1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compilationPolicy.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/memAllocator.hpp"
  39 #include "interpreter/bytecode.hpp"
  40 #include "interpreter/bytecodeStream.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvm.h"
  44 #include "logging/log.hpp"
  45 #include "logging/logLevel.hpp"
  46 #include "logging/logMessage.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/constantPool.hpp"
  53 #include "oops/fieldStreams.inline.hpp"
  54 #include "oops/method.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/objArrayOop.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvmtiDeferredUpdates.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "prims/methodHandles.hpp"
  64 #include "prims/vectorSupport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/continuation.hpp"
  67 #include "runtime/continuationEntry.inline.hpp"
  68 #include "runtime/deoptimization.hpp"
  69 #include "runtime/escapeBarrier.hpp"
  70 #include "runtime/fieldDescriptor.hpp"
  71 #include "runtime/fieldDescriptor.inline.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/interfaceSupport.inline.hpp"
  75 #include "runtime/javaThread.hpp"
  76 #include "runtime/jniHandles.inline.hpp"
  77 #include "runtime/keepStackGCProcessed.hpp"
  78 #include "runtime/objectMonitor.inline.hpp"
  79 #include "runtime/osThread.hpp"
  80 #include "runtime/safepointVerifiers.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/signature.hpp"
  83 #include "runtime/stackFrameStream.inline.hpp"
  84 #include "runtime/stackValue.hpp"
  85 #include "runtime/stackWatermarkSet.hpp"
  86 #include "runtime/stubRoutines.hpp"
  87 #include "runtime/synchronizer.hpp"
  88 #include "runtime/threadSMR.hpp"
  89 #include "runtime/threadWXSetters.inline.hpp"
  90 #include "runtime/vframe.hpp"
  91 #include "runtime/vframeArray.hpp"
  92 #include "runtime/vframe_hp.hpp"
  93 #include "runtime/vmOperations.hpp"
  94 #include "utilities/checkedCast.hpp"
  95 #include "utilities/events.hpp"
  96 #include "utilities/growableArray.hpp"
  97 #include "utilities/macros.hpp"
  98 #include "utilities/preserveException.hpp"
  99 #include "utilities/xmlstream.hpp"
 100 #if INCLUDE_JFR
 101 #include "jfr/jfrEvents.hpp"
 102 #include "jfr/metadata/jfrSerializer.hpp"
 103 #endif
 104 
 105 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 106 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 107 bool     DeoptimizationScope::_committing_in_progress = false;
 108 
 109 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 110   DEBUG_ONLY(_deopted = false;)
 111 
 112   MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
 113   // If there is nothing to deopt _required_gen is the same as comitted.
 114   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 115 }
 116 
 117 DeoptimizationScope::~DeoptimizationScope() {
 118   assert(_deopted, "Deopt not executed");
 119 }
 120 
 121 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) {
 122   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 123 
 124   // If it's already marked but we still need it to be deopted.
 125   if (nm->is_marked_for_deoptimization()) {
 126     dependent(nm);
 127     return;
 128   }
 129 
 130   nmethod::DeoptimizationStatus status =
 131     inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate;
 132   Atomic::store(&nm->_deoptimization_status, status);
 133 
 134   // Make sure active is not committed
 135   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 136   assert(nm->_deoptimization_generation == 0, "Is already marked");
 137 
 138   nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 139   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 140 }
 141 
 142 void DeoptimizationScope::dependent(nmethod* nm) {
 143   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 144 
 145   // A method marked by someone else may have a _required_gen lower than what we marked with.
 146   // Therefore only store it if it's higher than _required_gen.
 147   if (_required_gen < nm->_deoptimization_generation) {
 148     _required_gen = nm->_deoptimization_generation;
 149   }
 150 }
 151 
 152 void DeoptimizationScope::deoptimize_marked() {
 153   assert(!_deopted, "Already deopted");
 154 
 155   // We are not alive yet.
 156   if (!Universe::is_fully_initialized()) {
 157     DEBUG_ONLY(_deopted = true;)
 158     return;
 159   }
 160 
 161   // Safepoints are a special case, handled here.
 162   if (SafepointSynchronize::is_at_safepoint()) {
 163     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 164     DeoptimizationScope::_active_deopt_gen++;
 165     Deoptimization::deoptimize_all_marked();
 166     DEBUG_ONLY(_deopted = true;)
 167     return;
 168   }
 169 
 170   uint64_t comitting = 0;
 171   bool wait = false;
 172   while (true) {
 173     {
 174       ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 175 
 176       // First we check if we or someone else already deopted the gen we want.
 177       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 178         DEBUG_ONLY(_deopted = true;)
 179         return;
 180       }
 181       if (!_committing_in_progress) {
 182         // The version we are about to commit.
 183         comitting = DeoptimizationScope::_active_deopt_gen;
 184         // Make sure new marks use a higher gen.
 185         DeoptimizationScope::_active_deopt_gen++;
 186         _committing_in_progress = true;
 187         wait = false;
 188       } else {
 189         // Another thread is handshaking and committing a gen.
 190         wait = true;
 191       }
 192     }
 193     if (wait) {
 194       // Wait and let the concurrent handshake be performed.
 195       ThreadBlockInVM tbivm(JavaThread::current());
 196       os::naked_yield();
 197     } else {
 198       // Performs the handshake.
 199       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 200       DEBUG_ONLY(_deopted = true;)
 201       {
 202         ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 203 
 204         // Make sure that committed doesn't go backwards.
 205         // Should only happen if we did a deopt during a safepoint above.
 206         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 207           DeoptimizationScope::_committed_deopt_gen = comitting;
 208         }
 209         _committing_in_progress = false;
 210 
 211         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 212 
 213         return;
 214       }
 215     }
 216   }
 217 }
 218 
 219 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 220                                          int  caller_adjustment,
 221                                          int  caller_actual_parameters,
 222                                          int  number_of_frames,
 223                                          intptr_t* frame_sizes,
 224                                          address* frame_pcs,
 225                                          BasicType return_type,
 226                                          int exec_mode) {
 227   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 228   _caller_adjustment         = caller_adjustment;
 229   _caller_actual_parameters  = caller_actual_parameters;
 230   _number_of_frames          = number_of_frames;
 231   _frame_sizes               = frame_sizes;
 232   _frame_pcs                 = frame_pcs;
 233   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 234   _return_type               = return_type;
 235   _initial_info              = 0;
 236   // PD (x86 only)
 237   _counter_temp              = 0;
 238   _unpack_kind               = exec_mode;
 239   _sender_sp_temp            = 0;
 240 
 241   _total_frame_sizes         = size_of_frames();
 242   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 243 }
 244 
 245 Deoptimization::UnrollBlock::~UnrollBlock() {
 246   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 247   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 248   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 249 }
 250 
 251 int Deoptimization::UnrollBlock::size_of_frames() const {
 252   // Account first for the adjustment of the initial frame
 253   intptr_t result = _caller_adjustment;
 254   for (int index = 0; index < number_of_frames(); index++) {
 255     result += frame_sizes()[index];
 256   }
 257   return checked_cast<int>(result);
 258 }
 259 
 260 void Deoptimization::UnrollBlock::print() {
 261   ResourceMark rm;
 262   stringStream st;
 263   st.print_cr("UnrollBlock");
 264   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 265   st.print(   "  frame_sizes: ");
 266   for (int index = 0; index < number_of_frames(); index++) {
 267     st.print(INTX_FORMAT " ", frame_sizes()[index]);
 268   }
 269   st.cr();
 270   tty->print_raw(st.freeze());
 271 }
 272 
 273 // In order to make fetch_unroll_info work properly with escape
 274 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 275 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 276 // which is called from the method fetch_unroll_info_helper below.
 277 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 278   // fetch_unroll_info() is called at the beginning of the deoptimization
 279   // handler. Note this fact before we start generating temporary frames
 280   // that can confuse an asynchronous stack walker. This counter is
 281   // decremented at the end of unpack_frames().
 282   current->inc_in_deopt_handler();
 283 
 284   if (exec_mode == Unpack_exception) {
 285     // When we get here, a callee has thrown an exception into a deoptimized
 286     // frame. That throw might have deferred stack watermark checking until
 287     // after unwinding. So we deal with such deferred requests here.
 288     StackWatermarkSet::after_unwind(current);
 289   }
 290 
 291   return fetch_unroll_info_helper(current, exec_mode);
 292 JRT_END
 293 
 294 #if COMPILER2_OR_JVMCI
 295 // print information about reallocated objects
 296 static void print_objects(JavaThread* deoptee_thread,
 297                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 298   ResourceMark rm;
 299   stringStream st;  // change to logStream with logging
 300   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 301   fieldDescriptor fd;
 302 
 303   for (int i = 0; i < objects->length(); i++) {
 304     ObjectValue* sv = (ObjectValue*) objects->at(i);
 305     Handle obj = sv->value();
 306 
 307     if (obj.is_null()) {
 308       st.print_cr("     nullptr");
 309       continue;
 310     }
 311 
 312     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 313 
 314     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 315     k->print_value_on(&st);
 316     st.print_cr(" allocated (" SIZE_FORMAT " bytes)", obj->size() * HeapWordSize);
 317 
 318     if (Verbose && k != nullptr) {
 319       k->oop_print_on(obj(), &st);
 320     }
 321   }
 322   tty->print_raw(st.freeze());
 323 }
 324 
 325 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method,
 326                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 327                                   bool& deoptimized_objects) {
 328   bool realloc_failures = false;
 329   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 330 
 331   JavaThread* deoptee_thread = chunk->at(0)->thread();
 332   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 333          "a frame can only be deoptimized by the owner thread");
 334 
 335   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 336 
 337   // The flag return_oop() indicates call sites which return oop
 338   // in compiled code. Such sites include java method calls,
 339   // runtime calls (for example, used to allocate new objects/arrays
 340   // on slow code path) and any other calls generated in compiled code.
 341   // It is not guaranteed that we can get such information here only
 342   // by analyzing bytecode in deoptimized frames. This is why this flag
 343   // is set during method compilation (see Compile::Process_OopMap_Node()).
 344   // If the previous frame was popped or if we are dispatching an exception,
 345   // we don't have an oop result.
 346   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 347   Handle return_value;
 348   if (save_oop_result) {
 349     // Reallocation may trigger GC. If deoptimization happened on return from
 350     // call which returns oop we need to save it since it is not in oopmap.
 351     oop result = deoptee.saved_oop_result(&map);
 352     assert(oopDesc::is_oop_or_null(result), "must be oop");
 353     return_value = Handle(thread, result);
 354     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 355     if (TraceDeoptimization) {
 356       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 357       tty->cr();
 358     }
 359   }
 360   if (objects != nullptr) {
 361     if (exec_mode == Deoptimization::Unpack_none) {
 362       assert(thread->thread_state() == _thread_in_vm, "assumption");
 363       JavaThread* THREAD = thread; // For exception macros.
 364       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 365       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 366       deoptimized_objects = true;
 367     } else {
 368       JavaThread* current = thread; // For JRT_BLOCK
 369       JRT_BLOCK
 370       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 371       JRT_END
 372     }
 373     bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci();
 374     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 375     if (TraceDeoptimization) {
 376       print_objects(deoptee_thread, objects, realloc_failures);
 377     }
 378   }
 379   if (save_oop_result) {
 380     // Restore result.
