1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/javaClasses.inline.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "classfile/vmClasses.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "code/nmethod.hpp" 32 #include "code/pcDesc.hpp" 33 #include "code/scopeDesc.hpp" 34 #include "compiler/compilationPolicy.hpp" 35 #include "compiler/compilerDefinitions.inline.hpp" 36 #include "gc/shared/collectedHeap.hpp" 37 #include "gc/shared/memAllocator.hpp" 38 #include "interpreter/bytecode.hpp" 39 #include "interpreter/bytecode.inline.hpp" 40 #include "interpreter/bytecodeStream.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/oopMapCache.hpp" 43 #include "jvm.h" 44 #include "logging/log.hpp" 45 #include "logging/logLevel.hpp" 46 #include "logging/logMessage.hpp" 47 #include "logging/logStream.hpp" 48 #include "memory/allocation.inline.hpp" 49 #include "memory/oopFactory.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "memory/universe.hpp" 52 #include "oops/constantPool.hpp" 53 #include "oops/fieldStreams.inline.hpp" 54 #include "oops/method.hpp" 55 #include "oops/objArrayKlass.hpp" 56 #include "oops/objArrayOop.inline.hpp" 57 #include "oops/oop.inline.hpp" 58 #include "oops/typeArrayOop.inline.hpp" 59 #include "oops/verifyOopClosure.hpp" 60 #include "prims/jvmtiDeferredUpdates.hpp" 61 #include "prims/jvmtiExport.hpp" 62 #include "prims/jvmtiThreadState.hpp" 63 #include "prims/methodHandles.hpp" 64 #include "prims/vectorSupport.hpp" 65 #include "runtime/atomic.hpp" 66 #include "runtime/basicLock.inline.hpp" 67 #include "runtime/continuation.hpp" 68 #include "runtime/continuationEntry.inline.hpp" 69 #include "runtime/deoptimization.hpp" 70 #include "runtime/escapeBarrier.hpp" 71 #include "runtime/fieldDescriptor.hpp" 72 #include "runtime/fieldDescriptor.inline.hpp" 73 #include "runtime/frame.inline.hpp" 74 #include "runtime/handles.inline.hpp" 75 #include "runtime/interfaceSupport.inline.hpp" 76 #include "runtime/javaThread.hpp" 77 #include "runtime/jniHandles.inline.hpp" 78 #include "runtime/keepStackGCProcessed.hpp" 79 #include "runtime/lightweightSynchronizer.hpp" 80 #include "runtime/lockStack.inline.hpp" 81 #include "runtime/objectMonitor.inline.hpp" 82 #include "runtime/osThread.hpp" 83 #include "runtime/safepointVerifiers.hpp" 84 #include "runtime/sharedRuntime.hpp" 85 #include "runtime/signature.hpp" 86 #include "runtime/stackFrameStream.inline.hpp" 87 #include "runtime/stackValue.hpp" 88 #include "runtime/stackWatermarkSet.hpp" 89 #include "runtime/stubRoutines.hpp" 90 #include "runtime/synchronizer.inline.hpp" 91 #include "runtime/threadSMR.hpp" 92 #include "runtime/threadWXSetters.inline.hpp" 93 #include "runtime/vframe.hpp" 94 #include "runtime/vframeArray.hpp" 95 #include "runtime/vframe_hp.hpp" 96 #include "runtime/vmOperations.hpp" 97 #include "utilities/checkedCast.hpp" 98 #include "utilities/events.hpp" 99 #include "utilities/growableArray.hpp" 100 #include "utilities/macros.hpp" 101 #include "utilities/preserveException.hpp" 102 #include "utilities/xmlstream.hpp" 103 #if INCLUDE_JFR 104 #include "jfr/jfrEvents.hpp" 105 #include "jfr/metadata/jfrSerializer.hpp" 106 #endif 107 108 uint64_t DeoptimizationScope::_committed_deopt_gen = 0; 109 uint64_t DeoptimizationScope::_active_deopt_gen = 1; 110 bool DeoptimizationScope::_committing_in_progress = false; 111 112 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) { 113 DEBUG_ONLY(_deopted = false;) 114 115 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 116 // If there is nothing to deopt _required_gen is the same as comitted. 117 _required_gen = DeoptimizationScope::_committed_deopt_gen; 118 } 119 120 DeoptimizationScope::~DeoptimizationScope() { 121 assert(_deopted, "Deopt not executed"); 122 } 123 124 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) { 125 if (!nm->can_be_deoptimized()) { 126 return; 127 } 128 129 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 130 131 // If it's already marked but we still need it to be deopted. 132 if (nm->is_marked_for_deoptimization()) { 133 dependent(nm); 134 return; 135 } 136 137 nmethod::DeoptimizationStatus status = 138 inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate; 139 Atomic::store(&nm->_deoptimization_status, status); 140 141 // Make sure active is not committed 142 assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be"); 143 assert(nm->_deoptimization_generation == 0, "Is already marked"); 144 145 nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen; 146 _required_gen = DeoptimizationScope::_active_deopt_gen; 147 } 148 149 void DeoptimizationScope::dependent(nmethod* nm) { 150 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 151 152 // A method marked by someone else may have a _required_gen lower than what we marked with. 153 // Therefore only store it if it's higher than _required_gen. 154 if (_required_gen < nm->_deoptimization_generation) { 155 _required_gen = nm->_deoptimization_generation; 156 } 157 } 158 159 void DeoptimizationScope::deoptimize_marked() { 160 assert(!_deopted, "Already deopted"); 161 162 // We are not alive yet. 163 if (!Universe::is_fully_initialized()) { 164 DEBUG_ONLY(_deopted = true;) 165 return; 166 } 167 168 // Safepoints are a special case, handled here. 169 if (SafepointSynchronize::is_at_safepoint()) { 170 DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen; 171 DeoptimizationScope::_active_deopt_gen++; 172 Deoptimization::deoptimize_all_marked(); 173 DEBUG_ONLY(_deopted = true;) 174 return; 175 } 176 177 uint64_t comitting = 0; 178 bool wait = false; 179 while (true) { 180 { 181 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 182 183 // First we check if we or someone else already deopted the gen we want. 184 if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) { 185 DEBUG_ONLY(_deopted = true;) 186 return; 187 } 188 if (!_committing_in_progress) { 189 // The version we are about to commit. 190 comitting = DeoptimizationScope::_active_deopt_gen; 191 // Make sure new marks use a higher gen. 192 DeoptimizationScope::_active_deopt_gen++; 193 _committing_in_progress = true; 194 wait = false; 195 } else { 196 // Another thread is handshaking and committing a gen. 197 wait = true; 198 } 199 } 200 if (wait) { 201 // Wait and let the concurrent handshake be performed. 202 ThreadBlockInVM tbivm(JavaThread::current()); 203 os::naked_yield(); 204 } else { 205 // Performs the handshake. 206 Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred. 207 DEBUG_ONLY(_deopted = true;) 208 { 209 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 210 211 // Make sure that committed doesn't go backwards. 212 // Should only happen if we did a deopt during a safepoint above. 213 if (DeoptimizationScope::_committed_deopt_gen < comitting) { 214 DeoptimizationScope::_committed_deopt_gen = comitting; 215 } 216 _committing_in_progress = false; 217 218 assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be"); 219 220 return; 221 } 222 } 223 } 224 } 225 226 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame, 227 int caller_adjustment, 228 int caller_actual_parameters, 229 int number_of_frames, 230 intptr_t* frame_sizes, 231 address* frame_pcs, 232 BasicType return_type, 233 int exec_mode) { 234 _size_of_deoptimized_frame = size_of_deoptimized_frame; 235 _caller_adjustment = caller_adjustment; 236 _caller_actual_parameters = caller_actual_parameters; 237 _number_of_frames = number_of_frames; 238 _frame_sizes = frame_sizes; 239 _frame_pcs = frame_pcs; 240 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler); 241 _return_type = return_type; 242 _initial_info = 0; 243 // PD (x86 only) 244 _counter_temp = 0; 245 _unpack_kind = exec_mode; 246 _sender_sp_temp = 0; 247 248 _total_frame_sizes = size_of_frames(); 249 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode"); 250 } 251 252 Deoptimization::UnrollBlock::~UnrollBlock() { 253 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes); 254 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs); 255 FREE_C_HEAP_ARRAY(intptr_t, _register_block); 256 } 257 258 int Deoptimization::UnrollBlock::size_of_frames() const { 259 // Account first for the adjustment of the initial frame 260 intptr_t result = _caller_adjustment; 261 for (int index = 0; index < number_of_frames(); index++) { 262 result += frame_sizes()[index]; 263 } 264 return checked_cast<int>(result); 265 } 266 267 void Deoptimization::UnrollBlock::print() { 268 ResourceMark rm; 269 stringStream st; 270 st.print_cr("UnrollBlock"); 271 st.print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame); 272 st.print( " frame_sizes: "); 273 for (int index = 0; index < number_of_frames(); index++) { 274 st.print("%zd ", frame_sizes()[index]); 275 } 276 st.cr(); 277 tty->print_raw(st.freeze()); 278 } 279 280 // In order to make fetch_unroll_info work properly with escape 281 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY. 282 // The actual reallocation of previously eliminated objects occurs in realloc_objects, 283 // which is called from the method fetch_unroll_info_helper below. 284 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode)) 285 // fetch_unroll_info() is called at the beginning of the deoptimization 286 // handler. Note this fact before we start generating temporary frames 287 // that can confuse an asynchronous stack walker. This counter is 288 // decremented at the end of unpack_frames(). 289 current->inc_in_deopt_handler(); 290 291 if (exec_mode == Unpack_exception) { 292 // When we get here, a callee has thrown an exception into a deoptimized 293 // frame. That throw might have deferred stack watermark checking until 294 // after unwinding. So we deal with such deferred requests here. 295 StackWatermarkSet::after_unwind(current); 296 } 297 298 return fetch_unroll_info_helper(current, exec_mode); 299 JRT_END 300 301 #if COMPILER2_OR_JVMCI 302 // print information about reallocated objects 303 static void print_objects(JavaThread* deoptee_thread, 304 GrowableArray<ScopeValue*>* objects, bool realloc_failures) { 305 ResourceMark rm; 306 stringStream st; // change to logStream with logging 307 st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread)); 308 fieldDescriptor fd; 309 310 for (int i = 0; i < objects->length(); i++) { 311 ObjectValue* sv = (ObjectValue*) objects->at(i); 312 Handle obj = sv->value(); 313 314 if (obj.is_null()) { 315 st.print_cr(" nullptr"); 316 continue; 317 } 318 319 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 320 321 st.print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()())); 322 k->print_value_on(&st); 323 st.print_cr(" allocated (%zu bytes)", obj->size() * HeapWordSize); 324 325 if (Verbose && k != nullptr) { 326 k->oop_print_on(obj(), &st); 327 } 328 } 329 tty->print_raw(st.freeze()); 330 } 331 332 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method, 333 frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk, 334 bool& deoptimized_objects) { 335 bool realloc_failures = false; 336 assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames"); 337 338 JavaThread* deoptee_thread = chunk->at(0)->thread(); 339 assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread), 340 "a frame can only be deoptimized by the owner thread"); 341 342 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map); 343 344 // The flag return_oop() indicates call sites which return oop 345 // in compiled code. Such sites include java method calls, 346 // runtime calls (for example, used to allocate new objects/arrays 347 // on slow code path) and any other calls generated in compiled code. 348 // It is not guaranteed that we can get such information here only 349 // by analyzing bytecode in deoptimized frames. This is why this flag 350 // is set during method compilation (see Compile::Process_OopMap_Node()). 351 // If the previous frame was popped or if we are dispatching an exception, 352 // we don't have an oop result. 353 bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt); 354 Handle return_value; 355 if (save_oop_result) { 356 // Reallocation may trigger GC. If deoptimization happened on return from 357 // call which returns oop we need to save it since it is not in oopmap. 358 oop result = deoptee.saved_oop_result(&map); 359 assert(oopDesc::is_oop_or_null(result), "must be oop"); 360 return_value = Handle(thread, result); 361 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 362 if (TraceDeoptimization) { 363 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread)); 364 tty->cr(); 365 } 366 } 367 if (objects != nullptr) { 368 if (exec_mode == Deoptimization::Unpack_none) { 369 assert(thread->thread_state() == _thread_in_vm, "assumption"); 370 JavaThread* THREAD = thread; // For exception macros. 371 // Clear pending OOM if reallocation fails and return true indicating allocation failure 372 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true)); 373 deoptimized_objects = true; 374 } else { 375 JavaThread* current = thread; // For JRT_BLOCK 376 JRT_BLOCK 377 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD); 378 JRT_END 379 } 380 guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod"); 381 bool is_jvmci = compiled_method->is_compiled_by_jvmci(); 382 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci); 383 if (TraceDeoptimization) { 384 print_objects(deoptee_thread, objects, realloc_failures); 385 } 386 } 387 if (save_oop_result) { 388 // Restore result. 