1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compilationPolicy.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/memAllocator.hpp"
  39 #include "interpreter/bytecode.hpp"
  40 #include "interpreter/bytecodeStream.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvm.h"
  44 #include "logging/log.hpp"
  45 #include "logging/logLevel.hpp"
  46 #include "logging/logMessage.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/constantPool.hpp"
  53 #include "oops/fieldStreams.inline.hpp"
  54 #include "oops/method.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/objArrayOop.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvmtiDeferredUpdates.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "prims/methodHandles.hpp"
  64 #include "prims/vectorSupport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/basicLock.inline.hpp"
  67 #include "runtime/continuation.hpp"
  68 #include "runtime/continuationEntry.inline.hpp"
  69 #include "runtime/deoptimization.hpp"
  70 #include "runtime/escapeBarrier.hpp"
  71 #include "runtime/fieldDescriptor.hpp"
  72 #include "runtime/fieldDescriptor.inline.hpp"
  73 #include "runtime/frame.inline.hpp"
  74 #include "runtime/handles.inline.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/javaThread.hpp"
  77 #include "runtime/jniHandles.inline.hpp"
  78 #include "runtime/keepStackGCProcessed.hpp"
  79 #include "runtime/lightweightSynchronizer.hpp"
  80 #include "runtime/lockStack.inline.hpp"
  81 #include "runtime/objectMonitor.inline.hpp"
  82 #include "runtime/osThread.hpp"
  83 #include "runtime/safepointVerifiers.hpp"
  84 #include "runtime/sharedRuntime.hpp"
  85 #include "runtime/signature.hpp"
  86 #include "runtime/stackFrameStream.inline.hpp"
  87 #include "runtime/stackValue.hpp"
  88 #include "runtime/stackWatermarkSet.hpp"
  89 #include "runtime/stubRoutines.hpp"
  90 #include "runtime/synchronizer.inline.hpp"
  91 #include "runtime/threadSMR.hpp"
  92 #include "runtime/threadWXSetters.inline.hpp"
  93 #include "runtime/vframe.hpp"
  94 #include "runtime/vframeArray.hpp"
  95 #include "runtime/vframe_hp.hpp"
  96 #include "runtime/vmOperations.hpp"
  97 #include "utilities/checkedCast.hpp"
  98 #include "utilities/events.hpp"
  99 #include "utilities/growableArray.hpp"
 100 #include "utilities/macros.hpp"
 101 #include "utilities/preserveException.hpp"
 102 #include "utilities/xmlstream.hpp"
 103 #if INCLUDE_JFR
 104 #include "jfr/jfrEvents.hpp"
 105 #include "jfr/metadata/jfrSerializer.hpp"
 106 #endif
 107 
 108 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 109 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 110 bool     DeoptimizationScope::_committing_in_progress = false;
 111 
 112 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 113   DEBUG_ONLY(_deopted = false;)
 114 
 115   MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
 116   // If there is nothing to deopt _required_gen is the same as comitted.
 117   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 118 }
 119 
 120 DeoptimizationScope::~DeoptimizationScope() {
 121   assert(_deopted, "Deopt not executed");
 122 }
 123 
 124 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) {
 125   if (!nm->can_be_deoptimized()) {
 126     return;
 127   }
 128 
 129   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 130 
 131   // If it's already marked but we still need it to be deopted.
 132   if (nm->is_marked_for_deoptimization()) {
 133     dependent(nm);
 134     return;
 135   }
 136 
 137   nmethod::DeoptimizationStatus status =
 138     inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate;
 139   Atomic::store(&nm->_deoptimization_status, status);
 140 
 141   // Make sure active is not committed
 142   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 143   assert(nm->_deoptimization_generation == 0, "Is already marked");
 144 
 145   nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 146   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 147 }
 148 
 149 void DeoptimizationScope::dependent(nmethod* nm) {
 150   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 151 
 152   // A method marked by someone else may have a _required_gen lower than what we marked with.
 153   // Therefore only store it if it's higher than _required_gen.
 154   if (_required_gen < nm->_deoptimization_generation) {
 155     _required_gen = nm->_deoptimization_generation;
 156   }
 157 }
 158 
 159 void DeoptimizationScope::deoptimize_marked() {
 160   assert(!_deopted, "Already deopted");
 161 
 162   // We are not alive yet.
 163   if (!Universe::is_fully_initialized()) {
 164     DEBUG_ONLY(_deopted = true;)
 165     return;
 166   }
 167 
 168   // Safepoints are a special case, handled here.
 169   if (SafepointSynchronize::is_at_safepoint()) {
 170     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 171     DeoptimizationScope::_active_deopt_gen++;
 172     Deoptimization::deoptimize_all_marked();
 173     DEBUG_ONLY(_deopted = true;)
 174     return;
 175   }
 176 
 177   uint64_t comitting = 0;
 178   bool wait = false;
 179   while (true) {
 180     {
 181       ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 182 
 183       // First we check if we or someone else already deopted the gen we want.
 184       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 185         DEBUG_ONLY(_deopted = true;)
 186         return;
 187       }
 188       if (!_committing_in_progress) {
 189         // The version we are about to commit.
 190         comitting = DeoptimizationScope::_active_deopt_gen;
 191         // Make sure new marks use a higher gen.
 192         DeoptimizationScope::_active_deopt_gen++;
 193         _committing_in_progress = true;
 194         wait = false;
 195       } else {
 196         // Another thread is handshaking and committing a gen.
 197         wait = true;
 198       }
 199     }
 200     if (wait) {
 201       // Wait and let the concurrent handshake be performed.
 202       ThreadBlockInVM tbivm(JavaThread::current());
 203       os::naked_yield();
 204     } else {
 205       // Performs the handshake.
 206       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 207       DEBUG_ONLY(_deopted = true;)
 208       {
 209         ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 210 
 211         // Make sure that committed doesn't go backwards.
 212         // Should only happen if we did a deopt during a safepoint above.
 213         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 214           DeoptimizationScope::_committed_deopt_gen = comitting;
 215         }
 216         _committing_in_progress = false;
 217 
 218         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 219 
 220         return;
 221       }
 222     }
 223   }
 224 }
 225 
 226 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 227                                          int  caller_adjustment,
 228                                          int  caller_actual_parameters,
 229                                          int  number_of_frames,
 230                                          intptr_t* frame_sizes,
 231                                          address* frame_pcs,
 232                                          BasicType return_type,
 233                                          int exec_mode) {
 234   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 235   _caller_adjustment         = caller_adjustment;
 236   _caller_actual_parameters  = caller_actual_parameters;
 237   _number_of_frames          = number_of_frames;
 238   _frame_sizes               = frame_sizes;
 239   _frame_pcs                 = frame_pcs;
 240   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 241   _return_type               = return_type;
 242   _initial_info              = 0;
 243   // PD (x86 only)
 244   _counter_temp              = 0;
 245   _unpack_kind               = exec_mode;
 246   _sender_sp_temp            = 0;
 247 
 248   _total_frame_sizes         = size_of_frames();
 249   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 250 }
 251 
 252 Deoptimization::UnrollBlock::~UnrollBlock() {
 253   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 254   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 255   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 256 }
 257 
 258 int Deoptimization::UnrollBlock::size_of_frames() const {
 259   // Account first for the adjustment of the initial frame
 260   intptr_t result = _caller_adjustment;
 261   for (int index = 0; index < number_of_frames(); index++) {
 262     result += frame_sizes()[index];
 263   }
 264   return checked_cast<int>(result);
 265 }
 266 
 267 void Deoptimization::UnrollBlock::print() {
 268   ResourceMark rm;
 269   stringStream st;
 270   st.print_cr("UnrollBlock");
 271   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 272   st.print(   "  frame_sizes: ");
 273   for (int index = 0; index < number_of_frames(); index++) {
 274     st.print(INTX_FORMAT " ", frame_sizes()[index]);
 275   }
 276   st.cr();
 277   tty->print_raw(st.freeze());
 278 }
 279 
 280 // In order to make fetch_unroll_info work properly with escape
 281 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 282 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 283 // which is called from the method fetch_unroll_info_helper below.
 284 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 285   // fetch_unroll_info() is called at the beginning of the deoptimization
 286   // handler. Note this fact before we start generating temporary frames
 287   // that can confuse an asynchronous stack walker. This counter is
 288   // decremented at the end of unpack_frames().
 289   current->inc_in_deopt_handler();
 290 
 291   if (exec_mode == Unpack_exception) {
 292     // When we get here, a callee has thrown an exception into a deoptimized
 293     // frame. That throw might have deferred stack watermark checking until
 294     // after unwinding. So we deal with such deferred requests here.
 295     StackWatermarkSet::after_unwind(current);
 296   }
 297 
 298   return fetch_unroll_info_helper(current, exec_mode);
 299 JRT_END
 300 
 301 #if COMPILER2_OR_JVMCI
 302 // print information about reallocated objects
 303 static void print_objects(JavaThread* deoptee_thread,
 304                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 305   ResourceMark rm;
 306   stringStream st;  // change to logStream with logging
 307   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 308   fieldDescriptor fd;
 309 
 310   for (int i = 0; i < objects->length(); i++) {
 311     ObjectValue* sv = (ObjectValue*) objects->at(i);
 312     Handle obj = sv->value();
 313 
 314     if (obj.is_null()) {
 315       st.print_cr("     nullptr");
 316       continue;
 317     }
 318 
 319     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 320 
 321     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 322     k->print_value_on(&st);
 323     st.print_cr(" allocated (" SIZE_FORMAT " bytes)", obj->size() * HeapWordSize);
 324 
 325     if (Verbose && k != nullptr) {
 326       k->oop_print_on(obj(), &st);
 327     }
 328   }
 329   tty->print_raw(st.freeze());
 330 }
 331 
 332 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method,
 333                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 334                                   bool& deoptimized_objects) {
 335   bool realloc_failures = false;
 336   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 337 
 338   JavaThread* deoptee_thread = chunk->at(0)->thread();
 339   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 340          "a frame can only be deoptimized by the owner thread");
 341 
 342   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 343 
 344   // The flag return_oop() indicates call sites which return oop
 345   // in compiled code. Such sites include java method calls,
 346   // runtime calls (for example, used to allocate new objects/arrays
 347   // on slow code path) and any other calls generated in compiled code.
 348   // It is not guaranteed that we can get such information here only
 349   // by analyzing bytecode in deoptimized frames. This is why this flag
 350   // is set during method compilation (see Compile::Process_OopMap_Node()).
 351   // If the previous frame was popped or if we are dispatching an exception,
 352   // we don't have an oop result.
 353   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 354   Handle return_value;
 355   if (save_oop_result) {
 356     // Reallocation may trigger GC. If deoptimization happened on return from
 357     // call which returns oop we need to save it since it is not in oopmap.
 358     oop result = deoptee.saved_oop_result(&map);
 359     assert(oopDesc::is_oop_or_null(result), "must be oop");
 360     return_value = Handle(thread, result);
 361     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 362     if (TraceDeoptimization) {
 363       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 364       tty->cr();
 365     }
 366   }
 367   if (objects != nullptr) {
 368     if (exec_mode == Deoptimization::Unpack_none) {
 369       assert(thread->thread_state() == _thread_in_vm, "assumption");
 370       JavaThread* THREAD = thread; // For exception macros.
 371       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 372       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 373       deoptimized_objects = true;
 374     } else {
 375       JavaThread* current = thread; // For JRT_BLOCK
 376       JRT_BLOCK
 377       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 378       JRT_END
 379     }
 380     bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci();
 381     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 382     if (TraceDeoptimization) {
 383       print_objects(deoptee_thread, objects, realloc_failures);
 384     }
 385   }
 386   if (save_oop_result) {
 387     // Restore result.
