1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/debugInfoRec.hpp" 32 #include "code/nmethod.hpp" 33 #include "code/pcDesc.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "compiler/compilationPolicy.hpp" 36 #include "compiler/compilerDefinitions.inline.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/memAllocator.hpp" 39 #include "interpreter/bytecode.hpp" 40 #include "interpreter/bytecodeStream.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/oopMapCache.hpp" 43 #include "jvm.h" 44 #include "logging/log.hpp" 45 #include "logging/logLevel.hpp" 46 #include "logging/logMessage.hpp" 47 #include "logging/logStream.hpp" 48 #include "memory/allocation.inline.hpp" 49 #include "memory/oopFactory.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "memory/universe.hpp" 52 #include "oops/constantPool.hpp" 53 #include "oops/fieldStreams.inline.hpp" 54 #include "oops/method.hpp" 55 #include "oops/objArrayKlass.hpp" 56 #include "oops/objArrayOop.inline.hpp" 57 #include "oops/oop.inline.hpp" 58 #include "oops/typeArrayOop.inline.hpp" 59 #include "oops/verifyOopClosure.hpp" 60 #include "prims/jvmtiDeferredUpdates.hpp" 61 #include "prims/jvmtiExport.hpp" 62 #include "prims/jvmtiThreadState.hpp" 63 #include "prims/methodHandles.hpp" 64 #include "prims/vectorSupport.hpp" 65 #include "runtime/atomic.hpp" 66 #include "runtime/basicLock.inline.hpp" 67 #include "runtime/continuation.hpp" 68 #include "runtime/continuationEntry.inline.hpp" 69 #include "runtime/deoptimization.hpp" 70 #include "runtime/escapeBarrier.hpp" 71 #include "runtime/fieldDescriptor.hpp" 72 #include "runtime/fieldDescriptor.inline.hpp" 73 #include "runtime/frame.inline.hpp" 74 #include "runtime/handles.inline.hpp" 75 #include "runtime/interfaceSupport.inline.hpp" 76 #include "runtime/javaThread.hpp" 77 #include "runtime/jniHandles.inline.hpp" 78 #include "runtime/keepStackGCProcessed.hpp" 79 #include "runtime/lightweightSynchronizer.hpp" 80 #include "runtime/lockStack.inline.hpp" 81 #include "runtime/objectMonitor.inline.hpp" 82 #include "runtime/osThread.hpp" 83 #include "runtime/safepointVerifiers.hpp" 84 #include "runtime/sharedRuntime.hpp" 85 #include "runtime/signature.hpp" 86 #include "runtime/stackFrameStream.inline.hpp" 87 #include "runtime/stackValue.hpp" 88 #include "runtime/stackWatermarkSet.hpp" 89 #include "runtime/stubRoutines.hpp" 90 #include "runtime/synchronizer.inline.hpp" 91 #include "runtime/threadSMR.hpp" 92 #include "runtime/threadWXSetters.inline.hpp" 93 #include "runtime/vframe.hpp" 94 #include "runtime/vframeArray.hpp" 95 #include "runtime/vframe_hp.hpp" 96 #include "runtime/vmOperations.hpp" 97 #include "utilities/checkedCast.hpp" 98 #include "utilities/events.hpp" 99 #include "utilities/growableArray.hpp" 100 #include "utilities/macros.hpp" 101 #include "utilities/preserveException.hpp" 102 #include "utilities/xmlstream.hpp" 103 #if INCLUDE_JFR 104 #include "jfr/jfrEvents.hpp" 105 #include "jfr/metadata/jfrSerializer.hpp" 106 #endif 107 108 uint64_t DeoptimizationScope::_committed_deopt_gen = 0; 109 uint64_t DeoptimizationScope::_active_deopt_gen = 1; 110 bool DeoptimizationScope::_committing_in_progress = false; 111 112 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) { 113 DEBUG_ONLY(_deopted = false;) 114 115 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 116 // If there is nothing to deopt _required_gen is the same as comitted. 117 _required_gen = DeoptimizationScope::_committed_deopt_gen; 118 } 119 120 DeoptimizationScope::~DeoptimizationScope() { 121 assert(_deopted, "Deopt not executed"); 122 } 123 124 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) { 125 if (!nm->can_be_deoptimized()) { 126 return; 127 } 128 129 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 130 131 // If it's already marked but we still need it to be deopted. 132 if (nm->is_marked_for_deoptimization()) { 133 dependent(nm); 134 return; 135 } 136 137 nmethod::DeoptimizationStatus status = 138 inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate; 139 Atomic::store(&nm->_deoptimization_status, status); 140 141 // Make sure active is not committed 142 assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be"); 143 assert(nm->_deoptimization_generation == 0, "Is already marked"); 144 145 nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen; 146 _required_gen = DeoptimizationScope::_active_deopt_gen; 147 } 148 149 void DeoptimizationScope::dependent(nmethod* nm) { 150 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 151 152 // A method marked by someone else may have a _required_gen lower than what we marked with. 153 // Therefore only store it if it's higher than _required_gen. 154 if (_required_gen < nm->_deoptimization_generation) { 155 _required_gen = nm->_deoptimization_generation; 156 } 157 } 158 159 void DeoptimizationScope::deoptimize_marked() { 160 assert(!_deopted, "Already deopted"); 161 162 // We are not alive yet. 163 if (!Universe::is_fully_initialized()) { 164 DEBUG_ONLY(_deopted = true;) 165 return; 166 } 167 168 // Safepoints are a special case, handled here. 169 if (SafepointSynchronize::is_at_safepoint()) { 170 DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen; 171 DeoptimizationScope::_active_deopt_gen++; 172 Deoptimization::deoptimize_all_marked(); 173 DEBUG_ONLY(_deopted = true;) 174 return; 175 } 176 177 uint64_t comitting = 0; 178 bool wait = false; 179 while (true) { 180 { 181 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 182 183 // First we check if we or someone else already deopted the gen we want. 184 if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) { 185 DEBUG_ONLY(_deopted = true;) 186 return; 187 } 188 if (!_committing_in_progress) { 189 // The version we are about to commit. 190 comitting = DeoptimizationScope::_active_deopt_gen; 191 // Make sure new marks use a higher gen. 192 DeoptimizationScope::_active_deopt_gen++; 193 _committing_in_progress = true; 194 wait = false; 195 } else { 196 // Another thread is handshaking and committing a gen. 197 wait = true; 198 } 199 } 200 if (wait) { 201 // Wait and let the concurrent handshake be performed. 202 ThreadBlockInVM tbivm(JavaThread::current()); 203 os::naked_yield(); 204 } else { 205 // Performs the handshake. 206 Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred. 207 DEBUG_ONLY(_deopted = true;) 208 { 209 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 210 211 // Make sure that committed doesn't go backwards. 212 // Should only happen if we did a deopt during a safepoint above. 213 if (DeoptimizationScope::_committed_deopt_gen < comitting) { 214 DeoptimizationScope::_committed_deopt_gen = comitting; 215 } 216 _committing_in_progress = false; 217 218 assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be"); 219 220 return; 221 } 222 } 223 } 224 } 225 226 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame, 227 int caller_adjustment, 228 int caller_actual_parameters, 229 int number_of_frames, 230 intptr_t* frame_sizes, 231 address* frame_pcs, 232 BasicType return_type, 233 int exec_mode) { 234 _size_of_deoptimized_frame = size_of_deoptimized_frame; 235 _caller_adjustment = caller_adjustment; 236 _caller_actual_parameters = caller_actual_parameters; 237 _number_of_frames = number_of_frames; 238 _frame_sizes = frame_sizes; 239 _frame_pcs = frame_pcs; 240 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler); 241 _return_type = return_type; 242 _initial_info = 0; 243 // PD (x86 only) 244 _counter_temp = 0; 245 _unpack_kind = exec_mode; 246 _sender_sp_temp = 0; 247 248 _total_frame_sizes = size_of_frames(); 249 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode"); 250 } 251 252 Deoptimization::UnrollBlock::~UnrollBlock() { 253 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes); 254 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs); 255 FREE_C_HEAP_ARRAY(intptr_t, _register_block); 256 } 257 258 int Deoptimization::UnrollBlock::size_of_frames() const { 259 // Account first for the adjustment of the initial frame 260 intptr_t result = _caller_adjustment; 261 for (int index = 0; index < number_of_frames(); index++) { 262 result += frame_sizes()[index]; 263 } 264 return checked_cast<int>(result); 265 } 266 267 void Deoptimization::UnrollBlock::print() { 268 ResourceMark rm; 269 stringStream st; 270 st.print_cr("UnrollBlock"); 271 st.print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame); 272 st.print( " frame_sizes: "); 273 for (int index = 0; index < number_of_frames(); index++) { 274 st.print(INTX_FORMAT " ", frame_sizes()[index]); 275 } 276 st.cr(); 277 tty->print_raw(st.freeze()); 278 } 279 280 // In order to make fetch_unroll_info work properly with escape 281 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY. 282 // The actual reallocation of previously eliminated objects occurs in realloc_objects, 283 // which is called from the method fetch_unroll_info_helper below. 284 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode)) 285 // fetch_unroll_info() is called at the beginning of the deoptimization 286 // handler. Note this fact before we start generating temporary frames 287 // that can confuse an asynchronous stack walker. This counter is 288 // decremented at the end of unpack_frames(). 289 current->inc_in_deopt_handler(); 290 291 if (exec_mode == Unpack_exception) { 292 // When we get here, a callee has thrown an exception into a deoptimized 293 // frame. That throw might have deferred stack watermark checking until 294 // after unwinding. So we deal with such deferred requests here. 295 StackWatermarkSet::after_unwind(current); 296 } 297 298 return fetch_unroll_info_helper(current, exec_mode); 299 JRT_END 300 301 #if COMPILER2_OR_JVMCI 302 // print information about reallocated objects 303 static void print_objects(JavaThread* deoptee_thread, 304 GrowableArray<ScopeValue*>* objects, bool realloc_failures) { 305 ResourceMark rm; 306 stringStream st; // change to logStream with logging 307 st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread)); 308 fieldDescriptor fd; 309 310 for (int i = 0; i < objects->length(); i++) { 311 ObjectValue* sv = (ObjectValue*) objects->at(i); 312 Handle obj = sv->value(); 313 314 if (obj.is_null()) { 315 st.print_cr(" nullptr"); 316 continue; 317 } 318 319 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 320 321 st.print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()())); 322 k->print_value_on(&st); 323 st.print_cr(" allocated (" SIZE_FORMAT " bytes)", obj->size() * HeapWordSize); 324 325 if (Verbose && k != nullptr) { 326 k->oop_print_on(obj(), &st); 327 } 328 } 329 tty->print_raw(st.freeze()); 330 } 331 332 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method, 333 frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk, 334 bool& deoptimized_objects) { 335 bool realloc_failures = false; 336 assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames"); 337 338 JavaThread* deoptee_thread = chunk->at(0)->thread(); 339 assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread), 340 "a frame can only be deoptimized by the owner thread"); 341 342 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map); 343 344 // The flag return_oop() indicates call sites which return oop 345 // in compiled code. Such sites include java method calls, 346 // runtime calls (for example, used to allocate new objects/arrays 347 // on slow code path) and any other calls generated in compiled code. 348 // It is not guaranteed that we can get such information here only 349 // by analyzing bytecode in deoptimized frames. This is why this flag 350 // is set during method compilation (see Compile::Process_OopMap_Node()). 351 // If the previous frame was popped or if we are dispatching an exception, 352 // we don't have an oop result. 353 bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt); 354 Handle return_value; 355 if (save_oop_result) { 356 // Reallocation may trigger GC. If deoptimization happened on return from 357 // call which returns oop we need to save it since it is not in oopmap. 358 oop result = deoptee.saved_oop_result(&map); 359 assert(oopDesc::is_oop_or_null(result), "must be oop"); 360 return_value = Handle(thread, result); 361 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 362 if (TraceDeoptimization) { 363 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread)); 364 tty->cr(); 365 } 366 } 367 if (objects != nullptr) { 368 if (exec_mode == Deoptimization::Unpack_none) { 369 assert(thread->thread_state() == _thread_in_vm, "assumption"); 370 JavaThread* THREAD = thread; // For exception macros. 371 // Clear pending OOM if reallocation fails and return true indicating allocation failure 372 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true)); 373 deoptimized_objects = true; 374 } else { 375 JavaThread* current = thread; // For JRT_BLOCK 376 JRT_BLOCK 377 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD); 378 JRT_END 379 } 380 bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci(); 381 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal); 382 if (TraceDeoptimization) { 383 print_objects(deoptee_thread, objects, realloc_failures); 384 } 385 } 386 if (save_oop_result) { 387 // Restore result. 