1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/debugInfoRec.hpp" 32 #include "code/nmethod.hpp" 33 #include "code/pcDesc.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "compiler/compilationPolicy.hpp" 36 #include "compiler/compilerDefinitions.inline.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/memAllocator.hpp" 39 #include "interpreter/bytecode.hpp" 40 #include "interpreter/bytecodeStream.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/oopMapCache.hpp" 43 #include "jvm.h" 44 #include "logging/log.hpp" 45 #include "logging/logLevel.hpp" 46 #include "logging/logMessage.hpp" 47 #include "logging/logStream.hpp" 48 #include "memory/allocation.inline.hpp" 49 #include "memory/oopFactory.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "memory/universe.hpp" 52 #include "oops/constantPool.hpp" 53 #include "oops/fieldStreams.inline.hpp" 54 #include "oops/method.hpp" 55 #include "oops/objArrayKlass.hpp" 56 #include "oops/objArrayOop.inline.hpp" 57 #include "oops/oop.inline.hpp" 58 #include "oops/typeArrayOop.inline.hpp" 59 #include "oops/verifyOopClosure.hpp" 60 #include "prims/jvmtiDeferredUpdates.hpp" 61 #include "prims/jvmtiExport.hpp" 62 #include "prims/jvmtiThreadState.hpp" 63 #include "prims/methodHandles.hpp" 64 #include "prims/vectorSupport.hpp" 65 #include "runtime/atomic.hpp" 66 #include "runtime/basicLock.inline.hpp" 67 #include "runtime/continuation.hpp" 68 #include "runtime/continuationEntry.inline.hpp" 69 #include "runtime/deoptimization.hpp" 70 #include "runtime/escapeBarrier.hpp" 71 #include "runtime/fieldDescriptor.hpp" 72 #include "runtime/fieldDescriptor.inline.hpp" 73 #include "runtime/frame.inline.hpp" 74 #include "runtime/handles.inline.hpp" 75 #include "runtime/interfaceSupport.inline.hpp" 76 #include "runtime/javaThread.hpp" 77 #include "runtime/jniHandles.inline.hpp" 78 #include "runtime/keepStackGCProcessed.hpp" 79 #include "runtime/lightweightSynchronizer.hpp" 80 #include "runtime/lockStack.inline.hpp" 81 #include "runtime/objectMonitor.inline.hpp" 82 #include "runtime/osThread.hpp" 83 #include "runtime/safepointVerifiers.hpp" 84 #include "runtime/sharedRuntime.hpp" 85 #include "runtime/signature.hpp" 86 #include "runtime/stackFrameStream.inline.hpp" 87 #include "runtime/stackValue.hpp" 88 #include "runtime/stackWatermarkSet.hpp" 89 #include "runtime/stubRoutines.hpp" 90 #include "runtime/synchronizer.inline.hpp" 91 #include "runtime/threadSMR.hpp" 92 #include "runtime/threadWXSetters.inline.hpp" 93 #include "runtime/vframe.hpp" 94 #include "runtime/vframeArray.hpp" 95 #include "runtime/vframe_hp.hpp" 96 #include "runtime/vmOperations.hpp" 97 #include "utilities/checkedCast.hpp" 98 #include "utilities/events.hpp" 99 #include "utilities/growableArray.hpp" 100 #include "utilities/macros.hpp" 101 #include "utilities/preserveException.hpp" 102 #include "utilities/xmlstream.hpp" 103 #if INCLUDE_JFR 104 #include "jfr/jfrEvents.hpp" 105 #include "jfr/metadata/jfrSerializer.hpp" 106 #endif 107 108 uint64_t DeoptimizationScope::_committed_deopt_gen = 0; 109 uint64_t DeoptimizationScope::_active_deopt_gen = 1; 110 bool DeoptimizationScope::_committing_in_progress = false; 111 112 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) { 113 DEBUG_ONLY(_deopted = false;) 114 115 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 116 // If there is nothing to deopt _required_gen is the same as comitted. 117 _required_gen = DeoptimizationScope::_committed_deopt_gen; 118 } 119 120 DeoptimizationScope::~DeoptimizationScope() { 121 assert(_deopted, "Deopt not executed"); 122 } 123 124 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) { 125 if (!nm->can_be_deoptimized()) { 126 return; 127 } 128 129 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 130 131 // If it's already marked but we still need it to be deopted. 132 if (nm->is_marked_for_deoptimization()) { 133 dependent(nm); 134 return; 135 } 136 137 nmethod::DeoptimizationStatus status = 138 inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate; 139 Atomic::store(&nm->_deoptimization_status, status); 140 141 // Make sure active is not committed 142 assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be"); 143 assert(nm->_deoptimization_generation == 0, "Is already marked"); 144 145 nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen; 146 _required_gen = DeoptimizationScope::_active_deopt_gen; 147 } 148 149 void DeoptimizationScope::dependent(nmethod* nm) { 150 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 151 152 // A method marked by someone else may have a _required_gen lower than what we marked with. 153 // Therefore only store it if it's higher than _required_gen. 154 if (_required_gen < nm->_deoptimization_generation) { 155 _required_gen = nm->_deoptimization_generation; 156 } 157 } 158 159 void DeoptimizationScope::deoptimize_marked() { 160 assert(!_deopted, "Already deopted"); 161 162 // We are not alive yet. 163 if (!Universe::is_fully_initialized()) { 164 DEBUG_ONLY(_deopted = true;) 165 return; 166 } 167 168 // Safepoints are a special case, handled here. 169 if (SafepointSynchronize::is_at_safepoint()) { 170 DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen; 171 DeoptimizationScope::_active_deopt_gen++; 172 Deoptimization::deoptimize_all_marked(); 173 DEBUG_ONLY(_deopted = true;) 174 return; 175 } 176 177 uint64_t comitting = 0; 178 bool wait = false; 179 while (true) { 180 { 181 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 182 183 // First we check if we or someone else already deopted the gen we want. 184 if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) { 185 DEBUG_ONLY(_deopted = true;) 186 return; 187 } 188 if (!_committing_in_progress) { 189 // The version we are about to commit. 190 comitting = DeoptimizationScope::_active_deopt_gen; 191 // Make sure new marks use a higher gen. 192 DeoptimizationScope::_active_deopt_gen++; 193 _committing_in_progress = true; 194 wait = false; 195 } else { 196 // Another thread is handshaking and committing a gen. 197 wait = true; 198 } 199 } 200 if (wait) { 201 // Wait and let the concurrent handshake be performed. 202 ThreadBlockInVM tbivm(JavaThread::current()); 203 os::naked_yield(); 204 } else { 205 // Performs the handshake. 206 Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred. 207 DEBUG_ONLY(_deopted = true;) 208 { 209 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 210 211 // Make sure that committed doesn't go backwards. 212 // Should only happen if we did a deopt during a safepoint above. 213 if (DeoptimizationScope::_committed_deopt_gen < comitting) { 214 DeoptimizationScope::_committed_deopt_gen = comitting; 215 } 216 _committing_in_progress = false; 217 218 assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be"); 219 220 return; 221 } 222 } 223 } 224 } 225 226 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame, 227 int caller_adjustment, 228 int caller_actual_parameters, 229 int number_of_frames, 230 intptr_t* frame_sizes, 231 address* frame_pcs, 232 BasicType return_type, 233 int exec_mode) { 234 _size_of_deoptimized_frame = size_of_deoptimized_frame; 235 _caller_adjustment = caller_adjustment; 236 _caller_actual_parameters = caller_actual_parameters; 237 _number_of_frames = number_of_frames; 238 _frame_sizes = frame_sizes; 239 _frame_pcs = frame_pcs; 240 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler); 241 _return_type = return_type; 242 _initial_info = 0; 243 // PD (x86 only) 244 _counter_temp = 0; 245 _unpack_kind = exec_mode; 246 _sender_sp_temp = 0; 247 248 _total_frame_sizes = size_of_frames(); 249 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode"); 250 } 251 252 Deoptimization::UnrollBlock::~UnrollBlock() { 253 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes); 254 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs); 255 FREE_C_HEAP_ARRAY(intptr_t, _register_block); 256 } 257 258 int Deoptimization::UnrollBlock::size_of_frames() const { 259 // Account first for the adjustment of the initial frame 260 intptr_t result = _caller_adjustment; 261 for (int index = 0; index < number_of_frames(); index++) { 262 result += frame_sizes()[index]; 263 } 264 return checked_cast<int>(result); 265 } 266 267 void Deoptimization::UnrollBlock::print() { 268 ResourceMark rm; 269 stringStream st; 270 st.print_cr("UnrollBlock"); 271 st.print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame); 272 st.print( " frame_sizes: "); 273 for (int index = 0; index < number_of_frames(); index++) { 274 st.print("%zd ", frame_sizes()[index]); 275 } 276 st.cr(); 277 tty->print_raw(st.freeze()); 278 } 279 280 // In order to make fetch_unroll_info work properly with escape 281 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY. 282 // The actual reallocation of previously eliminated objects occurs in realloc_objects, 283 // which is called from the method fetch_unroll_info_helper below. 284 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode)) 285 // fetch_unroll_info() is called at the beginning of the deoptimization 286 // handler. Note this fact before we start generating temporary frames 287 // that can confuse an asynchronous stack walker. This counter is 288 // decremented at the end of unpack_frames(). 289 current->inc_in_deopt_handler(); 290 291 if (exec_mode == Unpack_exception) { 292 // When we get here, a callee has thrown an exception into a deoptimized 293 // frame. That throw might have deferred stack watermark checking until 294 // after unwinding. So we deal with such deferred requests here. 295 StackWatermarkSet::after_unwind(current); 296 } 297 298 return fetch_unroll_info_helper(current, exec_mode); 299 JRT_END 300 301 #if COMPILER2_OR_JVMCI 302 // print information about reallocated objects 303 static void print_objects(JavaThread* deoptee_thread, 304 GrowableArray<ScopeValue*>* objects, bool realloc_failures) { 305 ResourceMark rm; 306 stringStream st; // change to logStream with logging 307 st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread)); 308 fieldDescriptor fd; 309 310 for (int i = 0; i < objects->length(); i++) { 311 ObjectValue* sv = (ObjectValue*) objects->at(i); 312 Handle obj = sv->value(); 313 314 if (obj.is_null()) { 315 st.print_cr(" nullptr"); 316 continue; 317 } 318 319 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 320 321 st.print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()())); 322 k->print_value_on(&st); 323 st.print_cr(" allocated (" SIZE_FORMAT " bytes)", obj->size() * HeapWordSize); 324 325 if (Verbose && k != nullptr) { 326 k->oop_print_on(obj(), &st); 327 } 328 } 329 tty->print_raw(st.freeze()); 330 } 331 332 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method, 333 frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk, 334 bool& deoptimized_objects) { 335 bool realloc_failures = false; 336 assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames"); 337 338 JavaThread* deoptee_thread = chunk->at(0)->thread(); 339 assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread), 340 "a frame can only be deoptimized by the owner thread"); 341 342 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map); 343 344 // The flag return_oop() indicates call sites which return oop 345 // in compiled code. Such sites include java method calls, 346 // runtime calls (for example, used to allocate new objects/arrays 347 // on slow code path) and any other calls generated in compiled code. 348 // It is not guaranteed that we can get such information here only 349 // by analyzing bytecode in deoptimized frames. This is why this flag 350 // is set during method compilation (see Compile::Process_OopMap_Node()). 351 // If the previous frame was popped or if we are dispatching an exception, 352 // we don't have an oop result. 353 bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt); 354 Handle return_value; 355 if (save_oop_result) { 356 // Reallocation may trigger GC. If deoptimization happened on return from 357 // call which returns oop we need to save it since it is not in oopmap. 358 oop result = deoptee.saved_oop_result(&map); 359 assert(oopDesc::is_oop_or_null(result), "must be oop"); 360 return_value = Handle(thread, result); 361 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 362 if (TraceDeoptimization) { 363 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread)); 364 tty->cr(); 365 } 366 } 367 if (objects != nullptr) { 368 if (exec_mode == Deoptimization::Unpack_none) { 369 assert(thread->thread_state() == _thread_in_vm, "assumption"); 370 JavaThread* THREAD = thread; // For exception macros. 371 // Clear pending OOM if reallocation fails and return true indicating allocation failure 372 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true)); 373 deoptimized_objects = true; 374 } else { 375 JavaThread* current = thread; // For JRT_BLOCK 376 JRT_BLOCK 377 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD); 378 JRT_END 379 } 380 bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci(); 381 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal); 382 if (TraceDeoptimization) { 383 print_objects(deoptee_thread, objects, realloc_failures); 384 } 385 } 386 if (save_oop_result) { 387 // Restore result. 