 388     deoptee.set_saved_oop_result(&map, return_value());
 389   }
 390   return realloc_failures;
 391 }
 392 
 393 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 394                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 395   JavaThread* deoptee_thread = chunk->at(0)->thread();
 396   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 397   assert(thread == Thread::current(), "should be");
 398   HandleMark hm(thread);
 399 #ifndef PRODUCT
 400   bool first = true;
 401 #endif // !PRODUCT
 402   // Start locking from outermost/oldest frame
 403   for (int i = (chunk->length() - 1); i >= 0; i--) {
 404     compiledVFrame* cvf = chunk->at(i);
 405     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 406     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 407     if (monitors->is_nonempty()) {
 408       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 409                                                      exec_mode, realloc_failures);
 410       deoptimized_objects = deoptimized_objects || relocked;
 411 #ifndef PRODUCT
 412       if (PrintDeoptimizationDetails) {
 413         ResourceMark rm;
 414         stringStream st;
 415         for (int j = 0; j < monitors->length(); j++) {
 416           MonitorInfo* mi = monitors->at(j);
 417           if (mi->eliminated()) {
 418             if (first) {
 419               first = false;
 420               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 421             }
 422             if (exec_mode == Deoptimization::Unpack_none) {
 423               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 424               if (monitor != nullptr && monitor->object() == mi->owner()) {
 425                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 426                 continue;
 427               }
 428             }
 429             if (mi->owner_is_scalar_replaced()) {
 430               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 431               st.print_cr("     failed reallocation for klass %s", k->external_name());
 432             } else {
 433               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 434             }
 435           }
 436         }
 437         tty->print_raw(st.freeze());
 438       }
 439 #endif // !PRODUCT
 440     }
 441   }
 442 }
 443 
 444 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 445 // The given vframes cover one physical frame.
 446 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 447                                                  bool& realloc_failures) {
 448   frame deoptee = chunk->at(0)->fr();
 449   JavaThread* deoptee_thread = chunk->at(0)->thread();
 450   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 451   RegisterMap map(chunk->at(0)->register_map());
 452   bool deoptimized_objects = false;
 453 
 454   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 455 
 456   // Reallocate the non-escaping objects and restore their fields.
 457   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 458                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 459     realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects);
 460   }
 461 
 462   // MonitorInfo structures used in eliminate_locks are not GC safe.
 463   NoSafepointVerifier no_safepoint;
 464 
 465   // Now relock objects if synchronization on them was eliminated.
 466   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 467     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 468   }
 469   return deoptimized_objects;
 470 }
 471 #endif // COMPILER2_OR_JVMCI
 472 
 473 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 474 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 475   // When we get here we are about to unwind the deoptee frame. In order to
 476   // catch not yet safe to use frames, the following stack watermark barrier
 477   // poll will make such frames safe to use.
 478   StackWatermarkSet::before_unwind(current);
 479 
 480   // Note: there is a safepoint safety issue here. No matter whether we enter
 481   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 482   // the vframeArray is created.
 483   //
 484 
 485   // Allocate our special deoptimization ResourceMark
 486   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 487   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 488   current->set_deopt_mark(dmark);
 489 
 490   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 491   RegisterMap map(current,
 492                   RegisterMap::UpdateMap::include,
 493                   RegisterMap::ProcessFrames::include,
 494                   RegisterMap::WalkContinuation::skip);
 495   RegisterMap dummy_map(current,
 496                         RegisterMap::UpdateMap::skip,
 497                         RegisterMap::ProcessFrames::include,
 498                         RegisterMap::WalkContinuation::skip);
 499   // Now get the deoptee with a valid map
 500   frame deoptee = stub_frame.sender(&map);
 501   // Set the deoptee nmethod
 502   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 503   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 504   current->set_deopt_compiled_method(nm);
 505 
 506   if (VerifyStack) {
 507     current->validate_frame_layout();
 508   }
 509 
 510   // Create a growable array of VFrames where each VFrame represents an inlined
 511   // Java frame.  This storage is allocated with the usual system arena.
 512   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 513   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 514   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 515   while (!vf->is_top()) {
 516     assert(vf->is_compiled_frame(), "Wrong frame type");
 517     chunk->push(compiledVFrame::cast(vf));
 518     vf = vf->sender();
 519   }
 520   assert(vf->is_compiled_frame(), "Wrong frame type");
 521   chunk->push(compiledVFrame::cast(vf));
 522 
 523   bool realloc_failures = false;
 524 
 525 #if COMPILER2_OR_JVMCI
 526   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 527 
 528   // Reallocate the non-escaping objects and restore their fields. Then
 529   // relock objects if synchronization on them was eliminated.
 530   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 531                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 532     bool unused;
 533     realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused);
 534   }
 535 #endif // COMPILER2_OR_JVMCI
 536 
 537   // Ensure that no safepoint is taken after pointers have been stored
 538   // in fields of rematerialized objects.  If a safepoint occurs from here on
 539   // out the java state residing in the vframeArray will be missed.
 540   // Locks may be rebaised in a safepoint.
 541   NoSafepointVerifier no_safepoint;
 542 
 543 #if COMPILER2_OR_JVMCI
 544   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 545       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 546     bool unused = false;
 547     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 548   }
 549 #endif // COMPILER2_OR_JVMCI
 550 
 551   ScopeDesc* trap_scope = chunk->at(0)->scope();
 552   Handle exceptionObject;
 553   if (trap_scope->rethrow_exception()) {
 554 #ifndef PRODUCT
 555     if (PrintDeoptimizationDetails) {
 556       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 557     }
 558 #endif // !PRODUCT
 559 
 560     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 561     guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw");
 562     ScopeValue* topOfStack = expressions->top();
 563     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 564     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 565   }
 566 
 567   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 568 #if COMPILER2_OR_JVMCI
 569   if (realloc_failures) {
 570     // This destroys all ScopedValue bindings.
 571     current->clear_scopedValueBindings();
 572     pop_frames_failed_reallocs(current, array);
 573   }
 574 #endif
 575 
 576   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 577   current->set_vframe_array_head(array);
 578 
 579   // Now that the vframeArray has been created if we have any deferred local writes
 580   // added by jvmti then we can free up that structure as the data is now in the
 581   // vframeArray
 582 
 583   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 584 
 585   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 586   CodeBlob* cb = stub_frame.cb();
 587   // Verify we have the right vframeArray
 588   assert(cb->frame_size() >= 0, "Unexpected frame size");
 589   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 590 
 591   // If the deopt call site is a MethodHandle invoke call site we have
 592   // to adjust the unpack_sp.
 593   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 594   if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc()))
 595     unpack_sp = deoptee.unextended_sp();
 596 
 597 #ifdef ASSERT
 598   assert(cb->is_deoptimization_stub() ||
 599          cb->is_uncommon_trap_stub() ||
 600          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 601          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 602          "unexpected code blob: %s", cb->name());
 603 #endif
 604 
 605   // This is a guarantee instead of an assert because if vframe doesn't match
 606   // we will unpack the wrong deoptimized frame and wind up in strange places
 607   // where it will be very difficult to figure out what went wrong. Better
 608   // to die an early death here than some very obscure death later when the
 609   // trail is cold.
 610   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 611   // in that it will fail to detect a problem when there is one. This needs
 612   // more work in tiger timeframe.
 613   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 614 
 615   int number_of_frames = array->frames();
 616 
 617   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 618   // virtual activation, which is the reverse of the elements in the vframes array.
 619   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 620   // +1 because we always have an interpreter return address for the final slot.
 621   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 622   int popframe_extra_args = 0;
 623   // Create an interpreter return address for the stub to use as its return
 624   // address so the skeletal frames are perfectly walkable
 625   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 626 
 627   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 628   // activation be put back on the expression stack of the caller for reexecution
 629   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 630     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 631   }
 632 
 633   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 634   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 635   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 636   //
 637   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 638   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 639 
 640   // It's possible that the number of parameters at the call site is
 641   // different than number of arguments in the callee when method
 642   // handles are used.  If the caller is interpreted get the real
 643   // value so that the proper amount of space can be added to it's
 644   // frame.
 645   bool caller_was_method_handle = false;
 646   if (deopt_sender.is_interpreted_frame()) {
 647     methodHandle method(current, deopt_sender.interpreter_frame_method());
 648     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 649     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 650       // Method handle invokes may involve fairly arbitrary chains of
 651       // calls so it's impossible to know how much actual space the
 652       // caller has for locals.
 653       caller_was_method_handle = true;
 654     }
 655   }
 656 
 657   //
 658   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 659   // frame_sizes/frame_pcs[1] next oldest frame (int)
 660   // frame_sizes/frame_pcs[n] youngest frame (int)
 661   //
 662   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 663   // owns the space for the return address to it's caller).  Confusing ain't it.
 664   //
 665   // The vframe array can address vframes with indices running from
 666   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 667   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 668   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 669   // so things look a little strange in this loop.
 670   //
 671   int callee_parameters = 0;
 672   int callee_locals = 0;
 673   for (int index = 0; index < array->frames(); index++ ) {
 674     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 675     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 676     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 677     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 678                                                                                                     callee_locals,
 679                                                                                                     index == 0,
 680                                                                                                     popframe_extra_args);
 681     // This pc doesn't have to be perfect just good enough to identify the frame
 682     // as interpreted so the skeleton frame will be walkable
 683     // The correct pc will be set when the skeleton frame is completely filled out
 684     // The final pc we store in the loop is wrong and will be overwritten below
 685     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 686 
 687     callee_parameters = array->element(index)->method()->size_of_parameters();
 688     callee_locals = array->element(index)->method()->max_locals();
 689     popframe_extra_args = 0;
 690   }
 691 
 692   // Compute whether the root vframe returns a float or double value.
 693   BasicType return_type;
 694   {
 695     methodHandle method(current, array->element(0)->method());
 696     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 697     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 698   }
 699 
 700   // Compute information for handling adapters and adjusting the frame size of the caller.
 701   int caller_adjustment = 0;
 702 
 703   // Compute the amount the oldest interpreter frame will have to adjust
 704   // its caller's stack by. If the caller is a compiled frame then
 705   // we pretend that the callee has no parameters so that the
 706   // extension counts for the full amount of locals and not just
 707   // locals-parms. This is because without a c2i adapter the parm
 708   // area as created by the compiled frame will not be usable by
 709   // the interpreter. (Depending on the calling convention there
 710   // may not even be enough space).
 711 
 712   // QQQ I'd rather see this pushed down into last_frame_adjust
 713   // and have it take the sender (aka caller).
 714 
 715   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 716     caller_adjustment = last_frame_adjust(0, callee_locals);
 717   } else if (callee_locals > callee_parameters) {
 718     // The caller frame may need extending to accommodate
 719     // non-parameter locals of the first unpacked interpreted frame.
 720     // Compute that adjustment.
 721     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 722   }
 723 
 724   // If the sender is deoptimized the we must retrieve the address of the handler
 725   // since the frame will "magically" show the original pc before the deopt
 726   // and we'd undo the deopt.
 727 
 728   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 729   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 730     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 731   }
 732 
 733   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 734 
 735 #if INCLUDE_JVMCI
 736   if (exceptionObject() != nullptr) {
 737     current->set_exception_oop(exceptionObject());
 738     exec_mode = Unpack_exception;
 739   }
 740 #endif
 741 
 742   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 743     assert(current->has_pending_exception(), "should have thrown OOME");
 744     current->set_exception_oop(current->pending_exception());
 745     current->clear_pending_exception();
 746     exec_mode = Unpack_exception;
 747   }
 748 
 749 #if INCLUDE_JVMCI
 750   if (current->frames_to_pop_failed_realloc() > 0) {
 751     current->set_pending_monitorenter(false);
 752   }
 753 #endif
 754 
 755   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 756                                       caller_adjustment * BytesPerWord,
 757                                       caller_was_method_handle ? 0 : callee_parameters,
 758                                       number_of_frames,
 759                                       frame_sizes,
 760                                       frame_pcs,
 761                                       return_type,
 762                                       exec_mode);
 763   // On some platforms, we need a way to pass some platform dependent
 764   // information to the unpacking code so the skeletal frames come out
 765   // correct (initial fp value, unextended sp, ...)
