1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/javaClasses.inline.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compilationPolicy.hpp"
  35 #include "compiler/compilerDefinitions.inline.hpp"
  36 #include "gc/shared/collectedHeap.hpp"
  37 #include "gc/shared/memAllocator.hpp"
  38 #include "interpreter/bytecode.hpp"
  39 #include "interpreter/bytecode.inline.hpp"
  40 #include "interpreter/bytecodeStream.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvm.h"
  44 #include "logging/log.hpp"
  45 #include "logging/logLevel.hpp"
  46 #include "logging/logMessage.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/constantPool.hpp"
  53 #include "oops/fieldStreams.inline.hpp"
  54 #include "oops/method.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/objArrayOop.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvmtiDeferredUpdates.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "prims/methodHandles.hpp"
  64 #include "prims/vectorSupport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/basicLock.inline.hpp"
  67 #include "runtime/continuation.hpp"
  68 #include "runtime/continuationEntry.inline.hpp"
  69 #include "runtime/deoptimization.hpp"
  70 #include "runtime/escapeBarrier.hpp"
  71 #include "runtime/fieldDescriptor.hpp"
  72 #include "runtime/fieldDescriptor.inline.hpp"
  73 #include "runtime/frame.inline.hpp"
  74 #include "runtime/handles.inline.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/javaThread.hpp"
  77 #include "runtime/jniHandles.inline.hpp"
  78 #include "runtime/keepStackGCProcessed.hpp"
  79 #include "runtime/lightweightSynchronizer.hpp"
  80 #include "runtime/lockStack.inline.hpp"
  81 #include "runtime/objectMonitor.inline.hpp"
  82 #include "runtime/osThread.hpp"
  83 #include "runtime/safepointVerifiers.hpp"
  84 #include "runtime/sharedRuntime.hpp"
  85 #include "runtime/signature.hpp"
  86 #include "runtime/stackFrameStream.inline.hpp"
  87 #include "runtime/stackValue.hpp"
  88 #include "runtime/stackWatermarkSet.hpp"
  89 #include "runtime/stubRoutines.hpp"
  90 #include "runtime/synchronizer.inline.hpp"
  91 #include "runtime/threadSMR.hpp"
  92 #include "runtime/threadWXSetters.inline.hpp"
  93 #include "runtime/vframe.hpp"
  94 #include "runtime/vframeArray.hpp"
  95 #include "runtime/vframe_hp.hpp"
  96 #include "runtime/vmOperations.hpp"
  97 #include "utilities/checkedCast.hpp"
  98 #include "utilities/events.hpp"
  99 #include "utilities/growableArray.hpp"
 100 #include "utilities/macros.hpp"
 101 #include "utilities/preserveException.hpp"
 102 #include "utilities/xmlstream.hpp"
 103 #if INCLUDE_JFR
 104 #include "jfr/jfrEvents.hpp"
 105 #include "jfr/metadata/jfrSerializer.hpp"
 106 #endif
 107 
 108 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 109 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 110 bool     DeoptimizationScope::_committing_in_progress = false;
 111 
 112 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 113   DEBUG_ONLY(_deopted = false;)
 114 
 115   MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
 116   // If there is nothing to deopt _required_gen is the same as comitted.
 117   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 118 }
 119 
 120 DeoptimizationScope::~DeoptimizationScope() {
 121   assert(_deopted, "Deopt not executed");
 122 }
 123 
 124 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) {
 125   if (!nm->can_be_deoptimized()) {
 126     return;
 127   }
 128 
 129   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 130 
 131   // If it's already marked but we still need it to be deopted.
 132   if (nm->is_marked_for_deoptimization()) {
 133     dependent(nm);
 134     return;
 135   }
 136 
 137   nmethod::DeoptimizationStatus status =
 138     inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate;
 139   Atomic::store(&nm->_deoptimization_status, status);
 140 
 141   // Make sure active is not committed
 142   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 143   assert(nm->_deoptimization_generation == 0, "Is already marked");
 144 
 145   nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 146   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 147 }
 148 
 149 void DeoptimizationScope::dependent(nmethod* nm) {
 150   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 151 
 152   // A method marked by someone else may have a _required_gen lower than what we marked with.
 153   // Therefore only store it if it's higher than _required_gen.
 154   if (_required_gen < nm->_deoptimization_generation) {
 155     _required_gen = nm->_deoptimization_generation;
 156   }
 157 }
 158 
 159 void DeoptimizationScope::deoptimize_marked() {
 160   assert(!_deopted, "Already deopted");
 161 
 162   // We are not alive yet.
 163   if (!Universe::is_fully_initialized()) {
 164     DEBUG_ONLY(_deopted = true;)
 165     return;
 166   }
 167 
 168   // Safepoints are a special case, handled here.
 169   if (SafepointSynchronize::is_at_safepoint()) {
 170     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 171     DeoptimizationScope::_active_deopt_gen++;
 172     Deoptimization::deoptimize_all_marked();
 173     DEBUG_ONLY(_deopted = true;)
 174     return;
 175   }
 176 
 177   uint64_t comitting = 0;
 178   bool wait = false;
 179   while (true) {
 180     {
 181       ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 182 
 183       // First we check if we or someone else already deopted the gen we want.
 184       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 185         DEBUG_ONLY(_deopted = true;)
 186         return;
 187       }
 188       if (!_committing_in_progress) {
 189         // The version we are about to commit.
 190         comitting = DeoptimizationScope::_active_deopt_gen;
 191         // Make sure new marks use a higher gen.
 192         DeoptimizationScope::_active_deopt_gen++;
 193         _committing_in_progress = true;
 194         wait = false;
 195       } else {
 196         // Another thread is handshaking and committing a gen.
 197         wait = true;
 198       }
 199     }
 200     if (wait) {
 201       // Wait and let the concurrent handshake be performed.
 202       ThreadBlockInVM tbivm(JavaThread::current());
 203       os::naked_yield();
 204     } else {
 205       // Performs the handshake.
 206       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 207       DEBUG_ONLY(_deopted = true;)
 208       {
 209         ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 210 
 211         // Make sure that committed doesn't go backwards.
 212         // Should only happen if we did a deopt during a safepoint above.
 213         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 214           DeoptimizationScope::_committed_deopt_gen = comitting;
 215         }
 216         _committing_in_progress = false;
 217 
 218         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 219 
 220         return;
 221       }
 222     }
 223   }
 224 }
 225 
 226 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 227                                          int  caller_adjustment,
 228                                          int  caller_actual_parameters,
 229                                          int  number_of_frames,
 230                                          intptr_t* frame_sizes,
 231                                          address* frame_pcs,
 232                                          BasicType return_type,
 233                                          int exec_mode) {
 234   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 235   _caller_adjustment         = caller_adjustment;
 236   _caller_actual_parameters  = caller_actual_parameters;
 237   _number_of_frames          = number_of_frames;
 238   _frame_sizes               = frame_sizes;
 239   _frame_pcs                 = frame_pcs;
 240   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 241   _return_type               = return_type;
 242   _initial_info              = 0;
 243   // PD (x86 only)
 244   _counter_temp              = 0;
 245   _unpack_kind               = exec_mode;
 246   _sender_sp_temp            = 0;
 247 
 248   _total_frame_sizes         = size_of_frames();
 249   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 250 }
 251 
 252 Deoptimization::UnrollBlock::~UnrollBlock() {
 253   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 254   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 255   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 256 }
 257 
 258 int Deoptimization::UnrollBlock::size_of_frames() const {
 259   // Account first for the adjustment of the initial frame
 260   intptr_t result = _caller_adjustment;
 261   for (int index = 0; index < number_of_frames(); index++) {
 262     result += frame_sizes()[index];
 263   }
 264   return checked_cast<int>(result);
 265 }
 266 
 267 void Deoptimization::UnrollBlock::print() {
 268   ResourceMark rm;
 269   stringStream st;
 270   st.print_cr("UnrollBlock");
 271   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 272   st.print(   "  frame_sizes: ");
 273   for (int index = 0; index < number_of_frames(); index++) {
 274     st.print("%zd ", frame_sizes()[index]);
 275   }
 276   st.cr();
 277   tty->print_raw(st.freeze());
 278 }
 279 
 280 // In order to make fetch_unroll_info work properly with escape
 281 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 282 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 283 // which is called from the method fetch_unroll_info_helper below.
 284 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 285   // fetch_unroll_info() is called at the beginning of the deoptimization
 286   // handler. Note this fact before we start generating temporary frames
 287   // that can confuse an asynchronous stack walker. This counter is
 288   // decremented at the end of unpack_frames().
 289   current->inc_in_deopt_handler();
 290 
 291   if (exec_mode == Unpack_exception) {
 292     // When we get here, a callee has thrown an exception into a deoptimized
 293     // frame. That throw might have deferred stack watermark checking until
 294     // after unwinding. So we deal with such deferred requests here.
 295     StackWatermarkSet::after_unwind(current);
 296   }
 297 
 298   return fetch_unroll_info_helper(current, exec_mode);
 299 JRT_END
 300 
 301 #if COMPILER2_OR_JVMCI
 302 // print information about reallocated objects
 303 static void print_objects(JavaThread* deoptee_thread,
 304                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 305   ResourceMark rm;
 306   stringStream st;  // change to logStream with logging
 307   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 308   fieldDescriptor fd;
 309 
 310   for (int i = 0; i < objects->length(); i++) {
 311     ObjectValue* sv = (ObjectValue*) objects->at(i);
 312     Handle obj = sv->value();
 313 
 314     if (obj.is_null()) {
 315       st.print_cr("     nullptr");
 316       continue;
 317     }
 318 
 319     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 320 
 321     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 322     k->print_value_on(&st);
 323     st.print_cr(" allocated (%zu bytes)", obj->size() * HeapWordSize);
 324 
 325     if (Verbose && k != nullptr) {
 326       k->oop_print_on(obj(), &st);
 327     }
 328   }
 329   tty->print_raw(st.freeze());
 330 }
 331 
 332 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method,
 333                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 334                                   bool& deoptimized_objects) {
 335   bool realloc_failures = false;
 336   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 337 
 338   JavaThread* deoptee_thread = chunk->at(0)->thread();
 339   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 340          "a frame can only be deoptimized by the owner thread");
 341 
 342   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 343 
 344   // The flag return_oop() indicates call sites which return oop
 345   // in compiled code. Such sites include java method calls,
 346   // runtime calls (for example, used to allocate new objects/arrays
 347   // on slow code path) and any other calls generated in compiled code.
 348   // It is not guaranteed that we can get such information here only
 349   // by analyzing bytecode in deoptimized frames. This is why this flag
 350   // is set during method compilation (see Compile::Process_OopMap_Node()).
 351   // If the previous frame was popped or if we are dispatching an exception,
 352   // we don't have an oop result.
 353   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 354   Handle return_value;
 355   if (save_oop_result) {
 356     // Reallocation may trigger GC. If deoptimization happened on return from
 357     // call which returns oop we need to save it since it is not in oopmap.
 358     oop result = deoptee.saved_oop_result(&map);
 359     assert(oopDesc::is_oop_or_null(result), "must be oop");
 360     return_value = Handle(thread, result);
 361     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 362     if (TraceDeoptimization) {
 363       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 364       tty->cr();
 365     }
 366   }
 367   if (objects != nullptr) {
 368     if (exec_mode == Deoptimization::Unpack_none) {
 369       assert(thread->thread_state() == _thread_in_vm, "assumption");
 370       JavaThread* THREAD = thread; // For exception macros.
 371       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 372       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 373       deoptimized_objects = true;
 374     } else {
 375       JavaThread* current = thread; // For JRT_BLOCK
 376       JRT_BLOCK
 377       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 378       JRT_END
 379     }
 380     guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod");
 381     bool is_jvmci = compiled_method->is_compiled_by_jvmci();
 382     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci);
 383     if (TraceDeoptimization) {
 384       print_objects(deoptee_thread, objects, realloc_failures);
 385     }
 386   }
 387   if (save_oop_result) {
 388     // Restore result.