389 deoptee.set_saved_oop_result(&map, return_value()); 390 } 391 return realloc_failures; 392 } 393 394 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures, 395 frame& deoptee, int exec_mode, bool& deoptimized_objects) { 396 JavaThread* deoptee_thread = chunk->at(0)->thread(); 397 assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once"); 398 assert(thread == Thread::current(), "should be"); 399 HandleMark hm(thread); 400 #ifndef PRODUCT 401 bool first = true; 402 #endif // !PRODUCT 403 // Start locking from outermost/oldest frame 404 for (int i = (chunk->length() - 1); i >= 0; i--) { 405 compiledVFrame* cvf = chunk->at(i); 406 assert (cvf->scope() != nullptr,"expect only compiled java frames"); 407 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 408 if (monitors->is_nonempty()) { 409 bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee, 410 exec_mode, realloc_failures); 411 deoptimized_objects = deoptimized_objects || relocked; 412 #ifndef PRODUCT 413 if (PrintDeoptimizationDetails) { 414 ResourceMark rm; 415 stringStream st; 416 for (int j = 0; j < monitors->length(); j++) { 417 MonitorInfo* mi = monitors->at(j); 418 if (mi->eliminated()) { 419 if (first) { 420 first = false; 421 st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 422 } 423 if (exec_mode == Deoptimization::Unpack_none) { 424 ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor(); 425 if (monitor != nullptr && monitor->object() == mi->owner()) { 426 st.print_cr(" object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner())); 427 continue; 428 } 429 } 430 if (mi->owner_is_scalar_replaced()) { 431 Klass* k = java_lang_Class::as_Klass(mi->owner_klass()); 432 st.print_cr(" failed reallocation for klass %s", k->external_name()); 433 } else { 434 st.print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner())); 435 } 436 } 437 } 438 tty->print_raw(st.freeze()); 439 } 440 #endif // !PRODUCT 441 } 442 } 443 } 444 445 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI. 446 // The given vframes cover one physical frame. 447 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, 448 bool& realloc_failures) { 449 frame deoptee = chunk->at(0)->fr(); 450 JavaThread* deoptee_thread = chunk->at(0)->thread(); 451 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 452 RegisterMap map(chunk->at(0)->register_map()); 453 bool deoptimized_objects = false; 454 455 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 456 457 // Reallocate the non-escaping objects and restore their fields. 458 if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations) 459 || EliminateAutoBox || EnableVectorAggressiveReboxing)) { 460 realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects); 461 } 462 463 // MonitorInfo structures used in eliminate_locks are not GC safe. 464 NoSafepointVerifier no_safepoint; 465 466 // Now relock objects if synchronization on them was eliminated. 467 if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) { 468 restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects); 469 } 470 return deoptimized_objects; 471 } 472 #endif // COMPILER2_OR_JVMCI 473 474 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap) 475 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) { 476 // When we get here we are about to unwind the deoptee frame. In order to 477 // catch not yet safe to use frames, the following stack watermark barrier 478 // poll will make such frames safe to use. 479 StackWatermarkSet::before_unwind(current); 480 481 // Note: there is a safepoint safety issue here. No matter whether we enter 482 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once 483 // the vframeArray is created. 484 // 485 486 // Allocate our special deoptimization ResourceMark 487 DeoptResourceMark* dmark = new DeoptResourceMark(current); 488 assert(current->deopt_mark() == nullptr, "Pending deopt!"); 489 current->set_deopt_mark(dmark); 490 491 frame stub_frame = current->last_frame(); // Makes stack walkable as side effect 492 RegisterMap map(current, 493 RegisterMap::UpdateMap::include, 494 RegisterMap::ProcessFrames::include, 495 RegisterMap::WalkContinuation::skip); 496 RegisterMap dummy_map(current, 497 RegisterMap::UpdateMap::skip, 498 RegisterMap::ProcessFrames::include, 499 RegisterMap::WalkContinuation::skip); 500 // Now get the deoptee with a valid map 501 frame deoptee = stub_frame.sender(&map); 502 // Set the deoptee nmethod 503 assert(current->deopt_compiled_method() == nullptr, "Pending deopt!"); 504 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 505 current->set_deopt_compiled_method(nm); 506 507 if (VerifyStack) { 508 current->validate_frame_layout(); 509 } 510 511 // Create a growable array of VFrames where each VFrame represents an inlined 512 // Java frame. This storage is allocated with the usual system arena. 513 assert(deoptee.is_compiled_frame(), "Wrong frame type"); 514 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10); 515 vframe* vf = vframe::new_vframe(&deoptee, &map, current); 516 while (!vf->is_top()) { 517 assert(vf->is_compiled_frame(), "Wrong frame type"); 518 chunk->push(compiledVFrame::cast(vf)); 519 vf = vf->sender(); 520 } 521 assert(vf->is_compiled_frame(), "Wrong frame type"); 522 chunk->push(compiledVFrame::cast(vf)); 523 524 bool realloc_failures = false; 525 526 #if COMPILER2_OR_JVMCI 527 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 528 529 // Reallocate the non-escaping objects and restore their fields. Then 530 // relock objects if synchronization on them was eliminated. 531 if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations) 532 || EliminateAutoBox || EnableVectorAggressiveReboxing )) { 533 bool unused; 534 realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused); 535 } 536 #endif // COMPILER2_OR_JVMCI 537 538 // Ensure that no safepoint is taken after pointers have been stored 539 // in fields of rematerialized objects. If a safepoint occurs from here on 540 // out the java state residing in the vframeArray will be missed. 541 // Locks may be rebaised in a safepoint. 542 NoSafepointVerifier no_safepoint; 543 544 #if COMPILER2_OR_JVMCI 545 if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) )) 546 && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) { 547 bool unused = false; 548 restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused); 549 } 550 #endif // COMPILER2_OR_JVMCI 551 552 ScopeDesc* trap_scope = chunk->at(0)->scope(); 553 Handle exceptionObject; 554 if (trap_scope->rethrow_exception()) { 555 #ifndef PRODUCT 556 if (PrintDeoptimizationDetails) { 557 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci()); 558 } 559 #endif // !PRODUCT 560 561 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions(); 562 guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw"); 563 ScopeValue* topOfStack = expressions->top(); 564 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj(); 565 guarantee(exceptionObject() != nullptr, "exception oop can not be null"); 566 } 567 568 vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures); 569 #if COMPILER2_OR_JVMCI 570 if (realloc_failures) { 571 // This destroys all ScopedValue bindings. 572 current->clear_scopedValueBindings(); 573 pop_frames_failed_reallocs(current, array); 574 } 575 #endif 576 577 assert(current->vframe_array_head() == nullptr, "Pending deopt!"); 578 current->set_vframe_array_head(array); 579 580 // Now that the vframeArray has been created if we have any deferred local writes 581 // added by jvmti then we can free up that structure as the data is now in the 582 // vframeArray 583 584 JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id()); 585 586 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info. 587 CodeBlob* cb = stub_frame.cb(); 588 // Verify we have the right vframeArray 589 assert(cb->frame_size() >= 0, "Unexpected frame size"); 590 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size(); 591 592 // If the deopt call site is a MethodHandle invoke call site we have 593 // to adjust the unpack_sp. 594 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null(); 595 if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc())) 596 unpack_sp = deoptee.unextended_sp(); 597 598 #ifdef ASSERT 599 assert(cb->is_deoptimization_stub() || 600 cb->is_uncommon_trap_stub() || 601 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 || 602 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0, 603 "unexpected code blob: %s", cb->name()); 604 #endif 605 606 // This is a guarantee instead of an assert because if vframe doesn't match 607 // we will unpack the wrong deoptimized frame and wind up in strange places 608 // where it will be very difficult to figure out what went wrong. Better 609 // to die an early death here than some very obscure death later when the 610 // trail is cold. 611 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack"); 612 613 int number_of_frames = array->frames(); 614 615 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost 616 // virtual activation, which is the reverse of the elements in the vframes array. 617 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler); 618 // +1 because we always have an interpreter return address for the final slot. 619 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler); 620 int popframe_extra_args = 0; 621 // Create an interpreter return address for the stub to use as its return 622 // address so the skeletal frames are perfectly walkable 623 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0); 624 625 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost 626 // activation be put back on the expression stack of the caller for reexecution 627 if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) { 628 popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words()); 629 } 630 631 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized 632 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather 633 // than simply use array->sender.pc(). This requires us to walk the current set of frames 634 // 635 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame 636 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller 637 638 // It's possible that the number of parameters at the call site is 639 // different than number of arguments in the callee when method 640 // handles are used. If the caller is interpreted get the real 641 // value so that the proper amount of space can be added to it's 642 // frame. 643 bool caller_was_method_handle = false; 644 if (deopt_sender.is_interpreted_frame()) { 645 methodHandle method(current, deopt_sender.interpreter_frame_method()); 646 Bytecode_invoke cur(method, deopt_sender.interpreter_frame_bci()); 647 if (cur.has_member_arg()) { 648 // This should cover all real-world cases. One exception is a pathological chain of 649 // MH.linkToXXX() linker calls, which only trusted code could do anyway. To handle that case, we 650 // would need to get the size from the resolved method entry. Another exception would 651 // be an invokedynamic with an adapter that is really a MethodHandle linker. 652 caller_was_method_handle = true; 653 } 654 } 655 656 // 657 // frame_sizes/frame_pcs[0] oldest frame (int or c2i) 658 // frame_sizes/frame_pcs[1] next oldest frame (int) 659 // frame_sizes/frame_pcs[n] youngest frame (int) 660 // 661 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame 662 // owns the space for the return address to it's caller). Confusing ain't it. 663 // 664 // The vframe array can address vframes with indices running from 665 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame. 666 // When we create the skeletal frames we need the oldest frame to be in the zero slot 667 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk. 668 // so things look a little strange in this loop. 669 // 670 int callee_parameters = 0; 671 int callee_locals = 0; 672 for (int index = 0; index < array->frames(); index++ ) { 673 // frame[number_of_frames - 1 ] = on_stack_size(youngest) 674 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest)) 675 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest))) 676 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters, 677 callee_locals, 678 index == 0, 679 popframe_extra_args); 680 // This pc doesn't have to be perfect just good enough to identify the frame 681 // as interpreted so the skeleton frame will be walkable 682 // The correct pc will be set when the skeleton frame is completely filled out 683 // The final pc we store in the loop is wrong and will be overwritten below 684 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset; 685 686 callee_parameters = array->element(index)->method()->size_of_parameters(); 687 callee_locals = array->element(index)->method()->max_locals(); 688 popframe_extra_args = 0; 689 } 690 691 // Compute whether the root vframe returns a float or double value. 692 BasicType return_type; 693 { 694 methodHandle method(current, array->element(0)->method()); 695 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci()); 696 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL; 697 } 698 699 // Compute information for handling adapters and adjusting the frame size of the caller. 700 int caller_adjustment = 0; 701 702 // Compute the amount the oldest interpreter frame will have to adjust 703 // its caller's stack by. If the caller is a compiled frame then 704 // we pretend that the callee has no parameters so that the 705 // extension counts for the full amount of locals and not just 706 // locals-parms. This is because without a c2i adapter the parm 707 // area as created by the compiled frame will not be usable by 708 // the interpreter. (Depending on the calling convention there 709 // may not even be enough space). 710 711 // QQQ I'd rather see this pushed down into last_frame_adjust 712 // and have it take the sender (aka caller). 713 714 if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) { 715 caller_adjustment = last_frame_adjust(0, callee_locals); 716 } else if (callee_locals > callee_parameters) { 717 // The caller frame may need extending to accommodate 718 // non-parameter locals of the first unpacked interpreted frame. 719 // Compute that adjustment. 720 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals); 721 } 722 723 // If the sender is deoptimized the we must retrieve the address of the handler 724 // since the frame will "magically" show the original pc before the deopt 725 // and we'd undo the deopt. 