 766   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 767 
 768   if (array->frames() > 1) {
 769     if (VerifyStack && TraceDeoptimization) {
 770       tty->print_cr("Deoptimizing method containing inlining");
 771     }
 772   }
 773 
 774   array->set_unroll_block(info);
 775   return info;
 776 }
 777 
 778 // Called to cleanup deoptimization data structures in normal case
 779 // after unpacking to stack and when stack overflow error occurs
 780 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 781                                         vframeArray *array) {
 782 
 783   // Get array if coming from exception
 784   if (array == nullptr) {
 785     array = thread->vframe_array_head();
 786   }
 787   thread->set_vframe_array_head(nullptr);
 788 
 789   // Free the previous UnrollBlock
 790   vframeArray* old_array = thread->vframe_array_last();
 791   thread->set_vframe_array_last(array);
 792 
 793   if (old_array != nullptr) {
 794     UnrollBlock* old_info = old_array->unroll_block();
 795     old_array->set_unroll_block(nullptr);
 796     delete old_info;
 797     delete old_array;
 798   }
 799 
 800   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 801   // inside the vframeArray (StackValueCollections)
 802 
 803   delete thread->deopt_mark();
 804   thread->set_deopt_mark(nullptr);
 805   thread->set_deopt_compiled_method(nullptr);
 806 
 807 
 808   if (JvmtiExport::can_pop_frame()) {
 809     // Regardless of whether we entered this routine with the pending
 810     // popframe condition bit set, we should always clear it now
 811     thread->clear_popframe_condition();
 812   }
 813 
 814   // unpack_frames() is called at the end of the deoptimization handler
 815   // and (in C2) at the end of the uncommon trap handler. Note this fact
 816   // so that an asynchronous stack walker can work again. This counter is
 817   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 818   // the beginning of uncommon_trap().
 819   thread->dec_in_deopt_handler();
 820 }
 821 
 822 // Moved from cpu directories because none of the cpus has callee save values.
 823 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 824 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 825 
 826   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 827   // the days we had adapter frames. When we deoptimize a situation where a
 828   // compiled caller calls a compiled caller will have registers it expects
 829   // to survive the call to the callee. If we deoptimize the callee the only
 830   // way we can restore these registers is to have the oldest interpreter
 831   // frame that we create restore these values. That is what this routine
 832   // will accomplish.
 833 
 834   // At the moment we have modified c2 to not have any callee save registers
 835   // so this problem does not exist and this routine is just a place holder.
 836 
 837   assert(f->is_interpreted_frame(), "must be interpreted");
 838 }
 839 
 840 #ifndef PRODUCT
 841 static bool falls_through(Bytecodes::Code bc) {
 842   switch (bc) {
 843     // List may be incomplete.  Here we really only care about bytecodes where compiled code
 844     // can deoptimize.
 845     case Bytecodes::_goto:
 846     case Bytecodes::_goto_w:
 847     case Bytecodes::_athrow:
 848       return false;
 849     default:
 850       return true;
 851   }
 852 }
 853 #endif
 854 
 855 // Return BasicType of value being returned
 856 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 857   assert(thread == JavaThread::current(), "pre-condition");
 858 
 859   // We are already active in the special DeoptResourceMark any ResourceObj's we
 860   // allocate will be freed at the end of the routine.
 861 
 862   // JRT_LEAF methods don't normally allocate handles and there is a
 863   // NoHandleMark to enforce that. It is actually safe to use Handles
 864   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 865   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 866   // then use a HandleMark to ensure any Handles we do create are
 867   // cleaned up in this scope.
 868   ResetNoHandleMark rnhm;
 869   HandleMark hm(thread);
 870 
 871   frame stub_frame = thread->last_frame();
 872 
 873   Continuation::notify_deopt(thread, stub_frame.sp());
 874 
 875   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 876   // must point to the vframeArray for the unpack frame.
 877   vframeArray* array = thread->vframe_array_head();
 878   UnrollBlock* info = array->unroll_block();
 879 
 880   // We set the last_Java frame. But the stack isn't really parsable here. So we
 881   // clear it to make sure JFR understands not to try and walk stacks from events
 882   // in here.
 883   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 884   thread->frame_anchor()->set_last_Java_sp(nullptr);
 885 
 886   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 887   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 888 
 889   thread->frame_anchor()->set_last_Java_sp(sp);
 890 
 891   BasicType bt = info->return_type();
 892 
 893   // If we have an exception pending, claim that the return type is an oop
 894   // so the deopt_blob does not overwrite the exception_oop.
 895 
 896   if (exec_mode == Unpack_exception)
 897     bt = T_OBJECT;
 898 
 899   // Cleanup thread deopt data
 900   cleanup_deopt_info(thread, array);
 901 
 902 #ifndef PRODUCT
 903   if (VerifyStack) {
 904     ResourceMark res_mark;
 905     // Clear pending exception to not break verification code (restored afterwards)
 906     PreserveExceptionMark pm(thread);
 907 
 908     thread->validate_frame_layout();
 909 
 910     // Verify that the just-unpacked frames match the interpreter's
 911     // notions of expression stack and locals
 912     vframeArray* cur_array = thread->vframe_array_last();
 913     RegisterMap rm(thread,
 914                    RegisterMap::UpdateMap::skip,
 915                    RegisterMap::ProcessFrames::include,
 916                    RegisterMap::WalkContinuation::skip);
 917     rm.set_include_argument_oops(false);
 918     bool is_top_frame = true;
 919     int callee_size_of_parameters = 0;
 920     int callee_max_locals = 0;
 921     for (int i = 0; i < cur_array->frames(); i++) {
 922       vframeArrayElement* el = cur_array->element(i);
 923       frame* iframe = el->iframe();
 924       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 925 
 926       // Get the oop map for this bci
 927       InterpreterOopMap mask;
 928       int cur_invoke_parameter_size = 0;
 929       bool try_next_mask = false;
 930       int next_mask_expression_stack_size = -1;
 931       int top_frame_expression_stack_adjustment = 0;
 932       methodHandle mh(thread, iframe->interpreter_frame_method());
 933       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 934       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 935       int max_bci = mh->code_size();
 936       // Get to the next bytecode if possible
 937       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 938       // Check to see if we can grab the number of outgoing arguments
 939       // at an uncommon trap for an invoke (where the compiler
 940       // generates debug info before the invoke has executed)
 941       Bytecodes::Code cur_code = str.next();
 942       Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere;
 943       if (Bytecodes::is_invoke(cur_code)) {
 944         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 945         cur_invoke_parameter_size = invoke.size_of_parameters();
 946         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 947           callee_size_of_parameters++;
 948         }
 949       }
 950       if (str.bci() < max_bci) {
 951         next_code = str.next();
 952         if (next_code >= 0) {
 953           // The interpreter oop map generator reports results before
 954           // the current bytecode has executed except in the case of
 955           // calls. It seems to be hard to tell whether the compiler
 956           // has emitted debug information matching the "state before"
 957           // a given bytecode or the state after, so we try both
 958           if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) {
 959             // Get expression stack size for the next bytecode
 960             InterpreterOopMap next_mask;
 961             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 962             next_mask_expression_stack_size = next_mask.expression_stack_size();
 963             if (Bytecodes::is_invoke(next_code)) {
 964               Bytecode_invoke invoke(mh, str.bci());
 965               next_mask_expression_stack_size += invoke.size_of_parameters();
 966             }
 967             // Need to subtract off the size of the result type of
 968             // the bytecode because this is not described in the
 969             // debug info but returned to the interpreter in the TOS
 970             // caching register
 971             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 972             if (bytecode_result_type != T_ILLEGAL) {
 973               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 974             }
 975             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 976             try_next_mask = true;
 977           }
 978         }
 979       }
 980 
 981       // Verify stack depth and oops in frame
 982       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 983       if (!(
 984             /* SPARC */
 985             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 986             /* x86 */
 987             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 988             (try_next_mask &&
 989              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 990                                                                     top_frame_expression_stack_adjustment))) ||
 991             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 992             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 993              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 994             )) {
 995         {
 996           // Print out some information that will help us debug the problem
 997           tty->print_cr("Wrong number of expression stack elements during deoptimization");
 998           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 999           tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
1000           if (try_next_mask) {
1001             tty->print_cr("  Next code %s", Bytecodes::name(next_code));
1002           }
1003           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
1004                         iframe->interpreter_frame_expression_stack_size());
1005           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
1006           tty->print_cr("  try_next_mask = %d", try_next_mask);
1007           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
1008           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
1009           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
1010           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1011           tty->print_cr("  exec_mode = %d", exec_mode);
1012           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1013           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1014           tty->print_cr("  Interpreted frames:");
1015           for (int k = 0; k < cur_array->frames(); k++) {
1016             vframeArrayElement* el = cur_array->element(k);
1017             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1018           }
1019           cur_array->print_on_2(tty);
1020         }
1021         guarantee(false, "wrong number of expression stack elements during deopt");
1022       }
1023       VerifyOopClosure verify;
1024       iframe->oops_interpreted_do(&verify, &rm, false);
1025       callee_size_of_parameters = mh->size_of_parameters();
1026       callee_max_locals = mh->max_locals();
1027       is_top_frame = false;
1028     }
1029   }
1030 #endif // !PRODUCT
1031 
1032   return bt;
1033 JRT_END
1034 
1035 class DeoptimizeMarkedClosure : public HandshakeClosure {
1036  public:
1037   DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {}
1038   void do_thread(Thread* thread) {
1039     JavaThread* jt = JavaThread::cast(thread);
1040     jt->deoptimize_marked_methods();
1041   }
1042 };
1043 
1044 void Deoptimization::deoptimize_all_marked() {
1045   ResourceMark rm;
1046 
1047   // Make the dependent methods not entrant
1048   CodeCache::make_marked_nmethods_deoptimized();
1049 
1050   DeoptimizeMarkedClosure deopt;
1051   if (SafepointSynchronize::is_at_safepoint()) {
1052     Threads::java_threads_do(&deopt);
1053   } else {
1054     Handshake::execute(&deopt);
1055   }
1056 }
1057 
1058 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1059   = Deoptimization::Action_reinterpret;
1060 
1061 #if INCLUDE_JVMCI
1062 template<typename CacheType>
1063 class BoxCacheBase : public CHeapObj<mtCompiler> {
1064 protected:
1065   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1066     ResourceMark rm(thread);
1067     char* klass_name_str = klass_name->as_C_string();
1068     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle(), Handle());
1069     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1070     if (!ik->is_in_error_state()) {
1071       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1072       CacheType::compute_offsets(ik);
1073     }
1074     return ik;
1075   }
1076 };
1077 
1078 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1079   PrimitiveType _low;
1080   PrimitiveType _high;
1081   jobject _cache;
1082 protected:
1083   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1084   BoxCache(Thread* thread) {
1085     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1086     if (ik->is_in_error_state()) {
1087       _low = 1;
1088       _high = 0;
1089       _cache = nullptr;
1090     } else {
1091       objArrayOop cache = CacheType::cache(ik);
1092       assert(cache->length() > 0, "Empty cache");
1093       _low = BoxType::value(cache->obj_at(0));
1094       _high = checked_cast<PrimitiveType>(_low + cache->length() - 1);
1095       _cache = JNIHandles::make_global(Handle(thread, cache));
1096     }
1097   }
1098   ~BoxCache() {
1099     JNIHandles::destroy_global(_cache);
1100   }
1101 public:
1102   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1103     if (_singleton == nullptr) {
1104       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1105       if (!Atomic::replace_if_null(&_singleton, s)) {
1106         delete s;
1107       }
1108     }
1109     return _singleton;
1110   }
1111   oop lookup(PrimitiveType value) {
1112     if (_low <= value && value <= _high) {
1113       int offset = checked_cast<int>(value - _low);
1114       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1115     }
1116     return nullptr;
1117   }
1118   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1119     if (_cache == nullptr) {
1120       cache_init_error = true;
1121       return nullptr;
1122     }
1123     // Have to cast to avoid little/big-endian problems.