 389     deoptee.set_saved_oop_result(&map, return_value());
 390   }
 391   return realloc_failures;
 392 }
 393 
 394 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 395                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 396   JavaThread* deoptee_thread = chunk->at(0)->thread();
 397   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 398   assert(thread == Thread::current(), "should be");
 399   HandleMark hm(thread);
 400 #ifndef PRODUCT
 401   bool first = true;
 402 #endif // !PRODUCT
 403   // Start locking from outermost/oldest frame
 404   for (int i = (chunk->length() - 1); i >= 0; i--) {
 405     compiledVFrame* cvf = chunk->at(i);
 406     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 407     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 408     if (monitors->is_nonempty()) {
 409       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 410                                                      exec_mode, realloc_failures);
 411       deoptimized_objects = deoptimized_objects || relocked;
 412 #ifndef PRODUCT
 413       if (PrintDeoptimizationDetails) {
 414         ResourceMark rm;
 415         stringStream st;
 416         for (int j = 0; j < monitors->length(); j++) {
 417           MonitorInfo* mi = monitors->at(j);
 418           if (mi->eliminated()) {
 419             if (first) {
 420               first = false;
 421               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 422             }
 423             if (exec_mode == Deoptimization::Unpack_none) {
 424               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 425               if (monitor != nullptr && monitor->object() == mi->owner()) {
 426                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 427                 continue;
 428               }
 429             }
 430             if (mi->owner_is_scalar_replaced()) {
 431               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 432               st.print_cr("     failed reallocation for klass %s", k->external_name());
 433             } else {
 434               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 435             }
 436           }
 437         }
 438         tty->print_raw(st.freeze());
 439       }
 440 #endif // !PRODUCT
 441     }
 442   }
 443 }
 444 
 445 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 446 // The given vframes cover one physical frame.
 447 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 448                                                  bool& realloc_failures) {
 449   frame deoptee = chunk->at(0)->fr();
 450   JavaThread* deoptee_thread = chunk->at(0)->thread();
 451   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 452   RegisterMap map(chunk->at(0)->register_map());
 453   bool deoptimized_objects = false;
 454 
 455   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 456 
 457   // Reallocate the non-escaping objects and restore their fields.
 458   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 459                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 460     realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects);
 461   }
 462 
 463   // MonitorInfo structures used in eliminate_locks are not GC safe.
 464   NoSafepointVerifier no_safepoint;
 465 
 466   // Now relock objects if synchronization on them was eliminated.
 467   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 468     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 469   }
 470   return deoptimized_objects;
 471 }
 472 #endif // COMPILER2_OR_JVMCI
 473 
 474 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 475 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 476   // When we get here we are about to unwind the deoptee frame. In order to
 477   // catch not yet safe to use frames, the following stack watermark barrier
 478   // poll will make such frames safe to use.
 479   StackWatermarkSet::before_unwind(current);
 480 
 481   // Note: there is a safepoint safety issue here. No matter whether we enter
 482   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 483   // the vframeArray is created.
 484   //
 485 
 486   // Allocate our special deoptimization ResourceMark
 487   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 488   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 489   current->set_deopt_mark(dmark);
 490 
 491   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 492   RegisterMap map(current,
 493                   RegisterMap::UpdateMap::include,
 494                   RegisterMap::ProcessFrames::include,
 495                   RegisterMap::WalkContinuation::skip);
 496   RegisterMap dummy_map(current,
 497                         RegisterMap::UpdateMap::skip,
 498                         RegisterMap::ProcessFrames::include,
 499                         RegisterMap::WalkContinuation::skip);
 500   // Now get the deoptee with a valid map
 501   frame deoptee = stub_frame.sender(&map);
 502   // Set the deoptee nmethod
 503   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 504   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 505   current->set_deopt_compiled_method(nm);
 506 
 507   if (VerifyStack) {
 508     current->validate_frame_layout();
 509   }
 510 
 511   // Create a growable array of VFrames where each VFrame represents an inlined
 512   // Java frame.  This storage is allocated with the usual system arena.
 513   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 514   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 515   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 516   while (!vf->is_top()) {
 517     assert(vf->is_compiled_frame(), "Wrong frame type");
 518     chunk->push(compiledVFrame::cast(vf));
 519     vf = vf->sender();
 520   }
 521   assert(vf->is_compiled_frame(), "Wrong frame type");
 522   chunk->push(compiledVFrame::cast(vf));
 523 
 524   bool realloc_failures = false;
 525 
 526 #if COMPILER2_OR_JVMCI
 527   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 528 
 529   // Reallocate the non-escaping objects and restore their fields. Then
 530   // relock objects if synchronization on them was eliminated.
 531   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 532                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 533     bool unused;
 534     realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused);
 535   }
 536 #endif // COMPILER2_OR_JVMCI
 537 
 538   // Ensure that no safepoint is taken after pointers have been stored
 539   // in fields of rematerialized objects.  If a safepoint occurs from here on
 540   // out the java state residing in the vframeArray will be missed.
 541   // Locks may be rebaised in a safepoint.
 542   NoSafepointVerifier no_safepoint;
 543 
 544 #if COMPILER2_OR_JVMCI
 545   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 546       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 547     bool unused = false;
 548     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 549   }
 550 #endif // COMPILER2_OR_JVMCI
 551 
 552   ScopeDesc* trap_scope = chunk->at(0)->scope();
 553   Handle exceptionObject;
 554   if (trap_scope->rethrow_exception()) {
 555 #ifndef PRODUCT
 556     if (PrintDeoptimizationDetails) {
 557       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 558     }
 559 #endif // !PRODUCT
 560 
 561     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 562     guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw");
 563     ScopeValue* topOfStack = expressions->top();
 564     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 565     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 566   }
 567 
 568   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 569 #if COMPILER2_OR_JVMCI
 570   if (realloc_failures) {
 571     // This destroys all ScopedValue bindings.
 572     current->clear_scopedValueBindings();
 573     pop_frames_failed_reallocs(current, array);
 574   }
 575 #endif
 576 
 577   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 578   current->set_vframe_array_head(array);
 579 
 580   // Now that the vframeArray has been created if we have any deferred local writes
 581   // added by jvmti then we can free up that structure as the data is now in the
 582   // vframeArray
 583 
 584   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 585 
 586   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 587   CodeBlob* cb = stub_frame.cb();
 588   // Verify we have the right vframeArray
 589   assert(cb->frame_size() >= 0, "Unexpected frame size");
 590   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 591 
 592   // If the deopt call site is a MethodHandle invoke call site we have
 593   // to adjust the unpack_sp.
 594   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 595   if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc()))
 596     unpack_sp = deoptee.unextended_sp();
 597 
 598 #ifdef ASSERT
 599   assert(cb->is_deoptimization_stub() ||
 600          cb->is_uncommon_trap_stub() ||
 601          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 602          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 603          "unexpected code blob: %s", cb->name());
 604 #endif
 605 
 606   // This is a guarantee instead of an assert because if vframe doesn't match
 607   // we will unpack the wrong deoptimized frame and wind up in strange places
 608   // where it will be very difficult to figure out what went wrong. Better
 609   // to die an early death here than some very obscure death later when the
 610   // trail is cold.
 611   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 612 
 613   int number_of_frames = array->frames();
 614 
 615   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 616   // virtual activation, which is the reverse of the elements in the vframes array.
 617   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 618   // +1 because we always have an interpreter return address for the final slot.
 619   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 620   int popframe_extra_args = 0;
 621   // Create an interpreter return address for the stub to use as its return
 622   // address so the skeletal frames are perfectly walkable
 623   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 624 
 625   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 626   // activation be put back on the expression stack of the caller for reexecution
 627   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 628     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 629   }
 630 
 631   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 632   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 633   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 634   //
 635   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 636   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 637 
 638   // It's possible that the number of parameters at the call site is
 639   // different than number of arguments in the callee when method
 640   // handles are used.  If the caller is interpreted get the real
 641   // value so that the proper amount of space can be added to it's
 642   // frame.
 643   bool caller_was_method_handle = false;
 644   if (deopt_sender.is_interpreted_frame()) {
 645     methodHandle method(current, deopt_sender.interpreter_frame_method());
 646     Bytecode_invoke cur(method, deopt_sender.interpreter_frame_bci());
 647     if (cur.has_member_arg()) {
 648       // This should cover all real-world cases.  One exception is a pathological chain of
 649       // MH.linkToXXX() linker calls, which only trusted code could do anyway.  To handle that case, we
 650       // would need to get the size from the resolved method entry.  Another exception would
 651       // be an invokedynamic with an adapter that is really a MethodHandle linker.
 652       caller_was_method_handle = true;
 653     }
 654   }
 655 
 656   //
 657   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 658   // frame_sizes/frame_pcs[1] next oldest frame (int)
 659   // frame_sizes/frame_pcs[n] youngest frame (int)
 660   //
 661   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 662   // owns the space for the return address to it's caller).  Confusing ain't it.
 663   //
 664   // The vframe array can address vframes with indices running from
 665   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 666   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 667   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 668   // so things look a little strange in this loop.
 669   //
 670   int callee_parameters = 0;
 671   int callee_locals = 0;
 672   for (int index = 0; index < array->frames(); index++ ) {
 673     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 674     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 675     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 676     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 677                                                                                                     callee_locals,
 678                                                                                                     index == 0,
 679                                                                                                     popframe_extra_args);
 680     // This pc doesn't have to be perfect just good enough to identify the frame
 681     // as interpreted so the skeleton frame will be walkable
 682     // The correct pc will be set when the skeleton frame is completely filled out
 683     // The final pc we store in the loop is wrong and will be overwritten below
 684     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 685 
 686     callee_parameters = array->element(index)->method()->size_of_parameters();
 687     callee_locals = array->element(index)->method()->max_locals();
 688     popframe_extra_args = 0;
 689   }
 690 
 691   // Compute whether the root vframe returns a float or double value.
 692   BasicType return_type;
 693   {
 694     methodHandle method(current, array->element(0)->method());
 695     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 696     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 697   }
 698 
 699   // Compute information for handling adapters and adjusting the frame size of the caller.
 700   int caller_adjustment = 0;
 701 
 702   // Compute the amount the oldest interpreter frame will have to adjust
 703   // its caller's stack by. If the caller is a compiled frame then
 704   // we pretend that the callee has no parameters so that the
 705   // extension counts for the full amount of locals and not just
 706   // locals-parms. This is because without a c2i adapter the parm
 707   // area as created by the compiled frame will not be usable by
 708   // the interpreter. (Depending on the calling convention there
 709   // may not even be enough space).
 710 
 711   // QQQ I'd rather see this pushed down into last_frame_adjust
 712   // and have it take the sender (aka caller).
 713 
 714   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 715     caller_adjustment = last_frame_adjust(0, callee_locals);
 716   } else if (callee_locals > callee_parameters) {
 717     // The caller frame may need extending to accommodate
 718     // non-parameter locals of the first unpacked interpreted frame.
 719     // Compute that adjustment.
 720     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 721   }
 722 
 723   // If the sender is deoptimized the we must retrieve the address of the handler
 724   // since the frame will "magically" show the original pc before the deopt
 725   // and we'd undo the deopt.
 726 
 727   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 728   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 729     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 730   }
 731 
 732   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 733 
 734 #if INCLUDE_JVMCI
 735   if (exceptionObject() != nullptr) {
 736     current->set_exception_oop(exceptionObject());
 737     exec_mode = Unpack_exception;
 738   }
 739 #endif
 740 
 741   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 742     assert(current->has_pending_exception(), "should have thrown OOME");
 743     current->set_exception_oop(current->pending_exception());
 744     current->clear_pending_exception();
 745     exec_mode = Unpack_exception;
 746   }
 747 
 748 #if INCLUDE_JVMCI
 749   if (current->frames_to_pop_failed_realloc() > 0) {
 750     current->set_pending_monitorenter(false);
 751   }
 752 #endif
 753 
 754   int caller_actual_parameters = -1; // value not used except for interpreted frames, see below
 755   if (deopt_sender.is_interpreted_frame()) {
 756     caller_actual_parameters = callee_parameters + (caller_was_method_handle ? 1 : 0);
 757   }
 758 
 759   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 760                                       caller_adjustment * BytesPerWord,
 761                                       caller_actual_parameters,
 762                                       number_of_frames,
 763                                       frame_sizes,
 764                                       frame_pcs,
 765                                       return_type,
 766                                       exec_mode);
 767   // On some platforms, we need a way to pass some platform dependent
 768   // information to the unpacking code so the skeletal frames come out
 769   // correct (initial fp value, unextended sp, ...)
