1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/javaClasses.inline.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compilationPolicy.hpp"
  35 #include "compiler/compilerDefinitions.inline.hpp"
  36 #include "gc/shared/collectedHeap.hpp"
  37 #include "gc/shared/memAllocator.hpp"
  38 #include "interpreter/bytecode.hpp"
  39 #include "interpreter/bytecode.inline.hpp"
  40 #include "interpreter/bytecodeStream.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvm.h"
  44 #include "logging/log.hpp"
  45 #include "logging/logLevel.hpp"
  46 #include "logging/logMessage.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/constantPool.hpp"
  53 #include "oops/fieldStreams.inline.hpp"
  54 #include "oops/method.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/objArrayOop.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvmtiDeferredUpdates.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "prims/methodHandles.hpp"
  64 #include "prims/vectorSupport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/basicLock.inline.hpp"
  67 #include "runtime/continuation.hpp"
  68 #include "runtime/continuationEntry.inline.hpp"
  69 #include "runtime/deoptimization.hpp"
  70 #include "runtime/escapeBarrier.hpp"
  71 #include "runtime/fieldDescriptor.hpp"
  72 #include "runtime/fieldDescriptor.inline.hpp"
  73 #include "runtime/frame.inline.hpp"
  74 #include "runtime/handles.inline.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/javaThread.hpp"
  77 #include "runtime/jniHandles.inline.hpp"
  78 #include "runtime/keepStackGCProcessed.hpp"
  79 #include "runtime/lightweightSynchronizer.hpp"
  80 #include "runtime/lockStack.inline.hpp"
  81 #include "runtime/objectMonitor.inline.hpp"
  82 #include "runtime/osThread.hpp"
  83 #include "runtime/safepointVerifiers.hpp"
  84 #include "runtime/sharedRuntime.hpp"
  85 #include "runtime/signature.hpp"
  86 #include "runtime/stackFrameStream.inline.hpp"
  87 #include "runtime/stackValue.hpp"
  88 #include "runtime/stackWatermarkSet.hpp"
  89 #include "runtime/stubRoutines.hpp"
  90 #include "runtime/synchronizer.inline.hpp"
  91 #include "runtime/threadSMR.hpp"
  92 #include "runtime/threadWXSetters.inline.hpp"
  93 #include "runtime/vframe.hpp"
  94 #include "runtime/vframeArray.hpp"
  95 #include "runtime/vframe_hp.hpp"
  96 #include "runtime/vmOperations.hpp"
  97 #include "utilities/checkedCast.hpp"
  98 #include "utilities/events.hpp"
  99 #include "utilities/growableArray.hpp"
 100 #include "utilities/macros.hpp"
 101 #include "utilities/preserveException.hpp"
 102 #include "utilities/xmlstream.hpp"
 103 #if INCLUDE_JFR
 104 #include "jfr/jfr.inline.hpp"
 105 #include "jfr/jfrEvents.hpp"
 106 #include "jfr/metadata/jfrSerializer.hpp"
 107 #endif
 108 
 109 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 110 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 111 bool     DeoptimizationScope::_committing_in_progress = false;
 112 
 113 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 114   DEBUG_ONLY(_deopted = false;)
 115 
 116   MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
 117   // If there is nothing to deopt _required_gen is the same as comitted.
 118   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 119 }
 120 
 121 DeoptimizationScope::~DeoptimizationScope() {
 122   assert(_deopted, "Deopt not executed");
 123 }
 124 
 125 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) {
 126   if (!nm->can_be_deoptimized()) {
 127     return;
 128   }
 129 
 130   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 131 
 132   // If it's already marked but we still need it to be deopted.
 133   if (nm->is_marked_for_deoptimization()) {
 134     dependent(nm);
 135     return;
 136   }
 137 
 138   nmethod::DeoptimizationStatus status =
 139     inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate;
 140   Atomic::store(&nm->_deoptimization_status, status);
 141 
 142   // Make sure active is not committed
 143   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 144   assert(nm->_deoptimization_generation == 0, "Is already marked");
 145 
 146   nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 147   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 148 }
 149 
 150 void DeoptimizationScope::dependent(nmethod* nm) {
 151   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 152 
 153   // A method marked by someone else may have a _required_gen lower than what we marked with.
 154   // Therefore only store it if it's higher than _required_gen.
 155   if (_required_gen < nm->_deoptimization_generation) {
 156     _required_gen = nm->_deoptimization_generation;
 157   }
 158 }
 159 
 160 void DeoptimizationScope::deoptimize_marked() {
 161   assert(!_deopted, "Already deopted");
 162 
 163   // We are not alive yet.
 164   if (!Universe::is_fully_initialized()) {
 165     DEBUG_ONLY(_deopted = true;)
 166     return;
 167   }
 168 
 169   // Safepoints are a special case, handled here.
 170   if (SafepointSynchronize::is_at_safepoint()) {
 171     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 172     DeoptimizationScope::_active_deopt_gen++;
 173     Deoptimization::deoptimize_all_marked();
 174     DEBUG_ONLY(_deopted = true;)
 175     return;
 176   }
 177 
 178   uint64_t comitting = 0;
 179   bool wait = false;
 180   while (true) {
 181     {
 182       ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 183 
 184       // First we check if we or someone else already deopted the gen we want.
 185       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 186         DEBUG_ONLY(_deopted = true;)
 187         return;
 188       }
 189       if (!_committing_in_progress) {
 190         // The version we are about to commit.
 191         comitting = DeoptimizationScope::_active_deopt_gen;
 192         // Make sure new marks use a higher gen.
 193         DeoptimizationScope::_active_deopt_gen++;
 194         _committing_in_progress = true;
 195         wait = false;
 196       } else {
 197         // Another thread is handshaking and committing a gen.
 198         wait = true;
 199       }
 200     }
 201     if (wait) {
 202       // Wait and let the concurrent handshake be performed.
 203       ThreadBlockInVM tbivm(JavaThread::current());
 204       os::naked_yield();
 205     } else {
 206       // Performs the handshake.
 207       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 208       DEBUG_ONLY(_deopted = true;)
 209       {
 210         ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 211 
 212         // Make sure that committed doesn't go backwards.
 213         // Should only happen if we did a deopt during a safepoint above.
 214         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 215           DeoptimizationScope::_committed_deopt_gen = comitting;
 216         }
 217         _committing_in_progress = false;
 218 
 219         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 220 
 221         return;
 222       }
 223     }
 224   }
 225 }
 226 
 227 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 228                                          int  caller_adjustment,
 229                                          int  caller_actual_parameters,
 230                                          int  number_of_frames,
 231                                          intptr_t* frame_sizes,
 232                                          address* frame_pcs,
 233                                          BasicType return_type,
 234                                          int exec_mode) {
 235   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 236   _caller_adjustment         = caller_adjustment;
 237   _caller_actual_parameters  = caller_actual_parameters;
 238   _number_of_frames          = number_of_frames;
 239   _frame_sizes               = frame_sizes;
 240   _frame_pcs                 = frame_pcs;
 241   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 242   _return_type               = return_type;
 243   _initial_info              = 0;
 244   // PD (x86 only)
 245   _counter_temp              = 0;
 246   _unpack_kind               = exec_mode;
 247   _sender_sp_temp            = 0;
 248 
 249   _total_frame_sizes         = size_of_frames();
 250   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 251 }
 252 
 253 Deoptimization::UnrollBlock::~UnrollBlock() {
 254   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 255   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 256   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 257 }
 258 
 259 int Deoptimization::UnrollBlock::size_of_frames() const {
 260   // Account first for the adjustment of the initial frame
 261   intptr_t result = _caller_adjustment;
 262   for (int index = 0; index < number_of_frames(); index++) {
 263     result += frame_sizes()[index];
 264   }
 265   return checked_cast<int>(result);
 266 }
 267 
 268 void Deoptimization::UnrollBlock::print() {
 269   ResourceMark rm;
 270   stringStream st;
 271   st.print_cr("UnrollBlock");
 272   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 273   st.print(   "  frame_sizes: ");
 274   for (int index = 0; index < number_of_frames(); index++) {
 275     st.print("%zd ", frame_sizes()[index]);
 276   }
 277   st.cr();
 278   tty->print_raw(st.freeze());
 279 }
 280 
 281 // In order to make fetch_unroll_info work properly with escape
 282 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 283 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 284 // which is called from the method fetch_unroll_info_helper below.
 285 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 286   // fetch_unroll_info() is called at the beginning of the deoptimization
 287   // handler. Note this fact before we start generating temporary frames
 288   // that can confuse an asynchronous stack walker. This counter is
 289   // decremented at the end of unpack_frames().
 290   current->inc_in_deopt_handler();
 291 
 292   if (exec_mode == Unpack_exception) {
 293     // When we get here, a callee has thrown an exception into a deoptimized
 294     // frame. That throw might have deferred stack watermark checking until
 295     // after unwinding. So we deal with such deferred requests here.
 296     StackWatermarkSet::after_unwind(current);
 297   }
 298 
 299   return fetch_unroll_info_helper(current, exec_mode);
 300 JRT_END
 301 
 302 #if COMPILER2_OR_JVMCI
 303 // print information about reallocated objects
 304 static void print_objects(JavaThread* deoptee_thread,
 305                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 306   ResourceMark rm;
 307   stringStream st;  // change to logStream with logging
 308   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 309   fieldDescriptor fd;
 310 
 311   for (int i = 0; i < objects->length(); i++) {
 312     ObjectValue* sv = (ObjectValue*) objects->at(i);
 313     Handle obj = sv->value();
 314 
 315     if (obj.is_null()) {
 316       st.print_cr("     nullptr");
 317       continue;
 318     }
 319 
 320     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 321 
 322     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 323     k->print_value_on(&st);
 324     st.print_cr(" allocated (%zu bytes)", obj->size() * HeapWordSize);
 325 
 326     if (Verbose && k != nullptr) {
 327       k->oop_print_on(obj(), &st);
 328     }
 329   }
 330   tty->print_raw(st.freeze());
 331 }
 332 
 333 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method,
 334                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 335                                   bool& deoptimized_objects) {
 336   bool realloc_failures = false;
 337   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 338 
 339   JavaThread* deoptee_thread = chunk->at(0)->thread();
 340   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 341          "a frame can only be deoptimized by the owner thread");
 342 
 343   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 344 
 345   // The flag return_oop() indicates call sites which return oop
 346   // in compiled code. Such sites include java method calls,
 347   // runtime calls (for example, used to allocate new objects/arrays
 348   // on slow code path) and any other calls generated in compiled code.
 349   // It is not guaranteed that we can get such information here only
 350   // by analyzing bytecode in deoptimized frames. This is why this flag
 351   // is set during method compilation (see Compile::Process_OopMap_Node()).
 352   // If the previous frame was popped or if we are dispatching an exception,
 353   // we don't have an oop result.
 354   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 355   Handle return_value;
 356   if (save_oop_result) {
 357     // Reallocation may trigger GC. If deoptimization happened on return from
 358     // call which returns oop we need to save it since it is not in oopmap.
 359     oop result = deoptee.saved_oop_result(&map);
 360     assert(oopDesc::is_oop_or_null(result), "must be oop");
 361     return_value = Handle(thread, result);
 362     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 363     if (TraceDeoptimization) {
 364       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 365       tty->cr();
 366     }
 367   }
 368   if (objects != nullptr) {
 369     if (exec_mode == Deoptimization::Unpack_none) {
 370       assert(thread->thread_state() == _thread_in_vm, "assumption");
 371       JavaThread* THREAD = thread; // For exception macros.
 372       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 373       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 374       deoptimized_objects = true;
 375     } else {
 376       JavaThread* current = thread; // For JRT_BLOCK
 377       JRT_BLOCK
 378       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 379       JRT_END
 380     }
 381     guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod");
 382     bool is_jvmci = compiled_method->is_compiled_by_jvmci();
 383     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci);
 384     if (TraceDeoptimization) {
 385       print_objects(deoptee_thread, objects, realloc_failures);
 386     }
 387   }
 388   if (save_oop_result) {
 389     // Restore result.
