1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/debugInfoRec.hpp" 32 #include "code/nmethod.hpp" 33 #include "code/pcDesc.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "compiler/compilationPolicy.hpp" 36 #include "compiler/compilerDefinitions.inline.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/memAllocator.hpp" 39 #include "interpreter/bytecode.hpp" 40 #include "interpreter/bytecodeStream.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/oopMapCache.hpp" 43 #include "jvm.h" 44 #include "logging/log.hpp" 45 #include "logging/logLevel.hpp" 46 #include "logging/logMessage.hpp" 47 #include "logging/logStream.hpp" 48 #include "memory/allocation.inline.hpp" 49 #include "memory/oopFactory.hpp" 50 #include "memory/resourceArea.hpp" 51 #include "memory/universe.hpp" 52 #include "oops/constantPool.hpp" 53 #include "oops/fieldStreams.inline.hpp" 54 #include "oops/method.hpp" 55 #include "oops/objArrayKlass.hpp" 56 #include "oops/objArrayOop.inline.hpp" 57 #include "oops/oop.inline.hpp" 58 #include "oops/typeArrayOop.inline.hpp" 59 #include "oops/verifyOopClosure.hpp" 60 #include "prims/jvmtiDeferredUpdates.hpp" 61 #include "prims/jvmtiExport.hpp" 62 #include "prims/jvmtiThreadState.hpp" 63 #include "prims/methodHandles.hpp" 64 #include "prims/vectorSupport.hpp" 65 #include "runtime/atomic.hpp" 66 #include "runtime/basicLock.inline.hpp" 67 #include "runtime/continuation.hpp" 68 #include "runtime/continuationEntry.inline.hpp" 69 #include "runtime/deoptimization.hpp" 70 #include "runtime/escapeBarrier.hpp" 71 #include "runtime/fieldDescriptor.hpp" 72 #include "runtime/fieldDescriptor.inline.hpp" 73 #include "runtime/frame.inline.hpp" 74 #include "runtime/handles.inline.hpp" 75 #include "runtime/interfaceSupport.inline.hpp" 76 #include "runtime/javaThread.hpp" 77 #include "runtime/jniHandles.inline.hpp" 78 #include "runtime/keepStackGCProcessed.hpp" 79 #include "runtime/lightweightSynchronizer.hpp" 80 #include "runtime/lockStack.inline.hpp" 81 #include "runtime/objectMonitor.inline.hpp" 82 #include "runtime/osThread.hpp" 83 #include "runtime/perfData.inline.hpp" 84 #include "runtime/safepointVerifiers.hpp" 85 #include "runtime/sharedRuntime.hpp" 86 #include "runtime/signature.hpp" 87 #include "runtime/stackFrameStream.inline.hpp" 88 #include "runtime/stackValue.hpp" 89 #include "runtime/stackWatermarkSet.hpp" 90 #include "runtime/stubRoutines.hpp" 91 #include "runtime/synchronizer.inline.hpp" 92 #include "runtime/threadSMR.hpp" 93 #include "runtime/threadWXSetters.inline.hpp" 94 #include "runtime/vframe.hpp" 95 #include "runtime/vframeArray.hpp" 96 #include "runtime/vframe_hp.hpp" 97 #include "runtime/vmOperations.hpp" 98 #include "services/management.hpp" 99 #include "utilities/checkedCast.hpp" 100 #include "utilities/events.hpp" 101 #include "utilities/growableArray.hpp" 102 #include "utilities/macros.hpp" 103 #include "utilities/preserveException.hpp" 104 #include "utilities/xmlstream.hpp" 105 #if INCLUDE_JFR 106 #include "jfr/jfrEvents.hpp" 107 #include "jfr/metadata/jfrSerializer.hpp" 108 #endif 109 110 uint64_t DeoptimizationScope::_committed_deopt_gen = 0; 111 uint64_t DeoptimizationScope::_active_deopt_gen = 1; 112 bool DeoptimizationScope::_committing_in_progress = false; 113 114 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) { 115 DEBUG_ONLY(_deopted = false;) 116 117 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 118 // If there is nothing to deopt _required_gen is the same as comitted. 119 _required_gen = DeoptimizationScope::_committed_deopt_gen; 120 } 121 122 DeoptimizationScope::~DeoptimizationScope() { 123 assert(_deopted, "Deopt not executed"); 124 } 125 126 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) { 127 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 128 129 // If it's already marked but we still need it to be deopted. 130 if (nm->is_marked_for_deoptimization()) { 131 dependent(nm); 132 return; 133 } 134 135 nmethod::DeoptimizationStatus status = 136 inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate; 137 Atomic::store(&nm->_deoptimization_status, status); 138 139 // Make sure active is not committed 140 assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be"); 141 assert(nm->_deoptimization_generation == 0, "Is already marked"); 142 143 nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen; 144 _required_gen = DeoptimizationScope::_active_deopt_gen; 145 } 146 147 void DeoptimizationScope::dependent(nmethod* nm) { 148 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 149 150 // A method marked by someone else may have a _required_gen lower than what we marked with. 151 // Therefore only store it if it's higher than _required_gen. 152 if (_required_gen < nm->_deoptimization_generation) { 153 _required_gen = nm->_deoptimization_generation; 154 } 155 } 156 157 void DeoptimizationScope::deoptimize_marked() { 158 assert(!