 770   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 771 
 772   if (array->frames() > 1) {
 773     if (VerifyStack && TraceDeoptimization) {
 774       tty->print_cr("Deoptimizing method containing inlining");
 775     }
 776   }
 777 
 778   array->set_unroll_block(info);
 779   return info;
 780 }
 781 
 782 // Called to cleanup deoptimization data structures in normal case
 783 // after unpacking to stack and when stack overflow error occurs
 784 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 785                                         vframeArray *array) {
 786 
 787   // Get array if coming from exception
 788   if (array == nullptr) {
 789     array = thread->vframe_array_head();
 790   }
 791   thread->set_vframe_array_head(nullptr);
 792 
 793   // Free the previous UnrollBlock
 794   vframeArray* old_array = thread->vframe_array_last();
 795   thread->set_vframe_array_last(array);
 796 
 797   if (old_array != nullptr) {
 798     UnrollBlock* old_info = old_array->unroll_block();
 799     old_array->set_unroll_block(nullptr);
 800     delete old_info;
 801     delete old_array;
 802   }
 803 
 804   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 805   // inside the vframeArray (StackValueCollections)
 806 
 807   delete thread->deopt_mark();
 808   thread->set_deopt_mark(nullptr);
 809   thread->set_deopt_compiled_method(nullptr);
 810 
 811 
 812   if (JvmtiExport::can_pop_frame()) {
 813     // Regardless of whether we entered this routine with the pending
 814     // popframe condition bit set, we should always clear it now
 815     thread->clear_popframe_condition();
 816   }
 817 
 818   // unpack_frames() is called at the end of the deoptimization handler
 819   // and (in C2) at the end of the uncommon trap handler. Note this fact
 820   // so that an asynchronous stack walker can work again. This counter is
 821   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 822   // the beginning of uncommon_trap().
 823   thread->dec_in_deopt_handler();
 824 }
 825 
 826 // Moved from cpu directories because none of the cpus has callee save values.
 827 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 828 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 829 
 830   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 831   // the days we had adapter frames. When we deoptimize a situation where a
 832   // compiled caller calls a compiled caller will have registers it expects
 833   // to survive the call to the callee. If we deoptimize the callee the only
 834   // way we can restore these registers is to have the oldest interpreter
 835   // frame that we create restore these values. That is what this routine
 836   // will accomplish.
 837 
 838   // At the moment we have modified c2 to not have any callee save registers
 839   // so this problem does not exist and this routine is just a place holder.
 840 
 841   assert(f->is_interpreted_frame(), "must be interpreted");
 842 }
 843 
 844 #ifndef PRODUCT
 845 static bool falls_through(Bytecodes::Code bc) {
 846   switch (bc) {
 847     // List may be incomplete.  Here we really only care about bytecodes where compiled code
 848     // can deoptimize.
 849     case Bytecodes::_goto:
 850     case Bytecodes::_goto_w:
 851     case Bytecodes::_athrow:
 852       return false;
 853     default:
 854       return true;
 855   }
 856 }
 857 #endif
 858 
 859 // Return BasicType of value being returned
 860 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 861   assert(thread == JavaThread::current(), "pre-condition");
 862 
 863   // We are already active in the special DeoptResourceMark any ResourceObj's we
 864   // allocate will be freed at the end of the routine.
 865 
 866   // JRT_LEAF methods don't normally allocate handles and there is a
 867   // NoHandleMark to enforce that. It is actually safe to use Handles
 868   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 869   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 870   // then use a HandleMark to ensure any Handles we do create are
 871   // cleaned up in this scope.
 872   ResetNoHandleMark rnhm;
 873   HandleMark hm(thread);
 874 
 875   frame stub_frame = thread->last_frame();
 876 
 877   Continuation::notify_deopt(thread, stub_frame.sp());
 878 
 879   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 880   // must point to the vframeArray for the unpack frame.
 881   vframeArray* array = thread->vframe_array_head();
 882   UnrollBlock* info = array->unroll_block();
 883 
 884   // We set the last_Java frame. But the stack isn't really parsable here. So we
 885   // clear it to make sure JFR understands not to try and walk stacks from events
 886   // in here.
 887   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 888   thread->frame_anchor()->set_last_Java_sp(nullptr);
 889 
 890   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 891   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 892 
 893   thread->frame_anchor()->set_last_Java_sp(sp);
 894 
 895   BasicType bt = info->return_type();
 896 
 897   // If we have an exception pending, claim that the return type is an oop
 898   // so the deopt_blob does not overwrite the exception_oop.
 899 
 900   if (exec_mode == Unpack_exception)
 901     bt = T_OBJECT;
 902 
 903   // Cleanup thread deopt data
 904   cleanup_deopt_info(thread, array);
 905 
 906 #ifndef PRODUCT
 907   if (VerifyStack) {
 908     ResourceMark res_mark;
 909     // Clear pending exception to not break verification code (restored afterwards)
 910     PreserveExceptionMark pm(thread);
 911 
 912     thread->validate_frame_layout();
 913 
 914     // Verify that the just-unpacked frames match the interpreter's
 915     // notions of expression stack and locals
 916     vframeArray* cur_array = thread->vframe_array_last();
 917     RegisterMap rm(thread,
 918                    RegisterMap::UpdateMap::skip,
 919                    RegisterMap::ProcessFrames::include,
 920                    RegisterMap::WalkContinuation::skip);
 921     rm.set_include_argument_oops(false);
 922     bool is_top_frame = true;
 923     int callee_size_of_parameters = 0;
 924     int callee_max_locals = 0;
 925     for (int i = 0; i < cur_array->frames(); i++) {
 926       vframeArrayElement* el = cur_array->element(i);
 927       frame* iframe = el->iframe();
 928       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 929 
 930       // Get the oop map for this bci
 931       InterpreterOopMap mask;
 932       int cur_invoke_parameter_size = 0;
 933       bool try_next_mask = false;
 934       int next_mask_expression_stack_size = -1;
 935       int top_frame_expression_stack_adjustment = 0;
 936       methodHandle mh(thread, iframe->interpreter_frame_method());
 937       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 938       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 939       int max_bci = mh->code_size();
 940       // Get to the next bytecode if possible
 941       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 942       // Check to see if we can grab the number of outgoing arguments
 943       // at an uncommon trap for an invoke (where the compiler
 944       // generates debug info before the invoke has executed)
 945       Bytecodes::Code cur_code = str.next();
 946       Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere;
 947       if (Bytecodes::is_invoke(cur_code)) {
 948         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 949         cur_invoke_parameter_size = invoke.size_of_parameters();
 950         if (i != 0 && invoke.has_member_arg()) {
 951           callee_size_of_parameters++;
 952         }
 953       }
 954       if (str.bci() < max_bci) {
 955         next_code = str.next();
 956         if (next_code >= 0) {
 957           // The interpreter oop map generator reports results before
 958           // the current bytecode has executed except in the case of
 959           // calls. It seems to be hard to tell whether the compiler
 960           // has emitted debug information matching the "state before"
 961           // a given bytecode or the state after, so we try both
 962           if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) {
 963             // Get expression stack size for the next bytecode
 964             InterpreterOopMap next_mask;
 965             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 966             next_mask_expression_stack_size = next_mask.expression_stack_size();
 967             if (Bytecodes::is_invoke(next_code)) {
 968               Bytecode_invoke invoke(mh, str.bci());
 969               next_mask_expression_stack_size += invoke.size_of_parameters();
 970             }
 971             // Need to subtract off the size of the result type of
 972             // the bytecode because this is not described in the
 973             // debug info but returned to the interpreter in the TOS
 974             // caching register
 975             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 976             if (bytecode_result_type != T_ILLEGAL) {
 977               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 978             }
 979             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 980             try_next_mask = true;
 981           }
 982         }
 983       }
 984 
 985       // Verify stack depth and oops in frame
 986       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 987       if (!(
 988             /* SPARC */
 989             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 990             /* x86 */
 991             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 992             (try_next_mask &&
 993              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 994                                                                     top_frame_expression_stack_adjustment))) ||
 995             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 996             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 997              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 998             )) {
 999         {
1000           // Print out some information that will help us debug the problem
1001           tty->print_cr("Wrong number of expression stack elements during deoptimization");
1002           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
1003           tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
1004           if (try_next_mask) {
1005             tty->print_cr("  Next code %s", Bytecodes::name(next_code));
1006           }
1007           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
1008                         iframe->interpreter_frame_expression_stack_size());
1009           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
1010           tty->print_cr("  try_next_mask = %d", try_next_mask);
1011           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
1012           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
1013           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
1014           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1015           tty->print_cr("  exec_mode = %d", exec_mode);
1016           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1017           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1018           tty->print_cr("  Interpreted frames:");
1019           for (int k = 0; k < cur_array->frames(); k++) {
1020             vframeArrayElement* el = cur_array->element(k);
1021             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1022           }
1023           cur_array->print_on_2(tty);
1024         }
1025         guarantee(false, "wrong number of expression stack elements during deopt");
1026       }
1027       VerifyOopClosure verify;
1028       iframe->oops_interpreted_do(&verify, &rm, false);
1029       callee_size_of_parameters = mh->size_of_parameters();
1030       callee_max_locals = mh->max_locals();
1031       is_top_frame = false;
1032     }
1033   }
1034 #endif // !PRODUCT
1035 
1036   return bt;
1037 JRT_END
1038 
1039 class DeoptimizeMarkedClosure : public HandshakeClosure {
1040  public:
1041   DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {}
1042   void do_thread(Thread* thread) {
1043     JavaThread* jt = JavaThread::cast(thread);
1044     jt->deoptimize_marked_methods();
1045   }
1046 };
1047 
1048 void Deoptimization::deoptimize_all_marked() {
1049   ResourceMark rm;
1050 
1051   // Make the dependent methods not entrant
1052   CodeCache::make_marked_nmethods_deoptimized();
1053 
1054   DeoptimizeMarkedClosure deopt;
1055   if (SafepointSynchronize::is_at_safepoint()) {
1056     Threads::java_threads_do(&deopt);
1057   } else {
1058     Handshake::execute(&deopt);
1059   }
1060 }
1061 
1062 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1063   = Deoptimization::Action_reinterpret;
1064 
1065 #if INCLUDE_JVMCI
1066 template<typename CacheType>
1067 class BoxCacheBase : public CHeapObj<mtCompiler> {
1068 protected:
1069   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1070     ResourceMark rm(thread);
1071     char* klass_name_str = klass_name->as_C_string();
1072     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle());
1073     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1074     if (!ik->is_in_error_state()) {
1075       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1076       CacheType::compute_offsets(ik);
1077     }
1078     return ik;
1079   }
1080 };
1081 
1082 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1083   PrimitiveType _low;
1084   PrimitiveType _high;
1085   jobject _cache;
1086 protected:
1087   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1088   BoxCache(Thread* thread) {
1089     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1090     if (ik->is_in_error_state()) {
1091       _low = 1;
1092       _high = 0;
1093       _cache = nullptr;
1094     } else {
1095       objArrayOop cache = CacheType::cache(ik);
1096       assert(cache->length() > 0, "Empty cache");
1097       _low = BoxType::value(cache->obj_at(0));
1098       _high = checked_cast<PrimitiveType>(_low + cache->length() - 1);
1099       _cache = JNIHandles::make_global(Handle(thread, cache));
1100     }
1101   }
1102   ~BoxCache() {
1103     JNIHandles::destroy_global(_cache);
1104   }
1105 public:
1106   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1107     if (_singleton == nullptr) {
1108       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1109       if (!Atomic::replace_if_null(&_singleton, s)) {
1110         delete s;
1111       }
1112     }
1113     return _singleton;
1114   }
1115   oop lookup(PrimitiveType value) {
1116     if (_low <= value && value <= _high) {
1117       int offset = checked_cast<int>(value - _low);
1118       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1119     }
1120     return nullptr;
1121   }
1122   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1123     if (_cache == nullptr) {
1124       cache_init_error = true;
1125       return nullptr;
1126     }
1127     // Have to cast to avoid little/big-endian problems.