 390     deoptee.set_saved_oop_result(&map, return_value());
 391   }
 392   return realloc_failures;
 393 }
 394 
 395 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 396                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 397   JavaThread* deoptee_thread = chunk->at(0)->thread();
 398   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 399   assert(thread == Thread::current(), "should be");
 400   HandleMark hm(thread);
 401 #ifndef PRODUCT
 402   bool first = true;
 403 #endif // !PRODUCT
 404   // Start locking from outermost/oldest frame
 405   for (int i = (chunk->length() - 1); i >= 0; i--) {
 406     compiledVFrame* cvf = chunk->at(i);
 407     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 408     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 409     if (monitors->is_nonempty()) {
 410       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 411                                                      exec_mode, realloc_failures);
 412       deoptimized_objects = deoptimized_objects || relocked;
 413 #ifndef PRODUCT
 414       if (PrintDeoptimizationDetails) {
 415         ResourceMark rm;
 416         stringStream st;
 417         for (int j = 0; j < monitors->length(); j++) {
 418           MonitorInfo* mi = monitors->at(j);
 419           if (mi->eliminated()) {
 420             if (first) {
 421               first = false;
 422               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 423             }
 424             if (exec_mode == Deoptimization::Unpack_none) {
 425               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 426               if (monitor != nullptr && monitor->object() == mi->owner()) {
 427                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 428                 continue;
 429               }
 430             }
 431             if (mi->owner_is_scalar_replaced()) {
 432               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 433               st.print_cr("     failed reallocation for klass %s", k->external_name());
 434             } else {
 435               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 436             }
 437           }
 438         }
 439         tty->print_raw(st.freeze());
 440       }
 441 #endif // !PRODUCT
 442     }
 443   }
 444 }
 445 
 446 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 447 // The given vframes cover one physical frame.
 448 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 449                                                  bool& realloc_failures) {
 450   frame deoptee = chunk->at(0)->fr();
 451   JavaThread* deoptee_thread = chunk->at(0)->thread();
 452   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 453   RegisterMap map(chunk->at(0)->register_map());
 454   bool deoptimized_objects = false;
 455 
 456   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 457 
 458   // Reallocate the non-escaping objects and restore their fields.
 459   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 460                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 461     realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects);
 462   }
 463 
 464   // MonitorInfo structures used in eliminate_locks are not GC safe.
 465   NoSafepointVerifier no_safepoint;
 466 
 467   // Now relock objects if synchronization on them was eliminated.
 468   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 469     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 470   }
 471   return deoptimized_objects;
 472 }
 473 #endif // COMPILER2_OR_JVMCI
 474 
 475 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 476 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 477   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
 478   // When we get here we are about to unwind the deoptee frame. In order to
 479   // catch not yet safe to use frames, the following stack watermark barrier
 480   // poll will make such frames safe to use.
 481   StackWatermarkSet::before_unwind(current);
 482 
 483   // Note: there is a safepoint safety issue here. No matter whether we enter
 484   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 485   // the vframeArray is created.
 486   //
 487 
 488   // Allocate our special deoptimization ResourceMark
 489   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 490   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 491   current->set_deopt_mark(dmark);
 492 
 493   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 494   RegisterMap map(current,
 495                   RegisterMap::UpdateMap::include,
 496                   RegisterMap::ProcessFrames::include,
 497                   RegisterMap::WalkContinuation::skip);
 498   RegisterMap dummy_map(current,
 499                         RegisterMap::UpdateMap::skip,
 500                         RegisterMap::ProcessFrames::include,
 501                         RegisterMap::WalkContinuation::skip);
 502   // Now get the deoptee with a valid map
 503   frame deoptee = stub_frame.sender(&map);
 504   // Set the deoptee nmethod
 505   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 506   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 507   current->set_deopt_compiled_method(nm);
 508 
 509   if (VerifyStack) {
 510     current->validate_frame_layout();
 511   }
 512 
 513   // Create a growable array of VFrames where each VFrame represents an inlined
 514   // Java frame.  This storage is allocated with the usual system arena.
 515   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 516   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 517   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 518   while (!vf->is_top()) {
 519     assert(vf->is_compiled_frame(), "Wrong frame type");
 520     chunk->push(compiledVFrame::cast(vf));
 521     vf = vf->sender();
 522   }
 523   assert(vf->is_compiled_frame(), "Wrong frame type");
 524   chunk->push(compiledVFrame::cast(vf));
 525 
 526   bool realloc_failures = false;
 527 
 528 #if COMPILER2_OR_JVMCI
 529   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 530 
 531   // Reallocate the non-escaping objects and restore their fields. Then
 532   // relock objects if synchronization on them was eliminated.
 533   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 534                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 535     bool unused;
 536     realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused);
 537   }
 538 #endif // COMPILER2_OR_JVMCI
 539 
 540   // Ensure that no safepoint is taken after pointers have been stored
 541   // in fields of rematerialized objects.  If a safepoint occurs from here on
 542   // out the java state residing in the vframeArray will be missed.
 543   // Locks may be rebaised in a safepoint.
 544   NoSafepointVerifier no_safepoint;
 545 
 546 #if COMPILER2_OR_JVMCI
 547   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 548       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 549     bool unused = false;
 550     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 551   }
 552 #endif // COMPILER2_OR_JVMCI
 553 
 554   ScopeDesc* trap_scope = chunk->at(0)->scope();
 555   Handle exceptionObject;
 556   if (trap_scope->rethrow_exception()) {
 557 #ifndef PRODUCT
 558     if (PrintDeoptimizationDetails) {
 559       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 560     }
 561 #endif // !PRODUCT
 562 
 563     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 564     guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw");
 565     ScopeValue* topOfStack = expressions->top();
 566     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 567     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 568   }
 569 
 570   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 571 #if COMPILER2_OR_JVMCI
 572   if (realloc_failures) {
 573     // This destroys all ScopedValue bindings.
 574     current->clear_scopedValueBindings();
 575     pop_frames_failed_reallocs(current, array);
 576   }
 577 #endif
 578 
 579   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 580   current->set_vframe_array_head(array);
 581 
 582   // Now that the vframeArray has been created if we have any deferred local writes
 583   // added by jvmti then we can free up that structure as the data is now in the
 584   // vframeArray
 585 
 586   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 587 
 588   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 589   CodeBlob* cb = stub_frame.cb();
 590   // Verify we have the right vframeArray
 591   assert(cb->frame_size() >= 0, "Unexpected frame size");
 592   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 593 
 594   // If the deopt call site is a MethodHandle invoke call site we have
 595   // to adjust the unpack_sp.
 596   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 597   if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc()))
 598     unpack_sp = deoptee.unextended_sp();
 599 
 600 #ifdef ASSERT
 601   assert(cb->is_deoptimization_stub() ||
 602          cb->is_uncommon_trap_stub() ||
 603          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 604          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 605          "unexpected code blob: %s", cb->name());
 606 #endif
 607 
 608   // This is a guarantee instead of an assert because if vframe doesn't match
 609   // we will unpack the wrong deoptimized frame and wind up in strange places
 610   // where it will be very difficult to figure out what went wrong. Better
 611   // to die an early death here than some very obscure death later when the
 612   // trail is cold.
 613   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 614 
 615   int number_of_frames = array->frames();
 616 
 617   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 618   // virtual activation, which is the reverse of the elements in the vframes array.
 619   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 620   // +1 because we always have an interpreter return address for the final slot.
 621   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 622   int popframe_extra_args = 0;
 623   // Create an interpreter return address for the stub to use as its return
 624   // address so the skeletal frames are perfectly walkable
 625   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 626 
 627   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 628   // activation be put back on the expression stack of the caller for reexecution
 629   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 630     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 631   }
 632 
 633   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 634   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 635   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 636   //
 637   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 638   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 639 
 640   // It's possible that the number of parameters at the call site is
 641   // different than number of arguments in the callee when method
 642   // handles are used.  If the caller is interpreted get the real
 643   // value so that the proper amount of space can be added to it's
 644   // frame.
 645   bool caller_was_method_handle = false;
 646   if (deopt_sender.is_interpreted_frame()) {
 647     methodHandle method(current, deopt_sender.interpreter_frame_method());
 648     Bytecode_invoke cur(method, deopt_sender.interpreter_frame_bci());
 649     if (cur.has_member_arg()) {
 650       // This should cover all real-world cases.  One exception is a pathological chain of
 651       // MH.linkToXXX() linker calls, which only trusted code could do anyway.  To handle that case, we
 652       // would need to get the size from the resolved method entry.  Another exception would
 653       // be an invokedynamic with an adapter that is really a MethodHandle linker.
 654       caller_was_method_handle = true;
 655     }
 656   }
 657 
 658   //
 659   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 660   // frame_sizes/frame_pcs[1] next oldest frame (int)
 661   // frame_sizes/frame_pcs[n] youngest frame (int)
 662   //
 663   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 664   // owns the space for the return address to it's caller).  Confusing ain't it.
 665   //
 666   // The vframe array can address vframes with indices running from
 667   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 668   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 669   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 670   // so things look a little strange in this loop.
 671   //
 672   int callee_parameters = 0;
 673   int callee_locals = 0;
 674   for (int index = 0; index < array->frames(); index++ ) {
 675     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 676     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 677     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 678     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 679                                                                                                     callee_locals,
 680                                                                                                     index == 0,
 681                                                                                                     popframe_extra_args);
 682     // This pc doesn't have to be perfect just good enough to identify the frame
 683     // as interpreted so the skeleton frame will be walkable
 684     // The correct pc will be set when the skeleton frame is completely filled out
 685     // The final pc we store in the loop is wrong and will be overwritten below
 686     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 687 
 688     callee_parameters = array->element(index)->method()->size_of_parameters();
 689     callee_locals = array->element(index)->method()->max_locals();
 690     popframe_extra_args = 0;
 691   }
 692 
 693   // Compute whether the root vframe returns a float or double value.
 694   BasicType return_type;
 695   {
 696     methodHandle method(current, array->element(0)->method());
 697     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 698     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 699   }
 700 
 701   // Compute information for handling adapters and adjusting the frame size of the caller.
 702   int caller_adjustment = 0;
 703 
 704   // Compute the amount the oldest interpreter frame will have to adjust
 705   // its caller's stack by. If the caller is a compiled frame then
 706   // we pretend that the callee has no parameters so that the
 707   // extension counts for the full amount of locals and not just
 708   // locals-parms. This is because without a c2i adapter the parm
 709   // area as created by the compiled frame will not be usable by
 710   // the interpreter. (Depending on the calling convention there
 711   // may not even be enough space).
 712 
 713   // QQQ I'd rather see this pushed down into last_frame_adjust
 714   // and have it take the sender (aka caller).
 715 
 716   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 717     caller_adjustment = last_frame_adjust(0, callee_locals);
 718   } else if (callee_locals > callee_parameters) {
 719     // The caller frame may need extending to accommodate
 720     // non-parameter locals of the first unpacked interpreted frame.
 721     // Compute that adjustment.
 722     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 723   }
 724 
 725   // If the sender is deoptimized the we must retrieve the address of the handler
 726   // since the frame will "magically" show the original pc before the deopt
 727   // and we'd undo the deopt.
 728 
 729   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 730   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 731     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 732   }
 733 
 734   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 735 
 736 #if INCLUDE_JVMCI
 737   if (exceptionObject() != nullptr) {
 738     current->set_exception_oop(exceptionObject());
 739     exec_mode = Unpack_exception;
 740   }
 741 #endif
 742 
 743   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 744     assert(current->has_pending_exception(), "should have thrown OOME");
 745     current->set_exception_oop(current->pending_exception());
 746     current->clear_pending_exception();
 747     exec_mode = Unpack_exception;
 748   }
 749 
 750 #if INCLUDE_JVMCI
 751   if (current->frames_to_pop_failed_realloc() > 0) {
 752     current->set_pending_monitorenter(false);
 753   }
 754 #endif
 755 
 756   int caller_actual_parameters = -1; // value not used except for interpreted frames, see below
 757   if (deopt_sender.is_interpreted_frame()) {
 758     caller_actual_parameters = callee_parameters + (caller_was_method_handle ? 1 : 0);
 759   }
 760 
 761   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 762                                       caller_adjustment * BytesPerWord,
 763                                       caller_actual_parameters,
 764                                       number_of_frames,
 765                                       frame_sizes,
 766                                       frame_pcs,
 767                                       return_type,
 768                                       exec_mode);
 769   // On some platforms, we need a way to pass some platform dependent
 770   // information to the unpacking code so the skeletal frames come out
 771   // correct (initial fp value, unextended sp, ...)