388 deoptee.set_saved_oop_result(&map, return_value()); 389 } 390 return realloc_failures; 391 } 392 393 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures, 394 frame& deoptee, int exec_mode, bool& deoptimized_objects) { 395 JavaThread* deoptee_thread = chunk->at(0)->thread(); 396 assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once"); 397 assert(thread == Thread::current(), "should be"); 398 HandleMark hm(thread); 399 #ifndef PRODUCT 400 bool first = true; 401 #endif // !PRODUCT 402 // Start locking from outermost/oldest frame 403 for (int i = (chunk->length() - 1); i >= 0; i--) { 404 compiledVFrame* cvf = chunk->at(i); 405 assert (cvf->scope() != nullptr,"expect only compiled java frames"); 406 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 407 if (monitors->is_nonempty()) { 408 bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee, 409 exec_mode, realloc_failures); 410 deoptimized_objects = deoptimized_objects || relocked; 411 #ifndef PRODUCT 412 if (PrintDeoptimizationDetails) { 413 ResourceMark rm; 414 stringStream st; 415 for (int j = 0; j < monitors->length(); j++) { 416 MonitorInfo* mi = monitors->at(j); 417 if (mi->eliminated()) { 418 if (first) { 419 first = false; 420 st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 421 } 422 if (exec_mode == Deoptimization::Unpack_none) { 423 ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor(); 424 if (monitor != nullptr && monitor->object() == mi->owner()) { 425 st.print_cr(" object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner())); 426 continue; 427 } 428 } 429 if (mi->owner_is_scalar_replaced()) { 430 Klass* k = java_lang_Class::as_Klass(mi->owner_klass()); 431 st.print_cr(" failed reallocation for klass %s", k->external_name()); 432 } else { 433 st.print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner())); 434 } 435 } 436 } 437 tty->print_raw(st.freeze()); 438 } 439 #endif // !PRODUCT 440 } 441 } 442 } 443 444 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI. 445 // The given vframes cover one physical frame. 446 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, 447 bool& realloc_failures) { 448 frame deoptee = chunk->at(0)->fr(); 449 JavaThread* deoptee_thread = chunk->at(0)->thread(); 450 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 451 RegisterMap map(chunk->at(0)->register_map()); 452 bool deoptimized_objects = false; 453 454 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 455 456 // Reallocate the non-escaping objects and restore their fields. 457 if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations) 458 || EliminateAutoBox || EnableVectorAggressiveReboxing)) { 459 realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects); 460 } 461 462 // MonitorInfo structures used in eliminate_locks are not GC safe. 463 NoSafepointVerifier no_safepoint; 464 465 // Now relock objects if synchronization on them was eliminated. 466 if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) { 467 restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects); 468 } 469 return deoptimized_objects; 470 } 471 #endif // COMPILER2_OR_JVMCI 472 473 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap) 474 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) { 475 // When we get here we are about to unwind the deoptee frame. In order to 476 // catch not yet safe to use frames, the following stack watermark barrier 477 // poll will make such frames safe to use. 478 StackWatermarkSet::before_unwind(current); 479 480 // Note: there is a safepoint safety issue here. No matter whether we enter 481 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once 482 // the vframeArray is created. 483 // 484 485 // Allocate our special deoptimization ResourceMark 486 DeoptResourceMark* dmark = new DeoptResourceMark(current); 487 assert(current->deopt_mark() == nullptr, "Pending deopt!"); 488 current->set_deopt_mark(dmark); 489 490 frame stub_frame = current->last_frame(); // Makes stack walkable as side effect 491 RegisterMap map(current, 492 RegisterMap::UpdateMap::include, 493 RegisterMap::ProcessFrames::include, 494 RegisterMap::WalkContinuation::skip); 495 RegisterMap dummy_map(current, 496 RegisterMap::UpdateMap::skip, 497 RegisterMap::ProcessFrames::include, 498 RegisterMap::WalkContinuation::skip); 499 // Now get the deoptee with a valid map 500 frame deoptee = stub_frame.sender(&map); 501 // Set the deoptee nmethod 502 assert(current->deopt_compiled_method() == nullptr, "Pending deopt!"); 503 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 504 current->set_deopt_compiled_method(nm); 505 506 if (VerifyStack) { 507 current->validate_frame_layout(); 508 } 509 510 // Create a growable array of VFrames where each VFrame represents an inlined 511 // Java frame. This storage is allocated with the usual system arena. 512 assert(deoptee.is_compiled_frame(), "Wrong frame type"); 513 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10); 514 vframe* vf = vframe::new_vframe(&deoptee, &map, current); 515 while (!vf->is_top()) { 516 assert(vf->is_compiled_frame(), "Wrong frame type"); 517 chunk->push(compiledVFrame::cast(vf)); 518 vf = vf->sender(); 519 } 520 assert(vf->is_compiled_frame(), "Wrong frame type"); 521 chunk->push(compiledVFrame::cast(vf)); 522 523 bool realloc_failures = false; 524 525 #if COMPILER2_OR_JVMCI 526 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 527 528 // Reallocate the non-escaping objects and restore their fields. Then 529 // relock objects if synchronization on them was eliminated. 530 if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations) 531 || EliminateAutoBox || EnableVectorAggressiveReboxing )) { 532 bool unused; 533 realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused); 534 } 535 #endif // COMPILER2_OR_JVMCI 536 537 // Ensure that no safepoint is taken after pointers have been stored 538 // in fields of rematerialized objects. If a safepoint occurs from here on 539 // out the java state residing in the vframeArray will be missed. 540 // Locks may be rebaised in a safepoint. 541 NoSafepointVerifier no_safepoint; 542 543 #if COMPILER2_OR_JVMCI 544 if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) )) 545 && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) { 546 bool unused = false; 547 restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused); 548 } 549 #endif // COMPILER2_OR_JVMCI 550 551 ScopeDesc* trap_scope = chunk->at(0)->scope(); 552 Handle exceptionObject; 553 if (trap_scope->rethrow_exception()) { 554 #ifndef PRODUCT 555 if (PrintDeoptimizationDetails) { 556 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci()); 557 } 558 #endif // !PRODUCT 559 560 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions(); 561 guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw"); 562 ScopeValue* topOfStack = expressions->top(); 563 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj(); 564 guarantee(exceptionObject() != nullptr, "exception oop can not be null"); 565 } 566 567 vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures); 568 #if COMPILER2_OR_JVMCI 569 if (realloc_failures) { 570 // This destroys all ScopedValue bindings. 571 current->clear_scopedValueBindings(); 572 pop_frames_failed_reallocs(current, array); 573 } 574 #endif 575 576 assert(current->vframe_array_head() == nullptr, "Pending deopt!"); 577 current->set_vframe_array_head(array); 578 579 // Now that the vframeArray has been created if we have any deferred local writes 580 // added by jvmti then we can free up that structure as the data is now in the 581 // vframeArray 582 583 JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id()); 584 585 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info. 586 CodeBlob* cb = stub_frame.cb(); 587 // Verify we have the right vframeArray 588 assert(cb->frame_size() >= 0, "Unexpected frame size"); 589 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size(); 590 591 // If the deopt call site is a MethodHandle invoke call site we have 592 // to adjust the unpack_sp. 593 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null(); 594 if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc())) 595 unpack_sp = deoptee.unextended_sp(); 596 597 #ifdef ASSERT 598 assert(cb->is_deoptimization_stub() || 599 cb->is_uncommon_trap_stub() || 600 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 || 601 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0, 602 "unexpected code blob: %s", cb->name()); 603 #endif 604 605 // This is a guarantee instead of an assert because if vframe doesn't match 606 // we will unpack the wrong deoptimized frame and wind up in strange places 607 // where it will be very difficult to figure out what went wrong. Better 608 // to die an early death here than some very obscure death later when the 609 // trail is cold. 610 // Note: on ia64 this guarantee can be fooled by frames with no memory stack 611 // in that it will fail to detect a problem when there is one. This needs 612 // more work in tiger timeframe. 613 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack"); 614 615 int number_of_frames = array->frames(); 616 617 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost 618 // virtual activation, which is the reverse of the elements in the vframes array. 619 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler); 620 // +1 because we always have an interpreter return address for the final slot. 621 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler); 622 int popframe_extra_args = 0; 623 // Create an interpreter return address for the stub to use as its return 624 // address so the skeletal frames are perfectly walkable 625 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0); 626 627 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost 628 // activation be put back on the expression stack of the caller for reexecution 629 if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) { 630 popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words()); 631 } 632 633 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized 634 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather 635 // than simply use array->sender.pc(). This requires us to walk the current set of frames 636 // 637 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame 638 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller 639 640 // It's possible that the number of parameters at the call site is 641 // different than number of arguments in the callee when method 642 // handles are used. If the caller is interpreted get the real 643 // value so that the proper amount of space can be added to it's 644 // frame. 645 bool caller_was_method_handle = false; 646 if (deopt_sender.is_interpreted_frame()) { 647 methodHandle method(current, deopt_sender.interpreter_frame_method()); 648 Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci()); 649 if (cur.is_invokedynamic() || cur.is_invokehandle()) { 650 // Method handle invokes may involve fairly arbitrary chains of 651 // calls so it's impossible to know how much actual space the 652 // caller has for locals. 653 caller_was_method_handle = true; 654 } 655 } 656 657 // 658 // frame_sizes/frame_pcs[0] oldest frame (int or c2i) 659 // frame_sizes/frame_pcs[1] next oldest frame (int) 660 // frame_sizes/frame_pcs[n] youngest frame (int) 661 // 662 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame 663 // owns the space for the return address to it's caller). Confusing ain't it. 664 // 665 // The vframe array can address vframes with indices running from 666 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame. 667 // When we create the skeletal frames we need the oldest frame to be in the zero slot 668 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk. 669 // so things look a little strange in this loop. 670 // 671 int callee_parameters = 0; 672 int callee_locals = 0; 673 for (int index = 0; index < array->frames(); index++ ) { 674 // frame[number_of_frames - 1 ] = on_stack_size(youngest) 675 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest)) 676 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest))) 677 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters, 678 callee_locals, 679 index == 0, 680 popframe_extra_args); 681 // This pc doesn't have to be perfect just good enough to identify the frame 682 // as interpreted so the skeleton frame will be walkable 683 // The correct pc will be set when the skeleton frame is completely filled out 684 // The final pc we store in the loop is wrong and will be overwritten below 685 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset; 686 687 callee_parameters = array->element(index)->method()->size_of_parameters(); 688 callee_locals = array->element(index)->method()->max_locals(); 689 popframe_extra_args = 0; 690 } 691 692 // Compute whether the root vframe returns a float or double value. 693 BasicType return_type; 694 { 695 methodHandle method(current, array->element(0)->method()); 696 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci()); 697 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL; 698 } 699 700 // Compute information for handling adapters and adjusting the frame size of the caller. 701 int caller_adjustment = 0; 702 703 // Compute the amount the oldest interpreter frame will have to adjust 704 // its caller's stack by. If the caller is a compiled frame then 705 // we pretend that the callee has no parameters so that the 706 // extension counts for the full amount of locals and not just 707 // locals-parms. This is because without a c2i adapter the parm 708 // area as created by the compiled frame will not be usable by 709 // the interpreter. (Depending on the calling convention there 710 // may not even be enough space). 711 712 // QQQ I'd rather see this pushed down into last_frame_adjust 713 // and have it take the sender (aka caller). 714 715 if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) { 716 caller_adjustment = last_frame_adjust(0, callee_locals); 717 } else if (callee_locals > callee_parameters) { 718 // The caller frame may need extending to accommodate 719 // non-parameter locals of the first unpacked interpreted frame. 720 // Compute that adjustment. 721 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals); 722 } 723 724 // If the sender is deoptimized the we must retrieve the address of the handler 725 // since the frame will "magically" show the original pc before the deopt 726 // and we'd undo the deopt. 