 381     deoptee.set_saved_oop_result(&map, return_value());
 382   }
 383   return realloc_failures;
 384 }
 385 
 386 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 387                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 388   JavaThread* deoptee_thread = chunk->at(0)->thread();
 389   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 390   assert(thread == Thread::current(), "should be");
 391   HandleMark hm(thread);
 392 #ifndef PRODUCT
 393   bool first = true;
 394 #endif // !PRODUCT
 395   // Start locking from outermost/oldest frame
 396   for (int i = (chunk->length() - 1); i >= 0; i--) {
 397     compiledVFrame* cvf = chunk->at(i);
 398     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 399     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 400     if (monitors->is_nonempty()) {
 401       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 402                                                      exec_mode, realloc_failures);
 403       deoptimized_objects = deoptimized_objects || relocked;
 404 #ifndef PRODUCT
 405       if (PrintDeoptimizationDetails) {
 406         ResourceMark rm;
 407         stringStream st;
 408         for (int j = 0; j < monitors->length(); j++) {
 409           MonitorInfo* mi = monitors->at(j);
 410           if (mi->eliminated()) {
 411             if (first) {
 412               first = false;
 413               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 414             }
 415             if (exec_mode == Deoptimization::Unpack_none) {
 416               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 417               if (monitor != nullptr && monitor->object() == mi->owner()) {
 418                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 419                 continue;
 420               }
 421             }
 422             if (mi->owner_is_scalar_replaced()) {
 423               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 424               st.print_cr("     failed reallocation for klass %s", k->external_name());
 425             } else {
 426               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 427             }
 428           }
 429         }
 430         tty->print_raw(st.freeze());
 431       }
 432 #endif // !PRODUCT
 433     }
 434   }
 435 }
 436 
 437 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 438 // The given vframes cover one physical frame.
 439 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 440                                                  bool& realloc_failures) {
 441   frame deoptee = chunk->at(0)->fr();
 442   JavaThread* deoptee_thread = chunk->at(0)->thread();
 443   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 444   RegisterMap map(chunk->at(0)->register_map());
 445   bool deoptimized_objects = false;
 446 
 447   bool const jvmci_enabled = JVMCI_ONLY(UseJVMCICompiler) NOT_JVMCI(false);
 448 
 449   // Reallocate the non-escaping objects and restore their fields.
 450   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 451                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 452     realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects);
 453   }
 454 
 455   // MonitorInfo structures used in eliminate_locks are not GC safe.
 456   NoSafepointVerifier no_safepoint;
 457 
 458   // Now relock objects if synchronization on them was eliminated.
 459   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 460     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 461   }
 462   return deoptimized_objects;
 463 }
 464 #endif // COMPILER2_OR_JVMCI
 465 
 466 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 467 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 468   // When we get here we are about to unwind the deoptee frame. In order to
 469   // catch not yet safe to use frames, the following stack watermark barrier
 470   // poll will make such frames safe to use.
 471   StackWatermarkSet::before_unwind(current);
 472 
 473   // Note: there is a safepoint safety issue here. No matter whether we enter
 474   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 475   // the vframeArray is created.
 476   //
 477 
 478   // Allocate our special deoptimization ResourceMark
 479   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 480   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 481   current->set_deopt_mark(dmark);
 482 
 483   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 484   RegisterMap map(current,
 485                   RegisterMap::UpdateMap::include,
 486                   RegisterMap::ProcessFrames::include,
 487                   RegisterMap::WalkContinuation::skip);
 488   RegisterMap dummy_map(current,
 489                         RegisterMap::UpdateMap::skip,
 490                         RegisterMap::ProcessFrames::include,
 491                         RegisterMap::WalkContinuation::skip);
 492   // Now get the deoptee with a valid map
 493   frame deoptee = stub_frame.sender(&map);
 494   // Set the deoptee nmethod
 495   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 496   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 497   current->set_deopt_compiled_method(nm);
 498 
 499   if (VerifyStack) {
 500     current->validate_frame_layout();
 501   }
 502 
 503   // Create a growable array of VFrames where each VFrame represents an inlined
 504   // Java frame.  This storage is allocated with the usual system arena.
 505   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 506   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 507   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 508   while (!vf->is_top()) {
 509     assert(vf->is_compiled_frame(), "Wrong frame type");
 510     chunk->push(compiledVFrame::cast(vf));
 511     vf = vf->sender();
 512   }
 513   assert(vf->is_compiled_frame(), "Wrong frame type");
 514   chunk->push(compiledVFrame::cast(vf));
 515 
 516   bool realloc_failures = false;
 517 
 518 #if COMPILER2_OR_JVMCI
 519   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 520 
 521   // Reallocate the non-escaping objects and restore their fields. Then
 522   // relock objects if synchronization on them was eliminated.
 523   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 524                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 525     bool unused;
 526     realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused);
 527   }
 528 #endif // COMPILER2_OR_JVMCI
 529 
 530   // Ensure that no safepoint is taken after pointers have been stored
 531   // in fields of rematerialized objects.  If a safepoint occurs from here on
 532   // out the java state residing in the vframeArray will be missed.
 533   // Locks may be rebaised in a safepoint.
 534   NoSafepointVerifier no_safepoint;
 535 
 536 #if COMPILER2_OR_JVMCI
 537   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 538       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 539     bool unused = false;
 540     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 541   }
 542 #endif // COMPILER2_OR_JVMCI
 543 
 544   ScopeDesc* trap_scope = chunk->at(0)->scope();
 545   Handle exceptionObject;
 546   if (trap_scope->rethrow_exception()) {
 547 #ifndef PRODUCT
 548     if (PrintDeoptimizationDetails) {
 549       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 550     }
 551 #endif // !PRODUCT
 552 
 553     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 554     guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw");
 555     ScopeValue* topOfStack = expressions->top();
 556     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 557     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 558   }
 559 
 560   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 561 #if COMPILER2_OR_JVMCI
 562   if (realloc_failures) {
 563     // This destroys all ScopedValue bindings.
 564     current->clear_scopedValueBindings();
 565     pop_frames_failed_reallocs(current, array);
 566   }
 567 #endif
 568 
 569   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 570   current->set_vframe_array_head(array);
 571 
 572   // Now that the vframeArray has been created if we have any deferred local writes
 573   // added by jvmti then we can free up that structure as the data is now in the
 574   // vframeArray
 575 
 576   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 577 
 578   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 579   CodeBlob* cb = stub_frame.cb();
 580   // Verify we have the right vframeArray
 581   assert(cb->frame_size() >= 0, "Unexpected frame size");
 582   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 583 
 584   // If the deopt call site is a MethodHandle invoke call site we have
 585   // to adjust the unpack_sp.
 586   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 587   if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc()))
 588     unpack_sp = deoptee.unextended_sp();
 589 
 590 #ifdef ASSERT
 591   assert(cb->is_deoptimization_stub() ||
 592          cb->is_uncommon_trap_stub() ||
 593          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 594          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 595          "unexpected code blob: %s", cb->name());
 596 #endif
 597 
 598   // This is a guarantee instead of an assert because if vframe doesn't match
 599   // we will unpack the wrong deoptimized frame and wind up in strange places
 600   // where it will be very difficult to figure out what went wrong. Better
 601   // to die an early death here than some very obscure death later when the
 602   // trail is cold.
 603   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 604   // in that it will fail to detect a problem when there is one. This needs
 605   // more work in tiger timeframe.
 606   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 607 
 608   int number_of_frames = array->frames();
 609 
 610   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 611   // virtual activation, which is the reverse of the elements in the vframes array.
 612   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 613   // +1 because we always have an interpreter return address for the final slot.
 614   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 615   int popframe_extra_args = 0;
 616   // Create an interpreter return address for the stub to use as its return
 617   // address so the skeletal frames are perfectly walkable
 618   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 619 
 620   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 621   // activation be put back on the expression stack of the caller for reexecution
 622   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 623     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 624   }
 625 
 626   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 627   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 628   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 629   //
 630   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 631   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 632 
 633   // It's possible that the number of parameters at the call site is
 634   // different than number of arguments in the callee when method
 635   // handles are used.  If the caller is interpreted get the real
 636   // value so that the proper amount of space can be added to it's
 637   // frame.
 638   bool caller_was_method_handle = false;
 639   if (deopt_sender.is_interpreted_frame()) {
 640     methodHandle method(current, deopt_sender.interpreter_frame_method());
 641     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 642     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 643       // Method handle invokes may involve fairly arbitrary chains of
 644       // calls so it's impossible to know how much actual space the
 645       // caller has for locals.
 646       caller_was_method_handle = true;
 647     }
 648   }
 649 
 650   //
 651   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 652   // frame_sizes/frame_pcs[1] next oldest frame (int)
 653   // frame_sizes/frame_pcs[n] youngest frame (int)
 654   //
 655   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 656   // owns the space for the return address to it's caller).  Confusing ain't it.
 657   //
 658   // The vframe array can address vframes with indices running from
 659   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 660   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 661   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 662   // so things look a little strange in this loop.
 663   //
 664   int callee_parameters = 0;
 665   int callee_locals = 0;
 666   for (int index = 0; index < array->frames(); index++ ) {
 667     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 668     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 669     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 670     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 671                                                                                                     callee_locals,
 672                                                                                                     index == 0,
 673                                                                                                     popframe_extra_args);
 674     // This pc doesn't have to be perfect just good enough to identify the frame
 675     // as interpreted so the skeleton frame will be walkable
 676     // The correct pc will be set when the skeleton frame is completely filled out
 677     // The final pc we store in the loop is wrong and will be overwritten below
 678     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 679 
 680     callee_parameters = array->element(index)->method()->size_of_parameters();
 681     callee_locals = array->element(index)->method()->max_locals();
 682     popframe_extra_args = 0;
 683   }
 684 
 685   // Compute whether the root vframe returns a float or double value.
 686   BasicType return_type;
 687   {
 688     methodHandle method(current, array->element(0)->method());
 689     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 690     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 691   }
 692 
 693   // Compute information for handling adapters and adjusting the frame size of the caller.
 694   int caller_adjustment = 0;
 695 
 696   // Compute the amount the oldest interpreter frame will have to adjust
 697   // its caller's stack by. If the caller is a compiled frame then
 698   // we pretend that the callee has no parameters so that the
 699   // extension counts for the full amount of locals and not just
 700   // locals-parms. This is because without a c2i adapter the parm
 701   // area as created by the compiled frame will not be usable by
 702   // the interpreter. (Depending on the calling convention there
 703   // may not even be enough space).
 704 
 705   // QQQ I'd rather see this pushed down into last_frame_adjust
 706   // and have it take the sender (aka caller).
 707 
 708   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 709     caller_adjustment = last_frame_adjust(0, callee_locals);
 710   } else if (callee_locals > callee_parameters) {
 711     // The caller frame may need extending to accommodate
 712     // non-parameter locals of the first unpacked interpreted frame.
 713     // Compute that adjustment.
 714     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 715   }
 716 
 717   // If the sender is deoptimized the we must retrieve the address of the handler
 718   // since the frame will "magically" show the original pc before the deopt
 719   // and we'd undo the deopt.
 720 
 721   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 722   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 723     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 724   }
 725 
 726   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 727 
 728 #if INCLUDE_JVMCI
 729   if (exceptionObject() != nullptr) {
 730     current->set_exception_oop(exceptionObject());
 731     exec_mode = Unpack_exception;
 732   }
 733 #endif
 734 
 735   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 736     assert(current->has_pending_exception(), "should have thrown OOME");
 737     current->set_exception_oop(current->pending_exception());
 738     current->clear_pending_exception();
 739     exec_mode = Unpack_exception;
 740   }
 741 
 742 #if INCLUDE_JVMCI
 743   if (current->frames_to_pop_failed_realloc() > 0) {
 744     current->set_pending_monitorenter(false);
 745   }
 746 #endif
 747 
 748   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 749                                       caller_adjustment * BytesPerWord,
 750                                       caller_was_method_handle ? 0 : callee_parameters,
 751                                       number_of_frames,
 752                                       frame_sizes,
 753                                       frame_pcs,
 754                                       return_type,
 755                                       exec_mode);
 756   // On some platforms, we need a way to pass some platform dependent
 757   // information to the unpacking code so the skeletal frames come out
 758   // correct (initial fp value, unextended sp, ...)