 772   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 773 
 774   if (array->frames() > 1) {
 775     if (VerifyStack && TraceDeoptimization) {
 776       tty->print_cr("Deoptimizing method containing inlining");
 777     }
 778   }
 779 
 780   array->set_unroll_block(info);
 781   return info;
 782 }
 783 
 784 // Called to cleanup deoptimization data structures in normal case
 785 // after unpacking to stack and when stack overflow error occurs
 786 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 787                                         vframeArray *array) {
 788 
 789   // Get array if coming from exception
 790   if (array == nullptr) {
 791     array = thread->vframe_array_head();
 792   }
 793   thread->set_vframe_array_head(nullptr);
 794 
 795   // Free the previous UnrollBlock
 796   vframeArray* old_array = thread->vframe_array_last();
 797   thread->set_vframe_array_last(array);
 798 
 799   if (old_array != nullptr) {
 800     UnrollBlock* old_info = old_array->unroll_block();
 801     old_array->set_unroll_block(nullptr);
 802     delete old_info;
 803     delete old_array;
 804   }
 805 
 806   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 807   // inside the vframeArray (StackValueCollections)
 808 
 809   delete thread->deopt_mark();
 810   thread->set_deopt_mark(nullptr);
 811   thread->set_deopt_compiled_method(nullptr);
 812 
 813 
 814   if (JvmtiExport::can_pop_frame()) {
 815     // Regardless of whether we entered this routine with the pending
 816     // popframe condition bit set, we should always clear it now
 817     thread->clear_popframe_condition();
 818   }
 819 
 820   // unpack_frames() is called at the end of the deoptimization handler
 821   // and (in C2) at the end of the uncommon trap handler. Note this fact
 822   // so that an asynchronous stack walker can work again. This counter is
 823   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 824   // the beginning of uncommon_trap().
 825   thread->dec_in_deopt_handler();
 826 }
 827 
 828 // Moved from cpu directories because none of the cpus has callee save values.
 829 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 830 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 831 
 832   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 833   // the days we had adapter frames. When we deoptimize a situation where a
 834   // compiled caller calls a compiled caller will have registers it expects
 835   // to survive the call to the callee. If we deoptimize the callee the only
 836   // way we can restore these registers is to have the oldest interpreter
 837   // frame that we create restore these values. That is what this routine
 838   // will accomplish.
 839 
 840   // At the moment we have modified c2 to not have any callee save registers
 841   // so this problem does not exist and this routine is just a place holder.
 842 
 843   assert(f->is_interpreted_frame(), "must be interpreted");
 844 }
 845 
 846 #ifndef PRODUCT
 847 // Return true if the execution after the provided bytecode continues at the
 848 // next bytecode in the code. This is not the case for gotos, returns, and
 849 // throws.
 850 static bool falls_through(Bytecodes::Code bc) {
 851   switch (bc) {
 852     case Bytecodes::_goto:
 853     case Bytecodes::_goto_w:
 854     case Bytecodes::_athrow:
 855     case Bytecodes::_areturn:
 856     case Bytecodes::_dreturn:
 857     case Bytecodes::_freturn:
 858     case Bytecodes::_ireturn:
 859     case Bytecodes::_lreturn:
 860     case Bytecodes::_jsr:
 861     case Bytecodes::_ret:
 862     case Bytecodes::_return:
 863     case Bytecodes::_lookupswitch:
 864     case Bytecodes::_tableswitch:
 865       return false;
 866     default:
 867       return true;
 868   }
 869 }
 870 #endif
 871 
 872 // Return BasicType of value being returned
 873 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 874   assert(thread == JavaThread::current(), "pre-condition");
 875 
 876   // We are already active in the special DeoptResourceMark any ResourceObj's we
 877   // allocate will be freed at the end of the routine.
 878 
 879   // JRT_LEAF methods don't normally allocate handles and there is a
 880   // NoHandleMark to enforce that. It is actually safe to use Handles
 881   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 882   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 883   // then use a HandleMark to ensure any Handles we do create are
 884   // cleaned up in this scope.
 885   ResetNoHandleMark rnhm;
 886   HandleMark hm(thread);
 887 
 888   frame stub_frame = thread->last_frame();
 889 
 890   Continuation::notify_deopt(thread, stub_frame.sp());
 891 
 892   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 893   // must point to the vframeArray for the unpack frame.
 894   vframeArray* array = thread->vframe_array_head();
 895   UnrollBlock* info = array->unroll_block();
 896 
 897   // We set the last_Java frame. But the stack isn't really parsable here. So we
 898   // clear it to make sure JFR understands not to try and walk stacks from events
 899   // in here.
 900   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 901   thread->frame_anchor()->set_last_Java_sp(nullptr);
 902 
 903   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 904   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 905 
 906   thread->frame_anchor()->set_last_Java_sp(sp);
 907 
 908   BasicType bt = info->return_type();
 909 
 910   // If we have an exception pending, claim that the return type is an oop
 911   // so the deopt_blob does not overwrite the exception_oop.
 912 
 913   if (exec_mode == Unpack_exception)
 914     bt = T_OBJECT;
 915 
 916   // Cleanup thread deopt data
 917   cleanup_deopt_info(thread, array);
 918 
 919 #ifndef PRODUCT
 920   if (VerifyStack) {
 921     ResourceMark res_mark;
 922     // Clear pending exception to not break verification code (restored afterwards)
 923     PreserveExceptionMark pm(thread);
 924 
 925     thread->validate_frame_layout();
 926 
 927     // Verify that the just-unpacked frames match the interpreter's
 928     // notions of expression stack and locals
 929     vframeArray* cur_array = thread->vframe_array_last();
 930     RegisterMap rm(thread,
 931                    RegisterMap::UpdateMap::skip,
 932                    RegisterMap::ProcessFrames::include,
 933                    RegisterMap::WalkContinuation::skip);
 934     rm.set_include_argument_oops(false);
 935     bool is_top_frame = true;
 936     int callee_size_of_parameters = 0;
 937     int callee_max_locals = 0;
 938     for (int i = 0; i < cur_array->frames(); i++) {
 939       vframeArrayElement* el = cur_array->element(i);
 940       frame* iframe = el->iframe();
 941       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 942 
 943       // Get the oop map for this bci
 944       InterpreterOopMap mask;
 945       int cur_invoke_parameter_size = 0;
 946       bool try_next_mask = false;
 947       int next_mask_expression_stack_size = -1;
 948       int top_frame_expression_stack_adjustment = 0;
 949       methodHandle mh(thread, iframe->interpreter_frame_method());
 950       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 951       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 952       int max_bci = mh->code_size();
 953       // Get to the next bytecode if possible
 954       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 955       // Check to see if we can grab the number of outgoing arguments
 956       // at an uncommon trap for an invoke (where the compiler
 957       // generates debug info before the invoke has executed)
 958       Bytecodes::Code cur_code = str.next();
 959       Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere;
 960       if (Bytecodes::is_invoke(cur_code)) {
 961         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 962         cur_invoke_parameter_size = invoke.size_of_parameters();
 963         if (i != 0 && invoke.has_member_arg()) {
 964           callee_size_of_parameters++;
 965         }
 966       }
 967       if (str.bci() < max_bci) {
 968         next_code = str.next();
 969         if (next_code >= 0) {
 970           // The interpreter oop map generator reports results before
 971           // the current bytecode has executed except in the case of
 972           // calls. It seems to be hard to tell whether the compiler
 973           // has emitted debug information matching the "state before"
 974           // a given bytecode or the state after, so we try both
 975           if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) {
 976             // Get expression stack size for the next bytecode
 977             InterpreterOopMap next_mask;
 978             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 979             next_mask_expression_stack_size = next_mask.expression_stack_size();
 980             if (Bytecodes::is_invoke(next_code)) {
 981               Bytecode_invoke invoke(mh, str.bci());
 982               next_mask_expression_stack_size += invoke.size_of_parameters();
 983             }
 984             // Need to subtract off the size of the result type of
 985             // the bytecode because this is not described in the
 986             // debug info but returned to the interpreter in the TOS
 987             // caching register
 988             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 989             if (bytecode_result_type != T_ILLEGAL) {
 990               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 991             }
 992             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 993             try_next_mask = true;
 994           }
 995         }
 996       }
 997 
 998       // Verify stack depth and oops in frame
 999       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
1000       if (!(
1001             /* SPARC */
1002             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
1003             /* x86 */
1004             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
1005             (try_next_mask &&
1006              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
1007                                                                     top_frame_expression_stack_adjustment))) ||
1008             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
1009             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
1010              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
1011             )) {
1012         {
1013           // Print out some information that will help us debug the problem
1014           tty->print_cr("Wrong number of expression stack elements during deoptimization");
1015           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
1016           tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
1017           if (try_next_mask) {
1018             tty->print_cr("  Next code %s", Bytecodes::name(next_code));
1019           }
1020           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
1021                         iframe->interpreter_frame_expression_stack_size());
1022           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
1023           tty->print_cr("  try_next_mask = %d", try_next_mask);
1024           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
1025           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
1026           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
1027           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1028           tty->print_cr("  exec_mode = %d", exec_mode);
1029           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1030           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1031           tty->print_cr("  Interpreted frames:");
1032           for (int k = 0; k < cur_array->frames(); k++) {
1033             vframeArrayElement* el = cur_array->element(k);
1034             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1035           }
1036           cur_array->print_on_2(tty);
1037         }
1038         guarantee(false, "wrong number of expression stack elements during deopt");
1039       }
1040       VerifyOopClosure verify;
1041       iframe->oops_interpreted_do(&verify, &rm, false);
1042       callee_size_of_parameters = mh->size_of_parameters();
1043       callee_max_locals = mh->max_locals();
1044       is_top_frame = false;
1045     }
1046   }
1047 #endif // !PRODUCT
1048 
1049   return bt;
1050 JRT_END
1051 
1052 class DeoptimizeMarkedClosure : public HandshakeClosure {
1053  public:
1054   DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {}
1055   void do_thread(Thread* thread) {
1056     JavaThread* jt = JavaThread::cast(thread);
1057     jt->deoptimize_marked_methods();
1058   }
1059 };
1060 
1061 void Deoptimization::deoptimize_all_marked() {
1062   ResourceMark rm;
1063 
1064   // Make the dependent methods not entrant
1065   CodeCache::make_marked_nmethods_deoptimized();
1066 
1067   DeoptimizeMarkedClosure deopt;
1068   if (SafepointSynchronize::is_at_safepoint()) {
1069     Threads::java_threads_do(&deopt);
1070   } else {
1071     Handshake::execute(&deopt);
1072   }
1073 }
1074 
1075 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1076   = Deoptimization::Action_reinterpret;
1077 
1078 #if INCLUDE_JVMCI
1079 template<typename CacheType>
1080 class BoxCacheBase : public CHeapObj<mtCompiler> {
1081 protected:
1082   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1083     ResourceMark rm(thread);
1084     char* klass_name_str = klass_name->as_C_string();
1085     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle());
1086     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1087     if (!ik->is_in_error_state()) {
1088       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1089       CacheType::compute_offsets(ik);
1090     }
1091     return ik;
1092   }
1093 };
1094 
1095 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1096   PrimitiveType _low;
1097   PrimitiveType _high;
1098   jobject _cache;
1099 protected:
1100   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1101   BoxCache(Thread* thread) {
1102     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1103     if (ik->is_in_error_state()) {
1104       _low = 1;
1105       _high = 0;
1106       _cache = nullptr;
1107     } else {
1108       objArrayOop cache = CacheType::cache(ik);
1109       assert(cache->length() > 0, "Empty cache");
1110       _low = BoxType::value(cache->obj_at(0));
1111       _high = checked_cast<PrimitiveType>(_low + cache->length() - 1);
1112       _cache = JNIHandles::make_global(Handle(thread, cache));
1113     }
1114   }
1115   ~BoxCache() {
1116     JNIHandles::destroy_global(_cache);
1117   }
1118 public:
1119   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1120     if (_singleton == nullptr) {
1121       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1122       if (!Atomic::replace_if_null(&_singleton, s)) {
1123         delete s;
1124       }
1125     }
1126     return _singleton;
1127   }
1128   oop lookup(PrimitiveType value) {
1129     if (_low <= value && value <= _high) {
1130       int offset = checked_cast<int>(value - _low);
1131       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1132     }
1133     return nullptr;
1134   }
1135   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1136     if (_cache == nullptr) {
1137       cache_init_error = true;
1138       return nullptr;
1139     }
1140     // Have to cast to avoid little/big-endian problems.