727 728 frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc(); 729 if (Continuation::is_continuation_enterSpecial(deopt_sender)) { 730 ContinuationEntry::from_frame(deopt_sender)->set_argsize(0); 731 } 732 733 assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc"); 734 735 #if INCLUDE_JVMCI 736 if (exceptionObject() != nullptr) { 737 current->set_exception_oop(exceptionObject()); 738 exec_mode = Unpack_exception; 739 } 740 #endif 741 742 if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) { 743 assert(current->has_pending_exception(), "should have thrown OOME"); 744 current->set_exception_oop(current->pending_exception()); 745 current->clear_pending_exception(); 746 exec_mode = Unpack_exception; 747 } 748 749 #if INCLUDE_JVMCI 750 if (current->frames_to_pop_failed_realloc() > 0) { 751 current->set_pending_monitorenter(false); 752 } 753 #endif 754 755 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord, 756 caller_adjustment * BytesPerWord, 757 caller_was_method_handle ? 0 : callee_parameters, 758 number_of_frames, 759 frame_sizes, 760 frame_pcs, 761 return_type, 762 exec_mode); 763 // On some platforms, we need a way to pass some platform dependent 764 // information to the unpacking code so the skeletal frames come out 765 // correct (initial fp value, unextended sp, ...) 766 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info()); 767 768 if (array->frames() > 1) { 769 if (VerifyStack && TraceDeoptimization) { 770 tty->print_cr("Deoptimizing method containing inlining"); 771 } 772 } 773 774 array->set_unroll_block(info); 775 return info; 776 } 777 778 // Called to cleanup deoptimization data structures in normal case 779 // after unpacking to stack and when stack overflow error occurs 780 void Deoptimization::cleanup_deopt_info(JavaThread *thread, 781 vframeArray *array) { 782 783 // Get array if coming from exception 784 if (array == nullptr) { 785 array = thread->vframe_array_head(); 786 } 787 thread->set_vframe_array_head(nullptr); 788 789 // Free the previous UnrollBlock 790 vframeArray* old_array = thread->vframe_array_last(); 791 thread->set_vframe_array_last(array); 792 793 if (old_array != nullptr) { 794 UnrollBlock* old_info = old_array->unroll_block(); 795 old_array->set_unroll_block(nullptr); 796 delete old_info; 797 delete old_array; 798 } 799 800 // Deallocate any resource creating in this routine and any ResourceObjs allocated 801 // inside the vframeArray (StackValueCollections) 802 803 delete thread->deopt_mark(); 804 thread->set_deopt_mark(nullptr); 805 thread->set_deopt_compiled_method(nullptr); 806 807 808 if (JvmtiExport::can_pop_frame()) { 809 // Regardless of whether we entered this routine with the pending 810 // popframe condition bit set, we should always clear it now 811 thread->clear_popframe_condition(); 812 } 813 814 // unpack_frames() is called at the end of the deoptimization handler 815 // and (in C2) at the end of the uncommon trap handler. Note this fact 816 // so that an asynchronous stack walker can work again. This counter is 817 // incremented at the beginning of fetch_unroll_info() and (in C2) at 818 // the beginning of uncommon_trap(). 819 thread->dec_in_deopt_handler(); 820 } 821 822 // Moved from cpu directories because none of the cpus has callee save values. 823 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp. 824 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { 825 826 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in 827 // the days we had adapter frames. When we deoptimize a situation where a 828 // compiled caller calls a compiled caller will have registers it expects 829 // to survive the call to the callee. If we deoptimize the callee the only 830 // way we can restore these registers is to have the oldest interpreter 831 // frame that we create restore these values. That is what this routine 832 // will accomplish. 833 834 // At the moment we have modified c2 to not have any callee save registers 835 // so this problem does not exist and this routine is just a place holder. 836 837 assert(f->is_interpreted_frame(), "must be interpreted"); 838 } 839 840 #ifndef PRODUCT 841 static bool falls_through(Bytecodes::Code bc) { 842 switch (bc) { 843 // List may be incomplete. Here we really only care about bytecodes where compiled code 844 // can deoptimize. 845 case Bytecodes::_goto: 846 case Bytecodes::_goto_w: 847 case Bytecodes::_athrow: 848 return false; 849 default: 850 return true; 851 } 852 } 853 #endif 854 855 // Return BasicType of value being returned 856 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)) 857 assert(thread == JavaThread::current(), "pre-condition"); 858 859 // We are already active in the special DeoptResourceMark any ResourceObj's we 860 // allocate will be freed at the end of the routine. 861 862 // JRT_LEAF methods don't normally allocate handles and there is a 863 // NoHandleMark to enforce that. It is actually safe to use Handles 864 // in a JRT_LEAF method, and sometimes desirable, but to do so we 865 // must use ResetNoHandleMark to bypass the NoHandleMark, and 866 // then use a HandleMark to ensure any Handles we do create are 867 // cleaned up in this scope. 868 ResetNoHandleMark rnhm; 869 HandleMark hm(thread); 870 871 frame stub_frame = thread->last_frame(); 872 873 Continuation::notify_deopt(thread, stub_frame.sp()); 874 875 // Since the frame to unpack is the top frame of this thread, the vframe_array_head 876 // must point to the vframeArray for the unpack frame. 877 vframeArray* array = thread->vframe_array_head(); 878 UnrollBlock* info = array->unroll_block(); 879 880 // We set the last_Java frame. But the stack isn't really parsable here. So we 881 // clear it to make sure JFR understands not to try and walk stacks from events 882 // in here. 883 intptr_t* sp = thread->frame_anchor()->last_Java_sp(); 884 thread->frame_anchor()->set_last_Java_sp(nullptr); 885 886 // Unpack the interpreter frames and any adapter frame (c2 only) we might create. 887 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters()); 888 889 thread->frame_anchor()->set_last_Java_sp(sp); 890 891 BasicType bt = info->return_type(); 892 893 // If we have an exception pending, claim that the return type is an oop 894 // so the deopt_blob does not overwrite the exception_oop. 895 896 if (exec_mode == Unpack_exception) 897 bt = T_OBJECT; 898 899 // Cleanup thread deopt data 900 cleanup_deopt_info(thread, array); 901 902 #ifndef PRODUCT 903 if (VerifyStack) { 904 ResourceMark res_mark; 905 // Clear pending exception to not break verification code (restored afterwards) 906 PreserveExceptionMark pm(thread); 907 908 thread->validate_frame_layout(); 909 910 // Verify that the just-unpacked frames match the interpreter's 911 // notions of expression stack and locals 912 vframeArray* cur_array = thread->vframe_array_last(); 913 RegisterMap rm(thread, 914 RegisterMap::UpdateMap::skip, 915 RegisterMap::ProcessFrames::include, 916 RegisterMap::WalkContinuation::skip); 917 rm.set_include_argument_oops(false); 918 bool is_top_frame = true; 919 int callee_size_of_parameters = 0; 920 int callee_max_locals = 0; 921 for (int i = 0; i < cur_array->frames(); i++) { 922 vframeArrayElement* el = cur_array->element(i); 923 frame* iframe = el->iframe(); 924 guarantee(iframe->is_interpreted_frame(), "Wrong frame type"); 925 926 // Get the oop map for this bci 927 InterpreterOopMap mask; 928 int cur_invoke_parameter_size = 0; 929 bool try_next_mask = false; 930 int next_mask_expression_stack_size = -1; 931 int top_frame_expression_stack_adjustment = 0; 932 methodHandle mh(thread, iframe->interpreter_frame_method()); 933 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask); 934 BytecodeStream str(mh, iframe->interpreter_frame_bci()); 935 int max_bci = mh->code_size(); 936 // Get to the next bytecode if possible 937 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 938 // Check to see if we can grab the number of outgoing arguments 939 // at an uncommon trap for an invoke (where the compiler 940 // generates debug info before the invoke has executed) 941 Bytecodes::Code cur_code = str.next(); 942 Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere; 943 if (Bytecodes::is_invoke(cur_code)) { 944 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci()); 945 cur_invoke_parameter_size = invoke.size_of_parameters(); 946 if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) { 947 callee_size_of_parameters++; 948 } 949 } 950 if (str.bci() < max_bci) { 951 next_code = str.next(); 952 if (next_code >= 0) { 953 // The interpreter oop map generator reports results before 954 // the current bytecode has executed except in the case of 955 // calls. It seems to be hard to tell whether the compiler 956 // has emitted debug information matching the "state before" 957 // a given bytecode or the state after, so we try both 958 if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) { 959 // Get expression stack size for the next bytecode 960 InterpreterOopMap next_mask; 961 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask); 962 next_mask_expression_stack_size = next_mask.expression_stack_size(); 963 if (Bytecodes::is_invoke(next_code)) { 964 Bytecode_invoke invoke(mh, str.bci()); 965 next_mask_expression_stack_size += invoke.size_of_parameters(); 966 } 967 // Need to subtract off the size of the result type of 968 // the bytecode because this is not described in the 969 // debug info but returned to the interpreter in the TOS 970 // caching register 971 BasicType bytecode_result_type = Bytecodes::result_type(cur_code); 972 if (bytecode_result_type != T_ILLEGAL) { 973 top_frame_expression_stack_adjustment = type2size[bytecode_result_type]; 974 } 975 assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive"); 976 try_next_mask = true; 977 } 978 } 979 } 980 981 // Verify stack depth and oops in frame 982 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc) 983 if (!( 984 /* SPARC */ 985 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) || 986 /* x86 */ 987 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) || 988 (try_next_mask && 989 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size - 990 top_frame_expression_stack_adjustment))) || 991 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) || 992 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) && 993 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size)) 994 )) { 995 { 996 // Print out some information that will help us debug the problem 997 tty->print_cr("Wrong number of expression stack elements during deoptimization"); 998 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1); 999 tty->print_cr(" Current code %s", Bytecodes::name(cur_code)); 1000 if (try_next_mask) { 1001 tty->print_cr(" Next code %s", Bytecodes::name(next_code)); 1002 } 1003 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements", 1004 iframe->interpreter_frame_expression_stack_size()); 1005 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size()); 1006 tty->print_cr(" try_next_mask = %d", try_next_mask); 1007 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size); 1008 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters); 1009 tty->print_cr(" callee_max_locals = %d", callee_max_locals); 1010 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment); 1011 tty->print_cr(" exec_mode = %d", exec_mode); 1012 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size); 1013 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id()); 1014 tty->print_cr(" Interpreted frames:"); 1015 for (int k = 0; k < cur_array->frames(); k++) { 1016 vframeArrayElement* el = cur_array->element(k); 1017 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci()); 1018 } 1019 cur_array->print_on_2(tty); 1020 } 1021 guarantee(false, "wrong number of expression stack elements during deopt"); 1022 } 1023 VerifyOopClosure verify; 1024 iframe->oops_interpreted_do(&verify, &rm, false); 1025 callee_size_of_parameters = mh->size_of_parameters(); 1026 callee_max_locals = mh->max_locals(); 1027 is_top_frame = false; 1028 } 1029 } 1030 #endif // !PRODUCT 1031 1032 return bt; 1033 JRT_END 1034 1035 class DeoptimizeMarkedClosure : public HandshakeClosure { 1036 public: 1037 DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {} 1038 void do_thread(Thread* thread) { 1039 JavaThread* jt = JavaThread::cast(thread); 1040 jt->deoptimize_marked_methods(); 1041 } 1042 }; 1043 1044 void Deoptimization::deoptimize_all_marked() { 1045 ResourceMark rm; 1046 1047 // Make the dependent methods not entrant 1048 CodeCache::make_marked_nmethods_deoptimized(); 1049 1050 DeoptimizeMarkedClosure deopt; 1051 if (SafepointSynchronize::is_at_safepoint()) { 1052 Threads::java_threads_do(&deopt); 1053 } else { 1054 Handshake::execute(&deopt); 1055 } 1056 } 1057 1058 Deoptimization::DeoptAction Deoptimization::_unloaded_action 1059 = Deoptimization::Action_reinterpret; 1060 1061 #if INCLUDE_JVMCI 1062 template<typename CacheType> 1063 class BoxCacheBase : public CHeapObj<mtCompiler> { 1064 protected: 1065 static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) { 1066 ResourceMark rm(thread); 1067 char* klass_name_str = klass_name->as_C_string(); 1068 InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle(), Handle()); 1069 guarantee(ik != nullptr, "%s must be loaded", klass_name_str); 1070 if (!ik->is_in_error_state()) { 1071 guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str); 1072 CacheType::compute_offsets(ik); 1073 } 1074 return ik; 1075 } 1076 }; 1077 1078 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache : public BoxCacheBase<CacheType> { 1079 PrimitiveType _low; 1080 PrimitiveType _high; 1081 jobject _cache; 1082 protected: 1083 static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton; 1084 BoxCache(Thread* thread) { 1085 InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol()); 1086 if (ik->is_in_error_state()) { 1087 _low = 1; 1088 _high = 0; 1089 _cache = nullptr; 1090 } else { 1091 objArrayOop cache = CacheType::cache(ik); 1092 assert(cache->length() > 0, "Empty cache"); 1093 _low = BoxType::value(cache->obj_at(0)); 1094 _high = checked_cast<PrimitiveType>(_low + cache->length() - 1); 1095 _cache = JNIHandles::make_global(Handle(thread, cache)); 1096 } 1097 } 1098 ~BoxCache() { 1099 JNIHandles::destroy_global(_cache); 1100 } 1101 public: 1102 static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) { 1103 if (_singleton == nullptr) { 1104 BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread); 1105 if (!Atomic::replace_if_null(&_singleton, s)) { 1106 delete s; 1107 } 1108 } 1109 return _singleton; 1110 } 1111 oop lookup(PrimitiveType value) { 1112 if (_low <= value && value <= _high) { 1113 int offset = checked_cast<int>(value - _low); 1114 return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset); 1115 } 1116 return nullptr; 1117 } 1118 oop lookup_raw(intptr_t raw_value, bool& cache_init_error) { 1119 if (_cache == nullptr) { 1120 cache_init_error = true; 1121 return nullptr; 1122 } 1123 // Have to cast to avoid little/big-endian problems. 