_deopted, "Already deopted"); 159 160 // We are not alive yet. 161 if (!Universe::is_fully_initialized()) { 162 DEBUG_ONLY(_deopted = true;) 163 return; 164 } 165 166 // Safepoints are a special case, handled here. 167 if (SafepointSynchronize::is_at_safepoint()) { 168 DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen; 169 DeoptimizationScope::_active_deopt_gen++; 170 Deoptimization::deoptimize_all_marked(); 171 DEBUG_ONLY(_deopted = true;) 172 return; 173 } 174 175 uint64_t comitting = 0; 176 bool wait = false; 177 while (true) { 178 { 179 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 180 181 // First we check if we or someone else already deopted the gen we want. 182 if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) { 183 DEBUG_ONLY(_deopted = true;) 184 return; 185 } 186 if (!_committing_in_progress) { 187 // The version we are about to commit. 188 comitting = DeoptimizationScope::_active_deopt_gen; 189 // Make sure new marks use a higher gen. 190 DeoptimizationScope::_active_deopt_gen++; 191 _committing_in_progress = true; 192 wait = false; 193 } else { 194 // Another thread is handshaking and committing a gen. 195 wait = true; 196 } 197 } 198 if (wait) { 199 // Wait and let the concurrent handshake be performed. 200 ThreadBlockInVM tbivm(JavaThread::current()); 201 os::naked_yield(); 202 } else { 203 // Performs the handshake. 204 Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred. 205 DEBUG_ONLY(_deopted = true;) 206 { 207 ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag); 208 209 // Make sure that committed doesn't go backwards. 210 // Should only happen if we did a deopt during a safepoint above. 211 if (DeoptimizationScope::_committed_deopt_gen < comitting) { 212 DeoptimizationScope::_committed_deopt_gen = comitting; 213 } 214 _committing_in_progress = false; 215 216 assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be"); 217 218 return; 219 } 220 } 221 } 222 } 223 224 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame, 225 int caller_adjustment, 226 int caller_actual_parameters, 227 int number_of_frames, 228 intptr_t* frame_sizes, 229 address* frame_pcs, 230 BasicType return_type, 231 int exec_mode) { 232 _size_of_deoptimized_frame = size_of_deoptimized_frame; 233 _caller_adjustment = caller_adjustment; 234 _caller_actual_parameters = caller_actual_parameters; 235 _number_of_frames = number_of_frames; 236 _frame_sizes = frame_sizes; 237 _frame_pcs = frame_pcs; 238 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler); 239 _return_type = return_type; 240 _initial_info = 0; 241 // PD (x86 only) 242 _counter_temp = 0; 243 _unpack_kind = exec_mode; 244 _sender_sp_temp = 0; 245 246 _total_frame_sizes = size_of_frames(); 247 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode"); 248 } 249 250 Deoptimization::UnrollBlock::~UnrollBlock() { 251 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes); 252 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs); 253 FREE_C_HEAP_ARRAY(intptr_t, _register_block); 254 } 255 256 int Deoptimization::UnrollBlock::size_of_frames() const { 257 // Account first for the adjustment of the initial frame 258 intptr_t result = _caller_adjustment; 259 for (int index = 0; index < number_of_frames(); index++) { 260 result += frame_sizes()[index]; 261 } 262 return checked_cast<int>(result); 263 } 264 265 void Deoptimization::UnrollBlock::print() { 266 ResourceMark rm; 267 stringStream st; 268 st.print_cr("UnrollBlock"); 269 st.print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame); 270 st.print( " frame_sizes: "); 271 for (int index = 0; index < number_of_frames(); index++) { 272 st.print(INTX_FORMAT " ", frame_sizes()[index]); 273 } 274 st.cr(); 275 tty->print_raw(st.freeze()); 276 } 277 278 // In order to make fetch_unroll_info work properly with escape 279 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY. 280 // The actual reallocation of previously eliminated objects occurs in realloc_objects, 281 // which is called from the method fetch_unroll_info_helper below. 