1141     if (sizeof(PrimitiveType) > sizeof(jint)) {
1142       jlong value = (jlong)raw_value;
1143       return lookup(value);
1144     }
1145     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1146     return lookup(value);
1147   }
1148 };
1149 
1150 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1151 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1152 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1153 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1154 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1155 
1156 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1157 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1158 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1159 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1160 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1161 
1162 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1163   jobject _true_cache;
1164   jobject _false_cache;
1165 protected:
1166   static BooleanBoxCache *_singleton;
1167   BooleanBoxCache(Thread *thread) {
1168     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1169     if (ik->is_in_error_state()) {
1170       _true_cache = nullptr;
1171       _false_cache = nullptr;
1172     } else {
1173       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1174       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1175     }
1176   }
1177   ~BooleanBoxCache() {
1178     JNIHandles::destroy_global(_true_cache);
1179     JNIHandles::destroy_global(_false_cache);
1180   }
1181 public:
1182   static BooleanBoxCache* singleton(Thread* thread) {
1183     if (_singleton == nullptr) {
1184       BooleanBoxCache* s = new BooleanBoxCache(thread);
1185       if (!Atomic::replace_if_null(&_singleton, s)) {
1186         delete s;
1187       }
1188     }
1189     return _singleton;
1190   }
1191   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1192     if (_true_cache == nullptr) {
1193       cache_in_error = true;
1194       return nullptr;
1195     }
1196     // Have to cast to avoid little/big-endian problems.
1197     jboolean value = (jboolean)*((jint*)&raw_value);
1198     return lookup(value);
1199   }
1200   oop lookup(jboolean value) {
1201     if (value != 0) {
1202       return JNIHandles::resolve_non_null(_true_cache);
1203     }
1204     return JNIHandles::resolve_non_null(_false_cache);
1205   }
1206 };
1207 
1208 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1209 
1210 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1211    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1212    BasicType box_type = vmClasses::box_klass_type(k);
1213    if (box_type != T_OBJECT) {
1214      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1215      switch(box_type) {
1216        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1217        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1218        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1219        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1220        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1221        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1222        default:;
1223      }
1224    }
1225    return nullptr;
1226 }
1227 #endif // INCLUDE_JVMCI
1228 
1229 #if COMPILER2_OR_JVMCI
1230 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1231   Handle pending_exception(THREAD, thread->pending_exception());
1232   const char* exception_file = thread->exception_file();
1233   int exception_line = thread->exception_line();
1234   thread->clear_pending_exception();
1235 
1236   bool failures = false;
1237 
1238   for (int i = 0; i < objects->length(); i++) {
1239     assert(objects->at(i)->is_object(), "invalid debug information");
1240     ObjectValue* sv = (ObjectValue*) objects->at(i);
1241 
1242     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1243     oop obj = nullptr;
1244 
1245     bool cache_init_error = false;
1246     if (k->is_instance_klass()) {
1247 #if INCLUDE_JVMCI
1248       nmethod* nm = fr->cb()->as_nmethod_or_null();
1249       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1250         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1251         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1252         if (obj != nullptr) {
1253           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1254           abv->set_cached(true);
1255         } else if (cache_init_error) {
1256           // Results in an OOME which is valid (as opposed to a class initialization error)
1257           // and is fine for the rare case a cache initialization failing.
1258           failures = true;
1259         }
1260       }
1261 #endif // INCLUDE_JVMCI
1262 
1263       InstanceKlass* ik = InstanceKlass::cast(k);
1264       if (obj == nullptr && !cache_init_error) {
1265         InternalOOMEMark iom(THREAD);
1266         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1267           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1268         } else {
1269           obj = ik->allocate_instance(THREAD);
1270         }
1271       }
1272     } else if (k->is_typeArray_klass()) {
1273       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1274       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1275       int len = sv->field_size() / type2size[ak->element_type()];
1276       InternalOOMEMark iom(THREAD);
1277       obj = ak->allocate(len, THREAD);
1278     } else if (k->is_objArray_klass()) {
1279       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1280       InternalOOMEMark iom(THREAD);
1281       obj = ak->allocate(sv->field_size(), THREAD);
1282     }
1283 
1284     if (obj == nullptr) {
1285       failures = true;
1286     }
1287 
1288     assert(sv->value().is_null(), "redundant reallocation");
1289     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1290     CLEAR_PENDING_EXCEPTION;
1291     sv->set_value(obj);
1292   }
1293 
1294   if (failures) {
1295     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1296   } else if (pending_exception.not_null()) {
1297     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1298   }
1299 
1300   return failures;
1301 }
1302 
1303 #if INCLUDE_JVMCI
1304 /**
1305  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1306  * we need to somehow be able to recover the actual kind to be able to write the correct
1307  * amount of bytes.
1308  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1309  * the entries at index n + 1 to n + i are 'markers'.
1310  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1311  * expected form of the array would be:
1312  *
1313  * {b0, b1, b2, b3, INT, marker, b6, b7}
1314  *
1315  * Thus, in order to get back the size of the entry, we simply need to count the number
1316  * of marked entries
1317  *
1318  * @param virtualArray the virtualized byte array
1319  * @param i index of the virtual entry we are recovering
1320  * @return The number of bytes the entry spans
1321  */
1322 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1323   int index = i;
1324   while (++index < virtualArray->field_size() &&
1325            virtualArray->field_at(index)->is_marker()) {}
1326   return index - i;
1327 }
1328 
1329 /**
1330  * If there was a guarantee for byte array to always start aligned to a long, we could
1331  * do a simple check on the parity of the index. Unfortunately, that is not always the
1332  * case. Thus, we check alignment of the actual address we are writing to.
1333  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1334  * write a long to index 3.
1335  */
1336 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1337     jbyte* res = obj->byte_at_addr(index);
1338     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1339     return res;
1340 }
1341 
1342 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) {
1343   switch (byte_count) {
1344     case 1:
1345       obj->byte_at_put(index, (jbyte) value->get_jint());
1346       break;
1347     case 2:
1348       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint();
1349       break;
1350     case 4:
1351       *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint();
1352       break;
1353     case 8:
1354       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr();
1355       break;
1356     default:
1357       ShouldNotReachHere();
1358   }
1359 }
1360 #endif // INCLUDE_JVMCI
1361 
1362 
1363 // restore elements of an eliminated type array
1364 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1365   int index = 0;
1366 
1367   for (int i = 0; i < sv->field_size(); i++) {
1368     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1369     switch(type) {
1370     case T_LONG: case T_DOUBLE: {
1371       assert(value->type() == T_INT, "Agreement.");
1372       StackValue* low =
1373         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1374 #ifdef _LP64
1375       jlong res = (jlong)low->get_intptr();
1376 #else
1377       jlong res = jlong_from(value->get_jint(), low->get_jint());
1378 #endif
1379       obj->long_at_put(index, res);
1380       break;
1381     }
1382 
1383     case T_INT: case T_FLOAT: { // 4 bytes.
1384       assert(value->type() == T_INT, "Agreement.");
1385       bool big_value = false;
1386       if (i + 1 < sv->field_size() && type == T_INT) {
1387         if (sv->field_at(i)->is_location()) {
1388           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1389           if (type == Location::dbl || type == Location::lng) {
1390             big_value = true;
1391           }
1392         } else if (sv->field_at(i)->is_constant_int()) {
1393           ScopeValue* next_scope_field = sv->field_at(i + 1);
1394           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1395             big_value = true;
1396           }
1397         }
1398       }
1399 
1400       if (big_value) {
1401         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1402   #ifdef _LP64
1403         jlong res = (jlong)low->get_intptr();
1404   #else
1405         jlong res = jlong_from(value->get_jint(), low->get_jint());
1406   #endif
1407         obj->int_at_put(index, *(jint*)&res);
1408         obj->int_at_put(++index, *((jint*)&res + 1));
1409       } else {
1410         obj->int_at_put(index, value->get_jint());
1411       }
1412       break;
1413     }
1414 
1415     case T_SHORT:
1416       assert(value->type() == T_INT, "Agreement.");
1417       obj->short_at_put(index, (jshort)value->get_jint());
1418       break;
1419 
1420     case T_CHAR:
1421       assert(value->type() == T_INT, "Agreement.");
1422       obj->char_at_put(index, (jchar)value->get_jint());
1423       break;
1424 
1425     case T_BYTE: {
1426       assert(value->type() == T_INT, "Agreement.");
1427 #if INCLUDE_JVMCI
1428       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1429       int byte_count = count_number_of_bytes_for_entry(sv, i);
1430       byte_array_put(obj, value, index, byte_count);
1431       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1432       i += byte_count - 1; // Balance the loop counter.
1433       index += byte_count;
1434       // index has been updated so continue at top of loop
1435       continue;
1436 #else
1437       obj->byte_at_put(index, (jbyte)value->get_jint());
1438       break;
1439 #endif // INCLUDE_JVMCI
1440     }
1441 
1442     case T_BOOLEAN: {
1443       assert(value->type() == T_INT, "Agreement.");
1444       obj->bool_at_put(index, (jboolean)value->get_jint());
1445       break;
1446     }
1447 
1448       default:
1449         ShouldNotReachHere();
1450     }
1451     index++;
1452   }
1453 }
1454 
1455 // restore fields of an eliminated object array
1456 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1457   for (int i = 0; i < sv->field_size(); i++) {
1458     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1459     assert(value->type() == T_OBJECT, "object element expected");
1460     obj->obj_at_put(i, value->get_obj()());
1461   }
1462 }
1463 
1464 class ReassignedField {
1465 public:
1466   int _offset;
1467   BasicType _type;
1468 public:
1469   ReassignedField() {
1470     _offset = 0;
1471     _type = T_ILLEGAL;
1472   }
1473 };
1474 
1475 // Gets the fields of `klass` that are eliminated by escape analysis and need to be reassigned
1476 static GrowableArray<ReassignedField>* get_reassigned_fields(InstanceKlass* klass, GrowableArray<ReassignedField>* fields, bool is_jvmci) {
1477   InstanceKlass* super = klass->superklass();
1478   if (super != nullptr) {
1479     get_reassigned_fields(super, fields, is_jvmci);
1480   }
1481   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1482     if (!fs.access_flags().is_static() && (is_jvmci || !fs.field_flags().is_injected())) {
1483       ReassignedField field;
1484       field._offset = fs.offset();
1485       field._type = Signature::basic_type(fs.signature());
1486       fields->append(field);
1487     }
1488   }
1489   return fields;
1490 }
1491 
1492 // Restore fields of an eliminated instance object employing the same field order used by the compiler.
1493 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool is_jvmci) {
1494   GrowableArray<ReassignedField>* fields = get_reassigned_fields(klass, new GrowableArray<ReassignedField>(), is_jvmci);
1495   for (int i = 0; i < fields->length(); i++) {
1496     ScopeValue* scope_field = sv->field_at(svIndex);
1497     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1498     int offset = fields->at(i)._offset;
1499     BasicType type = fields->at(i)._type;
1500     switch (type) {
1501       case T_OBJECT: case T_ARRAY:
1502         assert(value->type() == T_OBJECT, "Agreement.");
1503         obj->obj_field_put(offset, value->get_obj()());
1504         break;
1505 
1506       case T_INT: case T_FLOAT: { // 4 bytes.