388 deoptee.set_saved_oop_result(&map, return_value()); 389 } 390 return realloc_failures; 391 } 392 393 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures, 394 frame& deoptee, int exec_mode, bool& deoptimized_objects) { 395 JavaThread* deoptee_thread = chunk->at(0)->thread(); 396 assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once"); 397 assert(thread == Thread::current(), "should be"); 398 HandleMark hm(thread); 399 #ifndef PRODUCT 400 bool first = true; 401 #endif // !PRODUCT 402 // Start locking from outermost/oldest frame 403 for (int i = (chunk->length() - 1); i >= 0; i--) { 404 compiledVFrame* cvf = chunk->at(i); 405 assert (cvf->scope() != nullptr,"expect only compiled java frames"); 406 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 407 if (monitors->is_nonempty()) { 408 bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee, 409 exec_mode, realloc_failures); 410 deoptimized_objects = deoptimized_objects || relocked; 411 #ifndef PRODUCT 412 if (PrintDeoptimizationDetails) { 413 ResourceMark rm; 414 stringStream st; 415 for (int j = 0; j < monitors->length(); j++) { 416 MonitorInfo* mi = monitors->at(j); 417 if (mi->eliminated()) { 418 if (first) { 419 first = false; 420 st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 421 } 422 if (exec_mode == Deoptimization::Unpack_none) { 423 ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor(); 424 if (monitor != nullptr && monitor->object() == mi->owner()) { 425 st.print_cr(" object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner())); 426 continue; 427 } 428 } 429 if (mi->owner_is_scalar_replaced()) { 430 Klass* k = java_lang_Class::as_Klass(mi->owner_klass()); 431 st.print_cr(" failed reallocation for klass %s", k->external_name()); 432 } else { 433 st.print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner())); 434 } 435 } 436 } 437 tty->print_raw(st.freeze()); 438 } 439 #endif // !PRODUCT 440 } 441 } 442 } 443 444 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI. 445 // The given vframes cover one physical frame. 446 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, 447 bool& realloc_failures) { 448 frame deoptee = chunk->at(0)->fr(); 449 JavaThread* deoptee_thread = chunk->at(0)->thread(); 450 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 451 RegisterMap map(chunk->at(0)->register_map()); 452 bool deoptimized_objects = false; 453 454 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 455 456 // Reallocate the non-escaping objects and restore their fields. 457 if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations) 458 || EliminateAutoBox || EnableVectorAggressiveReboxing)) { 459 realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects); 460 } 461 462 // MonitorInfo structures used in eliminate_locks are not GC safe. 463 NoSafepointVerifier no_safepoint; 464 465 // Now relock objects if synchronization on them was eliminated. 466 if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) { 467 restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects); 468 } 469 return deoptimized_objects; 470 } 471 #endif // COMPILER2_OR_JVMCI 472 473 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap) 474 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) { 475 // When we get here we are about to unwind the deoptee frame. In order to 476 // catch not yet safe to use frames, the following stack watermark barrier 477 // poll will make such frames safe to use. 478 StackWatermarkSet::before_unwind(current); 479 480 // Note: there is a safepoint safety issue here. No matter whether we enter 481 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once 482 // the vframeArray is created. 483 // 484 485 // Allocate our special deoptimization ResourceMark 486 DeoptResourceMark* dmark = new DeoptResourceMark(current); 487 assert(current->deopt_mark() == nullptr, "Pending deopt!"); 488 current->set_deopt_mark(dmark); 489 490 frame stub_frame = current->last_frame(); // Makes stack walkable as side effect 491 RegisterMap map(current, 492 RegisterMap::UpdateMap::include, 493 RegisterMap::ProcessFrames::include, 494 RegisterMap::WalkContinuation::skip); 495 RegisterMap dummy_map(current, 496 RegisterMap::UpdateMap::skip, 497 RegisterMap::ProcessFrames::include, 498 RegisterMap::WalkContinuation::skip); 499 // Now get the deoptee with a valid map 500 frame deoptee = stub_frame.sender(&map); 501 // Set the deoptee nmethod 502 assert(current->deopt_compiled_method() == nullptr, "Pending deopt!"); 503 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 504 current->set_deopt_compiled_method(nm); 505 506 if (VerifyStack) { 507 current->validate_frame_layout(); 508 } 509 510 // Create a growable array of VFrames where each VFrame represents an inlined 511 // Java frame. This storage is allocated with the usual system arena. 512 assert(deoptee.is_compiled_frame(), "Wrong frame type"); 513 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10); 514 vframe* vf = vframe::new_vframe(&deoptee, &map, current); 515 while (!vf->is_top()) { 516 assert(vf->is_compiled_frame(), "Wrong frame type"); 517 chunk->push(compiledVFrame::cast(vf)); 518 vf = vf->sender(); 519 } 520 assert(vf->is_compiled_frame(), "Wrong frame type"); 521 chunk->push(compiledVFrame::cast(vf)); 522 523 bool realloc_failures = false; 524 525 #if COMPILER2_OR_JVMCI 526 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 527 528 // Reallocate the non-escaping objects and restore their fields. Then 529 // relock objects if synchronization on them was eliminated. 530 if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations) 531 || EliminateAutoBox || EnableVectorAggressiveReboxing )) { 532 bool unused; 533 realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused); 534 } 535 #endif // COMPILER2_OR_JVMCI 536 537 // Ensure that no safepoint is taken after pointers have been stored 538 // in fields of rematerialized objects. If a safepoint occurs from here on 539 // out the java state residing in the vframeArray will be missed. 540 // Locks may be rebaised in a safepoint. 541 NoSafepointVerifier no_safepoint; 542 543 #if COMPILER2_OR_JVMCI 544 if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) )) 545 && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) { 546 bool unused = false; 547 restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused); 548 } 549 #endif // COMPILER2_OR_JVMCI 550 551 ScopeDesc* trap_scope = chunk->at(0)->scope(); 552 Handle exceptionObject; 553 if (trap_scope->rethrow_exception()) { 554 #ifndef PRODUCT 555 if (PrintDeoptimizationDetails) { 556 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci()); 557 } 558 #endif // !PRODUCT 559 560 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions(); 561 guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw"); 562 ScopeValue* topOfStack = expressions->top(); 563 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj(); 564 guarantee(exceptionObject() != nullptr, "exception oop can not be null"); 565 } 566 567 vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures); 568 #if COMPILER2_OR_JVMCI 569 if (realloc_failures) { 570 // This destroys all ScopedValue bindings. 571 current->clear_scopedValueBindings(); 572 pop_frames_failed_reallocs(current, array); 573 } 574 #endif 575 576 assert(current->vframe_array_head() == nullptr, "Pending deopt!"); 577 current->set_vframe_array_head(array); 578 579 // Now that the vframeArray has been created if we have any deferred local writes 580 // added by jvmti then we can free up that structure as the data is now in the 581 // vframeArray 582 583 JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id()); 584 585 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info. 586 CodeBlob* cb = stub_frame.cb(); 587 // Verify we have the right vframeArray 588 assert(cb->frame_size() >= 0, "Unexpected frame size"); 589 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size(); 590 591 // If the deopt call site is a MethodHandle invoke call site we have 592 // to adjust the unpack_sp. 593 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null(); 594 if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc())) 595 unpack_sp = deoptee.unextended_sp(); 596 597 #ifdef ASSERT 598 assert(cb->is_deoptimization_stub() || 599 cb->is_uncommon_trap_stub() || 600 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 || 601 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0, 602 "unexpected code blob: %s", cb->name()); 603 #endif 604 605 // This is a guarantee instead of an assert because if vframe doesn't match 606 // we will unpack the wrong deoptimized frame and wind up in strange places 607 // where it will be very difficult to figure out what went wrong. Better 608 // to die an early death here than some very obscure death later when the 609 // trail is cold. 610 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack"); 611 612 int number_of_frames = array->frames(); 613 614 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost 615 // virtual activation, which is the reverse of the elements in the vframes array. 616 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler); 617 // +1 because we always have an interpreter return address for the final slot. 618 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler); 619 int popframe_extra_args = 0; 620 // Create an interpreter return address for the stub to use as its return 621 // address so the skeletal frames are perfectly walkable 622 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0); 623 624 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost 625 // activation be put back on the expression stack of the caller for reexecution 626 if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) { 627 popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words()); 628 } 629 630 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized 631 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather 632 // than simply use array->sender.pc(). This requires us to walk the current set of frames 633 // 634 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame 635 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller 636 637 // It's possible that the number of parameters at the call site is 638 // different than number of arguments in the callee when method 639 // handles are used. If the caller is interpreted get the real 640 // value so that the proper amount of space can be added to it's 641 // frame. 642 bool caller_was_method_handle = false; 643 if (deopt_sender.is_interpreted_frame()) { 644 methodHandle method(current, deopt_sender.interpreter_frame_method()); 645 Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci()); 646 if (cur.is_invokedynamic() || cur.is_invokehandle()) { 647 // Method handle invokes may involve fairly arbitrary chains of 648 // calls so it's impossible to know how much actual space the 649 // caller has for locals. 650 caller_was_method_handle = true; 651 } 652 } 653 654 // 655 // frame_sizes/frame_pcs[0] oldest frame (int or c2i) 656 // frame_sizes/frame_pcs[1] next oldest frame (int) 657 // frame_sizes/frame_pcs[n] youngest frame (int) 658 // 659 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame 660 // owns the space for the return address to it's caller). Confusing ain't it. 661 // 662 // The vframe array can address vframes with indices running from 663 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame. 664 // When we create the skeletal frames we need the oldest frame to be in the zero slot 665 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk. 666 // so things look a little strange in this loop. 667 // 668 int callee_parameters = 0; 669 int callee_locals = 0; 670 for (int index = 0; index < array->frames(); index++ ) { 671 // frame[number_of_frames - 1 ] = on_stack_size(youngest) 672 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest)) 673 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest))) 674 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters, 675 callee_locals, 676 index == 0, 677 popframe_extra_args); 678 // This pc doesn't have to be perfect just good enough to identify the frame 679 // as interpreted so the skeleton frame will be walkable 680 // The correct pc will be set when the skeleton frame is completely filled out 681 // The final pc we store in the loop is wrong and will be overwritten below 682 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset; 683 684 callee_parameters = array->element(index)->method()->size_of_parameters(); 685 callee_locals = array->element(index)->method()->max_locals(); 686 popframe_extra_args = 0; 687 } 688 689 // Compute whether the root vframe returns a float or double value. 690 BasicType return_type; 691 { 692 methodHandle method(current, array->element(0)->method()); 693 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci()); 694 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL; 695 } 696 697 // Compute information for handling adapters and adjusting the frame size of the caller. 698 int caller_adjustment = 0; 699 700 // Compute the amount the oldest interpreter frame will have to adjust 701 // its caller's stack by. If the caller is a compiled frame then 702 // we pretend that the callee has no parameters so that the 703 // extension counts for the full amount of locals and not just 704 // locals-parms. This is because without a c2i adapter the parm 705 // area as created by the compiled frame will not be usable by 706 // the interpreter. (Depending on the calling convention there 707 // may not even be enough space). 708 709 // QQQ I'd rather see this pushed down into last_frame_adjust 710 // and have it take the sender (aka caller). 711 712 if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) { 713 caller_adjustment = last_frame_adjust(0, callee_locals); 714 } else if (callee_locals > callee_parameters) { 715 // The caller frame may need extending to accommodate 716 // non-parameter locals of the first unpacked interpreted frame. 717 // Compute that adjustment. 718 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals); 719 } 720 721 // If the sender is deoptimized the we must retrieve the address of the handler 722 // since the frame will "magically" show the original pc before the deopt 723 // and we'd undo the deopt. 