1124     if (sizeof(PrimitiveType) > sizeof(jint)) {
1125       jlong value = (jlong)raw_value;
1126       return lookup(value);
1127     }
1128     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1129     return lookup(value);
1130   }
1131 };
1132 
1133 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1134 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1135 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1136 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1137 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1138 
1139 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1140 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1141 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1142 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1143 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1144 
1145 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1146   jobject _true_cache;
1147   jobject _false_cache;
1148 protected:
1149   static BooleanBoxCache *_singleton;
1150   BooleanBoxCache(Thread *thread) {
1151     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1152     if (ik->is_in_error_state()) {
1153       _true_cache = nullptr;
1154       _false_cache = nullptr;
1155     } else {
1156       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1157       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1158     }
1159   }
1160   ~BooleanBoxCache() {
1161     JNIHandles::destroy_global(_true_cache);
1162     JNIHandles::destroy_global(_false_cache);
1163   }
1164 public:
1165   static BooleanBoxCache* singleton(Thread* thread) {
1166     if (_singleton == nullptr) {
1167       BooleanBoxCache* s = new BooleanBoxCache(thread);
1168       if (!Atomic::replace_if_null(&_singleton, s)) {
1169         delete s;
1170       }
1171     }
1172     return _singleton;
1173   }
1174   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1175     if (_true_cache == nullptr) {
1176       cache_in_error = true;
1177       return nullptr;
1178     }
1179     // Have to cast to avoid little/big-endian problems.
1180     jboolean value = (jboolean)*((jint*)&raw_value);
1181     return lookup(value);
1182   }
1183   oop lookup(jboolean value) {
1184     if (value != 0) {
1185       return JNIHandles::resolve_non_null(_true_cache);
1186     }
1187     return JNIHandles::resolve_non_null(_false_cache);
1188   }
1189 };
1190 
1191 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1192 
1193 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1194    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1195    BasicType box_type = vmClasses::box_klass_type(k);
1196    if (box_type != T_OBJECT) {
1197      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1198      switch(box_type) {
1199        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1200        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1201        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1202        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1203        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1204        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1205        default:;
1206      }
1207    }
1208    return nullptr;
1209 }
1210 #endif // INCLUDE_JVMCI
1211 
1212 #if COMPILER2_OR_JVMCI
1213 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1214   Handle pending_exception(THREAD, thread->pending_exception());
1215   const char* exception_file = thread->exception_file();
1216   int exception_line = thread->exception_line();
1217   thread->clear_pending_exception();
1218 
1219   bool failures = false;
1220 
1221   for (int i = 0; i < objects->length(); i++) {
1222     assert(objects->at(i)->is_object(), "invalid debug information");
1223     ObjectValue* sv = (ObjectValue*) objects->at(i);
1224 
1225     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1226     oop obj = nullptr;
1227 
1228     bool cache_init_error = false;
1229     if (k->is_instance_klass()) {
1230 #if INCLUDE_JVMCI
1231       nmethod* nm = fr->cb()->as_nmethod_or_null();
1232       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1233         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1234         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1235         if (obj != nullptr) {
1236           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1237           abv->set_cached(true);
1238         } else if (cache_init_error) {
1239           // Results in an OOME which is valid (as opposed to a class initialization error)
1240           // and is fine for the rare case a cache initialization failing.
1241           failures = true;
1242         }
1243       }
1244 #endif // INCLUDE_JVMCI
1245 
1246       InstanceKlass* ik = InstanceKlass::cast(k);
1247       if (obj == nullptr && !cache_init_error) {
1248         InternalOOMEMark iom(THREAD);
1249         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1250           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1251         } else {
1252           obj = ik->allocate_instance(THREAD);
1253         }
1254       }
1255     } else if (k->is_typeArray_klass()) {
1256       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1257       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1258       int len = sv->field_size() / type2size[ak->element_type()];
1259       InternalOOMEMark iom(THREAD);
1260       obj = ak->allocate(len, THREAD);
1261     } else if (k->is_objArray_klass()) {
1262       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1263       InternalOOMEMark iom(THREAD);
1264       obj = ak->allocate(sv->field_size(), THREAD);
1265     }
1266 
1267     if (obj == nullptr) {
1268       failures = true;
1269     }
1270 
1271     assert(sv->value().is_null(), "redundant reallocation");
1272     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1273     CLEAR_PENDING_EXCEPTION;
1274     sv->set_value(obj);
1275   }
1276 
1277   if (failures) {
1278     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1279   } else if (pending_exception.not_null()) {
1280     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1281   }
1282 
1283   return failures;
1284 }
1285 
1286 #if INCLUDE_JVMCI
1287 /**
1288  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1289  * we need to somehow be able to recover the actual kind to be able to write the correct
1290  * amount of bytes.
1291  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1292  * the entries at index n + 1 to n + i are 'markers'.
1293  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1294  * expected form of the array would be:
1295  *
1296  * {b0, b1, b2, b3, INT, marker, b6, b7}
1297  *
1298  * Thus, in order to get back the size of the entry, we simply need to count the number
1299  * of marked entries
1300  *
1301  * @param virtualArray the virtualized byte array
1302  * @param i index of the virtual entry we are recovering
1303  * @return The number of bytes the entry spans
1304  */
1305 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1306   int index = i;
1307   while (++index < virtualArray->field_size() &&
1308            virtualArray->field_at(index)->is_marker()) {}
1309   return index - i;
1310 }
1311 
1312 /**
1313  * If there was a guarantee for byte array to always start aligned to a long, we could
1314  * do a simple check on the parity of the index. Unfortunately, that is not always the
1315  * case. Thus, we check alignment of the actual address we are writing to.
1316  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1317  * write a long to index 3.
1318  */
1319 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1320     jbyte* res = obj->byte_at_addr(index);
1321     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1322     return res;
1323 }
1324 
1325 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) {
1326   switch (byte_count) {
1327     case 1:
1328       obj->byte_at_put(index, (jbyte) value->get_jint());
1329       break;
1330     case 2:
1331       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint();
1332       break;
1333     case 4:
1334       *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint();
1335       break;
1336     case 8:
1337       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr();
1338       break;
1339     default:
1340       ShouldNotReachHere();
1341   }
1342 }
1343 #endif // INCLUDE_JVMCI
1344 
1345 
1346 // restore elements of an eliminated type array
1347 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1348   int index = 0;
1349 
1350   for (int i = 0; i < sv->field_size(); i++) {
1351     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1352     switch(type) {
1353     case T_LONG: case T_DOUBLE: {
1354       assert(value->type() == T_INT, "Agreement.");
1355       StackValue* low =
1356         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1357 #ifdef _LP64
1358       jlong res = (jlong)low->get_intptr();
1359 #else
1360       jlong res = jlong_from(value->get_jint(), low->get_jint());
1361 #endif
1362       obj->long_at_put(index, res);
1363       break;
1364     }
1365 
1366     case T_INT: case T_FLOAT: { // 4 bytes.
1367       assert(value->type() == T_INT, "Agreement.");
1368       bool big_value = false;
1369       if (i + 1 < sv->field_size() && type == T_INT) {
1370         if (sv->field_at(i)->is_location()) {
1371           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1372           if (type == Location::dbl || type == Location::lng) {
1373             big_value = true;
1374           }
1375         } else if (sv->field_at(i)->is_constant_int()) {
1376           ScopeValue* next_scope_field = sv->field_at(i + 1);
1377           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1378             big_value = true;
1379           }
1380         }
1381       }
1382 
1383       if (big_value) {
1384         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1385   #ifdef _LP64
1386         jlong res = (jlong)low->get_intptr();
1387   #else
1388         jlong res = jlong_from(value->get_jint(), low->get_jint());
1389   #endif
1390         obj->int_at_put(index, *(jint*)&res);
1391         obj->int_at_put(++index, *((jint*)&res + 1));
1392       } else {
1393         obj->int_at_put(index, value->get_jint());
1394       }
1395       break;
1396     }
1397 
1398     case T_SHORT:
1399       assert(value->type() == T_INT, "Agreement.");
1400       obj->short_at_put(index, (jshort)value->get_jint());
1401       break;
1402 
1403     case T_CHAR:
1404       assert(value->type() == T_INT, "Agreement.");
1405       obj->char_at_put(index, (jchar)value->get_jint());
1406       break;
1407 
1408     case T_BYTE: {
1409       assert(value->type() == T_INT, "Agreement.");
1410 #if INCLUDE_JVMCI
1411       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1412       int byte_count = count_number_of_bytes_for_entry(sv, i);
1413       byte_array_put(obj, value, index, byte_count);
1414       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1415       i += byte_count - 1; // Balance the loop counter.
1416       index += byte_count;
1417       // index has been updated so continue at top of loop
1418       continue;
1419 #else
1420       obj->byte_at_put(index, (jbyte)value->get_jint());
1421       break;
1422 #endif // INCLUDE_JVMCI
1423     }
1424 
1425     case T_BOOLEAN: {
1426       assert(value->type() == T_INT, "Agreement.");
1427       obj->bool_at_put(index, (jboolean)value->get_jint());
1428       break;
1429     }
1430 
1431       default:
1432         ShouldNotReachHere();
1433     }
1434     index++;
1435   }
1436 }
1437 
1438 // restore fields of an eliminated object array
1439 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1440   for (int i = 0; i < sv->field_size(); i++) {
1441     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1442     assert(value->type() == T_OBJECT, "object element expected");
1443     obj->obj_at_put(i, value->get_obj()());
1444   }
1445 }
1446 
1447 class ReassignedField {
1448 public:
1449   int _offset;
1450   BasicType _type;
1451 public:
1452   ReassignedField() {
1453     _offset = 0;
1454     _type = T_ILLEGAL;
1455   }
1456 };
1457 
1458 static int compare(ReassignedField* left, ReassignedField* right) {
1459   return left->_offset - right->_offset;
1460 }
1461 
1462 // Restore fields of an eliminated instance object using the same field order
1463 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1464 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
1465   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1466   InstanceKlass* ik = klass;
1467   while (ik != nullptr) {
1468     for (AllFieldStream fs(ik); !fs.done(); fs.next()) {
1469       if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) {
1470         ReassignedField field;
1471         field._offset = fs.offset();
1472         field._type = Signature::basic_type(fs.signature());
1473         fields->append(field);
1474       }
1475     }
1476     ik = ik->superklass();
1477   }
1478   fields->sort(compare);
1479   for (int i = 0; i < fields->length(); i++) {
1480     ScopeValue* scope_field = sv->field_at(svIndex);
1481     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1482     int offset = fields->at(i)._offset;
1483     BasicType type = fields->at(i)._type;
1484     switch (type) {
1485       case T_OBJECT: case T_ARRAY:
1486         assert(value->type() == T_OBJECT, "Agreement.");
1487         obj->obj_field_put(offset, value->get_obj()());
1488         break;
1489 
1490       case T_INT: case T_FLOAT: { // 4 bytes.