1507         assert(value->type() == T_INT, "Agreement.");
1508         bool big_value = false;
1509         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1510           if (scope_field->is_location()) {
1511             Location::Type type = ((LocationValue*) scope_field)->location().type();
1512             if (type == Location::dbl || type == Location::lng) {
1513               big_value = true;
1514             }
1515           }
1516           if (scope_field->is_constant_int()) {
1517             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1518             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1519               big_value = true;
1520             }
1521           }
1522         }
1523 
1524         if (big_value) {
1525           i++;
1526           assert(i < fields->length(), "second T_INT field needed");
1527           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1528         } else {
1529           obj->int_field_put(offset, value->get_jint());
1530           break;
1531         }
1532       }
1533         /* no break */
1534 
1535       case T_LONG: case T_DOUBLE: {
1536         assert(value->type() == T_INT, "Agreement.");
1537         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1538 #ifdef _LP64
1539         jlong res = (jlong)low->get_intptr();
1540 #else
1541         jlong res = jlong_from(value->get_jint(), low->get_jint());
1542 #endif
1543         obj->long_field_put(offset, res);
1544         break;
1545       }
1546 
1547       case T_SHORT:
1548         assert(value->type() == T_INT, "Agreement.");
1549         obj->short_field_put(offset, (jshort)value->get_jint());
1550         break;
1551 
1552       case T_CHAR:
1553         assert(value->type() == T_INT, "Agreement.");
1554         obj->char_field_put(offset, (jchar)value->get_jint());
1555         break;
1556 
1557       case T_BYTE:
1558         assert(value->type() == T_INT, "Agreement.");
1559         obj->byte_field_put(offset, (jbyte)value->get_jint());
1560         break;
1561 
1562       case T_BOOLEAN:
1563         assert(value->type() == T_INT, "Agreement.");
1564         obj->bool_field_put(offset, (jboolean)value->get_jint());
1565         break;
1566 
1567       default:
1568         ShouldNotReachHere();
1569     }
1570     svIndex++;
1571   }
1572   return svIndex;
1573 }
1574 
1575 // restore fields of all eliminated objects and arrays
1576 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool is_jvmci) {
1577   for (int i = 0; i < objects->length(); i++) {
1578     assert(objects->at(i)->is_object(), "invalid debug information");
1579     ObjectValue* sv = (ObjectValue*) objects->at(i);
1580     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1581     Handle obj = sv->value();
1582     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1583 #ifndef PRODUCT
1584     if (PrintDeoptimizationDetails) {
1585       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1586     }
1587 #endif // !PRODUCT
1588 
1589     if (obj.is_null()) {
1590       continue;
1591     }
1592 
1593 #if INCLUDE_JVMCI
1594     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1595     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1596       continue;
1597     }
1598 #endif // INCLUDE_JVMCI
1599     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1600       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1601       ScopeValue* payload = sv->field_at(0);
1602       if (payload->is_location() &&
1603           payload->as_LocationValue()->location().type() == Location::vector) {
1604 #ifndef PRODUCT
1605         if (PrintDeoptimizationDetails) {
1606           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1607           if (Verbose) {
1608             Handle obj = sv->value();
1609             k->oop_print_on(obj(), tty);
1610           }
1611         }
1612 #endif // !PRODUCT
1613         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1614       }
1615       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1616       // which could be restored after vector object allocation.
1617     }
1618     if (k->is_instance_klass()) {
1619       InstanceKlass* ik = InstanceKlass::cast(k);
1620       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), is_jvmci);
1621     } else if (k->is_typeArray_klass()) {
1622       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1623       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1624     } else if (k->is_objArray_klass()) {
1625       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1626     }
1627   }
1628   // These objects may escape when we return to Interpreter after deoptimization.
1629   // We need barrier so that stores that initialize these objects can't be reordered
1630   // with subsequent stores that make these objects accessible by other threads.
1631   OrderAccess::storestore();
1632 }
1633 
1634 
1635 // relock objects for which synchronization was eliminated
1636 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1637                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1638   bool relocked_objects = false;
1639   for (int i = 0; i < monitors->length(); i++) {
1640     MonitorInfo* mon_info = monitors->at(i);
1641     if (mon_info->eliminated()) {
1642       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1643       relocked_objects = true;
1644       if (!mon_info->owner_is_scalar_replaced()) {
1645         Handle obj(thread, mon_info->owner());
1646         markWord mark = obj->mark();
1647         if (exec_mode == Unpack_none) {
1648           if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) {
1649             // With exec_mode == Unpack_none obj may be thread local and locked in
1650             // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header.
1651             markWord dmw = mark.displaced_mark_helper();
1652             mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr));
1653             obj->set_mark(dmw);
1654           }
1655           if (mark.has_monitor()) {
1656             // defer relocking if the deoptee thread is currently waiting for obj
1657             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1658             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1659               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1660               if (LockingMode == LM_LEGACY) {
1661                 mon_info->lock()->set_displaced_header(markWord::unused_mark());
1662               } else if (UseObjectMonitorTable) {
1663                 mon_info->lock()->clear_object_monitor_cache();
1664               }
1665 #ifdef ASSERT
1666               else {
1667                 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be");
1668                 mon_info->lock()->set_bad_metadata_deopt();
1669               }
1670 #endif
1671               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1672               continue;
1673             }
1674           }
1675         }
1676         BasicLock* lock = mon_info->lock();
1677         if (LockingMode == LM_LIGHTWEIGHT) {
1678           // We have lost information about the correct state of the lock stack.
1679           // Entering may create an invalid lock stack. Inflate the lock if it
1680           // was fast_locked to restore the valid lock stack.
1681           if (UseObjectMonitorTable) {
1682             // UseObjectMonitorTable expects the BasicLock cache to be either a
1683             // valid ObjectMonitor* or nullptr. Right now it is garbage, set it
1684             // to nullptr.
1685             lock->clear_object_monitor_cache();
1686           }
1687           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1688           if (deoptee_thread->lock_stack().contains(obj())) {
1689             LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal,
1690                                                                 deoptee_thread, thread);
1691           }
1692           assert(mon_info->owner()->is_locked(), "object must be locked now");
1693           assert(obj->mark().has_monitor(), "must be");
1694           assert(!deoptee_thread->lock_stack().contains(obj()), "must be");
1695           assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be");
1696         } else {
1697           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1698           assert(mon_info->owner()->is_locked(), "object must be locked now");
1699         }
1700       }
1701     }
1702   }
1703   return relocked_objects;
1704 }
1705 #endif // COMPILER2_OR_JVMCI
1706 
1707 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1708   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1709 
1710   // Register map for next frame (used for stack crawl).  We capture
1711   // the state of the deopt'ing frame's caller.  Thus if we need to
1712   // stuff a C2I adapter we can properly fill in the callee-save
1713   // register locations.
1714   frame caller = fr.sender(reg_map);
1715   int frame_size = pointer_delta_as_int(caller.sp(), fr.sp());
1716 
1717   frame sender = caller;
1718 
1719   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1720   // the vframeArray containing the unpacking information is allocated in the C heap.
1721   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1722   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1723 
1724   // Compare the vframeArray to the collected vframes
1725   assert(array->structural_compare(thread, chunk), "just checking");
1726 
1727   if (TraceDeoptimization) {
1728     ResourceMark rm;
1729     stringStream st;
1730     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1731     st.print("   ");
1732     fr.print_on(&st);
1733     st.print_cr("   Virtual frames (innermost/newest first):");
1734     for (int index = 0; index < chunk->length(); index++) {
1735       compiledVFrame* vf = chunk->at(index);
1736       int bci = vf->raw_bci();
1737       const char* code_name;
1738       if (bci == SynchronizationEntryBCI) {
1739         code_name = "sync entry";
1740       } else {
1741         Bytecodes::Code code = vf->method()->code_at(bci);
1742         code_name = Bytecodes::name(code);
1743       }
1744 
1745       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1746       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1747       st.print(" - %s", code_name);
1748       st.print_cr(" @ bci=%d ", bci);
1749     }
1750     tty->print_raw(st.freeze());
1751     tty->cr();
1752   }
1753 
1754   return array;
1755 }
1756 
1757 #if COMPILER2_OR_JVMCI
1758 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1759   // Reallocation of some scalar replaced objects failed. Record
1760   // that we need to pop all the interpreter frames for the
1761   // deoptimized compiled frame.
1762   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1763   thread->set_frames_to_pop_failed_realloc(array->frames());
1764   // Unlock all monitors here otherwise the interpreter will see a
1765   // mix of locked and unlocked monitors (because of failed
1766   // reallocations of synchronized objects) and be confused.
1767   for (int i = 0; i < array->frames(); i++) {
1768     MonitorChunk* monitors = array->element(i)->monitors();
1769     if (monitors != nullptr) {
1770       // Unlock in reverse order starting from most nested monitor.
1771       for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) {
1772         BasicObjectLock* src = monitors->at(j);
1773         if (src->obj() != nullptr) {
1774           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1775         }
1776       }
1777       array->element(i)->free_monitors();
1778 #ifdef ASSERT
1779       array->element(i)->set_removed_monitors();
1780 #endif
1781     }
1782   }
1783 }
1784 #endif
1785 
1786 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1787   assert(fr.can_be_deoptimized(), "checking frame type");
1788 
1789   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1790 
1791   if (LogCompilation && xtty != nullptr) {
1792     nmethod* nm = fr.cb()->as_nmethod_or_null();
1793     assert(nm != nullptr, "only compiled methods can deopt");
1794 
1795     ttyLocker ttyl;
1796     xtty->begin_head("deoptimized thread='%zu' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1797     nm->log_identity(xtty);
1798     xtty->end_head();
1799     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1800       xtty->begin_elem("jvms bci='%d'", sd->bci());
1801       xtty->method(sd->method());
1802       xtty->end_elem();
1803       if (sd->is_top())  break;
1804     }
1805     xtty->tail("deoptimized");
1806   }
1807 
1808   Continuation::notify_deopt(thread, fr.sp());
1809 
1810   // Patch the compiled method so that when execution returns to it we will
1811   // deopt the execution state and return to the interpreter.
1812   fr.deoptimize(thread);
1813 }
1814 
1815 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1816   // Deoptimize only if the frame comes from compile code.
1817   // Do not deoptimize the frame which is already patched
1818   // during the execution of the loops below.
1819   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1820     return;
1821   }
1822   ResourceMark rm;
1823   deoptimize_single_frame(thread, fr, reason);
1824 }
1825 
1826 #if INCLUDE_JVMCI
1827 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) {
1828   // there is no exception handler for this pc => deoptimize
1829   nm->make_not_entrant("missing exception handler");
1830 
1831   // Use Deoptimization::deoptimize for all of its side-effects:
1832   // gathering traps statistics, logging...
1833   // it also patches the return pc but we do not care about that
1834   // since we return a continuation to the deopt_blob below.
1835   JavaThread* thread = JavaThread::current();
1836   RegisterMap reg_map(thread,
1837                       RegisterMap::UpdateMap::skip,
1838                       RegisterMap::ProcessFrames::include,
1839                       RegisterMap::WalkContinuation::skip);
1840   frame runtime_frame = thread->last_frame();
1841   frame caller_frame = runtime_frame.sender(&reg_map);
1842   assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method");
1843   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1844   compiledVFrame* cvf = compiledVFrame::cast(vf);
1845   ScopeDesc* imm_scope = cvf->scope();
1846   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1847   if (imm_mdo != nullptr) {
1848     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
1849     MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
1850 
1851     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1852     if (pdata != nullptr && pdata->is_BitData()) {
1853       BitData* bit_data = (BitData*) pdata;
1854       bit_data->set_exception_seen();
1855     }
1856   }
1857 
1858   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1859 
1860   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true);
1861   if (trap_mdo != nullptr) {
1862     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1863   }
1864 
1865   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1866 }
1867 #endif
1868 
1869 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1870   assert(thread == Thread::current() ||
1871          thread->is_handshake_safe_for(Thread::current()) ||
1872          SafepointSynchronize::is_at_safepoint(),
1873          "can only deoptimize other thread at a safepoint/handshake");
1874   // Compute frame and register map based on thread and sp.
1875   RegisterMap reg_map(thread,
1876                       RegisterMap::UpdateMap::skip,
1877                       RegisterMap::ProcessFrames::include,
1878                       RegisterMap::WalkContinuation::skip);
1879   frame fr = thread->last_frame();
1880   while (fr.id() != id) {
1881     fr = fr.sender(&reg_map);
1882   }
1883   deoptimize(thread, fr, reason);
1884 }
1885 
1886 
1887 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1888   Thread* current = Thread::current();
1889   if (thread == current || thread->is_handshake_safe_for(current)) {
1890     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1891   } else {
1892     VM_DeoptimizeFrame deopt(thread, id, reason);
1893     VMThread::execute(&deopt);
1894   }
1895 }
1896 
1897 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1898   deoptimize_frame(thread, id, Reason_constraint);
1899 }
1900 
1901 // JVMTI PopFrame support
1902 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1903 {
1904   assert(thread == JavaThread::current(), "pre-condition");
1905   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1906 }
1907 JRT_END
1908 
1909 MethodData*
1910 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1911                                 bool create_if_missing) {
1912   JavaThread* THREAD = thread; // For exception macros.
1913   MethodData* mdo = m()->method_data();
1914   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1915     // Build an MDO.  Ignore errors like OutOfMemory;
1916     // that simply means we won't have an MDO to update.