 759   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 760 
 761   if (array->frames() > 1) {
 762     if (VerifyStack && TraceDeoptimization) {
 763       tty->print_cr("Deoptimizing method containing inlining");
 764     }
 765   }
 766 
 767   array->set_unroll_block(info);
 768   return info;
 769 }
 770 
 771 // Called to cleanup deoptimization data structures in normal case
 772 // after unpacking to stack and when stack overflow error occurs
 773 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 774                                         vframeArray *array) {
 775 
 776   // Get array if coming from exception
 777   if (array == nullptr) {
 778     array = thread->vframe_array_head();
 779   }
 780   thread->set_vframe_array_head(nullptr);
 781 
 782   // Free the previous UnrollBlock
 783   vframeArray* old_array = thread->vframe_array_last();
 784   thread->set_vframe_array_last(array);
 785 
 786   if (old_array != nullptr) {
 787     UnrollBlock* old_info = old_array->unroll_block();
 788     old_array->set_unroll_block(nullptr);
 789     delete old_info;
 790     delete old_array;
 791   }
 792 
 793   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 794   // inside the vframeArray (StackValueCollections)
 795 
 796   delete thread->deopt_mark();
 797   thread->set_deopt_mark(nullptr);
 798   thread->set_deopt_compiled_method(nullptr);
 799 
 800 
 801   if (JvmtiExport::can_pop_frame()) {
 802     // Regardless of whether we entered this routine with the pending
 803     // popframe condition bit set, we should always clear it now
 804     thread->clear_popframe_condition();
 805   }
 806 
 807   // unpack_frames() is called at the end of the deoptimization handler
 808   // and (in C2) at the end of the uncommon trap handler. Note this fact
 809   // so that an asynchronous stack walker can work again. This counter is
 810   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 811   // the beginning of uncommon_trap().
 812   thread->dec_in_deopt_handler();
 813 }
 814 
 815 // Moved from cpu directories because none of the cpus has callee save values.
 816 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 817 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 818 
 819   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 820   // the days we had adapter frames. When we deoptimize a situation where a
 821   // compiled caller calls a compiled caller will have registers it expects
 822   // to survive the call to the callee. If we deoptimize the callee the only
 823   // way we can restore these registers is to have the oldest interpreter
 824   // frame that we create restore these values. That is what this routine
 825   // will accomplish.
 826 
 827   // At the moment we have modified c2 to not have any callee save registers
 828   // so this problem does not exist and this routine is just a place holder.
 829 
 830   assert(f->is_interpreted_frame(), "must be interpreted");
 831 }
 832 
 833 #ifndef PRODUCT
 834 static bool falls_through(Bytecodes::Code bc) {
 835   switch (bc) {
 836     // List may be incomplete.  Here we really only care about bytecodes where compiled code
 837     // can deoptimize.
 838     case Bytecodes::_goto:
 839     case Bytecodes::_goto_w:
 840     case Bytecodes::_athrow:
 841       return false;
 842     default:
 843       return true;
 844   }
 845 }
 846 #endif
 847 
 848 // Return BasicType of value being returned
 849 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 850   assert(thread == JavaThread::current(), "pre-condition");
 851 
 852   // We are already active in the special DeoptResourceMark any ResourceObj's we
 853   // allocate will be freed at the end of the routine.
 854 
 855   // JRT_LEAF methods don't normally allocate handles and there is a
 856   // NoHandleMark to enforce that. It is actually safe to use Handles
 857   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 858   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 859   // then use a HandleMark to ensure any Handles we do create are
 860   // cleaned up in this scope.
 861   ResetNoHandleMark rnhm;
 862   HandleMark hm(thread);
 863 
 864   frame stub_frame = thread->last_frame();
 865 
 866   Continuation::notify_deopt(thread, stub_frame.sp());
 867 
 868   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 869   // must point to the vframeArray for the unpack frame.
 870   vframeArray* array = thread->vframe_array_head();
 871   UnrollBlock* info = array->unroll_block();
 872 
 873   // We set the last_Java frame. But the stack isn't really parsable here. So we
 874   // clear it to make sure JFR understands not to try and walk stacks from events
 875   // in here.
 876   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 877   thread->frame_anchor()->set_last_Java_sp(nullptr);
 878 
 879   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 880   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 881 
 882   thread->frame_anchor()->set_last_Java_sp(sp);
 883 
 884   BasicType bt = info->return_type();
 885 
 886   // If we have an exception pending, claim that the return type is an oop
 887   // so the deopt_blob does not overwrite the exception_oop.
 888 
 889   if (exec_mode == Unpack_exception)
 890     bt = T_OBJECT;
 891 
 892   // Cleanup thread deopt data
 893   cleanup_deopt_info(thread, array);
 894 
 895 #ifndef PRODUCT
 896   if (VerifyStack) {
 897     ResourceMark res_mark;
 898     // Clear pending exception to not break verification code (restored afterwards)
 899     PreserveExceptionMark pm(thread);
 900 
 901     thread->validate_frame_layout();
 902 
 903     // Verify that the just-unpacked frames match the interpreter's
 904     // notions of expression stack and locals
 905     vframeArray* cur_array = thread->vframe_array_last();
 906     RegisterMap rm(thread,
 907                    RegisterMap::UpdateMap::skip,
 908                    RegisterMap::ProcessFrames::include,
 909                    RegisterMap::WalkContinuation::skip);
 910     rm.set_include_argument_oops(false);
 911     bool is_top_frame = true;
 912     int callee_size_of_parameters = 0;
 913     int callee_max_locals = 0;
 914     for (int i = 0; i < cur_array->frames(); i++) {
 915       vframeArrayElement* el = cur_array->element(i);
 916       frame* iframe = el->iframe();
 917       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 918 
 919       // Get the oop map for this bci
 920       InterpreterOopMap mask;
 921       int cur_invoke_parameter_size = 0;
 922       bool try_next_mask = false;
 923       int next_mask_expression_stack_size = -1;
 924       int top_frame_expression_stack_adjustment = 0;
 925       methodHandle mh(thread, iframe->interpreter_frame_method());
 926       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 927       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 928       int max_bci = mh->code_size();
 929       // Get to the next bytecode if possible
 930       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 931       // Check to see if we can grab the number of outgoing arguments
 932       // at an uncommon trap for an invoke (where the compiler
 933       // generates debug info before the invoke has executed)
 934       Bytecodes::Code cur_code = str.next();
 935       Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere;
 936       if (Bytecodes::is_invoke(cur_code)) {
 937         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 938         cur_invoke_parameter_size = invoke.size_of_parameters();
 939         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 940           callee_size_of_parameters++;
 941         }
 942       }
 943       if (str.bci() < max_bci) {
 944         next_code = str.next();
 945         if (next_code >= 0) {
 946           // The interpreter oop map generator reports results before
 947           // the current bytecode has executed except in the case of
 948           // calls. It seems to be hard to tell whether the compiler
 949           // has emitted debug information matching the "state before"
 950           // a given bytecode or the state after, so we try both
 951           if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) {
 952             // Get expression stack size for the next bytecode
 953             InterpreterOopMap next_mask;
 954             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 955             next_mask_expression_stack_size = next_mask.expression_stack_size();
 956             if (Bytecodes::is_invoke(next_code)) {
 957               Bytecode_invoke invoke(mh, str.bci());
 958               next_mask_expression_stack_size += invoke.size_of_parameters();
 959             }
 960             // Need to subtract off the size of the result type of
 961             // the bytecode because this is not described in the
 962             // debug info but returned to the interpreter in the TOS
 963             // caching register
 964             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 965             if (bytecode_result_type != T_ILLEGAL) {
 966               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 967             }
 968             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 969             try_next_mask = true;
 970           }
 971         }
 972       }
 973 
 974       // Verify stack depth and oops in frame
 975       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 976       if (!(
 977             /* SPARC */
 978             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 979             /* x86 */
 980             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 981             (try_next_mask &&
 982              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 983                                                                     top_frame_expression_stack_adjustment))) ||
 984             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 985             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 986              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 987             )) {
 988         {
 989           // Print out some information that will help us debug the problem
 990           tty->print_cr("Wrong number of expression stack elements during deoptimization");
 991           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 992           tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
 993           if (try_next_mask) {
 994             tty->print_cr("  Next code %s", Bytecodes::name(next_code));
 995           }
 996           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 997                         iframe->interpreter_frame_expression_stack_size());
 998           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 999           tty->print_cr("  try_next_mask = %d", try_next_mask);
1000           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
1001           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
1002           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
1003           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1004           tty->print_cr("  exec_mode = %d", exec_mode);
1005           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1006           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1007           tty->print_cr("  Interpreted frames:");
1008           for (int k = 0; k < cur_array->frames(); k++) {
1009             vframeArrayElement* el = cur_array->element(k);
1010             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1011           }
1012           cur_array->print_on_2(tty);
1013         }
1014         guarantee(false, "wrong number of expression stack elements during deopt");
1015       }
1016       VerifyOopClosure verify;
1017       iframe->oops_interpreted_do(&verify, &rm, false);
1018       callee_size_of_parameters = mh->size_of_parameters();
1019       callee_max_locals = mh->max_locals();
1020       is_top_frame = false;
1021     }
1022   }
1023 #endif // !PRODUCT
1024 
1025   return bt;
1026 JRT_END
1027 
1028 class DeoptimizeMarkedClosure : public HandshakeClosure {
1029  public:
1030   DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {}
1031   void do_thread(Thread* thread) {
1032     JavaThread* jt = JavaThread::cast(thread);
1033     jt->deoptimize_marked_methods();
1034   }
1035 };
1036 
1037 void Deoptimization::deoptimize_all_marked() {
1038   ResourceMark rm;
1039 
1040   // Make the dependent methods not entrant
1041   CodeCache::make_marked_nmethods_deoptimized();
1042 
1043   DeoptimizeMarkedClosure deopt;
1044   if (SafepointSynchronize::is_at_safepoint()) {
1045     Threads::java_threads_do(&deopt);
1046   } else {
1047     Handshake::execute(&deopt);
1048   }
1049 }
1050 
1051 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1052   = Deoptimization::Action_reinterpret;
1053 
1054 #if INCLUDE_JVMCI
1055 template<typename CacheType>
1056 class BoxCacheBase : public CHeapObj<mtCompiler> {
1057 protected:
1058   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1059     ResourceMark rm(thread);
1060     char* klass_name_str = klass_name->as_C_string();
1061     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle(), Handle());
1062     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1063     if (!ik->is_in_error_state()) {
1064       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1065       CacheType::compute_offsets(ik);
1066     }
1067     return ik;
1068   }
1069 };
1070 
1071 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1072   PrimitiveType _low;
1073   PrimitiveType _high;
1074   jobject _cache;
1075 protected:
1076   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1077   BoxCache(Thread* thread) {
1078     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1079     if (ik->is_in_error_state()) {
1080       _low = 1;
1081       _high = 0;
1082       _cache = nullptr;
1083     } else {
1084       objArrayOop cache = CacheType::cache(ik);
1085       assert(cache->length() > 0, "Empty cache");
1086       _low = BoxType::value(cache->obj_at(0));
1087       _high = checked_cast<PrimitiveType>(_low + cache->length() - 1);
1088       _cache = JNIHandles::make_global(Handle(thread, cache));
1089     }
1090   }
1091   ~BoxCache() {
1092     JNIHandles::destroy_global(_cache);
1093   }
1094 public:
1095   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1096     if (_singleton == nullptr) {
1097       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1098       if (!Atomic::replace_if_null(&_singleton, s)) {
1099         delete s;
1100       }
1101     }
1102     return _singleton;
1103   }
1104   oop lookup(PrimitiveType value) {
1105     if (_low <= value && value <= _high) {
1106       int offset = checked_cast<int>(value - _low);
1107       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1108     }
1109     return nullptr;
1110   }
1111   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1112     if (_cache == nullptr) {
1113       cache_init_error = true;
1114       return nullptr;
1115     }
1116     // Have to cast to avoid little/big-endian problems.