1491         assert(value->type() == T_INT, "Agreement.");
1492         bool big_value = false;
1493         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1494           if (scope_field->is_location()) {
1495             Location::Type type = ((LocationValue*) scope_field)->location().type();
1496             if (type == Location::dbl || type == Location::lng) {
1497               big_value = true;
1498             }
1499           }
1500           if (scope_field->is_constant_int()) {
1501             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1502             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1503               big_value = true;
1504             }
1505           }
1506         }
1507 
1508         if (big_value) {
1509           i++;
1510           assert(i < fields->length(), "second T_INT field needed");
1511           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1512         } else {
1513           obj->int_field_put(offset, value->get_jint());
1514           break;
1515         }
1516       }
1517         /* no break */
1518 
1519       case T_LONG: case T_DOUBLE: {
1520         assert(value->type() == T_INT, "Agreement.");
1521         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1522 #ifdef _LP64
1523         jlong res = (jlong)low->get_intptr();
1524 #else
1525         jlong res = jlong_from(value->get_jint(), low->get_jint());
1526 #endif
1527         obj->long_field_put(offset, res);
1528         break;
1529       }
1530 
1531       case T_SHORT:
1532         assert(value->type() == T_INT, "Agreement.");
1533         obj->short_field_put(offset, (jshort)value->get_jint());
1534         break;
1535 
1536       case T_CHAR:
1537         assert(value->type() == T_INT, "Agreement.");
1538         obj->char_field_put(offset, (jchar)value->get_jint());
1539         break;
1540 
1541       case T_BYTE:
1542         assert(value->type() == T_INT, "Agreement.");
1543         obj->byte_field_put(offset, (jbyte)value->get_jint());
1544         break;
1545 
1546       case T_BOOLEAN:
1547         assert(value->type() == T_INT, "Agreement.");
1548         obj->bool_field_put(offset, (jboolean)value->get_jint());
1549         break;
1550 
1551       default:
1552         ShouldNotReachHere();
1553     }
1554     svIndex++;
1555   }
1556   return svIndex;
1557 }
1558 
1559 // restore fields of all eliminated objects and arrays
1560 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1561   for (int i = 0; i < objects->length(); i++) {
1562     assert(objects->at(i)->is_object(), "invalid debug information");
1563     ObjectValue* sv = (ObjectValue*) objects->at(i);
1564     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1565     Handle obj = sv->value();
1566     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1567 #ifndef PRODUCT
1568     if (PrintDeoptimizationDetails) {
1569       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1570     }
1571 #endif // !PRODUCT
1572 
1573     if (obj.is_null()) {
1574       continue;
1575     }
1576 
1577 #if INCLUDE_JVMCI
1578     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1579     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1580       continue;
1581     }
1582 #endif // INCLUDE_JVMCI
1583     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1584       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1585       ScopeValue* payload = sv->field_at(0);
1586       if (payload->is_location() &&
1587           payload->as_LocationValue()->location().type() == Location::vector) {
1588 #ifndef PRODUCT
1589         if (PrintDeoptimizationDetails) {
1590           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1591           if (Verbose) {
1592             Handle obj = sv->value();
1593             k->oop_print_on(obj(), tty);
1594           }
1595         }
1596 #endif // !PRODUCT
1597         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1598       }
1599       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1600       // which could be restored after vector object allocation.
1601     }
1602     if (k->is_instance_klass()) {
1603       InstanceKlass* ik = InstanceKlass::cast(k);
1604       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1605     } else if (k->is_typeArray_klass()) {
1606       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1607       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1608     } else if (k->is_objArray_klass()) {
1609       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1610     }
1611   }
1612   // These objects may escape when we return to Interpreter after deoptimization.
1613   // We need barrier so that stores that initialize these objects can't be reordered
1614   // with subsequent stores that make these objects accessible by other threads.
1615   OrderAccess::storestore();
1616 }
1617 
1618 
1619 // relock objects for which synchronization was eliminated
1620 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1621                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1622   bool relocked_objects = false;
1623   for (int i = 0; i < monitors->length(); i++) {
1624     MonitorInfo* mon_info = monitors->at(i);
1625     if (mon_info->eliminated()) {
1626       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1627       relocked_objects = true;
1628       if (!mon_info->owner_is_scalar_replaced()) {
1629         Handle obj(thread, mon_info->owner());
1630         markWord mark = obj->mark();
1631         if (exec_mode == Unpack_none) {
1632           if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) {
1633             // With exec_mode == Unpack_none obj may be thread local and locked in
1634             // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header.
1635             markWord dmw = mark.displaced_mark_helper();
1636             mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr));
1637             obj->set_mark(dmw);
1638           }
1639           if (mark.has_monitor()) {
1640             // defer relocking if the deoptee thread is currently waiting for obj
1641             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1642             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1643               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1644               if (LockingMode == LM_LEGACY) {
1645                 mon_info->lock()->set_displaced_header(markWord::unused_mark());
1646               } else if (UseObjectMonitorTable) {
1647                 mon_info->lock()->clear_object_monitor_cache();
1648               }
1649 #ifdef ASSERT
1650               else {
1651                 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be");
1652                 mon_info->lock()->set_bad_metadata_deopt();
1653               }
1654 #endif
1655               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1656               continue;
1657             }
1658           }
1659         }
1660         BasicLock* lock = mon_info->lock();
1661         if (LockingMode == LM_LIGHTWEIGHT) {
1662           // We have lost information about the correct state of the lock stack.
1663           // Entering may create an invalid lock stack. Inflate the lock if it
1664           // was fast_locked to restore the valid lock stack.
1665           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1666           if (deoptee_thread->lock_stack().contains(obj())) {
1667             LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal,
1668                                                                 deoptee_thread, thread);
1669           }
1670           assert(mon_info->owner()->is_locked(), "object must be locked now");
1671           assert(obj->mark().has_monitor(), "must be");
1672           assert(!deoptee_thread->lock_stack().contains(obj()), "must be");
1673           assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be");
1674         } else {
1675           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1676           assert(mon_info->owner()->is_locked(), "object must be locked now");
1677         }
1678       }
1679     }
1680   }
1681   return relocked_objects;
1682 }
1683 #endif // COMPILER2_OR_JVMCI
1684 
1685 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1686   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1687 
1688   // Register map for next frame (used for stack crawl).  We capture
1689   // the state of the deopt'ing frame's caller.  Thus if we need to
1690   // stuff a C2I adapter we can properly fill in the callee-save
1691   // register locations.
1692   frame caller = fr.sender(reg_map);
1693   int frame_size = pointer_delta_as_int(caller.sp(), fr.sp());
1694 
1695   frame sender = caller;
1696 
1697   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1698   // the vframeArray containing the unpacking information is allocated in the C heap.
1699   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1700   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1701 
1702   // Compare the vframeArray to the collected vframes
1703   assert(array->structural_compare(thread, chunk), "just checking");
1704 
1705   if (TraceDeoptimization) {
1706     ResourceMark rm;
1707     stringStream st;
1708     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1709     st.print("   ");
1710     fr.print_on(&st);
1711     st.print_cr("   Virtual frames (innermost/newest first):");
1712     for (int index = 0; index < chunk->length(); index++) {
1713       compiledVFrame* vf = chunk->at(index);
1714       int bci = vf->raw_bci();
1715       const char* code_name;
1716       if (bci == SynchronizationEntryBCI) {
1717         code_name = "sync entry";
1718       } else {
1719         Bytecodes::Code code = vf->method()->code_at(bci);
1720         code_name = Bytecodes::name(code);
1721       }
1722 
1723       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1724       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1725       st.print(" - %s", code_name);
1726       st.print_cr(" @ bci=%d ", bci);
1727     }
1728     tty->print_raw(st.freeze());
1729     tty->cr();
1730   }
1731 
1732   return array;
1733 }
1734 
1735 #if COMPILER2_OR_JVMCI
1736 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1737   // Reallocation of some scalar replaced objects failed. Record
1738   // that we need to pop all the interpreter frames for the
1739   // deoptimized compiled frame.
1740   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1741   thread->set_frames_to_pop_failed_realloc(array->frames());
1742   // Unlock all monitors here otherwise the interpreter will see a
1743   // mix of locked and unlocked monitors (because of failed
1744   // reallocations of synchronized objects) and be confused.
1745   for (int i = 0; i < array->frames(); i++) {
1746     MonitorChunk* monitors = array->element(i)->monitors();
1747     if (monitors != nullptr) {
1748       // Unlock in reverse order starting from most nested monitor.
1749       for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) {
1750         BasicObjectLock* src = monitors->at(j);
1751         if (src->obj() != nullptr) {
1752           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1753         }
1754       }
1755       array->element(i)->free_monitors();
1756 #ifdef ASSERT
1757       array->element(i)->set_removed_monitors();
1758 #endif
1759     }
1760   }
1761 }
1762 #endif
1763 
1764 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1765   assert(fr.can_be_deoptimized(), "checking frame type");
1766 
1767   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1768 
1769   if (LogCompilation && xtty != nullptr) {
1770     nmethod* nm = fr.cb()->as_nmethod_or_null();
1771     assert(nm != nullptr, "only compiled methods can deopt");
1772 
1773     ttyLocker ttyl;
1774     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1775     nm->log_identity(xtty);
1776     xtty->end_head();
1777     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1778       xtty->begin_elem("jvms bci='%d'", sd->bci());
1779       xtty->method(sd->method());
1780       xtty->end_elem();
1781       if (sd->is_top())  break;
1782     }
1783     xtty->tail("deoptimized");
1784   }
1785 
1786   Continuation::notify_deopt(thread, fr.sp());
1787 
1788   // Patch the compiled method so that when execution returns to it we will
1789   // deopt the execution state and return to the interpreter.
1790   fr.deoptimize(thread);
1791 }
1792 
1793 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1794   // Deoptimize only if the frame comes from compile code.
1795   // Do not deoptimize the frame which is already patched
1796   // during the execution of the loops below.
1797   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1798     return;
1799   }
1800   ResourceMark rm;
1801   deoptimize_single_frame(thread, fr, reason);
1802 }
1803 
1804 #if INCLUDE_JVMCI
1805 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) {
1806   // there is no exception handler for this pc => deoptimize
1807   nm->make_not_entrant();
1808 
1809   // Use Deoptimization::deoptimize for all of its side-effects:
1810   // gathering traps statistics, logging...
1811   // it also patches the return pc but we do not care about that
1812   // since we return a continuation to the deopt_blob below.
1813   JavaThread* thread = JavaThread::current();
1814   RegisterMap reg_map(thread,
1815                       RegisterMap::UpdateMap::skip,
1816                       RegisterMap::ProcessFrames::include,
1817                       RegisterMap::WalkContinuation::skip);
1818   frame runtime_frame = thread->last_frame();
1819   frame caller_frame = runtime_frame.sender(&reg_map);
1820   assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method");
1821   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1822   compiledVFrame* cvf = compiledVFrame::cast(vf);
1823   ScopeDesc* imm_scope = cvf->scope();
1824   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1825   if (imm_mdo != nullptr) {
1826     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
1827     MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
1828 
1829     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1830     if (pdata != nullptr && pdata->is_BitData()) {
1831       BitData* bit_data = (BitData*) pdata;
1832       bit_data->set_exception_seen();
1833     }
1834   }
1835 
1836   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1837 
1838   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true);
1839   if (trap_mdo != nullptr) {
1840     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1841   }
1842 
1843   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1844 }
1845 #endif
1846 
1847 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1848   assert(thread == Thread::current() ||
1849          thread->is_handshake_safe_for(Thread::current()) ||
1850          SafepointSynchronize::is_at_safepoint(),
1851          "can only deoptimize other thread at a safepoint/handshake");
1852   // Compute frame and register map based on thread and sp.
1853   RegisterMap reg_map(thread,
1854                       RegisterMap::UpdateMap::skip,
1855                       RegisterMap::ProcessFrames::include,
1856                       RegisterMap::WalkContinuation::skip);
1857   frame fr = thread->last_frame();
1858   while (fr.id() != id) {
1859     fr = fr.sender(&reg_map);
1860   }
1861   deoptimize(thread, fr, reason);
1862 }
1863 
1864 
1865 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1866   Thread* current = Thread::current();
1867   if (thread == current || thread->is_handshake_safe_for(current)) {
1868     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1869   } else {
1870     VM_DeoptimizeFrame deopt(thread, id, reason);
1871     VMThread::execute(&deopt);
1872   }
1873 }
1874 
1875 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1876   deoptimize_frame(thread, id, Reason_constraint);
1877 }
1878 
1879 // JVMTI PopFrame support
1880 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1881 {
1882   assert(thread == JavaThread::current(), "pre-condition");
1883   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1884 }
1885 JRT_END
1886 
1887 MethodData*
1888 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1889                                 bool create_if_missing) {
1890   JavaThread* THREAD = thread; // For exception macros.
1891   MethodData* mdo = m()->method_data();
1892   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1893     // Build an MDO.  Ignore errors like OutOfMemory;
1894     // that simply means we won't have an MDO to update.