724 725 frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc(); 726 if (Continuation::is_continuation_enterSpecial(deopt_sender)) { 727 ContinuationEntry::from_frame(deopt_sender)->set_argsize(0); 728 } 729 730 assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc"); 731 732 #if INCLUDE_JVMCI 733 if (exceptionObject() != nullptr) { 734 current->set_exception_oop(exceptionObject()); 735 exec_mode = Unpack_exception; 736 } 737 #endif 738 739 if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) { 740 assert(current->has_pending_exception(), "should have thrown OOME"); 741 current->set_exception_oop(current->pending_exception()); 742 current->clear_pending_exception(); 743 exec_mode = Unpack_exception; 744 } 745 746 #if INCLUDE_JVMCI 747 if (current->frames_to_pop_failed_realloc() > 0) { 748 current->set_pending_monitorenter(false); 749 } 750 #endif 751 752 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord, 753 caller_adjustment * BytesPerWord, 754 caller_was_method_handle ? 0 : callee_parameters, 755 number_of_frames, 756 frame_sizes, 757 frame_pcs, 758 return_type, 759 exec_mode); 760 // On some platforms, we need a way to pass some platform dependent 761 // information to the unpacking code so the skeletal frames come out 762 // correct (initial fp value, unextended sp, ...) 763 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info()); 764 765 if (array->frames() > 1) { 766 if (VerifyStack && TraceDeoptimization) { 767 tty->print_cr("Deoptimizing method containing inlining"); 768 } 769 } 770 771 array->set_unroll_block(info); 772 return info; 773 } 774 775 // Called to cleanup deoptimization data structures in normal case 776 // after unpacking to stack and when stack overflow error occurs 777 void Deoptimization::cleanup_deopt_info(JavaThread *thread, 778 vframeArray *array) { 779 780 // Get array if coming from exception 781 if (array == nullptr) { 782 array = thread->vframe_array_head(); 783 } 784 thread->set_vframe_array_head(nullptr); 785 786 // Free the previous UnrollBlock 787 vframeArray* old_array = thread->vframe_array_last(); 788 thread->set_vframe_array_last(array); 789 790 if (old_array != nullptr) { 791 UnrollBlock* old_info = old_array->unroll_block(); 792 old_array->set_unroll_block(nullptr); 793 delete old_info; 794 delete old_array; 795 } 796 797 // Deallocate any resource creating in this routine and any ResourceObjs allocated 798 // inside the vframeArray (StackValueCollections) 799 800 delete thread->deopt_mark(); 801 thread->set_deopt_mark(nullptr); 802 thread->set_deopt_compiled_method(nullptr); 803 804 805 if (JvmtiExport::can_pop_frame()) { 806 // Regardless of whether we entered this routine with the pending 807 // popframe condition bit set, we should always clear it now 808 thread->clear_popframe_condition(); 809 } 810 811 // unpack_frames() is called at the end of the deoptimization handler 812 // and (in C2) at the end of the uncommon trap handler. Note this fact 813 // so that an asynchronous stack walker can work again. This counter is 814 // incremented at the beginning of fetch_unroll_info() and (in C2) at 815 // the beginning of uncommon_trap(). 816 thread->dec_in_deopt_handler(); 817 } 818 819 // Moved from cpu directories because none of the cpus has callee save values. 820 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp. 821 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { 822 823 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in 824 // the days we had adapter frames. When we deoptimize a situation where a 825 // compiled caller calls a compiled caller will have registers it expects 826 // to survive the call to the callee. If we deoptimize the callee the only 827 // way we can restore these registers is to have the oldest interpreter 828 // frame that we create restore these values. That is what this routine 829 // will accomplish. 830 831 // At the moment we have modified c2 to not have any callee save registers 832 // so this problem does not exist and this routine is just a place holder. 833 834 assert(f->is_interpreted_frame(), "must be interpreted"); 835 } 836 837 #ifndef PRODUCT 838 static bool falls_through(Bytecodes::Code bc) { 839 switch (bc) { 840 // List may be incomplete. Here we really only care about bytecodes where compiled code 841 // can deoptimize. 842 case Bytecodes::_goto: 843 case Bytecodes::_goto_w: 844 case Bytecodes::_athrow: 845 return false; 846 default: 847 return true; 848 } 849 } 850 #endif 851 852 // Return BasicType of value being returned 853 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)) 854 assert(thread == JavaThread::current(), "pre-condition"); 855 856 // We are already active in the special DeoptResourceMark any ResourceObj's we 857 // allocate will be freed at the end of the routine. 858 859 // JRT_LEAF methods don't normally allocate handles and there is a 860 // NoHandleMark to enforce that. It is actually safe to use Handles 861 // in a JRT_LEAF method, and sometimes desirable, but to do so we 862 // must use ResetNoHandleMark to bypass the NoHandleMark, and 863 // then use a HandleMark to ensure any Handles we do create are 864 // cleaned up in this scope. 865 ResetNoHandleMark rnhm; 866 HandleMark hm(thread); 867 868 frame stub_frame = thread->last_frame(); 869 870 Continuation::notify_deopt(thread, stub_frame.sp()); 871 872 // Since the frame to unpack is the top frame of this thread, the vframe_array_head 873 // must point to the vframeArray for the unpack frame. 874 vframeArray* array = thread->vframe_array_head(); 875 UnrollBlock* info = array->unroll_block(); 876 877 // We set the last_Java frame. But the stack isn't really parsable here. So we 878 // clear it to make sure JFR understands not to try and walk stacks from events 879 // in here. 880 intptr_t* sp = thread->frame_anchor()->last_Java_sp(); 881 thread->frame_anchor()->set_last_Java_sp(nullptr); 882 883 // Unpack the interpreter frames and any adapter frame (c2 only) we might create. 884 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters()); 885 886 thread->frame_anchor()->set_last_Java_sp(sp); 887 888 BasicType bt = info->return_type(); 889 890 // If we have an exception pending, claim that the return type is an oop 891 // so the deopt_blob does not overwrite the exception_oop. 892 893 if (exec_mode == Unpack_exception) 894 bt = T_OBJECT; 895 896 // Cleanup thread deopt data 897 cleanup_deopt_info(thread, array); 898 899 #ifndef PRODUCT 900 if (VerifyStack) { 901 ResourceMark res_mark; 902 // Clear pending exception to not break verification code (restored afterwards) 903 PreserveExceptionMark pm(thread); 904 905 thread->validate_frame_layout(); 906 907 // Verify that the just-unpacked frames match the interpreter's 908 // notions of expression stack and locals 909 vframeArray* cur_array = thread->vframe_array_last(); 910 RegisterMap rm(thread, 911 RegisterMap::UpdateMap::skip, 912 RegisterMap::ProcessFrames::include, 913 RegisterMap::WalkContinuation::skip); 914 rm.set_include_argument_oops(false); 915 bool is_top_frame = true; 916 int callee_size_of_parameters = 0; 917 int callee_max_locals = 0; 918 for (int i = 0; i < cur_array->frames(); i++) { 919 vframeArrayElement* el = cur_array->element(i); 920 frame* iframe = el->iframe(); 921 guarantee(iframe->is_interpreted_frame(), "Wrong frame type"); 922 923 // Get the oop map for this bci 924 InterpreterOopMap mask; 925 int cur_invoke_parameter_size = 0; 926 bool try_next_mask = false; 927 int next_mask_expression_stack_size = -1; 928 int top_frame_expression_stack_adjustment = 0; 929 methodHandle mh(thread, iframe->interpreter_frame_method()); 930 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask); 931 BytecodeStream str(mh, iframe->interpreter_frame_bci()); 932 int max_bci = mh->code_size(); 933 // Get to the next bytecode if possible 934 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 935 // Check to see if we can grab the number of outgoing arguments 936 // at an uncommon trap for an invoke (where the compiler 937 // generates debug info before the invoke has executed) 938 Bytecodes::Code cur_code = str.next(); 939 Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere; 940 if (Bytecodes::is_invoke(cur_code)) { 941 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci()); 942 cur_invoke_parameter_size = invoke.size_of_parameters(); 943 if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) { 944 callee_size_of_parameters++; 945 } 946 } 947 if (str.bci() < max_bci) { 948 next_code = str.next(); 949 if (next_code >= 0) { 950 // The interpreter oop map generator reports results before 951 // the current bytecode has executed except in the case of 952 // calls. It seems to be hard to tell whether the compiler 953 // has emitted debug information matching the "state before" 954 // a given bytecode or the state after, so we try both 955 if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) { 956 // Get expression stack size for the next bytecode 957 InterpreterOopMap next_mask; 958 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask); 959 next_mask_expression_stack_size = next_mask.expression_stack_size(); 960 if (Bytecodes::is_invoke(next_code)) { 961 Bytecode_invoke invoke(mh, str.bci()); 962 next_mask_expression_stack_size += invoke.size_of_parameters(); 963 } 964 // Need to subtract off the size of the result type of 965 // the bytecode because this is not described in the 966 // debug info but returned to the interpreter in the TOS 967 // caching register 968 BasicType bytecode_result_type = Bytecodes::result_type(cur_code); 969 if (bytecode_result_type != T_ILLEGAL) { 970 top_frame_expression_stack_adjustment = type2size[bytecode_result_type]; 971 } 972 assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive"); 973 try_next_mask = true; 974 } 975 } 976 } 977 978 // Verify stack depth and oops in frame 979 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc) 980 if (!( 981 /* SPARC */ 982 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) || 983 /* x86 */ 984 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) || 985 (try_next_mask && 986 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size - 987 top_frame_expression_stack_adjustment))) || 988 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) || 989 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) && 990 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size)) 991 )) { 992 { 993 // Print out some information that will help us debug the problem 994 tty->print_cr("Wrong number of expression stack elements during deoptimization"); 995 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1); 996 tty->print_cr(" Current code %s", Bytecodes::name(cur_code)); 997 if (try_next_mask) { 998 tty->print_cr(" Next code %s", Bytecodes::name(next_code)); 999 } 1000 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements", 1001 iframe->interpreter_frame_expression_stack_size()); 1002 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size()); 1003 tty->print_cr(" try_next_mask = %d", try_next_mask); 1004 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size); 1005 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters); 1006 tty->print_cr(" callee_max_locals = %d", callee_max_locals); 1007 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment); 1008 tty->print_cr(" exec_mode = %d", exec_mode); 1009 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size); 1010 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id()); 1011 tty->print_cr(" Interpreted frames:"); 1012 for (int k = 0; k < cur_array->frames(); k++) { 1013 vframeArrayElement* el = cur_array->element(k); 1014 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci()); 1015 } 1016 cur_array->print_on_2(tty); 1017 } 1018 guarantee(false, "wrong number of expression stack elements during deopt"); 1019 } 1020 VerifyOopClosure verify; 1021 iframe->oops_interpreted_do(&verify, &rm, false); 1022 callee_size_of_parameters = mh->size_of_parameters(); 1023 callee_max_locals = mh->max_locals(); 1024 is_top_frame = false; 1025 } 1026 } 1027 #endif // !PRODUCT 1028 1029 return bt; 1030 JRT_END 1031 1032 class DeoptimizeMarkedClosure : public HandshakeClosure { 1033 public: 1034 DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {} 1035 void do_thread(Thread* thread) { 1036 JavaThread* jt = JavaThread::cast(thread); 1037 jt->deoptimize_marked_methods(); 1038 } 1039 }; 1040 1041 void Deoptimization::deoptimize_all_marked() { 1042 ResourceMark rm; 1043 1044 // Make the dependent methods not entrant 1045 CodeCache::make_marked_nmethods_deoptimized(); 1046 1047 DeoptimizeMarkedClosure deopt; 1048 if (SafepointSynchronize::is_at_safepoint()) { 1049 Threads::java_threads_do(&deopt); 1050 } else { 1051 Handshake::execute(&deopt); 1052 } 1053 } 1054 1055 Deoptimization::DeoptAction Deoptimization::_unloaded_action 1056 = Deoptimization::Action_reinterpret; 1057 1058 #if INCLUDE_JVMCI 1059 template<typename CacheType> 1060 class BoxCacheBase : public CHeapObj<mtCompiler> { 1061 protected: 1062 static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) { 1063 ResourceMark rm(thread); 1064 char* klass_name_str = klass_name->as_C_string(); 1065 InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle()); 1066 guarantee(ik != nullptr, "%s must be loaded", klass_name_str); 1067 if (!ik->is_in_error_state()) { 1068 guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str); 1069 CacheType::compute_offsets(ik); 1070 } 1071 return ik; 1072 } 1073 }; 1074 1075 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache : public BoxCacheBase<CacheType> { 1076 PrimitiveType _low; 1077 PrimitiveType _high; 1078 jobject _cache; 1079 protected: 1080 static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton; 1081 BoxCache(Thread* thread) { 1082 InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol()); 1083 if (ik->is_in_error_state()) { 1084 _low = 1; 1085 _high = 0; 1086 _cache = nullptr; 1087 } else { 1088 objArrayOop cache = CacheType::cache(ik); 1089 assert(cache->length() > 0, "Empty cache"); 1090 _low = BoxType::value(cache->obj_at(0)); 1091 _high = checked_cast<PrimitiveType>(_low + cache->length() - 1); 1092 _cache = JNIHandles::make_global(Handle(thread, cache)); 1093 } 1094 } 1095 ~BoxCache() { 1096 JNIHandles::destroy_global(_cache); 1097 } 1098 public: 1099 static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) { 1100 if (_singleton == nullptr) { 1101 BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread); 1102 if (!Atomic::replace_if_null(&_singleton, s)) { 1103 delete s; 1104 } 1105 } 1106 return _singleton; 1107 } 1108 oop lookup(PrimitiveType value) { 1109 if (_low <= value && value <= _high) { 1110 int offset = checked_cast<int>(value - _low); 1111 return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset); 1112 } 1113 return nullptr; 1114 } 1115 oop lookup_raw(intptr_t raw_value, bool& cache_init_error) { 1116 if (_cache == nullptr) { 1117 cache_init_error = true; 1118 return nullptr; 1119 } 1120 // Have to cast to avoid little/big-endian problems. 