1117     if (sizeof(PrimitiveType) > sizeof(jint)) {
1118       jlong value = (jlong)raw_value;
1119       return lookup(value);
1120     }
1121     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1122     return lookup(value);
1123   }
1124 };
1125 
1126 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1127 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1128 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1129 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1130 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1131 
1132 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1133 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1134 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1135 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1136 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1137 
1138 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1139   jobject _true_cache;
1140   jobject _false_cache;
1141 protected:
1142   static BooleanBoxCache *_singleton;
1143   BooleanBoxCache(Thread *thread) {
1144     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1145     if (ik->is_in_error_state()) {
1146       _true_cache = nullptr;
1147       _false_cache = nullptr;
1148     } else {
1149       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1150       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1151     }
1152   }
1153   ~BooleanBoxCache() {
1154     JNIHandles::destroy_global(_true_cache);
1155     JNIHandles::destroy_global(_false_cache);
1156   }
1157 public:
1158   static BooleanBoxCache* singleton(Thread* thread) {
1159     if (_singleton == nullptr) {
1160       BooleanBoxCache* s = new BooleanBoxCache(thread);
1161       if (!Atomic::replace_if_null(&_singleton, s)) {
1162         delete s;
1163       }
1164     }
1165     return _singleton;
1166   }
1167   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1168     if (_true_cache == nullptr) {
1169       cache_in_error = true;
1170       return nullptr;
1171     }
1172     // Have to cast to avoid little/big-endian problems.
1173     jboolean value = (jboolean)*((jint*)&raw_value);
1174     return lookup(value);
1175   }
1176   oop lookup(jboolean value) {
1177     if (value != 0) {
1178       return JNIHandles::resolve_non_null(_true_cache);
1179     }
1180     return JNIHandles::resolve_non_null(_false_cache);
1181   }
1182 };
1183 
1184 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1185 
1186 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1187    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1188    BasicType box_type = vmClasses::box_klass_type(k);
1189    if (box_type != T_OBJECT) {
1190      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1191      switch(box_type) {
1192        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1193        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1194        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1195        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1196        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1197        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1198        default:;
1199      }
1200    }
1201    return nullptr;
1202 }
1203 #endif // INCLUDE_JVMCI
1204 
1205 #if COMPILER2_OR_JVMCI
1206 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1207   Handle pending_exception(THREAD, thread->pending_exception());
1208   const char* exception_file = thread->exception_file();
1209   int exception_line = thread->exception_line();
1210   thread->clear_pending_exception();
1211 
1212   bool failures = false;
1213 
1214   for (int i = 0; i < objects->length(); i++) {
1215     assert(objects->at(i)->is_object(), "invalid debug information");
1216     ObjectValue* sv = (ObjectValue*) objects->at(i);
1217 
1218     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1219     oop obj = nullptr;
1220 
1221     bool cache_init_error = false;
1222     if (k->is_instance_klass()) {
1223 #if INCLUDE_JVMCI
1224       nmethod* nm = fr->cb()->as_nmethod_or_null();
1225       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1226         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1227         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1228         if (obj != nullptr) {
1229           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1230           abv->set_cached(true);
1231         } else if (cache_init_error) {
1232           // Results in an OOME which is valid (as opposed to a class initialization error)
1233           // and is fine for the rare case a cache initialization failing.
1234           failures = true;
1235         }
1236       }
1237 #endif // INCLUDE_JVMCI
1238 
1239       InstanceKlass* ik = InstanceKlass::cast(k);
1240       if (obj == nullptr && !cache_init_error) {
1241         InternalOOMEMark iom(THREAD);
1242 #if COMPILER2_OR_JVMCI
1243         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1244           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1245         } else {
1246           obj = ik->allocate_instance(THREAD);
1247         }
1248 #else
1249         obj = ik->allocate_instance(THREAD);
1250 #endif // COMPILER2_OR_JVMCI
1251       }
1252     } else if (k->is_typeArray_klass()) {
1253       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1254       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1255       int len = sv->field_size() / type2size[ak->element_type()];
1256       InternalOOMEMark iom(THREAD);
1257       obj = ak->allocate(len, THREAD);
1258     } else if (k->is_objArray_klass()) {
1259       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1260       InternalOOMEMark iom(THREAD);
1261       obj = ak->allocate(sv->field_size(), THREAD);
1262     }
1263 
1264     if (obj == nullptr) {
1265       failures = true;
1266     }
1267 
1268     assert(sv->value().is_null(), "redundant reallocation");
1269     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1270     CLEAR_PENDING_EXCEPTION;
1271     sv->set_value(obj);
1272   }
1273 
1274   if (failures) {
1275     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1276   } else if (pending_exception.not_null()) {
1277     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1278   }
1279 
1280   return failures;
1281 }
1282 
1283 #if INCLUDE_JVMCI
1284 /**
1285  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1286  * we need to somehow be able to recover the actual kind to be able to write the correct
1287  * amount of bytes.
1288  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1289  * the entries at index n + 1 to n + i are 'markers'.
1290  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1291  * expected form of the array would be:
1292  *
1293  * {b0, b1, b2, b3, INT, marker, b6, b7}
1294  *
1295  * Thus, in order to get back the size of the entry, we simply need to count the number
1296  * of marked entries
1297  *
1298  * @param virtualArray the virtualized byte array
1299  * @param i index of the virtual entry we are recovering
1300  * @return The number of bytes the entry spans
1301  */
1302 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1303   int index = i;
1304   while (++index < virtualArray->field_size() &&
1305            virtualArray->field_at(index)->is_marker()) {}
1306   return index - i;
1307 }
1308 
1309 /**
1310  * If there was a guarantee for byte array to always start aligned to a long, we could
1311  * do a simple check on the parity of the index. Unfortunately, that is not always the
1312  * case. Thus, we check alignment of the actual address we are writing to.
1313  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1314  * write a long to index 3.
1315  */
1316 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1317     jbyte* res = obj->byte_at_addr(index);
1318     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1319     return res;
1320 }
1321 
1322 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) {
1323   switch (byte_count) {
1324     case 1:
1325       obj->byte_at_put(index, (jbyte) value->get_jint());
1326       break;
1327     case 2:
1328       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint();
1329       break;
1330     case 4:
1331       *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint();
1332       break;
1333     case 8:
1334       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr();
1335       break;
1336     default:
1337       ShouldNotReachHere();
1338   }
1339 }
1340 #endif // INCLUDE_JVMCI
1341 
1342 
1343 // restore elements of an eliminated type array
1344 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1345   int index = 0;
1346 
1347   for (int i = 0; i < sv->field_size(); i++) {
1348     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1349     switch(type) {
1350     case T_LONG: case T_DOUBLE: {
1351       assert(value->type() == T_INT, "Agreement.");
1352       StackValue* low =
1353         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1354 #ifdef _LP64
1355       jlong res = (jlong)low->get_intptr();
1356 #else
1357       jlong res = jlong_from(value->get_jint(), low->get_jint());
1358 #endif
1359       obj->long_at_put(index, res);
1360       break;
1361     }
1362 
1363     case T_INT: case T_FLOAT: { // 4 bytes.
1364       assert(value->type() == T_INT, "Agreement.");
1365       bool big_value = false;
1366       if (i + 1 < sv->field_size() && type == T_INT) {
1367         if (sv->field_at(i)->is_location()) {
1368           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1369           if (type == Location::dbl || type == Location::lng) {
1370             big_value = true;
1371           }
1372         } else if (sv->field_at(i)->is_constant_int()) {
1373           ScopeValue* next_scope_field = sv->field_at(i + 1);
1374           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1375             big_value = true;
1376           }
1377         }
1378       }
1379 
1380       if (big_value) {
1381         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1382   #ifdef _LP64
1383         jlong res = (jlong)low->get_intptr();
1384   #else
1385         jlong res = jlong_from(value->get_jint(), low->get_jint());
1386   #endif
1387         obj->int_at_put(index, *(jint*)&res);
1388         obj->int_at_put(++index, *((jint*)&res + 1));
1389       } else {
1390         obj->int_at_put(index, value->get_jint());
1391       }
1392       break;
1393     }
1394 
1395     case T_SHORT:
1396       assert(value->type() == T_INT, "Agreement.");
1397       obj->short_at_put(index, (jshort)value->get_jint());
1398       break;
1399 
1400     case T_CHAR:
1401       assert(value->type() == T_INT, "Agreement.");
1402       obj->char_at_put(index, (jchar)value->get_jint());
1403       break;
1404 
1405     case T_BYTE: {
1406       assert(value->type() == T_INT, "Agreement.");
1407 #if INCLUDE_JVMCI
1408       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1409       int byte_count = count_number_of_bytes_for_entry(sv, i);
1410       byte_array_put(obj, value, index, byte_count);
1411       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1412       i += byte_count - 1; // Balance the loop counter.
1413       index += byte_count;
1414       // index has been updated so continue at top of loop
1415       continue;
1416 #else
1417       obj->byte_at_put(index, (jbyte)value->get_jint());
1418       break;
1419 #endif // INCLUDE_JVMCI
1420     }
1421 
1422     case T_BOOLEAN: {
1423       assert(value->type() == T_INT, "Agreement.");
1424       obj->bool_at_put(index, (jboolean)value->get_jint());
1425       break;
1426     }
1427 
1428       default:
1429         ShouldNotReachHere();
1430     }
1431     index++;
1432   }
1433 }
1434 
1435 // restore fields of an eliminated object array
1436 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1437   for (int i = 0; i < sv->field_size(); i++) {
1438     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1439     assert(value->type() == T_OBJECT, "object element expected");
1440     obj->obj_at_put(i, value->get_obj()());
1441   }
1442 }
1443 
1444 class ReassignedField {
1445 public:
1446   int _offset;
1447   BasicType _type;
1448 public:
1449   ReassignedField() {
1450     _offset = 0;
1451     _type = T_ILLEGAL;
1452   }
1453 };
1454 
1455 static int compare(ReassignedField* left, ReassignedField* right) {
1456   return left->_offset - right->_offset;
1457 }
1458 
1459 // Restore fields of an eliminated instance object using the same field order
1460 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1461 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
1462   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1463   InstanceKlass* ik = klass;
1464   while (ik != nullptr) {
1465     for (AllFieldStream fs(ik); !fs.done(); fs.next()) {
1466       if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) {
1467         ReassignedField field;
1468         field._offset = fs.offset();
1469         field._type = Signature::basic_type(fs.signature());
1470         fields->append(field);
1471       }
1472     }
1473     ik = ik->superklass();
1474   }
1475   fields->sort(compare);
1476   for (int i = 0; i < fields->length(); i++) {
1477     ScopeValue* scope_field = sv->field_at(svIndex);
1478     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1479     int offset = fields->at(i)._offset;
1480     BasicType type = fields->at(i)._type;
1481     switch (type) {
1482       case T_OBJECT: case T_ARRAY:
1483         assert(value->type() == T_OBJECT, "Agreement.");
1484         obj->obj_field_put(offset, value->get_obj()());
1485         break;
1486 
1487       case T_INT: case T_FLOAT: { // 4 bytes.