1895     Method::build_profiling_method_data(m, THREAD);
1896     if (HAS_PENDING_EXCEPTION) {
1897       // Only metaspace OOM is expected. No Java code executed.
1898       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1899       CLEAR_PENDING_EXCEPTION;
1900     }
1901     mdo = m()->method_data();
1902   }
1903   return mdo;
1904 }
1905 
1906 #if COMPILER2_OR_JVMCI
1907 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1908   // In case of an unresolved klass entry, load the class.
1909   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1910   // and probably nowhere else.
1911   // Even that case would benefit from simply re-interpreting the
1912   // bytecode, without paying special attention to the class index.
1913   // So this whole "class index" feature should probably be removed.
1914 
1915   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1916     Klass* tk = constant_pool->klass_at(index, THREAD);
1917     if (HAS_PENDING_EXCEPTION) {
1918       // Exception happened during classloading. We ignore the exception here, since it
1919       // is going to be rethrown since the current activation is going to be deoptimized and
1920       // the interpreter will re-execute the bytecode.
1921       // Do not clear probable Async Exceptions.
1922       CLEAR_PENDING_NONASYNC_EXCEPTION;
1923       // Class loading called java code which may have caused a stack
1924       // overflow. If the exception was thrown right before the return
1925       // to the runtime the stack is no longer guarded. Reguard the
1926       // stack otherwise if we return to the uncommon trap blob and the
1927       // stack bang causes a stack overflow we crash.
1928       JavaThread* jt = THREAD;
1929       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1930       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1931     }
1932     return;
1933   }
1934 
1935   assert(!constant_pool->tag_at(index).is_symbol(),
1936          "no symbolic names here, please");
1937 }
1938 
1939 #if INCLUDE_JFR
1940 
1941 class DeoptReasonSerializer : public JfrSerializer {
1942  public:
1943   void serialize(JfrCheckpointWriter& writer) {
1944     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1945     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1946       writer.write_key((u8)i);
1947       writer.write(Deoptimization::trap_reason_name(i));
1948     }
1949   }
1950 };
1951 
1952 class DeoptActionSerializer : public JfrSerializer {
1953  public:
1954   void serialize(JfrCheckpointWriter& writer) {
1955     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1956     writer.write_count(nof_actions);
1957     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1958       writer.write_key(i);
1959       writer.write(Deoptimization::trap_action_name((int)i));
1960     }
1961   }
1962 };
1963 
1964 static void register_serializers() {
1965   static int critical_section = 0;
1966   if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) {
1967     return;
1968   }
1969   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1970   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1971 }
1972 
1973 static void post_deoptimization_event(nmethod* nm,
1974                                       const Method* method,
1975                                       int trap_bci,
1976                                       int instruction,
1977                                       Deoptimization::DeoptReason reason,
1978                                       Deoptimization::DeoptAction action) {
1979   assert(nm != nullptr, "invariant");
1980   assert(method != nullptr, "invariant");
1981   if (EventDeoptimization::is_enabled()) {
1982     static bool serializers_registered = false;
1983     if (!serializers_registered) {
1984       register_serializers();
1985       serializers_registered = true;
1986     }
1987     EventDeoptimization event;
1988     event.set_compileId(nm->compile_id());
1989     event.set_compiler(nm->compiler_type());
1990     event.set_method(method);
1991     event.set_lineNumber(method->line_number_from_bci(trap_bci));
1992     event.set_bci(trap_bci);
1993     event.set_instruction(instruction);
1994     event.set_reason(reason);
1995     event.set_action(action);
1996     event.commit();
1997   }
1998 }
1999 
2000 #endif // INCLUDE_JFR
2001 
2002 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
2003                               const char* reason_name, const char* reason_action) {
2004   LogTarget(Debug, deoptimization) lt;
2005   if (lt.is_enabled()) {
2006     LogStream ls(lt);
2007     bool is_osr = nm->is_osr_method();
2008     ls.print("cid=%4d %s level=%d",
2009              nm->compile_id(), (is_osr ? "osr" : "   "), nm->comp_level());
2010     ls.print(" %s", tm->name_and_sig_as_C_string());
2011     ls.print(" trap_bci=%d ", trap_bci);
2012     if (is_osr) {
2013       ls.print("osr_bci=%d ", nm->osr_entry_bci());
2014     }
2015     ls.print("%s ", reason_name);
2016     ls.print("%s ", reason_action);
2017     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2018              pc, fr.pc() - nm->code_begin());
2019   }
2020 }
2021 
2022 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2023   HandleMark hm(current);
2024 
2025   // uncommon_trap() is called at the beginning of the uncommon trap
2026   // handler. Note this fact before we start generating temporary frames
2027   // that can confuse an asynchronous stack walker. This counter is
2028   // decremented at the end of unpack_frames().
2029 
2030   current->inc_in_deopt_handler();
2031 
2032 #if INCLUDE_JVMCI
2033   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2034   RegisterMap reg_map(current,
2035                       RegisterMap::UpdateMap::include,
2036                       RegisterMap::ProcessFrames::include,
2037                       RegisterMap::WalkContinuation::skip);
2038 #else
2039   RegisterMap reg_map(current,
2040                       RegisterMap::UpdateMap::skip,
2041                       RegisterMap::ProcessFrames::include,
2042                       RegisterMap::WalkContinuation::skip);
2043 #endif
2044   frame stub_frame = current->last_frame();
2045   frame fr = stub_frame.sender(&reg_map);
2046 
2047   // Log a message
2048   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2049               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2050 
2051   {
2052     ResourceMark rm;
2053 
2054     DeoptReason reason = trap_request_reason(trap_request);
2055     DeoptAction action = trap_request_action(trap_request);
2056 #if INCLUDE_JVMCI
2057     int debug_id = trap_request_debug_id(trap_request);
2058 #endif
2059     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2060 
2061     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2062     compiledVFrame* cvf = compiledVFrame::cast(vf);
2063 
2064     nmethod* nm = cvf->code();
2065 
2066     ScopeDesc*      trap_scope  = cvf->scope();
2067 
2068     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2069 
2070     if (is_receiver_constraint_failure) {
2071       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2072                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2073                     JVMCI_ONLY(COMMA debug_id));
2074     }
2075 
2076     methodHandle    trap_method(current, trap_scope->method());
2077     int             trap_bci    = trap_scope->bci();
2078 #if INCLUDE_JVMCI
2079     jlong           speculation = current->pending_failed_speculation();
2080     if (nm->is_compiled_by_jvmci()) {
2081       nm->update_speculation(current);
2082     } else {
2083       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2084     }
2085 
2086     if (trap_bci == SynchronizationEntryBCI) {
2087       trap_bci = 0;
2088       current->set_pending_monitorenter(true);
2089     }
2090 
2091     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2092       current->set_pending_transfer_to_interpreter(true);
2093     }
2094 #endif
2095 
2096     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2097     // Record this event in the histogram.
2098     gather_statistics(reason, action, trap_bc);
2099 
2100     // Ensure that we can record deopt. history:
2101     bool create_if_missing = ProfileTraps;
2102 
2103     methodHandle profiled_method;
2104 #if INCLUDE_JVMCI
2105     if (nm->is_compiled_by_jvmci()) {
2106       profiled_method = methodHandle(current, nm->method());
2107     } else {
2108       profiled_method = trap_method;
2109     }
2110 #else
2111     profiled_method = trap_method;
2112 #endif
2113 
2114     MethodData* trap_mdo =
2115       get_method_data(current, profiled_method, create_if_missing);
2116 
2117     { // Log Deoptimization event for JFR, UL and event system
2118       Method* tm = trap_method();
2119       const char* reason_name = trap_reason_name(reason);
2120       const char* reason_action = trap_action_name(action);
2121       intptr_t pc = p2i(fr.pc());
2122 
2123       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2124       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action);
2125       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
2126                                 reason_name, reason_action, pc,
2127                                 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
2128     }
2129 
2130     // Print a bunch of diagnostics, if requested.
2131     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2132       ResourceMark rm;
2133 
2134       // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2135       // We must do this already now, since we cannot acquire this lock while
2136       // holding the tty lock (lock ordering by rank).
2137       MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2138 
2139       ttyLocker ttyl;
2140 
2141       char buf[100];
2142       if (xtty != nullptr) {
2143         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
2144                          os::current_thread_id(),
2145                          format_trap_request(buf, sizeof(buf), trap_request));
2146 #if INCLUDE_JVMCI
2147         if (speculation != 0) {
2148           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2149         }
2150 #endif
2151         nm->log_identity(xtty);
2152       }
2153       Symbol* class_name = nullptr;
2154       bool unresolved = false;
2155       if (unloaded_class_index >= 0) {
2156         constantPoolHandle constants (current, trap_method->constants());
2157         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2158           class_name = constants->klass_name_at(unloaded_class_index);
2159           unresolved = true;
2160           if (xtty != nullptr)
2161             xtty->print(" unresolved='1'");
2162         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2163           class_name = constants->symbol_at(unloaded_class_index);
2164         }
2165         if (xtty != nullptr)
2166           xtty->name(class_name);
2167       }
2168       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2169         // Dump the relevant MDO state.
2170         // This is the deopt count for the current reason, any previous
2171         // reasons or recompiles seen at this point.
2172         int dcnt = trap_mdo->trap_count(reason);
2173         if (dcnt != 0)
2174           xtty->print(" count='%d'", dcnt);
2175 
2176         // We need to lock to read the ProfileData. But to keep the locks ordered, we need to
2177         // lock extra_data_lock before the tty lock.
2178         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2179         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2180         if (dos != 0) {
2181           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2182           if (trap_state_is_recompiled(dos)) {
2183             int recnt2 = trap_mdo->overflow_recompile_count();
2184             if (recnt2 != 0)
2185               xtty->print(" recompiles2='%d'", recnt2);
2186           }
2187         }
2188       }
2189       if (xtty != nullptr) {
2190         xtty->stamp();
2191         xtty->end_head();
2192       }
2193       if (TraceDeoptimization) {  // make noise on the tty
2194         stringStream st;
2195         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2196         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2197                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2198         st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
2199 #if INCLUDE_JVMCI
2200         if (nm->is_compiled_by_jvmci()) {
2201           const char* installed_code_name = nm->jvmci_name();
2202           if (installed_code_name != nullptr) {
2203             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2204           }
2205         }
2206 #endif
2207         st.print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2208                    p2i(fr.pc()),
2209                    os::current_thread_id(),
2210                    trap_reason_name(reason),
2211                    trap_action_name(action),
2212                    unloaded_class_index
2213 #if INCLUDE_JVMCI
2214                    , debug_id
2215 #endif
2216                    );
2217         if (class_name != nullptr) {
2218           st.print(unresolved ? " unresolved class: " : " symbol: ");
2219           class_name->print_symbol_on(&st);
2220         }
2221         st.cr();
2222         tty->print_raw(st.freeze());
2223       }
2224       if (xtty != nullptr) {
2225         // Log the precise location of the trap.
2226         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2227           xtty->begin_elem("jvms bci='%d'", sd->bci());
2228           xtty->method(sd->method());
2229           xtty->end_elem();
2230           if (sd->is_top())  break;
2231         }
2232         xtty->tail("uncommon_trap");
2233       }
2234     }
2235     // (End diagnostic printout.)
2236 
2237     if (is_receiver_constraint_failure) {
2238       fatal("missing receiver type check");
2239     }
2240 
2241     // Load class if necessary
2242     if (unloaded_class_index >= 0) {
2243       constantPoolHandle constants(current, trap_method->constants());
2244       load_class_by_index(constants, unloaded_class_index, THREAD);
2245     }
2246 
2247     // Flush the nmethod if necessary and desirable.
2248     //
2249     // We need to avoid situations where we are re-flushing the nmethod
2250     // because of a hot deoptimization site.  Repeated flushes at the same
2251     // point need to be detected by the compiler and avoided.  If the compiler
2252     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2253     // module must take measures to avoid an infinite cycle of recompilation
2254     // and deoptimization.  There are several such measures:
2255     //
2256     //   1. If a recompilation is ordered a second time at some site X
2257     //   and for the same reason R, the action is adjusted to 'reinterpret',
2258     //   to give the interpreter time to exercise the method more thoroughly.