1128     if (sizeof(PrimitiveType) > sizeof(jint)) {
1129       jlong value = (jlong)raw_value;
1130       return lookup(value);
1131     }
1132     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1133     return lookup(value);
1134   }
1135 };
1136 
1137 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1138 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1139 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1140 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1141 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1142 
1143 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1144 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1145 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1146 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1147 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1148 
1149 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1150   jobject _true_cache;
1151   jobject _false_cache;
1152 protected:
1153   static BooleanBoxCache *_singleton;
1154   BooleanBoxCache(Thread *thread) {
1155     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1156     if (ik->is_in_error_state()) {
1157       _true_cache = nullptr;
1158       _false_cache = nullptr;
1159     } else {
1160       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1161       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1162     }
1163   }
1164   ~BooleanBoxCache() {
1165     JNIHandles::destroy_global(_true_cache);
1166     JNIHandles::destroy_global(_false_cache);
1167   }
1168 public:
1169   static BooleanBoxCache* singleton(Thread* thread) {
1170     if (_singleton == nullptr) {
1171       BooleanBoxCache* s = new BooleanBoxCache(thread);
1172       if (!Atomic::replace_if_null(&_singleton, s)) {
1173         delete s;
1174       }
1175     }
1176     return _singleton;
1177   }
1178   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1179     if (_true_cache == nullptr) {
1180       cache_in_error = true;
1181       return nullptr;
1182     }
1183     // Have to cast to avoid little/big-endian problems.
1184     jboolean value = (jboolean)*((jint*)&raw_value);
1185     return lookup(value);
1186   }
1187   oop lookup(jboolean value) {
1188     if (value != 0) {
1189       return JNIHandles::resolve_non_null(_true_cache);
1190     }
1191     return JNIHandles::resolve_non_null(_false_cache);
1192   }
1193 };
1194 
1195 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1196 
1197 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1198    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1199    BasicType box_type = vmClasses::box_klass_type(k);
1200    if (box_type != T_OBJECT) {
1201      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1202      switch(box_type) {
1203        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1204        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1205        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1206        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1207        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1208        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1209        default:;
1210      }
1211    }
1212    return nullptr;
1213 }
1214 #endif // INCLUDE_JVMCI
1215 
1216 #if COMPILER2_OR_JVMCI
1217 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1218   Handle pending_exception(THREAD, thread->pending_exception());
1219   const char* exception_file = thread->exception_file();
1220   int exception_line = thread->exception_line();
1221   thread->clear_pending_exception();
1222 
1223   bool failures = false;
1224 
1225   for (int i = 0; i < objects->length(); i++) {
1226     assert(objects->at(i)->is_object(), "invalid debug information");
1227     ObjectValue* sv = (ObjectValue*) objects->at(i);
1228 
1229     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1230     oop obj = nullptr;
1231 
1232     bool cache_init_error = false;
1233     if (k->is_instance_klass()) {
1234 #if INCLUDE_JVMCI
1235       nmethod* nm = fr->cb()->as_nmethod_or_null();
1236       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1237         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1238         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1239         if (obj != nullptr) {
1240           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1241           abv->set_cached(true);
1242         } else if (cache_init_error) {
1243           // Results in an OOME which is valid (as opposed to a class initialization error)
1244           // and is fine for the rare case a cache initialization failing.
1245           failures = true;
1246         }
1247       }
1248 #endif // INCLUDE_JVMCI
1249 
1250       InstanceKlass* ik = InstanceKlass::cast(k);
1251       if (obj == nullptr && !cache_init_error) {
1252         InternalOOMEMark iom(THREAD);
1253         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1254           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1255         } else {
1256           obj = ik->allocate_instance(THREAD);
1257         }
1258       }
1259     } else if (k->is_typeArray_klass()) {
1260       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1261       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1262       int len = sv->field_size() / type2size[ak->element_type()];
1263       InternalOOMEMark iom(THREAD);
1264       obj = ak->allocate(len, THREAD);
1265     } else if (k->is_objArray_klass()) {
1266       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1267       InternalOOMEMark iom(THREAD);
1268       obj = ak->allocate(sv->field_size(), THREAD);
1269     }
1270 
1271     if (obj == nullptr) {
1272       failures = true;
1273     }
1274 
1275     assert(sv->value().is_null(), "redundant reallocation");
1276     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1277     CLEAR_PENDING_EXCEPTION;
1278     sv->set_value(obj);
1279   }
1280 
1281   if (failures) {
1282     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1283   } else if (pending_exception.not_null()) {
1284     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1285   }
1286 
1287   return failures;
1288 }
1289 
1290 #if INCLUDE_JVMCI
1291 /**
1292  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1293  * we need to somehow be able to recover the actual kind to be able to write the correct
1294  * amount of bytes.
1295  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1296  * the entries at index n + 1 to n + i are 'markers'.
1297  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1298  * expected form of the array would be:
1299  *
1300  * {b0, b1, b2, b3, INT, marker, b6, b7}
1301  *
1302  * Thus, in order to get back the size of the entry, we simply need to count the number
1303  * of marked entries
1304  *
1305  * @param virtualArray the virtualized byte array
1306  * @param i index of the virtual entry we are recovering
1307  * @return The number of bytes the entry spans
1308  */
1309 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1310   int index = i;
1311   while (++index < virtualArray->field_size() &&
1312            virtualArray->field_at(index)->is_marker()) {}
1313   return index - i;
1314 }
1315 
1316 /**
1317  * If there was a guarantee for byte array to always start aligned to a long, we could
1318  * do a simple check on the parity of the index. Unfortunately, that is not always the
1319  * case. Thus, we check alignment of the actual address we are writing to.
1320  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1321  * write a long to index 3.
1322  */
1323 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1324     jbyte* res = obj->byte_at_addr(index);
1325     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1326     return res;
1327 }
1328 
1329 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) {
1330   switch (byte_count) {
1331     case 1:
1332       obj->byte_at_put(index, (jbyte) value->get_jint());
1333       break;
1334     case 2:
1335       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint();
1336       break;
1337     case 4:
1338       *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint();
1339       break;
1340     case 8:
1341       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr();
1342       break;
1343     default:
1344       ShouldNotReachHere();
1345   }
1346 }
1347 #endif // INCLUDE_JVMCI
1348 
1349 
1350 // restore elements of an eliminated type array
1351 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1352   int index = 0;
1353 
1354   for (int i = 0; i < sv->field_size(); i++) {
1355     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1356     switch(type) {
1357     case T_LONG: case T_DOUBLE: {
1358       assert(value->type() == T_INT, "Agreement.");
1359       StackValue* low =
1360         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1361 #ifdef _LP64
1362       jlong res = (jlong)low->get_intptr();
1363 #else
1364       jlong res = jlong_from(value->get_jint(), low->get_jint());
1365 #endif
1366       obj->long_at_put(index, res);
1367       break;
1368     }
1369 
1370     case T_INT: case T_FLOAT: { // 4 bytes.
1371       assert(value->type() == T_INT, "Agreement.");
1372       bool big_value = false;
1373       if (i + 1 < sv->field_size() && type == T_INT) {
1374         if (sv->field_at(i)->is_location()) {
1375           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1376           if (type == Location::dbl || type == Location::lng) {
1377             big_value = true;
1378           }
1379         } else if (sv->field_at(i)->is_constant_int()) {
1380           ScopeValue* next_scope_field = sv->field_at(i + 1);
1381           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1382             big_value = true;
1383           }
1384         }
1385       }
1386 
1387       if (big_value) {
1388         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1389   #ifdef _LP64
1390         jlong res = (jlong)low->get_intptr();
1391   #else
1392         jlong res = jlong_from(value->get_jint(), low->get_jint());
1393   #endif
1394         obj->int_at_put(index, *(jint*)&res);
1395         obj->int_at_put(++index, *((jint*)&res + 1));
1396       } else {
1397         obj->int_at_put(index, value->get_jint());
1398       }
1399       break;
1400     }
1401 
1402     case T_SHORT:
1403       assert(value->type() == T_INT, "Agreement.");
1404       obj->short_at_put(index, (jshort)value->get_jint());
1405       break;
1406 
1407     case T_CHAR:
1408       assert(value->type() == T_INT, "Agreement.");
1409       obj->char_at_put(index, (jchar)value->get_jint());
1410       break;
1411 
1412     case T_BYTE: {
1413       assert(value->type() == T_INT, "Agreement.");
1414 #if INCLUDE_JVMCI
1415       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1416       int byte_count = count_number_of_bytes_for_entry(sv, i);
1417       byte_array_put(obj, value, index, byte_count);
1418       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1419       i += byte_count - 1; // Balance the loop counter.
1420       index += byte_count;
1421       // index has been updated so continue at top of loop
1422       continue;
1423 #else
1424       obj->byte_at_put(index, (jbyte)value->get_jint());
1425       break;
1426 #endif // INCLUDE_JVMCI
1427     }
1428 
1429     case T_BOOLEAN: {
1430       assert(value->type() == T_INT, "Agreement.");
1431       obj->bool_at_put(index, (jboolean)value->get_jint());
1432       break;
1433     }
1434 
1435       default:
1436         ShouldNotReachHere();
1437     }
1438     index++;
1439   }
1440 }
1441 
1442 // restore fields of an eliminated object array
1443 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1444   for (int i = 0; i < sv->field_size(); i++) {
1445     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1446     assert(value->type() == T_OBJECT, "object element expected");
1447     obj->obj_at_put(i, value->get_obj()());
1448   }
1449 }
1450 
1451 class ReassignedField {
1452 public:
1453   int _offset;
1454   BasicType _type;
1455 public:
1456   ReassignedField() {
1457     _offset = 0;
1458     _type = T_ILLEGAL;
1459   }
1460 };
1461 
1462 // Gets the fields of `klass` that are eliminated by escape analysis and need to be reassigned
1463 static GrowableArray<ReassignedField>* get_reassigned_fields(InstanceKlass* klass, GrowableArray<ReassignedField>* fields, bool is_jvmci) {
1464   InstanceKlass* super = klass->superklass();
1465   if (super != nullptr) {
1466     get_reassigned_fields(super, fields, is_jvmci);
1467   }
1468   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1469     if (!fs.access_flags().is_static() && (is_jvmci || !fs.field_flags().is_injected())) {
1470       ReassignedField field;
1471       field._offset = fs.offset();
1472       field._type = Signature::basic_type(fs.signature());
1473       fields->append(field);
1474     }
1475   }
1476   return fields;
1477 }
1478 
1479 // Restore fields of an eliminated instance object employing the same field order used by the compiler.
1480 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool is_jvmci) {
1481   GrowableArray<ReassignedField>* fields = get_reassigned_fields(klass, new GrowableArray<ReassignedField>(), is_jvmci);
1482   for (int i = 0; i < fields->length(); i++) {
1483     ScopeValue* scope_field = sv->field_at(svIndex);
1484     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1485     int offset = fields->at(i)._offset;
1486     BasicType type = fields->at(i)._type;
1487     switch (type) {
1488       case T_OBJECT: case T_ARRAY:
1489         assert(value->type() == T_OBJECT, "Agreement.");
1490         obj->obj_field_put(offset, value->get_obj()());
1491         break;
1492 
1493       case T_INT: case T_FLOAT: { // 4 bytes.