1488         assert(value->type() == T_INT, "Agreement.");
1489         bool big_value = false;
1490         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1491           if (scope_field->is_location()) {
1492             Location::Type type = ((LocationValue*) scope_field)->location().type();
1493             if (type == Location::dbl || type == Location::lng) {
1494               big_value = true;
1495             }
1496           }
1497           if (scope_field->is_constant_int()) {
1498             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1499             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1500               big_value = true;
1501             }
1502           }
1503         }
1504 
1505         if (big_value) {
1506           i++;
1507           assert(i < fields->length(), "second T_INT field needed");
1508           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1509         } else {
1510           obj->int_field_put(offset, value->get_jint());
1511           break;
1512         }
1513       }
1514         /* no break */
1515 
1516       case T_LONG: case T_DOUBLE: {
1517         assert(value->type() == T_INT, "Agreement.");
1518         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1519 #ifdef _LP64
1520         jlong res = (jlong)low->get_intptr();
1521 #else
1522         jlong res = jlong_from(value->get_jint(), low->get_jint());
1523 #endif
1524         obj->long_field_put(offset, res);
1525         break;
1526       }
1527 
1528       case T_SHORT:
1529         assert(value->type() == T_INT, "Agreement.");
1530         obj->short_field_put(offset, (jshort)value->get_jint());
1531         break;
1532 
1533       case T_CHAR:
1534         assert(value->type() == T_INT, "Agreement.");
1535         obj->char_field_put(offset, (jchar)value->get_jint());
1536         break;
1537 
1538       case T_BYTE:
1539         assert(value->type() == T_INT, "Agreement.");
1540         obj->byte_field_put(offset, (jbyte)value->get_jint());
1541         break;
1542 
1543       case T_BOOLEAN:
1544         assert(value->type() == T_INT, "Agreement.");
1545         obj->bool_field_put(offset, (jboolean)value->get_jint());
1546         break;
1547 
1548       default:
1549         ShouldNotReachHere();
1550     }
1551     svIndex++;
1552   }
1553   return svIndex;
1554 }
1555 
1556 // restore fields of all eliminated objects and arrays
1557 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1558   for (int i = 0; i < objects->length(); i++) {
1559     assert(objects->at(i)->is_object(), "invalid debug information");
1560     ObjectValue* sv = (ObjectValue*) objects->at(i);
1561     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1562     Handle obj = sv->value();
1563     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1564 #ifndef PRODUCT
1565     if (PrintDeoptimizationDetails) {
1566       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1567     }
1568 #endif // !PRODUCT
1569 
1570     if (obj.is_null()) {
1571       continue;
1572     }
1573 
1574 #if INCLUDE_JVMCI
1575     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1576     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1577       continue;
1578     }
1579 #endif // INCLUDE_JVMCI
1580 #if COMPILER2_OR_JVMCI
1581     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1582       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1583       ScopeValue* payload = sv->field_at(0);
1584       if (payload->is_location() &&
1585           payload->as_LocationValue()->location().type() == Location::vector) {
1586 #ifndef PRODUCT
1587         if (PrintDeoptimizationDetails) {
1588           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1589           if (Verbose) {
1590             Handle obj = sv->value();
1591             k->oop_print_on(obj(), tty);
1592           }
1593         }
1594 #endif // !PRODUCT
1595         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1596       }
1597       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1598       // which could be restored after vector object allocation.
1599     }
1600 #endif /* !COMPILER2_OR_JVMCI */
1601     if (k->is_instance_klass()) {
1602       InstanceKlass* ik = InstanceKlass::cast(k);
1603       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1604     } else if (k->is_typeArray_klass()) {
1605       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1606       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1607     } else if (k->is_objArray_klass()) {
1608       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1609     }
1610   }
1611   // These objects may escape when we return to Interpreter after deoptimization.
1612   // We need barrier so that stores that initialize these objects can't be reordered
1613   // with subsequent stores that make these objects accessible by other threads.
1614   OrderAccess::storestore();
1615 }
1616 
1617 
1618 // relock objects for which synchronization was eliminated
1619 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1620                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1621   bool relocked_objects = false;
1622   for (int i = 0; i < monitors->length(); i++) {
1623     MonitorInfo* mon_info = monitors->at(i);
1624     if (mon_info->eliminated()) {
1625       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1626       relocked_objects = true;
1627       if (!mon_info->owner_is_scalar_replaced()) {
1628         Handle obj(thread, mon_info->owner());
1629         markWord mark = obj->mark();
1630         if (exec_mode == Unpack_none) {
1631           if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) {
1632             // With exec_mode == Unpack_none obj may be thread local and locked in
1633             // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header.
1634             markWord dmw = mark.displaced_mark_helper();
1635             mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr));
1636             obj->set_mark(dmw);
1637           }
1638           if (mark.has_monitor()) {
1639             // defer relocking if the deoptee thread is currently waiting for obj
1640             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1641             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1642               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1643               mon_info->lock()->set_displaced_header(markWord::unused_mark());
1644               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1645               continue;
1646             }
1647           }
1648         }
1649         if (LockingMode == LM_LIGHTWEIGHT) {
1650           // We have lost information about the correct state of the lock stack.
1651           // Inflate the locks instead. Enter then inflate to avoid races with
1652           // deflation.
1653           ObjectSynchronizer::enter_for(obj, nullptr, deoptee_thread);
1654           assert(mon_info->owner()->is_locked(), "object must be locked now");
1655           ObjectMonitor* mon = ObjectSynchronizer::inflate_for(deoptee_thread, obj(), ObjectSynchronizer::inflate_cause_vm_internal);
1656           assert(mon->owner() == deoptee_thread, "must be");
1657         } else {
1658           BasicLock* lock = mon_info->lock();
1659           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1660           assert(mon_info->owner()->is_locked(), "object must be locked now");
1661         }
1662       }
1663     }
1664   }
1665   return relocked_objects;
1666 }
1667 #endif // COMPILER2_OR_JVMCI
1668 
1669 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1670   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1671 
1672   // Register map for next frame (used for stack crawl).  We capture
1673   // the state of the deopt'ing frame's caller.  Thus if we need to
1674   // stuff a C2I adapter we can properly fill in the callee-save
1675   // register locations.
1676   frame caller = fr.sender(reg_map);
1677   int frame_size = pointer_delta_as_int(caller.sp(), fr.sp());
1678 
1679   frame sender = caller;
1680 
1681   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1682   // the vframeArray containing the unpacking information is allocated in the C heap.
1683   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1684   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1685 
1686   // Compare the vframeArray to the collected vframes
1687   assert(array->structural_compare(thread, chunk), "just checking");
1688 
1689   if (TraceDeoptimization) {
1690     ResourceMark rm;
1691     stringStream st;
1692     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1693     st.print("   ");
1694     fr.print_on(&st);
1695     st.print_cr("   Virtual frames (innermost/newest first):");
1696     for (int index = 0; index < chunk->length(); index++) {
1697       compiledVFrame* vf = chunk->at(index);
1698       int bci = vf->raw_bci();
1699       const char* code_name;
1700       if (bci == SynchronizationEntryBCI) {
1701         code_name = "sync entry";
1702       } else {
1703         Bytecodes::Code code = vf->method()->code_at(bci);
1704         code_name = Bytecodes::name(code);
1705       }
1706 
1707       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1708       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1709       st.print(" - %s", code_name);
1710       st.print_cr(" @ bci=%d ", bci);
1711     }
1712     tty->print_raw(st.freeze());
1713     tty->cr();
1714   }
1715 
1716   return array;
1717 }
1718 
1719 #if COMPILER2_OR_JVMCI
1720 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1721   // Reallocation of some scalar replaced objects failed. Record
1722   // that we need to pop all the interpreter frames for the
1723   // deoptimized compiled frame.
1724   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1725   thread->set_frames_to_pop_failed_realloc(array->frames());
1726   // Unlock all monitors here otherwise the interpreter will see a
1727   // mix of locked and unlocked monitors (because of failed
1728   // reallocations of synchronized objects) and be confused.
1729   for (int i = 0; i < array->frames(); i++) {
1730     MonitorChunk* monitors = array->element(i)->monitors();
1731     if (monitors != nullptr) {
1732       // Unlock in reverse order starting from most nested monitor.
1733       for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) {
1734         BasicObjectLock* src = monitors->at(j);
1735         if (src->obj() != nullptr) {
1736           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1737         }
1738       }
1739       array->element(i)->free_monitors();
1740 #ifdef ASSERT
1741       array->element(i)->set_removed_monitors();
1742 #endif
1743     }
1744   }
1745 }
1746 #endif
1747 
1748 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1749   assert(fr.can_be_deoptimized(), "checking frame type");
1750 
1751   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1752 
1753   if (LogCompilation && xtty != nullptr) {
1754     nmethod* nm = fr.cb()->as_nmethod_or_null();
1755     assert(nm != nullptr, "only compiled methods can deopt");
1756 
1757     ttyLocker ttyl;
1758     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1759     nm->log_identity(xtty);
1760     xtty->end_head();
1761     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1762       xtty->begin_elem("jvms bci='%d'", sd->bci());
1763       xtty->method(sd->method());
1764       xtty->end_elem();
1765       if (sd->is_top())  break;
1766     }
1767     xtty->tail("deoptimized");
1768   }
1769 
1770   Continuation::notify_deopt(thread, fr.sp());
1771 
1772   // Patch the compiled method so that when execution returns to it we will
1773   // deopt the execution state and return to the interpreter.
1774   fr.deoptimize(thread);
1775 }
1776 
1777 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1778   // Deoptimize only if the frame comes from compile code.
1779   // Do not deoptimize the frame which is already patched
1780   // during the execution of the loops below.
1781   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1782     return;
1783   }
1784   ResourceMark rm;
1785   deoptimize_single_frame(thread, fr, reason);
1786 }
1787 
1788 #if INCLUDE_JVMCI
1789 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) {
1790   // there is no exception handler for this pc => deoptimize
1791   nm->make_not_entrant();
1792 
1793   // Use Deoptimization::deoptimize for all of its side-effects:
1794   // gathering traps statistics, logging...
1795   // it also patches the return pc but we do not care about that
1796   // since we return a continuation to the deopt_blob below.
1797   JavaThread* thread = JavaThread::current();
1798   RegisterMap reg_map(thread,
1799                       RegisterMap::UpdateMap::skip,
1800                       RegisterMap::ProcessFrames::include,
1801                       RegisterMap::WalkContinuation::skip);
1802   frame runtime_frame = thread->last_frame();
1803   frame caller_frame = runtime_frame.sender(&reg_map);
1804   assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method");
1805   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1806   compiledVFrame* cvf = compiledVFrame::cast(vf);
1807   ScopeDesc* imm_scope = cvf->scope();
1808   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1809   if (imm_mdo != nullptr) {
1810     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
1811     MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
1812 
1813     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1814     if (pdata != nullptr && pdata->is_BitData()) {
1815       BitData* bit_data = (BitData*) pdata;
1816       bit_data->set_exception_seen();
1817     }
1818   }
1819 
1820   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1821 
1822   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true);
1823   if (trap_mdo != nullptr) {
1824     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1825   }
1826 
1827   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1828 }
1829 #endif
1830 
1831 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1832   assert(thread == Thread::current() ||
1833          thread->is_handshake_safe_for(Thread::current()) ||
1834          SafepointSynchronize::is_at_safepoint(),
1835          "can only deoptimize other thread at a safepoint/handshake");
1836   // Compute frame and register map based on thread and sp.
1837   RegisterMap reg_map(thread,
1838                       RegisterMap::UpdateMap::skip,
1839                       RegisterMap::ProcessFrames::include,
1840                       RegisterMap::WalkContinuation::skip);
1841   frame fr = thread->last_frame();
1842   while (fr.id() != id) {
1843     fr = fr.sender(&reg_map);
1844   }
1845   deoptimize(thread, fr, reason);
1846 }
1847 
1848 
1849 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1850   Thread* current = Thread::current();
1851   if (thread == current || thread->is_handshake_safe_for(current)) {
1852     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1853   } else {
1854     VM_DeoptimizeFrame deopt(thread, id, reason);
1855     VMThread::execute(&deopt);
1856   }
1857 }
1858 
1859 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1860   deoptimize_frame(thread, id, Reason_constraint);
1861 }
1862 
1863 // JVMTI PopFrame support
1864 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1865 {
1866   assert(thread == JavaThread::current(), "pre-condition");
1867   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1868 }
1869 JRT_END
1870 
1871 MethodData*
1872 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1873                                 bool create_if_missing) {
1874   JavaThread* THREAD = thread; // For exception macros.
1875   MethodData* mdo = m()->method_data();
1876   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1877     // Build an MDO.  Ignore errors like OutOfMemory;
1878     // that simply means we won't have an MDO to update.
1879     Method::build_profiling_method_data(m, THREAD);
1880     if (HAS_PENDING_EXCEPTION) {
1881       // Only metaspace OOM is expected. No Java code executed.
1882       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1883       CLEAR_PENDING_EXCEPTION;
1884     }
1885     mdo = m()->method_data();
1886   }
1887   return mdo;
1888 }
1889 
1890 #if COMPILER2_OR_JVMCI
1891 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1892   // In case of an unresolved klass entry, load the class.
1893   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1894   // and probably nowhere else.