1917     Method::build_profiling_method_data(m, THREAD);
1918     if (HAS_PENDING_EXCEPTION) {
1919       // Only metaspace OOM is expected. No Java code executed.
1920       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1921       CLEAR_PENDING_EXCEPTION;
1922     }
1923     mdo = m()->method_data();
1924   }
1925   return mdo;
1926 }
1927 
1928 #if COMPILER2_OR_JVMCI
1929 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1930   // In case of an unresolved klass entry, load the class.
1931   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1932   // and probably nowhere else.
1933   // Even that case would benefit from simply re-interpreting the
1934   // bytecode, without paying special attention to the class index.
1935   // So this whole "class index" feature should probably be removed.
1936 
1937   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1938     Klass* tk = constant_pool->klass_at(index, THREAD);
1939     if (HAS_PENDING_EXCEPTION) {
1940       // Exception happened during classloading. We ignore the exception here, since it
1941       // is going to be rethrown since the current activation is going to be deoptimized and
1942       // the interpreter will re-execute the bytecode.
1943       // Do not clear probable Async Exceptions.
1944       CLEAR_PENDING_NONASYNC_EXCEPTION;
1945       // Class loading called java code which may have caused a stack
1946       // overflow. If the exception was thrown right before the return
1947       // to the runtime the stack is no longer guarded. Reguard the
1948       // stack otherwise if we return to the uncommon trap blob and the
1949       // stack bang causes a stack overflow we crash.
1950       JavaThread* jt = THREAD;
1951       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1952       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1953     }
1954     return;
1955   }
1956 
1957   assert(!constant_pool->tag_at(index).is_symbol(),
1958          "no symbolic names here, please");
1959 }
1960 
1961 #if INCLUDE_JFR
1962 
1963 class DeoptReasonSerializer : public JfrSerializer {
1964  public:
1965   void serialize(JfrCheckpointWriter& writer) {
1966     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1967     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1968       writer.write_key((u8)i);
1969       writer.write(Deoptimization::trap_reason_name(i));
1970     }
1971   }
1972 };
1973 
1974 class DeoptActionSerializer : public JfrSerializer {
1975  public:
1976   void serialize(JfrCheckpointWriter& writer) {
1977     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1978     writer.write_count(nof_actions);
1979     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1980       writer.write_key(i);
1981       writer.write(Deoptimization::trap_action_name((int)i));
1982     }
1983   }
1984 };
1985 
1986 static void register_serializers() {
1987   static int critical_section = 0;
1988   if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) {
1989     return;
1990   }
1991   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1992   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1993 }
1994 
1995 static void post_deoptimization_event(nmethod* nm,
1996                                       const Method* method,
1997                                       int trap_bci,
1998                                       int instruction,
1999                                       Deoptimization::DeoptReason reason,
2000                                       Deoptimization::DeoptAction action) {
2001   assert(nm != nullptr, "invariant");
2002   assert(method != nullptr, "invariant");
2003   if (EventDeoptimization::is_enabled()) {
2004     static bool serializers_registered = false;
2005     if (!serializers_registered) {
2006       register_serializers();
2007       serializers_registered = true;
2008     }
2009     EventDeoptimization event;
2010     event.set_compileId(nm->compile_id());
2011     event.set_compiler(nm->compiler_type());
2012     event.set_method(method);
2013     event.set_lineNumber(method->line_number_from_bci(trap_bci));
2014     event.set_bci(trap_bci);
2015     event.set_instruction(instruction);
2016     event.set_reason(reason);
2017     event.set_action(action);
2018     event.commit();
2019   }
2020 }
2021 
2022 #endif // INCLUDE_JFR
2023 
2024 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
2025                               const char* reason_name, const char* reason_action) {
2026   LogTarget(Debug, deoptimization) lt;
2027   if (lt.is_enabled()) {
2028     LogStream ls(lt);
2029     bool is_osr = nm->is_osr_method();
2030     ls.print("cid=%4d %s level=%d",
2031              nm->compile_id(), (is_osr ? "osr" : "   "), nm->comp_level());
2032     ls.print(" %s", tm->name_and_sig_as_C_string());
2033     ls.print(" trap_bci=%d ", trap_bci);
2034     if (is_osr) {
2035       ls.print("osr_bci=%d ", nm->osr_entry_bci());
2036     }
2037     ls.print("%s ", reason_name);
2038     ls.print("%s ", reason_action);
2039     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2040              pc, fr.pc() - nm->code_begin());
2041   }
2042 }
2043 
2044 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2045   HandleMark hm(current);
2046 
2047   // uncommon_trap() is called at the beginning of the uncommon trap
2048   // handler. Note this fact before we start generating temporary frames
2049   // that can confuse an asynchronous stack walker. This counter is
2050   // decremented at the end of unpack_frames().
2051 
2052   current->inc_in_deopt_handler();
2053 
2054 #if INCLUDE_JVMCI
2055   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2056   RegisterMap reg_map(current,
2057                       RegisterMap::UpdateMap::include,
2058                       RegisterMap::ProcessFrames::include,
2059                       RegisterMap::WalkContinuation::skip);
2060 #else
2061   RegisterMap reg_map(current,
2062                       RegisterMap::UpdateMap::skip,
2063                       RegisterMap::ProcessFrames::include,
2064                       RegisterMap::WalkContinuation::skip);
2065 #endif
2066   frame stub_frame = current->last_frame();
2067   frame fr = stub_frame.sender(&reg_map);
2068 
2069   // Log a message
2070   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2071               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2072 
2073   {
2074     ResourceMark rm;
2075 
2076     DeoptReason reason = trap_request_reason(trap_request);
2077     DeoptAction action = trap_request_action(trap_request);
2078 #if INCLUDE_JVMCI
2079     int debug_id = trap_request_debug_id(trap_request);
2080 #endif
2081     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2082 
2083     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2084     compiledVFrame* cvf = compiledVFrame::cast(vf);
2085 
2086     nmethod* nm = cvf->code();
2087 
2088     ScopeDesc*      trap_scope  = cvf->scope();
2089 
2090     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2091 
2092     if (is_receiver_constraint_failure) {
2093       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2094                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2095                     JVMCI_ONLY(COMMA debug_id));
2096     }
2097 
2098     methodHandle    trap_method(current, trap_scope->method());
2099     int             trap_bci    = trap_scope->bci();
2100 #if INCLUDE_JVMCI
2101     jlong           speculation = current->pending_failed_speculation();
2102     if (nm->is_compiled_by_jvmci()) {
2103       nm->update_speculation(current);
2104     } else {
2105       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2106     }
2107 
2108     if (trap_bci == SynchronizationEntryBCI) {
2109       trap_bci = 0;
2110       current->set_pending_monitorenter(true);
2111     }
2112 
2113     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2114       current->set_pending_transfer_to_interpreter(true);
2115     }
2116 #endif
2117 
2118     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2119     // Record this event in the histogram.
2120     gather_statistics(reason, action, trap_bc);
2121 
2122     // Ensure that we can record deopt. history:
2123     bool create_if_missing = ProfileTraps;
2124 
2125     methodHandle profiled_method;
2126 #if INCLUDE_JVMCI
2127     if (nm->is_compiled_by_jvmci()) {
2128       profiled_method = methodHandle(current, nm->method());
2129     } else {
2130       profiled_method = trap_method;
2131     }
2132 #else
2133     profiled_method = trap_method;
2134 #endif
2135 
2136     MethodData* trap_mdo =
2137       get_method_data(current, profiled_method, create_if_missing);
2138 
2139     { // Log Deoptimization event for JFR, UL and event system
2140       Method* tm = trap_method();
2141       const char* reason_name = trap_reason_name(reason);
2142       const char* reason_action = trap_action_name(action);
2143       intptr_t pc = p2i(fr.pc());
2144 
2145       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2146       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action);
2147       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
2148                                 reason_name, reason_action, pc,
2149                                 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
2150     }
2151 
2152     // Print a bunch of diagnostics, if requested.
2153     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2154       ResourceMark rm;
2155 
2156       // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2157       // We must do this already now, since we cannot acquire this lock while
2158       // holding the tty lock (lock ordering by rank).
2159       MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2160 
2161       ttyLocker ttyl;
2162 
2163       char buf[100];
2164       if (xtty != nullptr) {
2165         xtty->begin_head("uncommon_trap thread='%zu' %s",
2166                          os::current_thread_id(),
2167                          format_trap_request(buf, sizeof(buf), trap_request));
2168 #if INCLUDE_JVMCI
2169         if (speculation != 0) {
2170           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2171         }
2172 #endif
2173         nm->log_identity(xtty);
2174       }
2175       Symbol* class_name = nullptr;
2176       bool unresolved = false;
2177       if (unloaded_class_index >= 0) {
2178         constantPoolHandle constants (current, trap_method->constants());
2179         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2180           class_name = constants->klass_name_at(unloaded_class_index);
2181           unresolved = true;
2182           if (xtty != nullptr)
2183             xtty->print(" unresolved='1'");
2184         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2185           class_name = constants->symbol_at(unloaded_class_index);
2186         }
2187         if (xtty != nullptr)
2188           xtty->name(class_name);
2189       }
2190       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2191         // Dump the relevant MDO state.
2192         // This is the deopt count for the current reason, any previous
2193         // reasons or recompiles seen at this point.
2194         int dcnt = trap_mdo->trap_count(reason);
2195         if (dcnt != 0)
2196           xtty->print(" count='%d'", dcnt);
2197 
2198         // We need to lock to read the ProfileData. But to keep the locks ordered, we need to
2199         // lock extra_data_lock before the tty lock.
2200         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2201         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2202         if (dos != 0) {
2203           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2204           if (trap_state_is_recompiled(dos)) {
2205             int recnt2 = trap_mdo->overflow_recompile_count();
2206             if (recnt2 != 0)
2207               xtty->print(" recompiles2='%d'", recnt2);
2208           }
2209         }
2210       }
2211       if (xtty != nullptr) {
2212         xtty->stamp();
2213         xtty->end_head();
2214       }
2215       if (TraceDeoptimization) {  // make noise on the tty
2216         stringStream st;
2217         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2218         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2219                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2220         st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
2221 #if INCLUDE_JVMCI
2222         if (nm->is_compiled_by_jvmci()) {
2223           const char* installed_code_name = nm->jvmci_name();
2224           if (installed_code_name != nullptr) {
2225             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2226           }
2227         }
2228 #endif
2229         st.print(" (@" INTPTR_FORMAT ") thread=%zu reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2230                    p2i(fr.pc()),
2231                    os::current_thread_id(),
2232                    trap_reason_name(reason),
2233                    trap_action_name(action),
2234                    unloaded_class_index
2235 #if INCLUDE_JVMCI
2236                    , debug_id
2237 #endif
2238                    );
2239         if (class_name != nullptr) {
2240           st.print(unresolved ? " unresolved class: " : " symbol: ");
2241           class_name->print_symbol_on(&st);
2242         }
2243         st.cr();
2244         tty->print_raw(st.freeze());
2245       }
2246       if (xtty != nullptr) {
2247         // Log the precise location of the trap.
2248         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2249           xtty->begin_elem("jvms bci='%d'", sd->bci());
2250           xtty->method(sd->method());
2251           xtty->end_elem();
2252           if (sd->is_top())  break;
2253         }
2254         xtty->tail("uncommon_trap");
2255       }
2256     }
2257     // (End diagnostic printout.)
2258 
2259     if (is_receiver_constraint_failure) {
2260       fatal("missing receiver type check");
2261     }
2262 
2263     // Load class if necessary
2264     if (unloaded_class_index >= 0) {
2265       constantPoolHandle constants(current, trap_method->constants());
2266       load_class_by_index(constants, unloaded_class_index, THREAD);
2267     }
2268 
2269     // Flush the nmethod if necessary and desirable.
