078 !arch_supports_vector(Op_VectorBlend, mem_num_elem, mem_elem_bt, VecMaskUseLoad))) { 1079 log_if_needed(" ** not supported: op=loadMasked vlen=%d etype=%s mismatched_ms=%d", 1080 num_elem, type2name(elem_bt), mismatched_ms ? 1 : 0); 1081 return false; 1082 } 1083 1084 // Since we are using byte array, we need to double check that the vector reinterpret operation 1085 // with byte type is supported by backend. 1086 if (mismatched_ms) { 1087 if (!arch_supports_vector(Op_VectorReinterpret, mem_num_elem, T_BYTE, VecMaskNotUsed)) { 1088 log_if_needed(" ** not supported: arity=%d op=%s vlen=%d etype=%s mismatched_ms=1", 1089 is_store, is_store ? "storeMasked" : "loadMasked", 1090 num_elem, type2name(elem_bt)); 1091 return false; 1092 } 1093 } 1094 1095 // Since it needs to unbox the mask, we need to double check that the related load operations 1096 // for mask are supported by backend. 1097 if (!arch_supports_vector(Op_LoadVector, num_elem, elem_bt, VecMaskUseLoad)) { 1098 log_if_needed(" ** not supported: arity=%d op=%s vlen=%d etype=%s", 1099 is_store, is_store ? "storeMasked" : "loadMasked", 1100 num_elem, type2name(elem_bt)); 1101 return false; 1102 } 1103 1104 // Can base be null? Otherwise, always on-heap access. 1105 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(gvn().type(base)); 1106 if (can_access_non_heap) { 1107 insert_mem_bar(Op_MemBarCPUOrder); 1108 } 1109 1110 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1111 ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1112 assert(!is_vector_mask(vbox_klass) && is_vector_mask(mbox_klass), "Invalid class type"); 1113 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 1114 const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); 1115 1116 Node* mask = unbox_vector(is_store ? argument(9) : argument(8), mbox_type, elem_bt, num_elem); 1117 if (mask == nullptr) { 1118 log_if_needed(" ** unbox failed mask=%s", 1119 is_store ? NodeClassNames[argument(9)->Opcode()] 1120 : NodeClassNames[argument(8)->Opcode()]); 1121 return false; 1122 } 1123 1124 if (is_store) { 1125 Node* val = unbox_vector(argument(8), vbox_type, elem_bt, num_elem); 1126 if (val == nullptr) { 1127 log_if_needed(" ** unbox failed vector=%s", 1128 NodeClassNames[argument(8)->Opcode()]); 1129 return false; // operand unboxing failed 1130 } 1131 set_all_memory(reset_memory()); 1132 1133 if (mismatched_ms) { 1134 // Reinterpret the incoming vector to byte vector. 1135 const TypeVect* to_vect_type = TypeVect::make(mem_elem_bt, mem_num_elem); 1136 val = gvn().transform(new VectorReinterpretNode(val, val->bottom_type()->is_vect(), to_vect_type)); 1137 // Reinterpret the vector mask to byte type. 1138 const TypeVect* from_mask_type = TypeVect::makemask(elem_bt, num_elem); 1139 const TypeVect* to_mask_type = TypeVect::makemask(mem_elem_bt, mem_num_elem); 1140 mask = gvn().transform(new VectorReinterpretNode(mask, from_mask_type, to_mask_type)); 1141 } 1142 Node* vstore = gvn().transform(new StoreVectorMaskedNode(control(), memory(addr), addr, val, addr_type, mask)); 1143 set_memory(vstore, addr_type); 1144 } else { 1145 Node* vload = nullptr; 1146 1147 if (mismatched_ms) { 1148 // Reinterpret the vector mask to byte type. 1149 const TypeVect* from_mask_type = TypeVect::makemask(elem_bt, num_elem); 1150 const TypeVect* to_mask_type = TypeVect::makemask(mem_elem_bt, mem_num_elem); 1151 mask = gvn().transform(new VectorReinterpretNode(mask, from_mask_type, to_mask_type)); 1152 } 1153 1154 if (supports_predicate) { 1155 // Generate masked load vector node if predicate feature is supported. 1156 const TypeVect* vt = TypeVect::make(mem_elem_bt, mem_num_elem); 1157 vload = gvn().transform(new LoadVectorMaskedNode(control(), memory(addr), addr, addr_type, vt, mask)); 1158 } else { 1159 // Use the vector blend to implement the masked load vector. The biased elements are zeros. 1160 Node* zero = gvn().transform(gvn().zerocon(mem_elem_bt)); 1161 zero = gvn().transform(VectorNode::scalar2vector(zero, mem_num_elem, mem_elem_bt)); 1162 vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, mem_num_elem, mem_elem_bt)); 1163 vload = gvn().transform(new VectorBlendNode(zero, vload, mask)); 1164 } 1165 1166 if (mismatched_ms) { 1167 const TypeVect* to_vect_type = TypeVect::make(elem_bt, num_elem); 1168 vload = gvn().transform(new VectorReinterpretNode(vload, vload->bottom_type()->is_vect(), to_vect_type)); 1169 } 1170 1171 Node* box = box_vector(vload, vbox_type, elem_bt, num_elem); 1172 set_result(box); 1173 } 1174 1175 old_state.discard(); 1176 1177 if (can_access_non_heap) { 1178 insert_mem_bar(Op_MemBarCPUOrder); 1179 } 1180 1181 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 1182 return true; 1183 } 1184 1185 // 1186 // <C, 1187 // V extends Vector<?>, 1188 // W extends Vector<Integer>, 1189 // S extends VectorSpecies<E>, 1190 // M extends VectorMask<E>, 1191 // E> 1192 // V loadWithMap(Class<? extends V> vClass, Class<M> mClass, Class<E> eClass, int length, 1193 // Class<? extends Vector<Integer>> vectorIndexClass, int indexLength, 1194 // Object base, long offset, 1195 // W indexVector1, W indexVector2, W indexVector3, W indexVector4, 1196 // M m, C container, int index, int[] indexMap, int indexM, S s, 1197 // LoadVectorOperationWithMap<C, V, S, M> defaultImpl) 1198 // 1199 // <C, 1200 // V extends Vector<E>, 1201 // W extends Vector<Integer>, 1202 // M extends VectorMask<E>, 1203 // E> 1204 // void storeWithMap(Class<? extends V> vClass, Class<M> mClass, Class<E> eClass, int length, 1205 // Class<? extends Vector<Integer>> vectorIndexClass, int indexLength, 1206 // Object base, long offset, // Unsafe addressing 1207 // W indexVector, V v, M m, 1208 // C container, int index, int[] indexMap, int indexM, // Arguments for default implementation 1209 // StoreVectorOperationWithMap<C, V, M> defaultImpl) 1210 // 1211 bool LibraryCallKit::inline_vector_gather_scatter(bool is_scatter) { 1212 const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); 1213 const TypeInstPtr* mask_klass = gvn().type(argument(1))->isa_instptr(); 1214 const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr(); 1215 const TypeInt* vlen = gvn().type(argument(3))->isa_int(); 1216 const TypeInstPtr* vector_idx_klass = gvn().type(argument(4))->isa_instptr(); 1217 const TypeInt* idx_vlen = gvn().type(argument(5))->isa_int(); 1218 1219 if (vector_klass == nullptr || vector_klass->const_oop() == nullptr || 1220 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 1221 vlen == nullptr || !vlen->is_con() || 1222 vector_idx_klass == nullptr || vector_idx_klass->const_oop() == nullptr || 1223 idx_vlen == nullptr || !idx_vlen->is_con()) { 1224 log_if_needed(" ** missing constant: vclass=%s etype=%s vlen=%s viclass=%s idx_vlen=%s", 1225 NodeClassNames[argument(0)->Opcode()], 1226 NodeClassNames[argument(2)->Opcode()], 1227 NodeClassNames[argument(3)->Opcode()], 1228 NodeClassNames[argument(4)->Opcode()], 1229 NodeClassNames[argument(5)->Opcode()]); 1230 return false; // not enough info for intrinsification 1231 } 1232 1233 if (!is_klass_initialized(vector_klass) || !is_klass_initialized(vector_idx_klass)) { 1234 log_if_needed(" ** klass argument not initialized"); 1235 return false; 1236 } 1237 1238 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 1239 if (!elem_type->is_primitive_type()) { 1240 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 1241 return false; // should be primitive type 1242 } 1243 1244 BasicType elem_bt = elem_type->basic_type(); 1245 int num_elem = vlen->get_con(); 1246 int idx_num_elem = idx_vlen->get_con(); 1247 1248 Node* m = is_scatter ? argument(11) : argument(13); 1249 const Type* vmask_type = gvn().type(m); 1250 bool is_masked_op = vmask_type != TypePtr::NULL_PTR; 1251 if (is_masked_op) { 1252 if (mask_klass == nullptr || mask_klass->const_oop() == nullptr) { 1253 log_if_needed(" ** missing constant: maskclass=%s", NodeClassNames[argument(1)->Opcode()]); 1254 return false; // not enough info for intrinsification 1255 } 1256 1257 if (!is_klass_initialized(mask_klass)) { 1258 log_if_needed(" ** mask klass argument not initialized"); 1259 return false; 1260 } 1261 1262 if (vmask_type->maybe_null()) { 1263 log_if_needed(" ** null mask values are not allowed for masked op"); 1264 return false; 1265 } 1266 1267 // Check whether the predicated gather/scatter node is supported by architecture. 1268 VectorMaskUseType mask = (VectorMaskUseType) (VecMaskUseLoad | VecMaskUsePred); 1269 if (!arch_supports_vector(is_scatter ? Op_StoreVectorScatterMasked : Op_LoadVectorGatherMasked, num_elem, elem_bt, mask)) { 1270 log_if_needed(" ** not supported: arity=%d op=%s vlen=%d etype=%s is_masked_op=1", 1271 is_scatter, is_scatter ? "scatterMasked" : "gatherMasked", 1272 num_elem, type2name(elem_bt)); 1273 return false; // not supported 1274 } 1275 } else { 1276 // Check whether the normal gather/scatter node is supported for non-masked operation. 1277 if (!arch_supports_vector(is_scatter ? Op_StoreVectorScatter : Op_LoadVectorGather, num_elem, elem_bt, VecMaskNotUsed)) { 1278 log_if_needed(" ** not supported: arity=%d op=%s vlen=%d etype=%s is_masked_op=0", 1279 is_scatter, is_scatter ? "scatter" : "gather", 1280 num_elem, type2name(elem_bt)); 1281 return false; // not supported 1282 } 1283 } 1284 1285 // Check that the vector holding indices is supported by architecture 1286 // For sub-word gathers expander receive index array. 1287 if (!is_subword_type(elem_bt) && !arch_supports_vector(Op_LoadVector, idx_num_elem, T_INT, VecMaskNotUsed)) { 1288 log_if_needed(" ** not supported: arity=%d op=%s/loadindex vlen=%d etype=int is_masked_op=%d", 1289 is_scatter, is_scatter ? "scatter" : "gather", 1290 idx_num_elem, is_masked_op ? 1 : 0); 1291 return false; // not supported 1292 } 1293 1294 Node* base = argument(6); 1295 Node* offset = ConvL2X(argument(7)); 1296 1297 // Save state and restore on bailout 1298 SavedState old_state(this); 1299 1300 Node* addr = nullptr; 1301 if (!is_subword_type(elem_bt)) { 1302 addr = make_unsafe_address(base, offset, elem_bt, true); 1303 } else { 1304 assert(!is_scatter, "Only supports gather operation for subword types now"); 1305 uint header = arrayOopDesc::base_offset_in_bytes(elem_bt); 1306 assert(offset->is_Con() && offset->bottom_type()->is_long()->get_con() == header, 1307 "offset must be the array base offset"); 1308 Node* index = argument(15); 1309 addr = array_element_address(base, index, elem_bt); 1310 } 1311 1312 const TypePtr* addr_type = gvn().type(addr)->isa_ptr(); 1313 const TypeAryPtr* arr_type = addr_type->isa_aryptr(); 1314 1315 // The array must be consistent with vector type 1316 if (arr_type == nullptr || (arr_type != nullptr && !elem_consistent_with_arr(elem_bt, arr_type, false))) { 1317 log_if_needed(" ** not supported: arity=%d op=%s vlen=%d etype=%s atype=%s ismask=no", 1318 is_scatter, is_scatter ? "scatter" : "gather", 1319 num_elem, type2name(elem_bt), type2name(arr_type->elem()->array_element_basic_type())); 1320 return false; 1321 } 1322 1323 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1324 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 1325 ciKlass* vbox_idx_klass = vector_idx_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1326 if (vbox_idx_klass == nullptr) { 1327 return false; 1328 } 1329 1330 // Get the indexes for gather/scatter. 