1494         assert(value->type() == T_INT, "Agreement.");
1495         bool big_value = false;
1496         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1497           if (scope_field->is_location()) {
1498             Location::Type type = ((LocationValue*) scope_field)->location().type();
1499             if (type == Location::dbl || type == Location::lng) {
1500               big_value = true;
1501             }
1502           }
1503           if (scope_field->is_constant_int()) {
1504             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1505             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1506               big_value = true;
1507             }
1508           }
1509         }
1510 
1511         if (big_value) {
1512           i++;
1513           assert(i < fields->length(), "second T_INT field needed");
1514           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1515         } else {
1516           obj->int_field_put(offset, value->get_jint());
1517           break;
1518         }
1519       }
1520         /* no break */
1521 
1522       case T_LONG: case T_DOUBLE: {
1523         assert(value->type() == T_INT, "Agreement.");
1524         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1525 #ifdef _LP64
1526         jlong res = (jlong)low->get_intptr();
1527 #else
1528         jlong res = jlong_from(value->get_jint(), low->get_jint());
1529 #endif
1530         obj->long_field_put(offset, res);
1531         break;
1532       }
1533 
1534       case T_SHORT:
1535         assert(value->type() == T_INT, "Agreement.");
1536         obj->short_field_put(offset, (jshort)value->get_jint());
1537         break;
1538 
1539       case T_CHAR:
1540         assert(value->type() == T_INT, "Agreement.");
1541         obj->char_field_put(offset, (jchar)value->get_jint());
1542         break;
1543 
1544       case T_BYTE:
1545         assert(value->type() == T_INT, "Agreement.");
1546         obj->byte_field_put(offset, (jbyte)value->get_jint());
1547         break;
1548 
1549       case T_BOOLEAN:
1550         assert(value->type() == T_INT, "Agreement.");
1551         obj->bool_field_put(offset, (jboolean)value->get_jint());
1552         break;
1553 
1554       default:
1555         ShouldNotReachHere();
1556     }
1557     svIndex++;
1558   }
1559   return svIndex;
1560 }
1561 
1562 // restore fields of all eliminated objects and arrays
1563 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool is_jvmci) {
1564   for (int i = 0; i < objects->length(); i++) {
1565     assert(objects->at(i)->is_object(), "invalid debug information");
1566     ObjectValue* sv = (ObjectValue*) objects->at(i);
1567     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1568     Handle obj = sv->value();
1569     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1570 #ifndef PRODUCT
1571     if (PrintDeoptimizationDetails) {
1572       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1573     }
1574 #endif // !PRODUCT
1575 
1576     if (obj.is_null()) {
1577       continue;
1578     }
1579 
1580 #if INCLUDE_JVMCI
1581     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1582     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1583       continue;
1584     }
1585 #endif // INCLUDE_JVMCI
1586     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1587       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1588       ScopeValue* payload = sv->field_at(0);
1589       if (payload->is_location() &&
1590           payload->as_LocationValue()->location().type() == Location::vector) {
1591 #ifndef PRODUCT
1592         if (PrintDeoptimizationDetails) {
1593           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1594           if (Verbose) {
1595             Handle obj = sv->value();
1596             k->oop_print_on(obj(), tty);
1597           }
1598         }
1599 #endif // !PRODUCT
1600         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1601       }
1602       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1603       // which could be restored after vector object allocation.
1604     }
1605     if (k->is_instance_klass()) {
1606       InstanceKlass* ik = InstanceKlass::cast(k);
1607       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), is_jvmci);
1608     } else if (k->is_typeArray_klass()) {
1609       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1610       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1611     } else if (k->is_objArray_klass()) {
1612       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1613     }
1614   }
1615   // These objects may escape when we return to Interpreter after deoptimization.
1616   // We need barrier so that stores that initialize these objects can't be reordered
1617   // with subsequent stores that make these objects accessible by other threads.
1618   OrderAccess::storestore();
1619 }
1620 
1621 
1622 // relock objects for which synchronization was eliminated
1623 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1624                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1625   bool relocked_objects = false;
1626   for (int i = 0; i < monitors->length(); i++) {
1627     MonitorInfo* mon_info = monitors->at(i);
1628     if (mon_info->eliminated()) {
1629       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1630       relocked_objects = true;
1631       if (!mon_info->owner_is_scalar_replaced()) {
1632         Handle obj(thread, mon_info->owner());
1633         markWord mark = obj->mark();
1634         if (exec_mode == Unpack_none) {
1635           if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) {
1636             // With exec_mode == Unpack_none obj may be thread local and locked in
1637             // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header.
1638             markWord dmw = mark.displaced_mark_helper();
1639             mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr));
1640             obj->set_mark(dmw);
1641           }
1642           if (mark.has_monitor()) {
1643             // defer relocking if the deoptee thread is currently waiting for obj
1644             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1645             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1646               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1647               if (LockingMode == LM_LEGACY) {
1648                 mon_info->lock()->set_displaced_header(markWord::unused_mark());
1649               } else if (UseObjectMonitorTable) {
1650                 mon_info->lock()->clear_object_monitor_cache();
1651               }
1652 #ifdef ASSERT
1653               else {
1654                 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be");
1655                 mon_info->lock()->set_bad_metadata_deopt();
1656               }
1657 #endif
1658               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1659               continue;
1660             }
1661           }
1662         }
1663         BasicLock* lock = mon_info->lock();
1664         if (LockingMode == LM_LIGHTWEIGHT) {
1665           // We have lost information about the correct state of the lock stack.
1666           // Entering may create an invalid lock stack. Inflate the lock if it
1667           // was fast_locked to restore the valid lock stack.
1668           if (UseObjectMonitorTable) {
1669             lock->clear_object_monitor_cache();
1670           }
1671           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1672           if (deoptee_thread->lock_stack().contains(obj())) {
1673             LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal,
1674                                                                 deoptee_thread, thread);
1675           }
1676           assert(mon_info->owner()->is_locked(), "object must be locked now");
1677           assert(obj->mark().has_monitor(), "must be");
1678           assert(!deoptee_thread->lock_stack().contains(obj()), "must be");
1679           assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be");
1680         } else {
1681           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1682           assert(mon_info->owner()->is_locked(), "object must be locked now");
1683         }
1684       }
1685     }
1686   }
1687   return relocked_objects;
1688 }
1689 #endif // COMPILER2_OR_JVMCI
1690 
1691 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1692   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1693 
1694   // Register map for next frame (used for stack crawl).  We capture
1695   // the state of the deopt'ing frame's caller.  Thus if we need to
1696   // stuff a C2I adapter we can properly fill in the callee-save
1697   // register locations.
1698   frame caller = fr.sender(reg_map);
1699   int frame_size = pointer_delta_as_int(caller.sp(), fr.sp());
1700 
1701   frame sender = caller;
1702 
1703   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1704   // the vframeArray containing the unpacking information is allocated in the C heap.
1705   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1706   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1707 
1708   // Compare the vframeArray to the collected vframes
1709   assert(array->structural_compare(thread, chunk), "just checking");
1710 
1711   if (TraceDeoptimization) {
1712     ResourceMark rm;
1713     stringStream st;
1714     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1715     st.print("   ");
1716     fr.print_on(&st);
1717     st.print_cr("   Virtual frames (innermost/newest first):");
1718     for (int index = 0; index < chunk->length(); index++) {
1719       compiledVFrame* vf = chunk->at(index);
1720       int bci = vf->raw_bci();
1721       const char* code_name;
1722       if (bci == SynchronizationEntryBCI) {
1723         code_name = "sync entry";
1724       } else {
1725         Bytecodes::Code code = vf->method()->code_at(bci);
1726         code_name = Bytecodes::name(code);
1727       }
1728 
1729       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1730       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1731       st.print(" - %s", code_name);
1732       st.print_cr(" @ bci=%d ", bci);
1733     }
1734     tty->print_raw(st.freeze());
1735     tty->cr();
1736   }
1737 
1738   return array;
1739 }
1740 
1741 #if COMPILER2_OR_JVMCI
1742 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1743   // Reallocation of some scalar replaced objects failed. Record
1744   // that we need to pop all the interpreter frames for the
1745   // deoptimized compiled frame.
1746   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1747   thread->set_frames_to_pop_failed_realloc(array->frames());
1748   // Unlock all monitors here otherwise the interpreter will see a
1749   // mix of locked and unlocked monitors (because of failed
1750   // reallocations of synchronized objects) and be confused.
1751   for (int i = 0; i < array->frames(); i++) {
1752     MonitorChunk* monitors = array->element(i)->monitors();
1753     if (monitors != nullptr) {
1754       // Unlock in reverse order starting from most nested monitor.
1755       for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) {
1756         BasicObjectLock* src = monitors->at(j);
1757         if (src->obj() != nullptr) {
1758           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1759         }
1760       }
1761       array->element(i)->free_monitors();
1762 #ifdef ASSERT
1763       array->element(i)->set_removed_monitors();
1764 #endif
1765     }
1766   }
1767 }
1768 #endif
1769 
1770 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1771   assert(fr.can_be_deoptimized(), "checking frame type");
1772 
1773   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1774 
1775   if (LogCompilation && xtty != nullptr) {
1776     nmethod* nm = fr.cb()->as_nmethod_or_null();
1777     assert(nm != nullptr, "only compiled methods can deopt");
1778 
1779     ttyLocker ttyl;
1780     xtty->begin_head("deoptimized thread='%zu' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1781     nm->log_identity(xtty);
1782     xtty->end_head();
1783     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1784       xtty->begin_elem("jvms bci='%d'", sd->bci());
1785       xtty->method(sd->method());
1786       xtty->end_elem();
1787       if (sd->is_top())  break;
1788     }
1789     xtty->tail("deoptimized");
1790   }
1791 
1792   Continuation::notify_deopt(thread, fr.sp());
1793 
1794   // Patch the compiled method so that when execution returns to it we will
1795   // deopt the execution state and return to the interpreter.
1796   fr.deoptimize(thread);
1797 }
1798 
1799 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1800   // Deoptimize only if the frame comes from compile code.
1801   // Do not deoptimize the frame which is already patched
1802   // during the execution of the loops below.
1803   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1804     return;
1805   }
1806   ResourceMark rm;
1807   deoptimize_single_frame(thread, fr, reason);
1808 }
1809 
1810 #if INCLUDE_JVMCI
1811 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) {
1812   // there is no exception handler for this pc => deoptimize
1813   nm->make_not_entrant("missing exception handler");
1814 
1815   // Use Deoptimization::deoptimize for all of its side-effects:
1816   // gathering traps statistics, logging...
1817   // it also patches the return pc but we do not care about that
1818   // since we return a continuation to the deopt_blob below.
1819   JavaThread* thread = JavaThread::current();
1820   RegisterMap reg_map(thread,
1821                       RegisterMap::UpdateMap::skip,
1822                       RegisterMap::ProcessFrames::include,
1823                       RegisterMap::WalkContinuation::skip);
1824   frame runtime_frame = thread->last_frame();
1825   frame caller_frame = runtime_frame.sender(&reg_map);
1826   assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method");
1827   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1828   compiledVFrame* cvf = compiledVFrame::cast(vf);
1829   ScopeDesc* imm_scope = cvf->scope();
1830   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1831   if (imm_mdo != nullptr) {
1832     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
1833     MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
1834 
1835     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1836     if (pdata != nullptr && pdata->is_BitData()) {
1837       BitData* bit_data = (BitData*) pdata;
1838       bit_data->set_exception_seen();
1839     }
1840   }
1841 
1842   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1843 
1844   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true);
1845   if (trap_mdo != nullptr) {
1846     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1847   }
1848 
1849   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1850 }
1851 #endif
1852 
1853 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1854   assert(thread == Thread::current() ||
1855          thread->is_handshake_safe_for(Thread::current()) ||
1856          SafepointSynchronize::is_at_safepoint(),
1857          "can only deoptimize other thread at a safepoint/handshake");
1858   // Compute frame and register map based on thread and sp.
1859   RegisterMap reg_map(thread,
1860                       RegisterMap::UpdateMap::skip,
1861                       RegisterMap::ProcessFrames::include,
1862                       RegisterMap::WalkContinuation::skip);
1863   frame fr = thread->last_frame();
1864   while (fr.id() != id) {
1865     fr = fr.sender(&reg_map);
1866   }
1867   deoptimize(thread, fr, reason);
1868 }
1869 
1870 
1871 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1872   Thread* current = Thread::current();
1873   if (thread == current || thread->is_handshake_safe_for(current)) {
1874     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1875   } else {
1876     VM_DeoptimizeFrame deopt(thread, id, reason);
1877     VMThread::execute(&deopt);
1878   }
1879 }
1880 
1881 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1882   deoptimize_frame(thread, id, Reason_constraint);
1883 }
1884 
1885 // JVMTI PopFrame support
1886 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1887 {
1888   assert(thread == JavaThread::current(), "pre-condition");
1889   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1890 }
1891 JRT_END
1892 
1893 MethodData*
1894 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1895                                 bool create_if_missing) {
1896   JavaThread* THREAD = thread; // For exception macros.
1897   MethodData* mdo = m()->method_data();
1898   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1899     // Build an MDO.  Ignore errors like OutOfMemory;
1900     // that simply means we won't have an MDO to update.