726 727 frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc(); 728 if (Continuation::is_continuation_enterSpecial(deopt_sender)) { 729 ContinuationEntry::from_frame(deopt_sender)->set_argsize(0); 730 } 731 732 assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc"); 733 734 #if INCLUDE_JVMCI 735 if (exceptionObject() != nullptr) { 736 current->set_exception_oop(exceptionObject()); 737 exec_mode = Unpack_exception; 738 } 739 #endif 740 741 if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) { 742 assert(current->has_pending_exception(), "should have thrown OOME"); 743 current->set_exception_oop(current->pending_exception()); 744 current->clear_pending_exception(); 745 exec_mode = Unpack_exception; 746 } 747 748 #if INCLUDE_JVMCI 749 if (current->frames_to_pop_failed_realloc() > 0) { 750 current->set_pending_monitorenter(false); 751 } 752 #endif 753 754 int caller_actual_parameters = -1; // value not used except for interpreted frames, see below 755 if (deopt_sender.is_interpreted_frame()) { 756 caller_actual_parameters = callee_parameters + (caller_was_method_handle ? 1 : 0); 757 } 758 759 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord, 760 caller_adjustment * BytesPerWord, 761 caller_actual_parameters, 762 number_of_frames, 763 frame_sizes, 764 frame_pcs, 765 return_type, 766 exec_mode); 767 // On some platforms, we need a way to pass some platform dependent 768 // information to the unpacking code so the skeletal frames come out 769 // correct (initial fp value, unextended sp, ...) 770 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info()); 771 772 if (array->frames() > 1) { 773 if (VerifyStack && TraceDeoptimization) { 774 tty->print_cr("Deoptimizing method containing inlining"); 775 } 776 } 777 778 array->set_unroll_block(info); 779 return info; 780 } 781 782 // Called to cleanup deoptimization data structures in normal case 783 // after unpacking to stack and when stack overflow error occurs 784 void Deoptimization::cleanup_deopt_info(JavaThread *thread, 785 vframeArray *array) { 786 787 // Get array if coming from exception 788 if (array == nullptr) { 789 array = thread->vframe_array_head(); 790 } 791 thread->set_vframe_array_head(nullptr); 792 793 // Free the previous UnrollBlock 794 vframeArray* old_array = thread->vframe_array_last(); 795 thread->set_vframe_array_last(array); 796 797 if (old_array != nullptr) { 798 UnrollBlock* old_info = old_array->unroll_block(); 799 old_array->set_unroll_block(nullptr); 800 delete old_info; 801 delete old_array; 802 } 803 804 // Deallocate any resource creating in this routine and any ResourceObjs allocated 805 // inside the vframeArray (StackValueCollections) 806 807 delete thread->deopt_mark(); 808 thread->set_deopt_mark(nullptr); 809 thread->set_deopt_compiled_method(nullptr); 810 811 812 if (JvmtiExport::can_pop_frame()) { 813 // Regardless of whether we entered this routine with the pending 814 // popframe condition bit set, we should always clear it now 815 thread->clear_popframe_condition(); 816 } 817 818 // unpack_frames() is called at the end of the deoptimization handler 819 // and (in C2) at the end of the uncommon trap handler. Note this fact 820 // so that an asynchronous stack walker can work again. This counter is 821 // incremented at the beginning of fetch_unroll_info() and (in C2) at 822 // the beginning of uncommon_trap(). 823 thread->dec_in_deopt_handler(); 824 } 825 826 // Moved from cpu directories because none of the cpus has callee save values. 827 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp. 828 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { 829 830 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in 831 // the days we had adapter frames. When we deoptimize a situation where a 832 // compiled caller calls a compiled caller will have registers it expects 833 // to survive the call to the callee. If we deoptimize the callee the only 834 // way we can restore these registers is to have the oldest interpreter 835 // frame that we create restore these values. That is what this routine 836 // will accomplish. 837 838 // At the moment we have modified c2 to not have any callee save registers 839 // so this problem does not exist and this routine is just a place holder. 840 841 assert(f->is_interpreted_frame(), "must be interpreted"); 842 } 843 844 #ifndef PRODUCT 845 static bool falls_through(Bytecodes::Code bc) { 846 switch (bc) { 847 // List may be incomplete. Here we really only care about bytecodes where compiled code 848 // can deoptimize. 849 case Bytecodes::_goto: 850 case Bytecodes::_goto_w: 851 case Bytecodes::_athrow: 852 return false; 853 default: 854 return true; 855 } 856 } 857 #endif 858 859 // Return BasicType of value being returned 860 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)) 861 assert(thread == JavaThread::current(), "pre-condition"); 862 863 // We are already active in the special DeoptResourceMark any ResourceObj's we 864 // allocate will be freed at the end of the routine. 865 866 // JRT_LEAF methods don't normally allocate handles and there is a 867 // NoHandleMark to enforce that. It is actually safe to use Handles 868 // in a JRT_LEAF method, and sometimes desirable, but to do so we 869 // must use ResetNoHandleMark to bypass the NoHandleMark, and 870 // then use a HandleMark to ensure any Handles we do create are 871 // cleaned up in this scope. 872 ResetNoHandleMark rnhm; 873 HandleMark hm(thread); 874 875 frame stub_frame = thread->last_frame(); 876 877 Continuation::notify_deopt(thread, stub_frame.sp()); 878 879 // Since the frame to unpack is the top frame of this thread, the vframe_array_head 880 // must point to the vframeArray for the unpack frame. 881 vframeArray* array = thread->vframe_array_head(); 882 UnrollBlock* info = array->unroll_block(); 883 884 // We set the last_Java frame. But the stack isn't really parsable here. So we 885 // clear it to make sure JFR understands not to try and walk stacks from events 886 // in here. 887 intptr_t* sp = thread->frame_anchor()->last_Java_sp(); 888 thread->frame_anchor()->set_last_Java_sp(nullptr); 889 890 // Unpack the interpreter frames and any adapter frame (c2 only) we might create. 891 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters()); 892 893 thread->frame_anchor()->set_last_Java_sp(sp); 894 895 BasicType bt = info->return_type(); 896 897 // If we have an exception pending, claim that the return type is an oop 898 // so the deopt_blob does not overwrite the exception_oop. 899 900 if (exec_mode == Unpack_exception) 901 bt = T_OBJECT; 902 903 // Cleanup thread deopt data 904 cleanup_deopt_info(thread, array); 905 906 #ifndef PRODUCT 907 if (VerifyStack) { 908 ResourceMark res_mark; 909 // Clear pending exception to not break verification code (restored afterwards) 910 PreserveExceptionMark pm(thread); 911 912 thread->validate_frame_layout(); 913 914 // Verify that the just-unpacked frames match the interpreter's 915 // notions of expression stack and locals 916 vframeArray* cur_array = thread->vframe_array_last(); 917 RegisterMap rm(thread, 918 RegisterMap::UpdateMap::skip, 919 RegisterMap::ProcessFrames::include, 920 RegisterMap::WalkContinuation::skip); 921 rm.set_include_argument_oops(false); 922 bool is_top_frame = true; 923 int callee_size_of_parameters = 0; 924 int callee_max_locals = 0; 925 for (int i = 0; i < cur_array->frames(); i++) { 926 vframeArrayElement* el = cur_array->element(i); 927 frame* iframe = el->iframe(); 928 guarantee(iframe->is_interpreted_frame(), "Wrong frame type"); 929 930 // Get the oop map for this bci 931 InterpreterOopMap mask; 932 int cur_invoke_parameter_size = 0; 933 bool try_next_mask = false; 934 int next_mask_expression_stack_size = -1; 935 int top_frame_expression_stack_adjustment = 0; 936 methodHandle mh(thread, iframe->interpreter_frame_method()); 937 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask); 938 BytecodeStream str(mh, iframe->interpreter_frame_bci()); 939 int max_bci = mh->code_size(); 940 // Get to the next bytecode if possible 941 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 942 // Check to see if we can grab the number of outgoing arguments 943 // at an uncommon trap for an invoke (where the compiler 944 // generates debug info before the invoke has executed) 945 Bytecodes::Code cur_code = str.next(); 946 Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere; 947 if (Bytecodes::is_invoke(cur_code)) { 948 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci()); 949 cur_invoke_parameter_size = invoke.size_of_parameters(); 950 if (i != 0 && invoke.has_member_arg()) { 951 callee_size_of_parameters++; 952 } 953 } 954 if (str.bci() < max_bci) { 955 next_code = str.next(); 956 if (next_code >= 0) { 957 // The interpreter oop map generator reports results before 958 // the current bytecode has executed except in the case of 959 // calls. It seems to be hard to tell whether the compiler 960 // has emitted debug information matching the "state before" 961 // a given bytecode or the state after, so we try both 962 if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) { 963 // Get expression stack size for the next bytecode 964 InterpreterOopMap next_mask; 965 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask); 966 next_mask_expression_stack_size = next_mask.expression_stack_size(); 967 if (Bytecodes::is_invoke(next_code)) { 968 Bytecode_invoke invoke(mh, str.bci()); 969 next_mask_expression_stack_size += invoke.size_of_parameters(); 970 } 971 // Need to subtract off the size of the result type of 972 // the bytecode because this is not described in the 973 // debug info but returned to the interpreter in the TOS 974 // caching register 975 BasicType bytecode_result_type = Bytecodes::result_type(cur_code); 976 if (bytecode_result_type != T_ILLEGAL) { 977 top_frame_expression_stack_adjustment = type2size[bytecode_result_type]; 978 } 979 assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive"); 980 try_next_mask = true; 981 } 982 } 983 } 984 985 // Verify stack depth and oops in frame 986 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc) 987 if (!( 988 /* SPARC */ 989 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) || 990 /* x86 */ 991 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) || 992 (try_next_mask && 993 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size - 994 top_frame_expression_stack_adjustment))) || 995 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) || 996 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) && 997 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size)) 998 )) { 999 { 1000 // Print out some information that will help us debug the problem 1001 tty->print_cr("Wrong number of expression stack elements during deoptimization"); 1002 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1); 1003 tty->print_cr(" Current code %s", Bytecodes::name(cur_code)); 1004 if (try_next_mask) { 1005 tty->print_cr(" Next code %s", Bytecodes::name(next_code)); 1006 } 1007 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements", 1008 iframe->interpreter_frame_expression_stack_size()); 1009 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size()); 1010 tty->print_cr(" try_next_mask = %d", try_next_mask); 1011 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size); 1012 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters); 1013 tty->print_cr(" callee_max_locals = %d", callee_max_locals); 1014 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment); 1015 tty->print_cr(" exec_mode = %d", exec_mode); 1016 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size); 1017 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id()); 1018 tty->print_cr(" Interpreted frames:"); 1019 for (int k = 0; k < cur_array->frames(); k++) { 1020 vframeArrayElement* el = cur_array->element(k); 1021 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci()); 1022 } 1023 cur_array->print_on_2(tty); 1024 } 1025 guarantee(false, "wrong number of expression stack elements during deopt"); 1026 } 1027 VerifyOopClosure verify; 1028 iframe->oops_interpreted_do(&verify, &rm, false); 1029 callee_size_of_parameters = mh->size_of_parameters(); 1030 callee_max_locals = mh->max_locals(); 1031 is_top_frame = false; 1032 } 1033 } 1034 #endif // !PRODUCT 1035 1036 return bt; 1037 JRT_END 1038 1039 class DeoptimizeMarkedClosure : public HandshakeClosure { 1040 public: 1041 DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {} 1042 void do_thread(Thread* thread) { 1043 JavaThread* jt = JavaThread::cast(thread); 1044 jt->deoptimize_marked_methods(); 1045 } 1046 }; 1047 1048 void Deoptimization::deoptimize_all_marked() { 1049 ResourceMark rm; 1050 1051 // Make the dependent methods not entrant 1052 CodeCache::make_marked_nmethods_deoptimized(); 1053 1054 DeoptimizeMarkedClosure deopt; 1055 if (SafepointSynchronize::is_at_safepoint()) { 1056 Threads::java_threads_do(&deopt); 1057 } else { 1058 Handshake::execute(&deopt); 1059 } 1060 } 1061 1062 Deoptimization::DeoptAction Deoptimization::_unloaded_action 1063 = Deoptimization::Action_reinterpret; 1064 1065 #if INCLUDE_JVMCI 1066 template<typename CacheType> 1067 class BoxCacheBase : public CHeapObj<mtCompiler> { 1068 protected: 1069 static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) { 1070 ResourceMark rm(thread); 1071 char* klass_name_str = klass_name->as_C_string(); 1072 InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle()); 1073 guarantee(ik != nullptr, "%s must be loaded", klass_name_str); 1074 if (!ik->is_in_error_state()) { 1075 guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str); 1076 CacheType::compute_offsets(ik); 1077 } 1078 return ik; 1079 } 1080 }; 1081 1082 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache : public BoxCacheBase<CacheType> { 1083 PrimitiveType _low; 1084 PrimitiveType _high; 1085 jobject _cache; 1086 protected: 1087 static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton; 1088 BoxCache(Thread* thread) { 1089 InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol()); 1090 if (ik->is_in_error_state()) { 1091 _low = 1; 1092 _high = 0; 1093 _cache = nullptr; 1094 } else { 1095 objArrayOop cache = CacheType::cache(ik); 1096 assert(cache->length() > 0, "Empty cache"); 1097 _low = BoxType::value(cache->obj_at(0)); 1098 _high = checked_cast<PrimitiveType>(_low + cache->length() - 1); 1099 _cache = JNIHandles::make_global(Handle(thread, cache)); 1100 } 1101 } 1102 ~BoxCache() { 1103 JNIHandles::destroy_global(_cache); 1104 } 1105 public: 1106 static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) { 1107 if (_singleton == nullptr) { 1108 BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread); 1109 if (!Atomic::replace_if_null(&_singleton, s)) { 1110 delete s; 1111 } 1112 } 1113 return _singleton; 1114 } 1115 oop lookup(PrimitiveType value) { 1116 if (_low <= value && value <= _high) { 1117 int offset = checked_cast<int>(value - _low); 1118 return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset); 1119 } 1120 return nullptr; 1121 } 1122 oop lookup_raw(intptr_t raw_value, bool& cache_init_error) { 1123 if (_cache == nullptr) { 1124 cache_init_error = true; 1125 return nullptr; 1126 } 1127 // Have to cast to avoid little/big-endian problems. 