1331 Node* indexes = nullptr; 1332 const TypeInstPtr* vbox_idx_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_idx_klass); 1333 if (is_subword_type(elem_bt)) { 1334 Node* indexMap = argument(16); 1335 Node* indexM = argument(17); 1336 indexes = array_element_address(indexMap, indexM, T_INT); 1337 } else { 1338 // Get the first index vector. 1339 indexes = unbox_vector(argument(9), vbox_idx_type, T_INT, idx_num_elem); 1340 if (indexes == nullptr) { 1341 return false; 1342 } 1343 } 1344 1345 // Get the vector mask value. 1346 Node* mask = nullptr; 1347 if (is_masked_op) { 1348 ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1349 const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); 1350 mask = unbox_vector(m, mbox_type, elem_bt, num_elem); 1351 if (mask == nullptr) { 1352 log_if_needed(" ** unbox failed mask=%s", NodeClassNames[m->Opcode()]); 1353 return false; 1354 } 1355 } 1356 1357 const TypeVect* vector_type = TypeVect::make(elem_bt, num_elem); 1358 if (is_scatter) { 1359 Node* val = unbox_vector(argument(10), vbox_type, elem_bt, num_elem); 1360 if (val == nullptr) { 1361 return false; // operand unboxing failed 1362 } 1363 set_all_memory(reset_memory()); 1364 1365 Node* vstore = nullptr; 1366 if (mask != nullptr) { 1367 vstore = gvn().transform(new StoreVectorScatterMaskedNode(control(), memory(addr), addr, addr_type, val, indexes, mask)); 1368 } else { 1369 vstore = gvn().transform(new StoreVectorScatterNode(control(), memory(addr), addr, addr_type, val, indexes)); 1370 } 1371 set_memory(vstore, addr_type); 1372 } else { 1373 Node* vload = nullptr; 1374 if (mask != nullptr) { 1375 vload = gvn().transform(new LoadVectorGatherMaskedNode(control(), memory(addr), addr, addr_type, vector_type, indexes, mask)); 1376 } else { 1377 vload = gvn().transform(new LoadVectorGatherNode(control(), memory(addr), addr, addr_type, vector_type, indexes)); 1378 } 1379 Node* box = box_vector(vload, vbox_type, elem_bt, num_elem); 1380 set_result(box); 1381 } 1382 1383 old_state.discard(); 1384 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 1385 return true; 1386 } 1387 1388 // public static 1389 // <V extends Vector<E>, 1390 // M extends VectorMask<E>, 1391 // E> 1392 // long reductionCoerced(int oprId, Class<? extends V> vectorClass, Class<? extends M> maskClass, 1393 // Class<E> elementType, int length, V v, M m, 1394 // ReductionOperation<V, M> defaultImpl) 1395 bool LibraryCallKit::inline_vector_reduction() { 1396 const TypeInt* opr = gvn().type(argument(0))->isa_int(); 1397 const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr(); 1398 const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr(); 1399 const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); 1400 const TypeInt* vlen = gvn().type(argument(4))->isa_int(); 1401 1402 if (opr == nullptr || !opr->is_con() || 1403 vector_klass == nullptr || vector_klass->const_oop() == nullptr || 1404 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 1405 vlen == nullptr || !vlen->is_con()) { 1406 log_if_needed(" ** missing constant: opr=%s vclass=%s etype=%s vlen=%s", 1407 NodeClassNames[argument(0)->Opcode()], 1408 NodeClassNames[argument(1)->Opcode()], 1409 NodeClassNames[argument(3)->Opcode()], 1410 NodeClassNames[argument(4)->Opcode()]); 1411 return false; // not enough info for intrinsification 1412 } 1413 if (!is_klass_initialized(vector_klass)) { 1414 log_if_needed(" ** klass argument not initialized"); 1415 return false; 1416 } 1417 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 1418 if (!elem_type->is_primitive_type()) { 1419 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 1420 return false; // should be primitive type 1421 } 1422 1423 const Type* vmask_type = gvn().type(argument(6)); 1424 bool is_masked_op = vmask_type != TypePtr::NULL_PTR; 1425 if (is_masked_op) { 1426 if (mask_klass == nullptr || mask_klass->const_oop() == nullptr) { 1427 log_if_needed(" ** missing constant: maskclass=%s", NodeClassNames[argument(2)->Opcode()]); 1428 return false; // not enough info for intrinsification 1429 } 1430 1431 if (!is_klass_initialized(mask_klass)) { 1432 log_if_needed(" ** mask klass argument not initialized"); 1433 return false; 1434 } 1435 1436 if (vmask_type->maybe_null()) { 1437 log_if_needed(" ** null mask values are not allowed for masked op"); 1438 return false; 1439 } 1440 } 1441 1442 BasicType elem_bt = elem_type->basic_type(); 1443 int num_elem = vlen->get_con(); 1444 int opc = VectorSupport::vop2ideal(opr->get_con(), elem_bt); 1445 int sopc = ReductionNode::opcode(opc, elem_bt); 1446 1447 // Ensure reduction operation for lanewise operation 1448 // When using mask, mask use type needs to be VecMaskUseLoad. 1449 if (sopc == opc || !arch_supports_vector(sopc, num_elem, elem_bt, is_masked_op ? VecMaskUseLoad : VecMaskNotUsed)) { 1450 log_if_needed(" ** not supported: arity=1 op=%d/reduce vlen=%d etype=%s is_masked_op=%d", 1451 sopc, num_elem, type2name(elem_bt), is_masked_op ? 1 : 0); 1452 return false; 1453 } 1454 1455 // Return true if current platform has implemented the masked operation with predicate feature. 1456 bool use_predicate = is_masked_op && arch_supports_vector(sopc, num_elem, elem_bt, VecMaskUsePred); 1457 if (is_masked_op && !use_predicate && !arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad)) { 1458 log_if_needed(" ** not supported: arity=1 op=%d/reduce vlen=%d etype=%s is_masked_op=1", 1459 sopc, num_elem, type2name(elem_bt)); 1460 return false; 1461 } 1462 1463 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1464 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 1465 1466 Node* opd = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); 1467 if (opd == nullptr) { 1468 return false; // operand unboxing failed 1469 } 1470 1471 Node* mask = nullptr; 1472 if (is_masked_op) { 1473 ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1474 assert(is_vector_mask(mbox_klass), "argument(2) should be a mask class"); 1475 const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); 1476 mask = unbox_vector(argument(6), mbox_type, elem_bt, num_elem); 1477 if (mask == nullptr) { 1478 log_if_needed(" ** unbox failed mask=%s", 1479 NodeClassNames[argument(6)->Opcode()]); 1480 return false; 1481 } 1482 } 1483 1484 Node* init = ReductionNode::make_identity_con_scalar(gvn(), opc, elem_bt); 1485 Node* value = opd; 1486 1487 assert(mask != nullptr || !is_masked_op, "Masked op needs the mask value never null"); 1488 if (mask != nullptr && !use_predicate) { 1489 Node* reduce_identity = gvn().transform(VectorNode::scalar2vector(init, num_elem, elem_bt)); 1490 value = gvn().transform(new VectorBlendNode(reduce_identity, value, mask)); 1491 } 1492 1493 // Make an unordered Reduction node. This affects only AddReductionVF/VD and MulReductionVF/VD, 1494 // as these operations are allowed to be associative (not requiring strict order) in VectorAPI. 1495 value = ReductionNode::make(opc, nullptr, init, value, elem_bt, /* requires_strict_order */ false); 1496 1497 if (mask != nullptr && use_predicate) { 1498 value->add_req(mask); 1499 value->add_flag(Node::Flag_is_predicated_vector); 1500 } 1501 1502 value = gvn().transform(value); 1503 1504 Node* bits = nullptr; 1505 switch (elem_bt) { 1506 case T_BYTE: 1507 case T_SHORT: 1508 case T_INT: { 1509 bits = gvn().transform(new ConvI2LNode(value)); 1510 break; 1511 } 1512 case T_FLOAT: { 1513 value = gvn().transform(new MoveF2INode(value)); 1514 bits = gvn().transform(new ConvI2LNode(value)); 1515 break; 1516 } 1517 case T_DOUBLE: { 1518 bits = gvn().transform(new MoveD2LNode(value)); 1519 break; 1520 } 1521 case T_LONG: { 1522 bits = value; // no conversion needed 1523 break; 1524 } 1525 default: fatal("%s", type2name(elem_bt)); 1526 } 1527 set_result(bits); 1528 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 1529 return true; 1530 } 1531 1532 // public static <V> boolean test(int cond, Class<?> vectorClass, Class<?> elementType, int vlen, 1533 // V v1, V v2, 1534 // BiFunction<V, V, Boolean> defaultImpl) 1535 // 1536 bool LibraryCallKit::inline_vector_test() { 1537 const TypeInt* cond = gvn().type(argument(0))->isa_int(); 1538 const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr(); 1539 const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr(); 1540 const TypeInt* vlen = gvn().type(argument(3))->isa_int(); 1541 1542 if (cond == nullptr || !cond->is_con() || 1543 vector_klass == nullptr || vector_klass->const_oop() == nullptr || 1544 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 1545 vlen == nullptr || !vlen->is_con()) { 1546 log_if_needed(" ** missing constant: cond=%s vclass=%s etype=%s vlen=%s", 1547 NodeClassNames[argument(0)->Opcode()], 1548 NodeClassNames[argument(1)->Opcode()], 1549 NodeClassNames[argument(2)->Opcode()], 1550 NodeClassNames[argument(3)->Opcode()]); 1551 return false; // not enough info for intrinsification 1552 } 1553 if (!is_klass_initialized(vector_klass)) { 1554 log_if_needed(" ** klass argument not initialized"); 1555 return false; 1556 } 1557 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 1558 if (!elem_type->is_primitive_type()) { 1559 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 1560 return false; // should be primitive type 1561 } 1562 BasicType elem_bt = elem_type->basic_type(); 1563 int num_elem = vlen->get_con(); 1564 BoolTest::mask booltest = (BoolTest::mask)cond->get_con(); 1565 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1566 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 1567 1568 if (!arch_supports_vector(Op_VectorTest, num_elem, elem_bt, is_vector_mask(vbox_klass) ? VecMaskUseLoad : VecMaskNotUsed)) { 1569 log_if_needed(" ** not supported: arity=2 op=test/%d vlen=%d etype=%s ismask=%d", 1570 cond->get_con(), num_elem, type2name(elem_bt), 1571 is_vector_mask(vbox_klass)); 1572 return false; 1573 } 1574 1575 Node* opd1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem); 1576 Node* opd2; 1577 if (Matcher::vectortest_needs_second_argument(booltest == BoolTest::overflow, 1578 opd1->bottom_type()->isa_vectmask())) { 1579 opd2 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); 1580 } else { 1581 opd2 = opd1; 1582 } 1583 if (opd1 == nullptr || opd2 == nullptr) { 1584 return false; // operand unboxing failed 1585 } 1586 1587 Node* cmp = gvn().transform(new VectorTestNode(opd1, opd2, booltest)); 1588 BoolTest::mask test = Matcher::vectortest_mask(booltest == BoolTest::overflow, 1589 opd1->bottom_type()->isa_vectmask(), num_elem); 1590 Node* bol = gvn().transform(new BoolNode(cmp, test)); 1591 Node* res = gvn().transform(new CMoveINode(bol, gvn().intcon(0), gvn().intcon(1), TypeInt::BOOL)); 1592 1593 set_result(res); 1594 