1124 if (sizeof(PrimitiveType) > sizeof(jint)) { 1125 jlong value = (jlong)raw_value; 1126 return lookup(value); 1127 } 1128 PrimitiveType value = (PrimitiveType)*((jint*)&raw_value); 1129 return lookup(value); 1130 } 1131 }; 1132 1133 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache; 1134 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache; 1135 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache; 1136 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache; 1137 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache; 1138 1139 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr; 1140 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr; 1141 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr; 1142 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr; 1143 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr; 1144 1145 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> { 1146 jobject _true_cache; 1147 jobject _false_cache; 1148 protected: 1149 static BooleanBoxCache *_singleton; 1150 BooleanBoxCache(Thread *thread) { 1151 InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol()); 1152 if (ik->is_in_error_state()) { 1153 _true_cache = nullptr; 1154 _false_cache = nullptr; 1155 } else { 1156 _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik))); 1157 _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik))); 1158 } 1159 } 1160 ~BooleanBoxCache() { 1161 JNIHandles::destroy_global(_true_cache); 1162 JNIHandles::destroy_global(_false_cache); 1163 } 1164 public: 1165 static BooleanBoxCache* singleton(Thread* thread) { 1166 if (_singleton == nullptr) { 1167 BooleanBoxCache* s = new BooleanBoxCache(thread); 1168 if (!Atomic::replace_if_null(&_singleton, s)) { 1169 delete s; 1170 } 1171 } 1172 return _singleton; 1173 } 1174 oop lookup_raw(intptr_t raw_value, bool& cache_in_error) { 1175 if (_true_cache == nullptr) { 1176 cache_in_error = true; 1177 return nullptr; 1178 } 1179 // Have to cast to avoid little/big-endian problems. 1180 jboolean value = (jboolean)*((jint*)&raw_value); 1181 return lookup(value); 1182 } 1183 oop lookup(jboolean value) { 1184 if (value != 0) { 1185 return JNIHandles::resolve_non_null(_true_cache); 1186 } 1187 return JNIHandles::resolve_non_null(_false_cache); 1188 } 1189 }; 1190 1191 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr; 1192 1193 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) { 1194 Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()()); 1195 BasicType box_type = vmClasses::box_klass_type(k); 1196 if (box_type != T_OBJECT) { 1197 StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0)); 1198 switch(box_type) { 1199 case T_INT: return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1200 case T_CHAR: return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1201 case T_SHORT: return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1202 case T_BYTE: return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1203 case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1204 case T_LONG: return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1205 default:; 1206 } 1207 } 1208 return nullptr; 1209 } 1210 #endif // INCLUDE_JVMCI 1211 1212 #if COMPILER2_OR_JVMCI 1213 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) { 1214 Handle pending_exception(THREAD, thread->pending_exception()); 1215 const char* exception_file = thread->exception_file(); 1216 int exception_line = thread->exception_line(); 1217 thread->clear_pending_exception(); 1218 1219 bool failures = false; 1220 1221 for (int i = 0; i < objects->length(); i++) { 1222 assert(objects->at(i)->is_object(), "invalid debug information"); 1223 ObjectValue* sv = (ObjectValue*) objects->at(i); 1224 1225 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1226 oop obj = nullptr; 1227 1228 bool cache_init_error = false; 1229 if (k->is_instance_klass()) { 1230 #if INCLUDE_JVMCI 1231 nmethod* nm = fr->cb()->as_nmethod_or_null(); 1232 if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) { 1233 AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv; 1234 obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD); 1235 if (obj != nullptr) { 1236 // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it. 1237 abv->set_cached(true); 1238 } else if (cache_init_error) { 1239 // Results in an OOME which is valid (as opposed to a class initialization error) 1240 // and is fine for the rare case a cache initialization failing. 1241 failures = true; 1242 } 1243 } 1244 #endif // INCLUDE_JVMCI 1245 1246 InstanceKlass* ik = InstanceKlass::cast(k); 1247 if (obj == nullptr && !cache_init_error) { 1248 InternalOOMEMark iom(THREAD); 1249 if (EnableVectorSupport && VectorSupport::is_vector(ik)) { 1250 obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD); 1251 } else { 1252 obj = ik->allocate_instance(THREAD); 1253 } 1254 } 1255 } else if (k->is_typeArray_klass()) { 1256 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1257 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); 1258 int len = sv->field_size() / type2size[ak->element_type()]; 1259 InternalOOMEMark iom(THREAD); 1260 obj = ak->allocate(len, THREAD); 1261 } else if (k->is_objArray_klass()) { 1262 ObjArrayKlass* ak = ObjArrayKlass::cast(k); 1263 InternalOOMEMark iom(THREAD); 1264 obj = ak->allocate(sv->field_size(), THREAD); 1265 } 1266 1267 if (obj == nullptr) { 1268 failures = true; 1269 } 1270 1271 assert(sv->value().is_null(), "redundant reallocation"); 1272 assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception"); 1273 CLEAR_PENDING_EXCEPTION; 1274 sv->set_value(obj); 1275 } 1276 1277 if (failures) { 1278 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures); 1279 } else if (pending_exception.not_null()) { 1280 thread->set_pending_exception(pending_exception(), exception_file, exception_line); 1281 } 1282 1283 return failures; 1284 } 1285 1286 #if INCLUDE_JVMCI 1287 /** 1288 * For primitive types whose kind gets "erased" at runtime (shorts become stack ints), 1289 * we need to somehow be able to recover the actual kind to be able to write the correct 1290 * amount of bytes. 1291 * For that purpose, this method assumes that, for an entry spanning n bytes at index i, 1292 * the entries at index n + 1 to n + i are 'markers'. 1293 * For example, if we were writing a short at index 4 of a byte array of size 8, the 1294 * expected form of the array would be: 1295 * 1296 * {b0, b1, b2, b3, INT, marker, b6, b7} 1297 * 1298 * Thus, in order to get back the size of the entry, we simply need to count the number 1299 * of marked entries 1300 * 1301 * @param virtualArray the virtualized byte array 1302 * @param i index of the virtual entry we are recovering 1303 * @return The number of bytes the entry spans 1304 */ 1305 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) { 1306 int index = i; 1307 while (++index < virtualArray->field_size() && 1308 virtualArray->field_at(index)->is_marker()) {} 1309 return index - i; 1310 } 1311 1312 /** 1313 * If there was a guarantee for byte array to always start aligned to a long, we could 1314 * do a simple check on the parity of the index. Unfortunately, that is not always the 1315 * case. Thus, we check alignment of the actual address we are writing to. 1316 * In the unlikely case index 0 is 5-aligned for example, it would then be possible to 1317 * write a long to index 3. 1318 */ 1319 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) { 1320 jbyte* res = obj->byte_at_addr(index); 1321 assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write"); 1322 return res; 1323 } 1324 1325 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) { 1326 switch (byte_count) { 1327 case 1: 1328 obj->byte_at_put(index, (jbyte) value->get_jint()); 1329 break; 1330 case 2: 1331 *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint(); 1332 break; 1333 case 4: 1334 *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint(); 1335 break; 1336 case 8: 1337 *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr(); 1338 break; 1339 default: 1340 ShouldNotReachHere(); 1341 } 1342 } 1343 #endif // INCLUDE_JVMCI 1344 1345 1346 // restore elements of an eliminated type array 1347 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) { 1348 int index = 0; 1349 1350 for (int i = 0; i < sv->field_size(); i++) { 1351 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1352 switch(type) { 1353 case T_LONG: case T_DOUBLE: { 1354 assert(value->type() == T_INT, "Agreement."); 1355 StackValue* low = 1356 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1357 #ifdef _LP64 1358 jlong res = (jlong)low->get_intptr(); 1359 #else 1360 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1361 #endif 1362 obj->long_at_put(index, res); 1363 break; 1364 } 1365 1366 case T_INT: case T_FLOAT: { // 4 bytes. 1367 assert(value->type() == T_INT, "Agreement."); 1368 bool big_value = false; 1369 if (i + 1 < sv->field_size() && type == T_INT) { 1370 if (sv->field_at(i)->is_location()) { 1371 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type(); 1372 if (type == Location::dbl || type == Location::lng) { 1373 big_value = true; 1374 } 1375 } else if (sv->field_at(i)->is_constant_int()) { 1376 ScopeValue* next_scope_field = sv->field_at(i + 1); 1377 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1378 big_value = true; 1379 } 1380 } 1381 } 1382 1383 if (big_value) { 1384 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1385 #ifdef _LP64 1386 jlong res = (jlong)low->get_intptr(); 1387 #else 1388 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1389 #endif 1390 obj->int_at_put(index, *(jint*)&res); 1391 obj->int_at_put(++index, *((jint*)&res + 1)); 1392 } else { 1393 obj->int_at_put(index, value->get_jint()); 1394 } 1395 break; 1396 } 1397 1398 case T_SHORT: 1399 assert(value->type() == T_INT, "Agreement."); 1400 obj->short_at_put(index, (jshort)value->get_jint()); 1401 break; 1402 1403 case T_CHAR: 1404 assert(value->type() == T_INT, "Agreement."); 1405 obj->char_at_put(index, (jchar)value->get_jint()); 1406 break; 1407 1408 case T_BYTE: { 1409 assert(value->type() == T_INT, "Agreement."); 1410 #if INCLUDE_JVMCI 1411 // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'. 1412 int byte_count = count_number_of_bytes_for_entry(sv, i); 1413 byte_array_put(obj, value, index, byte_count); 1414 // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip. 1415 i += byte_count - 1; // Balance the loop counter. 1416 index += byte_count; 1417 // index has been updated so continue at top of loop 1418 continue; 1419 #else 1420 obj->byte_at_put(index, (jbyte)value->get_jint()); 1421 break; 1422 #endif // INCLUDE_JVMCI 1423 } 1424 1425 case T_BOOLEAN: { 1426 assert(value->type() == T_INT, "Agreement."); 1427 obj->bool_at_put(index, (jboolean)value->get_jint()); 1428 break; 1429 } 1430 1431 default: 1432 ShouldNotReachHere(); 1433 } 1434 index++; 1435 } 1436 } 1437 1438 // restore fields of an eliminated object array 1439 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) { 1440 for (int i = 0; i < sv->field_size(); i++) { 1441 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1442 assert(value->type() == T_OBJECT, "object element expected"); 1443 obj->obj_at_put(i, value->get_obj()()); 1444 } 1445 } 1446 1447 class ReassignedField { 1448 public: 1449 int _offset; 1450 BasicType _type; 1451 public: 1452 ReassignedField() { 1453 _offset = 0; 1454 _type = T_ILLEGAL; 1455 } 1456 }; 1457 1458 static int compare(ReassignedField* left, ReassignedField* right) { 1459 return left->_offset - right->_offset; 1460 } 1461 1462 // Restore fields of an eliminated instance object using the same field order 1463 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true) 1464 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) { 1465 GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>(); 1466 InstanceKlass* ik = klass; 1467 while (ik != nullptr) { 1468 for (AllFieldStream fs(ik); !fs.done(); fs.next()) { 1469 if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) { 1470 ReassignedField field; 1471 field._offset = fs.offset(); 1472 field._type = Signature::basic_type(fs.signature()); 1473 fields->append(field); 1474 } 1475 } 1476 ik = ik->superklass(); 1477 } 1478 fields->sort(compare); 1479 for (int i = 0; i < fields->length(); i++) { 1480 ScopeValue* scope_field = sv->field_at(svIndex); 1481 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1482 int offset = fields->at(i)._offset; 1483 BasicType type = fields->at(i)._type; 1484 switch (type) { 1485 case T_OBJECT: case T_ARRAY: 1486 assert(value->type() == T_OBJECT, "Agreement."); 1487 obj->obj_field_put(offset, value->get_obj()()); 1488 break; 1489 1490 case T_INT: case T_FLOAT: { // 4 bytes. 