1121 if (sizeof(PrimitiveType) > sizeof(jint)) { 1122 jlong value = (jlong)raw_value; 1123 return lookup(value); 1124 } 1125 PrimitiveType value = (PrimitiveType)*((jint*)&raw_value); 1126 return lookup(value); 1127 } 1128 }; 1129 1130 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache; 1131 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache; 1132 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache; 1133 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache; 1134 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache; 1135 1136 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr; 1137 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr; 1138 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr; 1139 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr; 1140 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr; 1141 1142 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> { 1143 jobject _true_cache; 1144 jobject _false_cache; 1145 protected: 1146 static BooleanBoxCache *_singleton; 1147 BooleanBoxCache(Thread *thread) { 1148 InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol()); 1149 if (ik->is_in_error_state()) { 1150 _true_cache = nullptr; 1151 _false_cache = nullptr; 1152 } else { 1153 _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik))); 1154 _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik))); 1155 } 1156 } 1157 ~BooleanBoxCache() { 1158 JNIHandles::destroy_global(_true_cache); 1159 JNIHandles::destroy_global(_false_cache); 1160 } 1161 public: 1162 static BooleanBoxCache* singleton(Thread* thread) { 1163 if (_singleton == nullptr) { 1164 BooleanBoxCache* s = new BooleanBoxCache(thread); 1165 if (!Atomic::replace_if_null(&_singleton, s)) { 1166 delete s; 1167 } 1168 } 1169 return _singleton; 1170 } 1171 oop lookup_raw(intptr_t raw_value, bool& cache_in_error) { 1172 if (_true_cache == nullptr) { 1173 cache_in_error = true; 1174 return nullptr; 1175 } 1176 // Have to cast to avoid little/big-endian problems. 1177 jboolean value = (jboolean)*((jint*)&raw_value); 1178 return lookup(value); 1179 } 1180 oop lookup(jboolean value) { 1181 if (value != 0) { 1182 return JNIHandles::resolve_non_null(_true_cache); 1183 } 1184 return JNIHandles::resolve_non_null(_false_cache); 1185 } 1186 }; 1187 1188 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr; 1189 1190 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) { 1191 Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()()); 1192 BasicType box_type = vmClasses::box_klass_type(k); 1193 if (box_type != T_OBJECT) { 1194 StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0)); 1195 switch(box_type) { 1196 case T_INT: return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1197 case T_CHAR: return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1198 case T_SHORT: return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1199 case T_BYTE: return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1200 case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1201 case T_LONG: return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1202 default:; 1203 } 1204 } 1205 return nullptr; 1206 } 1207 #endif // INCLUDE_JVMCI 1208 1209 #if COMPILER2_OR_JVMCI 1210 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) { 1211 Handle pending_exception(THREAD, thread->pending_exception()); 1212 const char* exception_file = thread->exception_file(); 1213 int exception_line = thread->exception_line(); 1214 thread->clear_pending_exception(); 1215 1216 bool failures = false; 1217 1218 for (int i = 0; i < objects->length(); i++) { 1219 assert(objects->at(i)->is_object(), "invalid debug information"); 1220 ObjectValue* sv = (ObjectValue*) objects->at(i); 1221 1222 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1223 oop obj = nullptr; 1224 1225 bool cache_init_error = false; 1226 if (k->is_instance_klass()) { 1227 #if INCLUDE_JVMCI 1228 nmethod* nm = fr->cb()->as_nmethod_or_null(); 1229 if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) { 1230 AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv; 1231 obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD); 1232 if (obj != nullptr) { 1233 // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it. 1234 abv->set_cached(true); 1235 } else if (cache_init_error) { 1236 // Results in an OOME which is valid (as opposed to a class initialization error) 1237 // and is fine for the rare case a cache initialization failing. 1238 failures = true; 1239 } 1240 } 1241 #endif // INCLUDE_JVMCI 1242 1243 InstanceKlass* ik = InstanceKlass::cast(k); 1244 if (obj == nullptr && !cache_init_error) { 1245 InternalOOMEMark iom(THREAD); 1246 if (EnableVectorSupport && VectorSupport::is_vector(ik)) { 1247 obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD); 1248 } else { 1249 obj = ik->allocate_instance(THREAD); 1250 } 1251 } 1252 } else if (k->is_typeArray_klass()) { 1253 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1254 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); 1255 int len = sv->field_size() / type2size[ak->element_type()]; 1256 InternalOOMEMark iom(THREAD); 1257 obj = ak->allocate(len, THREAD); 1258 } else if (k->is_objArray_klass()) { 1259 ObjArrayKlass* ak = ObjArrayKlass::cast(k); 1260 InternalOOMEMark iom(THREAD); 1261 obj = ak->allocate(sv->field_size(), THREAD); 1262 } 1263 1264 if (obj == nullptr) { 1265 failures = true; 1266 } 1267 1268 assert(sv->value().is_null(), "redundant reallocation"); 1269 assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception"); 1270 CLEAR_PENDING_EXCEPTION; 1271 sv->set_value(obj); 1272 } 1273 1274 if (failures) { 1275 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures); 1276 } else if (pending_exception.not_null()) { 1277 thread->set_pending_exception(pending_exception(), exception_file, exception_line); 1278 } 1279 1280 return failures; 1281 } 1282 1283 #if INCLUDE_JVMCI 1284 /** 1285 * For primitive types whose kind gets "erased" at runtime (shorts become stack ints), 1286 * we need to somehow be able to recover the actual kind to be able to write the correct 1287 * amount of bytes. 1288 * For that purpose, this method assumes that, for an entry spanning n bytes at index i, 1289 * the entries at index n + 1 to n + i are 'markers'. 1290 * For example, if we were writing a short at index 4 of a byte array of size 8, the 1291 * expected form of the array would be: 1292 * 1293 * {b0, b1, b2, b3, INT, marker, b6, b7} 1294 * 1295 * Thus, in order to get back the size of the entry, we simply need to count the number 1296 * of marked entries 1297 * 1298 * @param virtualArray the virtualized byte array 1299 * @param i index of the virtual entry we are recovering 1300 * @return The number of bytes the entry spans 1301 */ 1302 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) { 1303 int index = i; 1304 while (++index < virtualArray->field_size() && 1305 virtualArray->field_at(index)->is_marker()) {} 1306 return index - i; 1307 } 1308 1309 /** 1310 * If there was a guarantee for byte array to always start aligned to a long, we could 1311 * do a simple check on the parity of the index. Unfortunately, that is not always the 1312 * case. Thus, we check alignment of the actual address we are writing to. 1313 * In the unlikely case index 0 is 5-aligned for example, it would then be possible to 1314 * write a long to index 3. 1315 */ 1316 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) { 1317 jbyte* res = obj->byte_at_addr(index); 1318 assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write"); 1319 return res; 1320 } 1321 1322 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) { 1323 switch (byte_count) { 1324 case 1: 1325 obj->byte_at_put(index, (jbyte) value->get_jint()); 1326 break; 1327 case 2: 1328 *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint(); 1329 break; 1330 case 4: 1331 *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint(); 1332 break; 1333 case 8: 1334 *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr(); 1335 break; 1336 default: 1337 ShouldNotReachHere(); 1338 } 1339 } 1340 #endif // INCLUDE_JVMCI 1341 1342 1343 // restore elements of an eliminated type array 1344 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) { 1345 int index = 0; 1346 1347 for (int i = 0; i < sv->field_size(); i++) { 1348 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1349 switch(type) { 1350 case T_LONG: case T_DOUBLE: { 1351 assert(value->type() == T_INT, "Agreement."); 1352 StackValue* low = 1353 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1354 #ifdef _LP64 1355 jlong res = (jlong)low->get_intptr(); 1356 #else 1357 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1358 #endif 1359 obj->long_at_put(index, res); 1360 break; 1361 } 1362 1363 case T_INT: case T_FLOAT: { // 4 bytes. 1364 assert(value->type() == T_INT, "Agreement."); 1365 bool big_value = false; 1366 if (i + 1 < sv->field_size() && type == T_INT) { 1367 if (sv->field_at(i)->is_location()) { 1368 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type(); 1369 if (type == Location::dbl || type == Location::lng) { 1370 big_value = true; 1371 } 1372 } else if (sv->field_at(i)->is_constant_int()) { 1373 ScopeValue* next_scope_field = sv->field_at(i + 1); 1374 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1375 big_value = true; 1376 } 1377 } 1378 } 1379 1380 if (big_value) { 1381 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1382 #ifdef _LP64 1383 jlong res = (jlong)low->get_intptr(); 1384 #else 1385 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1386 #endif 1387 obj->int_at_put(index, *(jint*)&res); 1388 obj->int_at_put(++index, *((jint*)&res + 1)); 1389 } else { 1390 obj->int_at_put(index, value->get_jint()); 1391 } 1392 break; 1393 } 1394 1395 case T_SHORT: 1396 assert(value->type() == T_INT, "Agreement."); 1397 obj->short_at_put(index, (jshort)value->get_jint()); 1398 break; 1399 1400 case T_CHAR: 1401 assert(value->type() == T_INT, "Agreement."); 1402 obj->char_at_put(index, (jchar)value->get_jint()); 1403 break; 1404 1405 case T_BYTE: { 1406 assert(value->type() == T_INT, "Agreement."); 1407 #if INCLUDE_JVMCI 1408 // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'. 1409 int byte_count = count_number_of_bytes_for_entry(sv, i); 1410 byte_array_put(obj, value, index, byte_count); 1411 // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip. 1412 i += byte_count - 1; // Balance the loop counter. 1413 index += byte_count; 1414 // index has been updated so continue at top of loop 1415 continue; 1416 #else 1417 obj->byte_at_put(index, (jbyte)value->get_jint()); 1418 break; 1419 #endif // INCLUDE_JVMCI 1420 } 1421 1422 case T_BOOLEAN: { 1423 assert(value->type() == T_INT, "Agreement."); 1424 obj->bool_at_put(index, (jboolean)value->get_jint()); 1425 break; 1426 } 1427 1428 default: 1429 ShouldNotReachHere(); 1430 } 1431 index++; 1432 } 1433 } 1434 1435 // restore fields of an eliminated object array 1436 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) { 1437 for (int i = 0; i < sv->field_size(); i++) { 1438 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1439 assert(value->type() == T_OBJECT, "object element expected"); 1440 obj->obj_at_put(i, value->get_obj()()); 1441 } 1442 } 1443 1444 class ReassignedField { 1445 public: 1446 int _offset; 1447 BasicType _type; 1448 public: 1449 ReassignedField() { 1450 _offset = 0; 1451 _type = T_ILLEGAL; 1452 } 1453 }; 1454 1455 static int compare(ReassignedField* left, ReassignedField* right) { 1456 return left->_offset - right->_offset; 1457 } 1458 1459 // Restore fields of an eliminated instance object using the same field order 1460 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true) 1461 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) { 1462 GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>(); 1463 InstanceKlass* ik = klass; 1464 while (ik != nullptr) { 1465 for (AllFieldStream fs(ik); !fs.done(); fs.next()) { 1466 if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) { 1467 ReassignedField field; 1468 field._offset = fs.offset(); 1469 field._type = Signature::basic_type(fs.signature()); 1470 fields->append(field); 1471 } 1472 } 1473 ik = ik->superklass(); 1474 } 1475 fields->sort(compare); 1476 for (int i = 0; i < fields->length(); i++) { 1477 ScopeValue* scope_field = sv->field_at(svIndex); 1478 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1479 int offset = fields->at(i)._offset; 1480 BasicType type = fields->at(i)._type; 1481 switch (type) { 1482 case T_OBJECT: case T_ARRAY: 1483 assert(value->type() == T_OBJECT, "Agreement."); 1484 obj->obj_field_put(offset, value->get_obj()()); 1485 break; 1486 1487 case T_INT: case T_FLOAT: { // 4 bytes. 