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 1595 return true; 1596 } 1597 1598 // public static 1599 // <V extends Vector<E>, 1600 // M extends VectorMask<E>, 1601 // E> 1602 // V blend(Class<? extends V> vectorClass, Class<M> maskClass, Class<E> elementType, int vlen, 1603 // V v1, V v2, M m, 1604 // VectorBlendOp<V, M, E> defaultImpl) 1605 bool LibraryCallKit::inline_vector_blend() { 1606 const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); 1607 const TypeInstPtr* mask_klass = gvn().type(argument(1))->isa_instptr(); 1608 const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr(); 1609 const TypeInt* vlen = gvn().type(argument(3))->isa_int(); 1610 1611 if (mask_klass == nullptr || vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr) { 1612 return false; // dead code 1613 } 1614 if (mask_klass->const_oop() == nullptr || vector_klass->const_oop() == nullptr || 1615 elem_klass->const_oop() == nullptr || !vlen->is_con()) { 1616 log_if_needed(" ** missing constant: vclass=%s mclass=%s etype=%s vlen=%s", 1617 NodeClassNames[argument(0)->Opcode()], 1618 NodeClassNames[argument(1)->Opcode()], 1619 NodeClassNames[argument(2)->Opcode()], 1620 NodeClassNames[argument(3)->Opcode()]); 1621 return false; // not enough info for intrinsification 1622 } 1623 if (!is_klass_initialized(vector_klass) || !is_klass_initialized(mask_klass)) { 1624 log_if_needed(" ** klass argument not initialized"); 1625 return false; 1626 } 1627 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 1628 if (!elem_type->is_primitive_type()) { 1629 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 1630 return false; // should be primitive type 1631 } 1632 BasicType elem_bt = elem_type->basic_type(); 1633 BasicType mask_bt = elem_bt; 1634 int num_elem = vlen->get_con(); 1635 1636 if (!arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad)) { 1637 log_if_needed(" ** not supported: arity=2 op=blend vlen=%d etype=%s ismask=useload", 1638 num_elem, type2name(elem_bt)); 1639 return false; // not supported 1640 } 1641 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1642 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 1643 1644 ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1645 const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); 1646 1647 Node* v1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem); 1648 Node* v2 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); 1649 Node* mask = unbox_vector(argument(6), mbox_type, mask_bt, num_elem); 1650 1651 if (v1 == nullptr || v2 == nullptr || mask == nullptr) { 1652 return false; // operand unboxing failed 1653 } 1654 1655 Node* blend = gvn().transform(new VectorBlendNode(v1, v2, mask)); 1656 1657 Node* box = box_vector(blend, vbox_type, elem_bt, num_elem); 1658 set_result(box); 1659 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 1660 return true; 1661 } 1662 1663 // public static 1664 // <V extends Vector<E>, 1665 // M extends VectorMask<E>, 1666 // E> 1667 // M compare(int cond, Class<? extends V> vectorClass, Class<M> maskClass, Class<E> elementType, int vlen, 1668 // V v1, V v2, M m, 1669 // VectorCompareOp<V,M> defaultImpl) 1670 bool LibraryCallKit::inline_vector_compare() { 1671 const TypeInt* cond = gvn().type(argument(0))->isa_int(); 1672 const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr(); 1673 const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr(); 1674 const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); 1675 const TypeInt* vlen = gvn().type(argument(4))->isa_int(); 1676 1677 if (cond == nullptr || vector_klass == nullptr || mask_klass == nullptr || elem_klass == nullptr || vlen == nullptr) { 1678 return false; // dead code 1679 } 1680 if (!cond->is_con() || vector_klass->const_oop() == nullptr || mask_klass->const_oop() == nullptr || 1681 elem_klass->const_oop() == nullptr || !vlen->is_con()) { 1682 log_if_needed(" ** missing constant: cond=%s vclass=%s mclass=%s etype=%s vlen=%s", 1683 NodeClassNames[argument(0)->Opcode()], 1684 NodeClassNames[argument(1)->Opcode()], 1685 NodeClassNames[argument(2)->Opcode()], 1686 NodeClassNames[argument(3)->Opcode()], 1687 NodeClassNames[argument(4)->Opcode()]); 1688 return false; // not enough info for intrinsification 1689 } 1690 if (!is_klass_initialized(vector_klass) || !is_klass_initialized(mask_klass)) { 1691 log_if_needed(" ** klass argument not initialized"); 1692 return false; 1693 } 1694 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 1695 if (!elem_type->is_primitive_type()) { 1696 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 1697 return false; // should be primitive type 1698 } 1699 1700 int num_elem = vlen->get_con(); 1701 BasicType elem_bt = elem_type->basic_type(); 1702 BasicType mask_bt = elem_bt; 1703 1704 if ((cond->get_con() & BoolTest::unsigned_compare) != 0) { 1705 if (!Matcher::supports_vector_comparison_unsigned(num_elem, elem_bt)) { 1706 log_if_needed(" ** not supported: unsigned comparison op=comp/%d vlen=%d etype=%s ismask=usestore", 1707 cond->get_con() & (BoolTest::unsigned_compare - 1), num_elem, type2name(elem_bt)); 1708 return false; 1709 } 1710 } 1711 1712 if (!arch_supports_vector(Op_VectorMaskCmp, num_elem, elem_bt, VecMaskUseStore)) { 1713 log_if_needed(" ** not supported: arity=2 op=comp/%d vlen=%d etype=%s ismask=usestore", 1714 cond->get_con(), num_elem, type2name(elem_bt)); 1715 return false; 1716 } 1717 1718 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1719 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 1720 1721 ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1722 const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); 1723 1724 Node* v1 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); 1725 Node* v2 = unbox_vector(argument(6), vbox_type, elem_bt, num_elem); 1726 1727 bool is_masked_op = argument(7)->bottom_type() != TypePtr::NULL_PTR; 1728 Node* mask = is_masked_op ? unbox_vector(argument(7), mbox_type, elem_bt, num_elem) : nullptr; 1729 if (is_masked_op && mask == nullptr) { 1730 log_if_needed(" ** not supported: mask = null arity=2 op=comp/%d vlen=%d etype=%s ismask=usestore is_masked_op=1", 1731 cond->get_con(), num_elem, type2name(elem_bt)); 1732 return false; 1733 } 1734 1735 bool use_predicate = is_masked_op && arch_supports_vector(Op_VectorMaskCmp, num_elem, elem_bt, VecMaskUsePred); 1736 if (is_masked_op && !use_predicate && !arch_supports_vector(Op_AndV, num_elem, elem_bt, VecMaskUseLoad)) { 1737 log_if_needed(" ** not supported: arity=2 op=comp/%d vlen=%d etype=%s ismask=usestore is_masked_op=1", 1738 cond->get_con(), num_elem, type2name(elem_bt)); 1739 return false; 1740 } 1741 1742 if (v1 == nullptr || v2 == nullptr) { 1743 return false; // operand unboxing failed 1744 } 1745 BoolTest::mask pred = (BoolTest::mask)cond->get_con(); 1746 ConINode* pred_node = (ConINode*)gvn().makecon(cond); 1747 1748 const TypeVect* vmask_type = TypeVect::makemask(mask_bt, num_elem); 1749 Node* operation = new VectorMaskCmpNode(pred, v1, v2, pred_node, vmask_type); 1750 1751 if (is_masked_op) { 1752 if (use_predicate) { 1753 operation->add_req(mask); 1754 operation->add_flag(Node::Flag_is_predicated_vector); 1755 } else { 1756 operation = gvn().transform(operation); 1757 operation = VectorNode::make(Op_AndV, operation, mask, vmask_type); 1758 } 1759 } 1760 1761 operation = gvn().transform(operation); 1762 1763 Node* box = box_vector(operation, mbox_type, mask_bt, num_elem); 1764 set_result(box); 1765 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 1766 return true; 1767 } 1768 1769 // public static 1770 // <V extends Vector<E>, 1771 // Sh extends VectorShuffle<E>, 1772 // M extends VectorMask<E>, 1773 // E> 1774 // V rearrangeOp(Class<? extends V> vectorClass, Class<Sh> shuffleClass, Class<M> maskClass, Class<E> elementType, int vlen, 1775 // V v1, Sh sh, M m, 1776 // VectorRearrangeOp<V, Sh, M, E> defaultImpl) 1777 bool LibraryCallKit::inline_vector_rearrange() { 1778 const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); 1779 const TypeInstPtr* shuffle_klass = gvn().type(argument(1))->isa_instptr(); 1780 const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr(); 1781 const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); 1782 const TypeInt* vlen = gvn().type(argument(4))->isa_int(); 1783 1784 if (vector_klass == nullptr || shuffle_klass == nullptr || elem_klass == nullptr || vlen == nullptr) { 1785 return false; // dead code 1786 } 1787 if (shuffle_klass->const_oop() == nullptr || 1788 vector_klass->const_oop() == nullptr || 1789 elem_klass->const_oop() == nullptr || 1790 !vlen->is_con()) { 1791 log_if_needed(" ** missing constant: vclass=%s sclass=%s etype=%s vlen=%s", 1792 NodeClassNames[argument(0)->Opcode()], 1793 NodeClassNames[argument(1)->Opcode()], 1794 NodeClassNames[argument(3)->Opcode()], 1795 NodeClassNames[argument(4)->Opcode()]); 1796 return false; // not enough info for intrinsification 1797 } 1798 if (!is_klass_initialized(vector_klass) || 1799 !is_klass_initialized(shuffle_klass)) { 1800 log_if_needed(" ** klass argument not initialized"); 1801 return false; 1802 } 1803 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 1804 if (!elem_type->is_primitive_type()) { 1805 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 1806 return false; // should be primitive type 1807 } 1808 1809 BasicType elem_bt = elem_type->basic_type(); 1810 BasicType shuffle_bt = elem_bt; 1811 if (shuffle_bt == T_FLOAT) { 1812 shuffle_bt = T_INT; 1813 } else if (shuffle_bt == T_DOUBLE) { 1814 shuffle_bt = T_LONG; 1815 } 1816 1817 int num_elem = vlen->get_con(); 1818 bool need_load_shuffle = Matcher::vector_rearrange_requires_load_shuffle(shuffle_bt, num_elem); 1819 1820 if (need_load_shuffle && !arch_supports_vector(Op_VectorLoadShuffle, num_elem, shuffle_bt, VecMaskNotUsed)) { 1821 if (C->print_intrinsics()) { 1822 tty->print_cr(" ** not supported: arity=0 op=load/shuffle vlen=%d etype=%s ismask=no", 1823 num_elem, type2name(shuffle_bt)); 1824 } 1825 return false; // not supported 1826 } 1827 1828 bool is_masked_op = argument(7)->bottom_type() != TypePtr::NULL_PTR; 1829 bool use_predicate = is_masked_op; 1830 if (is_masked_op && 1831 (mask_klass == nullptr || 1832 mask_klass->const_oop() == nullptr || 1833 !is_klass_initialized(mask_klass))) { 1834 log_if_needed(" ** mask_klass argument not initialized"); 1835 } 1836 if (!arch_supports_vector(Op_AndV, num_elem, elem_bt, VecMaskNotUsed)) { 1837 log_if_needed(" ** not supported: arity=2 op=and vlen=%d etype=%s ismask=no", 1838 num_elem, type2name(elem_bt)); 1839 return false; 1840 } 1841 VectorMaskUseType checkFlags = (VectorMaskUseType)(is_masked_op ? (VecMaskUseLoad | VecMaskUsePred) : VecMaskNotUsed); 1842 if (!arch_supports_vector(Op_VectorRearrange, num_elem, elem_bt, checkFlags)) { 1843 use_predicate = false; 1844 if(!is_masked_op || 1845 (!arch_supports_vector(Op_VectorRearrange, num_elem, elem_bt, VecMaskNotUsed) || 1846 !arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad) || 1847 !arch_supports_vector(Op_Replicate, num_elem, elem_bt, VecMaskNotUsed))) { 1848 log_if_needed(" ** not supported: arity=2 op=shuffle/rearrange vlen=%d etype=%s ismask=no", 1849 num_elem, type2name(elem_bt)); 1850 return false; // not supported 1851 } 1852 } 1853 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1854 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 1855 1856 ciKlass* shbox_klass = shuffle_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1857 const TypeInstPtr* shbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, shbox_klass); 1858 1859 Node* v1 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); 1860 Node* shuffle = unbox_vector(argument(6), shbox_type, shuffle_bt, num_elem); 1861 const TypeVect* st = TypeVect::make(shuffle_bt, num_elem); 1862 1863 if (v1 == nullptr || shuffle == nullptr) { 1864 return false; // operand unboxing failed 1865 } 1866 1867 assert(is_power_of_2(num_elem), "wrapping invalid"); 1868 Node* wrapping_mask_elem = gvn().makecon(TypeInteger::make(num_elem - 1, num_elem - 1, Type::WidenMin, shuffle_bt == T_LONG ? T_LONG : T_INT)); 1869 Node* wrapping_mask = gvn().transform(VectorNode::scalar2vector(wrapping_mask_elem, num_elem, shuffle_bt)); 1870 shuffle = gvn().transform(new AndVNode(shuffle, wrapping_mask, st)); 1871 1872 Node* mask = nullptr; 1873 if (is_masked_op) { 1874 ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1875 const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); 1876 mask = unbox_vector(argument(7), mbox_type, elem_bt, num_elem); 1877 if (mask == nullptr) { 1878 log_if_needed(" ** not supported: arity=3 op=shuffle/rearrange vlen=%d etype=%s ismask=useload is_masked_op=1", 1879 num_elem, type2name(elem_bt)); 1880 return false; 1881 } 1882 } 1883 1884 if (need_load_shuffle) { 1885 shuffle = gvn().transform(new VectorLoadShuffleNode(shuffle, st)); 1886 } 1887 1888 Node* rearrange = new VectorRearrangeNode(v1, shuffle); 1889 if (is_masked_op) { 1890 if (use_predicate) { 1891 rearrange->add_req(mask); 1892 rearrange->add_flag(Node::Flag_is_predicated_vector); 1893 } else { 1894 rearrange = gvn().transform(rearrange); 1895 Node* zero = gvn().makecon(Type::get_zero_type(elem_bt)); 1896 Node* zerovec = gvn().transform(VectorNode::scalar2vector(zero, num_elem, elem_bt)); 1897 rearrange = new VectorBlendNode(zerovec, rearrange, mask); 1898 } 1899 } 1900 rearrange = gvn().transform(rearrange); 1901 1902 Node* box = box_vector(rearrange, vbox_type, elem_bt, num_elem); 1903 set_result(box); 1904 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 1905 return true; 1906 } 1907 1908 // public static 1909 // <V extends Vector<E>, 1910 // M extends VectorMask<E>, 1911 // E> 1912 // V selectFromOp(Class<? extends V> vClass, Class<M> mClass, Class<E> eClass, 1913 // int length, V v1, V v2, M m, 1914 // VectorSelectFromOp<V, M> defaultImpl) 1915 bool LibraryCallKit::inline_vector_select_from() { 1916 const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); 1917 const TypeInstPtr* mask_klass = gvn().type(argument(1))->isa_instptr(); 1918 const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr(); 1919 const TypeInt* vlen = gvn().type(argument(3))->isa_int(); 1920 1921 if (vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr || 1922 vector_klass->const_oop() == nullptr || 1923 elem_klass->const_oop() == nullptr || 1924 !vlen->is_con()) { 1925 log_if_needed(" ** missing constant: vclass=%s etype=%s vlen=%s", 1926 NodeClassNames[argument(0)->Opcode()], 1927 NodeClassNames[argument(2)->Opcode()], 1928 NodeClassNames[argument(3)->Opcode()]); 1929 return false; // not enough info for intrinsification 1930 } 1931 if (!is_klass_initialized(vector_klass)) { 1932 log_if_needed(" ** klass argument not initialized"); 1933 return false; 1934 } 1935 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 1936 if (!elem_type->is_primitive_type()) { 1937 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 1938 return false; // should be primitive type 1939 } 1940 BasicType elem_bt = elem_type->basic_type(); 1941 int num_elem = vlen->get_con(); 1942 if (!is_power_of_2(num_elem)) { 1943 log_if_needed(" ** vlen not power of two=%d", num_elem); 1944 return false; 1945 } 1946 1947 BasicType shuffle_bt = elem_bt; 1948 if (shuffle_bt == T_FLOAT) { 1949 shuffle_bt = T_INT; 1950 } else if (shuffle_bt == T_DOUBLE) { 1951 shuffle_bt = T_LONG; 1952 } 1953 bool need_load_shuffle = Matcher::vector_rearrange_requires_load_shuffle(shuffle_bt, num_elem); 1954 1955 int cast_vopc = VectorCastNode::opcode(-1, elem_bt); // from vector of type elem_bt 1956 if ((need_load_shuffle && !arch_supports_vector(Op_VectorLoadShuffle, num_elem, elem_bt, VecMaskNotUsed)) || 1957 (elem_bt != shuffle_bt && !arch_supports_vector(cast_vopc, num_elem, shuffle_bt, VecMaskNotUsed)) || 1958 !arch_supports_vector(Op_AndV, num_elem, shuffle_bt, VecMaskNotUsed) || 1959 !arch_supports_vector(Op_Replicate, num_elem, shuffle_bt, VecMaskNotUsed)) { 1960 log_if_needed(" ** not supported: arity=0 op=selectFrom vlen=%d etype=%s ismask=no", 1961 num_elem, type2name(elem_bt)); 1962 return false; // not supported 1963 } 1964 1965 bool is_masked_op = argument(6)->bottom_type() != TypePtr::NULL_PTR; 1966 bool use_predicate = is_masked_op; 1967 if (is_masked_op && 1968 (mask_klass == nullptr || 1969 mask_klass->const_oop() == nullptr || 1970 !is_klass_initialized(mask_klass))) { 1971 log_if_needed(" ** mask_klass argument not initialized"); 1972 return false; // not supported 1973 } 1974 VectorMaskUseType checkFlags = (VectorMaskUseType)(is_masked_op ? (VecMaskUseLoad | VecMaskUsePred) : VecMaskNotUsed); 1975 if (!arch_supports_vector(Op_VectorRearrange, num_elem, elem_bt, checkFlags)) { 1976 use_predicate = false; 1977 if(!is_masked_op || 1978 (!arch_supports_vector(Op_VectorRearrange, num_elem, elem_bt, VecMaskNotUsed) || 1979 !arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad) || 1980 !arch_supports_vector(Op_Replicate, num_elem, elem_bt, VecMaskNotUsed))) { 1981 log_if_needed(" ** not supported: op=selectFrom vlen=%d etype=%s is_masked_op=%d", 1982 num_elem, type2name(elem_bt), is_masked_op); 1983 return false; // not supported 1984 } 1985 } 1986 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 1987 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 1988 1989 // v1 is the index vector 1990 Node* v1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem); 1991 // v2 is the vector being rearranged 1992 Node* v2 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); 1993 1994 if (v1 == nullptr) { 1995 log_if_needed(" ** unbox failed v1=%s", NodeClassNames[argument(4)->Opcode()]); 1996 return false; // operand unboxing failed 1997 } 1998 1999 if (v2 == nullptr) { 2000 log_if_needed(" ** unbox failed v2=%s", NodeClassNames[argument(5)->Opcode()]); 2001 return false; // operand unboxing failed 2002 } 2003 2004 Node* mask = nullptr; 2005 if (is_masked_op) { 2006 ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); 2007 const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); 2008 mask = unbox_vector(argument(6), mbox_type, elem_bt, num_elem); 2009 if (mask == nullptr) { 2010 log_if_needed(" ** unbox failed mask=%s", NodeClassNames[argument(6)->Opcode()]); 2011 return false; 2012 } 2013 } 2014 2015 // cast index vector from elem_bt vector to byte vector 2016 const TypeVect* shuffle_vt = TypeVect::make(shuffle_bt, num_elem); 2017 Node* shuffle = v1; 2018 2019 if (shuffle_bt != elem_bt) { 2020 shuffle = gvn().transform(VectorCastNode::make(cast_vopc, v1, shuffle_bt, num_elem)); 2021 } 2022 2023 // wrap the byte vector lanes to (num_elem - 1) to form the shuffle vector where num_elem is vector length 2024 // this is a simple AND operation as we come here only for power of two vector length 2025 Node* mod_val = gvn().makecon(TypeInteger::make(num_elem - 1, num_elem - 1, Type::WidenMin, shuffle_bt == T_LONG ? T_LONG : T_INT)); 2026 Node* bcast_mod = gvn().transform(VectorNode::scalar2vector(mod_val, num_elem, shuffle_bt)); 2027 shuffle = gvn().transform(VectorNode::make(Op_AndV, shuffle, bcast_mod, shuffle_vt)); 2028 2029 // load the shuffle to use in rearrange 2030 if (need_load_shuffle) { 2031 shuffle = gvn().transform(new VectorLoadShuffleNode(shuffle, shuffle_vt)); 2032 } 2033 2034 // and finally rearrange 2035 Node* rearrange = new VectorRearrangeNode(v2, shuffle); 2036 if (is_masked_op) { 2037 if (use_predicate) { 2038 // masked rearrange is supported so use that directly 2039 rearrange->add_req(mask); 2040 rearrange->add_flag(Node::Flag_is_predicated_vector); 2041 } else { 2042 // masked rearrange is not supported so emulate usig blend 2043 const TypeVect* vt = v1->bottom_type()->is_vect(); 2044 rearrange = gvn().transform(rearrange); 2045 2046 // create a zero vector with each lane element set as zero 2047 Node* zero = gvn().makecon(Type::get_zero_type(elem_bt)); 2048 Node* zerovec = gvn().transform(VectorNode::scalar2vector(zero, num_elem, elem_bt)); 2049 2050 // For each lane for which mask is set, blend in the rearranged lane into zero vector 2051 rearrange = new VectorBlendNode(zerovec, rearrange, mask); 2052 } 2053 } 2054 rearrange = gvn().transform(rearrange); 2055 2056 // box the result 2057 Node* box = box_vector(rearrange, vbox_type, elem_bt, num_elem); 2058 set_result(box); 2059 2060 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 2061 return true; 2062 } 2063 2064 // public static 2065 // <V extends Vector<E>, 2066 // M extends VectorMask<E>, 2067 // E> 2068 // V broadcastInt(int opr, Class<? extends V> vectorClass, Class<? extends M> maskClass, 2069 // Class<E> elementType, int length, 2070 // V v, int n, M m, 2071 // VectorBroadcastIntOp<V, M> defaultImpl) 2072 bool LibraryCallKit::inline_vector_broadcast_int() { 2073 const TypeInt* opr = gvn().type(argument(0))->isa_int(); 2074 const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr(); 2075 const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr(); 2076 const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); 2077 const TypeInt* vlen = gvn().type(argument(4))->isa_int(); 2078 2079 if (opr == nullptr || vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr) { 2080 return false; // dead code 2081 } 2082 if (!opr->is_con() || vector_klass->const_oop() == nullptr || elem_klass->const_oop() == nullptr || !vlen->is_con()) { 2083 log_if_needed(" ** missing constant: opr=%s vclass=%s etype=%s vlen=%s", 2084 NodeClassNames[argument(0)->Opcode()], 2085 NodeClassNames[argument(1)->Opcode()], 2086 NodeClassNames[argument(3)->Opcode()], 2087 NodeClassNames[argument(4)->Opcode()]); 2088 return false; // not enough info for intrinsification 2089 } 2090 if (!is_klass_initialized(vector_klass)) { 2091 log_if_needed(" ** klass argument not initialized"); 2092 return false; 2093 } 2094 2095 const Type* vmask_type = gvn().type(argument(7)); 2096 bool is_masked_op = vmask_type != TypePtr::NULL_PTR; 2097 if (is_masked_op) { 2098 if (mask_klass == nullptr || mask_klass->const_oop() == nullptr) { 2099 log_if_needed(" ** missing