1128 if (sizeof(PrimitiveType) > sizeof(jint)) { 1129 jlong value = (jlong)raw_value; 1130 return lookup(value); 1131 } 1132 PrimitiveType value = (PrimitiveType)*((jint*)&raw_value); 1133 return lookup(value); 1134 } 1135 }; 1136 1137 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache; 1138 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache; 1139 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache; 1140 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache; 1141 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache; 1142 1143 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr; 1144 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr; 1145 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr; 1146 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr; 1147 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr; 1148 1149 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> { 1150 jobject _true_cache; 1151 jobject _false_cache; 1152 protected: 1153 static BooleanBoxCache *_singleton; 1154 BooleanBoxCache(Thread *thread) { 1155 InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol()); 1156 if (ik->is_in_error_state()) { 1157 _true_cache = nullptr; 1158 _false_cache = nullptr; 1159 } else { 1160 _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik))); 1161 _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik))); 1162 } 1163 } 1164 ~BooleanBoxCache() { 1165 JNIHandles::destroy_global(_true_cache); 1166 JNIHandles::destroy_global(_false_cache); 1167 } 1168 public: 1169 static BooleanBoxCache* singleton(Thread* thread) { 1170 if (_singleton == nullptr) { 1171 BooleanBoxCache* s = new BooleanBoxCache(thread); 1172 if (!Atomic::replace_if_null(&_singleton, s)) { 1173 delete s; 1174 } 1175 } 1176 return _singleton; 1177 } 1178 oop lookup_raw(intptr_t raw_value, bool& cache_in_error) { 1179 if (_true_cache == nullptr) { 1180 cache_in_error = true; 1181 return nullptr; 1182 } 1183 // Have to cast to avoid little/big-endian problems. 1184 jboolean value = (jboolean)*((jint*)&raw_value); 1185 return lookup(value); 1186 } 1187 oop lookup(jboolean value) { 1188 if (value != 0) { 1189 return JNIHandles::resolve_non_null(_true_cache); 1190 } 1191 return JNIHandles::resolve_non_null(_false_cache); 1192 } 1193 }; 1194 1195 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr; 1196 1197 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) { 1198 Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()()); 1199 BasicType box_type = vmClasses::box_klass_type(k); 1200 if (box_type != T_OBJECT) { 1201 StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0)); 1202 switch(box_type) { 1203 case T_INT: return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1204 case T_CHAR: return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1205 case T_SHORT: return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1206 case T_BYTE: return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1207 case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1208 case T_LONG: return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1209 default:; 1210 } 1211 } 1212 return nullptr; 1213 } 1214 #endif // INCLUDE_JVMCI 1215 1216 #if COMPILER2_OR_JVMCI 1217 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) { 1218 Handle pending_exception(THREAD, thread->pending_exception()); 1219 const char* exception_file = thread->exception_file(); 1220 int exception_line = thread->exception_line(); 1221 thread->clear_pending_exception(); 1222 1223 bool failures = false; 1224 1225 for (int i = 0; i < objects->length(); i++) { 1226 assert(objects->at(i)->is_object(), "invalid debug information"); 1227 ObjectValue* sv = (ObjectValue*) objects->at(i); 1228 1229 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1230 oop obj = nullptr; 1231 1232 bool cache_init_error = false; 1233 if (k->is_instance_klass()) { 1234 #if INCLUDE_JVMCI 1235 nmethod* nm = fr->cb()->as_nmethod_or_null(); 1236 if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) { 1237 AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv; 1238 obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD); 1239 if (obj != nullptr) { 1240 // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it. 1241 abv->set_cached(true); 1242 } else if (cache_init_error) { 1243 // Results in an OOME which is valid (as opposed to a class initialization error) 1244 // and is fine for the rare case a cache initialization failing. 1245 failures = true; 1246 } 1247 } 1248 #endif // INCLUDE_JVMCI 1249 1250 InstanceKlass* ik = InstanceKlass::cast(k); 1251 if (obj == nullptr && !cache_init_error) { 1252 InternalOOMEMark iom(THREAD); 1253 if (EnableVectorSupport && VectorSupport::is_vector(ik)) { 1254 obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD); 1255 } else { 1256 obj = ik->allocate_instance(THREAD); 1257 } 1258 } 1259 } else if (k->is_typeArray_klass()) { 1260 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1261 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); 1262 int len = sv->field_size() / type2size[ak->element_type()]; 1263 InternalOOMEMark iom(THREAD); 1264 obj = ak->allocate(len, THREAD); 1265 } else if (k->is_objArray_klass()) { 1266 ObjArrayKlass* ak = ObjArrayKlass::cast(k); 1267 InternalOOMEMark iom(THREAD); 1268 obj = ak->allocate(sv->field_size(), THREAD); 1269 } 1270 1271 if (obj == nullptr) { 1272 failures = true; 1273 } 1274 1275 assert(sv->value().is_null(), "redundant reallocation"); 1276 assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception"); 1277 CLEAR_PENDING_EXCEPTION; 1278 sv->set_value(obj); 1279 } 1280 1281 if (failures) { 1282 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures); 1283 } else if (pending_exception.not_null()) { 1284 thread->set_pending_exception(pending_exception(), exception_file, exception_line); 1285 } 1286 1287 return failures; 1288 } 1289 1290 #if INCLUDE_JVMCI 1291 /** 1292 * For primitive types whose kind gets "erased" at runtime (shorts become stack ints), 1293 * we need to somehow be able to recover the actual kind to be able to write the correct 1294 * amount of bytes. 1295 * For that purpose, this method assumes that, for an entry spanning n bytes at index i, 1296 * the entries at index n + 1 to n + i are 'markers'. 1297 * For example, if we were writing a short at index 4 of a byte array of size 8, the 1298 * expected form of the array would be: 1299 * 1300 * {b0, b1, b2, b3, INT, marker, b6, b7} 1301 * 1302 * Thus, in order to get back the size of the entry, we simply need to count the number 1303 * of marked entries 1304 * 1305 * @param virtualArray the virtualized byte array 1306 * @param i index of the virtual entry we are recovering 1307 * @return The number of bytes the entry spans 1308 */ 1309 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) { 1310 int index = i; 1311 while (++index < virtualArray->field_size() && 1312 virtualArray->field_at(index)->is_marker()) {} 1313 return index - i; 1314 } 1315 1316 /** 1317 * If there was a guarantee for byte array to always start aligned to a long, we could 1318 * do a simple check on the parity of the index. Unfortunately, that is not always the 1319 * case. Thus, we check alignment of the actual address we are writing to. 1320 * In the unlikely case index 0 is 5-aligned for example, it would then be possible to 1321 * write a long to index 3. 1322 */ 1323 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) { 1324 jbyte* res = obj->byte_at_addr(index); 1325 assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write"); 1326 return res; 1327 } 1328 1329 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) { 1330 switch (byte_count) { 1331 case 1: 1332 obj->byte_at_put(index, (jbyte) value->get_jint()); 1333 break; 1334 case 2: 1335 *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint(); 1336 break; 1337 case 4: 1338 *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint(); 1339 break; 1340 case 8: 1341 *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr(); 1342 break; 1343 default: 1344 ShouldNotReachHere(); 1345 } 1346 } 1347 #endif // INCLUDE_JVMCI 1348 1349 1350 // restore elements of an eliminated type array 1351 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) { 1352 int index = 0; 1353 1354 for (int i = 0; i < sv->field_size(); i++) { 1355 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1356 switch(type) { 1357 case T_LONG: case T_DOUBLE: { 1358 assert(value->type() == T_INT, "Agreement."); 1359 StackValue* low = 1360 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1361 #ifdef _LP64 1362 jlong res = (jlong)low->get_intptr(); 1363 #else 1364 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1365 #endif 1366 obj->long_at_put(index, res); 1367 break; 1368 } 1369 1370 case T_INT: case T_FLOAT: { // 4 bytes. 1371 assert(value->type() == T_INT, "Agreement."); 1372 bool big_value = false; 1373 if (i + 1 < sv->field_size() && type == T_INT) { 1374 if (sv->field_at(i)->is_location()) { 1375 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type(); 1376 if (type == Location::dbl || type == Location::lng) { 1377 big_value = true; 1378 } 1379 } else if (sv->field_at(i)->is_constant_int()) { 1380 ScopeValue* next_scope_field = sv->field_at(i + 1); 1381 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1382 big_value = true; 1383 } 1384 } 1385 } 1386 1387 if (big_value) { 1388 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1389 #ifdef _LP64 1390 jlong res = (jlong)low->get_intptr(); 1391 #else 1392 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1393 #endif 1394 obj->int_at_put(index, *(jint*)&res); 1395 obj->int_at_put(++index, *((jint*)&res + 1)); 1396 } else { 1397 obj->int_at_put(index, value->get_jint()); 1398 } 1399 break; 1400 } 1401 1402 case T_SHORT: 1403 assert(value->type() == T_INT, "Agreement."); 1404 obj->short_at_put(index, (jshort)value->get_jint()); 1405 break; 1406 1407 case T_CHAR: 1408 assert(value->type() == T_INT, "Agreement."); 1409 obj->char_at_put(index, (jchar)value->get_jint()); 1410 break; 1411 1412 case T_BYTE: { 1413 assert(value->type() == T_INT, "Agreement."); 1414 #if INCLUDE_JVMCI 1415 // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'. 1416 int byte_count = count_number_of_bytes_for_entry(sv, i); 1417 byte_array_put(obj, value, index, byte_count); 1418 // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip. 1419 i += byte_count - 1; // Balance the loop counter. 1420 index += byte_count; 1421 // index has been updated so continue at top of loop 1422 continue; 1423 #else 1424 obj->byte_at_put(index, (jbyte)value->get_jint()); 1425 break; 1426 #endif // INCLUDE_JVMCI 1427 } 1428 1429 case T_BOOLEAN: { 1430 assert(value->type() == T_INT, "Agreement."); 1431 obj->bool_at_put(index, (jboolean)value->get_jint()); 1432 break; 1433 } 1434 1435 default: 1436 ShouldNotReachHere(); 1437 } 1438 index++; 1439 } 1440 } 1441 1442 // restore fields of an eliminated object array 1443 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) { 1444 for (int i = 0; i < sv->field_size(); i++) { 1445 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1446 assert(value->type() == T_OBJECT, "object element expected"); 1447 obj->obj_at_put(i, value->get_obj()()); 1448 } 1449 } 1450 1451 class ReassignedField { 1452 public: 1453 int _offset; 1454 BasicType _type; 1455 public: 1456 ReassignedField() { 1457 _offset = 0; 1458 _type = T_ILLEGAL; 1459 } 1460 }; 1461 1462 // Gets the fields of `klass` that are eliminated by escape analysis and need to be reassigned 1463 static GrowableArray<ReassignedField>* get_reassigned_fields(InstanceKlass* klass, GrowableArray<ReassignedField>* fields, bool is_jvmci) { 1464 InstanceKlass* super = klass->superklass(); 1465 if (super != nullptr) { 1466 get_reassigned_fields(super, fields, is_jvmci); 1467 } 1468 for (AllFieldStream fs(klass); !fs.done(); fs.next()) { 1469 if (!fs.access_flags().is_static() && (is_jvmci || !fs.field_flags().is_injected())) { 1470 ReassignedField field; 1471 field._offset = fs.offset(); 1472 field._type = Signature::basic_type(fs.signature()); 1473 fields->append(field); 1474 } 1475 } 1476 return fields; 1477 } 1478 1479 // Restore fields of an eliminated instance object employing the same field order used by the compiler. 