282 JRT_BLOCK_ENTRY_PROF(Deoptimization::UnrollBlock*, Deoptimization, fetch_unroll_info, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode)) 283 // fetch_unroll_info() is called at the beginning of the deoptimization 284 // handler. Note this fact before we start generating temporary frames 285 // that can confuse an asynchronous stack walker. This counter is 286 // decremented at the end of unpack_frames(). 287 current->inc_in_deopt_handler(); 288 289 if (exec_mode == Unpack_exception) { 290 // When we get here, a callee has thrown an exception into a deoptimized 291 // frame. That throw might have deferred stack watermark checking until 292 // after unwinding. So we deal with such deferred requests here. 293 StackWatermarkSet::after_unwind(current); 294 } 295 296 return fetch_unroll_info_helper(current, exec_mode); 297 JRT_END 298 299 #if COMPILER2_OR_JVMCI 300 // print information about reallocated objects 301 static void print_objects(JavaThread* deoptee_thread, 302 GrowableArray<ScopeValue*>* objects, bool realloc_failures) { 303 ResourceMark rm; 304 stringStream st; // change to logStream with logging 305 st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread)); 306 fieldDescriptor fd; 307 308 for (int i = 0; i < objects->length(); i++) { 309 ObjectValue* sv = (ObjectValue*) objects->at(i); 310 Handle obj = sv->value(); 311 312 if (obj.is_null()) { 313 st.print_cr(" nullptr"); 314 continue; 315 } 316 317 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 318 319 st.print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()())); 320 k->print_value_on(&st); 321 st.print_cr(" allocated (" SIZE_FORMAT " bytes)", obj->size() * HeapWordSize); 322 323 if (Verbose && k != nullptr) { 324 k->oop_print_on(obj(), &st); 325 } 326 } 327 tty->print_raw(st.freeze()); 328 } 329 330 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method, 331 frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk, 332 bool& deoptimized_objects) { 333 bool realloc_failures = false; 334 assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames"); 335 336 JavaThread* deoptee_thread = chunk->at(0)->thread(); 337 assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread), 338 "a frame can only be deoptimized by the owner thread"); 339 340 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map); 341 342 // The flag return_oop() indicates call sites which return oop 343 // in compiled code. Such sites include java method calls, 344 // runtime calls (for example, used to allocate new objects/arrays 345 // on slow code path) and any other calls generated in compiled code. 346 // It is not guaranteed that we can get such information here only 347 // by analyzing bytecode in deoptimized frames. This is why this flag 348 // is set during method compilation (see Compile::Process_OopMap_Node()). 349 // If the previous frame was popped or if we are dispatching an exception, 350 // we don't have an oop result. 351 bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt); 352 Handle return_value; 353 if (save_oop_result) { 354 // Reallocation may trigger GC. If deoptimization happened on return from 355 // call which returns oop we need to save it since it is not in oopmap. 356 oop result = deoptee.saved_oop_result(&map); 357 assert(oopDesc::is_oop_or_null(result), "must be oop"); 358 return_value = Handle(thread, result); 359 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 360 if (TraceDeoptimization) { 361 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread)); 362 tty->cr(); 363 } 364 } 365 if (objects != nullptr) { 366 if (exec_mode == Deoptimization::Unpack_none) { 367 assert(thread->thread_state() == _thread_in_vm, "assumption"); 368 JavaThread* THREAD = thread; // For exception macros. 369 // Clear pending OOM if reallocation fails and return true indicating allocation failure 370 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true)); 371 deoptimized_objects = true; 372 } else { 373 JavaThread* current = thread; // For JRT_BLOCK 374 JRT_BLOCK 375 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD); 376 JRT_END 377 } 378 bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci(); 379 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal); 380 if (TraceDeoptimization) { 381 print_objects(deoptee_thread, objects, realloc_failures); 382 } 383 } 384 if (save_oop_result) { 385 // Restore result. 