1488 assert(value->type() == T_INT, "Agreement."); 1489 bool big_value = false; 1490 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) { 1491 if (scope_field->is_location()) { 1492 Location::Type type = ((LocationValue*) scope_field)->location().type(); 1493 if (type == Location::dbl || type == Location::lng) { 1494 big_value = true; 1495 } 1496 } 1497 if (scope_field->is_constant_int()) { 1498 ScopeValue* next_scope_field = sv->field_at(svIndex + 1); 1499 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1500 big_value = true; 1501 } 1502 } 1503 } 1504 1505 if (big_value) { 1506 i++; 1507 assert(i < fields->length(), "second T_INT field needed"); 1508 assert(fields->at(i)._type == T_INT, "T_INT field needed"); 1509 } else { 1510 obj->int_field_put(offset, value->get_jint()); 1511 break; 1512 } 1513 } 1514 /* no break */ 1515 1516 case T_LONG: case T_DOUBLE: { 1517 assert(value->type() == T_INT, "Agreement."); 1518 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex)); 1519 #ifdef _LP64 1520 jlong res = (jlong)low->get_intptr(); 1521 #else 1522 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1523 #endif 1524 obj->long_field_put(offset, res); 1525 break; 1526 } 1527 1528 case T_SHORT: 1529 assert(value->type() == T_INT, "Agreement."); 1530 obj->short_field_put(offset, (jshort)value->get_jint()); 1531 break; 1532 1533 case T_CHAR: 1534 assert(value->type() == T_INT, "Agreement."); 1535 obj->char_field_put(offset, (jchar)value->get_jint()); 1536 break; 1537 1538 case T_BYTE: 1539 assert(value->type() == T_INT, "Agreement."); 1540 obj->byte_field_put(offset, (jbyte)value->get_jint()); 1541 break; 1542 1543 case T_BOOLEAN: 1544 assert(value->type() == T_INT, "Agreement."); 1545 obj->bool_field_put(offset, (jboolean)value->get_jint()); 1546 break; 1547 1548 default: 1549 ShouldNotReachHere(); 1550 } 1551 svIndex++; 1552 } 1553 return svIndex; 1554 } 1555 1556 // restore fields of all eliminated objects and arrays 1557 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) { 1558 for (int i = 0; i < objects->length(); i++) { 1559 assert(objects->at(i)->is_object(), "invalid debug information"); 1560 ObjectValue* sv = (ObjectValue*) objects->at(i); 1561 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1562 Handle obj = sv->value(); 1563 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 1564 #ifndef PRODUCT 1565 if (PrintDeoptimizationDetails) { 1566 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string()); 1567 } 1568 #endif // !PRODUCT 1569 1570 if (obj.is_null()) { 1571 continue; 1572 } 1573 1574 #if INCLUDE_JVMCI 1575 // Don't reassign fields of boxes that came from a cache. Caches may be in CDS. 1576 if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) { 1577 continue; 1578 } 1579 #endif // INCLUDE_JVMCI 1580 if (EnableVectorSupport && VectorSupport::is_vector(k)) { 1581 assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string()); 1582 ScopeValue* payload = sv->field_at(0); 1583 if (payload->is_location() && 1584 payload->as_LocationValue()->location().type() == Location::vector) { 1585 #ifndef PRODUCT 1586 if (PrintDeoptimizationDetails) { 1587 tty->print_cr("skip field reassignment for this vector - it should be assigned already"); 1588 if (Verbose) { 1589 Handle obj = sv->value(); 1590 k->oop_print_on(obj(), tty); 1591 } 1592 } 1593 #endif // !PRODUCT 1594 continue; // Such vector's value was already restored in VectorSupport::allocate_vector(). 1595 } 1596 // Else fall-through to do assignment for scalar-replaced boxed vector representation 1597 // which could be restored after vector object allocation. 1598 } 1599 if (k->is_instance_klass()) { 1600 InstanceKlass* ik = InstanceKlass::cast(k); 1601 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal); 1602 } else if (k->is_typeArray_klass()) { 1603 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1604 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type()); 1605 } else if (k->is_objArray_klass()) { 1606 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj()); 1607 } 1608 } 1609 // These objects may escape when we return to Interpreter after deoptimization. 1610 // We need barrier so that stores that initialize these objects can't be reordered 1611 // with subsequent stores that make these objects accessible by other threads. 1612 OrderAccess::storestore(); 1613 } 1614 1615 1616 // relock objects for which synchronization was eliminated 1617 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors, 1618 JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) { 1619 bool relocked_objects = false; 1620 for (int i = 0; i < monitors->length(); i++) { 1621 MonitorInfo* mon_info = monitors->at(i); 1622 if (mon_info->eliminated()) { 1623 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed"); 1624 relocked_objects = true; 1625 if (!mon_info->owner_is_scalar_replaced()) { 1626 Handle obj(thread, mon_info->owner()); 1627 markWord mark = obj->mark(); 1628 if (exec_mode == Unpack_none) { 1629 if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) { 1630 // With exec_mode == Unpack_none obj may be thread local and locked in 1631 // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header. 1632 markWord dmw = mark.displaced_mark_helper(); 1633 mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr)); 1634 obj->set_mark(dmw); 1635 } 1636 if (mark.has_monitor()) { 1637 // defer relocking if the deoptee thread is currently waiting for obj 1638 ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor(); 1639 if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) { 1640 assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization"); 1641 if (LockingMode == LM_LEGACY) { 1642 mon_info->lock()->set_displaced_header(markWord::unused_mark()); 1643 } else if (UseObjectMonitorTable) { 1644 mon_info->lock()->clear_object_monitor_cache(); 1645 } 1646 #ifdef ASSERT 1647 else { 1648 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be"); 1649 mon_info->lock()->set_bad_metadata_deopt(); 1650 } 1651 #endif 1652 JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread); 1653 continue; 1654 } 1655 } 1656 } 1657 BasicLock* lock = mon_info->lock(); 1658 if (LockingMode == LM_LIGHTWEIGHT) { 1659 // We have lost information about the correct state of the lock stack. 1660 // Entering may create an invalid lock stack. Inflate the lock if it 1661 // was fast_locked to restore the valid lock stack. 1662 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1663 if (deoptee_thread->lock_stack().contains(obj())) { 1664 LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal, 1665 deoptee_thread, thread); 1666 } 1667 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1668 assert(obj->mark().has_monitor(), "must be"); 1669 assert(!deoptee_thread->lock_stack().contains(obj()), "must be"); 1670 assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be"); 1671 } else { 1672 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1673 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1674 } 1675 } 1676 } 1677 } 1678 return relocked_objects; 1679 } 1680 #endif // COMPILER2_OR_JVMCI 1681 1682 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) { 1683 Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp())); 1684 1685 // Register map for next frame (used for stack crawl). We capture 1686 // the state of the deopt'ing frame's caller. Thus if we need to 1687 // stuff a C2I adapter we can properly fill in the callee-save 1688 // register locations. 1689 frame caller = fr.sender(reg_map); 1690 int frame_size = pointer_delta_as_int(caller.sp(), fr.sp()); 1691 1692 frame sender = caller; 1693 1694 // Since the Java thread being deoptimized will eventually adjust it's own stack, 1695 // the vframeArray containing the unpacking information is allocated in the C heap. 1696 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). 1697 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures); 1698 1699 // Compare the vframeArray to the collected vframes 1700 assert(array->structural_compare(thread, chunk), "just checking"); 1701 1702 if (TraceDeoptimization) { 1703 ResourceMark rm; 1704 stringStream st; 1705 st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array)); 1706 st.print(" "); 1707 fr.print_on(&st); 1708 st.print_cr(" Virtual frames (innermost/newest first):"); 1709 for (int index = 0; index < chunk->length(); index++) { 1710 compiledVFrame* vf = chunk->at(index); 1711 int bci = vf->raw_bci(); 1712 const char* code_name; 1713 if (bci == SynchronizationEntryBCI) { 1714 code_name = "sync entry"; 1715 } else { 1716 Bytecodes::Code code = vf->method()->code_at(bci); 1717 code_name = Bytecodes::name(code); 1718 } 1719 1720 st.print(" VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf)); 1721 st.print(" - %s", vf->method()->name_and_sig_as_C_string()); 1722 st.print(" - %s", code_name); 1723 st.print_cr(" @ bci=%d ", bci); 1724 } 1725 tty->print_raw(st.freeze()); 1726 tty->cr(); 1727 } 1728 1729 return array; 1730 } 1731 1732 #if COMPILER2_OR_JVMCI 1733 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) { 1734 // Reallocation of some scalar replaced objects failed. Record 1735 // that we need to pop all the interpreter frames for the 1736 // deoptimized compiled frame. 1737 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?"); 1738 thread->set_frames_to_pop_failed_realloc(array->frames()); 1739 // Unlock all monitors here otherwise the interpreter will see a 1740 // mix of locked and unlocked monitors (because of failed 1741 // reallocations of synchronized objects) and be confused. 1742 for (int i = 0; i < array->frames(); i++) { 1743 MonitorChunk* monitors = array->element(i)->monitors(); 1744 if (monitors != nullptr) { 1745 // Unlock in reverse order starting from most nested monitor. 1746 for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) { 1747 BasicObjectLock* src = monitors->at(j); 1748 if (src->obj() != nullptr) { 1749 ObjectSynchronizer::exit(src->obj(), src->lock(), thread); 1750 } 1751 } 1752 array->element(i)->free_monitors(); 1753 #ifdef ASSERT 1754 array->element(i)->set_removed_monitors(); 1755 #endif 1756 } 1757 } 1758 } 1759 #endif 1760 1761 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) { 1762 assert(fr.can_be_deoptimized(), "checking frame type"); 1763 1764 gather_statistics(reason, Action_none, Bytecodes::_illegal); 1765 1766 if (LogCompilation && xtty != nullptr) { 1767 nmethod* nm = fr.cb()->as_nmethod_or_null(); 1768 assert(nm != nullptr, "only compiled methods can deopt"); 1769 1770 ttyLocker ttyl; 1771 xtty->begin_head("deoptimized thread='%zu' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc())); 1772 nm->log_identity(xtty); 1773 xtty->end_head(); 1774 for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) { 1775 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1776 xtty->method(sd->method()); 1777 xtty->end_elem(); 1778 if (sd->is_top()) break; 1779 } 1780 xtty->tail("deoptimized"); 1781 } 1782 1783 Continuation::notify_deopt(thread, fr.sp()); 1784 1785 // Patch the compiled method so that when execution returns to it we will 1786 // deopt the execution state and return to the interpreter. 1787 fr.deoptimize(thread); 1788 } 1789 1790 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) { 1791 // Deoptimize only if the frame comes from compile code. 1792 // Do not deoptimize the frame which is already patched 1793 // during the execution of the loops below. 1794 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) { 1795 return; 1796 } 1797 ResourceMark rm; 1798 deoptimize_single_frame(thread, fr, reason); 1799 } 1800 1801 #if INCLUDE_JVMCI 1802 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) { 1803 // there is no exception handler for this pc => deoptimize 1804 nm->make_not_entrant(); 1805 1806 // Use Deoptimization::deoptimize for all of its side-effects: 1807 // gathering traps statistics, logging... 1808 // it also patches the return pc but we do not care about that 1809 // since we return a continuation to the deopt_blob below. 1810 JavaThread* thread = JavaThread::current(); 1811 RegisterMap reg_map(thread, 1812 RegisterMap::UpdateMap::skip, 1813 RegisterMap::ProcessFrames::include, 1814 RegisterMap::WalkContinuation::skip); 1815 frame runtime_frame = thread->last_frame(); 1816 frame caller_frame = runtime_frame.sender(®_map); 1817 assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method"); 1818 vframe* vf = vframe::new_vframe(&caller_frame, ®_map, thread); 1819 compiledVFrame* cvf = compiledVFrame::cast(vf); 1820 ScopeDesc* imm_scope = cvf->scope(); 1821 MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true); 1822 if (imm_mdo != nullptr) { 1823 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 1824 MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 1825 1826 ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr); 1827 if (pdata != nullptr && pdata->is_BitData()) { 1828 BitData* bit_data = (BitData*) pdata; 1829 bit_data->set_exception_seen(); 1830 } 1831 } 1832 1833 Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler); 1834 1835 MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true); 1836 if (trap_mdo != nullptr) { 1837 trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler); 1838 } 1839 1840 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 1841 } 1842 #endif 1843 1844 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1845 assert(thread == Thread::current() || 1846 thread->is_handshake_safe_for(Thread::current()) || 1847 SafepointSynchronize::is_at_safepoint(), 1848 "can only deoptimize other thread at a safepoint/handshake"); 1849 // Compute frame and register map based on thread and sp. 1850 RegisterMap reg_map(thread, 1851 RegisterMap::UpdateMap::skip, 1852 RegisterMap::ProcessFrames::include, 1853 RegisterMap::WalkContinuation::skip); 1854 frame fr = thread->last_frame(); 1855 while (fr.id() != id) { 1856 fr = fr.sender(®_map); 1857 } 1858 deoptimize(thread, fr, reason); 1859 } 1860 1861 1862 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1863 Thread* current = Thread::current(); 1864 if (thread == current || thread->is_handshake_safe_for(current)) { 1865 Deoptimization::deoptimize_frame_internal(thread, id, reason); 1866 } else { 1867 VM_DeoptimizeFrame deopt(thread, id, reason); 1868 VMThread::execute(&deopt); 1869 } 1870 } 1871 1872 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) { 1873 deoptimize_frame(thread, id, Reason_constraint); 1874 } 1875 1876 // JVMTI PopFrame support 1877 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address)) 1878 { 1879 assert(thread == JavaThread::current(), "pre-condition"); 1880 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address); 1881 } 1882 JRT_END 1883 1884 MethodData* 1885 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m, 1886 bool create_if_missing) { 1887 JavaThread* THREAD = thread; // For exception macros. 