1895   // Even that case would benefit from simply re-interpreting the
1896   // bytecode, without paying special attention to the class index.
1897   // So this whole "class index" feature should probably be removed.
1898 
1899   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1900     Klass* tk = constant_pool->klass_at(index, THREAD);
1901     if (HAS_PENDING_EXCEPTION) {
1902       // Exception happened during classloading. We ignore the exception here, since it
1903       // is going to be rethrown since the current activation is going to be deoptimized and
1904       // the interpreter will re-execute the bytecode.
1905       // Do not clear probable Async Exceptions.
1906       CLEAR_PENDING_NONASYNC_EXCEPTION;
1907       // Class loading called java code which may have caused a stack
1908       // overflow. If the exception was thrown right before the return
1909       // to the runtime the stack is no longer guarded. Reguard the
1910       // stack otherwise if we return to the uncommon trap blob and the
1911       // stack bang causes a stack overflow we crash.
1912       JavaThread* jt = THREAD;
1913       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1914       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1915     }
1916     return;
1917   }
1918 
1919   assert(!constant_pool->tag_at(index).is_symbol(),
1920          "no symbolic names here, please");
1921 }
1922 
1923 #if INCLUDE_JFR
1924 
1925 class DeoptReasonSerializer : public JfrSerializer {
1926  public:
1927   void serialize(JfrCheckpointWriter& writer) {
1928     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1929     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1930       writer.write_key((u8)i);
1931       writer.write(Deoptimization::trap_reason_name(i));
1932     }
1933   }
1934 };
1935 
1936 class DeoptActionSerializer : public JfrSerializer {
1937  public:
1938   void serialize(JfrCheckpointWriter& writer) {
1939     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1940     writer.write_count(nof_actions);
1941     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1942       writer.write_key(i);
1943       writer.write(Deoptimization::trap_action_name((int)i));
1944     }
1945   }
1946 };
1947 
1948 static void register_serializers() {
1949   static int critical_section = 0;
1950   if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) {
1951     return;
1952   }
1953   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1954   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1955 }
1956 
1957 static void post_deoptimization_event(nmethod* nm,
1958                                       const Method* method,
1959                                       int trap_bci,
1960                                       int instruction,
1961                                       Deoptimization::DeoptReason reason,
1962                                       Deoptimization::DeoptAction action) {
1963   assert(nm != nullptr, "invariant");
1964   assert(method != nullptr, "invariant");
1965   if (EventDeoptimization::is_enabled()) {
1966     static bool serializers_registered = false;
1967     if (!serializers_registered) {
1968       register_serializers();
1969       serializers_registered = true;
1970     }
1971     EventDeoptimization event;
1972     event.set_compileId(nm->compile_id());
1973     event.set_compiler(nm->compiler_type());
1974     event.set_method(method);
1975     event.set_lineNumber(method->line_number_from_bci(trap_bci));
1976     event.set_bci(trap_bci);
1977     event.set_instruction(instruction);
1978     event.set_reason(reason);
1979     event.set_action(action);
1980     event.commit();
1981   }
1982 }
1983 
1984 #endif // INCLUDE_JFR
1985 
1986 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
1987                               const char* reason_name, const char* reason_action) {
1988   LogTarget(Debug, deoptimization) lt;
1989   if (lt.is_enabled()) {
1990     LogStream ls(lt);
1991     bool is_osr = nm->is_osr_method();
1992     ls.print("cid=%4d %s level=%d",
1993              nm->compile_id(), (is_osr ? "osr" : "   "), nm->comp_level());
1994     ls.print(" %s", tm->name_and_sig_as_C_string());
1995     ls.print(" trap_bci=%d ", trap_bci);
1996     if (is_osr) {
1997       ls.print("osr_bci=%d ", nm->osr_entry_bci());
1998     }
1999     ls.print("%s ", reason_name);
2000     ls.print("%s ", reason_action);
2001     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2002              pc, fr.pc() - nm->code_begin());
2003   }
2004 }
2005 
2006 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2007   HandleMark hm(current);
2008 
2009   // uncommon_trap() is called at the beginning of the uncommon trap
2010   // handler. Note this fact before we start generating temporary frames
2011   // that can confuse an asynchronous stack walker. This counter is
2012   // decremented at the end of unpack_frames().
2013 
2014   current->inc_in_deopt_handler();
2015 
2016 #if INCLUDE_JVMCI
2017   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2018   RegisterMap reg_map(current,
2019                       RegisterMap::UpdateMap::include,
2020                       RegisterMap::ProcessFrames::include,
2021                       RegisterMap::WalkContinuation::skip);
2022 #else
2023   RegisterMap reg_map(current,
2024                       RegisterMap::UpdateMap::skip,
2025                       RegisterMap::ProcessFrames::include,
2026                       RegisterMap::WalkContinuation::skip);
2027 #endif
2028   frame stub_frame = current->last_frame();
2029   frame fr = stub_frame.sender(&reg_map);
2030 
2031   // Log a message
2032   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2033               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2034 
2035   {
2036     ResourceMark rm;
2037 
2038     DeoptReason reason = trap_request_reason(trap_request);
2039     DeoptAction action = trap_request_action(trap_request);
2040 #if INCLUDE_JVMCI
2041     int debug_id = trap_request_debug_id(trap_request);
2042 #endif
2043     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2044 
2045     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2046     compiledVFrame* cvf = compiledVFrame::cast(vf);
2047 
2048     nmethod* nm = cvf->code();
2049 
2050     ScopeDesc*      trap_scope  = cvf->scope();
2051 
2052     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2053 
2054     if (is_receiver_constraint_failure) {
2055       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2056                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2057                     JVMCI_ONLY(COMMA debug_id));
2058     }
2059 
2060     methodHandle    trap_method(current, trap_scope->method());
2061     int             trap_bci    = trap_scope->bci();
2062 #if INCLUDE_JVMCI
2063     jlong           speculation = current->pending_failed_speculation();
2064     if (nm->is_compiled_by_jvmci()) {
2065       nm->update_speculation(current);
2066     } else {
2067       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2068     }
2069 
2070     if (trap_bci == SynchronizationEntryBCI) {
2071       trap_bci = 0;
2072       current->set_pending_monitorenter(true);
2073     }
2074 
2075     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2076       current->set_pending_transfer_to_interpreter(true);
2077     }
2078 #endif
2079 
2080     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2081     // Record this event in the histogram.
2082     gather_statistics(reason, action, trap_bc);
2083 
2084     // Ensure that we can record deopt. history:
2085     // Need MDO to record RTM code generation state.
2086     bool create_if_missing = ProfileTraps RTM_OPT_ONLY( || UseRTMLocking );
2087 
2088     methodHandle profiled_method;
2089 #if INCLUDE_JVMCI
2090     if (nm->is_compiled_by_jvmci()) {
2091       profiled_method = methodHandle(current, nm->method());
2092     } else {
2093       profiled_method = trap_method;
2094     }
2095 #else
2096     profiled_method = trap_method;
2097 #endif
2098 
2099     MethodData* trap_mdo =
2100       get_method_data(current, profiled_method, create_if_missing);
2101 
2102     { // Log Deoptimization event for JFR, UL and event system
2103       Method* tm = trap_method();
2104       const char* reason_name = trap_reason_name(reason);
2105       const char* reason_action = trap_action_name(action);
2106       intptr_t pc = p2i(fr.pc());
2107 
2108       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2109       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action);
2110       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
2111                                 reason_name, reason_action, pc,
2112                                 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
2113     }
2114 
2115     // Print a bunch of diagnostics, if requested.
2116     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2117       ResourceMark rm;
2118 
2119       // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2120       // We must do this already now, since we cannot acquire this lock while
2121       // holding the tty lock (lock ordering by rank).
2122       MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2123 
2124       ttyLocker ttyl;
2125 
2126       char buf[100];
2127       if (xtty != nullptr) {
2128         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
2129                          os::current_thread_id(),
2130                          format_trap_request(buf, sizeof(buf), trap_request));
2131 #if INCLUDE_JVMCI
2132         if (speculation != 0) {
2133           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2134         }
2135 #endif
2136         nm->log_identity(xtty);
2137       }
2138       Symbol* class_name = nullptr;
2139       bool unresolved = false;
2140       if (unloaded_class_index >= 0) {
2141         constantPoolHandle constants (current, trap_method->constants());
2142         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2143           class_name = constants->klass_name_at(unloaded_class_index);
2144           unresolved = true;
2145           if (xtty != nullptr)
2146             xtty->print(" unresolved='1'");
2147         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2148           class_name = constants->symbol_at(unloaded_class_index);
2149         }
2150         if (xtty != nullptr)
2151           xtty->name(class_name);
2152       }
2153       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2154         // Dump the relevant MDO state.
2155         // This is the deopt count for the current reason, any previous
2156         // reasons or recompiles seen at this point.
2157         int dcnt = trap_mdo->trap_count(reason);
2158         if (dcnt != 0)
2159           xtty->print(" count='%d'", dcnt);
2160 
2161         // We need to lock to read the ProfileData. But to keep the locks ordered, we need to
2162         // lock extra_data_lock before the tty lock.
2163         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2164         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2165         if (dos != 0) {
2166           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2167           if (trap_state_is_recompiled(dos)) {
2168             int recnt2 = trap_mdo->overflow_recompile_count();
2169             if (recnt2 != 0)
2170               xtty->print(" recompiles2='%d'", recnt2);
2171           }
2172         }
2173       }
2174       if (xtty != nullptr) {
2175         xtty->stamp();
2176         xtty->end_head();
2177       }
2178       if (TraceDeoptimization) {  // make noise on the tty
2179         stringStream st;
2180         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2181         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2182                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2183         st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
2184 #if INCLUDE_JVMCI
2185         if (nm->is_compiled_by_jvmci()) {
2186           const char* installed_code_name = nm->jvmci_name();
2187           if (installed_code_name != nullptr) {
2188             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2189           }
2190         }
2191 #endif
2192         st.print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2193                    p2i(fr.pc()),
2194                    os::current_thread_id(),
2195                    trap_reason_name(reason),
2196                    trap_action_name(action),
2197                    unloaded_class_index
2198 #if INCLUDE_JVMCI
2199                    , debug_id
2200 #endif
2201                    );
2202         if (class_name != nullptr) {
2203           st.print(unresolved ? " unresolved class: " : " symbol: ");
2204           class_name->print_symbol_on(&st);
2205         }
2206         st.cr();
2207         tty->print_raw(st.freeze());
2208       }
2209       if (xtty != nullptr) {
2210         // Log the precise location of the trap.
2211         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2212           xtty->begin_elem("jvms bci='%d'", sd->bci());
2213           xtty->method(sd->method());
2214           xtty->end_elem();
2215           if (sd->is_top())  break;
2216         }
2217         xtty->tail("uncommon_trap");
2218       }
2219     }
2220     // (End diagnostic printout.)
2221 
2222     if (is_receiver_constraint_failure) {
2223       fatal("missing receiver type check");
2224     }
2225 
2226     // Load class if necessary
2227     if (unloaded_class_index >= 0) {
2228       constantPoolHandle constants(current, trap_method->constants());
2229       load_class_by_index(constants, unloaded_class_index, THREAD);
2230     }
2231 
2232     // Flush the nmethod if necessary and desirable.
2233     //
2234     // We need to avoid situations where we are re-flushing the nmethod
2235     // because of a hot deoptimization site.  Repeated flushes at the same
2236     // point need to be detected by the compiler and avoided.  If the compiler
2237     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2238     // module must take measures to avoid an infinite cycle of recompilation
2239     // and deoptimization.  There are several such measures:
2240     //
2241     //   1. If a recompilation is ordered a second time at some site X
2242     //   and for the same reason R, the action is adjusted to 'reinterpret',
2243     //   to give the interpreter time to exercise the method more thoroughly.
2244     //   If this happens, the method's overflow_recompile_count is incremented.