1901     Method::build_profiling_method_data(m, THREAD);
1902     if (HAS_PENDING_EXCEPTION) {
1903       // Only metaspace OOM is expected. No Java code executed.
1904       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1905       CLEAR_PENDING_EXCEPTION;
1906     }
1907     mdo = m()->method_data();
1908   }
1909   return mdo;
1910 }
1911 
1912 #if COMPILER2_OR_JVMCI
1913 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1914   // In case of an unresolved klass entry, load the class.
1915   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1916   // and probably nowhere else.
1917   // Even that case would benefit from simply re-interpreting the
1918   // bytecode, without paying special attention to the class index.
1919   // So this whole "class index" feature should probably be removed.
1920 
1921   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1922     Klass* tk = constant_pool->klass_at(index, THREAD);
1923     if (HAS_PENDING_EXCEPTION) {
1924       // Exception happened during classloading. We ignore the exception here, since it
1925       // is going to be rethrown since the current activation is going to be deoptimized and
1926       // the interpreter will re-execute the bytecode.
1927       // Do not clear probable Async Exceptions.
1928       CLEAR_PENDING_NONASYNC_EXCEPTION;
1929       // Class loading called java code which may have caused a stack
1930       // overflow. If the exception was thrown right before the return
1931       // to the runtime the stack is no longer guarded. Reguard the
1932       // stack otherwise if we return to the uncommon trap blob and the
1933       // stack bang causes a stack overflow we crash.
1934       JavaThread* jt = THREAD;
1935       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1936       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1937     }
1938     return;
1939   }
1940 
1941   assert(!constant_pool->tag_at(index).is_symbol(),
1942          "no symbolic names here, please");
1943 }
1944 
1945 #if INCLUDE_JFR
1946 
1947 class DeoptReasonSerializer : public JfrSerializer {
1948  public:
1949   void serialize(JfrCheckpointWriter& writer) {
1950     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1951     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1952       writer.write_key((u8)i);
1953       writer.write(Deoptimization::trap_reason_name(i));
1954     }
1955   }
1956 };
1957 
1958 class DeoptActionSerializer : public JfrSerializer {
1959  public:
1960   void serialize(JfrCheckpointWriter& writer) {
1961     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1962     writer.write_count(nof_actions);
1963     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1964       writer.write_key(i);
1965       writer.write(Deoptimization::trap_action_name((int)i));
1966     }
1967   }
1968 };
1969 
1970 static void register_serializers() {
1971   static int critical_section = 0;
1972   if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) {
1973     return;
1974   }
1975   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1976   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1977 }
1978 
1979 static void post_deoptimization_event(nmethod* nm,
1980                                       const Method* method,
1981                                       int trap_bci,
1982                                       int instruction,
1983                                       Deoptimization::DeoptReason reason,
1984                                       Deoptimization::DeoptAction action) {
1985   assert(nm != nullptr, "invariant");
1986   assert(method != nullptr, "invariant");
1987   if (EventDeoptimization::is_enabled()) {
1988     static bool serializers_registered = false;
1989     if (!serializers_registered) {
1990       register_serializers();
1991       serializers_registered = true;
1992     }
1993     EventDeoptimization event;
1994     event.set_compileId(nm->compile_id());
1995     event.set_compiler(nm->compiler_type());
1996     event.set_method(method);
1997     event.set_lineNumber(method->line_number_from_bci(trap_bci));
1998     event.set_bci(trap_bci);
1999     event.set_instruction(instruction);
2000     event.set_reason(reason);
2001     event.set_action(action);
2002     event.commit();
2003   }
2004 }
2005 
2006 #endif // INCLUDE_JFR
2007 
2008 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
2009                               const char* reason_name, const char* reason_action) {
2010   LogTarget(Debug, deoptimization) lt;
2011   if (lt.is_enabled()) {
2012     LogStream ls(lt);
2013     bool is_osr = nm->is_osr_method();
2014     ls.print("cid=%4d %s level=%d",
2015              nm->compile_id(), (is_osr ? "osr" : "   "), nm->comp_level());
2016     ls.print(" %s", tm->name_and_sig_as_C_string());
2017     ls.print(" trap_bci=%d ", trap_bci);
2018     if (is_osr) {
2019       ls.print("osr_bci=%d ", nm->osr_entry_bci());
2020     }
2021     ls.print("%s ", reason_name);
2022     ls.print("%s ", reason_action);
2023     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2024              pc, fr.pc() - nm->code_begin());
2025   }
2026 }
2027 
2028 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2029   HandleMark hm(current);
2030 
2031   // uncommon_trap() is called at the beginning of the uncommon trap
2032   // handler. Note this fact before we start generating temporary frames
2033   // that can confuse an asynchronous stack walker. This counter is
2034   // decremented at the end of unpack_frames().
2035 
2036   current->inc_in_deopt_handler();
2037 
2038 #if INCLUDE_JVMCI
2039   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2040   RegisterMap reg_map(current,
2041                       RegisterMap::UpdateMap::include,
2042                       RegisterMap::ProcessFrames::include,
2043                       RegisterMap::WalkContinuation::skip);
2044 #else
2045   RegisterMap reg_map(current,
2046                       RegisterMap::UpdateMap::skip,
2047                       RegisterMap::ProcessFrames::include,
2048                       RegisterMap::WalkContinuation::skip);
2049 #endif
2050   frame stub_frame = current->last_frame();
2051   frame fr = stub_frame.sender(&reg_map);
2052 
2053   // Log a message
2054   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2055               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2056 
2057   {
2058     ResourceMark rm;
2059 
2060     DeoptReason reason = trap_request_reason(trap_request);
2061     DeoptAction action = trap_request_action(trap_request);
2062 #if INCLUDE_JVMCI
2063     int debug_id = trap_request_debug_id(trap_request);
2064 #endif
2065     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2066 
2067     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2068     compiledVFrame* cvf = compiledVFrame::cast(vf);
2069 
2070     nmethod* nm = cvf->code();
2071 
2072     ScopeDesc*      trap_scope  = cvf->scope();
2073 
2074     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2075 
2076     if (is_receiver_constraint_failure) {
2077       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2078                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2079                     JVMCI_ONLY(COMMA debug_id));
2080     }
2081 
2082     methodHandle    trap_method(current, trap_scope->method());
2083     int             trap_bci    = trap_scope->bci();
2084 #if INCLUDE_JVMCI
2085     jlong           speculation = current->pending_failed_speculation();
2086     if (nm->is_compiled_by_jvmci()) {
2087       nm->update_speculation(current);
2088     } else {
2089       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2090     }
2091 
2092     if (trap_bci == SynchronizationEntryBCI) {
2093       trap_bci = 0;
2094       current->set_pending_monitorenter(true);
2095     }
2096 
2097     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2098       current->set_pending_transfer_to_interpreter(true);
2099     }
2100 #endif
2101 
2102     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2103     // Record this event in the histogram.
2104     gather_statistics(reason, action, trap_bc);
2105 
2106     // Ensure that we can record deopt. history:
2107     bool create_if_missing = ProfileTraps;
2108 
2109     methodHandle profiled_method;
2110 #if INCLUDE_JVMCI
2111     if (nm->is_compiled_by_jvmci()) {
2112       profiled_method = methodHandle(current, nm->method());
2113     } else {
2114       profiled_method = trap_method;
2115     }
2116 #else
2117     profiled_method = trap_method;
2118 #endif
2119 
2120     MethodData* trap_mdo =
2121       get_method_data(current, profiled_method, create_if_missing);
2122 
2123     { // Log Deoptimization event for JFR, UL and event system
2124       Method* tm = trap_method();
2125       const char* reason_name = trap_reason_name(reason);
2126       const char* reason_action = trap_action_name(action);
2127       intptr_t pc = p2i(fr.pc());
2128 
2129       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2130       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action);
2131       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
2132                                 reason_name, reason_action, pc,
2133                                 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
2134     }
2135 
2136     // Print a bunch of diagnostics, if requested.
2137     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2138       ResourceMark rm;
2139 
2140       // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2141       // We must do this already now, since we cannot acquire this lock while
2142       // holding the tty lock (lock ordering by rank).
2143       MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2144 
2145       ttyLocker ttyl;
2146 
2147       char buf[100];
2148       if (xtty != nullptr) {
2149         xtty->begin_head("uncommon_trap thread='%zu' %s",
2150                          os::current_thread_id(),
2151                          format_trap_request(buf, sizeof(buf), trap_request));
2152 #if INCLUDE_JVMCI
2153         if (speculation != 0) {
2154           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2155         }
2156 #endif
2157         nm->log_identity(xtty);
2158       }
2159       Symbol* class_name = nullptr;
2160       bool unresolved = false;
2161       if (unloaded_class_index >= 0) {
2162         constantPoolHandle constants (current, trap_method->constants());
2163         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2164           class_name = constants->klass_name_at(unloaded_class_index);
2165           unresolved = true;
2166           if (xtty != nullptr)
2167             xtty->print(" unresolved='1'");
2168         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2169           class_name = constants->symbol_at(unloaded_class_index);
2170         }
2171         if (xtty != nullptr)
2172           xtty->name(class_name);
2173       }
2174       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2175         // Dump the relevant MDO state.
2176         // This is the deopt count for the current reason, any previous
2177         // reasons or recompiles seen at this point.
2178         int dcnt = trap_mdo->trap_count(reason);
2179         if (dcnt != 0)
2180           xtty->print(" count='%d'", dcnt);
2181 
2182         // We need to lock to read the ProfileData. But to keep the locks ordered, we need to
2183         // lock extra_data_lock before the tty lock.
2184         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2185         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2186         if (dos != 0) {
2187           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2188           if (trap_state_is_recompiled(dos)) {
2189             int recnt2 = trap_mdo->overflow_recompile_count();
2190             if (recnt2 != 0)
2191               xtty->print(" recompiles2='%d'", recnt2);
2192           }
2193         }
2194       }
2195       if (xtty != nullptr) {
2196         xtty->stamp();
2197         xtty->end_head();
2198       }
2199       if (TraceDeoptimization) {  // make noise on the tty
2200         stringStream st;
2201         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2202         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2203                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2204         st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
2205 #if INCLUDE_JVMCI
2206         if (nm->is_compiled_by_jvmci()) {
2207           const char* installed_code_name = nm->jvmci_name();
2208           if (installed_code_name != nullptr) {
2209             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2210           }
2211         }
2212 #endif
2213         st.print(" (@" INTPTR_FORMAT ") thread=%zu reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2214                    p2i(fr.pc()),
2215                    os::current_thread_id(),
2216                    trap_reason_name(reason),
2217                    trap_action_name(action),
2218                    unloaded_class_index
2219 #if INCLUDE_JVMCI
2220                    , debug_id
2221 #endif
2222                    );
2223         if (class_name != nullptr) {
2224           st.print(unresolved ? " unresolved class: " : " symbol: ");
2225           class_name->print_symbol_on(&st);
2226         }
2227         st.cr();
2228         tty->print_raw(st.freeze());
2229       }
2230       if (xtty != nullptr) {
2231         // Log the precise location of the trap.
2232         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2233           xtty->begin_elem("jvms bci='%d'", sd->bci());
2234           xtty->method(sd->method());
2235           xtty->end_elem();
2236           if (sd->is_top())  break;
2237         }
2238         xtty->tail("uncommon_trap");
2239       }
2240     }
2241     // (End diagnostic printout.)
2242 
2243     if (is_receiver_constraint_failure) {
2244       fatal("missing receiver type check");
2245     }
2246 
2247     // Load class if necessary
2248     if (unloaded_class_index >= 0) {
2249       constantPoolHandle constants(current, trap_method->constants());
2250       load_class_by_index(constants, unloaded_class_index, THREAD);
2251     }
2252 
2253     // Flush the nmethod if necessary and desirable.