1888 MethodData* mdo = m()->method_data(); 1889 if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) { 1890 // Build an MDO. Ignore errors like OutOfMemory; 1891 // that simply means we won't have an MDO to update. 1892 Method::build_profiling_method_data(m, THREAD); 1893 if (HAS_PENDING_EXCEPTION) { 1894 // Only metaspace OOM is expected. No Java code executed. 1895 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1896 CLEAR_PENDING_EXCEPTION; 1897 } 1898 mdo = m()->method_data(); 1899 } 1900 return mdo; 1901 } 1902 1903 #if COMPILER2_OR_JVMCI 1904 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) { 1905 // In case of an unresolved klass entry, load the class. 1906 // This path is exercised from case _ldc in Parse::do_one_bytecode, 1907 // and probably nowhere else. 1908 // Even that case would benefit from simply re-interpreting the 1909 // bytecode, without paying special attention to the class index. 1910 // So this whole "class index" feature should probably be removed. 1911 1912 if (constant_pool->tag_at(index).is_unresolved_klass()) { 1913 Klass* tk = constant_pool->klass_at(index, THREAD); 1914 if (HAS_PENDING_EXCEPTION) { 1915 // Exception happened during classloading. We ignore the exception here, since it 1916 // is going to be rethrown since the current activation is going to be deoptimized and 1917 // the interpreter will re-execute the bytecode. 1918 // Do not clear probable Async Exceptions. 1919 CLEAR_PENDING_NONASYNC_EXCEPTION; 1920 // Class loading called java code which may have caused a stack 1921 // overflow. If the exception was thrown right before the return 1922 // to the runtime the stack is no longer guarded. Reguard the 1923 // stack otherwise if we return to the uncommon trap blob and the 1924 // stack bang causes a stack overflow we crash. 1925 JavaThread* jt = THREAD; 1926 bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed(); 1927 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash"); 1928 } 1929 return; 1930 } 1931 1932 assert(!constant_pool->tag_at(index).is_symbol(), 1933 "no symbolic names here, please"); 1934 } 1935 1936 #if INCLUDE_JFR 1937 1938 class DeoptReasonSerializer : public JfrSerializer { 1939 public: 1940 void serialize(JfrCheckpointWriter& writer) { 1941 writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1) 1942 for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) { 1943 writer.write_key((u8)i); 1944 writer.write(Deoptimization::trap_reason_name(i)); 1945 } 1946 } 1947 }; 1948 1949 class DeoptActionSerializer : public JfrSerializer { 1950 public: 1951 void serialize(JfrCheckpointWriter& writer) { 1952 static const u4 nof_actions = Deoptimization::Action_LIMIT; 1953 writer.write_count(nof_actions); 1954 for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) { 1955 writer.write_key(i); 1956 writer.write(Deoptimization::trap_action_name((int)i)); 1957 } 1958 } 1959 }; 1960 1961 static void register_serializers() { 1962 static int critical_section = 0; 1963 if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) { 1964 return; 1965 } 1966 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer()); 1967 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer()); 1968 } 1969 1970 static void post_deoptimization_event(nmethod* nm, 1971 const Method* method, 1972 int trap_bci, 1973 int instruction, 1974 Deoptimization::DeoptReason reason, 1975 Deoptimization::DeoptAction action) { 1976 assert(nm != nullptr, "invariant"); 1977 assert(method != nullptr, "invariant"); 1978 if (EventDeoptimization::is_enabled()) { 1979 static bool serializers_registered = false; 1980 if (!serializers_registered) { 1981 register_serializers(); 1982 serializers_registered = true; 1983 } 1984 EventDeoptimization event; 1985 event.set_compileId(nm->compile_id()); 1986 event.set_compiler(nm->compiler_type()); 1987 event.set_method(method); 1988 event.set_lineNumber(method->line_number_from_bci(trap_bci)); 1989 event.set_bci(trap_bci); 1990 event.set_instruction(instruction); 1991 event.set_reason(reason); 1992 event.set_action(action); 1993 event.commit(); 1994 } 1995 } 1996 1997 #endif // INCLUDE_JFR 1998 1999 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci, 2000 const char* reason_name, const char* reason_action) { 2001 LogTarget(Debug, deoptimization) lt; 2002 if (lt.is_enabled()) { 2003 LogStream ls(lt); 2004 bool is_osr = nm->is_osr_method(); 2005 ls.print("cid=%4d %s level=%d", 2006 nm->compile_id(), (is_osr ? "osr" : " "), nm->comp_level()); 2007 ls.print(" %s", tm->name_and_sig_as_C_string()); 2008 ls.print(" trap_bci=%d ", trap_bci); 2009 if (is_osr) { 2010 ls.print("osr_bci=%d ", nm->osr_entry_bci()); 2011 } 2012 ls.print("%s ", reason_name); 2013 ls.print("%s ", reason_action); 2014 ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT, 2015 pc, fr.pc() - nm->code_begin()); 2016 } 2017 } 2018 2019 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) { 2020 HandleMark hm(current); 2021 2022 // uncommon_trap() is called at the beginning of the uncommon trap 2023 // handler. Note this fact before we start generating temporary frames 2024 // that can confuse an asynchronous stack walker. This counter is 2025 // decremented at the end of unpack_frames(). 2026 2027 current->inc_in_deopt_handler(); 2028 2029 #if INCLUDE_JVMCI 2030 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid 2031 RegisterMap reg_map(current, 2032 RegisterMap::UpdateMap::include, 2033 RegisterMap::ProcessFrames::include, 2034 RegisterMap::WalkContinuation::skip); 2035 #else 2036 RegisterMap reg_map(current, 2037 RegisterMap::UpdateMap::skip, 2038 RegisterMap::ProcessFrames::include, 2039 RegisterMap::WalkContinuation::skip); 2040 #endif 2041 frame stub_frame = current->last_frame(); 2042 frame fr = stub_frame.sender(®_map); 2043 2044 // Log a message 2045 Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT, 2046 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin()); 2047 2048 { 2049 ResourceMark rm; 2050 2051 DeoptReason reason = trap_request_reason(trap_request); 2052 DeoptAction action = trap_request_action(trap_request); 2053 #if INCLUDE_JVMCI 2054 int debug_id = trap_request_debug_id(trap_request); 2055 #endif 2056 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1 2057 2058 vframe* vf = vframe::new_vframe(&fr, ®_map, current); 2059 compiledVFrame* cvf = compiledVFrame::cast(vf); 2060 2061 nmethod* nm = cvf->code(); 2062 2063 ScopeDesc* trap_scope = cvf->scope(); 2064 2065 bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint); 2066 2067 if (is_receiver_constraint_failure) { 2068 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), 2069 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string() 2070 JVMCI_ONLY(COMMA debug_id)); 2071 } 2072 2073 methodHandle trap_method(current, trap_scope->method()); 2074 int trap_bci = trap_scope->bci(); 2075 #if INCLUDE_JVMCI 2076 jlong speculation = current->pending_failed_speculation(); 2077 if (nm->is_compiled_by_jvmci()) { 2078 nm->update_speculation(current); 2079 } else { 2080 assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers"); 2081 } 2082 2083 if (trap_bci == SynchronizationEntryBCI) { 2084 trap_bci = 0; 2085 current->set_pending_monitorenter(true); 2086 } 2087 2088 if (reason == Deoptimization::Reason_transfer_to_interpreter) { 2089 current->set_pending_transfer_to_interpreter(true); 2090 } 2091 #endif 2092 2093 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci); 2094 // Record this event in the histogram. 2095 gather_statistics(reason, action, trap_bc); 2096 2097 // Ensure that we can record deopt. history: 2098 bool create_if_missing = ProfileTraps; 2099 2100 methodHandle profiled_method; 2101 #if INCLUDE_JVMCI 2102 if (nm->is_compiled_by_jvmci()) { 2103 profiled_method = methodHandle(current, nm->method()); 2104 } else { 2105 profiled_method = trap_method; 2106 } 2107 #else 2108 profiled_method = trap_method; 2109 #endif 2110 2111 MethodData* trap_mdo = 2112 get_method_data(current, profiled_method, create_if_missing); 2113 2114 { // Log Deoptimization event for JFR, UL and event system 2115 Method* tm = trap_method(); 2116 const char* reason_name = trap_reason_name(reason); 2117 const char* reason_action = trap_action_name(action); 2118 intptr_t pc = p2i(fr.pc()); 2119 2120 JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);) 2121 log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action); 2122 Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s", 2123 reason_name, reason_action, pc, 2124 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name()); 2125 } 2126 2127 // Print a bunch of diagnostics, if requested. 2128 if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) { 2129 ResourceMark rm; 2130 2131 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2132 // We must do this already now, since we cannot acquire this lock while 2133 // holding the tty lock (lock ordering by rank). 2134 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2135 2136 ttyLocker ttyl; 2137 2138 char buf[100]; 2139 if (xtty != nullptr) { 2140 xtty->begin_head("uncommon_trap thread='%zu' %s", 2141 os::current_thread_id(), 2142 format_trap_request(buf, sizeof(buf), trap_request)); 2143 #if INCLUDE_JVMCI 2144 if (speculation != 0) { 2145 xtty->print(" speculation='" JLONG_FORMAT "'", speculation); 2146 } 2147 #endif 2148 nm->log_identity(xtty); 2149 } 2150 Symbol* class_name = nullptr; 2151 bool unresolved = false; 2152 if (unloaded_class_index >= 0) { 2153 constantPoolHandle constants (current, trap_method->constants()); 2154 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) { 2155 class_name = constants->klass_name_at(unloaded_class_index); 2156 unresolved = true; 2157 if (xtty != nullptr) 2158 xtty->print(" unresolved='1'"); 2159 } else if (constants->tag_at(unloaded_class_index).is_symbol()) { 2160 class_name = constants->symbol_at(unloaded_class_index); 2161 } 2162 if (xtty != nullptr) 2163 xtty->name(class_name); 2164 } 2165 if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) { 2166 // Dump the relevant MDO state. 2167 // This is the deopt count for the current reason, any previous 2168 // reasons or recompiles seen at this point. 2169 int dcnt = trap_mdo->trap_count(reason); 2170 if (dcnt != 0) 2171 xtty->print(" count='%d'", dcnt); 2172 2173 // We need to lock to read the ProfileData. But to keep the locks ordered, we need to 2174 // lock extra_data_lock before the tty lock. 2175 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci); 2176 int dos = (pdata == nullptr)? 0: pdata->trap_state(); 2177 if (dos != 0) { 2178 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos)); 2179 if (trap_state_is_recompiled(dos)) { 2180 int recnt2 = trap_mdo->overflow_recompile_count(); 2181 if (recnt2 != 0) 2182 xtty->print(" recompiles2='%d'", recnt2); 2183 } 2184 } 2185 } 2186 if (xtty != nullptr) { 2187 xtty->stamp(); 2188 xtty->end_head(); 2189 } 2190 if (TraceDeoptimization) { // make noise on the tty 2191 stringStream st; 2192 st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string()); 2193 st.print(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"), 2194 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id)); 2195 st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id()); 2196 #if INCLUDE_JVMCI 2197 if (nm->is_compiled_by_jvmci()) { 2198 const char* installed_code_name = nm->jvmci_name(); 2199 if (installed_code_name != nullptr) { 2200 st.print(" (JVMCI: installed code name=%s) ", installed_code_name); 2201 } 2202 } 2203 #endif 2204 st.print(" (@" INTPTR_FORMAT ") thread=%zu reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"), 2205 p2i(fr.pc()), 2206 os::current_thread_id(), 2207 trap_reason_name(reason), 2208 trap_action_name(action), 2209 unloaded_class_index 2210 #if INCLUDE_JVMCI 2211 , debug_id 2212 #endif 2213 ); 2214 if (class_name != nullptr) { 2215 st.print(unresolved ? " unresolved class: " : " symbol: "); 2216 class_name->print_symbol_on(&st); 2217 } 2218 st.cr(); 2219 tty->print_raw(st.freeze()); 2220 } 2221 if (xtty != nullptr) { 2222 // Log the precise location of the trap. 2223 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) { 2224 xtty->begin_elem("jvms bci='%d'", sd->bci()); 2225 xtty->method(sd->method()); 2226 xtty->end_elem(); 2227 if (sd->is_top()) break; 2228 } 2229 xtty->tail("uncommon_trap"); 2230 } 2231 } 2232 // (End diagnostic printout.) 