2270     //
2271     // We need to avoid situations where we are re-flushing the nmethod
2272     // because of a hot deoptimization site.  Repeated flushes at the same
2273     // point need to be detected by the compiler and avoided.  If the compiler
2274     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2275     // module must take measures to avoid an infinite cycle of recompilation
2276     // and deoptimization.  There are several such measures:
2277     //
2278     //   1. If a recompilation is ordered a second time at some site X
2279     //   and for the same reason R, the action is adjusted to 'reinterpret',
2280     //   to give the interpreter time to exercise the method more thoroughly.
2281     //   If this happens, the method's overflow_recompile_count is incremented.
2282     //
2283     //   2. If the compiler fails to reduce the deoptimization rate, then
2284     //   the method's overflow_recompile_count will begin to exceed the set
2285     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2286     //   is adjusted to 'make_not_compilable', and the method is abandoned
2287     //   to the interpreter.  This is a performance hit for hot methods,
2288     //   but is better than a disastrous infinite cycle of recompilations.
2289     //   (Actually, only the method containing the site X is abandoned.)
2290     //
2291     //   3. In parallel with the previous measures, if the total number of
2292     //   recompilations of a method exceeds the much larger set limit
2293     //   PerMethodRecompilationCutoff, the method is abandoned.
2294     //   This should only happen if the method is very large and has
2295     //   many "lukewarm" deoptimizations.  The code which enforces this
2296     //   limit is elsewhere (class nmethod, class Method).
2297     //
2298     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2299     // to recompile at each bytecode independently of the per-BCI cutoff.
2300     //
2301     // The decision to update code is up to the compiler, and is encoded
2302     // in the Action_xxx code.  If the compiler requests Action_none
2303     // no trap state is changed, no compiled code is changed, and the
2304     // computation suffers along in the interpreter.
2305     //
2306     // The other action codes specify various tactics for decompilation
2307     // and recompilation.  Action_maybe_recompile is the loosest, and
2308     // allows the compiled code to stay around until enough traps are seen,
2309     // and until the compiler gets around to recompiling the trapping method.
2310     //
2311     // The other actions cause immediate removal of the present code.
2312 
2313     // Traps caused by injected profile shouldn't pollute trap counts.
2314     bool injected_profile_trap = trap_method->has_injected_profile() &&
2315                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2316 
2317     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2318     bool make_not_entrant = false;
2319     bool make_not_compilable = false;
2320     bool reprofile = false;
2321     switch (action) {
2322     case Action_none:
2323       // Keep the old code.
2324       update_trap_state = false;
2325       break;
2326     case Action_maybe_recompile:
2327       // Do not need to invalidate the present code, but we can
2328       // initiate another
2329       // Start compiler without (necessarily) invalidating the nmethod.
2330       // The system will tolerate the old code, but new code should be
2331       // generated when possible.
2332       break;
2333     case Action_reinterpret:
2334       // Go back into the interpreter for a while, and then consider
2335       // recompiling form scratch.
2336       make_not_entrant = true;
2337       // Reset invocation counter for outer most method.
2338       // This will allow the interpreter to exercise the bytecodes
2339       // for a while before recompiling.
2340       // By contrast, Action_make_not_entrant is immediate.
2341       //
2342       // Note that the compiler will track null_check, null_assert,
2343       // range_check, and class_check events and log them as if they
2344       // had been traps taken from compiled code.  This will update
2345       // the MDO trap history so that the next compilation will
2346       // properly detect hot trap sites.
2347       reprofile = true;
2348       break;
2349     case Action_make_not_entrant:
2350       // Request immediate recompilation, and get rid of the old code.
2351       // Make them not entrant, so next time they are called they get
2352       // recompiled.  Unloaded classes are loaded now so recompile before next
2353       // time they are called.  Same for uninitialized.  The interpreter will
2354       // link the missing class, if any.
2355       make_not_entrant = true;
2356       break;
2357     case Action_make_not_compilable:
2358       // Give up on compiling this method at all.
2359       make_not_entrant = true;
2360       make_not_compilable = true;
2361       break;
2362     default:
2363       ShouldNotReachHere();
2364     }
2365 
2366     // Setting +ProfileTraps fixes the following, on all platforms:
2367     // The result is infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2368     // recompile relies on a MethodData* to record heroic opt failures.
2369 
2370     // Whether the interpreter is producing MDO data or not, we also need
2371     // to use the MDO to detect hot deoptimization points and control
2372     // aggressive optimization.
2373     bool inc_recompile_count = false;
2374 
2375     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2376     ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr,
2377                               (trap_mdo != nullptr),
2378                               Mutex::_no_safepoint_check_flag);
2379     ProfileData* pdata = nullptr;
2380     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2381       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2382       uint this_trap_count = 0;
2383       bool maybe_prior_trap = false;
2384       bool maybe_prior_recompile = false;
2385 
2386       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2387 #if INCLUDE_JVMCI
2388                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2389 #endif
2390                                    nm->method(),
2391                                    //outputs:
2392                                    this_trap_count,
2393                                    maybe_prior_trap,
2394                                    maybe_prior_recompile);
2395       // Because the interpreter also counts null, div0, range, and class
2396       // checks, these traps from compiled code are double-counted.
2397       // This is harmless; it just means that the PerXTrapLimit values
2398       // are in effect a little smaller than they look.
2399 
2400       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2401       if (per_bc_reason != Reason_none) {
2402         // Now take action based on the partially known per-BCI history.
2403         if (maybe_prior_trap
2404             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2405           // If there are too many traps at this BCI, force a recompile.
2406           // This will allow the compiler to see the limit overflow, and
2407           // take corrective action, if possible.  The compiler generally
2408           // does not use the exact PerBytecodeTrapLimit value, but instead
2409           // changes its tactics if it sees any traps at all.  This provides
2410           // a little hysteresis, delaying a recompile until a trap happens
2411           // several times.
2412           //
2413           // Actually, since there is only one bit of counter per BCI,
2414           // the possible per-BCI counts are {0,1,(per-method count)}.
2415           // This produces accurate results if in fact there is only
2416           // one hot trap site, but begins to get fuzzy if there are
2417           // many sites.  For example, if there are ten sites each
2418           // trapping two or more times, they each get the blame for
2419           // all of their traps.
2420           make_not_entrant = true;
2421         }
2422 
2423         // Detect repeated recompilation at the same BCI, and enforce a limit.
2424         if (make_not_entrant && maybe_prior_recompile) {
2425           // More than one recompile at this point.
2426           inc_recompile_count = maybe_prior_trap;
2427         }
2428       } else {
2429         // For reasons which are not recorded per-bytecode, we simply
2430         // force recompiles unconditionally.
2431         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2432         make_not_entrant = true;
2433       }
2434 
2435       // Go back to the compiler if there are too many traps in this method.
2436       if (this_trap_count >= per_method_trap_limit(reason)) {
2437         // If there are too many traps in this method, force a recompile.
2438         // This will allow the compiler to see the limit overflow, and
2439         // take corrective action, if possible.
2440         // (This condition is an unlikely backstop only, because the
2441         // PerBytecodeTrapLimit is more likely to take effect first,
2442         // if it is applicable.)
2443         make_not_entrant = true;
2444       }
2445 
2446       // Here's more hysteresis:  If there has been a recompile at
2447       // this trap point already, run the method in the interpreter
2448       // for a while to exercise it more thoroughly.
2449       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2450         reprofile = true;
2451       }
2452     }
2453 
2454     // Take requested actions on the method:
2455 
2456     // Recompile
2457     if (make_not_entrant) {
2458       if (!nm->make_not_entrant("uncommon trap")) {
2459         return; // the call did not change nmethod's state
2460       }
2461 
2462       if (pdata != nullptr) {
2463         // Record the recompilation event, if any.
2464         int tstate0 = pdata->trap_state();
2465         int tstate1 = trap_state_set_recompiled(tstate0, true);
2466         if (tstate1 != tstate0)
2467           pdata->set_trap_state(tstate1);
2468       }
2469 
2470       // For code aging we count traps separately here, using make_not_entrant()
2471       // as a guard against simultaneous deopts in multiple threads.
2472       if (reason == Reason_tenured && trap_mdo != nullptr) {
2473         trap_mdo->inc_tenure_traps();
2474       }
2475     }
2476 
2477     if (inc_recompile_count) {
2478       trap_mdo->inc_overflow_recompile_count();
2479       if ((uint)trap_mdo->overflow_recompile_count() >
2480           (uint)PerBytecodeRecompilationCutoff) {
2481         // Give up on the method containing the bad BCI.
2482         if (trap_method() == nm->method()) {
2483           make_not_compilable = true;
2484         } else {
2485           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2486           // But give grace to the enclosing nm->method().
2487         }
2488       }
2489     }
2490 
2491     // Reprofile
2492     if (reprofile) {
2493       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2494     }
2495 
2496     // Give up compiling
2497     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2498       assert(make_not_entrant, "consistent");
2499       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2500     }
2501 
2502     if (ProfileExceptionHandlers && trap_mdo != nullptr) {
2503       BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci);
2504       if (exception_handler_data != nullptr) {
2505         // uncommon trap at the start of an exception handler.
2506         // C2 generates these for un-entered exception handlers.
2507         // mark the handler as entered to avoid generating
2508         // another uncommon trap the next time the handler is compiled
2509         exception_handler_data->set_exception_handler_entered();
2510       }
2511     }
2512 
2513   } // Free marked resources
2514 
2515 }
2516 JRT_END
2517 
2518 ProfileData*
2519 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2520                                          int trap_bci,
2521                                          Deoptimization::DeoptReason reason,
2522                                          bool update_total_trap_count,
2523 #if INCLUDE_JVMCI
2524                                          bool is_osr,
2525 #endif
2526                                          Method* compiled_method,
2527                                          //outputs:
2528                                          uint& ret_this_trap_count,
2529                                          bool& ret_maybe_prior_trap,
2530                                          bool& ret_maybe_prior_recompile) {
2531   trap_mdo->check_extra_data_locked();
2532 
2533   bool maybe_prior_trap = false;
2534   bool maybe_prior_recompile = false;
2535   uint this_trap_count = 0;
2536   if (update_total_trap_count) {
2537     uint idx = reason;
2538 #if INCLUDE_JVMCI
2539     if (is_osr) {
2540       // Upper half of history array used for traps in OSR compilations
2541       idx += Reason_TRAP_HISTORY_LENGTH;
2542     }
2543 #endif
2544     uint prior_trap_count = trap_mdo->trap_count(idx);
2545     this_trap_count  = trap_mdo->inc_trap_count(idx);
2546 
2547     // If the runtime cannot find a place to store trap history,
2548     // it is estimated based on the general condition of the method.
2549     // If the method has ever been recompiled, or has ever incurred
2550     // a trap with the present reason , then this BCI is assumed
2551     // (pessimistically) to be the culprit.
2552     maybe_prior_trap      = (prior_trap_count != 0);
2553     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2554   }
2555   ProfileData* pdata = nullptr;
2556 
2557 
2558   // For reasons which are recorded per bytecode, we check per-BCI data.
2559   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2560   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2561   if (per_bc_reason != Reason_none) {
2562     // Find the profile data for this BCI.  If there isn't one,
2563     // try to allocate one from the MDO's set of spares.
2564     // This will let us detect a repeated trap at this point.
2565     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2566 
2567     if (pdata != nullptr) {
2568       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2569         if (LogCompilation && xtty != nullptr) {
2570           ttyLocker ttyl;
2571           // no more room for speculative traps in this MDO
2572           xtty->elem("speculative_traps_oom");
2573         }
2574       }
2575       // Query the trap state of this profile datum.
2576       int tstate0 = pdata->trap_state();
2577       if (!trap_state_has_reason(tstate0, per_bc_reason))
2578         maybe_prior_trap = false;
2579       if (!trap_state_is_recompiled(tstate0))
2580         maybe_prior_recompile = false;
2581 
2582       // Update the trap state of this profile datum.
2583       int tstate1 = tstate0;
2584       // Record the reason.
2585       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2586       // Store the updated state on the MDO, for next time.