1491 assert(value->type() == T_INT, "Agreement."); 1492 bool big_value = false; 1493 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) { 1494 if (scope_field->is_location()) { 1495 Location::Type type = ((LocationValue*) scope_field)->location().type(); 1496 if (type == Location::dbl || type == Location::lng) { 1497 big_value = true; 1498 } 1499 } 1500 if (scope_field->is_constant_int()) { 1501 ScopeValue* next_scope_field = sv->field_at(svIndex + 1); 1502 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1503 big_value = true; 1504 } 1505 } 1506 } 1507 1508 if (big_value) { 1509 i++; 1510 assert(i < fields->length(), "second T_INT field needed"); 1511 assert(fields->at(i)._type == T_INT, "T_INT field needed"); 1512 } else { 1513 obj->int_field_put(offset, value->get_jint()); 1514 break; 1515 } 1516 } 1517 /* no break */ 1518 1519 case T_LONG: case T_DOUBLE: { 1520 assert(value->type() == T_INT, "Agreement."); 1521 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex)); 1522 #ifdef _LP64 1523 jlong res = (jlong)low->get_intptr(); 1524 #else 1525 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1526 #endif 1527 obj->long_field_put(offset, res); 1528 break; 1529 } 1530 1531 case T_SHORT: 1532 assert(value->type() == T_INT, "Agreement."); 1533 obj->short_field_put(offset, (jshort)value->get_jint()); 1534 break; 1535 1536 case T_CHAR: 1537 assert(value->type() == T_INT, "Agreement."); 1538 obj->char_field_put(offset, (jchar)value->get_jint()); 1539 break; 1540 1541 case T_BYTE: 1542 assert(value->type() == T_INT, "Agreement."); 1543 obj->byte_field_put(offset, (jbyte)value->get_jint()); 1544 break; 1545 1546 case T_BOOLEAN: 1547 assert(value->type() == T_INT, "Agreement."); 1548 obj->bool_field_put(offset, (jboolean)value->get_jint()); 1549 break; 1550 1551 default: 1552 ShouldNotReachHere(); 1553 } 1554 svIndex++; 1555 } 1556 return svIndex; 1557 } 1558 1559 // restore fields of all eliminated objects and arrays 1560 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) { 1561 for (int i = 0; i < objects->length(); i++) { 1562 assert(objects->at(i)->is_object(), "invalid debug information"); 1563 ObjectValue* sv = (ObjectValue*) objects->at(i); 1564 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1565 Handle obj = sv->value(); 1566 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 1567 #ifndef PRODUCT 1568 if (PrintDeoptimizationDetails) { 1569 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string()); 1570 } 1571 #endif // !PRODUCT 1572 1573 if (obj.is_null()) { 1574 continue; 1575 } 1576 1577 #if INCLUDE_JVMCI 1578 // Don't reassign fields of boxes that came from a cache. Caches may be in CDS. 1579 if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) { 1580 continue; 1581 } 1582 #endif // INCLUDE_JVMCI 1583 if (EnableVectorSupport && VectorSupport::is_vector(k)) { 1584 assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string()); 1585 ScopeValue* payload = sv->field_at(0); 1586 if (payload->is_location() && 1587 payload->as_LocationValue()->location().type() == Location::vector) { 1588 #ifndef PRODUCT 1589 if (PrintDeoptimizationDetails) { 1590 tty->print_cr("skip field reassignment for this vector - it should be assigned already"); 1591 if (Verbose) { 1592 Handle obj = sv->value(); 1593 k->oop_print_on(obj(), tty); 1594 } 1595 } 1596 #endif // !PRODUCT 1597 continue; // Such vector's value was already restored in VectorSupport::allocate_vector(). 1598 } 1599 // Else fall-through to do assignment for scalar-replaced boxed vector representation 1600 // which could be restored after vector object allocation. 1601 } 1602 if (k->is_instance_klass()) { 1603 InstanceKlass* ik = InstanceKlass::cast(k); 1604 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal); 1605 } else if (k->is_typeArray_klass()) { 1606 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1607 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type()); 1608 } else if (k->is_objArray_klass()) { 1609 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj()); 1610 } 1611 } 1612 // These objects may escape when we return to Interpreter after deoptimization. 1613 // We need barrier so that stores that initialize these objects can't be reordered 1614 // with subsequent stores that make these objects accessible by other threads. 1615 OrderAccess::storestore(); 1616 } 1617 1618 1619 // relock objects for which synchronization was eliminated 1620 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors, 1621 JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) { 1622 bool relocked_objects = false; 1623 for (int i = 0; i < monitors->length(); i++) { 1624 MonitorInfo* mon_info = monitors->at(i); 1625 if (mon_info->eliminated()) { 1626 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed"); 1627 relocked_objects = true; 1628 if (!mon_info->owner_is_scalar_replaced()) { 1629 Handle obj(thread, mon_info->owner()); 1630 markWord mark = obj->mark(); 1631 if (exec_mode == Unpack_none) { 1632 if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) { 1633 // With exec_mode == Unpack_none obj may be thread local and locked in 1634 // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header. 1635 markWord dmw = mark.displaced_mark_helper(); 1636 mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr)); 1637 obj->set_mark(dmw); 1638 } 1639 if (mark.has_monitor()) { 1640 // defer relocking if the deoptee thread is currently waiting for obj 1641 ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor(); 1642 if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) { 1643 assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization"); 1644 if (LockingMode == LM_LEGACY) { 1645 mon_info->lock()->set_displaced_header(markWord::unused_mark()); 1646 } else if (UseObjectMonitorTable) { 1647 mon_info->lock()->clear_object_monitor_cache(); 1648 } 1649 #ifdef ASSERT 1650 else { 1651 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be"); 1652 mon_info->lock()->set_bad_metadata_deopt(); 1653 } 1654 #endif 1655 JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread); 1656 continue; 1657 } 1658 } 1659 } 1660 BasicLock* lock = mon_info->lock(); 1661 if (LockingMode == LM_LIGHTWEIGHT) { 1662 // We have lost information about the correct state of the lock stack. 1663 // Entering may create an invalid lock stack. Inflate the lock if it 1664 // was fast_locked to restore the valid lock stack. 1665 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1666 if (deoptee_thread->lock_stack().contains(obj())) { 1667 LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal, 1668 deoptee_thread, thread); 1669 } 1670 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1671 assert(obj->mark().has_monitor(), "must be"); 1672 assert(!deoptee_thread->lock_stack().contains(obj()), "must be"); 1673 assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be"); 1674 } else { 1675 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1676 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1677 } 1678 } 1679 } 1680 } 1681 return relocked_objects; 1682 } 1683 #endif // COMPILER2_OR_JVMCI 1684 1685 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) { 1686 Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp())); 1687 1688 // Register map for next frame (used for stack crawl). We capture 1689 // the state of the deopt'ing frame's caller. Thus if we need to 1690 // stuff a C2I adapter we can properly fill in the callee-save 1691 // register locations. 1692 frame caller = fr.sender(reg_map); 1693 int frame_size = pointer_delta_as_int(caller.sp(), fr.sp()); 1694 1695 frame sender = caller; 1696 1697 // Since the Java thread being deoptimized will eventually adjust it's own stack, 1698 // the vframeArray containing the unpacking information is allocated in the C heap. 1699 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). 1700 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures); 1701 1702 // Compare the vframeArray to the collected vframes 1703 assert(array->structural_compare(thread, chunk), "just checking"); 1704 1705 if (TraceDeoptimization) { 1706 ResourceMark rm; 1707 stringStream st; 1708 st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array)); 1709 st.print(" "); 1710 fr.print_on(&st); 1711 st.print_cr(" Virtual frames (innermost/newest first):"); 1712 for (int index = 0; index < chunk->length(); index++) { 1713 compiledVFrame* vf = chunk->at(index); 1714 int bci = vf->raw_bci(); 1715 const char* code_name; 1716 if (bci == SynchronizationEntryBCI) { 1717 code_name = "sync entry"; 1718 } else { 1719 Bytecodes::Code code = vf->method()->code_at(bci); 1720 code_name = Bytecodes::name(code); 1721 } 1722 1723 st.print(" VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf)); 1724 st.print(" - %s", vf->method()->name_and_sig_as_C_string()); 1725 st.print(" - %s", code_name); 1726 st.print_cr(" @ bci=%d ", bci); 1727 } 1728 tty->print_raw(st.freeze()); 1729 tty->cr(); 1730 } 1731 1732 return array; 1733 } 1734 1735 #if COMPILER2_OR_JVMCI 1736 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) { 1737 // Reallocation of some scalar replaced objects failed. Record 1738 // that we need to pop all the interpreter frames for the 1739 // deoptimized compiled frame. 1740 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?"); 1741 thread->set_frames_to_pop_failed_realloc(array->frames()); 1742 // Unlock all monitors here otherwise the interpreter will see a 1743 // mix of locked and unlocked monitors (because of failed 1744 // reallocations of synchronized objects) and be confused. 1745 for (int i = 0; i < array->frames(); i++) { 1746 MonitorChunk* monitors = array->element(i)->monitors(); 1747 if (monitors != nullptr) { 1748 // Unlock in reverse order starting from most nested monitor. 1749 for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) { 1750 BasicObjectLock* src = monitors->at(j); 1751 if (src->obj() != nullptr) { 1752 ObjectSynchronizer::exit(src->obj(), src->lock(), thread); 1753 } 1754 } 1755 array->element(i)->free_monitors(); 1756 #ifdef ASSERT 1757 array->element(i)->set_removed_monitors(); 1758 #endif 1759 } 1760 } 1761 } 1762 #endif 1763 1764 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) { 1765 assert(fr.can_be_deoptimized(), "checking frame type"); 1766 1767 gather_statistics(reason, Action_none, Bytecodes::_illegal); 1768 1769 if (LogCompilation && xtty != nullptr) { 1770 nmethod* nm = fr.cb()->as_nmethod_or_null(); 1771 assert(nm != nullptr, "only compiled methods can deopt"); 1772 1773 ttyLocker ttyl; 1774 xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc())); 1775 nm->log_identity(xtty); 1776 xtty->end_head(); 1777 for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) { 1778 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1779 xtty->method(sd->method()); 1780 xtty->end_elem(); 1781 if (sd->is_top()) break; 1782 } 1783 xtty->tail("deoptimized"); 1784 } 1785 1786 Continuation::notify_deopt(thread, fr.sp()); 1787 1788 // Patch the compiled method so that when execution returns to it we will 1789 // deopt the execution state and return to the interpreter. 1790 fr.deoptimize(thread); 1791 } 1792 1793 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) { 1794 // Deoptimize only if the frame comes from compile code. 1795 // Do not deoptimize the frame which is already patched 1796 // during the execution of the loops below. 1797 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) { 1798 return; 1799 } 1800 ResourceMark rm; 1801 deoptimize_single_frame(thread, fr, reason); 1802 } 1803 1804 #if INCLUDE_JVMCI 1805 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) { 1806 // there is no exception handler for this pc => deoptimize 1807 nm->make_not_entrant(); 1808 1809 // Use Deoptimization::deoptimize for all of its side-effects: 1810 // gathering traps statistics, logging... 1811 // it also patches the return pc but we do not care about that 1812 // since we return a continuation to the deopt_blob below. 1813 JavaThread* thread = JavaThread::current(); 1814 RegisterMap reg_map(thread, 1815 RegisterMap::UpdateMap::skip, 1816 RegisterMap::ProcessFrames::include, 1817 RegisterMap::WalkContinuation::skip); 1818 frame runtime_frame = thread->last_frame(); 1819 frame caller_frame = runtime_frame.sender(®_map); 1820 assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method"); 1821 vframe* vf = vframe::new_vframe(&caller_frame, ®_map, thread); 1822 compiledVFrame* cvf = compiledVFrame::cast(vf); 1823 ScopeDesc* imm_scope = cvf->scope(); 1824 MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true); 1825 if (imm_mdo != nullptr) { 1826 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 1827 MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 1828 1829 ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr); 1830 if (pdata != nullptr && pdata->is_BitData()) { 1831 BitData* bit_data = (BitData*) pdata; 1832 bit_data->set_exception_seen(); 1833 } 1834 } 1835 1836 Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler); 1837 1838 MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true); 1839 if (trap_mdo != nullptr) { 1840 trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler); 1841 } 1842 1843 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 1844 } 1845 #endif 1846 1847 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1848 assert(thread == Thread::current() || 1849 thread->is_handshake_safe_for(Thread::current()) || 1850 SafepointSynchronize::is_at_safepoint(), 1851 "can only deoptimize other thread at a safepoint/handshake"); 1852 // Compute frame and register map based on thread and sp. 1853 RegisterMap reg_map(thread, 1854 RegisterMap::UpdateMap::skip, 1855 RegisterMap::ProcessFrames::include, 1856 RegisterMap::WalkContinuation::skip); 1857 frame fr = thread->last_frame(); 1858 while (fr.id() != id) { 1859 fr = fr.sender(®_map); 1860 } 1861 deoptimize(thread, fr, reason); 1862 } 1863 1864 1865 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1866 Thread* current = Thread::current(); 1867 if (thread == current || thread->is_handshake_safe_for(current)) { 1868 Deoptimization::deoptimize_frame_internal(thread, id, reason); 1869 } else { 1870 VM_DeoptimizeFrame deopt(thread, id, reason); 1871 VMThread::execute(&deopt); 1872 } 1873 } 1874 1875 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) { 1876 deoptimize_frame(thread, id, Reason_constraint); 1877 } 1878 1879 // JVMTI PopFrame support 1880 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address)) 1881 { 1882 assert(thread == JavaThread::current(), "pre-condition"); 1883 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address); 1884 } 1885 JRT_END 1886 1887 MethodData* 1888 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m, 1889 bool create_if_missing) { 1890 JavaThread* THREAD = thread; // For exception macros. 