constant: maskclass=%s", NodeClassNames[argument(2)->Opcode()]); 2100 return false; // not enough info for intrinsification 2101 } 2102 2103 if (!is_klass_initialized(mask_klass)) { 2104 log_if_needed(" ** mask klass argument not initialized"); 2105 return false; 2106 } 2107 2108 if (vmask_type->maybe_null()) { 2109 log_if_needed(" ** null mask values are not allowed for masked op"); 2110 return false; 2111 } 2112 } 2113 2114 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 2115 if (!elem_type->is_primitive_type()) { 2116 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 2117 return false; // should be primitive type 2118 } 2119 2120 int num_elem = vlen->get_con(); 2121 BasicType elem_bt = elem_type->basic_type(); 2122 int opc = VectorSupport::vop2ideal(opr->get_con(), elem_bt); 2123 2124 bool is_shift = VectorNode::is_shift_opcode(opc); 2125 bool is_rotate = VectorNode::is_rotate_opcode(opc); 2126 2127 if (opc == 0 || (!is_shift && !is_rotate)) { 2128 log_if_needed(" ** operation not supported: op=%d bt=%s", opr->get_con(), type2name(elem_bt)); 2129 return false; // operation not supported 2130 } 2131 2132 int sopc = VectorNode::opcode(opc, elem_bt); 2133 if (sopc == 0) { 2134 log_if_needed(" ** operation not supported: opc=%s bt=%s", NodeClassNames[opc], type2name(elem_bt)); 2135 return false; // operation not supported 2136 } 2137 2138 Node* cnt = argument(6); 2139 const TypeInt* cnt_type = cnt->bottom_type()->isa_int(); 2140 2141 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 2142 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 2143 2144 // If CPU supports vector constant rotate instructions pass it directly 2145 bool is_const_rotate = is_rotate && cnt_type && cnt_type->is_con() && 2146 Matcher::supports_vector_constant_rotates(cnt_type->get_con()); 2147 bool has_scalar_args = is_rotate ? !is_const_rotate : true; 2148 2149 VectorMaskUseType checkFlags = (VectorMaskUseType)(is_masked_op ? (VecMaskUseLoad | VecMaskUsePred) : VecMaskNotUsed); 2150 bool use_predicate = is_masked_op; 2151 2152 if (!arch_supports_vector(sopc, num_elem, elem_bt, checkFlags, has_scalar_args)) { 2153 use_predicate = false; 2154 if (!is_masked_op || 2155 (!arch_supports_vector(sopc, num_elem, elem_bt, VecMaskNotUsed, has_scalar_args) || 2156 !arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad))) { 2157 2158 log_if_needed(" ** not supported: arity=0 op=int/%d vlen=%d etype=%s is_masked_op=%d", 2159 sopc, num_elem, type2name(elem_bt), is_masked_op ? 1 : 0); 2160 return false; // not supported 2161 } 2162 } 2163 2164 Node* opd1 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); 2165 Node* opd2 = nullptr; 2166 if (is_shift) { 2167 opd2 = vector_shift_count(cnt, opc, elem_bt, num_elem); 2168 } else { 2169 assert(is_rotate, "unexpected operation"); 2170 if (!is_const_rotate) { 2171 cnt = elem_bt == T_LONG ? gvn().transform(new ConvI2LNode(cnt)) : cnt; 2172 opd2 = gvn().transform(VectorNode::scalar2vector(cnt, num_elem, elem_bt)); 2173 } else { 2174 // Constant shift value. 2175 opd2 = cnt; 2176 } 2177 } 2178 2179 if (opd1 == nullptr || opd2 == nullptr) { 2180 return false; 2181 } 2182 2183 Node* mask = nullptr; 2184 if (is_masked_op) { 2185 ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); 2186 const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); 2187 mask = unbox_vector(argument(7), mbox_type, elem_bt, num_elem); 2188 if (mask == nullptr) { 2189 log_if_needed(" ** unbox failed mask=%s", NodeClassNames[argument(7)->Opcode()]); 2190 return false; 2191 } 2192 } 2193 2194 Node* operation = VectorNode::make(opc, opd1, opd2, num_elem, elem_bt); 2195 if (is_masked_op && mask != nullptr) { 2196 if (use_predicate) { 2197 operation->add_req(mask); 2198 operation->add_flag(Node::Flag_is_predicated_vector); 2199 } else { 2200 operation = gvn().transform(operation); 2201 operation = new VectorBlendNode(opd1, operation, mask); 2202 } 2203 } 2204 operation = gvn().transform(operation); 2205 Node* vbox = box_vector(operation, vbox_type, elem_bt, num_elem); 2206 set_result(vbox); 2207 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 2208 return true; 2209 } 2210 2211 // public static <VOUT extends VectorPayload, 2212 // VIN extends VectorPayload, 2213 // S extends VectorSpecies> 2214 // VOUT convert(int oprId, 2215 // Class<?> fromVectorClass, Class<?> fromElementType, int fromVLen, 2216 // Class<?> toVectorClass, Class<?> toElementType, int toVLen, 2217 // VIN v, S s, 2218 // VectorConvertOp<VOUT, VIN, S> defaultImpl) 2219 // 2220 bool LibraryCallKit::inline_vector_convert() { 2221 const TypeInt* opr = gvn().type(argument(0))->isa_int(); 2222 2223 const TypeInstPtr* vector_klass_from = gvn().type(argument(1))->isa_instptr(); 2224 const TypeInstPtr* elem_klass_from = gvn().type(argument(2))->isa_instptr(); 2225 const TypeInt* vlen_from = gvn().type(argument(3))->isa_int(); 2226 2227 const TypeInstPtr* vector_klass_to = gvn().type(argument(4))->isa_instptr(); 2228 const TypeInstPtr* elem_klass_to = gvn().type(argument(5))->isa_instptr(); 2229 const TypeInt* vlen_to = gvn().type(argument(6))->isa_int(); 2230 2231 if (opr == nullptr || 2232 vector_klass_from == nullptr || elem_klass_from == nullptr || vlen_from == nullptr || 2233 vector_klass_to == nullptr || elem_klass_to == nullptr || vlen_to == nullptr) { 2234 return false; // dead code 2235 } 2236 if (!opr->is_con() || 2237 vector_klass_from->const_oop() == nullptr || elem_klass_from->const_oop() == nullptr || !vlen_from->is_con() || 2238 vector_klass_to->const_oop() == nullptr || elem_klass_to->const_oop() == nullptr || !vlen_to->is_con()) { 2239 log_if_needed(" ** missing constant: opr=%s vclass_from=%s etype_from=%s vlen_from=%s vclass_to=%s etype_to=%s vlen_to=%s", 2240 NodeClassNames[argument(0)->Opcode()], 2241 NodeClassNames[argument(1)->Opcode()], 2242 NodeClassNames[argument(2)->Opcode()], 2243 NodeClassNames[argument(3)->Opcode()], 2244 NodeClassNames[argument(4)->Opcode()], 2245 NodeClassNames[argument(5)->Opcode()], 2246 NodeClassNames[argument(6)->Opcode()]); 2247 return false; // not enough info for intrinsification 2248 } 2249 if (!is_klass_initialized(vector_klass_from) || !is_klass_initialized(vector_klass_to)) { 2250 log_if_needed(" ** klass argument not initialized"); 2251 return false; 2252 } 2253 2254 assert(opr->get_con() == VectorSupport::VECTOR_OP_CAST || 2255 opr->get_con() == VectorSupport::VECTOR_OP_UCAST || 2256 opr->get_con() == VectorSupport::VECTOR_OP_REINTERPRET, "wrong opcode"); 2257 bool is_cast = (opr->get_con() == VectorSupport::VECTOR_OP_CAST || opr->get_con() == VectorSupport::VECTOR_OP_UCAST); 2258 bool is_ucast = (opr->get_con() == VectorSupport::VECTOR_OP_UCAST); 2259 2260 ciKlass* vbox_klass_from = vector_klass_from->const_oop()->as_instance()->java_lang_Class_klass(); 2261 ciKlass* vbox_klass_to = vector_klass_to->const_oop()->as_instance()->java_lang_Class_klass(); 2262 2263 bool is_mask = is_vector_mask(vbox_klass_from); 2264 2265 ciType* elem_type_from = elem_klass_from->const_oop()->as_instance()->java_mirror_type(); 2266 if (!elem_type_from->is_primitive_type()) { 2267 return false; // should be primitive type 2268 } 2269 BasicType elem_bt_from = elem_type_from->basic_type(); 2270 ciType* elem_type_to = elem_klass_to->const_oop()->as_instance()->java_mirror_type(); 2271 if (!elem_type_to->is_primitive_type()) { 2272 return false; // should be primitive type 2273 } 2274 BasicType elem_bt_to = elem_type_to->basic_type(); 2275 2276 int num_elem_from = vlen_from->get_con(); 2277 int num_elem_to = vlen_to->get_con(); 2278 2279 // Check whether we can unbox to appropriate size. Even with casting, checking for reinterpret is needed 2280 // since we may need to change size. 2281 if (!arch_supports_vector(Op_VectorReinterpret, 2282 num_elem_from, 2283 elem_bt_from, 2284 is_mask ? VecMaskUseAll : VecMaskNotUsed)) { 2285 log_if_needed(" ** not supported: arity=1 op=%s/1 vlen1=%d etype1=%s ismask=%d", 2286 is_cast ? "cast" : "reinterpret", 2287 num_elem_from, type2name(elem_bt_from), is_mask); 2288 return false; 2289 } 2290 2291 // Check whether we can support resizing/reinterpreting to the new size. 2292 if (!arch_supports_vector(Op_VectorReinterpret, 2293 num_elem_to, 2294 elem_bt_to, 2295 is_mask ? VecMaskUseAll : VecMaskNotUsed)) { 2296 log_if_needed(" ** not supported: arity=1 op=%s/2 vlen2=%d etype2=%s ismask=%d", 2297 is_cast ? "cast" : "reinterpret", 2298 num_elem_to, type2name(elem_bt_to), is_mask); 2299 return false; 2300 } 2301 2302 // At this point, we know that both input and output vector registers are supported 2303 // by the architecture. Next check if the casted type is simply to same type - which means 2304 // that it is actually a resize and not a cast. 2305 if (is_cast && elem_bt_from == elem_bt_to) { 2306 is_cast = false; 2307 } 2308 2309 const TypeInstPtr* vbox_type_from = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass_from); 2310 2311 Node* opd1 = unbox_vector(argument(7), vbox_type_from, elem_bt_from, num_elem_from); 2312 if (opd1 == nullptr) { 2313 return false; 2314 } 2315 2316 const TypeVect* src_type = TypeVect::make(elem_bt_from, num_elem_from, is_mask); 2317 const TypeVect* dst_type = TypeVect::make(elem_bt_to, num_elem_to, is_mask); 2318 2319 // Safety check to prevent casting if source mask is of type vector 2320 // and destination mask of type predicate vector and vice-versa. 2321 // From X86 standpoint, this case will only arise over KNL target, 2322 // where certain masks (depending on the species) are either propagated 2323 // through a vector or predicate register. 2324 if (is_mask && 2325 ((src_type->isa_vectmask() == nullptr && dst_type->isa_vectmask()) || 2326 (dst_type->isa_vectmask() == nullptr && src_type->isa_vectmask()))) { 2327 return false; 2328 } 2329 2330 Node* op = opd1; 2331 if (is_cast) { 2332 assert(!is_mask || num_elem_from == num_elem_to, "vector mask cast needs the same elem num"); 2333 int cast_vopc = VectorCastNode::opcode(-1, elem_bt_from, !is_ucast); 2334 2335 // Make sure that vector cast is implemented to particular type/size combination if it is 2336 // not a mask casting. 2337 if (!is_mask && !arch_supports_vector(cast_vopc, num_elem_to, elem_bt_to, VecMaskNotUsed)) { 2338 log_if_needed(" ** not supported: arity=1 op=cast#%d/3 vlen2=%d etype2=%s ismask=%d", 2339 cast_vopc, num_elem_to, type2name(elem_bt_to), is_mask); 2340 return false; 2341 } 2342 2343 if (num_elem_from < num_elem_to) { 2344 // Since input and output number of elements are not consistent, we need to make sure we 2345 // properly size. Thus, first make a cast that retains the number of elements from source. 2346 int num_elem_for_cast = num_elem_from; 2347 2348 // It is possible that arch does not support this intermediate vector size 2349 // TODO More complex logic required here to handle this corner case for the sizes. 