2259     //   If this happens, the method's overflow_recompile_count is incremented.
2260     //
2261     //   2. If the compiler fails to reduce the deoptimization rate, then
2262     //   the method's overflow_recompile_count will begin to exceed the set
2263     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2264     //   is adjusted to 'make_not_compilable', and the method is abandoned
2265     //   to the interpreter.  This is a performance hit for hot methods,
2266     //   but is better than a disastrous infinite cycle of recompilations.
2267     //   (Actually, only the method containing the site X is abandoned.)
2268     //
2269     //   3. In parallel with the previous measures, if the total number of
2270     //   recompilations of a method exceeds the much larger set limit
2271     //   PerMethodRecompilationCutoff, the method is abandoned.
2272     //   This should only happen if the method is very large and has
2273     //   many "lukewarm" deoptimizations.  The code which enforces this
2274     //   limit is elsewhere (class nmethod, class Method).
2275     //
2276     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2277     // to recompile at each bytecode independently of the per-BCI cutoff.
2278     //
2279     // The decision to update code is up to the compiler, and is encoded
2280     // in the Action_xxx code.  If the compiler requests Action_none
2281     // no trap state is changed, no compiled code is changed, and the
2282     // computation suffers along in the interpreter.
2283     //
2284     // The other action codes specify various tactics for decompilation
2285     // and recompilation.  Action_maybe_recompile is the loosest, and
2286     // allows the compiled code to stay around until enough traps are seen,
2287     // and until the compiler gets around to recompiling the trapping method.
2288     //
2289     // The other actions cause immediate removal of the present code.
2290 
2291     // Traps caused by injected profile shouldn't pollute trap counts.
2292     bool injected_profile_trap = trap_method->has_injected_profile() &&
2293                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2294 
2295     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2296     bool make_not_entrant = false;
2297     bool make_not_compilable = false;
2298     bool reprofile = false;
2299     switch (action) {
2300     case Action_none:
2301       // Keep the old code.
2302       update_trap_state = false;
2303       break;
2304     case Action_maybe_recompile:
2305       // Do not need to invalidate the present code, but we can
2306       // initiate another
2307       // Start compiler without (necessarily) invalidating the nmethod.
2308       // The system will tolerate the old code, but new code should be
2309       // generated when possible.
2310       break;
2311     case Action_reinterpret:
2312       // Go back into the interpreter for a while, and then consider
2313       // recompiling form scratch.
2314       make_not_entrant = true;
2315       // Reset invocation counter for outer most method.
2316       // This will allow the interpreter to exercise the bytecodes
2317       // for a while before recompiling.
2318       // By contrast, Action_make_not_entrant is immediate.
2319       //
2320       // Note that the compiler will track null_check, null_assert,
2321       // range_check, and class_check events and log them as if they
2322       // had been traps taken from compiled code.  This will update
2323       // the MDO trap history so that the next compilation will
2324       // properly detect hot trap sites.
2325       reprofile = true;
2326       break;
2327     case Action_make_not_entrant:
2328       // Request immediate recompilation, and get rid of the old code.
2329       // Make them not entrant, so next time they are called they get
2330       // recompiled.  Unloaded classes are loaded now so recompile before next
2331       // time they are called.  Same for uninitialized.  The interpreter will
2332       // link the missing class, if any.
2333       make_not_entrant = true;
2334       break;
2335     case Action_make_not_compilable:
2336       // Give up on compiling this method at all.
2337       make_not_entrant = true;
2338       make_not_compilable = true;
2339       break;
2340     default:
2341       ShouldNotReachHere();
2342     }
2343 
2344     // Setting +ProfileTraps fixes the following, on all platforms:
2345     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
2346     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2347     // recompile relies on a MethodData* to record heroic opt failures.
2348 
2349     // Whether the interpreter is producing MDO data or not, we also need
2350     // to use the MDO to detect hot deoptimization points and control
2351     // aggressive optimization.
2352     bool inc_recompile_count = false;
2353 
2354     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2355     ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr,
2356                               (trap_mdo != nullptr),
2357                               Mutex::_no_safepoint_check_flag);
2358     ProfileData* pdata = nullptr;
2359     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2360       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2361       uint this_trap_count = 0;
2362       bool maybe_prior_trap = false;
2363       bool maybe_prior_recompile = false;
2364 
2365       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2366 #if INCLUDE_JVMCI
2367                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2368 #endif
2369                                    nm->method(),
2370                                    //outputs:
2371                                    this_trap_count,
2372                                    maybe_prior_trap,
2373                                    maybe_prior_recompile);
2374       // Because the interpreter also counts null, div0, range, and class
2375       // checks, these traps from compiled code are double-counted.
2376       // This is harmless; it just means that the PerXTrapLimit values
2377       // are in effect a little smaller than they look.
2378 
2379       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2380       if (per_bc_reason != Reason_none) {
2381         // Now take action based on the partially known per-BCI history.
2382         if (maybe_prior_trap
2383             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2384           // If there are too many traps at this BCI, force a recompile.
2385           // This will allow the compiler to see the limit overflow, and
2386           // take corrective action, if possible.  The compiler generally
2387           // does not use the exact PerBytecodeTrapLimit value, but instead
2388           // changes its tactics if it sees any traps at all.  This provides
2389           // a little hysteresis, delaying a recompile until a trap happens
2390           // several times.
2391           //
2392           // Actually, since there is only one bit of counter per BCI,
2393           // the possible per-BCI counts are {0,1,(per-method count)}.
2394           // This produces accurate results if in fact there is only
2395           // one hot trap site, but begins to get fuzzy if there are
2396           // many sites.  For example, if there are ten sites each
2397           // trapping two or more times, they each get the blame for
2398           // all of their traps.
2399           make_not_entrant = true;
2400         }
2401 
2402         // Detect repeated recompilation at the same BCI, and enforce a limit.
2403         if (make_not_entrant && maybe_prior_recompile) {
2404           // More than one recompile at this point.
2405           inc_recompile_count = maybe_prior_trap;
2406         }
2407       } else {
2408         // For reasons which are not recorded per-bytecode, we simply
2409         // force recompiles unconditionally.
2410         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2411         make_not_entrant = true;
2412       }
2413 
2414       // Go back to the compiler if there are too many traps in this method.
2415       if (this_trap_count >= per_method_trap_limit(reason)) {
2416         // If there are too many traps in this method, force a recompile.
2417         // This will allow the compiler to see the limit overflow, and
2418         // take corrective action, if possible.
2419         // (This condition is an unlikely backstop only, because the
2420         // PerBytecodeTrapLimit is more likely to take effect first,
2421         // if it is applicable.)
2422         make_not_entrant = true;
2423       }
2424 
2425       // Here's more hysteresis:  If there has been a recompile at
2426       // this trap point already, run the method in the interpreter
2427       // for a while to exercise it more thoroughly.
2428       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2429         reprofile = true;
2430       }
2431     }
2432 
2433     // Take requested actions on the method:
2434 
2435     // Recompile
2436     if (make_not_entrant) {
2437       if (!nm->make_not_entrant()) {
2438         return; // the call did not change nmethod's state
2439       }
2440 
2441       if (pdata != nullptr) {
2442         // Record the recompilation event, if any.
2443         int tstate0 = pdata->trap_state();
2444         int tstate1 = trap_state_set_recompiled(tstate0, true);
2445         if (tstate1 != tstate0)
2446           pdata->set_trap_state(tstate1);
2447       }
2448 
2449       // For code aging we count traps separately here, using make_not_entrant()
2450       // as a guard against simultaneous deopts in multiple threads.
2451       if (reason == Reason_tenured && trap_mdo != nullptr) {
2452         trap_mdo->inc_tenure_traps();
2453       }
2454     }
2455 
2456     if (inc_recompile_count) {
2457       trap_mdo->inc_overflow_recompile_count();
2458       if ((uint)trap_mdo->overflow_recompile_count() >
2459           (uint)PerBytecodeRecompilationCutoff) {
2460         // Give up on the method containing the bad BCI.
2461         if (trap_method() == nm->method()) {
2462           make_not_compilable = true;
2463         } else {
2464           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2465           // But give grace to the enclosing nm->method().
2466         }
2467       }
2468     }
2469 
2470     // Reprofile
2471     if (reprofile) {
2472       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2473     }
2474 
2475     // Give up compiling
2476     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2477       assert(make_not_entrant, "consistent");
2478       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2479     }
2480 
2481     if (ProfileExceptionHandlers && trap_mdo != nullptr) {
2482       BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci);
2483       if (exception_handler_data != nullptr) {
2484         // uncommon trap at the start of an exception handler.
2485         // C2 generates these for un-entered exception handlers.
2486         // mark the handler as entered to avoid generating
2487         // another uncommon trap the next time the handler is compiled
2488         exception_handler_data->set_exception_handler_entered();
2489       }
2490     }
2491 
2492   } // Free marked resources
2493 
2494 }
2495 JRT_END
2496 
2497 ProfileData*
2498 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2499                                          int trap_bci,
2500                                          Deoptimization::DeoptReason reason,
2501                                          bool update_total_trap_count,
2502 #if INCLUDE_JVMCI
2503                                          bool is_osr,
2504 #endif
2505                                          Method* compiled_method,
2506                                          //outputs:
2507                                          uint& ret_this_trap_count,
2508                                          bool& ret_maybe_prior_trap,
2509                                          bool& ret_maybe_prior_recompile) {
2510   trap_mdo->check_extra_data_locked();
2511 
2512   bool maybe_prior_trap = false;
2513   bool maybe_prior_recompile = false;
2514   uint this_trap_count = 0;
2515   if (update_total_trap_count) {
2516     uint idx = reason;
2517 #if INCLUDE_JVMCI
2518     if (is_osr) {
2519       // Upper half of history array used for traps in OSR compilations
2520       idx += Reason_TRAP_HISTORY_LENGTH;
2521     }
2522 #endif
2523     uint prior_trap_count = trap_mdo->trap_count(idx);
2524     this_trap_count  = trap_mdo->inc_trap_count(idx);
2525 
2526     // If the runtime cannot find a place to store trap history,
2527     // it is estimated based on the general condition of the method.
2528     // If the method has ever been recompiled, or has ever incurred
2529     // a trap with the present reason , then this BCI is assumed
2530     // (pessimistically) to be the culprit.
2531     maybe_prior_trap      = (prior_trap_count != 0);
2532     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2533   }
2534   ProfileData* pdata = nullptr;
2535 
2536 
2537   // For reasons which are recorded per bytecode, we check per-BCI data.
2538   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2539   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2540   if (per_bc_reason != Reason_none) {
2541     // Find the profile data for this BCI.  If there isn't one,
2542     // try to allocate one from the MDO's set of spares.
2543     // This will let us detect a repeated trap at this point.
2544     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2545 
2546     if (pdata != nullptr) {
2547       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2548         if (LogCompilation && xtty != nullptr) {
2549           ttyLocker ttyl;
2550           // no more room for speculative traps in this MDO
2551           xtty->elem("speculative_traps_oom");
2552         }
2553       }
2554       // Query the trap state of this profile datum.
2555       int tstate0 = pdata->trap_state();
2556       if (!trap_state_has_reason(tstate0, per_bc_reason))
2557         maybe_prior_trap = false;
2558       if (!trap_state_is_recompiled(tstate0))
2559         maybe_prior_recompile = false;
2560 
2561       // Update the trap state of this profile datum.
2562       int tstate1 = tstate0;
2563       // Record the reason.
2564       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2565       // Store the updated state on the MDO, for next time.
2566       if (tstate1 != tstate0)
2567         pdata->set_trap_state(tstate1);
2568     } else {
2569       if (LogCompilation && xtty != nullptr) {
2570         ttyLocker ttyl;
2571         // Missing MDP?  Leave a small complaint in the log.