1480 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool is_jvmci) { 1481 GrowableArray<ReassignedField>* fields = get_reassigned_fields(klass, new GrowableArray<ReassignedField>(), is_jvmci); 1482 for (int i = 0; i < fields->length(); i++) { 1483 ScopeValue* scope_field = sv->field_at(svIndex); 1484 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1485 int offset = fields->at(i)._offset; 1486 BasicType type = fields->at(i)._type; 1487 switch (type) { 1488 case T_OBJECT: case T_ARRAY: 1489 assert(value->type() == T_OBJECT, "Agreement."); 1490 obj->obj_field_put(offset, value->get_obj()()); 1491 break; 1492 1493 case T_INT: case T_FLOAT: { // 4 bytes. 1494 assert(value->type() == T_INT, "Agreement."); 1495 bool big_value = false; 1496 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) { 1497 if (scope_field->is_location()) { 1498 Location::Type type = ((LocationValue*) scope_field)->location().type(); 1499 if (type == Location::dbl || type == Location::lng) { 1500 big_value = true; 1501 } 1502 } 1503 if (scope_field->is_constant_int()) { 1504 ScopeValue* next_scope_field = sv->field_at(svIndex + 1); 1505 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1506 big_value = true; 1507 } 1508 } 1509 } 1510 1511 if (big_value) { 1512 i++; 1513 assert(i < fields->length(), "second T_INT field needed"); 1514 assert(fields->at(i)._type == T_INT, "T_INT field needed"); 1515 } else { 1516 obj->int_field_put(offset, value->get_jint()); 1517 break; 1518 } 1519 } 1520 /* no break */ 1521 1522 case T_LONG: case T_DOUBLE: { 1523 assert(value->type() == T_INT, "Agreement."); 1524 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex)); 1525 #ifdef _LP64 1526 jlong res = (jlong)low->get_intptr(); 1527 #else 1528 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1529 #endif 1530 obj->long_field_put(offset, res); 1531 break; 1532 } 1533 1534 case T_SHORT: 1535 assert(value->type() == T_INT, "Agreement."); 1536 obj->short_field_put(offset, (jshort)value->get_jint()); 1537 break; 1538 1539 case T_CHAR: 1540 assert(value->type() == T_INT, "Agreement."); 1541 obj->char_field_put(offset, (jchar)value->get_jint()); 1542 break; 1543 1544 case T_BYTE: 1545 assert(value->type() == T_INT, "Agreement."); 1546 obj->byte_field_put(offset, (jbyte)value->get_jint()); 1547 break; 1548 1549 case T_BOOLEAN: 1550 assert(value->type() == T_INT, "Agreement."); 1551 obj->bool_field_put(offset, (jboolean)value->get_jint()); 1552 break; 1553 1554 default: 1555 ShouldNotReachHere(); 1556 } 1557 svIndex++; 1558 } 1559 return svIndex; 1560 } 1561 1562 // restore fields of all eliminated objects and arrays 1563 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool is_jvmci) { 1564 for (int i = 0; i < objects->length(); i++) { 1565 assert(objects->at(i)->is_object(), "invalid debug information"); 1566 ObjectValue* sv = (ObjectValue*) objects->at(i); 1567 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1568 Handle obj = sv->value(); 1569 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 1570 #ifndef PRODUCT 1571 if (PrintDeoptimizationDetails) { 1572 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string()); 1573 } 1574 #endif // !PRODUCT 1575 1576 if (obj.is_null()) { 1577 continue; 1578 } 1579 1580 #if INCLUDE_JVMCI 1581 // Don't reassign fields of boxes that came from a cache. Caches may be in CDS. 1582 if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) { 1583 continue; 1584 } 1585 #endif // INCLUDE_JVMCI 1586 if (EnableVectorSupport && VectorSupport::is_vector(k)) { 1587 assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string()); 1588 ScopeValue* payload = sv->field_at(0); 1589 if (payload->is_location() && 1590 payload->as_LocationValue()->location().type() == Location::vector) { 1591 #ifndef PRODUCT 1592 if (PrintDeoptimizationDetails) { 1593 tty->print_cr("skip field reassignment for this vector - it should be assigned already"); 1594 if (Verbose) { 1595 Handle obj = sv->value(); 1596 k->oop_print_on(obj(), tty); 1597 } 1598 } 1599 #endif // !PRODUCT 1600 continue; // Such vector's value was already restored in VectorSupport::allocate_vector(). 1601 } 1602 // Else fall-through to do assignment for scalar-replaced boxed vector representation 1603 // which could be restored after vector object allocation. 1604 } 1605 if (k->is_instance_klass()) { 1606 InstanceKlass* ik = InstanceKlass::cast(k); 1607 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), is_jvmci); 1608 } else if (k->is_typeArray_klass()) { 1609 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1610 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type()); 1611 } else if (k->is_objArray_klass()) { 1612 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj()); 1613 } 1614 } 1615 // These objects may escape when we return to Interpreter after deoptimization. 1616 // We need barrier so that stores that initialize these objects can't be reordered 1617 // with subsequent stores that make these objects accessible by other threads. 1618 OrderAccess::storestore(); 1619 } 1620 1621 1622 // relock objects for which synchronization was eliminated 1623 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors, 1624 JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) { 1625 bool relocked_objects = false; 1626 for (int i = 0; i < monitors->length(); i++) { 1627 MonitorInfo* mon_info = monitors->at(i); 1628 if (mon_info->eliminated()) { 1629 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed"); 1630 relocked_objects = true; 1631 if (!mon_info->owner_is_scalar_replaced()) { 1632 Handle obj(thread, mon_info->owner()); 1633 markWord mark = obj->mark(); 1634 if (exec_mode == Unpack_none) { 1635 if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) { 1636 // With exec_mode == Unpack_none obj may be thread local and locked in 1637 // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header. 1638 markWord dmw = mark.displaced_mark_helper(); 1639 mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr)); 1640 obj->set_mark(dmw); 1641 } 1642 if (mark.has_monitor()) { 1643 // defer relocking if the deoptee thread is currently waiting for obj 1644 ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor(); 1645 if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) { 1646 assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization"); 1647 if (LockingMode == LM_LEGACY) { 1648 mon_info->lock()->set_displaced_header(markWord::unused_mark()); 1649 } else if (UseObjectMonitorTable) { 1650 mon_info->lock()->clear_object_monitor_cache(); 1651 } 1652 #ifdef ASSERT 1653 else { 1654 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be"); 1655 mon_info->lock()->set_bad_metadata_deopt(); 1656 } 1657 #endif 1658 JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread); 1659 continue; 1660 } 1661 } 1662 } 1663 BasicLock* lock = mon_info->lock(); 1664 if (LockingMode == LM_LIGHTWEIGHT) { 1665 // We have lost information about the correct state of the lock stack. 1666 // Entering may create an invalid lock stack. Inflate the lock if it 1667 // was fast_locked to restore the valid lock stack. 1668 if (UseObjectMonitorTable) { 1669 lock->clear_object_monitor_cache(); 1670 } 1671 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1672 if (deoptee_thread->lock_stack().contains(obj())) { 1673 LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal, 1674 deoptee_thread, thread); 1675 } 1676 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1677 assert(obj->mark().has_monitor(), "must be"); 1678 assert(!deoptee_thread->lock_stack().contains(obj()), "must be"); 1679 assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be"); 1680 } else { 1681 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1682 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1683 } 1684 } 1685 } 1686 } 1687 return relocked_objects; 1688 } 1689 #endif // COMPILER2_OR_JVMCI 1690 1691 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) { 1692 Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp())); 1693 1694 // Register map for next frame (used for stack crawl). We capture 1695 // the state of the deopt'ing frame's caller. Thus if we need to 1696 // stuff a C2I adapter we can properly fill in the callee-save 1697 // register locations. 1698 frame caller = fr.sender(reg_map); 1699 int frame_size = pointer_delta_as_int(caller.sp(), fr.sp()); 1700 1701 frame sender = caller; 1702 1703 // Since the Java thread being deoptimized will eventually adjust it's own stack, 1704 // the vframeArray containing the unpacking information is allocated in the C heap. 1705 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). 1706 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures); 1707 1708 // Compare the vframeArray to the collected vframes 1709 assert(array->structural_compare(thread, chunk), "just checking"); 1710 1711 if (TraceDeoptimization) { 1712 ResourceMark rm; 1713 stringStream st; 1714 st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array)); 1715 st.print(" "); 1716 fr.print_on(&st); 1717 st.print_cr(" Virtual frames (innermost/newest first):"); 1718 for (int index = 0; index < chunk->length(); index++) { 1719 compiledVFrame* vf = chunk->at(index); 1720 int bci = vf->raw_bci(); 1721 const char* code_name; 1722 if (bci == SynchronizationEntryBCI) { 1723 code_name = "sync entry"; 1724 } else { 1725 Bytecodes::Code code = vf->method()->code_at(bci); 1726 code_name = Bytecodes::name(code); 1727 } 1728 1729 st.print(" VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf)); 1730 st.print(" - %s", vf->method()->name_and_sig_as_C_string()); 1731 st.print(" - %s", code_name); 1732 st.print_cr(" @ bci=%d ", bci); 1733 } 1734 tty->print_raw(st.freeze()); 1735 tty->cr(); 1736 } 1737 1738 return array; 1739 } 1740 1741 #if COMPILER2_OR_JVMCI 1742 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) { 1743 // Reallocation of some scalar replaced objects failed. Record 1744 // that we need to pop all the interpreter frames for the 1745 // deoptimized compiled frame. 1746 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?"); 1747 thread->set_frames_to_pop_failed_realloc(array->frames()); 1748 // Unlock all monitors here otherwise the interpreter will see a 1749 // mix of locked and unlocked monitors (because of failed 1750 // reallocations of synchronized objects) and be confused. 1751 for (int i = 0; i < array->frames(); i++) { 1752 MonitorChunk* monitors = array->element(i)->monitors(); 1753 if (monitors != nullptr) { 1754 // Unlock in reverse order starting from most nested monitor. 1755 for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) { 1756 BasicObjectLock* src = monitors->at(j); 1757 if (src->obj() != nullptr) { 1758 ObjectSynchronizer::exit(src->obj(), src->lock(), thread); 1759 } 1760 } 1761 array->element(i)->free_monitors(); 1762 #ifdef ASSERT 1763 array->element(i)->set_removed_monitors(); 1764 #endif 1765 } 1766 } 1767 } 1768 #endif 1769 1770 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) { 1771 assert(fr.can_be_deoptimized(), "checking frame type"); 1772 1773 gather_statistics(reason, Action_none, Bytecodes::_illegal); 1774 1775 if (LogCompilation && xtty != nullptr) { 1776 nmethod* nm = fr.cb()->as_nmethod_or_null(); 1777 assert(nm != nullptr, "only compiled methods can deopt"); 1778 1779 ttyLocker ttyl; 1780 xtty->begin_head("deoptimized thread='%zu' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc())); 1781 nm->log_identity(xtty); 1782 xtty->end_head(); 1783 for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) { 1784 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1785 xtty->method(sd->method()); 1786 xtty->end_elem(); 1787 if (sd->is_top()) break; 1788 } 1789 xtty->tail("deoptimized"); 1790 } 1791 1792 Continuation::notify_deopt(thread, fr.sp()); 1793 1794 // Patch the compiled method so that when execution returns to it we will 1795 // deopt the execution state and return to the interpreter. 1796 fr.deoptimize(thread); 1797 } 1798 1799 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) { 1800 // Deoptimize only if the frame comes from compile code. 1801 // Do not deoptimize the frame which is already patched 1802 // during the execution of the loops below. 1803 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) { 1804 return; 1805 } 1806 ResourceMark rm; 1807 deoptimize_single_frame(thread, fr, reason); 1808 } 1809 1810 #if INCLUDE_JVMCI 1811 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) { 1812 // there is no exception handler for this pc => deoptimize 1813 nm->make_not_entrant("missing exception handler"); 1814 1815 // Use Deoptimization::deoptimize for all of its side-effects: 1816 // gathering traps statistics, logging... 1817 // it also patches the return pc but we do not care about that 1818 // since we return a continuation to the deopt_blob below. 