1891 MethodData* mdo = m()->method_data(); 1892 if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) { 1893 // Build an MDO. Ignore errors like OutOfMemory; 1894 // that simply means we won't have an MDO to update. 1895 Method::build_profiling_method_data(m, THREAD); 1896 if (HAS_PENDING_EXCEPTION) { 1897 // Only metaspace OOM is expected. No Java code executed. 1898 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1899 CLEAR_PENDING_EXCEPTION; 1900 } 1901 mdo = m()->method_data(); 1902 } 1903 return mdo; 1904 } 1905 1906 #if COMPILER2_OR_JVMCI 1907 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) { 1908 // In case of an unresolved klass entry, load the class. 1909 // This path is exercised from case _ldc in Parse::do_one_bytecode, 1910 // and probably nowhere else. 1911 // Even that case would benefit from simply re-interpreting the 1912 // bytecode, without paying special attention to the class index. 1913 // So this whole "class index" feature should probably be removed. 1914 1915 if (constant_pool->tag_at(index).is_unresolved_klass()) { 1916 Klass* tk = constant_pool->klass_at(index, THREAD); 1917 if (HAS_PENDING_EXCEPTION) { 1918 // Exception happened during classloading. We ignore the exception here, since it 1919 // is going to be rethrown since the current activation is going to be deoptimized and 1920 // the interpreter will re-execute the bytecode. 1921 // Do not clear probable Async Exceptions. 1922 CLEAR_PENDING_NONASYNC_EXCEPTION; 1923 // Class loading called java code which may have caused a stack 1924 // overflow. If the exception was thrown right before the return 1925 // to the runtime the stack is no longer guarded. Reguard the 1926 // stack otherwise if we return to the uncommon trap blob and the 1927 // stack bang causes a stack overflow we crash. 1928 JavaThread* jt = THREAD; 1929 bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed(); 1930 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash"); 1931 } 1932 return; 1933 } 1934 1935 assert(!constant_pool->tag_at(index).is_symbol(), 1936 "no symbolic names here, please"); 1937 } 1938 1939 #if INCLUDE_JFR 1940 1941 class DeoptReasonSerializer : public JfrSerializer { 1942 public: 1943 void serialize(JfrCheckpointWriter& writer) { 1944 writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1) 1945 for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) { 1946 writer.write_key((u8)i); 1947 writer.write(Deoptimization::trap_reason_name(i)); 1948 } 1949 } 1950 }; 1951 1952 class DeoptActionSerializer : public JfrSerializer { 1953 public: 1954 void serialize(JfrCheckpointWriter& writer) { 1955 static const u4 nof_actions = Deoptimization::Action_LIMIT; 1956 writer.write_count(nof_actions); 1957 for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) { 1958 writer.write_key(i); 1959 writer.write(Deoptimization::trap_action_name((int)i)); 1960 } 1961 } 1962 }; 1963 1964 static void register_serializers() { 1965 static int critical_section = 0; 1966 if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) { 1967 return; 1968 } 1969 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer()); 1970 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer()); 1971 } 1972 1973 static void post_deoptimization_event(nmethod* nm, 1974 const Method* method, 1975 int trap_bci, 1976 int instruction, 1977 Deoptimization::DeoptReason reason, 1978 Deoptimization::DeoptAction action) { 1979 assert(nm != nullptr, "invariant"); 1980 assert(method != nullptr, "invariant"); 1981 if (EventDeoptimization::is_enabled()) { 1982 static bool serializers_registered = false; 1983 if (!serializers_registered) { 1984 register_serializers(); 1985 serializers_registered = true; 1986 } 1987 EventDeoptimization event; 1988 event.set_compileId(nm->compile_id()); 1989 event.set_compiler(nm->compiler_type()); 1990 event.set_method(method); 1991 event.set_lineNumber(method->line_number_from_bci(trap_bci)); 1992 event.set_bci(trap_bci); 1993 event.set_instruction(instruction); 1994 event.set_reason(reason); 1995 event.set_action(action); 1996 event.commit(); 1997 } 1998 } 1999 2000 #endif // INCLUDE_JFR 2001 2002 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci, 2003 const char* reason_name, const char* reason_action) { 2004 LogTarget(Debug, deoptimization) lt; 2005 if (lt.is_enabled()) { 2006 LogStream ls(lt); 2007 bool is_osr = nm->is_osr_method(); 2008 ls.print("cid=%4d %s level=%d", 2009 nm->compile_id(), (is_osr ? "osr" : " "), nm->comp_level()); 2010 ls.print(" %s", tm->name_and_sig_as_C_string()); 2011 ls.print(" trap_bci=%d ", trap_bci); 2012 if (is_osr) { 2013 ls.print("osr_bci=%d ", nm->osr_entry_bci()); 2014 } 2015 ls.print("%s ", reason_name); 2016 ls.print("%s ", reason_action); 2017 ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT, 2018 pc, fr.pc() - nm->code_begin()); 2019 } 2020 } 2021 2022 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) { 2023 HandleMark hm(current); 2024 2025 // uncommon_trap() is called at the beginning of the uncommon trap 2026 // handler. Note this fact before we start generating temporary frames 2027 // that can confuse an asynchronous stack walker. This counter is 2028 // decremented at the end of unpack_frames(). 2029 2030 current->inc_in_deopt_handler(); 2031 2032 #if INCLUDE_JVMCI 2033 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid 2034 RegisterMap reg_map(current, 2035 RegisterMap::UpdateMap::include, 2036 RegisterMap::ProcessFrames::include, 2037 RegisterMap::WalkContinuation::skip); 2038 #else 2039 RegisterMap reg_map(current, 2040 RegisterMap::UpdateMap::skip, 2041 RegisterMap::ProcessFrames::include, 2042 RegisterMap::WalkContinuation::skip); 2043 #endif 2044 frame stub_frame = current->last_frame(); 2045 frame fr = stub_frame.sender(®_map); 2046 2047 // Log a message 2048 Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT, 2049 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin()); 2050 2051 { 2052 ResourceMark rm; 2053 2054 DeoptReason reason = trap_request_reason(trap_request); 2055 DeoptAction action = trap_request_action(trap_request); 2056 #if INCLUDE_JVMCI 2057 int debug_id = trap_request_debug_id(trap_request); 2058 #endif 2059 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1 2060 2061 vframe* vf = vframe::new_vframe(&fr, ®_map, current); 2062 compiledVFrame* cvf = compiledVFrame::cast(vf); 2063 2064 nmethod* nm = cvf->code(); 2065 2066 ScopeDesc* trap_scope = cvf->scope(); 2067 2068 bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint); 2069 2070 if (is_receiver_constraint_failure) { 2071 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), 2072 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string() 2073 JVMCI_ONLY(COMMA debug_id)); 2074 } 2075 2076 methodHandle trap_method(current, trap_scope->method()); 2077 int trap_bci = trap_scope->bci(); 2078 #if INCLUDE_JVMCI 2079 jlong speculation = current->pending_failed_speculation(); 2080 if (nm->is_compiled_by_jvmci()) { 2081 nm->update_speculation(current); 2082 } else { 2083 assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers"); 2084 } 2085 2086 if (trap_bci == SynchronizationEntryBCI) { 2087 trap_bci = 0; 2088 current->set_pending_monitorenter(true); 2089 } 2090 2091 if (reason == Deoptimization::Reason_transfer_to_interpreter) { 2092 current->set_pending_transfer_to_interpreter(true); 2093 } 2094 #endif 2095 2096 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci); 2097 // Record this event in the histogram. 2098 gather_statistics(reason, action, trap_bc); 2099 2100 // Ensure that we can record deopt. history: 2101 bool create_if_missing = ProfileTraps; 2102 2103 methodHandle profiled_method; 2104 #if INCLUDE_JVMCI 2105 if (nm->is_compiled_by_jvmci()) { 2106 profiled_method = methodHandle(current, nm->method()); 2107 } else { 2108 profiled_method = trap_method; 2109 } 2110 #else 2111 profiled_method = trap_method; 2112 #endif 2113 2114 MethodData* trap_mdo = 2115 get_method_data(current, profiled_method, create_if_missing); 2116 2117 { // Log Deoptimization event for JFR, UL and event system 2118 Method* tm = trap_method(); 2119 const char* reason_name = trap_reason_name(reason); 2120 const char* reason_action = trap_action_name(action); 2121 intptr_t pc = p2i(fr.pc()); 2122 2123 JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);) 2124 log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action); 2125 Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s", 2126 reason_name, reason_action, pc, 2127 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name()); 2128 } 2129 2130 // Print a bunch of diagnostics, if requested. 2131 if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) { 2132 ResourceMark rm; 2133 2134 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2135 // We must do this already now, since we cannot acquire this lock while 2136 // holding the tty lock (lock ordering by rank). 2137 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2138 2139 ttyLocker ttyl; 2140 2141 char buf[100]; 2142 if (xtty != nullptr) { 2143 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s", 2144 os::current_thread_id(), 2145 format_trap_request(buf, sizeof(buf), trap_request)); 2146 #if INCLUDE_JVMCI 2147 if (speculation != 0) { 2148 xtty->print(" speculation='" JLONG_FORMAT "'", speculation); 2149 } 2150 #endif 2151 nm->log_identity(xtty); 2152 } 2153 Symbol* class_name = nullptr; 2154 bool unresolved = false; 2155 if (unloaded_class_index >= 0) { 2156 constantPoolHandle constants (current, trap_method->constants()); 2157 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) { 2158 class_name = constants->klass_name_at(unloaded_class_index); 2159 unresolved = true; 2160 if (xtty != nullptr) 2161 xtty->print(" unresolved='1'"); 2162 } else if (constants->tag_at(unloaded_class_index).is_symbol()) { 2163 class_name = constants->symbol_at(unloaded_class_index); 2164 } 2165 if (xtty != nullptr) 2166 xtty->name(class_name); 2167 } 2168 if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) { 2169 // Dump the relevant MDO state. 2170 // This is the deopt count for the current reason, any previous 2171 // reasons or recompiles seen at this point. 2172 int dcnt = trap_mdo->trap_count(reason); 2173 if (dcnt != 0) 2174 xtty->print(" count='%d'", dcnt); 2175 2176 // We need to lock to read the ProfileData. But to keep the locks ordered, we need to 2177 // lock extra_data_lock before the tty lock. 2178 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci); 2179 int dos = (pdata == nullptr)? 0: pdata->trap_state(); 2180 if (dos != 0) { 2181 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos)); 2182 if (trap_state_is_recompiled(dos)) { 2183 int recnt2 = trap_mdo->overflow_recompile_count(); 2184 if (recnt2 != 0) 2185 xtty->print(" recompiles2='%d'", recnt2); 2186 } 2187 } 2188 } 2189 if (xtty != nullptr) { 2190 xtty->stamp(); 2191 xtty->end_head(); 2192 } 2193 if (TraceDeoptimization) { // make noise on the tty 2194 stringStream st; 2195 st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string()); 2196 st.print(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"), 2197 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id)); 2198 st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id()); 2199 #if INCLUDE_JVMCI 2200 if (nm->is_compiled_by_jvmci()) { 2201 const char* installed_code_name = nm->jvmci_name(); 2202 if (installed_code_name != nullptr) { 2203 st.print(" (JVMCI: installed code name=%s) ", installed_code_name); 2204 } 2205 } 2206 #endif 2207 st.print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"), 2208 p2i(fr.pc()), 2209 os::current_thread_id(), 2210 trap_reason_name(reason), 2211 trap_action_name(action), 2212 unloaded_class_index 2213 #if INCLUDE_JVMCI 2214 , debug_id 2215 #endif 2216 ); 2217 if (class_name != nullptr) { 2218 st.print(unresolved ? " unresolved class: " : " symbol: "); 2219 class_name->print_symbol_on(&st); 2220 } 2221 st.cr(); 2222 tty->print_raw(st.freeze()); 2223 } 2224 if (xtty != nullptr) { 2225 // Log the precise location of the trap. 2226 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) { 2227 xtty->begin_elem("jvms bci='%d'", sd->bci()); 2228 xtty->method(sd->method()); 2229 xtty->end_elem(); 2230 if (sd->is_top()) break; 2231 } 2232 xtty->tail("uncommon_trap"); 2233 } 2234 } 2235 // (End diagnostic printout.) 