2245     //
2246     //   2. If the compiler fails to reduce the deoptimization rate, then
2247     //   the method's overflow_recompile_count will begin to exceed the set
2248     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2249     //   is adjusted to 'make_not_compilable', and the method is abandoned
2250     //   to the interpreter.  This is a performance hit for hot methods,
2251     //   but is better than a disastrous infinite cycle of recompilations.
2252     //   (Actually, only the method containing the site X is abandoned.)
2253     //
2254     //   3. In parallel with the previous measures, if the total number of
2255     //   recompilations of a method exceeds the much larger set limit
2256     //   PerMethodRecompilationCutoff, the method is abandoned.
2257     //   This should only happen if the method is very large and has
2258     //   many "lukewarm" deoptimizations.  The code which enforces this
2259     //   limit is elsewhere (class nmethod, class Method).
2260     //
2261     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2262     // to recompile at each bytecode independently of the per-BCI cutoff.
2263     //
2264     // The decision to update code is up to the compiler, and is encoded
2265     // in the Action_xxx code.  If the compiler requests Action_none
2266     // no trap state is changed, no compiled code is changed, and the
2267     // computation suffers along in the interpreter.
2268     //
2269     // The other action codes specify various tactics for decompilation
2270     // and recompilation.  Action_maybe_recompile is the loosest, and
2271     // allows the compiled code to stay around until enough traps are seen,
2272     // and until the compiler gets around to recompiling the trapping method.
2273     //
2274     // The other actions cause immediate removal of the present code.
2275 
2276     // Traps caused by injected profile shouldn't pollute trap counts.
2277     bool injected_profile_trap = trap_method->has_injected_profile() &&
2278                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2279 
2280     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2281     bool make_not_entrant = false;
2282     bool make_not_compilable = false;
2283     bool reprofile = false;
2284     switch (action) {
2285     case Action_none:
2286       // Keep the old code.
2287       update_trap_state = false;
2288       break;
2289     case Action_maybe_recompile:
2290       // Do not need to invalidate the present code, but we can
2291       // initiate another
2292       // Start compiler without (necessarily) invalidating the nmethod.
2293       // The system will tolerate the old code, but new code should be
2294       // generated when possible.
2295       break;
2296     case Action_reinterpret:
2297       // Go back into the interpreter for a while, and then consider
2298       // recompiling form scratch.
2299       make_not_entrant = true;
2300       // Reset invocation counter for outer most method.
2301       // This will allow the interpreter to exercise the bytecodes
2302       // for a while before recompiling.
2303       // By contrast, Action_make_not_entrant is immediate.
2304       //
2305       // Note that the compiler will track null_check, null_assert,
2306       // range_check, and class_check events and log them as if they
2307       // had been traps taken from compiled code.  This will update
2308       // the MDO trap history so that the next compilation will
2309       // properly detect hot trap sites.
2310       reprofile = true;
2311       break;
2312     case Action_make_not_entrant:
2313       // Request immediate recompilation, and get rid of the old code.
2314       // Make them not entrant, so next time they are called they get
2315       // recompiled.  Unloaded classes are loaded now so recompile before next
2316       // time they are called.  Same for uninitialized.  The interpreter will
2317       // link the missing class, if any.
2318       make_not_entrant = true;
2319       break;
2320     case Action_make_not_compilable:
2321       // Give up on compiling this method at all.
2322       make_not_entrant = true;
2323       make_not_compilable = true;
2324       break;
2325     default:
2326       ShouldNotReachHere();
2327     }
2328 
2329     // Setting +ProfileTraps fixes the following, on all platforms:
2330     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
2331     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2332     // recompile relies on a MethodData* to record heroic opt failures.
2333 
2334     // Whether the interpreter is producing MDO data or not, we also need
2335     // to use the MDO to detect hot deoptimization points and control
2336     // aggressive optimization.
2337     bool inc_recompile_count = false;
2338 
2339     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2340     ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr,
2341                               (trap_mdo != nullptr),
2342                               Mutex::_no_safepoint_check_flag);
2343     ProfileData* pdata = nullptr;
2344     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2345       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2346       uint this_trap_count = 0;
2347       bool maybe_prior_trap = false;
2348       bool maybe_prior_recompile = false;
2349 
2350       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2351 #if INCLUDE_JVMCI
2352                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2353 #endif
2354                                    nm->method(),
2355                                    //outputs:
2356                                    this_trap_count,
2357                                    maybe_prior_trap,
2358                                    maybe_prior_recompile);
2359       // Because the interpreter also counts null, div0, range, and class
2360       // checks, these traps from compiled code are double-counted.
2361       // This is harmless; it just means that the PerXTrapLimit values
2362       // are in effect a little smaller than they look.
2363 
2364       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2365       if (per_bc_reason != Reason_none) {
2366         // Now take action based on the partially known per-BCI history.
2367         if (maybe_prior_trap
2368             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2369           // If there are too many traps at this BCI, force a recompile.
2370           // This will allow the compiler to see the limit overflow, and
2371           // take corrective action, if possible.  The compiler generally
2372           // does not use the exact PerBytecodeTrapLimit value, but instead
2373           // changes its tactics if it sees any traps at all.  This provides
2374           // a little hysteresis, delaying a recompile until a trap happens
2375           // several times.
2376           //
2377           // Actually, since there is only one bit of counter per BCI,
2378           // the possible per-BCI counts are {0,1,(per-method count)}.
2379           // This produces accurate results if in fact there is only
2380           // one hot trap site, but begins to get fuzzy if there are
2381           // many sites.  For example, if there are ten sites each
2382           // trapping two or more times, they each get the blame for
2383           // all of their traps.
2384           make_not_entrant = true;
2385         }
2386 
2387         // Detect repeated recompilation at the same BCI, and enforce a limit.
2388         if (make_not_entrant && maybe_prior_recompile) {
2389           // More than one recompile at this point.
2390           inc_recompile_count = maybe_prior_trap;
2391         }
2392       } else {
2393         // For reasons which are not recorded per-bytecode, we simply
2394         // force recompiles unconditionally.
2395         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2396         make_not_entrant = true;
2397       }
2398 
2399       // Go back to the compiler if there are too many traps in this method.
2400       if (this_trap_count >= per_method_trap_limit(reason)) {
2401         // If there are too many traps in this method, force a recompile.
2402         // This will allow the compiler to see the limit overflow, and
2403         // take corrective action, if possible.
2404         // (This condition is an unlikely backstop only, because the
2405         // PerBytecodeTrapLimit is more likely to take effect first,
2406         // if it is applicable.)
2407         make_not_entrant = true;
2408       }
2409 
2410       // Here's more hysteresis:  If there has been a recompile at
2411       // this trap point already, run the method in the interpreter
2412       // for a while to exercise it more thoroughly.
2413       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2414         reprofile = true;
2415       }
2416     }
2417 
2418     // Take requested actions on the method:
2419 
2420     // Recompile
2421     if (make_not_entrant) {
2422       if (!nm->make_not_entrant()) {
2423         return; // the call did not change nmethod's state
2424       }
2425 
2426       if (pdata != nullptr) {
2427         // Record the recompilation event, if any.
2428         int tstate0 = pdata->trap_state();
2429         int tstate1 = trap_state_set_recompiled(tstate0, true);
2430         if (tstate1 != tstate0)
2431           pdata->set_trap_state(tstate1);
2432       }
2433 
2434 #if INCLUDE_RTM_OPT
2435       // Restart collecting RTM locking abort statistic if the method
2436       // is recompiled for a reason other than RTM state change.
2437       // Assume that in new recompiled code the statistic could be different,
2438       // for example, due to different inlining.
2439       if ((reason != Reason_rtm_state_change) && (trap_mdo != nullptr) &&
2440           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
2441         trap_mdo->atomic_set_rtm_state(ProfileRTM);
2442       }
2443 #endif
2444       // For code aging we count traps separately here, using make_not_entrant()
2445       // as a guard against simultaneous deopts in multiple threads.
2446       if (reason == Reason_tenured && trap_mdo != nullptr) {
2447         trap_mdo->inc_tenure_traps();
2448       }
2449     }
2450 
2451     if (inc_recompile_count) {
2452       trap_mdo->inc_overflow_recompile_count();
2453       if ((uint)trap_mdo->overflow_recompile_count() >
2454           (uint)PerBytecodeRecompilationCutoff) {
2455         // Give up on the method containing the bad BCI.
2456         if (trap_method() == nm->method()) {
2457           make_not_compilable = true;
2458         } else {
2459           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2460           // But give grace to the enclosing nm->method().
2461         }
2462       }
2463     }
2464 
2465     // Reprofile
2466     if (reprofile) {
2467       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2468     }
2469 
2470     // Give up compiling
2471     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2472       assert(make_not_entrant, "consistent");
2473       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2474     }
2475 
2476     if (ProfileExceptionHandlers && trap_mdo != nullptr) {
2477       BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci);
2478       if (exception_handler_data != nullptr) {
2479         // uncommon trap at the start of an exception handler.
2480         // C2 generates these for un-entered exception handlers.
2481         // mark the handler as entered to avoid generating
2482         // another uncommon trap the next time the handler is compiled
2483         exception_handler_data->set_exception_handler_entered();
2484       }
2485     }
2486 
2487   } // Free marked resources
2488 
2489 }
2490 JRT_END
2491 
2492 ProfileData*
2493 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2494                                          int trap_bci,
2495                                          Deoptimization::DeoptReason reason,
2496                                          bool update_total_trap_count,
2497 #if INCLUDE_JVMCI
2498                                          bool is_osr,
2499 #endif
2500                                          Method* compiled_method,
2501                                          //outputs:
2502                                          uint& ret_this_trap_count,
2503                                          bool& ret_maybe_prior_trap,
2504                                          bool& ret_maybe_prior_recompile) {
2505   trap_mdo->check_extra_data_locked();
2506 
2507   bool maybe_prior_trap = false;
2508   bool maybe_prior_recompile = false;
2509   uint this_trap_count = 0;
2510   if (update_total_trap_count) {
2511     uint idx = reason;
2512 #if INCLUDE_JVMCI
2513     if (is_osr) {
2514       // Upper half of history array used for traps in OSR compilations
2515       idx += Reason_TRAP_HISTORY_LENGTH;
2516     }
2517 #endif
2518     uint prior_trap_count = trap_mdo->trap_count(idx);
2519     this_trap_count  = trap_mdo->inc_trap_count(idx);
2520 
2521     // If the runtime cannot find a place to store trap history,
2522     // it is estimated based on the general condition of the method.
2523     // If the method has ever been recompiled, or has ever incurred
2524     // a trap with the present reason , then this BCI is assumed
2525     // (pessimistically) to be the culprit.
2526     maybe_prior_trap      = (prior_trap_count != 0);
2527     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2528   }
2529   ProfileData* pdata = nullptr;
2530 
2531 
2532   // For reasons which are recorded per bytecode, we check per-BCI data.
2533   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2534   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2535   if (per_bc_reason != Reason_none) {
2536     // Find the profile data for this BCI.  If there isn't one,
2537     // try to allocate one from the MDO's set of spares.
2538     // This will let us detect a repeated trap at this point.
2539     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2540 
2541     if (pdata != nullptr) {
2542       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2543         if (LogCompilation && xtty != nullptr) {
2544           ttyLocker ttyl;
2545           // no more room for speculative traps in this MDO
2546           xtty->elem("speculative_traps_oom");
2547         }
2548       }
2549       // Query the trap state of this profile datum.
2550       int tstate0 = pdata->trap_state();
2551       if (!trap_state_has_reason(tstate0, per_bc_reason))
2552         maybe_prior_trap = false;
2553       if (!trap_state_is_recompiled(tstate0))
2554         maybe_prior_recompile = false;
2555 
2556       // Update the trap state of this profile datum.
2557       int tstate1 = tstate0;
2558       // Record the reason.
2559       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2560       // Store the updated state on the MDO, for next time.
2561       if (tstate1 != tstate0)
2562         pdata->set_trap_state(tstate1);
2563     } else {
2564       if (LogCompilation && xtty != nullptr) {
2565         ttyLocker ttyl;
2566         // Missing MDP?  Leave a small complaint in the log.