2572         xtty->elem("missing_mdp bci='%d'", trap_bci);
2573       }
2574     }
2575   }
2576 
2577   // Return results:
2578   ret_this_trap_count = this_trap_count;
2579   ret_maybe_prior_trap = maybe_prior_trap;
2580   ret_maybe_prior_recompile = maybe_prior_recompile;
2581   return pdata;
2582 }
2583 
2584 void
2585 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2586   ResourceMark rm;
2587   // Ignored outputs:
2588   uint ignore_this_trap_count;
2589   bool ignore_maybe_prior_trap;
2590   bool ignore_maybe_prior_recompile;
2591   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2592   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2593   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2594 
2595   // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2596   MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2597 
2598   query_update_method_data(trap_mdo, trap_bci,
2599                            (DeoptReason)reason,
2600                            update_total_counts,
2601 #if INCLUDE_JVMCI
2602                            false,
2603 #endif
2604                            nullptr,
2605                            ignore_this_trap_count,
2606                            ignore_maybe_prior_trap,
2607                            ignore_maybe_prior_recompile);
2608 }
2609 
2610 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) {
2611   // Enable WXWrite: current function is called from methods compiled by C2 directly
2612   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2613 
2614   // Still in Java no safepoints
2615   {
2616     // This enters VM and may safepoint
2617     uncommon_trap_inner(current, trap_request);
2618   }
2619   HandleMark hm(current);
2620   return fetch_unroll_info_helper(current, exec_mode);
2621 }
2622 
2623 // Local derived constants.
2624 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2625 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2626 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2627 
2628 //---------------------------trap_state_reason---------------------------------
2629 Deoptimization::DeoptReason
2630 Deoptimization::trap_state_reason(int trap_state) {
2631   // This assert provides the link between the width of DataLayout::trap_bits
2632   // and the encoding of "recorded" reasons.  It ensures there are enough
2633   // bits to store all needed reasons in the per-BCI MDO profile.
2634   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2635   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2636   trap_state -= recompile_bit;
2637   if (trap_state == DS_REASON_MASK) {
2638     return Reason_many;
2639   } else {
2640     assert((int)Reason_none == 0, "state=0 => Reason_none");
2641     return (DeoptReason)trap_state;
2642   }
2643 }
2644 //-------------------------trap_state_has_reason-------------------------------
2645 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2646   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2647   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2648   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2649   trap_state -= recompile_bit;
2650   if (trap_state == DS_REASON_MASK) {
2651     return -1;  // true, unspecifically (bottom of state lattice)
2652   } else if (trap_state == reason) {
2653     return 1;   // true, definitely
2654   } else if (trap_state == 0) {
2655     return 0;   // false, definitely (top of state lattice)
2656   } else {
2657     return 0;   // false, definitely
2658   }
2659 }
2660 //-------------------------trap_state_add_reason-------------------------------
2661 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2662   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2663   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2664   trap_state -= recompile_bit;
2665   if (trap_state == DS_REASON_MASK) {
2666     return trap_state + recompile_bit;     // already at state lattice bottom
2667   } else if (trap_state == reason) {
2668     return trap_state + recompile_bit;     // the condition is already true
2669   } else if (trap_state == 0) {
2670     return reason + recompile_bit;          // no condition has yet been true
2671   } else {
2672     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2673   }
2674 }
2675 //-----------------------trap_state_is_recompiled------------------------------
2676 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2677   return (trap_state & DS_RECOMPILE_BIT) != 0;
2678 }
2679 //-----------------------trap_state_set_recompiled-----------------------------
2680 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2681   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2682   else    return trap_state & ~DS_RECOMPILE_BIT;
2683 }
2684 //---------------------------format_trap_state---------------------------------
2685 // This is used for debugging and diagnostics, including LogFile output.
2686 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2687                                               int trap_state) {
2688   assert(buflen > 0, "sanity");
2689   DeoptReason reason      = trap_state_reason(trap_state);
2690   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2691   // Re-encode the state from its decoded components.
2692   int decoded_state = 0;
2693   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2694     decoded_state = trap_state_add_reason(decoded_state, reason);
2695   if (recomp_flag)
2696     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2697   // If the state re-encodes properly, format it symbolically.
2698   // Because this routine is used for debugging and diagnostics,
2699   // be robust even if the state is a strange value.
2700   size_t len;
2701   if (decoded_state != trap_state) {
2702     // Random buggy state that doesn't decode??
2703     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2704   } else {
2705     len = jio_snprintf(buf, buflen, "%s%s",
2706                        trap_reason_name(reason),
2707                        recomp_flag ? " recompiled" : "");
2708   }
2709   return buf;
2710 }
2711 
2712 
2713 //--------------------------------statics--------------------------------------
2714 const char* Deoptimization::_trap_reason_name[] = {
2715   // Note:  Keep this in sync. with enum DeoptReason.
2716   "none",
2717   "null_check",
2718   "null_assert" JVMCI_ONLY("_or_unreached0"),
2719   "range_check",
2720   "class_check",
2721   "array_check",
2722   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2723   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2724   "profile_predicate",
2725   "unloaded",
2726   "uninitialized",
2727   "initialized",
2728   "unreached",
2729   "unhandled",
2730   "constraint",
2731   "div0_check",
2732   "age",
2733   "predicate",
2734   "loop_limit_check",
2735   "speculate_class_check",
2736   "speculate_null_check",
2737   "speculate_null_assert",
2738   "unstable_if",
2739   "unstable_fused_if",
2740   "receiver_constraint",
2741 #if INCLUDE_JVMCI
2742   "aliasing",
2743   "transfer_to_interpreter",
2744   "not_compiled_exception_handler",
2745   "unresolved",
2746   "jsr_mismatch",
2747 #endif
2748   "tenured"
2749 };
2750 const char* Deoptimization::_trap_action_name[] = {
2751   // Note:  Keep this in sync. with enum DeoptAction.
2752   "none",
2753   "maybe_recompile",
2754   "reinterpret",
2755   "make_not_entrant",
2756   "make_not_compilable"
2757 };
2758 
2759 const char* Deoptimization::trap_reason_name(int reason) {
2760   // Check that every reason has a name
2761   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2762 
2763   if (reason == Reason_many)  return "many";
2764   if ((uint)reason < Reason_LIMIT)
2765     return _trap_reason_name[reason];
2766   static char buf[20];
2767   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2768   return buf;
2769 }
2770 const char* Deoptimization::trap_action_name(int action) {
2771   // Check that every action has a name
2772   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2773 
2774   if ((uint)action < Action_LIMIT)
2775     return _trap_action_name[action];
2776   static char buf[20];
2777   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2778   return buf;
2779 }
2780 
2781 // This is used for debugging and diagnostics, including LogFile output.
2782 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2783                                                 int trap_request) {
2784   jint unloaded_class_index = trap_request_index(trap_request);
2785   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2786   const char* action = trap_action_name(trap_request_action(trap_request));
2787 #if INCLUDE_JVMCI
2788   int debug_id = trap_request_debug_id(trap_request);
2789 #endif
2790   size_t len;
2791   if (unloaded_class_index < 0) {
2792     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2793                        reason, action
2794 #if INCLUDE_JVMCI
2795                        ,debug_id
2796 #endif
2797                        );
2798   } else {
2799     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2800                        reason, action, unloaded_class_index
2801 #if INCLUDE_JVMCI
2802                        ,debug_id
2803 #endif
2804                        );
2805   }
2806   return buf;
2807 }
2808 
2809 juint Deoptimization::_deoptimization_hist
2810         [Deoptimization::Reason_LIMIT]
2811     [1 + Deoptimization::Action_LIMIT]
2812         [Deoptimization::BC_CASE_LIMIT]
2813   = {0};
2814 
2815 enum {
2816   LSB_BITS = 8,
2817   LSB_MASK = right_n_bits(LSB_BITS)
2818 };
2819 
2820 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2821                                        Bytecodes::Code bc) {
2822   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2823   assert(action >= 0 && action < Action_LIMIT, "oob");
2824   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2825   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2826   juint* cases = _deoptimization_hist[reason][1+action];
2827   juint* bc_counter_addr = nullptr;
2828   juint  bc_counter      = 0;
2829   // Look for an unused counter, or an exact match to this BC.
2830   if (bc != Bytecodes::_illegal) {
2831     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2832       juint* counter_addr = &cases[bc_case];
2833       juint  counter = *counter_addr;
2834       if ((counter == 0 && bc_counter_addr == nullptr)
2835           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2836         // this counter is either free or is already devoted to this BC
2837         bc_counter_addr = counter_addr;
2838         bc_counter = counter | bc;
2839       }
2840     }
2841   }
2842   if (bc_counter_addr == nullptr) {
2843     // Overflow, or no given bytecode.
2844     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2845     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2846   }
2847   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2848 }
2849 
2850 jint Deoptimization::total_deoptimization_count() {
2851   return _deoptimization_hist[Reason_none][0][0];
2852 }
2853 
2854 // Get the deopt count for a specific reason and a specific action. If either
2855 // one of 'reason' or 'action' is null, the method returns the sum of all
2856 // deoptimizations with the specific 'action' or 'reason' respectively.
2857 // If both arguments are null, the method returns the total deopt count.
2858 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2859   if (reason_str == nullptr && action_str == nullptr) {
2860     return total_deoptimization_count();
2861   }
2862   juint counter = 0;
2863   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2864     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2865       for (int action = 0; action < Action_LIMIT; action++) {
2866         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2867           juint* cases = _deoptimization_hist[reason][1+action];
2868           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2869             counter += cases[bc_case] >> LSB_BITS;
2870           }
2871         }
2872       }
2873     }
2874   }
2875   return counter;
2876 }
2877 
2878 void Deoptimization::print_statistics() {
2879   juint total = total_deoptimization_count();
2880   juint account = total;
2881   if (total != 0) {
2882     ttyLocker ttyl;
2883     if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2884     tty->print_cr("Deoptimization traps recorded:");
2885     #define PRINT_STAT_LINE(name, r) \
2886       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2887     PRINT_STAT_LINE("total", total);
2888     // For each non-zero entry in the histogram, print the reason,
2889     // the action, and (if specifically known) the type of bytecode.
2890     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2891       for (int action = 0; action < Action_LIMIT; action++) {
2892         juint* cases = _deoptimization_hist[reason][1+action];
2893         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2894           juint counter = cases[bc_case];
2895           if (counter != 0) {
2896             char name[1*K];
2897             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2898             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2899               bc = Bytecodes::_illegal;
2900             os::snprintf_checked(name, sizeof(name), "%s/%s/%s",
2901                     trap_reason_name(reason),
2902                     trap_action_name(action),
2903                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2904             juint r = counter >> LSB_BITS;
2905             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2906             account -= r;
2907           }
2908         }
2909       }
2910     }
2911     if (account != 0) {
2912       PRINT_STAT_LINE("unaccounted", account);
2913     }
2914     #undef PRINT_STAT_LINE
2915     if (xtty != nullptr)  xtty->tail("statistics");
2916   }
2917 }
2918 
2919 #else // COMPILER2_OR_JVMCI
2920 
2921 
2922 // Stubs for C1 only system.
2923 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2924   return false;
2925 }
2926 
2927 const char* Deoptimization::trap_reason_name(int reason) {
2928   return "unknown";
2929 }
2930 
2931 jint Deoptimization::total_deoptimization_count() {
2932   return 0;
2933 }
2934 
2935 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2936   return 0;
2937 }
2938 
2939 void Deoptimization::print_statistics() {
2940   // no output
2941 }
2942 
2943 void
2944 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2945   // no update
2946 }
2947 
2948 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2949   return 0;
2950 }
2951 
2952 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2953                                        Bytecodes::Code bc) {
2954   // no update
2955 }
2956 
2957 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2958                                               int trap_state) {
2959   jio_snprintf(buf, buflen, "#%d", trap_state);
2960   return buf;
2961 }
2962 
2963 #endif // COMPILER2_OR_JVMCI