2350 if (!arch_supports_vector(cast_vopc, num_elem_for_cast, elem_bt_to, VecMaskNotUsed)) { 2351 log_if_needed(" ** not supported: arity=1 op=cast#%d/4 vlen1=%d etype2=%s ismask=%d", 2352 cast_vopc, 2353 num_elem_for_cast, type2name(elem_bt_to), is_mask); 2354 return false; 2355 } 2356 2357 op = gvn().transform(VectorCastNode::make(cast_vopc, op, elem_bt_to, num_elem_for_cast)); 2358 // Now ensure that the destination gets properly resized to needed size. 2359 op = gvn().transform(new VectorReinterpretNode(op, op->bottom_type()->is_vect(), dst_type)); 2360 } else if (num_elem_from > num_elem_to) { 2361 // Since number of elements from input is larger than output, simply reduce size of input 2362 // (we are supposed to drop top elements anyway). 2363 int num_elem_for_resize = num_elem_to; 2364 2365 // It is possible that arch does not support this intermediate vector size 2366 // TODO More complex logic required here to handle this corner case for the sizes. 2367 if (!arch_supports_vector(Op_VectorReinterpret, 2368 num_elem_for_resize, 2369 elem_bt_from, 2370 VecMaskNotUsed)) { 2371 log_if_needed(" ** not supported: arity=1 op=cast/5 vlen2=%d etype1=%s ismask=%d", 2372 num_elem_for_resize, type2name(elem_bt_from), is_mask); 2373 return false; 2374 } 2375 2376 const TypeVect* resize_type = TypeVect::make(elem_bt_from, num_elem_for_resize); 2377 op = gvn().transform(new VectorReinterpretNode(op, src_type, resize_type)); 2378 op = gvn().transform(VectorCastNode::make(cast_vopc, op, elem_bt_to, num_elem_to)); 2379 } else { // num_elem_from == num_elem_to 2380 if (is_mask) { 2381 // Make sure that cast for vector mask is implemented to particular type/size combination. 2382 if (!arch_supports_vector(Op_VectorMaskCast, num_elem_to, elem_bt_to, VecMaskNotUsed)) { 2383 log_if_needed(" ** not supported: arity=1 op=maskcast vlen2=%d etype2=%s ismask=%d", 2384 num_elem_to, type2name(elem_bt_to), is_mask); 2385 return false; 2386 } 2387 op = gvn().transform(new VectorMaskCastNode(op, dst_type)); 2388 } else { 2389 // Since input and output number of elements match, and since we know this vector size is 2390 // supported, simply do a cast with no resize needed. 2391 op = gvn().transform(VectorCastNode::make(cast_vopc, op, elem_bt_to, num_elem_to)); 2392 } 2393 } 2394 } else if (!Type::equals(src_type, dst_type)) { 2395 assert(!is_cast, "must be reinterpret"); 2396 op = gvn().transform(new VectorReinterpretNode(op, src_type, dst_type)); 2397 } 2398 2399 const TypeInstPtr* vbox_type_to = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass_to); 2400 Node* vbox = box_vector(op, vbox_type_to, elem_bt_to, num_elem_to); 2401 set_result(vbox); 2402 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem_to * type2aelembytes(elem_bt_to)))); 2403 return true; 2404 } 2405 2406 // public static 2407 // <V extends Vector<E>, 2408 // E> 2409 // V insert(Class<? extends V> vectorClass, Class<E> elementType, int vlen, 2410 // V vec, int ix, long val, 2411 // VecInsertOp<V> defaultImpl) 2412 bool LibraryCallKit::inline_vector_insert() { 2413 const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); 2414 const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); 2415 const TypeInt* vlen = gvn().type(argument(2))->isa_int(); 2416 const TypeInt* idx = gvn().type(argument(4))->isa_int(); 2417 2418 if (vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr || idx == nullptr) { 2419 return false; // dead code 2420 } 2421 if (vector_klass->const_oop() == nullptr || elem_klass->const_oop() == nullptr || !vlen->is_con() || !idx->is_con()) { 2422 log_if_needed(" ** missing constant: vclass=%s etype=%s vlen=%s idx=%s", 2423 NodeClassNames[argument(0)->Opcode()], 2424 NodeClassNames[argument(1)->Opcode()], 2425 NodeClassNames[argument(2)->Opcode()], 2426 NodeClassNames[argument(4)->Opcode()]); 2427 return false; // not enough info for intrinsification 2428 } 2429 if (!is_klass_initialized(vector_klass)) { 2430 log_if_needed(" ** klass argument not initialized"); 2431 return false; 2432 } 2433 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 2434 if (!elem_type->is_primitive_type()) { 2435 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 2436 return false; // should be primitive type 2437 } 2438 BasicType elem_bt = elem_type->basic_type(); 2439 int num_elem = vlen->get_con(); 2440 if (!arch_supports_vector(Op_VectorInsert, num_elem, elem_bt, VecMaskNotUsed)) { 2441 log_if_needed(" ** not supported: arity=1 op=insert vlen=%d etype=%s ismask=no", 2442 num_elem, type2name(elem_bt)); 2443 return false; // not supported 2444 } 2445 2446 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 2447 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 2448 2449 Node* opd = unbox_vector(argument(3), vbox_type, elem_bt, num_elem); 2450 if (opd == nullptr) { 2451 return false; 2452 } 2453 2454 Node* insert_val = argument(5); 2455 assert(gvn().type(insert_val)->isa_long() != nullptr, "expected to be long"); 2456 2457 // Convert insert value back to its appropriate type. 2458 switch (elem_bt) { 2459 case T_BYTE: 2460 insert_val = gvn().transform(new ConvL2INode(insert_val, TypeInt::BYTE)); 2461 break; 2462 case T_SHORT: 2463 insert_val = gvn().transform(new ConvL2INode(insert_val, TypeInt::SHORT)); 2464 break; 2465 case T_INT: 2466 insert_val = gvn().transform(new ConvL2INode(insert_val)); 2467 break; 2468 case T_FLOAT: 2469 insert_val = gvn().transform(new ConvL2INode(insert_val)); 2470 insert_val = gvn().transform(new MoveI2FNode(insert_val)); 2471 break; 2472 case T_DOUBLE: 2473 insert_val = gvn().transform(new MoveL2DNode(insert_val)); 2474 break; 2475 case T_LONG: 2476 // no conversion needed 2477 break; 2478 default: fatal("%s", type2name(elem_bt)); break; 2479 } 2480 2481 Node* operation = gvn().transform(VectorInsertNode::make(opd, insert_val, idx->get_con(), gvn())); 2482 2483 Node* vbox = box_vector(operation, vbox_type, elem_bt, num_elem); 2484 set_result(vbox); 2485 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 2486 return true; 2487 } 2488 2489 // public static 2490 // <VM extends VectorPayload, 2491 // E> 2492 // long extract(Class<? extends VM> vClass, Class<E> eClass, 2493 // int length, 2494 // VM vm, int i, 2495 // VecExtractOp<VM> defaultImpl) 2496 bool LibraryCallKit::inline_vector_extract() { 2497 const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); 2498 const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); 2499 const TypeInt* vlen = gvn().type(argument(2))->isa_int(); 2500 const TypeInt* idx = gvn().type(argument(4))->isa_int(); 2501 2502 if (vector_klass == nullptr || vector_klass->const_oop() == nullptr || 2503 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 2504 vlen == nullptr || !vlen->is_con() || 2505 idx == nullptr || !idx->is_con()) { 2506 log_if_needed(" ** missing constant: vclass=%s etype=%s vlen=%s", 2507 NodeClassNames[argument(0)->Opcode()], 2508 NodeClassNames[argument(1)->Opcode()], 2509 NodeClassNames[argument(2)->Opcode()]); 2510 return false; // not enough info for intrinsification 2511 } 2512 if (!is_klass_initialized(vector_klass)) { 2513 log_if_needed(" ** klass argument not initialized"); 2514 return false; 2515 } 2516 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 2517 if (!elem_type->is_primitive_type()) { 2518 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 2519 return false; // should be primitive type 2520 } 2521 BasicType elem_bt = elem_type->basic_type(); 2522 int num_elem = vlen->get_con(); 2523 2524 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 2525 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 2526 2527 Node* opd = nullptr; 2528 2529 if (is_vector_mask(vbox_klass)) { 2530 // vbox_klass is mask. This is used for VectorMask.laneIsSet(int). 2531 2532 Node* pos = argument(4); // can be variable 2533 if (arch_supports_vector(Op_ExtractUB, num_elem, elem_bt, VecMaskUseAll)) { 2534 // Transform mask to vector with type of boolean and utilize ExtractUB node. 2535 opd = unbox_vector(argument(3), vbox_type, elem_bt, num_elem); 2536 if (opd == nullptr) { 2537 return false; 2538 } 2539 opd = gvn().transform(VectorStoreMaskNode::make(gvn(), opd, elem_bt, num_elem)); 2540 opd = gvn().transform(new ExtractUBNode(opd, pos)); 2541 opd = gvn().transform(new ConvI2LNode(opd)); 2542 } else if (arch_supports_vector(Op_VectorMaskToLong, num_elem, elem_bt, VecMaskUseLoad)) { 2543 opd = unbox_vector(argument(3), vbox_type, elem_bt, num_elem); 2544 if (opd == nullptr) { 2545 return false; 2546 } 2547 // VectorMaskToLongNode requires the input is either a mask or a vector with BOOLEAN type. 2548 if (opd->bottom_type()->isa_vectmask() == nullptr) { 2549 opd = gvn().transform(VectorStoreMaskNode::make(gvn(), opd, elem_bt, num_elem)); 2550 } 2551 // ((toLong() >>> pos) & 1L 2552 opd = gvn().transform(new VectorMaskToLongNode(opd, TypeLong::LONG)); 2553 opd = gvn().transform(new URShiftLNode(opd, pos)); 2554 opd = gvn().transform(new AndLNode(opd, gvn().makecon(TypeLong::ONE))); 2555 } else { 2556 log_if_needed(" ** Rejected mask extraction because architecture does not support it"); 2557 return false; // not supported 2558 } 2559 } else { 2560 // vbox_klass is vector. This is used for Vector.lane(int). 2561 if (!idx->is_con()) { 2562 log_if_needed(" ** missing constant: idx=%s", NodeClassNames[argument(4)->Opcode()]); 2563 return false; // not enough info for intrinsification 2564 } 2565 2566 int vopc = ExtractNode::opcode(elem_bt); 2567 if (!arch_supports_vector(vopc, num_elem, elem_bt, VecMaskNotUsed)) { 2568 log_if_needed(" ** not supported: arity=1 op=extract vlen=%d etype=%s ismask=no", 2569 num_elem, type2name(elem_bt)); 2570 return false; // not supported 2571 } 2572 2573 opd = unbox_vector(argument(3), vbox_type, elem_bt, num_elem); 2574 if (opd == nullptr) { 2575 return false; 2576 } 2577 ConINode* idx_con = gvn().intcon(idx->get_con())->as_ConI(); 2578 2579 opd = gvn().transform(ExtractNode::make(opd, idx_con, elem_bt)); 2580 switch (elem_bt) { 2581 case T_BYTE: 2582 case T_SHORT: 2583 case T_INT: { 2584 opd = gvn().transform(new ConvI2LNode(opd)); 2585 break; 2586 } 2587 case T_FLOAT: { 2588 opd = gvn().transform(new MoveF2INode(opd)); 2589 opd = gvn().transform(new ConvI2LNode(opd)); 2590 break; 2591 } 2592 case T_DOUBLE: { 2593 opd = gvn().transform(new MoveD2LNode(opd)); 2594 break; 2595 } 2596 case T_LONG: { 2597 // no conversion needed 2598 break; 2599 } 2600 default: fatal("%s", type2name(elem_bt)); 2601 } 2602 } 2603 set_result(opd); 2604 return true; 2605 } 2606 2607 static Node* LowerSelectFromTwoVectorOperation(PhaseGVN& phase, Node* index_vec, Node* src1, Node* src2, const TypeVect* vt) { 2608 int num_elem = vt->length(); 2609 BasicType elem_bt = vt->element_basic_type(); 2610 2611 // Lower selectFrom operation into its constituent operations. 2612 // SelectFromTwoVectorNode = 2613 // (VectorBlend 2614 // (VectorRearrange SRC1 (WRAPED_INDEX AND (VLEN-1)) 2615 // (VectorRearrange SRC2 (WRAPED_INDEX AND (VLEN-1)) 2616 // MASK) 2617 // Where 2618 // WRAPED_INDEX are computed by wrapping incoming indexes 2619 // to two vector index range [0, VLEN*2) and 2620 // MASK = WRAPED_INDEX < VLEN 2621 // 2622 // IR lowering prevents intrinsification failure and associated argument 2623 // boxing penalties. 