2233 2234 if (is_receiver_constraint_failure) { 2235 fatal("missing receiver type check"); 2236 } 2237 2238 // Load class if necessary 2239 if (unloaded_class_index >= 0) { 2240 constantPoolHandle constants(current, trap_method->constants()); 2241 load_class_by_index(constants, unloaded_class_index, THREAD); 2242 } 2243 2244 // Flush the nmethod if necessary and desirable. 2245 // 2246 // We need to avoid situations where we are re-flushing the nmethod 2247 // because of a hot deoptimization site. Repeated flushes at the same 2248 // point need to be detected by the compiler and avoided. If the compiler 2249 // cannot avoid them (or has a bug and "refuses" to avoid them), this 2250 // module must take measures to avoid an infinite cycle of recompilation 2251 // and deoptimization. There are several such measures: 2252 // 2253 // 1. If a recompilation is ordered a second time at some site X 2254 // and for the same reason R, the action is adjusted to 'reinterpret', 2255 // to give the interpreter time to exercise the method more thoroughly. 2256 // If this happens, the method's overflow_recompile_count is incremented. 2257 // 2258 // 2. If the compiler fails to reduce the deoptimization rate, then 2259 // the method's overflow_recompile_count will begin to exceed the set 2260 // limit PerBytecodeRecompilationCutoff. If this happens, the action 2261 // is adjusted to 'make_not_compilable', and the method is abandoned 2262 // to the interpreter. This is a performance hit for hot methods, 2263 // but is better than a disastrous infinite cycle of recompilations. 2264 // (Actually, only the method containing the site X is abandoned.) 2265 // 2266 // 3. In parallel with the previous measures, if the total number of 2267 // recompilations of a method exceeds the much larger set limit 2268 // PerMethodRecompilationCutoff, the method is abandoned. 2269 // This should only happen if the method is very large and has 2270 // many "lukewarm" deoptimizations. The code which enforces this 2271 // limit is elsewhere (class nmethod, class Method). 2272 // 2273 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance 2274 // to recompile at each bytecode independently of the per-BCI cutoff. 2275 // 2276 // The decision to update code is up to the compiler, and is encoded 2277 // in the Action_xxx code. If the compiler requests Action_none 2278 // no trap state is changed, no compiled code is changed, and the 2279 // computation suffers along in the interpreter. 2280 // 2281 // The other action codes specify various tactics for decompilation 2282 // and recompilation. Action_maybe_recompile is the loosest, and 2283 // allows the compiled code to stay around until enough traps are seen, 2284 // and until the compiler gets around to recompiling the trapping method. 2285 // 2286 // The other actions cause immediate removal of the present code. 2287 2288 // Traps caused by injected profile shouldn't pollute trap counts. 2289 bool injected_profile_trap = trap_method->has_injected_profile() && 2290 (reason == Reason_intrinsic || reason == Reason_unreached); 2291 2292 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap; 2293 bool make_not_entrant = false; 2294 bool make_not_compilable = false; 2295 bool reprofile = false; 2296 switch (action) { 2297 case Action_none: 2298 // Keep the old code. 2299 update_trap_state = false; 2300 break; 2301 case Action_maybe_recompile: 2302 // Do not need to invalidate the present code, but we can 2303 // initiate another 2304 // Start compiler without (necessarily) invalidating the nmethod. 2305 // The system will tolerate the old code, but new code should be 2306 // generated when possible. 2307 break; 2308 case Action_reinterpret: 2309 // Go back into the interpreter for a while, and then consider 2310 // recompiling form scratch. 2311 make_not_entrant = true; 2312 // Reset invocation counter for outer most method. 2313 // This will allow the interpreter to exercise the bytecodes 2314 // for a while before recompiling. 2315 // By contrast, Action_make_not_entrant is immediate. 2316 // 2317 // Note that the compiler will track null_check, null_assert, 2318 // range_check, and class_check events and log them as if they 2319 // had been traps taken from compiled code. This will update 2320 // the MDO trap history so that the next compilation will 2321 // properly detect hot trap sites. 2322 reprofile = true; 2323 break; 2324 case Action_make_not_entrant: 2325 // Request immediate recompilation, and get rid of the old code. 2326 // Make them not entrant, so next time they are called they get 2327 // recompiled. Unloaded classes are loaded now so recompile before next 2328 // time they are called. Same for uninitialized. The interpreter will 2329 // link the missing class, if any. 2330 make_not_entrant = true; 2331 break; 2332 case Action_make_not_compilable: 2333 // Give up on compiling this method at all. 2334 make_not_entrant = true; 2335 make_not_compilable = true; 2336 break; 2337 default: 2338 ShouldNotReachHere(); 2339 } 2340 2341 // Setting +ProfileTraps fixes the following, on all platforms: 2342 // The result is infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the 2343 // recompile relies on a MethodData* to record heroic opt failures. 2344 2345 // Whether the interpreter is producing MDO data or not, we also need 2346 // to use the MDO to detect hot deoptimization points and control 2347 // aggressive optimization. 2348 bool inc_recompile_count = false; 2349 2350 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2351 ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr, 2352 (trap_mdo != nullptr), 2353 Mutex::_no_safepoint_check_flag); 2354 ProfileData* pdata = nullptr; 2355 if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) { 2356 assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity"); 2357 uint this_trap_count = 0; 2358 bool maybe_prior_trap = false; 2359 bool maybe_prior_recompile = false; 2360 2361 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true, 2362 #if INCLUDE_JVMCI 2363 nm->is_compiled_by_jvmci() && nm->is_osr_method(), 2364 #endif 2365 nm->method(), 2366 //outputs: 2367 this_trap_count, 2368 maybe_prior_trap, 2369 maybe_prior_recompile); 2370 // Because the interpreter also counts null, div0, range, and class 2371 // checks, these traps from compiled code are double-counted. 2372 // This is harmless; it just means that the PerXTrapLimit values 2373 // are in effect a little smaller than they look. 2374 2375 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2376 if (per_bc_reason != Reason_none) { 2377 // Now take action based on the partially known per-BCI history. 2378 if (maybe_prior_trap 2379 && this_trap_count >= (uint)PerBytecodeTrapLimit) { 2380 // If there are too many traps at this BCI, force a recompile. 2381 // This will allow the compiler to see the limit overflow, and 2382 // take corrective action, if possible. The compiler generally 2383 // does not use the exact PerBytecodeTrapLimit value, but instead 2384 // changes its tactics if it sees any traps at all. This provides 2385 // a little hysteresis, delaying a recompile until a trap happens 2386 // several times. 2387 // 2388 // Actually, since there is only one bit of counter per BCI, 2389 // the possible per-BCI counts are {0,1,(per-method count)}. 2390 // This produces accurate results if in fact there is only 2391 // one hot trap site, but begins to get fuzzy if there are 2392 // many sites. For example, if there are ten sites each 2393 // trapping two or more times, they each get the blame for 2394 // all of their traps. 2395 make_not_entrant = true; 2396 } 2397 2398 // Detect repeated recompilation at the same BCI, and enforce a limit. 2399 if (make_not_entrant && maybe_prior_recompile) { 2400 // More than one recompile at this point. 2401 inc_recompile_count = maybe_prior_trap; 2402 } 2403 } else { 2404 // For reasons which are not recorded per-bytecode, we simply 2405 // force recompiles unconditionally. 2406 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.) 2407 make_not_entrant = true; 2408 } 2409 2410 // Go back to the compiler if there are too many traps in this method. 2411 if (this_trap_count >= per_method_trap_limit(reason)) { 2412 // If there are too many traps in this method, force a recompile. 2413 // This will allow the compiler to see the limit overflow, and 2414 // take corrective action, if possible. 2415 // (This condition is an unlikely backstop only, because the 2416 // PerBytecodeTrapLimit is more likely to take effect first, 2417 // if it is applicable.) 2418 make_not_entrant = true; 2419 } 2420 2421 // Here's more hysteresis: If there has been a recompile at 2422 // this trap point already, run the method in the interpreter 2423 // for a while to exercise it more thoroughly. 2424 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) { 2425 reprofile = true; 2426 } 2427 } 2428 2429 // Take requested actions on the method: 2430 2431 // Recompile 2432 if (make_not_entrant) { 2433 if (!nm->make_not_entrant()) { 2434 return; // the call did not change nmethod's state 2435 } 2436 2437 if (pdata != nullptr) { 2438 // Record the recompilation event, if any. 2439 int tstate0 = pdata->trap_state(); 2440 int tstate1 = trap_state_set_recompiled(tstate0, true); 2441 if (tstate1 != tstate0) 2442 pdata->set_trap_state(tstate1); 2443 } 2444 2445 // For code aging we count traps separately here, using make_not_entrant() 2446 // as a guard against simultaneous deopts in multiple threads. 2447 if (reason == Reason_tenured && trap_mdo != nullptr) { 2448 trap_mdo->inc_tenure_traps(); 2449 } 2450 } 2451 2452 if (inc_recompile_count) { 2453 trap_mdo->inc_overflow_recompile_count(); 2454 if ((uint)trap_mdo->overflow_recompile_count() > 2455 (uint)PerBytecodeRecompilationCutoff) { 2456 // Give up on the method containing the bad BCI. 2457 if (trap_method() == nm->method()) { 2458 make_not_compilable = true; 2459 } else { 2460 trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization); 2461 // But give grace to the enclosing nm->method(). 2462 } 2463 } 2464 } 2465 2466 // Reprofile 2467 if (reprofile) { 2468 CompilationPolicy::reprofile(trap_scope, nm->is_osr_method()); 2469 } 2470 2471 // Give up compiling 2472 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) { 2473 assert(make_not_entrant, "consistent"); 2474 nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization); 2475 } 2476 2477 if (ProfileExceptionHandlers && trap_mdo != nullptr) { 2478 BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci); 2479 if (exception_handler_data != nullptr) { 2480 // uncommon trap at the start of an exception handler. 2481 // C2 generates these for un-entered exception handlers. 2482 // mark the handler as entered to avoid generating 2483 // another uncommon trap the next time the handler is compiled 2484 exception_handler_data->set_exception_handler_entered(); 2485 } 2486 } 2487 2488 } // Free marked resources 2489 2490 } 2491 JRT_END 2492 2493 ProfileData* 2494 Deoptimization::query_update_method_data(MethodData* trap_mdo, 2495 int trap_bci, 2496 Deoptimization::DeoptReason reason, 2497 bool update_total_trap_count, 2498 #if INCLUDE_JVMCI 2499 bool is_osr, 2500 #endif 2501 Method* compiled_method, 2502 //outputs: 2503 uint& ret_this_trap_count, 2504 bool& ret_maybe_prior_trap, 2505 bool& ret_maybe_prior_recompile) { 2506 trap_mdo->check_extra_data_locked(); 2507 2508 bool maybe_prior_trap = false; 2509 bool maybe_prior_recompile = false; 2510 uint this_trap_count = 0; 2511 if (update_total_trap_count) { 2512 uint idx = reason; 2513 #if INCLUDE_JVMCI 2514 if (is_osr) { 2515 // Upper half of history array used for traps in OSR compilations 2516 idx += Reason_TRAP_HISTORY_LENGTH; 2517 } 2518 #endif 2519 uint prior_trap_count = trap_mdo->trap_count(idx); 2520 this_trap_count = trap_mdo->inc_trap_count(idx); 2521 2522 // If the runtime cannot find a place to store trap history, 2523 // it is estimated based on the general condition of the method. 2524 // If the method has ever been recompiled, or has ever incurred 2525 // a trap with the present reason , then this BCI is assumed 2526 // (pessimistically) to be the culprit. 2527 maybe_prior_trap = (prior_trap_count != 0); 2528 maybe_prior_recompile = (trap_mdo->decompile_count() != 0); 2529 } 2530 ProfileData* pdata = nullptr; 2531 2532 2533 // For reasons which are recorded per bytecode, we check per-BCI data. 2534 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2535 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be"); 2536 if (per_bc_reason != Reason_none) { 2537 // Find the profile data for this BCI. If there isn't one, 2538 // try to allocate one from the MDO's set of spares. 2539 // This will let us detect a repeated trap at this point. 2540 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr); 2541 2542 if (pdata != nullptr) { 2543 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) { 2544 if (LogCompilation && xtty != nullptr) { 2545 ttyLocker ttyl; 2546 // no more room for speculative traps in this MDO 2547 xtty->elem("speculative_traps_oom"); 2548 } 2549 } 2550 // Query the trap state of this profile datum. 2551 int tstate0 = pdata->trap_state(); 2552 if (!trap_state_has_reason(tstate0, per_bc_reason)) 2553 maybe_prior_trap = false; 2554 if (!trap_state_is_recompiled(tstate0)) 2555 maybe_prior_recompile = false; 2556 2557 // Update the trap state of this profile datum. 2558 int tstate1 = tstate0; 2559 // Record the reason. 