2236 2237 if (is_receiver_constraint_failure) { 2238 fatal("missing receiver type check"); 2239 } 2240 2241 // Load class if necessary 2242 if (unloaded_class_index >= 0) { 2243 constantPoolHandle constants(current, trap_method->constants()); 2244 load_class_by_index(constants, unloaded_class_index, THREAD); 2245 } 2246 2247 // Flush the nmethod if necessary and desirable. 2248 // 2249 // We need to avoid situations where we are re-flushing the nmethod 2250 // because of a hot deoptimization site. Repeated flushes at the same 2251 // point need to be detected by the compiler and avoided. If the compiler 2252 // cannot avoid them (or has a bug and "refuses" to avoid them), this 2253 // module must take measures to avoid an infinite cycle of recompilation 2254 // and deoptimization. There are several such measures: 2255 // 2256 // 1. If a recompilation is ordered a second time at some site X 2257 // and for the same reason R, the action is adjusted to 'reinterpret', 2258 // to give the interpreter time to exercise the method more thoroughly. 2259 // If this happens, the method's overflow_recompile_count is incremented. 2260 // 2261 // 2. If the compiler fails to reduce the deoptimization rate, then 2262 // the method's overflow_recompile_count will begin to exceed the set 2263 // limit PerBytecodeRecompilationCutoff. If this happens, the action 2264 // is adjusted to 'make_not_compilable', and the method is abandoned 2265 // to the interpreter. This is a performance hit for hot methods, 2266 // but is better than a disastrous infinite cycle of recompilations. 2267 // (Actually, only the method containing the site X is abandoned.) 2268 // 2269 // 3. In parallel with the previous measures, if the total number of 2270 // recompilations of a method exceeds the much larger set limit 2271 // PerMethodRecompilationCutoff, the method is abandoned. 2272 // This should only happen if the method is very large and has 2273 // many "lukewarm" deoptimizations. The code which enforces this 2274 // limit is elsewhere (class nmethod, class Method). 2275 // 2276 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance 2277 // to recompile at each bytecode independently of the per-BCI cutoff. 2278 // 2279 // The decision to update code is up to the compiler, and is encoded 2280 // in the Action_xxx code. If the compiler requests Action_none 2281 // no trap state is changed, no compiled code is changed, and the 2282 // computation suffers along in the interpreter. 2283 // 2284 // The other action codes specify various tactics for decompilation 2285 // and recompilation. Action_maybe_recompile is the loosest, and 2286 // allows the compiled code to stay around until enough traps are seen, 2287 // and until the compiler gets around to recompiling the trapping method. 2288 // 2289 // The other actions cause immediate removal of the present code. 2290 2291 // Traps caused by injected profile shouldn't pollute trap counts. 2292 bool injected_profile_trap = trap_method->has_injected_profile() && 2293 (reason == Reason_intrinsic || reason == Reason_unreached); 2294 2295 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap; 2296 bool make_not_entrant = false; 2297 bool make_not_compilable = false; 2298 bool reprofile = false; 2299 switch (action) { 2300 case Action_none: 2301 // Keep the old code. 2302 update_trap_state = false; 2303 break; 2304 case Action_maybe_recompile: 2305 // Do not need to invalidate the present code, but we can 2306 // initiate another 2307 // Start compiler without (necessarily) invalidating the nmethod. 2308 // The system will tolerate the old code, but new code should be 2309 // generated when possible. 2310 break; 2311 case Action_reinterpret: 2312 // Go back into the interpreter for a while, and then consider 2313 // recompiling form scratch. 2314 make_not_entrant = true; 2315 // Reset invocation counter for outer most method. 2316 // This will allow the interpreter to exercise the bytecodes 2317 // for a while before recompiling. 2318 // By contrast, Action_make_not_entrant is immediate. 2319 // 2320 // Note that the compiler will track null_check, null_assert, 2321 // range_check, and class_check events and log them as if they 2322 // had been traps taken from compiled code. This will update 2323 // the MDO trap history so that the next compilation will 2324 // properly detect hot trap sites. 2325 reprofile = true; 2326 break; 2327 case Action_make_not_entrant: 2328 // Request immediate recompilation, and get rid of the old code. 2329 // Make them not entrant, so next time they are called they get 2330 // recompiled. Unloaded classes are loaded now so recompile before next 2331 // time they are called. Same for uninitialized. The interpreter will 2332 // link the missing class, if any. 2333 make_not_entrant = true; 2334 break; 2335 case Action_make_not_compilable: 2336 // Give up on compiling this method at all. 2337 make_not_entrant = true; 2338 make_not_compilable = true; 2339 break; 2340 default: 2341 ShouldNotReachHere(); 2342 } 2343 2344 // Setting +ProfileTraps fixes the following, on all platforms: 2345 // 4852688: ProfileInterpreter is off by default for ia64. The result is 2346 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the 2347 // recompile relies on a MethodData* to record heroic opt failures. 2348 2349 // Whether the interpreter is producing MDO data or not, we also need 2350 // to use the MDO to detect hot deoptimization points and control 2351 // aggressive optimization. 2352 bool inc_recompile_count = false; 2353 2354 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2355 ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr, 2356 (trap_mdo != nullptr), 2357 Mutex::_no_safepoint_check_flag); 2358 ProfileData* pdata = nullptr; 2359 if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) { 2360 assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity"); 2361 uint this_trap_count = 0; 2362 bool maybe_prior_trap = false; 2363 bool maybe_prior_recompile = false; 2364 2365 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true, 2366 #if INCLUDE_JVMCI 2367 nm->is_compiled_by_jvmci() && nm->is_osr_method(), 2368 #endif 2369 nm->method(), 2370 //outputs: 2371 this_trap_count, 2372 maybe_prior_trap, 2373 maybe_prior_recompile); 2374 // Because the interpreter also counts null, div0, range, and class 2375 // checks, these traps from compiled code are double-counted. 2376 // This is harmless; it just means that the PerXTrapLimit values 2377 // are in effect a little smaller than they look. 2378 2379 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2380 if (per_bc_reason != Reason_none) { 2381 // Now take action based on the partially known per-BCI history. 2382 if (maybe_prior_trap 2383 && this_trap_count >= (uint)PerBytecodeTrapLimit) { 2384 // If there are too many traps at this BCI, force a recompile. 2385 // This will allow the compiler to see the limit overflow, and 2386 // take corrective action, if possible. The compiler generally 2387 // does not use the exact PerBytecodeTrapLimit value, but instead 2388 // changes its tactics if it sees any traps at all. This provides 2389 // a little hysteresis, delaying a recompile until a trap happens 2390 // several times. 2391 // 2392 // Actually, since there is only one bit of counter per BCI, 2393 // the possible per-BCI counts are {0,1,(per-method count)}. 2394 // This produces accurate results if in fact there is only 2395 // one hot trap site, but begins to get fuzzy if there are 2396 // many sites. For example, if there are ten sites each 2397 // trapping two or more times, they each get the blame for 2398 // all of their traps. 2399 make_not_entrant = true; 2400 } 2401 2402 // Detect repeated recompilation at the same BCI, and enforce a limit. 2403 if (make_not_entrant && maybe_prior_recompile) { 2404 // More than one recompile at this point. 2405 inc_recompile_count = maybe_prior_trap; 2406 } 2407 } else { 2408 // For reasons which are not recorded per-bytecode, we simply 2409 // force recompiles unconditionally. 2410 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.) 2411 make_not_entrant = true; 2412 } 2413 2414 // Go back to the compiler if there are too many traps in this method. 2415 if (this_trap_count >= per_method_trap_limit(reason)) { 2416 // If there are too many traps in this method, force a recompile. 2417 // This will allow the compiler to see the limit overflow, and 2418 // take corrective action, if possible. 2419 // (This condition is an unlikely backstop only, because the 2420 // PerBytecodeTrapLimit is more likely to take effect first, 2421 // if it is applicable.) 2422 make_not_entrant = true; 2423 } 2424 2425 // Here's more hysteresis: If there has been a recompile at 2426 // this trap point already, run the method in the interpreter 2427 // for a while to exercise it more thoroughly. 2428 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) { 2429 reprofile = true; 2430 } 2431 } 2432 2433 // Take requested actions on the method: 2434 2435 // Recompile 2436 if (make_not_entrant) { 2437 if (!nm->make_not_entrant()) { 2438 return; // the call did not change nmethod's state 2439 } 2440 2441 if (pdata != nullptr) { 2442 // Record the recompilation event, if any. 2443 int tstate0 = pdata->trap_state(); 2444 int tstate1 = trap_state_set_recompiled(tstate0, true); 2445 if (tstate1 != tstate0) 2446 pdata->set_trap_state(tstate1); 2447 } 2448 2449 // For code aging we count traps separately here, using make_not_entrant() 2450 // as a guard against simultaneous deopts in multiple threads. 2451 if (reason == Reason_tenured && trap_mdo != nullptr) { 2452 trap_mdo->inc_tenure_traps(); 2453 } 2454 } 2455 2456 if (inc_recompile_count) { 2457 trap_mdo->inc_overflow_recompile_count(); 2458 if ((uint)trap_mdo->overflow_recompile_count() > 2459 (uint)PerBytecodeRecompilationCutoff) { 2460 // Give up on the method containing the bad BCI. 2461 if (trap_method() == nm->method()) { 2462 make_not_compilable = true; 2463 } else { 2464 trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization); 2465 // But give grace to the enclosing nm->method(). 2466 } 2467 } 2468 } 2469 2470 // Reprofile 2471 if (reprofile) { 2472 CompilationPolicy::reprofile(trap_scope, nm->is_osr_method()); 2473 } 2474 2475 // Give up compiling 2476 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) { 2477 assert(make_not_entrant, "consistent"); 2478 nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization); 2479 } 2480 2481 if (ProfileExceptionHandlers && trap_mdo != nullptr) { 2482 BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci); 2483 if (exception_handler_data != nullptr) { 2484 // uncommon trap at the start of an exception handler. 2485 // C2 generates these for un-entered exception handlers. 2486 // mark the handler as entered to avoid generating 2487 // another uncommon trap the next time the handler is compiled 2488 exception_handler_data->set_exception_handler_entered(); 2489 } 2490 } 2491 2492 } // Free marked resources 2493 2494 } 2495 JRT_END 2496 2497 ProfileData* 2498 Deoptimization::query_update_method_data(MethodData* trap_mdo, 2499 int trap_bci, 2500 Deoptimization::DeoptReason reason, 2501 bool update_total_trap_count, 2502 #if INCLUDE_JVMCI 2503 bool is_osr, 2504 #endif 2505 Method* compiled_method, 2506 //outputs: 2507 uint& ret_this_trap_count, 2508 bool& ret_maybe_prior_trap, 2509 bool& ret_maybe_prior_recompile) { 2510 trap_mdo->check_extra_data_locked(); 2511 2512 bool maybe_prior_trap = false; 2513 bool maybe_prior_recompile = false; 2514 uint this_trap_count = 0; 2515 if (update_total_trap_count) { 2516 uint idx = reason; 2517 #if INCLUDE_JVMCI 2518 if (is_osr) { 2519 // Upper half of history array used for traps in OSR compilations 2520 idx += Reason_TRAP_HISTORY_LENGTH; 2521 } 2522 #endif 2523 uint prior_trap_count = trap_mdo->trap_count(idx); 2524 this_trap_count = trap_mdo->inc_trap_count(idx); 2525 2526 // If the runtime cannot find a place to store trap history, 2527 // it is estimated based on the general condition of the method. 2528 // If the method has ever been recompiled, or has ever incurred 2529 // a trap with the present reason , then this BCI is assumed 2530 // (pessimistically) to be the culprit. 2531 maybe_prior_trap = (prior_trap_count != 0); 2532 maybe_prior_recompile = (trap_mdo->decompile_count() != 0); 2533 } 2534 ProfileData* pdata = nullptr; 2535 2536 2537 // For reasons which are recorded per bytecode, we check per-BCI data. 2538 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2539 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be"); 2540 if (per_bc_reason != Reason_none) { 2541 // Find the profile data for this BCI. If there isn't one, 2542 // try to allocate one from the MDO's set of spares. 2543 // This will let us detect a repeated trap at this point. 2544 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr); 2545 2546 if (pdata != nullptr) { 2547 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) { 2548 if (LogCompilation && xtty != nullptr) { 2549 ttyLocker ttyl; 2550 // no more room for speculative traps in this MDO 2551 xtty->elem("speculative_traps_oom"); 2552 } 2553 } 2554 // Query the trap state of this profile datum. 2555 int tstate0 = pdata->trap_state(); 2556 if (!trap_state_has_reason(tstate0, per_bc_reason)) 2557 maybe_prior_trap = false; 2558 if (!trap_state_is_recompiled(tstate0)) 2559 maybe_prior_recompile = false; 2560 2561 // Update the trap state of this profile datum. 2562 int tstate1 = tstate0; 2563 // Record the reason. 