2624 // 2625 2626 BasicType shuffle_bt = elem_bt; 2627 if (shuffle_bt == T_FLOAT) { 2628 shuffle_bt = T_INT; 2629 } else if (shuffle_bt == T_DOUBLE) { 2630 shuffle_bt = T_LONG; 2631 } 2632 const TypeVect* st = TypeVect::make(shuffle_bt, num_elem); 2633 2634 // Cast index vector to the corresponding bit type 2635 if (elem_bt != shuffle_bt) { 2636 int cast_vopc = VectorCastNode::opcode(0, elem_bt, true); 2637 index_vec = phase.transform(VectorCastNode::make(cast_vopc, index_vec, shuffle_bt, num_elem)); 2638 } 2639 2640 // Wrap indexes into two vector index range [0, VLEN * 2) 2641 Node* two_vect_lane_cnt_m1 = phase.makecon(TypeInteger::make(2 * num_elem - 1, 2 * num_elem - 1, Type::WidenMin, shuffle_bt == T_LONG ? T_LONG : T_INT)); 2642 Node* bcast_two_vect_lane_cnt_m1_vec = phase.transform(VectorNode::scalar2vector(two_vect_lane_cnt_m1, num_elem, 2643 shuffle_bt, false)); 2644 index_vec = phase.transform(VectorNode::make(Op_AndV, index_vec, bcast_two_vect_lane_cnt_m1_vec, st)); 2645 2646 // Compute the blend mask for merging two independently permitted vectors 2647 // using shuffle index in two vector index range [0, VLEN * 2). 2648 BoolTest::mask pred = BoolTest::le; 2649 ConINode* pred_node = phase.makecon(TypeInt::make(pred))->as_ConI(); 2650 const TypeVect* vmask_type = TypeVect::makemask(shuffle_bt, num_elem); 2651 Node* lane_cnt_m1 = phase.makecon(TypeInteger::make(num_elem - 1, num_elem - 1, Type::WidenMin, shuffle_bt == T_LONG ? T_LONG : T_INT)); 2652 Node* bcast_lane_cnt_m1_vec = phase.transform(VectorNode::scalar2vector(lane_cnt_m1, num_elem, shuffle_bt, false)); 2653 Node* mask = phase.transform(new VectorMaskCmpNode(pred, index_vec, bcast_lane_cnt_m1_vec, pred_node, vmask_type)); 2654 2655 // Rearrange expects the indexes to lie within single vector index range [0, VLEN). 2656 Node* wrapped_index_vec = phase.transform(VectorNode::make(Op_AndV, index_vec, bcast_lane_cnt_m1_vec, st)); 2657 2658 // Load indexes from byte vector and appropriately transform them to target 2659 // specific permutation index format. 2660 if (Matcher::vector_rearrange_requires_load_shuffle(shuffle_bt, num_elem)) { 2661 wrapped_index_vec = phase.transform(new VectorLoadShuffleNode(wrapped_index_vec, st)); 2662 } 2663 2664 vmask_type = TypeVect::makemask(elem_bt, num_elem); 2665 mask = phase.transform(new VectorMaskCastNode(mask, vmask_type)); 2666 2667 Node* p1 = phase.transform(new VectorRearrangeNode(src1, wrapped_index_vec)); 2668 Node* p2 = phase.transform(new VectorRearrangeNode(src2, wrapped_index_vec)); 2669 2670 return new VectorBlendNode(p2, p1, mask); 2671 } 2672 2673 // public static 2674 // <V extends Vector<E>, 2675 // E> 2676 // V selectFromTwoVectorOp(Class<? extends V> vClass, Class<E> eClass, int length, 2677 // V v1, V v2, V v3, 2678 // SelectFromTwoVector<V> defaultImpl) 2679 bool LibraryCallKit::inline_vector_select_from_two_vectors() { 2680 const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); 2681 const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); 2682 const TypeInt* vlen = gvn().type(argument(2))->isa_int(); 2683 2684 if (vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr || vector_klass->const_oop() == nullptr || 2685 elem_klass->const_oop() == nullptr ||!vlen->is_con()) { 2686 log_if_needed(" ** missing constant: vclass=%s etype=%s vlen=%s", 2687 NodeClassNames[argument(0)->Opcode()], 2688 NodeClassNames[argument(1)->Opcode()], 2689 NodeClassNames[argument(2)->Opcode()]); 2690 return false; // not enough info for intrinsification 2691 } 2692 2693 if (!is_klass_initialized(vector_klass)) { 2694 log_if_needed(" ** klass argument not initialized"); 2695 return false; 2696 } 2697 2698 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 2699 if (!elem_type->is_primitive_type()) { 2700 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 2701 return false; // should be primitive type 2702 } 2703 2704 int num_elem = vlen->get_con(); 2705 if (!is_power_of_2(num_elem)) { 2706 log_if_needed(" ** vlen is not power of two=%d", num_elem); 2707 return false; 2708 } 2709 2710 BasicType elem_bt = elem_type->basic_type(); 2711 BasicType index_elem_bt = elem_bt; 2712 if (elem_bt == T_FLOAT) { 2713 index_elem_bt = T_INT; 2714 } else if (elem_bt == T_DOUBLE) { 2715 index_elem_bt = T_LONG; 2716 } 2717 2718 // Check if the platform requires a VectorLoadShuffle node to be generated 2719 bool need_load_shuffle = Matcher::vector_rearrange_requires_load_shuffle(index_elem_bt, num_elem); 2720 2721 bool lowerSelectFromOp = false; 2722 if (!arch_supports_vector(Op_SelectFromTwoVector, num_elem, elem_bt, VecMaskNotUsed)) { 2723 int cast_vopc = VectorCastNode::opcode(-1, elem_bt, true); 2724 if ((elem_bt != index_elem_bt && !arch_supports_vector(cast_vopc, num_elem, index_elem_bt, VecMaskNotUsed)) || 2725 !arch_supports_vector(Op_VectorMaskCmp, num_elem, index_elem_bt, VecMaskNotUsed) || 2726 !arch_supports_vector(Op_AndV, num_elem, index_elem_bt, VecMaskNotUsed) || 2727 !arch_supports_vector(Op_VectorMaskCast, num_elem, elem_bt, VecMaskNotUsed) || 2728 !arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad) || 2729 !arch_supports_vector(Op_VectorRearrange, num_elem, elem_bt, VecMaskNotUsed) || 2730 (need_load_shuffle && !arch_supports_vector(Op_VectorLoadShuffle, num_elem, index_elem_bt, VecMaskNotUsed)) || 2731 !arch_supports_vector(Op_Replicate, num_elem, index_elem_bt, VecMaskNotUsed)) { 2732 log_if_needed(" ** not supported: opc=%d vlen=%d etype=%s ismask=useload", 2733 Op_SelectFromTwoVector, num_elem, type2name(elem_bt)); 2734 return false; // not supported 2735 } 2736 lowerSelectFromOp = true; 2737 } 2738 2739 int cast_vopc = VectorCastNode::opcode(-1, elem_bt, true); 2740 if (!lowerSelectFromOp) { 2741 if (!arch_supports_vector(Op_AndV, num_elem, index_elem_bt, VecMaskNotUsed) || 2742 !arch_supports_vector(Op_Replicate, num_elem, index_elem_bt, VecMaskNotUsed) || 2743 (is_floating_point_type(elem_bt) && 2744 !arch_supports_vector(cast_vopc, num_elem, index_elem_bt, VecMaskNotUsed))) { 2745 log_if_needed(" ** index wrapping not supported: vlen=%d etype=%s" , 2746 num_elem, type2name(elem_bt)); 2747 return false; // not supported 2748 } 2749 } 2750 2751 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 2752 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 2753 2754 Node* opd1 = unbox_vector(argument(3), vbox_type, elem_bt, num_elem); 2755 if (opd1 == nullptr) { 2756 log_if_needed(" ** unbox failed v1=%s", 2757 NodeClassNames[argument(3)->Opcode()]); 2758 return false; 2759 } 2760 Node* opd2 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem); 2761 if (opd2 == nullptr) { 2762 log_if_needed(" ** unbox failed v2=%s", 2763 NodeClassNames[argument(4)->Opcode()]); 2764 return false; 2765 } 2766 Node* opd3 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); 2767 if (opd3 == nullptr) { 2768 log_if_needed(" ** unbox failed v3=%s", 2769 NodeClassNames[argument(5)->Opcode()]); 2770 return false; 2771 } 2772 2773 const TypeVect* vt = TypeVect::make(elem_bt, num_elem); 2774 2775 Node* operation = nullptr; 2776 if (lowerSelectFromOp) { 2777 operation = gvn().transform(LowerSelectFromTwoVectorOperation(gvn(), opd1, opd2, opd3, vt)); 2778 } else { 2779 if (index_elem_bt != elem_bt) { 2780 opd1 = gvn().transform(VectorCastNode::make(cast_vopc, opd1, index_elem_bt, num_elem)); 2781 } 2782 int indexRangeMask = 2 * num_elem - 1; 2783 Node* wrap_mask = gvn().makecon(TypeInteger::make(indexRangeMask, indexRangeMask, Type::WidenMin, index_elem_bt != T_LONG ? T_INT : index_elem_bt)); 2784 Node* wrap_mask_vec = gvn().transform(VectorNode::scalar2vector(wrap_mask, num_elem, index_elem_bt, false)); 2785 opd1 = gvn().transform(VectorNode::make(Op_AndV, opd1, wrap_mask_vec, opd1->bottom_type()->is_vect())); 2786 operation = gvn().transform(VectorNode::make(Op_SelectFromTwoVector, opd1, opd2, opd3, vt)); 2787 } 2788 2789 // Wrap it up in VectorBox to keep object type information. 2790 Node* vbox = box_vector(operation, vbox_type, elem_bt, num_elem); 2791 set_result(vbox); 2792 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 2793 return true; 2794 } 2795 2796 // public static 2797 // <V extends Vector<E>, 2798 // M extends VectorMask<E>, 2799 // E> 2800 // V compressExpandOp(int opr, 2801 // Class<? extends V> vClass, Class<? extends M> mClass, Class<E> eClass, 2802 // int length, V v, M m, 2803 // CompressExpandOperation<V, M> defaultImpl) 2804 bool LibraryCallKit::inline_vector_compress_expand() { 2805 const TypeInt* opr = gvn().type(argument(0))->isa_int(); 2806 const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr(); 2807 const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr(); 2808 const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); 2809 const TypeInt* vlen = gvn().type(argument(4))->isa_int(); 2810 2811 if (opr == nullptr || !opr->is_con() || 2812 vector_klass == nullptr || vector_klass->const_oop() == nullptr || 2813 mask_klass == nullptr || mask_klass->const_oop() == nullptr || 2814 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 2815 vlen == nullptr || !vlen->is_con()) { 2816 log_if_needed(" ** missing constant: opr=%s vclass=%s mclass=%s etype=%s vlen=%s", 2817 NodeClassNames[argument(0)->Opcode()], 2818 NodeClassNames[argument(1)->Opcode()], 2819 NodeClassNames[argument(2)->Opcode()], 2820 NodeClassNames[argument(3)->Opcode()], 2821 NodeClassNames[argument(4)->Opcode()]); 2822 return false; // not enough info for intrinsification 2823 } 2824 2825 if (!is_klass_initialized(vector_klass) || !is_klass_initialized(mask_klass)) { 2826 log_if_needed(" ** klass argument not initialized"); 2827 return false; 2828 } 2829 2830 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 2831 if (!elem_type->is_primitive_type()) { 2832 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 2833 return false; // should be primitive type 2834 } 2835 2836 int num_elem = vlen->get_con(); 2837 BasicType elem_bt = elem_type->basic_type(); 2838 int opc = VectorSupport::vop2ideal(opr->get_con(), elem_bt); 2839 2840 if (!arch_supports_vector(opc, num_elem, elem_bt, VecMaskUseLoad)) { 2841 log_if_needed(" ** not supported: opc=%d vlen=%d etype=%s ismask=useload", 2842 opc, num_elem, type2name(elem_bt)); 2843 return false; // not supported 2844 } 2845 2846 Node* opd1 = nullptr; 2847 const TypeInstPtr* vbox_type = nullptr; 2848 if (opc != Op_CompressM) { 2849 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 2850 vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 2851 opd1 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); 2852 if (opd1 == nullptr) { 2853 log_if_needed(" ** unbox failed vector=%s", 2854 NodeClassNames[argument(5)->Opcode()]); 2855 return false; 2856 } 2857 } 2858 2859 ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); 2860 assert(is_vector_mask(mbox_klass), "argument(6) should be a mask class"); 2861 const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); 2862 2863 Node* mask = unbox_vector(argument(6), mbox_type, elem_bt, num_elem); 2864 if (mask == nullptr) { 2865 log_if_needed(" ** unbox failed mask=%s", 2866 NodeClassNames[argument(6)->Opcode()]); 2867 return false; 2868 } 2869 2870 const TypeVect* vt = TypeVect::make(elem_bt, num_elem, opc == Op_CompressM); 2871 Node* operation = gvn().transform(VectorNode::make(opc, opd1, mask, vt)); 2872 2873 // Wrap it up in VectorBox to keep object type information. 