2254     //
2255     // We need to avoid situations where we are re-flushing the nmethod
2256     // because of a hot deoptimization site.  Repeated flushes at the same
2257     // point need to be detected by the compiler and avoided.  If the compiler
2258     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2259     // module must take measures to avoid an infinite cycle of recompilation
2260     // and deoptimization.  There are several such measures:
2261     //
2262     //   1. If a recompilation is ordered a second time at some site X
2263     //   and for the same reason R, the action is adjusted to 'reinterpret',
2264     //   to give the interpreter time to exercise the method more thoroughly.
2265     //   If this happens, the method's overflow_recompile_count is incremented.
2266     //
2267     //   2. If the compiler fails to reduce the deoptimization rate, then
2268     //   the method's overflow_recompile_count will begin to exceed the set
2269     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2270     //   is adjusted to 'make_not_compilable', and the method is abandoned
2271     //   to the interpreter.  This is a performance hit for hot methods,
2272     //   but is better than a disastrous infinite cycle of recompilations.
2273     //   (Actually, only the method containing the site X is abandoned.)
2274     //
2275     //   3. In parallel with the previous measures, if the total number of
2276     //   recompilations of a method exceeds the much larger set limit
2277     //   PerMethodRecompilationCutoff, the method is abandoned.
2278     //   This should only happen if the method is very large and has
2279     //   many "lukewarm" deoptimizations.  The code which enforces this
2280     //   limit is elsewhere (class nmethod, class Method).
2281     //
2282     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2283     // to recompile at each bytecode independently of the per-BCI cutoff.
2284     //
2285     // The decision to update code is up to the compiler, and is encoded
2286     // in the Action_xxx code.  If the compiler requests Action_none
2287     // no trap state is changed, no compiled code is changed, and the
2288     // computation suffers along in the interpreter.
2289     //
2290     // The other action codes specify various tactics for decompilation
2291     // and recompilation.  Action_maybe_recompile is the loosest, and
2292     // allows the compiled code to stay around until enough traps are seen,
2293     // and until the compiler gets around to recompiling the trapping method.
2294     //
2295     // The other actions cause immediate removal of the present code.
2296 
2297     // Traps caused by injected profile shouldn't pollute trap counts.
2298     bool injected_profile_trap = trap_method->has_injected_profile() &&
2299                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2300 
2301     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2302     bool make_not_entrant = false;
2303     bool make_not_compilable = false;
2304     bool reprofile = false;
2305     switch (action) {
2306     case Action_none:
2307       // Keep the old code.
2308       update_trap_state = false;
2309       break;
2310     case Action_maybe_recompile:
2311       // Do not need to invalidate the present code, but we can
2312       // initiate another
2313       // Start compiler without (necessarily) invalidating the nmethod.
2314       // The system will tolerate the old code, but new code should be
2315       // generated when possible.
2316       break;
2317     case Action_reinterpret:
2318       // Go back into the interpreter for a while, and then consider
2319       // recompiling form scratch.
2320       make_not_entrant = true;
2321       // Reset invocation counter for outer most method.
2322       // This will allow the interpreter to exercise the bytecodes
2323       // for a while before recompiling.
2324       // By contrast, Action_make_not_entrant is immediate.
2325       //
2326       // Note that the compiler will track null_check, null_assert,
2327       // range_check, and class_check events and log them as if they
2328       // had been traps taken from compiled code.  This will update
2329       // the MDO trap history so that the next compilation will
2330       // properly detect hot trap sites.
2331       reprofile = true;
2332       break;
2333     case Action_make_not_entrant:
2334       // Request immediate recompilation, and get rid of the old code.
2335       // Make them not entrant, so next time they are called they get
2336       // recompiled.  Unloaded classes are loaded now so recompile before next
2337       // time they are called.  Same for uninitialized.  The interpreter will
2338       // link the missing class, if any.
2339       make_not_entrant = true;
2340       break;
2341     case Action_make_not_compilable:
2342       // Give up on compiling this method at all.
2343       make_not_entrant = true;
2344       make_not_compilable = true;
2345       break;
2346     default:
2347       ShouldNotReachHere();
2348     }
2349 
2350     // Setting +ProfileTraps fixes the following, on all platforms:
2351     // The result is infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2352     // recompile relies on a MethodData* to record heroic opt failures.
2353 
2354     // Whether the interpreter is producing MDO data or not, we also need
2355     // to use the MDO to detect hot deoptimization points and control
2356     // aggressive optimization.
2357     bool inc_recompile_count = false;
2358 
2359     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2360     ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr,
2361                               (trap_mdo != nullptr),
2362                               Mutex::_no_safepoint_check_flag);
2363     ProfileData* pdata = nullptr;
2364     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2365       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2366       uint this_trap_count = 0;
2367       bool maybe_prior_trap = false;
2368       bool maybe_prior_recompile = false;
2369 
2370       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2371 #if INCLUDE_JVMCI
2372                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2373 #endif
2374                                    nm->method(),
2375                                    //outputs:
2376                                    this_trap_count,
2377                                    maybe_prior_trap,
2378                                    maybe_prior_recompile);
2379       // Because the interpreter also counts null, div0, range, and class
2380       // checks, these traps from compiled code are double-counted.
2381       // This is harmless; it just means that the PerXTrapLimit values
2382       // are in effect a little smaller than they look.
2383 
2384       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2385       if (per_bc_reason != Reason_none) {
2386         // Now take action based on the partially known per-BCI history.
2387         if (maybe_prior_trap
2388             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2389           // If there are too many traps at this BCI, force a recompile.
2390           // This will allow the compiler to see the limit overflow, and
2391           // take corrective action, if possible.  The compiler generally
2392           // does not use the exact PerBytecodeTrapLimit value, but instead
2393           // changes its tactics if it sees any traps at all.  This provides
2394           // a little hysteresis, delaying a recompile until a trap happens
2395           // several times.
2396           //
2397           // Actually, since there is only one bit of counter per BCI,
2398           // the possible per-BCI counts are {0,1,(per-method count)}.
2399           // This produces accurate results if in fact there is only
2400           // one hot trap site, but begins to get fuzzy if there are
2401           // many sites.  For example, if there are ten sites each
2402           // trapping two or more times, they each get the blame for
2403           // all of their traps.
2404           make_not_entrant = true;
2405         }
2406 
2407         // Detect repeated recompilation at the same BCI, and enforce a limit.
2408         if (make_not_entrant && maybe_prior_recompile) {
2409           // More than one recompile at this point.
2410           inc_recompile_count = maybe_prior_trap;
2411         }
2412       } else {
2413         // For reasons which are not recorded per-bytecode, we simply
2414         // force recompiles unconditionally.
2415         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2416         make_not_entrant = true;
2417       }
2418 
2419       // Go back to the compiler if there are too many traps in this method.
2420       if (this_trap_count >= per_method_trap_limit(reason)) {
2421         // If there are too many traps in this method, force a recompile.
2422         // This will allow the compiler to see the limit overflow, and
2423         // take corrective action, if possible.
2424         // (This condition is an unlikely backstop only, because the
2425         // PerBytecodeTrapLimit is more likely to take effect first,
2426         // if it is applicable.)
2427         make_not_entrant = true;
2428       }
2429 
2430       // Here's more hysteresis:  If there has been a recompile at
2431       // this trap point already, run the method in the interpreter
2432       // for a while to exercise it more thoroughly.
2433       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2434         reprofile = true;
2435       }
2436     }
2437 
2438     // Take requested actions on the method:
2439 
2440     // Recompile
2441     if (make_not_entrant) {
2442       if (!nm->make_not_entrant("uncommon trap")) {
2443         return; // the call did not change nmethod's state
2444       }
2445 
2446       if (pdata != nullptr) {
2447         // Record the recompilation event, if any.
2448         int tstate0 = pdata->trap_state();
2449         int tstate1 = trap_state_set_recompiled(tstate0, true);
2450         if (tstate1 != tstate0)
2451           pdata->set_trap_state(tstate1);
2452       }
2453 
2454       // For code aging we count traps separately here, using make_not_entrant()
2455       // as a guard against simultaneous deopts in multiple threads.
2456       if (reason == Reason_tenured && trap_mdo != nullptr) {
2457         trap_mdo->inc_tenure_traps();
2458       }
2459     }
2460 
2461     if (inc_recompile_count) {
2462       trap_mdo->inc_overflow_recompile_count();
2463       if ((uint)trap_mdo->overflow_recompile_count() >
2464           (uint)PerBytecodeRecompilationCutoff) {
2465         // Give up on the method containing the bad BCI.
2466         if (trap_method() == nm->method()) {
2467           make_not_compilable = true;
2468         } else {
2469           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2470           // But give grace to the enclosing nm->method().
2471         }
2472       }
2473     }
2474 
2475     // Reprofile
2476     if (reprofile) {
2477       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2478     }
2479 
2480     // Give up compiling
2481     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2482       assert(make_not_entrant, "consistent");
2483       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2484     }
2485 
2486     if (ProfileExceptionHandlers && trap_mdo != nullptr) {
2487       BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci);
2488       if (exception_handler_data != nullptr) {
2489         // uncommon trap at the start of an exception handler.
2490         // C2 generates these for un-entered exception handlers.
2491         // mark the handler as entered to avoid generating
2492         // another uncommon trap the next time the handler is compiled
2493         exception_handler_data->set_exception_handler_entered();
2494       }
2495     }
2496 
2497   } // Free marked resources
2498 
2499 }
2500 JRT_END
2501 
2502 ProfileData*
2503 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2504                                          int trap_bci,
2505                                          Deoptimization::DeoptReason reason,
2506                                          bool update_total_trap_count,
2507 #if INCLUDE_JVMCI
2508                                          bool is_osr,
2509 #endif
2510                                          Method* compiled_method,
2511                                          //outputs:
2512                                          uint& ret_this_trap_count,
2513                                          bool& ret_maybe_prior_trap,
2514                                          bool& ret_maybe_prior_recompile) {
2515   trap_mdo->check_extra_data_locked();
2516 
2517   bool maybe_prior_trap = false;
2518   bool maybe_prior_recompile = false;
2519   uint this_trap_count = 0;
2520   if (update_total_trap_count) {
2521     uint idx = reason;
2522 #if INCLUDE_JVMCI
2523     if (is_osr) {
2524       // Upper half of history array used for traps in OSR compilations
2525       idx += Reason_TRAP_HISTORY_LENGTH;
2526     }
2527 #endif
2528     uint prior_trap_count = trap_mdo->trap_count(idx);
2529     this_trap_count  = trap_mdo->inc_trap_count(idx);
2530 
2531     // If the runtime cannot find a place to store trap history,
2532     // it is estimated based on the general condition of the method.
2533     // If the method has ever been recompiled, or has ever incurred
2534     // a trap with the present reason , then this BCI is assumed
2535     // (pessimistically) to be the culprit.
2536     maybe_prior_trap      = (prior_trap_count != 0);
2537     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2538   }
2539   ProfileData* pdata = nullptr;
2540 
2541 
2542   // For reasons which are recorded per bytecode, we check per-BCI data.
2543   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2544   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2545   if (per_bc_reason != Reason_none) {
2546     // Find the profile data for this BCI.  If there isn't one,
2547     // try to allocate one from the MDO's set of spares.
2548     // This will let us detect a repeated trap at this point.
2549     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2550 
2551     if (pdata != nullptr) {
2552       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2553         if (LogCompilation && xtty != nullptr) {
2554           ttyLocker ttyl;
2555           // no more room for speculative traps in this MDO
2556           xtty->elem("speculative_traps_oom");
2557         }
2558       }
2559       // Query the trap state of this profile datum.
2560       int tstate0 = pdata->trap_state();
2561       if (!trap_state_has_reason(tstate0, per_bc_reason))
2562         maybe_prior_trap = false;
2563       if (!trap_state_is_recompiled(tstate0))
2564         maybe_prior_recompile = false;
2565 
2566       // Update the trap state of this profile datum.
2567       int tstate1 = tstate0;
2568       // Record the reason.
2569       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2570       // Store the updated state on the MDO, for next time.