1819 JavaThread* thread = JavaThread::current(); 1820 RegisterMap reg_map(thread, 1821 RegisterMap::UpdateMap::skip, 1822 RegisterMap::ProcessFrames::include, 1823 RegisterMap::WalkContinuation::skip); 1824 frame runtime_frame = thread->last_frame(); 1825 frame caller_frame = runtime_frame.sender(®_map); 1826 assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method"); 1827 vframe* vf = vframe::new_vframe(&caller_frame, ®_map, thread); 1828 compiledVFrame* cvf = compiledVFrame::cast(vf); 1829 ScopeDesc* imm_scope = cvf->scope(); 1830 MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true); 1831 if (imm_mdo != nullptr) { 1832 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 1833 MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 1834 1835 ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr); 1836 if (pdata != nullptr && pdata->is_BitData()) { 1837 BitData* bit_data = (BitData*) pdata; 1838 bit_data->set_exception_seen(); 1839 } 1840 } 1841 1842 Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler); 1843 1844 MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true); 1845 if (trap_mdo != nullptr) { 1846 trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler); 1847 } 1848 1849 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 1850 } 1851 #endif 1852 1853 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1854 assert(thread == Thread::current() || 1855 thread->is_handshake_safe_for(Thread::current()) || 1856 SafepointSynchronize::is_at_safepoint(), 1857 "can only deoptimize other thread at a safepoint/handshake"); 1858 // Compute frame and register map based on thread and sp. 1859 RegisterMap reg_map(thread, 1860 RegisterMap::UpdateMap::skip, 1861 RegisterMap::ProcessFrames::include, 1862 RegisterMap::WalkContinuation::skip); 1863 frame fr = thread->last_frame(); 1864 while (fr.id() != id) { 1865 fr = fr.sender(®_map); 1866 } 1867 deoptimize(thread, fr, reason); 1868 } 1869 1870 1871 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1872 Thread* current = Thread::current(); 1873 if (thread == current || thread->is_handshake_safe_for(current)) { 1874 Deoptimization::deoptimize_frame_internal(thread, id, reason); 1875 } else { 1876 VM_DeoptimizeFrame deopt(thread, id, reason); 1877 VMThread::execute(&deopt); 1878 } 1879 } 1880 1881 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) { 1882 deoptimize_frame(thread, id, Reason_constraint); 1883 } 1884 1885 // JVMTI PopFrame support 1886 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address)) 1887 { 1888 assert(thread == JavaThread::current(), "pre-condition"); 1889 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address); 1890 } 1891 JRT_END 1892 1893 MethodData* 1894 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m, 1895 bool create_if_missing) { 1896 JavaThread* THREAD = thread; // For exception macros. 1897 MethodData* mdo = m()->method_data(); 1898 if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) { 1899 // Build an MDO. Ignore errors like OutOfMemory; 1900 // that simply means we won't have an MDO to update. 1901 Method::build_profiling_method_data(m, THREAD); 1902 if (HAS_PENDING_EXCEPTION) { 1903 // Only metaspace OOM is expected. No Java code executed. 1904 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1905 CLEAR_PENDING_EXCEPTION; 1906 } 1907 mdo = m()->method_data(); 1908 } 1909 return mdo; 1910 } 1911 1912 #if COMPILER2_OR_JVMCI 1913 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) { 1914 // In case of an unresolved klass entry, load the class. 1915 // This path is exercised from case _ldc in Parse::do_one_bytecode, 1916 // and probably nowhere else. 1917 // Even that case would benefit from simply re-interpreting the 1918 // bytecode, without paying special attention to the class index. 1919 // So this whole "class index" feature should probably be removed. 1920 1921 if (constant_pool->tag_at(index).is_unresolved_klass()) { 1922 Klass* tk = constant_pool->klass_at(index, THREAD); 1923 if (HAS_PENDING_EXCEPTION) { 1924 // Exception happened during classloading. We ignore the exception here, since it 1925 // is going to be rethrown since the current activation is going to be deoptimized and 1926 // the interpreter will re-execute the bytecode. 1927 // Do not clear probable Async Exceptions. 1928 CLEAR_PENDING_NONASYNC_EXCEPTION; 1929 // Class loading called java code which may have caused a stack 1930 // overflow. If the exception was thrown right before the return 1931 // to the runtime the stack is no longer guarded. Reguard the 1932 // stack otherwise if we return to the uncommon trap blob and the 1933 // stack bang causes a stack overflow we crash. 1934 JavaThread* jt = THREAD; 1935 bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed(); 1936 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash"); 1937 } 1938 return; 1939 } 1940 1941 assert(!constant_pool->tag_at(index).is_symbol(), 1942 "no symbolic names here, please"); 1943 } 1944 1945 #if INCLUDE_JFR 1946 1947 class DeoptReasonSerializer : public JfrSerializer { 1948 public: 1949 void serialize(JfrCheckpointWriter& writer) { 1950 writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1) 1951 for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) { 1952 writer.write_key((u8)i); 1953 writer.write(Deoptimization::trap_reason_name(i)); 1954 } 1955 } 1956 }; 1957 1958 class DeoptActionSerializer : public JfrSerializer { 1959 public: 1960 void serialize(JfrCheckpointWriter& writer) { 1961 static const u4 nof_actions = Deoptimization::Action_LIMIT; 1962 writer.write_count(nof_actions); 1963 for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) { 1964 writer.write_key(i); 1965 writer.write(Deoptimization::trap_action_name((int)i)); 1966 } 1967 } 1968 }; 1969 1970 static void register_serializers() { 1971 static int critical_section = 0; 1972 if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) { 1973 return; 1974 } 1975 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer()); 1976 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer()); 1977 } 1978 1979 static void post_deoptimization_event(nmethod* nm, 1980 const Method* method, 1981 int trap_bci, 1982 int instruction, 1983 Deoptimization::DeoptReason reason, 1984 Deoptimization::DeoptAction action) { 1985 assert(nm != nullptr, "invariant"); 1986 assert(method != nullptr, "invariant"); 1987 if (EventDeoptimization::is_enabled()) { 1988 static bool serializers_registered = false; 1989 if (!serializers_registered) { 1990 register_serializers(); 1991 serializers_registered = true; 1992 } 1993 EventDeoptimization event; 1994 event.set_compileId(nm->compile_id()); 1995 event.set_compiler(nm->compiler_type()); 1996 event.set_method(method); 1997 event.set_lineNumber(method->line_number_from_bci(trap_bci)); 1998 event.set_bci(trap_bci); 1999 event.set_instruction(instruction); 2000 event.set_reason(reason); 2001 event.set_action(action); 2002 event.commit(); 2003 } 2004 } 2005 2006 #endif // INCLUDE_JFR 2007 2008 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci, 2009 const char* reason_name, const char* reason_action) { 2010 LogTarget(Debug, deoptimization) lt; 2011 if (lt.is_enabled()) { 2012 LogStream ls(lt); 2013 bool is_osr = nm->is_osr_method(); 2014 ls.print("cid=%4d %s level=%d", 2015 nm->compile_id(), (is_osr ? "osr" : " "), nm->comp_level()); 2016 ls.print(" %s", tm->name_and_sig_as_C_string()); 2017 ls.print(" trap_bci=%d ", trap_bci); 2018 if (is_osr) { 2019 ls.print("osr_bci=%d ", nm->osr_entry_bci()); 2020 } 2021 ls.print("%s ", reason_name); 2022 ls.print("%s ", reason_action); 2023 ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT, 2024 pc, fr.pc() - nm->code_begin()); 2025 } 2026 } 2027 2028 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) { 2029 HandleMark hm(current); 2030 2031 // uncommon_trap() is called at the beginning of the uncommon trap 2032 // handler. Note this fact before we start generating temporary frames 2033 // that can confuse an asynchronous stack walker. This counter is 2034 // decremented at the end of unpack_frames(). 2035 2036 current->inc_in_deopt_handler(); 2037 2038 #if INCLUDE_JVMCI 2039 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid 2040 RegisterMap reg_map(current, 2041 RegisterMap::UpdateMap::include, 2042 RegisterMap::ProcessFrames::include, 2043 RegisterMap::WalkContinuation::skip); 2044 #else 2045 RegisterMap reg_map(current, 2046 RegisterMap::UpdateMap::skip, 2047 RegisterMap::ProcessFrames::include, 2048 RegisterMap::WalkContinuation::skip); 2049 #endif 2050 frame stub_frame = current->last_frame(); 2051 frame fr = stub_frame.sender(®_map); 2052 2053 // Log a message 2054 Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT, 2055 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin()); 2056 2057 { 2058 ResourceMark rm; 2059 2060 DeoptReason reason = trap_request_reason(trap_request); 2061 DeoptAction action = trap_request_action(trap_request); 2062 #if INCLUDE_JVMCI 2063 int debug_id = trap_request_debug_id(trap_request); 2064 #endif 2065 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1 2066 2067 vframe* vf = vframe::new_vframe(&fr, ®_map, current); 2068 compiledVFrame* cvf = compiledVFrame::cast(vf); 2069 2070 nmethod* nm = cvf->code(); 2071 2072 ScopeDesc* trap_scope = cvf->scope(); 2073 2074 bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint); 2075 2076 if (is_receiver_constraint_failure) { 2077 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), 2078 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string() 2079 JVMCI_ONLY(COMMA debug_id)); 2080 } 2081 2082 methodHandle trap_method(current, trap_scope->method()); 2083 int trap_bci = trap_scope->bci(); 2084 #if INCLUDE_JVMCI 2085 jlong speculation = current->pending_failed_speculation(); 2086 if (nm->is_compiled_by_jvmci()) { 2087 nm->update_speculation(current); 2088 } else { 2089 assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers"); 2090 } 2091 2092 if (trap_bci == SynchronizationEntryBCI) { 2093 trap_bci = 0; 2094 current->set_pending_monitorenter(true); 2095 } 2096 2097 if (reason == Deoptimization::Reason_transfer_to_interpreter) { 2098 current->set_pending_transfer_to_interpreter(true); 2099 } 2100 #endif 2101 2102 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci); 2103 // Record this event in the histogram. 2104 gather_statistics(reason, action, trap_bc); 2105 2106 // Ensure that we can record deopt. history: 2107 bool create_if_missing = ProfileTraps; 2108 2109 methodHandle profiled_method; 2110 #if INCLUDE_JVMCI 2111 if (nm->is_compiled_by_jvmci()) { 2112 profiled_method = methodHandle(current, nm->method()); 2113 } else { 2114 profiled_method = trap_method; 2115 } 2116 #else 2117 profiled_method = trap_method; 2118 #endif 2119 2120 MethodData* trap_mdo = 2121 get_method_data(current, profiled_method, create_if_missing); 2122 2123 { // Log Deoptimization event for JFR, UL and event system 2124 Method* tm = trap_method(); 2125 const char* reason_name = trap_reason_name(reason); 2126 const char* reason_action = trap_action_name(action); 2127 intptr_t pc = p2i(fr.pc()); 2128 2129 JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);) 2130 log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action); 2131 Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s", 2132 reason_name, reason_action, pc, 2133 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name()); 2134 } 2135 2136 // Print a bunch of diagnostics, if requested. 2137 if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) { 2138 ResourceMark rm; 2139 2140 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2141 // We must do this already now, since we cannot acquire this lock while 2142 // holding the tty lock (lock ordering by rank). 2143 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2144 2145 ttyLocker ttyl; 2146 2147 char buf[100]; 2148 if (xtty != nullptr) { 2149 xtty->begin_head("uncommon_trap thread='%zu' %s", 2150 os::current_thread_id(), 2151 format_trap_request(buf, sizeof(buf), trap_request)); 2152 #if INCLUDE_JVMCI 2153 if (speculation != 0) { 2154 xtty->print(" speculation='" JLONG_FORMAT "'", speculation); 2155 } 2156 #endif 2157 nm->log_identity(xtty); 2158 } 2159 Symbol* class_name = nullptr; 2160 bool unresolved = false; 2161 if (unloaded_class_index >= 0) { 2162 constantPoolHandle constants (current, trap_method->constants()); 2163 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) { 2164 class_name = constants->klass_name_at(unloaded_class_index); 2165 unresolved = true; 2166 if (xtty != nullptr) 2167 xtty->print(" unresolved='1'"); 2168 } else if (constants->tag_at(unloaded_class_index).is_symbol()) { 2169 class_name = constants->symbol_at(unloaded_class_index); 2170 } 2171 if (xtty != nullptr) 2172 xtty->name(class_name); 2173 } 2174 if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) { 2175 // Dump the relevant MDO state. 2176 // This is the deopt count for the current reason, any previous 2177 // reasons or recompiles seen at this point. 2178 int dcnt = trap_mdo->trap_count(reason); 2179 if (dcnt != 0) 2180 xtty->print(" count='%d'", dcnt); 2181 2182 // We need to lock to read the ProfileData. But to keep the locks ordered, we need to 2183 // lock extra_data_lock before the tty lock. 2184 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci); 2185 int dos = (pdata == nullptr)? 0: pdata->trap_state(); 2186 if (dos != 0) { 2187 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos)); 2188 if (trap_state_is_recompiled(dos)) { 2189 int recnt2 = trap_mdo->overflow_recompile_count(); 2190 if (recnt2 != 0) 2191 xtty->print(" recompiles2='%d'", recnt2); 2192 } 2193 } 2194 } 2195 if (xtty != nullptr) { 2196 xtty->stamp(); 2197 xtty->end_head(); 2198 } 2199 if (TraceDeoptimization) { // make noise on the tty 2200 stringStream st; 2201 st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string()); 2202 st.print(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"), 2203 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id)); 2204 st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id()); 2205 #if INCLUDE_JVMCI 2206 if (nm->is_compiled_by_jvmci()) { 2207 const char* installed_code_name = nm->jvmci_name(); 2208 if (installed_code_name != nullptr) { 2209 st.print(" (JVMCI: installed code name=%s) ", installed_code_name); 2210 } 2211 } 2212 #endif 2213 st.print(" (@" INTPTR_FORMAT ") thread=%zu reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"), 2214 p2i(fr.pc()), 2215 os::current_thread_id(), 2216 trap_reason_name(reason), 2217 trap_action_name(action), 2218 unloaded_class_index 2219 #if INCLUDE_JVMCI 2220 , debug_id 2221 #endif 2222 ); 2223 if (class_name != nullptr) { 2224 st.print(unresolved ? " unresolved class: " : " symbol: "); 2225 class_name->print_symbol_on(&st); 2226 } 2227 st.cr(); 2228 tty->print_raw(st.freeze()); 2229 } 2230 if (xtty != nullptr) { 2231 // Log the precise location of the trap. 2232 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) { 2233 xtty->begin_elem("jvms bci='%d'", sd->bci()); 2234 xtty->method(sd->method()); 2235 xtty->end_elem(); 2236 if (sd->is_top()) break; 2237 } 2238 xtty->tail("uncommon_trap"); 2239 } 2240 } 2241 // (End diagnostic printout.) 