2874 const TypeInstPtr* box_type = opc == Op_CompressM ? mbox_type : vbox_type; 2875 Node* vbox = box_vector(operation, box_type, elem_bt, num_elem); 2876 set_result(vbox); 2877 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 2878 return true; 2879 } 2880 2881 // public static 2882 // <V extends Vector<E>, 2883 // E, 2884 // S extends VectorSpecies<E>> 2885 // V indexVector(Class<? extends V> vClass, Class<E> eClass, 2886 // int length, 2887 // V v, int step, S s, 2888 // IndexOperation<V, S> defaultImpl) 2889 bool LibraryCallKit::inline_index_vector() { 2890 const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); 2891 const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); 2892 const TypeInt* vlen = gvn().type(argument(2))->isa_int(); 2893 2894 if (vector_klass == nullptr || vector_klass->const_oop() == nullptr || 2895 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 2896 vlen == nullptr || !vlen->is_con() ) { 2897 log_if_needed(" ** missing constant: vclass=%s etype=%s vlen=%s", 2898 NodeClassNames[argument(0)->Opcode()], 2899 NodeClassNames[argument(1)->Opcode()], 2900 NodeClassNames[argument(2)->Opcode()]); 2901 return false; // not enough info for intrinsification 2902 } 2903 2904 if (!is_klass_initialized(vector_klass)) { 2905 log_if_needed(" ** klass argument not initialized"); 2906 return false; 2907 } 2908 2909 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 2910 if (!elem_type->is_primitive_type()) { 2911 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 2912 return false; // should be primitive type 2913 } 2914 2915 int num_elem = vlen->get_con(); 2916 BasicType elem_bt = elem_type->basic_type(); 2917 2918 // Check whether the iota index generation op is supported by the current hardware 2919 if (!arch_supports_vector(Op_VectorLoadConst, num_elem, elem_bt, VecMaskNotUsed)) { 2920 log_if_needed(" ** not supported: vlen=%d etype=%s", num_elem, type2name(elem_bt)); 2921 return false; // not supported 2922 } 2923 2924 int mul_op = VectorSupport::vop2ideal(VectorSupport::VECTOR_OP_MUL, elem_bt); 2925 int vmul_op = VectorNode::opcode(mul_op, elem_bt); 2926 bool needs_mul = true; 2927 Node* scale = argument(4); 2928 const TypeInt* scale_type = gvn().type(scale)->isa_int(); 2929 // Multiply is not needed if the scale is a constant "1". 2930 if (scale_type && scale_type->is_con() && scale_type->get_con() == 1) { 2931 needs_mul = false; 2932 } else { 2933 // Check whether the vector multiply op is supported by the current hardware 2934 if (!arch_supports_vector(vmul_op, num_elem, elem_bt, VecMaskNotUsed)) { 2935 log_if_needed(" ** not supported: vlen=%d etype=%s", num_elem, type2name(elem_bt)); 2936 return false; // not supported 2937 } 2938 2939 // Check whether the scalar cast op is supported by the current hardware 2940 if (is_floating_point_type(elem_bt) || elem_bt == T_LONG) { 2941 int cast_op = elem_bt == T_LONG ? Op_ConvI2L : 2942 elem_bt == T_FLOAT? Op_ConvI2F : Op_ConvI2D; 2943 if (!Matcher::match_rule_supported(cast_op)) { 2944 log_if_needed(" ** Rejected op (%s) because architecture does not support it", 2945 NodeClassNames[cast_op]); 2946 return false; // not supported 2947 } 2948 } 2949 } 2950 2951 ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); 2952 const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); 2953 Node* opd = unbox_vector(argument(3), vbox_type, elem_bt, num_elem); 2954 if (opd == nullptr) { 2955 log_if_needed(" ** unbox failed vector=%s", 2956 NodeClassNames[argument(3)->Opcode()]); 2957 return false; 2958 } 2959 2960 int add_op = VectorSupport::vop2ideal(VectorSupport::VECTOR_OP_ADD, elem_bt); 2961 int vadd_op = VectorNode::opcode(add_op, elem_bt); 2962 bool needs_add = true; 2963 // The addition is not needed if all the element values of "opd" are zero 2964 if (VectorNode::is_all_zeros_vector(opd)) { 2965 needs_add = false; 2966 } else { 2967 // Check whether the vector addition op is supported by the current hardware 2968 if (!arch_supports_vector(vadd_op, num_elem, elem_bt, VecMaskNotUsed)) { 2969 log_if_needed(" ** not supported: vlen=%d etype=%s", num_elem, type2name(elem_bt)); 2970 return false; // not supported 2971 } 2972 } 2973 2974 // Compute the iota indice vector 2975 const TypeVect* vt = TypeVect::make(elem_bt, num_elem); 2976 Node* index = gvn().transform(new VectorLoadConstNode(gvn().makecon(TypeInt::ZERO), vt)); 2977 2978 // Broadcast the "scale" to a vector, and multiply the "scale" with iota indice vector. 2979 if (needs_mul) { 2980 switch (elem_bt) { 2981 case T_BOOLEAN: // fall-through 2982 case T_BYTE: // fall-through 2983 case T_SHORT: // fall-through 2984 case T_CHAR: // fall-through 2985 case T_INT: { 2986 // no conversion needed 2987 break; 2988 } 2989 case T_LONG: { 2990 scale = gvn().transform(new ConvI2LNode(scale)); 2991 break; 2992 } 2993 case T_FLOAT: { 2994 scale = gvn().transform(new ConvI2FNode(scale)); 2995 break; 2996 } 2997 case T_DOUBLE: { 2998 scale = gvn().transform(new ConvI2DNode(scale)); 2999 break; 3000 } 3001 default: fatal("%s", type2name(elem_bt)); 3002 } 3003 scale = gvn().transform(VectorNode::scalar2vector(scale, num_elem, elem_bt)); 3004 index = gvn().transform(VectorNode::make(vmul_op, index, scale, vt)); 3005 } 3006 3007 // Add "opd" if addition is needed. 3008 if (needs_add) { 3009 index = gvn().transform(VectorNode::make(vadd_op, opd, index, vt)); 3010 } 3011 Node* vbox = box_vector(index, vbox_type, elem_bt, num_elem); 3012 set_result(vbox); 3013 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 3014 return true; 3015 } 3016 3017 // public static 3018 // <E, 3019 // M extends VectorMask<E>> 3020 // M indexPartiallyInUpperRange(Class<? extends M> mClass, Class<E> eClass, int length, 3021 // long offset, long limit, 3022 // IndexPartiallyInUpperRangeOperation<E, M> defaultImpl) 3023 bool LibraryCallKit::inline_index_partially_in_upper_range() { 3024 const TypeInstPtr* mask_klass = gvn().type(argument(0))->isa_instptr(); 3025 const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); 3026 const TypeInt* vlen = gvn().type(argument(2))->isa_int(); 3027 3028 if (mask_klass == nullptr || mask_klass->const_oop() == nullptr || 3029 elem_klass == nullptr || elem_klass->const_oop() == nullptr || 3030 vlen == nullptr || !vlen->is_con()) { 3031 log_if_needed(" ** missing constant: mclass=%s etype=%s vlen=%s", 3032 NodeClassNames[argument(0)->Opcode()], 3033 NodeClassNames[argument(1)->Opcode()], 3034 NodeClassNames[argument(2)->Opcode()]); 3035 return false; // not enough info for intrinsification 3036 } 3037 3038 if (!is_klass_initialized(mask_klass)) { 3039 log_if_needed(" ** klass argument not initialized"); 3040 return false; 3041 } 3042 3043 ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); 3044 if (!elem_type->is_primitive_type()) { 3045 log_if_needed(" ** not a primitive bt=%d", elem_type->basic_type()); 3046 return false; // should be primitive type 3047 } 3048 3049 int num_elem = vlen->get_con(); 3050 BasicType elem_bt = elem_type->basic_type(); 3051 3052 // Check whether the necessary ops are supported by current hardware. 3053 bool supports_mask_gen = arch_supports_vector(Op_VectorMaskGen, num_elem, elem_bt, VecMaskUseStore); 3054 if (!supports_mask_gen) { 3055 if (!arch_supports_vector(Op_VectorLoadConst, num_elem, elem_bt, VecMaskNotUsed) || 3056 !arch_supports_vector(Op_Replicate, num_elem, elem_bt, VecMaskNotUsed) || 3057 !arch_supports_vector(Op_VectorMaskCmp, num_elem, elem_bt, VecMaskUseStore)) { 3058 log_if_needed(" ** not supported: vlen=%d etype=%s", num_elem, type2name(elem_bt)); 3059 return false; // not supported 3060 } 3061 3062 // Check whether the scalar cast operation is supported by current hardware. 3063 if (elem_bt != T_LONG) { 3064 int cast_op = is_integral_type(elem_bt) ? Op_ConvL2I 3065 : (elem_bt == T_FLOAT ? Op_ConvL2F : Op_ConvL2D); 3066 if (!Matcher::match_rule_supported(cast_op)) { 3067 log_if_needed(" ** Rejected op (%s) because architecture does not support it", 3068 NodeClassNames[cast_op]); 3069 return false; // not supported 3070 } 3071 } 3072 } 3073 3074 Node* offset = argument(3); 3075 Node* limit = argument(5); 3076 if (offset == nullptr || limit == nullptr) { 3077 log_if_needed(" ** offset or limit argument is null"); 3078 return false; // not supported 3079 } 3080 3081 ciKlass* box_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); 3082 assert(is_vector_mask(box_klass), "argument(0) should be a mask class"); 3083 const TypeInstPtr* box_type = TypeInstPtr::make_exact(TypePtr::NotNull, box_klass); 3084 3085 // We assume "offset > 0 && limit >= offset && limit - offset < num_elem". 3086 // So directly get indexLimit with "indexLimit = limit - offset". 3087 Node* indexLimit = gvn().transform(new SubLNode(limit, offset)); 3088 Node* mask = nullptr; 3089 if (supports_mask_gen) { 3090 mask = gvn().transform(VectorMaskGenNode::make(indexLimit, elem_bt, num_elem)); 3091 } else { 3092 // Generate the vector mask based on "mask = iota < indexLimit". 3093 // Broadcast "indexLimit" to a vector. 3094 switch (elem_bt) { 3095 case T_BOOLEAN: // fall-through 3096 case T_BYTE: // fall-through 3097 case T_SHORT: // fall-through 3098 case T_CHAR: // fall-through 3099 case T_INT: { 3100 indexLimit = gvn().transform(new ConvL2INode(indexLimit)); 3101 break; 3102 } 3103 case T_DOUBLE: { 3104 indexLimit = gvn().transform(new ConvL2DNode(indexLimit)); 3105 break; 3106 } 3107 case T_FLOAT: { 3108 indexLimit = gvn().transform(new ConvL2FNode(indexLimit)); 3109 break; 3110 } 3111 case T_LONG: { 3112 // no conversion needed 3113 break; 3114 } 3115 default: fatal("%s", type2name(elem_bt)); 3116 } 3117 indexLimit = gvn().transform(VectorNode::scalar2vector(indexLimit, num_elem, elem_bt)); 3118 3119 // Load the "iota" vector. 3120 const TypeVect* vt = TypeVect::make(elem_bt, num_elem); 3121 Node* iota = gvn().transform(new VectorLoadConstNode(gvn().makecon(TypeInt::ZERO), vt)); 3122 3123 // Compute the vector mask with "mask = iota < indexLimit". 3124 ConINode* pred_node = (ConINode*)gvn().makecon(TypeInt::make(BoolTest::lt)); 3125 const TypeVect* vmask_type = TypeVect::makemask(elem_bt, num_elem); 3126 mask = gvn().transform(new VectorMaskCmpNode(BoolTest::lt, iota, indexLimit, pred_node, vmask_type)); 3127 } 3128 Node* vbox = box_vector(mask, box_type, elem_bt, num_elem); 3129 set_result(vbox); 3130 C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); 3131 return true; 3132 } 3133 3134 #undef non_product_log_if_needed 3135 #undef log_if_needed