2571       if (tstate1 != tstate0)
2572         pdata->set_trap_state(tstate1);
2573     } else {
2574       if (LogCompilation && xtty != nullptr) {
2575         ttyLocker ttyl;
2576         // Missing MDP?  Leave a small complaint in the log.
2577         xtty->elem("missing_mdp bci='%d'", trap_bci);
2578       }
2579     }
2580   }
2581 
2582   // Return results:
2583   ret_this_trap_count = this_trap_count;
2584   ret_maybe_prior_trap = maybe_prior_trap;
2585   ret_maybe_prior_recompile = maybe_prior_recompile;
2586   return pdata;
2587 }
2588 
2589 void
2590 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2591   ResourceMark rm;
2592   // Ignored outputs:
2593   uint ignore_this_trap_count;
2594   bool ignore_maybe_prior_trap;
2595   bool ignore_maybe_prior_recompile;
2596   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2597   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2598   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2599 
2600   // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2601   MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2602 
2603   query_update_method_data(trap_mdo, trap_bci,
2604                            (DeoptReason)reason,
2605                            update_total_counts,
2606 #if INCLUDE_JVMCI
2607                            false,
2608 #endif
2609                            nullptr,
2610                            ignore_this_trap_count,
2611                            ignore_maybe_prior_trap,
2612                            ignore_maybe_prior_recompile);
2613 }
2614 
2615 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) {
2616   // Enable WXWrite: current function is called from methods compiled by C2 directly
2617   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2618 
2619   // Still in Java no safepoints
2620   {
2621     // This enters VM and may safepoint
2622     uncommon_trap_inner(current, trap_request);
2623   }
2624   HandleMark hm(current);
2625   return fetch_unroll_info_helper(current, exec_mode);
2626 }
2627 
2628 // Local derived constants.
2629 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2630 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2631 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2632 
2633 //---------------------------trap_state_reason---------------------------------
2634 Deoptimization::DeoptReason
2635 Deoptimization::trap_state_reason(int trap_state) {
2636   // This assert provides the link between the width of DataLayout::trap_bits
2637   // and the encoding of "recorded" reasons.  It ensures there are enough
2638   // bits to store all needed reasons in the per-BCI MDO profile.
2639   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2640   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2641   trap_state -= recompile_bit;
2642   if (trap_state == DS_REASON_MASK) {
2643     return Reason_many;
2644   } else {
2645     assert((int)Reason_none == 0, "state=0 => Reason_none");
2646     return (DeoptReason)trap_state;
2647   }
2648 }
2649 //-------------------------trap_state_has_reason-------------------------------
2650 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2651   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2652   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2653   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2654   trap_state -= recompile_bit;
2655   if (trap_state == DS_REASON_MASK) {
2656     return -1;  // true, unspecifically (bottom of state lattice)
2657   } else if (trap_state == reason) {
2658     return 1;   // true, definitely
2659   } else if (trap_state == 0) {
2660     return 0;   // false, definitely (top of state lattice)
2661   } else {
2662     return 0;   // false, definitely
2663   }
2664 }
2665 //-------------------------trap_state_add_reason-------------------------------
2666 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2667   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2668   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2669   trap_state -= recompile_bit;
2670   if (trap_state == DS_REASON_MASK) {
2671     return trap_state + recompile_bit;     // already at state lattice bottom
2672   } else if (trap_state == reason) {
2673     return trap_state + recompile_bit;     // the condition is already true
2674   } else if (trap_state == 0) {
2675     return reason + recompile_bit;          // no condition has yet been true
2676   } else {
2677     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2678   }
2679 }
2680 //-----------------------trap_state_is_recompiled------------------------------
2681 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2682   return (trap_state & DS_RECOMPILE_BIT) != 0;
2683 }
2684 //-----------------------trap_state_set_recompiled-----------------------------
2685 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2686   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2687   else    return trap_state & ~DS_RECOMPILE_BIT;
2688 }
2689 //---------------------------format_trap_state---------------------------------
2690 // This is used for debugging and diagnostics, including LogFile output.
2691 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2692                                               int trap_state) {
2693   assert(buflen > 0, "sanity");
2694   DeoptReason reason      = trap_state_reason(trap_state);
2695   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2696   // Re-encode the state from its decoded components.
2697   int decoded_state = 0;
2698   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2699     decoded_state = trap_state_add_reason(decoded_state, reason);
2700   if (recomp_flag)
2701     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2702   // If the state re-encodes properly, format it symbolically.
2703   // Because this routine is used for debugging and diagnostics,
2704   // be robust even if the state is a strange value.
2705   size_t len;
2706   if (decoded_state != trap_state) {
2707     // Random buggy state that doesn't decode??
2708     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2709   } else {
2710     len = jio_snprintf(buf, buflen, "%s%s",
2711                        trap_reason_name(reason),
2712                        recomp_flag ? " recompiled" : "");
2713   }
2714   return buf;
2715 }
2716 
2717 
2718 //--------------------------------statics--------------------------------------
2719 const char* Deoptimization::_trap_reason_name[] = {
2720   // Note:  Keep this in sync. with enum DeoptReason.
2721   "none",
2722   "null_check",
2723   "null_assert" JVMCI_ONLY("_or_unreached0"),
2724   "range_check",
2725   "class_check",
2726   "array_check",
2727   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2728   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2729   "profile_predicate",
2730   "auto_vectorization_check",
2731   "unloaded",
2732   "uninitialized",
2733   "initialized",
2734   "unreached",
2735   "unhandled",
2736   "constraint",
2737   "div0_check",
2738   "age",
2739   "predicate",
2740   "loop_limit_check",
2741   "speculate_class_check",
2742   "speculate_null_check",
2743   "speculate_null_assert",
2744   "unstable_if",
2745   "unstable_fused_if",
2746   "receiver_constraint",
2747 #if INCLUDE_JVMCI
2748   "aliasing",
2749   "transfer_to_interpreter",
2750   "not_compiled_exception_handler",
2751   "unresolved",
2752   "jsr_mismatch",
2753 #endif
2754   "tenured"
2755 };
2756 const char* Deoptimization::_trap_action_name[] = {
2757   // Note:  Keep this in sync. with enum DeoptAction.
2758   "none",
2759   "maybe_recompile",
2760   "reinterpret",
2761   "make_not_entrant",
2762   "make_not_compilable"
2763 };
2764 
2765 const char* Deoptimization::trap_reason_name(int reason) {
2766   // Check that every reason has a name
2767   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2768 
2769   if (reason == Reason_many)  return "many";
2770   if ((uint)reason < Reason_LIMIT)
2771     return _trap_reason_name[reason];
2772   static char buf[20];
2773   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2774   return buf;
2775 }
2776 const char* Deoptimization::trap_action_name(int action) {
2777   // Check that every action has a name
2778   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2779 
2780   if ((uint)action < Action_LIMIT)
2781     return _trap_action_name[action];
2782   static char buf[20];
2783   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2784   return buf;
2785 }
2786 
2787 // This is used for debugging and diagnostics, including LogFile output.
2788 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2789                                                 int trap_request) {
2790   jint unloaded_class_index = trap_request_index(trap_request);
2791   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2792   const char* action = trap_action_name(trap_request_action(trap_request));
2793 #if INCLUDE_JVMCI
2794   int debug_id = trap_request_debug_id(trap_request);
2795 #endif
2796   size_t len;
2797   if (unloaded_class_index < 0) {
2798     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2799                        reason, action
2800 #if INCLUDE_JVMCI
2801                        ,debug_id
2802 #endif
2803                        );
2804   } else {
2805     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2806                        reason, action, unloaded_class_index
2807 #if INCLUDE_JVMCI
2808                        ,debug_id
2809 #endif
2810                        );
2811   }
2812   return buf;
2813 }
2814 
2815 juint Deoptimization::_deoptimization_hist
2816         [Deoptimization::Reason_LIMIT]
2817     [1 + Deoptimization::Action_LIMIT]
2818         [Deoptimization::BC_CASE_LIMIT]
2819   = {0};
2820 
2821 enum {
2822   LSB_BITS = 8,
2823   LSB_MASK = right_n_bits(LSB_BITS)
2824 };
2825 
2826 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2827                                        Bytecodes::Code bc) {
2828   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2829   assert(action >= 0 && action < Action_LIMIT, "oob");
2830   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2831   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2832   juint* cases = _deoptimization_hist[reason][1+action];
2833   juint* bc_counter_addr = nullptr;
2834   juint  bc_counter      = 0;
2835   // Look for an unused counter, or an exact match to this BC.
2836   if (bc != Bytecodes::_illegal) {
2837     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2838       juint* counter_addr = &cases[bc_case];
2839       juint  counter = *counter_addr;
2840       if ((counter == 0 && bc_counter_addr == nullptr)
2841           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2842         // this counter is either free or is already devoted to this BC
2843         bc_counter_addr = counter_addr;
2844         bc_counter = counter | bc;
2845       }
2846     }
2847   }
2848   if (bc_counter_addr == nullptr) {
2849     // Overflow, or no given bytecode.
2850     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2851     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2852   }
2853   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2854 }
2855 
2856 jint Deoptimization::total_deoptimization_count() {
2857   return _deoptimization_hist[Reason_none][0][0];
2858 }
2859 
2860 // Get the deopt count for a specific reason and a specific action. If either
2861 // one of 'reason' or 'action' is null, the method returns the sum of all
2862 // deoptimizations with the specific 'action' or 'reason' respectively.
2863 // If both arguments are null, the method returns the total deopt count.
2864 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2865   if (reason_str == nullptr && action_str == nullptr) {
2866     return total_deoptimization_count();
2867   }
2868   juint counter = 0;
2869   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2870     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2871       for (int action = 0; action < Action_LIMIT; action++) {
2872         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2873           juint* cases = _deoptimization_hist[reason][1+action];
2874           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2875             counter += cases[bc_case] >> LSB_BITS;
2876           }
2877         }
2878       }
2879     }
2880   }
2881   return counter;
2882 }
2883 
2884 void Deoptimization::print_statistics() {
2885   juint total = total_deoptimization_count();
2886   juint account = total;
2887   if (total != 0) {
2888     ttyLocker ttyl;
2889     if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2890     tty->print_cr("Deoptimization traps recorded:");
2891     #define PRINT_STAT_LINE(name, r) \
2892       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2893     PRINT_STAT_LINE("total", total);
2894     // For each non-zero entry in the histogram, print the reason,
2895     // the action, and (if specifically known) the type of bytecode.
2896     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2897       for (int action = 0; action < Action_LIMIT; action++) {
2898         juint* cases = _deoptimization_hist[reason][1+action];
2899         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2900           juint counter = cases[bc_case];
2901           if (counter != 0) {
2902             char name[1*K];
2903             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2904             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2905               bc = Bytecodes::_illegal;
2906             os::snprintf_checked(name, sizeof(name), "%s/%s/%s",
2907                     trap_reason_name(reason),
2908                     trap_action_name(action),
2909                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2910             juint r = counter >> LSB_BITS;
2911             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2912             account -= r;
2913           }
2914         }
2915       }
2916     }
2917     if (account != 0) {
2918       PRINT_STAT_LINE("unaccounted", account);
2919     }
2920     #undef PRINT_STAT_LINE
2921     if (xtty != nullptr)  xtty->tail("statistics");
2922   }
2923 }
2924 
2925 #else // COMPILER2_OR_JVMCI
2926 
2927 
2928 // Stubs for C1 only system.
2929 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2930   return false;
2931 }
2932 
2933 const char* Deoptimization::trap_reason_name(int reason) {
2934   return "unknown";
2935 }
2936 
2937 jint Deoptimization::total_deoptimization_count() {
2938   return 0;
2939 }
2940 
2941 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2942   return 0;
2943 }
2944 
2945 void Deoptimization::print_statistics() {
2946   // no output
2947 }
2948 
2949 void
2950 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2951   // no update
2952 }
2953 
2954 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2955   return 0;
2956 }
2957 
2958 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2959                                        Bytecodes::Code bc) {
2960   // no update
2961 }
2962 
2963 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2964                                               int trap_state) {
2965   jio_snprintf(buf, buflen, "#%d", trap_state);
2966   return buf;
2967 }
2968 
2969 #endif // COMPILER2_OR_JVMCI