2242 2243 if (is_receiver_constraint_failure) { 2244 fatal("missing receiver type check"); 2245 } 2246 2247 // Load class if necessary 2248 if (unloaded_class_index >= 0) { 2249 constantPoolHandle constants(current, trap_method->constants()); 2250 load_class_by_index(constants, unloaded_class_index, THREAD); 2251 } 2252 2253 // Flush the nmethod if necessary and desirable. 2254 // 2255 // We need to avoid situations where we are re-flushing the nmethod 2256 // because of a hot deoptimization site. Repeated flushes at the same 2257 // point need to be detected by the compiler and avoided. If the compiler 2258 // cannot avoid them (or has a bug and "refuses" to avoid them), this 2259 // module must take measures to avoid an infinite cycle of recompilation 2260 // and deoptimization. There are several such measures: 2261 // 2262 // 1. If a recompilation is ordered a second time at some site X 2263 // and for the same reason R, the action is adjusted to 'reinterpret', 2264 // to give the interpreter time to exercise the method more thoroughly. 2265 // If this happens, the method's overflow_recompile_count is incremented. 2266 // 2267 // 2. If the compiler fails to reduce the deoptimization rate, then 2268 // the method's overflow_recompile_count will begin to exceed the set 2269 // limit PerBytecodeRecompilationCutoff. If this happens, the action 2270 // is adjusted to 'make_not_compilable', and the method is abandoned 2271 // to the interpreter. This is a performance hit for hot methods, 2272 // but is better than a disastrous infinite cycle of recompilations. 2273 // (Actually, only the method containing the site X is abandoned.) 2274 // 2275 // 3. In parallel with the previous measures, if the total number of 2276 // recompilations of a method exceeds the much larger set limit 2277 // PerMethodRecompilationCutoff, the method is abandoned. 2278 // This should only happen if the method is very large and has 2279 // many "lukewarm" deoptimizations. The code which enforces this 2280 // limit is elsewhere (class nmethod, class Method). 2281 // 2282 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance 2283 // to recompile at each bytecode independently of the per-BCI cutoff. 2284 // 2285 // The decision to update code is up to the compiler, and is encoded 2286 // in the Action_xxx code. If the compiler requests Action_none 2287 // no trap state is changed, no compiled code is changed, and the 2288 // computation suffers along in the interpreter. 2289 // 2290 // The other action codes specify various tactics for decompilation 2291 // and recompilation. Action_maybe_recompile is the loosest, and 2292 // allows the compiled code to stay around until enough traps are seen, 2293 // and until the compiler gets around to recompiling the trapping method. 2294 // 2295 // The other actions cause immediate removal of the present code. 2296 2297 // Traps caused by injected profile shouldn't pollute trap counts. 2298 bool injected_profile_trap = trap_method->has_injected_profile() && 2299 (reason == Reason_intrinsic || reason == Reason_unreached); 2300 2301 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap; 2302 bool make_not_entrant = false; 2303 bool make_not_compilable = false; 2304 bool reprofile = false; 2305 switch (action) { 2306 case Action_none: 2307 // Keep the old code. 2308 update_trap_state = false; 2309 break; 2310 case Action_maybe_recompile: 2311 // Do not need to invalidate the present code, but we can 2312 // initiate another 2313 // Start compiler without (necessarily) invalidating the nmethod. 2314 // The system will tolerate the old code, but new code should be 2315 // generated when possible. 2316 break; 2317 case Action_reinterpret: 2318 // Go back into the interpreter for a while, and then consider 2319 // recompiling form scratch. 2320 make_not_entrant = true; 2321 // Reset invocation counter for outer most method. 2322 // This will allow the interpreter to exercise the bytecodes 2323 // for a while before recompiling. 2324 // By contrast, Action_make_not_entrant is immediate. 2325 // 2326 // Note that the compiler will track null_check, null_assert, 2327 // range_check, and class_check events and log them as if they 2328 // had been traps taken from compiled code. This will update 2329 // the MDO trap history so that the next compilation will 2330 // properly detect hot trap sites. 2331 reprofile = true; 2332 break; 2333 case Action_make_not_entrant: 2334 // Request immediate recompilation, and get rid of the old code. 2335 // Make them not entrant, so next time they are called they get 2336 // recompiled. Unloaded classes are loaded now so recompile before next 2337 // time they are called. Same for uninitialized. The interpreter will 2338 // link the missing class, if any. 2339 make_not_entrant = true; 2340 break; 2341 case Action_make_not_compilable: 2342 // Give up on compiling this method at all. 2343 make_not_entrant = true; 2344 make_not_compilable = true; 2345 break; 2346 default: 2347 ShouldNotReachHere(); 2348 } 2349 2350 // Setting +ProfileTraps fixes the following, on all platforms: 2351 // The result is infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the 2352 // recompile relies on a MethodData* to record heroic opt failures. 2353 2354 // Whether the interpreter is producing MDO data or not, we also need 2355 // to use the MDO to detect hot deoptimization points and control 2356 // aggressive optimization. 2357 bool inc_recompile_count = false; 2358 2359 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2360 ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr, 2361 (trap_mdo != nullptr), 2362 Mutex::_no_safepoint_check_flag); 2363 ProfileData* pdata = nullptr; 2364 if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) { 2365 assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity"); 2366 uint this_trap_count = 0; 2367 bool maybe_prior_trap = false; 2368 bool maybe_prior_recompile = false; 2369 2370 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true, 2371 #if INCLUDE_JVMCI 2372 nm->is_compiled_by_jvmci() && nm->is_osr_method(), 2373 #endif 2374 nm->method(), 2375 //outputs: 2376 this_trap_count, 2377 maybe_prior_trap, 2378 maybe_prior_recompile); 2379 // Because the interpreter also counts null, div0, range, and class 2380 // checks, these traps from compiled code are double-counted. 2381 // This is harmless; it just means that the PerXTrapLimit values 2382 // are in effect a little smaller than they look. 2383 2384 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2385 if (per_bc_reason != Reason_none) { 2386 // Now take action based on the partially known per-BCI history. 2387 if (maybe_prior_trap 2388 && this_trap_count >= (uint)PerBytecodeTrapLimit) { 2389 // If there are too many traps at this BCI, force a recompile. 2390 // This will allow the compiler to see the limit overflow, and 2391 // take corrective action, if possible. The compiler generally 2392 // does not use the exact PerBytecodeTrapLimit value, but instead 2393 // changes its tactics if it sees any traps at all. This provides 2394 // a little hysteresis, delaying a recompile until a trap happens 2395 // several times. 2396 // 2397 // Actually, since there is only one bit of counter per BCI, 2398 // the possible per-BCI counts are {0,1,(per-method count)}. 2399 // This produces accurate results if in fact there is only 2400 // one hot trap site, but begins to get fuzzy if there are 2401 // many sites. For example, if there are ten sites each 2402 // trapping two or more times, they each get the blame for 2403 // all of their traps. 2404 make_not_entrant = true; 2405 } 2406 2407 // Detect repeated recompilation at the same BCI, and enforce a limit. 2408 if (make_not_entrant && maybe_prior_recompile) { 2409 // More than one recompile at this point. 2410 inc_recompile_count = maybe_prior_trap; 2411 } 2412 } else { 2413 // For reasons which are not recorded per-bytecode, we simply 2414 // force recompiles unconditionally. 2415 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.) 2416 make_not_entrant = true; 2417 } 2418 2419 // Go back to the compiler if there are too many traps in this method. 2420 if (this_trap_count >= per_method_trap_limit(reason)) { 2421 // If there are too many traps in this method, force a recompile. 2422 // This will allow the compiler to see the limit overflow, and 2423 // take corrective action, if possible. 2424 // (This condition is an unlikely backstop only, because the 2425 // PerBytecodeTrapLimit is more likely to take effect first, 2426 // if it is applicable.) 2427 make_not_entrant = true; 2428 } 2429 2430 // Here's more hysteresis: If there has been a recompile at 2431 // this trap point already, run the method in the interpreter 2432 // for a while to exercise it more thoroughly. 2433 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) { 2434 reprofile = true; 2435 } 2436 } 2437 2438 // Take requested actions on the method: 2439 2440 // Recompile 2441 if (make_not_entrant) { 2442 if (!nm->make_not_entrant("uncommon trap")) { 2443 return; // the call did not change nmethod's state 2444 } 2445 2446 if (pdata != nullptr) { 2447 // Record the recompilation event, if any. 2448 int tstate0 = pdata->trap_state(); 2449 int tstate1 = trap_state_set_recompiled(tstate0, true); 2450 if (tstate1 != tstate0) 2451 pdata->set_trap_state(tstate1); 2452 } 2453 2454 // For code aging we count traps separately here, using make_not_entrant() 2455 // as a guard against simultaneous deopts in multiple threads. 2456 if (reason == Reason_tenured && trap_mdo != nullptr) { 2457 trap_mdo->inc_tenure_traps(); 2458 } 2459 } 2460 2461 if (inc_recompile_count) { 2462 trap_mdo->inc_overflow_recompile_count(); 2463 if ((uint)trap_mdo->overflow_recompile_count() > 2464 (uint)PerBytecodeRecompilationCutoff) { 2465 // Give up on the method containing the bad BCI. 2466 if (trap_method() == nm->method()) { 2467 make_not_compilable = true; 2468 } else { 2469 trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization); 2470 // But give grace to the enclosing nm->method(). 2471 } 2472 } 2473 } 2474 2475 // Reprofile 2476 if (reprofile) { 2477 CompilationPolicy::reprofile(trap_scope, nm->is_osr_method()); 2478 } 2479 2480 // Give up compiling 2481 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) { 2482 assert(make_not_entrant, "consistent"); 2483 nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization); 2484 } 2485 2486 if (ProfileExceptionHandlers && trap_mdo != nullptr) { 2487 BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci); 2488 if (exception_handler_data != nullptr) { 2489 // uncommon trap at the start of an exception handler. 2490 // C2 generates these for un-entered exception handlers. 2491 // mark the handler as entered to avoid generating 2492 // another uncommon trap the next time the handler is compiled 2493 exception_handler_data->set_exception_handler_entered(); 2494 } 2495 } 2496 2497 } // Free marked resources 2498 2499 } 2500 JRT_END 2501 2502 ProfileData* 2503 Deoptimization::query_update_method_data(MethodData* trap_mdo, 2504 int trap_bci, 2505 Deoptimization::DeoptReason reason, 2506 bool update_total_trap_count, 2507 #if INCLUDE_JVMCI 2508 bool is_osr, 2509 #endif 2510 Method* compiled_method, 2511 //outputs: 2512 uint& ret_this_trap_count, 2513 bool& ret_maybe_prior_trap, 2514 bool& ret_maybe_prior_recompile) { 2515 trap_mdo->check_extra_data_locked(); 2516 2517 bool maybe_prior_trap = false; 2518 bool maybe_prior_recompile = false; 2519 uint this_trap_count = 0; 2520 if (update_total_trap_count) { 2521 uint idx = reason; 2522 #if INCLUDE_JVMCI 2523 if (is_osr) { 2524 // Upper half of history array used for traps in OSR compilations 2525 idx += Reason_TRAP_HISTORY_LENGTH; 2526 } 2527 #endif 2528 uint prior_trap_count = trap_mdo->trap_count(idx); 2529 this_trap_count = trap_mdo->inc_trap_count(idx); 2530 2531 // If the runtime cannot find a place to store trap history, 2532 // it is estimated based on the general condition of the method. 2533 // If the method has ever been recompiled, or has ever incurred 2534 // a trap with the present reason , then this BCI is assumed 2535 // (pessimistically) to be the culprit. 2536 maybe_prior_trap = (prior_trap_count != 0); 2537 maybe_prior_recompile = (trap_mdo->decompile_count() != 0); 2538 } 2539 ProfileData* pdata = nullptr; 2540 2541 2542 // For reasons which are recorded per bytecode, we check per-BCI data. 2543 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2544 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be"); 2545 if (per_bc_reason != Reason_none) { 2546 // Find the profile data for this BCI. If there isn't one, 2547 // try to allocate one from the MDO's set of spares. 2548 // This will let us detect a repeated trap at this point. 2549 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr); 2550 2551 if (pdata != nullptr) { 2552 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) { 2553 if (LogCompilation && xtty != nullptr) { 2554 ttyLocker ttyl; 2555 // no more room for speculative traps in this MDO 2556 xtty->elem("speculative_traps_oom"); 2557 } 2558 } 2559 // Query the trap state of this profile datum. 2560 int tstate0 = pdata->trap_state(); 2561 if (!trap_state_has_reason(tstate0, per_bc_reason)) 2562 maybe_prior_trap = false; 2563 if (!trap_state_is_recompiled(tstate0)) 2564 maybe_prior_recompile = false; 2565 2566 // Update the trap state of this profile datum. 2567 int tstate1 = tstate0; 2568 // Record the reason. 