2560 tstate1 = trap_state_add_reason(tstate1, per_bc_reason); 2561 // Store the updated state on the MDO, for next time. 2562 if (tstate1 != tstate0) 2563 pdata->set_trap_state(tstate1); 2564 } else { 2565 if (LogCompilation && xtty != nullptr) { 2566 ttyLocker ttyl; 2567 // Missing MDP? Leave a small complaint in the log. 2568 xtty->elem("missing_mdp bci='%d'", trap_bci); 2569 } 2570 } 2571 } 2572 2573 // Return results: 2574 ret_this_trap_count = this_trap_count; 2575 ret_maybe_prior_trap = maybe_prior_trap; 2576 ret_maybe_prior_recompile = maybe_prior_recompile; 2577 return pdata; 2578 } 2579 2580 void 2581 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2582 ResourceMark rm; 2583 // Ignored outputs: 2584 uint ignore_this_trap_count; 2585 bool ignore_maybe_prior_trap; 2586 bool ignore_maybe_prior_recompile; 2587 assert(!reason_is_speculate(reason), "reason speculate only used by compiler"); 2588 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts 2589 bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler); 2590 2591 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2592 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2593 2594 query_update_method_data(trap_mdo, trap_bci, 2595 (DeoptReason)reason, 2596 update_total_counts, 2597 #if INCLUDE_JVMCI 2598 false, 2599 #endif 2600 nullptr, 2601 ignore_this_trap_count, 2602 ignore_maybe_prior_trap, 2603 ignore_maybe_prior_recompile); 2604 } 2605 2606 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) { 2607 // Enable WXWrite: current function is called from methods compiled by C2 directly 2608 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 2609 2610 // Still in Java no safepoints 2611 { 2612 // This enters VM and may safepoint 2613 uncommon_trap_inner(current, trap_request); 2614 } 2615 HandleMark hm(current); 2616 return fetch_unroll_info_helper(current, exec_mode); 2617 } 2618 2619 // Local derived constants. 2620 // Further breakdown of DataLayout::trap_state, as promised by DataLayout. 2621 const int DS_REASON_MASK = ((uint)DataLayout::trap_mask) >> 1; 2622 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK; 2623 2624 //---------------------------trap_state_reason--------------------------------- 2625 Deoptimization::DeoptReason 2626 Deoptimization::trap_state_reason(int trap_state) { 2627 // This assert provides the link between the width of DataLayout::trap_bits 2628 // and the encoding of "recorded" reasons. It ensures there are enough 2629 // bits to store all needed reasons in the per-BCI MDO profile. 2630 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2631 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2632 trap_state -= recompile_bit; 2633 if (trap_state == DS_REASON_MASK) { 2634 return Reason_many; 2635 } else { 2636 assert((int)Reason_none == 0, "state=0 => Reason_none"); 2637 return (DeoptReason)trap_state; 2638 } 2639 } 2640 //-------------------------trap_state_has_reason------------------------------- 2641 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2642 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason"); 2643 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2644 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2645 trap_state -= recompile_bit; 2646 if (trap_state == DS_REASON_MASK) { 2647 return -1; // true, unspecifically (bottom of state lattice) 2648 } else if (trap_state == reason) { 2649 return 1; // true, definitely 2650 } else if (trap_state == 0) { 2651 return 0; // false, definitely (top of state lattice) 2652 } else { 2653 return 0; // false, definitely 2654 } 2655 } 2656 //-------------------------trap_state_add_reason------------------------------- 2657 int Deoptimization::trap_state_add_reason(int trap_state, int reason) { 2658 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason"); 2659 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2660 trap_state -= recompile_bit; 2661 if (trap_state == DS_REASON_MASK) { 2662 return trap_state + recompile_bit; // already at state lattice bottom 2663 } else if (trap_state == reason) { 2664 return trap_state + recompile_bit; // the condition is already true 2665 } else if (trap_state == 0) { 2666 return reason + recompile_bit; // no condition has yet been true 2667 } else { 2668 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom 2669 } 2670 } 2671 //-----------------------trap_state_is_recompiled------------------------------ 2672 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2673 return (trap_state & DS_RECOMPILE_BIT) != 0; 2674 } 2675 //-----------------------trap_state_set_recompiled----------------------------- 2676 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) { 2677 if (z) return trap_state | DS_RECOMPILE_BIT; 2678 else return trap_state & ~DS_RECOMPILE_BIT; 2679 } 2680 //---------------------------format_trap_state--------------------------------- 2681 // This is used for debugging and diagnostics, including LogFile output. 2682 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2683 int trap_state) { 2684 assert(buflen > 0, "sanity"); 2685 DeoptReason reason = trap_state_reason(trap_state); 2686 bool recomp_flag = trap_state_is_recompiled(trap_state); 2687 // Re-encode the state from its decoded components. 2688 int decoded_state = 0; 2689 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many) 2690 decoded_state = trap_state_add_reason(decoded_state, reason); 2691 if (recomp_flag) 2692 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag); 2693 // If the state re-encodes properly, format it symbolically. 2694 // Because this routine is used for debugging and diagnostics, 2695 // be robust even if the state is a strange value. 2696 size_t len; 2697 if (decoded_state != trap_state) { 2698 // Random buggy state that doesn't decode?? 2699 len = jio_snprintf(buf, buflen, "#%d", trap_state); 2700 } else { 2701 len = jio_snprintf(buf, buflen, "%s%s", 2702 trap_reason_name(reason), 2703 recomp_flag ? " recompiled" : ""); 2704 } 2705 return buf; 2706 } 2707 2708 2709 //--------------------------------statics-------------------------------------- 2710 const char* Deoptimization::_trap_reason_name[] = { 2711 // Note: Keep this in sync. with enum DeoptReason. 2712 "none", 2713 "null_check", 2714 "null_assert" JVMCI_ONLY("_or_unreached0"), 2715 "range_check", 2716 "class_check", 2717 "array_check", 2718 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"), 2719 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"), 2720 "profile_predicate", 2721 "unloaded", 2722 "uninitialized", 2723 "initialized", 2724 "unreached", 2725 "unhandled", 2726 "constraint", 2727 "div0_check", 2728 "age", 2729 "predicate", 2730 "loop_limit_check", 2731 "speculate_class_check", 2732 "speculate_null_check", 2733 "speculate_null_assert", 2734 "unstable_if", 2735 "unstable_fused_if", 2736 "receiver_constraint", 2737 #if INCLUDE_JVMCI 2738 "aliasing", 2739 "transfer_to_interpreter", 2740 "not_compiled_exception_handler", 2741 "unresolved", 2742 "jsr_mismatch", 2743 #endif 2744 "tenured" 2745 }; 2746 const char* Deoptimization::_trap_action_name[] = { 2747 // Note: Keep this in sync. with enum DeoptAction. 2748 "none", 2749 "maybe_recompile", 2750 "reinterpret", 2751 "make_not_entrant", 2752 "make_not_compilable" 2753 }; 2754 2755 const char* Deoptimization::trap_reason_name(int reason) { 2756 // Check that every reason has a name 2757 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT); 2758 2759 if (reason == Reason_many) return "many"; 2760 if ((uint)reason < Reason_LIMIT) 2761 return _trap_reason_name[reason]; 2762 static char buf[20]; 2763 os::snprintf_checked(buf, sizeof(buf), "reason%d", reason); 2764 return buf; 2765 } 2766 const char* Deoptimization::trap_action_name(int action) { 2767 // Check that every action has a name 2768 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT); 2769 2770 if ((uint)action < Action_LIMIT) 2771 return _trap_action_name[action]; 2772 static char buf[20]; 2773 os::snprintf_checked(buf, sizeof(buf), "action%d", action); 2774 return buf; 2775 } 2776 2777 // This is used for debugging and diagnostics, including LogFile output. 2778 const char* Deoptimization::format_trap_request(char* buf, size_t buflen, 2779 int trap_request) { 2780 jint unloaded_class_index = trap_request_index(trap_request); 2781 const char* reason = trap_reason_name(trap_request_reason(trap_request)); 2782 const char* action = trap_action_name(trap_request_action(trap_request)); 2783 #if INCLUDE_JVMCI 2784 int debug_id = trap_request_debug_id(trap_request); 2785 #endif 2786 size_t len; 2787 if (unloaded_class_index < 0) { 2788 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"), 2789 reason, action 2790 #if INCLUDE_JVMCI 2791 ,debug_id 2792 #endif 2793 ); 2794 } else { 2795 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"), 2796 reason, action, unloaded_class_index 2797 #if INCLUDE_JVMCI 2798 ,debug_id 2799 #endif 2800 ); 2801 } 2802 return buf; 2803 } 2804 2805 juint Deoptimization::_deoptimization_hist 2806 [Deoptimization::Reason_LIMIT] 2807 [1 + Deoptimization::Action_LIMIT] 2808 [Deoptimization::BC_CASE_LIMIT] 2809 = {0}; 2810 2811 enum { 2812 LSB_BITS = 8, 2813 LSB_MASK = right_n_bits(LSB_BITS) 2814 }; 2815 2816 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2817 Bytecodes::Code bc) { 2818 assert(reason >= 0 && reason < Reason_LIMIT, "oob"); 2819 assert(action >= 0 && action < Action_LIMIT, "oob"); 2820 _deoptimization_hist[Reason_none][0][0] += 1; // total 2821 _deoptimization_hist[reason][0][0] += 1; // per-reason total 2822 juint* cases = _deoptimization_hist[reason][1+action]; 2823 juint* bc_counter_addr = nullptr; 2824 juint bc_counter = 0; 2825 // Look for an unused counter, or an exact match to this BC. 2826 if (bc != Bytecodes::_illegal) { 2827 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2828 juint* counter_addr = &cases[bc_case]; 2829 juint counter = *counter_addr; 2830 if ((counter == 0 && bc_counter_addr == nullptr) 2831 || (Bytecodes::Code)(counter & LSB_MASK) == bc) { 2832 // this counter is either free or is already devoted to this BC 2833 bc_counter_addr = counter_addr; 2834 bc_counter = counter | bc; 2835 } 2836 } 2837 } 2838 if (bc_counter_addr == nullptr) { 2839 // Overflow, or no given bytecode. 2840 bc_counter_addr = &cases[BC_CASE_LIMIT-1]; 2841 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB 2842 } 2843 *bc_counter_addr = bc_counter + (1 << LSB_BITS); 2844 } 2845 2846 jint Deoptimization::total_deoptimization_count() { 2847 return _deoptimization_hist[Reason_none][0][0]; 2848 } 2849 2850 // Get the deopt count for a specific reason and a specific action. If either 2851 // one of 'reason' or 'action' is null, the method returns the sum of all 2852 // deoptimizations with the specific 'action' or 'reason' respectively. 2853 // If both arguments are null, the method returns the total deopt count. 2854 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 2855 if (reason_str == nullptr && action_str == nullptr) { 2856 return total_deoptimization_count(); 2857 } 2858 juint counter = 0; 2859 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2860 if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) { 2861 for (int action = 0; action < Action_LIMIT; action++) { 2862 if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) { 2863 juint* cases = _deoptimization_hist[reason][1+action]; 2864 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2865 counter += cases[bc_case] >> LSB_BITS; 2866 } 2867 } 2868 } 2869 } 2870 } 2871 return counter; 2872 } 2873 2874 void Deoptimization::print_statistics() { 2875 juint total = total_deoptimization_count(); 2876 juint account = total; 2877 if (total != 0) { 2878 ttyLocker ttyl; 2879 if (xtty != nullptr) xtty->head("statistics type='deoptimization'"); 2880 tty->print_cr("Deoptimization traps recorded:"); 2881 #define PRINT_STAT_LINE(name, r) \ 2882 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name); 2883 PRINT_STAT_LINE("total", total); 2884 // For each non-zero entry in the histogram, print the reason, 2885 // the action, and (if specifically known) the type of bytecode. 2886 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2887 for (int action = 0; action < Action_LIMIT; action++) { 2888 juint* cases = _deoptimization_hist[reason][1+action]; 2889 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2890 juint counter = cases[bc_case]; 2891 if (counter != 0) { 2892 char name[1*K]; 2893 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK); 2894 if (bc_case == BC_CASE_LIMIT && (int)bc == 0) 2895 bc = Bytecodes::_illegal; 2896 os::snprintf_checked(name, sizeof(name), "%s/%s/%s", 2897 trap_reason_name(reason), 2898 trap_action_name(action), 2899 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other"); 2900 juint r = counter >> LSB_BITS; 2901 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total); 2902 account -= r; 2903 } 2904 } 2905 } 2906 } 2907 if (account != 0) { 2908 PRINT_STAT_LINE("unaccounted", account); 2909 } 2910 #undef PRINT_STAT_LINE 2911 if (xtty != nullptr) xtty->tail("statistics"); 2912 } 2913 } 2914 2915 #else // COMPILER2_OR_JVMCI 2916 2917 2918 // Stubs for C1 only system. 2919 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2920 return false; 2921 } 2922 2923 const char* Deoptimization::trap_reason_name(int reason) { 2924 return "unknown"; 2925 } 2926 2927 jint Deoptimization::total_deoptimization_count() { 2928 return 0; 2929 } 2930 2931 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 2932 return 0; 2933 } 2934 2935 void Deoptimization::print_statistics() { 2936 // no output 2937 } 2938 2939 void 2940 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2941 // no update 2942 } 2943 2944 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2945 return 0; 2946 } 2947 2948 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2949 Bytecodes::Code bc) { 2950 // no update 2951 } 2952 2953 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2954 int trap_state) { 2955 jio_snprintf(buf, buflen, "#%d", trap_state); 2956 return buf; 2957 } 2958 2959 #endif // COMPILER2_OR_JVMCI