386 deoptee.set_saved_oop_result(&map, return_value()); 387 } 388 return realloc_failures; 389 } 390 391 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures, 392 frame& deoptee, int exec_mode, bool& deoptimized_objects) { 393 JavaThread* deoptee_thread = chunk->at(0)->thread(); 394 assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once"); 395 assert(thread == Thread::current(), "should be"); 396 HandleMark hm(thread); 397 #ifndef PRODUCT 398 bool first = true; 399 #endif // !PRODUCT 400 // Start locking from outermost/oldest frame 401 for (int i = (chunk->length() - 1); i >= 0; i--) { 402 compiledVFrame* cvf = chunk->at(i); 403 assert (cvf->scope() != nullptr,"expect only compiled java frames"); 404 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 405 if (monitors->is_nonempty()) { 406 bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee, 407 exec_mode, realloc_failures); 408 deoptimized_objects = deoptimized_objects || relocked; 409 #ifndef PRODUCT 410 if (PrintDeoptimizationDetails) { 411 ResourceMark rm; 412 stringStream st; 413 for (int j = 0; j < monitors->length(); j++) { 414 MonitorInfo* mi = monitors->at(j); 415 if (mi->eliminated()) { 416 if (first) { 417 first = false; 418 st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 419 } 420 if (exec_mode == Deoptimization::Unpack_none) { 421 ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor(); 422 if (monitor != nullptr && monitor->object() == mi->owner()) { 423 st.print_cr(" object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner())); 424 continue; 425 } 426 } 427 if (mi->owner_is_scalar_replaced()) { 428 Klass* k = java_lang_Class::as_Klass(mi->owner_klass()); 429 st.print_cr(" failed reallocation for klass %s", k->external_name()); 430 } else { 431 st.print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner())); 432 } 433 } 434 } 435 tty->print_raw(st.freeze()); 436 } 437 #endif // !PRODUCT 438 } 439 } 440 } 441 442 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI. 443 // The given vframes cover one physical frame. 444 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, 445 bool& realloc_failures) { 446 frame deoptee = chunk->at(0)->fr(); 447 JavaThread* deoptee_thread = chunk->at(0)->thread(); 448 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 449 RegisterMap map(chunk->at(0)->register_map()); 450 bool deoptimized_objects = false; 451 452 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 453 454 // Reallocate the non-escaping objects and restore their fields. 455 if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations) 456 || EliminateAutoBox || EnableVectorAggressiveReboxing)) { 457 realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects); 458 } 459 460 // MonitorInfo structures used in eliminate_locks are not GC safe. 461 NoSafepointVerifier no_safepoint; 462 463 // Now relock objects if synchronization on them was eliminated. 464 if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) { 465 restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects); 466 } 467 return deoptimized_objects; 468 } 469 #endif // COMPILER2_OR_JVMCI 470 471 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap) 472 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) { 473 // When we get here we are about to unwind the deoptee frame. In order to 474 // catch not yet safe to use frames, the following stack watermark barrier 475 // poll will make such frames safe to use. 476 StackWatermarkSet::before_unwind(current); 477 478 // Note: there is a safepoint safety issue here. No matter whether we enter 479 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once 480 // the vframeArray is created. 481 // 482 483 // Allocate our special deoptimization ResourceMark 484 DeoptResourceMark* dmark = new DeoptResourceMark(current); 485 assert(current->deopt_mark() == nullptr, "Pending deopt!"); 486 current->set_deopt_mark(dmark); 487 488 frame stub_frame = current->last_frame(); // Makes stack walkable as side effect 489 RegisterMap map(current, 490 RegisterMap::UpdateMap::include, 491 RegisterMap::ProcessFrames::include, 492 RegisterMap::WalkContinuation::skip); 493 RegisterMap dummy_map(current, 494 RegisterMap::UpdateMap::skip, 495 RegisterMap::ProcessFrames::include, 496 RegisterMap::WalkContinuation::skip); 497 // Now get the deoptee with a valid map 498 frame deoptee = stub_frame.sender(&map); 499 // Set the deoptee nmethod 500 assert(current->deopt_compiled_method() == nullptr, "Pending deopt!"); 501 nmethod* nm = deoptee.cb()->as_nmethod_or_null(); 502 current->set_deopt_compiled_method(nm); 503 504 if (VerifyStack) { 505 current->validate_frame_layout(); 506 } 507 508 // Create a growable array of VFrames where each VFrame represents an inlined 509 // Java frame. This storage is allocated with the usual system arena. 