2567         xtty->elem("missing_mdp bci='%d'", trap_bci);
2568       }
2569     }
2570   }
2571 
2572   // Return results:
2573   ret_this_trap_count = this_trap_count;
2574   ret_maybe_prior_trap = maybe_prior_trap;
2575   ret_maybe_prior_recompile = maybe_prior_recompile;
2576   return pdata;
2577 }
2578 
2579 void
2580 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2581   ResourceMark rm;
2582   // Ignored outputs:
2583   uint ignore_this_trap_count;
2584   bool ignore_maybe_prior_trap;
2585   bool ignore_maybe_prior_recompile;
2586   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2587   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2588   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2589 
2590   // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2591   MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2592 
2593   query_update_method_data(trap_mdo, trap_bci,
2594                            (DeoptReason)reason,
2595                            update_total_counts,
2596 #if INCLUDE_JVMCI
2597                            false,
2598 #endif
2599                            nullptr,
2600                            ignore_this_trap_count,
2601                            ignore_maybe_prior_trap,
2602                            ignore_maybe_prior_recompile);
2603 }
2604 
2605 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) {
2606   // Enable WXWrite: current function is called from methods compiled by C2 directly
2607   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2608 
2609   // Still in Java no safepoints
2610   {
2611     // This enters VM and may safepoint
2612     uncommon_trap_inner(current, trap_request);
2613   }
2614   HandleMark hm(current);
2615   return fetch_unroll_info_helper(current, exec_mode);
2616 }
2617 
2618 // Local derived constants.
2619 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2620 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2621 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2622 
2623 //---------------------------trap_state_reason---------------------------------
2624 Deoptimization::DeoptReason
2625 Deoptimization::trap_state_reason(int trap_state) {
2626   // This assert provides the link between the width of DataLayout::trap_bits
2627   // and the encoding of "recorded" reasons.  It ensures there are enough
2628   // bits to store all needed reasons in the per-BCI MDO profile.
2629   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2630   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2631   trap_state -= recompile_bit;
2632   if (trap_state == DS_REASON_MASK) {
2633     return Reason_many;
2634   } else {
2635     assert((int)Reason_none == 0, "state=0 => Reason_none");
2636     return (DeoptReason)trap_state;
2637   }
2638 }
2639 //-------------------------trap_state_has_reason-------------------------------
2640 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2641   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2642   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2643   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2644   trap_state -= recompile_bit;
2645   if (trap_state == DS_REASON_MASK) {
2646     return -1;  // true, unspecifically (bottom of state lattice)
2647   } else if (trap_state == reason) {
2648     return 1;   // true, definitely
2649   } else if (trap_state == 0) {
2650     return 0;   // false, definitely (top of state lattice)
2651   } else {
2652     return 0;   // false, definitely
2653   }
2654 }
2655 //-------------------------trap_state_add_reason-------------------------------
2656 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2657   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2658   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2659   trap_state -= recompile_bit;
2660   if (trap_state == DS_REASON_MASK) {
2661     return trap_state + recompile_bit;     // already at state lattice bottom
2662   } else if (trap_state == reason) {
2663     return trap_state + recompile_bit;     // the condition is already true
2664   } else if (trap_state == 0) {
2665     return reason + recompile_bit;          // no condition has yet been true
2666   } else {
2667     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2668   }
2669 }
2670 //-----------------------trap_state_is_recompiled------------------------------
2671 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2672   return (trap_state & DS_RECOMPILE_BIT) != 0;
2673 }
2674 //-----------------------trap_state_set_recompiled-----------------------------
2675 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2676   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2677   else    return trap_state & ~DS_RECOMPILE_BIT;
2678 }
2679 //---------------------------format_trap_state---------------------------------
2680 // This is used for debugging and diagnostics, including LogFile output.
2681 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2682                                               int trap_state) {
2683   assert(buflen > 0, "sanity");
2684   DeoptReason reason      = trap_state_reason(trap_state);
2685   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2686   // Re-encode the state from its decoded components.
2687   int decoded_state = 0;
2688   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2689     decoded_state = trap_state_add_reason(decoded_state, reason);
2690   if (recomp_flag)
2691     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2692   // If the state re-encodes properly, format it symbolically.
2693   // Because this routine is used for debugging and diagnostics,
2694   // be robust even if the state is a strange value.
2695   size_t len;
2696   if (decoded_state != trap_state) {
2697     // Random buggy state that doesn't decode??
2698     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2699   } else {
2700     len = jio_snprintf(buf, buflen, "%s%s",
2701                        trap_reason_name(reason),
2702                        recomp_flag ? " recompiled" : "");
2703   }
2704   return buf;
2705 }
2706 
2707 
2708 //--------------------------------statics--------------------------------------
2709 const char* Deoptimization::_trap_reason_name[] = {
2710   // Note:  Keep this in sync. with enum DeoptReason.
2711   "none",
2712   "null_check",
2713   "null_assert" JVMCI_ONLY("_or_unreached0"),
2714   "range_check",
2715   "class_check",
2716   "array_check",
2717   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2718   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2719   "profile_predicate",
2720   "unloaded",
2721   "uninitialized",
2722   "initialized",
2723   "unreached",
2724   "unhandled",
2725   "constraint",
2726   "div0_check",
2727   "age",
2728   "predicate",
2729   "loop_limit_check",
2730   "speculate_class_check",
2731   "speculate_null_check",
2732   "speculate_null_assert",
2733   "rtm_state_change",
2734   "unstable_if",
2735   "unstable_fused_if",
2736   "receiver_constraint",
2737 #if INCLUDE_JVMCI
2738   "aliasing",
2739   "transfer_to_interpreter",
2740   "not_compiled_exception_handler",
2741   "unresolved",
2742   "jsr_mismatch",
2743 #endif
2744   "tenured"
2745 };
2746 const char* Deoptimization::_trap_action_name[] = {
2747   // Note:  Keep this in sync. with enum DeoptAction.
2748   "none",
2749   "maybe_recompile",
2750   "reinterpret",
2751   "make_not_entrant",
2752   "make_not_compilable"
2753 };
2754 
2755 const char* Deoptimization::trap_reason_name(int reason) {
2756   // Check that every reason has a name
2757   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2758 
2759   if (reason == Reason_many)  return "many";
2760   if ((uint)reason < Reason_LIMIT)
2761     return _trap_reason_name[reason];
2762   static char buf[20];
2763   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2764   return buf;
2765 }
2766 const char* Deoptimization::trap_action_name(int action) {
2767   // Check that every action has a name
2768   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2769 
2770   if ((uint)action < Action_LIMIT)
2771     return _trap_action_name[action];
2772   static char buf[20];
2773   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2774   return buf;
2775 }
2776 
2777 // This is used for debugging and diagnostics, including LogFile output.
2778 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2779                                                 int trap_request) {
2780   jint unloaded_class_index = trap_request_index(trap_request);
2781   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2782   const char* action = trap_action_name(trap_request_action(trap_request));
2783 #if INCLUDE_JVMCI
2784   int debug_id = trap_request_debug_id(trap_request);
2785 #endif
2786   size_t len;
2787   if (unloaded_class_index < 0) {
2788     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2789                        reason, action
2790 #if INCLUDE_JVMCI
2791                        ,debug_id
2792 #endif
2793                        );
2794   } else {
2795     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2796                        reason, action, unloaded_class_index
2797 #if INCLUDE_JVMCI
2798                        ,debug_id
2799 #endif
2800                        );
2801   }
2802   return buf;
2803 }
2804 
2805 juint Deoptimization::_deoptimization_hist
2806         [Deoptimization::Reason_LIMIT]
2807     [1 + Deoptimization::Action_LIMIT]
2808         [Deoptimization::BC_CASE_LIMIT]
2809   = {0};
2810 
2811 enum {
2812   LSB_BITS = 8,
2813   LSB_MASK = right_n_bits(LSB_BITS)
2814 };
2815 
2816 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2817                                        Bytecodes::Code bc) {
2818   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2819   assert(action >= 0 && action < Action_LIMIT, "oob");
2820   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2821   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2822   juint* cases = _deoptimization_hist[reason][1+action];
2823   juint* bc_counter_addr = nullptr;
2824   juint  bc_counter      = 0;
2825   // Look for an unused counter, or an exact match to this BC.
2826   if (bc != Bytecodes::_illegal) {
2827     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2828       juint* counter_addr = &cases[bc_case];
2829       juint  counter = *counter_addr;
2830       if ((counter == 0 && bc_counter_addr == nullptr)
2831           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2832         // this counter is either free or is already devoted to this BC
2833         bc_counter_addr = counter_addr;
2834         bc_counter = counter | bc;
2835       }
2836     }
2837   }
2838   if (bc_counter_addr == nullptr) {
2839     // Overflow, or no given bytecode.
2840     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2841     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2842   }
2843   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2844 }
2845 
2846 jint Deoptimization::total_deoptimization_count() {
2847   return _deoptimization_hist[Reason_none][0][0];
2848 }
2849 
2850 // Get the deopt count for a specific reason and a specific action. If either
2851 // one of 'reason' or 'action' is null, the method returns the sum of all
2852 // deoptimizations with the specific 'action' or 'reason' respectively.
2853 // If both arguments are null, the method returns the total deopt count.
2854 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2855   if (reason_str == nullptr && action_str == nullptr) {
2856     return total_deoptimization_count();
2857   }
2858   juint counter = 0;
2859   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2860     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2861       for (int action = 0; action < Action_LIMIT; action++) {
2862         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2863           juint* cases = _deoptimization_hist[reason][1+action];
2864           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2865             counter += cases[bc_case] >> LSB_BITS;
2866           }
2867         }
2868       }
2869     }
2870   }
2871   return counter;
2872 }
2873 
2874 void Deoptimization::print_statistics() {
2875   juint total = total_deoptimization_count();
2876   juint account = total;
2877   if (total != 0) {
2878     ttyLocker ttyl;
2879     if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2880     tty->print_cr("Deoptimization traps recorded:");
2881     #define PRINT_STAT_LINE(name, r) \
2882       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2883     PRINT_STAT_LINE("total", total);
2884     // For each non-zero entry in the histogram, print the reason,
2885     // the action, and (if specifically known) the type of bytecode.
2886     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2887       for (int action = 0; action < Action_LIMIT; action++) {
2888         juint* cases = _deoptimization_hist[reason][1+action];
2889         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2890           juint counter = cases[bc_case];
2891           if (counter != 0) {
2892             char name[1*K];
2893             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2894             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2895               bc = Bytecodes::_illegal;
2896             os::snprintf_checked(name, sizeof(name), "%s/%s/%s",
2897                     trap_reason_name(reason),
2898                     trap_action_name(action),
2899                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2900             juint r = counter >> LSB_BITS;
2901             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2902             account -= r;
2903           }
2904         }
2905       }
2906     }
2907     if (account != 0) {
2908       PRINT_STAT_LINE("unaccounted", account);
2909     }
2910     #undef PRINT_STAT_LINE
2911     if (xtty != nullptr)  xtty->tail("statistics");
2912   }
2913 }
2914 
2915 #else // COMPILER2_OR_JVMCI
2916 
2917 
2918 // Stubs for C1 only system.
2919 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2920   return false;
2921 }
2922 
2923 const char* Deoptimization::trap_reason_name(int reason) {
2924   return "unknown";
2925 }
2926 
2927 jint Deoptimization::total_deoptimization_count() {
2928   return 0;
2929 }
2930 
2931 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2932   return 0;
2933 }
2934 
2935 void Deoptimization::print_statistics() {
2936   // no output
2937 }
2938 
2939 void
2940 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2941   // no update
2942 }
2943 
2944 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2945   return 0;
2946 }
2947 
2948 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2949                                        Bytecodes::Code bc) {
2950   // no update
2951 }
2952 
2953 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2954                                               int trap_state) {
2955   jio_snprintf(buf, buflen, "#%d", trap_state);
2956   return buf;
2957 }
2958 
2959 #endif // COMPILER2_OR_JVMCI