2569 tstate1 = trap_state_add_reason(tstate1, per_bc_reason); 2570 // Store the updated state on the MDO, for next time. 2571 if (tstate1 != tstate0) 2572 pdata->set_trap_state(tstate1); 2573 } else { 2574 if (LogCompilation && xtty != nullptr) { 2575 ttyLocker ttyl; 2576 // Missing MDP? Leave a small complaint in the log. 2577 xtty->elem("missing_mdp bci='%d'", trap_bci); 2578 } 2579 } 2580 } 2581 2582 // Return results: 2583 ret_this_trap_count = this_trap_count; 2584 ret_maybe_prior_trap = maybe_prior_trap; 2585 ret_maybe_prior_recompile = maybe_prior_recompile; 2586 return pdata; 2587 } 2588 2589 void 2590 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2591 ResourceMark rm; 2592 // Ignored outputs: 2593 uint ignore_this_trap_count; 2594 bool ignore_maybe_prior_trap; 2595 bool ignore_maybe_prior_recompile; 2596 assert(!reason_is_speculate(reason), "reason speculate only used by compiler"); 2597 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts 2598 bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler); 2599 2600 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2601 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2602 2603 query_update_method_data(trap_mdo, trap_bci, 2604 (DeoptReason)reason, 2605 update_total_counts, 2606 #if INCLUDE_JVMCI 2607 false, 2608 #endif 2609 nullptr, 2610 ignore_this_trap_count, 2611 ignore_maybe_prior_trap, 2612 ignore_maybe_prior_recompile); 2613 } 2614 2615 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) { 2616 // Enable WXWrite: current function is called from methods compiled by C2 directly 2617 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 2618 2619 // Still in Java no safepoints 2620 { 2621 // This enters VM and may safepoint 2622 uncommon_trap_inner(current, trap_request); 2623 } 2624 HandleMark hm(current); 2625 return fetch_unroll_info_helper(current, exec_mode); 2626 } 2627 2628 // Local derived constants. 2629 // Further breakdown of DataLayout::trap_state, as promised by DataLayout. 2630 const int DS_REASON_MASK = ((uint)DataLayout::trap_mask) >> 1; 2631 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK; 2632 2633 //---------------------------trap_state_reason--------------------------------- 2634 Deoptimization::DeoptReason 2635 Deoptimization::trap_state_reason(int trap_state) { 2636 // This assert provides the link between the width of DataLayout::trap_bits 2637 // and the encoding of "recorded" reasons. It ensures there are enough 2638 // bits to store all needed reasons in the per-BCI MDO profile. 2639 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2640 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2641 trap_state -= recompile_bit; 2642 if (trap_state == DS_REASON_MASK) { 2643 return Reason_many; 2644 } else { 2645 assert((int)Reason_none == 0, "state=0 => Reason_none"); 2646 return (DeoptReason)trap_state; 2647 } 2648 } 2649 //-------------------------trap_state_has_reason------------------------------- 2650 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2651 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason"); 2652 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2653 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2654 trap_state -= recompile_bit; 2655 if (trap_state == DS_REASON_MASK) { 2656 return -1; // true, unspecifically (bottom of state lattice) 2657 } else if (trap_state == reason) { 2658 return 1; // true, definitely 2659 } else if (trap_state == 0) { 2660 return 0; // false, definitely (top of state lattice) 2661 } else { 2662 return 0; // false, definitely 2663 } 2664 } 2665 //-------------------------trap_state_add_reason------------------------------- 2666 int Deoptimization::trap_state_add_reason(int trap_state, int reason) { 2667 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason"); 2668 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2669 trap_state -= recompile_bit; 2670 if (trap_state == DS_REASON_MASK) { 2671 return trap_state + recompile_bit; // already at state lattice bottom 2672 } else if (trap_state == reason) { 2673 return trap_state + recompile_bit; // the condition is already true 2674 } else if (trap_state == 0) { 2675 return reason + recompile_bit; // no condition has yet been true 2676 } else { 2677 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom 2678 } 2679 } 2680 //-----------------------trap_state_is_recompiled------------------------------ 2681 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2682 return (trap_state & DS_RECOMPILE_BIT) != 0; 2683 } 2684 //-----------------------trap_state_set_recompiled----------------------------- 2685 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) { 2686 if (z) return trap_state | DS_RECOMPILE_BIT; 2687 else return trap_state & ~DS_RECOMPILE_BIT; 2688 } 2689 //---------------------------format_trap_state--------------------------------- 2690 // This is used for debugging and diagnostics, including LogFile output. 2691 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2692 int trap_state) { 2693 assert(buflen > 0, "sanity"); 2694 DeoptReason reason = trap_state_reason(trap_state); 2695 bool recomp_flag = trap_state_is_recompiled(trap_state); 2696 // Re-encode the state from its decoded components. 2697 int decoded_state = 0; 2698 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many) 2699 decoded_state = trap_state_add_reason(decoded_state, reason); 2700 if (recomp_flag) 2701 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag); 2702 // If the state re-encodes properly, format it symbolically. 2703 // Because this routine is used for debugging and diagnostics, 2704 // be robust even if the state is a strange value. 2705 size_t len; 2706 if (decoded_state != trap_state) { 2707 // Random buggy state that doesn't decode?? 2708 len = jio_snprintf(buf, buflen, "#%d", trap_state); 2709 } else { 2710 len = jio_snprintf(buf, buflen, "%s%s", 2711 trap_reason_name(reason), 2712 recomp_flag ? " recompiled" : ""); 2713 } 2714 return buf; 2715 } 2716 2717 2718 //--------------------------------statics-------------------------------------- 2719 const char* Deoptimization::_trap_reason_name[] = { 2720 // Note: Keep this in sync. with enum DeoptReason. 2721 "none", 2722 "null_check", 2723 "null_assert" JVMCI_ONLY("_or_unreached0"), 2724 "range_check", 2725 "class_check", 2726 "array_check", 2727 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"), 2728 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"), 2729 "profile_predicate", 2730 "auto_vectorization_check", 2731 "unloaded", 2732 "uninitialized", 2733 "initialized", 2734 "unreached", 2735 "unhandled", 2736 "constraint", 2737 "div0_check", 2738 "age", 2739 "predicate", 2740 "loop_limit_check", 2741 "speculate_class_check", 2742 "speculate_null_check", 2743 "speculate_null_assert", 2744 "unstable_if", 2745 "unstable_fused_if", 2746 "receiver_constraint", 2747 #if INCLUDE_JVMCI 2748 "aliasing", 2749 "transfer_to_interpreter", 2750 "not_compiled_exception_handler", 2751 "unresolved", 2752 "jsr_mismatch", 2753 #endif 2754 "tenured" 2755 }; 2756 const char* Deoptimization::_trap_action_name[] = { 2757 // Note: Keep this in sync. with enum DeoptAction. 2758 "none", 2759 "maybe_recompile", 2760 "reinterpret", 2761 "make_not_entrant", 2762 "make_not_compilable" 2763 }; 2764 2765 const char* Deoptimization::trap_reason_name(int reason) { 2766 // Check that every reason has a name 2767 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT); 2768 2769 if (reason == Reason_many) return "many"; 2770 if ((uint)reason < Reason_LIMIT) 2771 return _trap_reason_name[reason]; 2772 static char buf[20]; 2773 os::snprintf_checked(buf, sizeof(buf), "reason%d", reason); 2774 return buf; 2775 } 2776 const char* Deoptimization::trap_action_name(int action) { 2777 // Check that every action has a name 2778 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT); 2779 2780 if ((uint)action < Action_LIMIT) 2781 return _trap_action_name[action]; 2782 static char buf[20]; 2783 os::snprintf_checked(buf, sizeof(buf), "action%d", action); 2784 return buf; 2785 } 2786 2787 // This is used for debugging and diagnostics, including LogFile output. 2788 const char* Deoptimization::format_trap_request(char* buf, size_t buflen, 2789 int trap_request) { 2790 jint unloaded_class_index = trap_request_index(trap_request); 2791 const char* reason = trap_reason_name(trap_request_reason(trap_request)); 2792 const char* action = trap_action_name(trap_request_action(trap_request)); 2793 #if INCLUDE_JVMCI 2794 int debug_id = trap_request_debug_id(trap_request); 2795 #endif 2796 size_t len; 2797 if (unloaded_class_index < 0) { 2798 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"), 2799 reason, action 2800 #if INCLUDE_JVMCI 2801 ,debug_id 2802 #endif 2803 ); 2804 } else { 2805 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"), 2806 reason, action, unloaded_class_index 2807 #if INCLUDE_JVMCI 2808 ,debug_id 2809 #endif 2810 ); 2811 } 2812 return buf; 2813 } 2814 2815 juint Deoptimization::_deoptimization_hist 2816 [Deoptimization::Reason_LIMIT] 2817 [1 + Deoptimization::Action_LIMIT] 2818 [Deoptimization::BC_CASE_LIMIT] 2819 = {0}; 2820 2821 enum { 2822 LSB_BITS = 8, 2823 LSB_MASK = right_n_bits(LSB_BITS) 2824 }; 2825 2826 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2827 Bytecodes::Code bc) { 2828 assert(reason >= 0 && reason < Reason_LIMIT, "oob"); 2829 assert(action >= 0 && action < Action_LIMIT, "oob"); 2830 _deoptimization_hist[Reason_none][0][0] += 1; // total 2831 _deoptimization_hist[reason][0][0] += 1; // per-reason total 2832 juint* cases = _deoptimization_hist[reason][1+action]; 2833 juint* bc_counter_addr = nullptr; 2834 juint bc_counter = 0; 2835 // Look for an unused counter, or an exact match to this BC. 2836 if (bc != Bytecodes::_illegal) { 2837 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2838 juint* counter_addr = &cases[bc_case]; 2839 juint counter = *counter_addr; 2840 if ((counter == 0 && bc_counter_addr == nullptr) 2841 || (Bytecodes::Code)(counter & LSB_MASK) == bc) { 2842 // this counter is either free or is already devoted to this BC 2843 bc_counter_addr = counter_addr; 2844 bc_counter = counter | bc; 2845 } 2846 } 2847 } 2848 if (bc_counter_addr == nullptr) { 2849 // Overflow, or no given bytecode. 2850 bc_counter_addr = &cases[BC_CASE_LIMIT-1]; 2851 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB 2852 } 2853 *bc_counter_addr = bc_counter + (1 << LSB_BITS); 2854 } 2855 2856 jint Deoptimization::total_deoptimization_count() { 2857 return _deoptimization_hist[Reason_none][0][0]; 2858 } 2859 2860 // Get the deopt count for a specific reason and a specific action. If either 2861 // one of 'reason' or 'action' is null, the method returns the sum of all 2862 // deoptimizations with the specific 'action' or 'reason' respectively. 2863 // If both arguments are null, the method returns the total deopt count. 2864 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 2865 if (reason_str == nullptr && action_str == nullptr) { 2866 return total_deoptimization_count(); 2867 } 2868 juint counter = 0; 2869 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2870 if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) { 2871 for (int action = 0; action < Action_LIMIT; action++) { 2872 if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) { 2873 juint* cases = _deoptimization_hist[reason][1+action]; 2874 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2875 counter += cases[bc_case] >> LSB_BITS; 2876 } 2877 } 2878 } 2879 } 2880 } 2881 return counter; 2882 } 2883 2884 void Deoptimization::print_statistics() { 2885 juint total = total_deoptimization_count(); 2886 juint account = total; 2887 if (total != 0) { 2888 ttyLocker ttyl; 2889 if (xtty != nullptr) xtty->head("statistics type='deoptimization'"); 2890 tty->print_cr("Deoptimization traps recorded:"); 2891 #define PRINT_STAT_LINE(name, r) \ 2892 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name); 2893 PRINT_STAT_LINE("total", total); 2894 // For each non-zero entry in the histogram, print the reason, 2895 // the action, and (if specifically known) the type of bytecode. 2896 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2897 for (int action = 0; action < Action_LIMIT; action++) { 2898 juint* cases = _deoptimization_hist[reason][1+action]; 2899 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2900 juint counter = cases[bc_case]; 2901 if (counter != 0) { 2902 char name[1*K]; 2903 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK); 2904 if (bc_case == BC_CASE_LIMIT && (int)bc == 0) 2905 bc = Bytecodes::_illegal; 2906 os::snprintf_checked(name, sizeof(name), "%s/%s/%s", 2907 trap_reason_name(reason), 2908 trap_action_name(action), 2909 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other"); 2910 juint r = counter >> LSB_BITS; 2911 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total); 2912 account -= r; 2913 } 2914 } 2915 } 2916 } 2917 if (account != 0) { 2918 PRINT_STAT_LINE("unaccounted", account); 2919 } 2920 #undef PRINT_STAT_LINE 2921 if (xtty != nullptr) xtty->tail("statistics"); 2922 } 2923 } 2924 2925 #else // COMPILER2_OR_JVMCI 2926 2927 2928 // Stubs for C1 only system. 2929 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2930 return false; 2931 } 2932 2933 const char* Deoptimization::trap_reason_name(int reason) { 2934 return "unknown"; 2935 } 2936 2937 jint Deoptimization::total_deoptimization_count() { 2938 return 0; 2939 } 2940 2941 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 2942 return 0; 2943 } 2944 2945 void Deoptimization::print_statistics() { 2946 // no output 2947 } 2948 2949 void 2950 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2951 // no update 2952 } 2953 2954 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2955 return 0; 2956 } 2957 2958 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2959 Bytecodes::Code bc) { 2960 // no update 2961 } 2962 2963 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2964 int trap_state) { 2965 jio_snprintf(buf, buflen, "#%d", trap_state); 2966 return buf; 2967 } 2968 2969 #endif // COMPILER2_OR_JVMCI