510 assert(deoptee.is_compiled_frame(), "Wrong frame type"); 511 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10); 512 vframe* vf = vframe::new_vframe(&deoptee, &map, current); 513 while (!vf->is_top()) { 514 assert(vf->is_compiled_frame(), "Wrong frame type"); 515 chunk->push(compiledVFrame::cast(vf)); 516 vf = vf->sender(); 517 } 518 assert(vf->is_compiled_frame(), "Wrong frame type"); 519 chunk->push(compiledVFrame::cast(vf)); 520 521 bool realloc_failures = false; 522 523 #if COMPILER2_OR_JVMCI 524 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 525 526 // Reallocate the non-escaping objects and restore their fields. Then 527 // relock objects if synchronization on them was eliminated. 528 if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations) 529 || EliminateAutoBox || EnableVectorAggressiveReboxing )) { 530 bool unused; 531 realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused); 532 } 533 #endif // COMPILER2_OR_JVMCI 534 535 // Ensure that no safepoint is taken after pointers have been stored 536 // in fields of rematerialized objects. If a safepoint occurs from here on 537 // out the java state residing in the vframeArray will be missed. 538 // Locks may be rebaised in a safepoint. 539 NoSafepointVerifier no_safepoint; 540 541 #if COMPILER2_OR_JVMCI 542 if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) )) 543 && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) { 544 bool unused = false; 545 restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused); 546 } 547 #endif // COMPILER2_OR_JVMCI 548 549 ScopeDesc* trap_scope = chunk->at(0)->scope(); 550 Handle exceptionObject; 551 if (trap_scope->rethrow_exception()) { 552 #ifndef PRODUCT 553 if (PrintDeoptimizationDetails) { 554 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci()); 555 } 556 #endif // !PRODUCT 557 558 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions(); 559 guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw"); 560 ScopeValue* topOfStack = expressions->top(); 561 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj(); 562 guarantee(exceptionObject() != nullptr, "exception oop can not be null"); 563 } 564 565 vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures); 566 #if COMPILER2_OR_JVMCI 567 if (realloc_failures) { 568 // This destroys all ScopedValue bindings. 569 current->clear_scopedValueBindings(); 570 pop_frames_failed_reallocs(current, array); 571 } 572 #endif 573 574 assert(current->vframe_array_head() == nullptr, "Pending deopt!"); 575 current->set_vframe_array_head(array); 576 577 // Now that the vframeArray has been created if we have any deferred local writes 578 // added by jvmti then we can free up that structure as the data is now in the 579 // vframeArray 580 581 JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id()); 582 583 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info. 584 CodeBlob* cb = stub_frame.cb(); 585 // Verify we have the right vframeArray 586 assert(cb->frame_size() >= 0, "Unexpected frame size"); 587 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size(); 588 589 // If the deopt call site is a MethodHandle invoke call site we have 590 // to adjust the unpack_sp. 591 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null(); 592 if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc())) 593 unpack_sp = deoptee.unextended_sp(); 594 595 #ifdef ASSERT 596 assert(cb->is_deoptimization_stub() || 597 cb->is_uncommon_trap_stub() || 598 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 || 599 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0, 600 "unexpected code blob: %s", cb->name()); 601 #endif 602 603 // This is a guarantee instead of an assert because if vframe doesn't match 604 // we will unpack the wrong deoptimized frame and wind up in strange places 605 // where it will be very difficult to figure out what went wrong. Better 606 // to die an early death here than some very obscure death later when the 607 // trail is cold. 608 // Note: on ia64 this guarantee can be fooled by frames with no memory stack 609 // in that it will fail to detect a problem when there is one. This needs 610 // more work in tiger timeframe. 611 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack"); 612 613 int number_of_frames = array->frames(); 614 615 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost 616 // virtual activation, which is the reverse of the elements in the vframes array. 