2587       if (tstate1 != tstate0)
2588         pdata->set_trap_state(tstate1);
2589     } else {
2590       if (LogCompilation && xtty != nullptr) {
2591         ttyLocker ttyl;
2592         // Missing MDP?  Leave a small complaint in the log.
2593         xtty->elem("missing_mdp bci='%d'", trap_bci);
2594       }
2595     }
2596   }
2597 
2598   // Return results:
2599   ret_this_trap_count = this_trap_count;
2600   ret_maybe_prior_trap = maybe_prior_trap;
2601   ret_maybe_prior_recompile = maybe_prior_recompile;
2602   return pdata;
2603 }
2604 
2605 void
2606 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2607   ResourceMark rm;
2608   // Ignored outputs:
2609   uint ignore_this_trap_count;
2610   bool ignore_maybe_prior_trap;
2611   bool ignore_maybe_prior_recompile;
2612   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2613   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2614   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2615 
2616   // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2617   MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2618 
2619   query_update_method_data(trap_mdo, trap_bci,
2620                            (DeoptReason)reason,
2621                            update_total_counts,
2622 #if INCLUDE_JVMCI
2623                            false,
2624 #endif
2625                            nullptr,
2626                            ignore_this_trap_count,
2627                            ignore_maybe_prior_trap,
2628                            ignore_maybe_prior_recompile);
2629 }
2630 
2631 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) {
2632   // Enable WXWrite: current function is called from methods compiled by C2 directly
2633   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2634 
2635   // Still in Java no safepoints
2636   {
2637     // This enters VM and may safepoint
2638     uncommon_trap_inner(current, trap_request);
2639   }
2640   HandleMark hm(current);
2641   return fetch_unroll_info_helper(current, exec_mode);
2642 }
2643 
2644 // Local derived constants.
2645 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2646 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2647 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2648 
2649 //---------------------------trap_state_reason---------------------------------
2650 Deoptimization::DeoptReason
2651 Deoptimization::trap_state_reason(int trap_state) {
2652   // This assert provides the link between the width of DataLayout::trap_bits
2653   // and the encoding of "recorded" reasons.  It ensures there are enough
2654   // bits to store all needed reasons in the per-BCI MDO profile.
2655   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2656   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2657   trap_state -= recompile_bit;
2658   if (trap_state == DS_REASON_MASK) {
2659     return Reason_many;
2660   } else {
2661     assert((int)Reason_none == 0, "state=0 => Reason_none");
2662     return (DeoptReason)trap_state;
2663   }
2664 }
2665 //-------------------------trap_state_has_reason-------------------------------
2666 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2667   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2668   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2669   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2670   trap_state -= recompile_bit;
2671   if (trap_state == DS_REASON_MASK) {
2672     return -1;  // true, unspecifically (bottom of state lattice)
2673   } else if (trap_state == reason) {
2674     return 1;   // true, definitely
2675   } else if (trap_state == 0) {
2676     return 0;   // false, definitely (top of state lattice)
2677   } else {
2678     return 0;   // false, definitely
2679   }
2680 }
2681 //-------------------------trap_state_add_reason-------------------------------
2682 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2683   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2684   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2685   trap_state -= recompile_bit;
2686   if (trap_state == DS_REASON_MASK) {
2687     return trap_state + recompile_bit;     // already at state lattice bottom
2688   } else if (trap_state == reason) {
2689     return trap_state + recompile_bit;     // the condition is already true
2690   } else if (trap_state == 0) {
2691     return reason + recompile_bit;          // no condition has yet been true
2692   } else {
2693     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2694   }
2695 }
2696 //-----------------------trap_state_is_recompiled------------------------------
2697 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2698   return (trap_state & DS_RECOMPILE_BIT) != 0;
2699 }
2700 //-----------------------trap_state_set_recompiled-----------------------------
2701 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2702   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2703   else    return trap_state & ~DS_RECOMPILE_BIT;
2704 }
2705 //---------------------------format_trap_state---------------------------------
2706 // This is used for debugging and diagnostics, including LogFile output.
2707 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2708                                               int trap_state) {
2709   assert(buflen > 0, "sanity");
2710   DeoptReason reason      = trap_state_reason(trap_state);
2711   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2712   // Re-encode the state from its decoded components.
2713   int decoded_state = 0;
2714   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2715     decoded_state = trap_state_add_reason(decoded_state, reason);
2716   if (recomp_flag)
2717     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2718   // If the state re-encodes properly, format it symbolically.
2719   // Because this routine is used for debugging and diagnostics,
2720   // be robust even if the state is a strange value.
2721   size_t len;
2722   if (decoded_state != trap_state) {
2723     // Random buggy state that doesn't decode??
2724     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2725   } else {
2726     len = jio_snprintf(buf, buflen, "%s%s",
2727                        trap_reason_name(reason),
2728                        recomp_flag ? " recompiled" : "");
2729   }
2730   return buf;
2731 }
2732 
2733 
2734 //--------------------------------statics--------------------------------------
2735 const char* Deoptimization::_trap_reason_name[] = {
2736   // Note:  Keep this in sync. with enum DeoptReason.
2737   "none",
2738   "null_check",
2739   "null_assert" JVMCI_ONLY("_or_unreached0"),
2740   "range_check",
2741   "class_check",
2742   "array_check",
2743   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2744   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2745   "profile_predicate",
2746   "auto_vectorization_check",
2747   "unloaded",
2748   "uninitialized",
2749   "initialized",
2750   "unreached",
2751   "unhandled",
2752   "constraint",
2753   "div0_check",
2754   "age",
2755   "predicate",
2756   "loop_limit_check",
2757   "speculate_class_check",
2758   "speculate_null_check",
2759   "speculate_null_assert",
2760   "unstable_if",
2761   "unstable_fused_if",
2762   "receiver_constraint",
2763 #if INCLUDE_JVMCI
2764   "aliasing",
2765   "transfer_to_interpreter",
2766   "not_compiled_exception_handler",
2767   "unresolved",
2768   "jsr_mismatch",
2769 #endif
2770   "tenured"
2771 };
2772 const char* Deoptimization::_trap_action_name[] = {
2773   // Note:  Keep this in sync. with enum DeoptAction.
2774   "none",
2775   "maybe_recompile",
2776   "reinterpret",
2777   "make_not_entrant",
2778   "make_not_compilable"
2779 };
2780 
2781 const char* Deoptimization::trap_reason_name(int reason) {
2782   // Check that every reason has a name
2783   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2784 
2785   if (reason == Reason_many)  return "many";
2786   if ((uint)reason < Reason_LIMIT)
2787     return _trap_reason_name[reason];
2788   static char buf[20];
2789   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2790   return buf;
2791 }
2792 const char* Deoptimization::trap_action_name(int action) {
2793   // Check that every action has a name
2794   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2795 
2796   if ((uint)action < Action_LIMIT)
2797     return _trap_action_name[action];
2798   static char buf[20];
2799   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2800   return buf;
2801 }
2802 
2803 // This is used for debugging and diagnostics, including LogFile output.
2804 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2805                                                 int trap_request) {
2806   jint unloaded_class_index = trap_request_index(trap_request);
2807   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2808   const char* action = trap_action_name(trap_request_action(trap_request));
2809 #if INCLUDE_JVMCI
2810   int debug_id = trap_request_debug_id(trap_request);
2811 #endif
2812   size_t len;
2813   if (unloaded_class_index < 0) {
2814     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2815                        reason, action
2816 #if INCLUDE_JVMCI
2817                        ,debug_id
2818 #endif
2819                        );
2820   } else {
2821     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2822                        reason, action, unloaded_class_index
2823 #if INCLUDE_JVMCI
2824                        ,debug_id
2825 #endif
2826                        );
2827   }
2828   return buf;
2829 }
2830 
2831 juint Deoptimization::_deoptimization_hist
2832         [Deoptimization::Reason_LIMIT]
2833     [1 + Deoptimization::Action_LIMIT]
2834         [Deoptimization::BC_CASE_LIMIT]
2835   = {0};
2836 
2837 enum {
2838   LSB_BITS = 8,
2839   LSB_MASK = right_n_bits(LSB_BITS)
2840 };
2841 
2842 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2843                                        Bytecodes::Code bc) {
2844   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2845   assert(action >= 0 && action < Action_LIMIT, "oob");
2846   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2847   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2848   juint* cases = _deoptimization_hist[reason][1+action];
2849   juint* bc_counter_addr = nullptr;
2850   juint  bc_counter      = 0;
2851   // Look for an unused counter, or an exact match to this BC.
2852   if (bc != Bytecodes::_illegal) {
2853     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2854       juint* counter_addr = &cases[bc_case];
2855       juint  counter = *counter_addr;
2856       if ((counter == 0 && bc_counter_addr == nullptr)
2857           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2858         // this counter is either free or is already devoted to this BC
2859         bc_counter_addr = counter_addr;
2860         bc_counter = counter | bc;
2861       }
2862     }
2863   }
2864   if (bc_counter_addr == nullptr) {
2865     // Overflow, or no given bytecode.
2866     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2867     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2868   }
2869   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2870 }
2871 
2872 jint Deoptimization::total_deoptimization_count() {
2873   return _deoptimization_hist[Reason_none][0][0];
2874 }
2875 
2876 // Get the deopt count for a specific reason and a specific action. If either
2877 // one of 'reason' or 'action' is null, the method returns the sum of all
2878 // deoptimizations with the specific 'action' or 'reason' respectively.
2879 // If both arguments are null, the method returns the total deopt count.
2880 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2881   if (reason_str == nullptr && action_str == nullptr) {
2882     return total_deoptimization_count();
2883   }
2884   juint counter = 0;
2885   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2886     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2887       for (int action = 0; action < Action_LIMIT; action++) {
2888         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2889           juint* cases = _deoptimization_hist[reason][1+action];
2890           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2891             counter += cases[bc_case] >> LSB_BITS;
2892           }
2893         }
2894       }
2895     }
2896   }
2897   return counter;
2898 }
2899 
2900 void Deoptimization::print_statistics() {
2901   juint total = total_deoptimization_count();
2902   juint account = total;
2903   if (total != 0) {
2904     ttyLocker ttyl;
2905     if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2906     tty->print_cr("Deoptimization traps recorded:");
2907     #define PRINT_STAT_LINE(name, r) \
2908       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2909     PRINT_STAT_LINE("total", total);
2910     // For each non-zero entry in the histogram, print the reason,
2911     // the action, and (if specifically known) the type of bytecode.
2912     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2913       for (int action = 0; action < Action_LIMIT; action++) {
2914         juint* cases = _deoptimization_hist[reason][1+action];
2915         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2916           juint counter = cases[bc_case];
2917           if (counter != 0) {
2918             char name[1*K];
2919             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2920             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2921               bc = Bytecodes::_illegal;
2922             os::snprintf_checked(name, sizeof(name), "%s/%s/%s",
2923                     trap_reason_name(reason),
2924                     trap_action_name(action),
2925                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2926             juint r = counter >> LSB_BITS;
2927             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2928             account -= r;
2929           }
2930         }
2931       }
2932     }
2933     if (account != 0) {
2934       PRINT_STAT_LINE("unaccounted", account);
2935     }
2936     #undef PRINT_STAT_LINE
2937     if (xtty != nullptr)  xtty->tail("statistics");
2938   }
2939 }
2940 
2941 #else // COMPILER2_OR_JVMCI
2942 
2943 
2944 // Stubs for C1 only system.
2945 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2946   return false;
2947 }
2948 
2949 const char* Deoptimization::trap_reason_name(int reason) {
2950   return "unknown";
2951 }
2952 
2953 jint Deoptimization::total_deoptimization_count() {
2954   return 0;
2955 }
2956 
2957 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2958   return 0;
2959 }
2960 
2961 void Deoptimization::print_statistics() {
2962   // no output
2963 }
2964 
2965 void
2966 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2967   // no update
2968 }
2969 
2970 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2971   return 0;
2972 }
2973 
2974 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2975                                        Bytecodes::Code bc) {
2976   // no update
2977 }
2978 
2979 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2980                                               int trap_state) {
2981   jio_snprintf(buf, buflen, "#%d", trap_state);
2982   return buf;
2983 }
2984 
2985 #endif // COMPILER2_OR_JVMCI