2564 tstate1 = trap_state_add_reason(tstate1, per_bc_reason); 2565 // Store the updated state on the MDO, for next time. 2566 if (tstate1 != tstate0) 2567 pdata->set_trap_state(tstate1); 2568 } else { 2569 if (LogCompilation && xtty != nullptr) { 2570 ttyLocker ttyl; 2571 // Missing MDP? Leave a small complaint in the log. 2572 xtty->elem("missing_mdp bci='%d'", trap_bci); 2573 } 2574 } 2575 } 2576 2577 // Return results: 2578 ret_this_trap_count = this_trap_count; 2579 ret_maybe_prior_trap = maybe_prior_trap; 2580 ret_maybe_prior_recompile = maybe_prior_recompile; 2581 return pdata; 2582 } 2583 2584 void 2585 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2586 ResourceMark rm; 2587 // Ignored outputs: 2588 uint ignore_this_trap_count; 2589 bool ignore_maybe_prior_trap; 2590 bool ignore_maybe_prior_recompile; 2591 assert(!reason_is_speculate(reason), "reason speculate only used by compiler"); 2592 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts 2593 bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler); 2594 2595 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2596 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2597 2598 query_update_method_data(trap_mdo, trap_bci, 2599 (DeoptReason)reason, 2600 update_total_counts, 2601 #if INCLUDE_JVMCI 2602 false, 2603 #endif 2604 nullptr, 2605 ignore_this_trap_count, 2606 ignore_maybe_prior_trap, 2607 ignore_maybe_prior_recompile); 2608 } 2609 2610 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) { 2611 // Enable WXWrite: current function is called from methods compiled by C2 directly 2612 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 2613 2614 // Still in Java no safepoints 2615 { 2616 // This enters VM and may safepoint 2617 uncommon_trap_inner(current, trap_request); 2618 } 2619 HandleMark hm(current); 2620 return fetch_unroll_info_helper(current, exec_mode); 2621 } 2622 2623 // Local derived constants. 2624 // Further breakdown of DataLayout::trap_state, as promised by DataLayout. 2625 const int DS_REASON_MASK = ((uint)DataLayout::trap_mask) >> 1; 2626 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK; 2627 2628 //---------------------------trap_state_reason--------------------------------- 2629 Deoptimization::DeoptReason 2630 Deoptimization::trap_state_reason(int trap_state) { 2631 // This assert provides the link between the width of DataLayout::trap_bits 2632 // and the encoding of "recorded" reasons. It ensures there are enough 2633 // bits to store all needed reasons in the per-BCI MDO profile. 2634 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2635 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2636 trap_state -= recompile_bit; 2637 if (trap_state == DS_REASON_MASK) { 2638 return Reason_many; 2639 } else { 2640 assert((int)Reason_none == 0, "state=0 => Reason_none"); 2641 return (DeoptReason)trap_state; 2642 } 2643 } 2644 //-------------------------trap_state_has_reason------------------------------- 2645 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2646 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason"); 2647 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2648 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2649 trap_state -= recompile_bit; 2650 if (trap_state == DS_REASON_MASK) { 2651 return -1; // true, unspecifically (bottom of state lattice) 2652 } else if (trap_state == reason) { 2653 return 1; // true, definitely 2654 } else if (trap_state == 0) { 2655 return 0; // false, definitely (top of state lattice) 2656 } else { 2657 return 0; // false, definitely 2658 } 2659 } 2660 //-------------------------trap_state_add_reason------------------------------- 2661 int Deoptimization::trap_state_add_reason(int trap_state, int reason) { 2662 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason"); 2663 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2664 trap_state -= recompile_bit; 2665 if (trap_state == DS_REASON_MASK) { 2666 return trap_state + recompile_bit; // already at state lattice bottom 2667 } else if (trap_state == reason) { 2668 return trap_state + recompile_bit; // the condition is already true 2669 } else if (trap_state == 0) { 2670 return reason + recompile_bit; // no condition has yet been true 2671 } else { 2672 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom 2673 } 2674 } 2675 //-----------------------trap_state_is_recompiled------------------------------ 2676 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2677 return (trap_state & DS_RECOMPILE_BIT) != 0; 2678 } 2679 //-----------------------trap_state_set_recompiled----------------------------- 2680 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) { 2681 if (z) return trap_state | DS_RECOMPILE_BIT; 2682 else return trap_state & ~DS_RECOMPILE_BIT; 2683 } 2684 //---------------------------format_trap_state--------------------------------- 2685 // This is used for debugging and diagnostics, including LogFile output. 2686 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2687 int trap_state) { 2688 assert(buflen > 0, "sanity"); 2689 DeoptReason reason = trap_state_reason(trap_state); 2690 bool recomp_flag = trap_state_is_recompiled(trap_state); 2691 // Re-encode the state from its decoded components. 2692 int decoded_state = 0; 2693 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many) 2694 decoded_state = trap_state_add_reason(decoded_state, reason); 2695 if (recomp_flag) 2696 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag); 2697 // If the state re-encodes properly, format it symbolically. 2698 // Because this routine is used for debugging and diagnostics, 2699 // be robust even if the state is a strange value. 2700 size_t len; 2701 if (decoded_state != trap_state) { 2702 // Random buggy state that doesn't decode?? 2703 len = jio_snprintf(buf, buflen, "#%d", trap_state); 2704 } else { 2705 len = jio_snprintf(buf, buflen, "%s%s", 2706 trap_reason_name(reason), 2707 recomp_flag ? " recompiled" : ""); 2708 } 2709 return buf; 2710 } 2711 2712 2713 //--------------------------------statics-------------------------------------- 2714 const char* Deoptimization::_trap_reason_name[] = { 2715 // Note: Keep this in sync. with enum DeoptReason. 2716 "none", 2717 "null_check", 2718 "null_assert" JVMCI_ONLY("_or_unreached0"), 2719 "range_check", 2720 "class_check", 2721 "array_check", 2722 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"), 2723 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"), 2724 "profile_predicate", 2725 "unloaded", 2726 "uninitialized", 2727 "initialized", 2728 "unreached", 2729 "unhandled", 2730 "constraint", 2731 "div0_check", 2732 "age", 2733 "predicate", 2734 "loop_limit_check", 2735 "speculate_class_check", 2736 "speculate_null_check", 2737 "speculate_null_assert", 2738 "unstable_if", 2739 "unstable_fused_if", 2740 "receiver_constraint", 2741 #if INCLUDE_JVMCI 2742 "aliasing", 2743 "transfer_to_interpreter", 2744 "not_compiled_exception_handler", 2745 "unresolved", 2746 "jsr_mismatch", 2747 #endif 2748 "tenured" 2749 }; 2750 const char* Deoptimization::_trap_action_name[] = { 2751 // Note: Keep this in sync. with enum DeoptAction. 2752 "none", 2753 "maybe_recompile", 2754 "reinterpret", 2755 "make_not_entrant", 2756 "make_not_compilable" 2757 }; 2758 2759 const char* Deoptimization::trap_reason_name(int reason) { 2760 // Check that every reason has a name 2761 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT); 2762 2763 if (reason == Reason_many) return "many"; 2764 if ((uint)reason < Reason_LIMIT) 2765 return _trap_reason_name[reason]; 2766 static char buf[20]; 2767 os::snprintf_checked(buf, sizeof(buf), "reason%d", reason); 2768 return buf; 2769 } 2770 const char* Deoptimization::trap_action_name(int action) { 2771 // Check that every action has a name 2772 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT); 2773 2774 if ((uint)action < Action_LIMIT) 2775 return _trap_action_name[action]; 2776 static char buf[20]; 2777 os::snprintf_checked(buf, sizeof(buf), "action%d", action); 2778 return buf; 2779 } 2780 2781 // This is used for debugging and diagnostics, including LogFile output. 2782 const char* Deoptimization::format_trap_request(char* buf, size_t buflen, 2783 int trap_request) { 2784 jint unloaded_class_index = trap_request_index(trap_request); 2785 const char* reason = trap_reason_name(trap_request_reason(trap_request)); 2786 const char* action = trap_action_name(trap_request_action(trap_request)); 2787 #if INCLUDE_JVMCI 2788 int debug_id = trap_request_debug_id(trap_request); 2789 #endif 2790 size_t len; 2791 if (unloaded_class_index < 0) { 2792 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"), 2793 reason, action 2794 #if INCLUDE_JVMCI 2795 ,debug_id 2796 #endif 2797 ); 2798 } else { 2799 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"), 2800 reason, action, unloaded_class_index 2801 #if INCLUDE_JVMCI 2802 ,debug_id 2803 #endif 2804 ); 2805 } 2806 return buf; 2807 } 2808 2809 juint Deoptimization::_deoptimization_hist 2810 [Deoptimization::Reason_LIMIT] 2811 [1 + Deoptimization::Action_LIMIT] 2812 [Deoptimization::BC_CASE_LIMIT] 2813 = {0}; 2814 2815 enum { 2816 LSB_BITS = 8, 2817 LSB_MASK = right_n_bits(LSB_BITS) 2818 }; 2819 2820 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2821 Bytecodes::Code bc) { 2822 assert(reason >= 0 && reason < Reason_LIMIT, "oob"); 2823 assert(action >= 0 && action < Action_LIMIT, "oob"); 2824 _deoptimization_hist[Reason_none][0][0] += 1; // total 2825 _deoptimization_hist[reason][0][0] += 1; // per-reason total 2826 juint* cases = _deoptimization_hist[reason][1+action]; 2827 juint* bc_counter_addr = nullptr; 2828 juint bc_counter = 0; 2829 // Look for an unused counter, or an exact match to this BC. 2830 if (bc != Bytecodes::_illegal) { 2831 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2832 juint* counter_addr = &cases[bc_case]; 2833 juint counter = *counter_addr; 2834 if ((counter == 0 && bc_counter_addr == nullptr) 2835 || (Bytecodes::Code)(counter & LSB_MASK) == bc) { 2836 // this counter is either free or is already devoted to this BC 2837 bc_counter_addr = counter_addr; 2838 bc_counter = counter | bc; 2839 } 2840 } 2841 } 2842 if (bc_counter_addr == nullptr) { 2843 // Overflow, or no given bytecode. 2844 bc_counter_addr = &cases[BC_CASE_LIMIT-1]; 2845 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB 2846 } 2847 *bc_counter_addr = bc_counter + (1 << LSB_BITS); 2848 } 2849 2850 jint Deoptimization::total_deoptimization_count() { 2851 return _deoptimization_hist[Reason_none][0][0]; 2852 } 2853 2854 // Get the deopt count for a specific reason and a specific action. If either 2855 // one of 'reason' or 'action' is null, the method returns the sum of all 2856 // deoptimizations with the specific 'action' or 'reason' respectively. 2857 // If both arguments are null, the method returns the total deopt count. 2858 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 2859 if (reason_str == nullptr && action_str == nullptr) { 2860 return total_deoptimization_count(); 2861 } 2862 juint counter = 0; 2863 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2864 if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) { 2865 for (int action = 0; action < Action_LIMIT; action++) { 2866 if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) { 2867 juint* cases = _deoptimization_hist[reason][1+action]; 2868 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2869 counter += cases[bc_case] >> LSB_BITS; 2870 } 2871 } 2872 } 2873 } 2874 } 2875 return counter; 2876 } 2877 2878 void Deoptimization::print_statistics() { 2879 juint total = total_deoptimization_count(); 2880 juint account = total; 2881 if (total != 0) { 2882 ttyLocker ttyl; 2883 if (xtty != nullptr) xtty->head("statistics type='deoptimization'"); 2884 tty->print_cr("Deoptimization traps recorded:"); 2885 #define PRINT_STAT_LINE(name, r) \ 2886 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name); 2887 PRINT_STAT_LINE("total", total); 2888 // For each non-zero entry in the histogram, print the reason, 2889 // the action, and (if specifically known) the type of bytecode. 2890 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2891 for (int action = 0; action < Action_LIMIT; action++) { 2892 juint* cases = _deoptimization_hist[reason][1+action]; 2893 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2894 juint counter = cases[bc_case]; 2895 if (counter != 0) { 2896 char name[1*K]; 2897 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK); 2898 if (bc_case == BC_CASE_LIMIT && (int)bc == 0) 2899 bc = Bytecodes::_illegal; 2900 os::snprintf_checked(name, sizeof(name), "%s/%s/%s", 2901 trap_reason_name(reason), 2902 trap_action_name(action), 2903 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other"); 2904 juint r = counter >> LSB_BITS; 2905 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total); 2906 account -= r; 2907 } 2908 } 2909 } 2910 } 2911 if (account != 0) { 2912 PRINT_STAT_LINE("unaccounted", account); 2913 } 2914 #undef PRINT_STAT_LINE 2915 if (xtty != nullptr) xtty->tail("statistics"); 2916 } 2917 } 2918 2919 #else // COMPILER2_OR_JVMCI 2920 2921 2922 // Stubs for C1 only system. 2923 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2924 return false; 2925 } 2926 2927 const char* Deoptimization::trap_reason_name(int reason) { 2928 return "unknown"; 2929 } 2930 2931 jint Deoptimization::total_deoptimization_count() { 2932 return 0; 2933 } 2934 2935 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 2936 return 0; 2937 } 2938 2939 void Deoptimization::print_statistics() { 2940 // no output 2941 } 2942 2943 void 2944 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2945 // no update 2946 } 2947 2948 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2949 return 0; 2950 } 2951 2952 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2953 Bytecodes::Code bc) { 2954 // no update 2955 } 2956 2957 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2958 int trap_state) { 2959 jio_snprintf(buf, buflen, "#%d", trap_state); 2960 return buf; 2961 } 2962 2963 #endif // COMPILER2_OR_JVMCI