617 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler); 618 // +1 because we always have an interpreter return address for the final slot. 619 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler); 620 int popframe_extra_args = 0; 621 // Create an interpreter return address for the stub to use as its return 622 // address so the skeletal frames are perfectly walkable 623 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0); 624 625 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost 626 // activation be put back on the expression stack of the caller for reexecution 627 if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) { 628 popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words()); 629 } 630 631 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized 632 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather 633 // than simply use array->sender.pc(). This requires us to walk the current set of frames 634 // 635 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame 636 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller 637 638 // It's possible that the number of parameters at the call site is 639 // different than number of arguments in the callee when method 640 // handles are used. If the caller is interpreted get the real 641 // value so that the proper amount of space can be added to it's 642 // frame. 643 bool caller_was_method_handle = false; 644 if (deopt_sender.is_interpreted_frame()) { 645 methodHandle method(current, deopt_sender.interpreter_frame_method()); 646 Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci()); 647 if (cur.is_invokedynamic() || cur.is_invokehandle()) { 648 // Method handle invokes may involve fairly arbitrary chains of 649 // calls so it's impossible to know how much actual space the 650 // caller has for locals. 651 caller_was_method_handle = true; 652 } 653 } 654 655 // 656 // frame_sizes/frame_pcs[0] oldest frame (int or c2i) 657 // frame_sizes/frame_pcs[1] next oldest frame (int) 658 // frame_sizes/frame_pcs[n] youngest frame (int) 659 // 660 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame 661 // owns the space for the return address to it's caller). Confusing ain't it. 662 // 663 // The vframe array can address vframes with indices running from 664 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame. 665 // When we create the skeletal frames we need the oldest frame to be in the zero slot 666 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk. 667 // so things look a little strange in this loop. 668 // 669 int callee_parameters = 0; 670 int callee_locals = 0; 671 for (int index = 0; index < array->frames(); index++ ) { 672 // frame[number_of_frames - 1 ] = on_stack_size(youngest) 673 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest)) 674 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest))) 675 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters, 676 callee_locals, 677 index == 0, 678 popframe_extra_args); 679 // This pc doesn't have to be perfect just good enough to identify the frame 680 // as interpreted so the skeleton frame will be walkable 681 // The correct pc will be set when the skeleton frame is completely filled out 682 // The final pc we store in the loop is wrong and will be overwritten below 683 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset; 684 685 callee_parameters = array->element(index)->method()->size_of_parameters(); 686 callee_locals = array->element(index)->method()->max_locals(); 687 popframe_extra_args = 0; 688 } 689 690 // Compute whether the root vframe returns a float or double value. 691 BasicType return_type; 692 { 693 methodHandle method(current, array->element(0)->method()); 694 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci()); 695 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL; 696 } 697 698 // Compute information for handling adapters and adjusting the frame size of the caller. 699 int caller_adjustment = 0; 700 701 // Compute the amount the oldest interpreter frame will have to adjust 702 // its caller's stack by. If the caller is a compiled frame then 703 // we pretend that the callee has no parameters so that the 704 // extension counts for the full amount of locals and not just 705 // locals-parms. This is because without a c2i adapter the parm 706 // area as created by the compiled frame will not be usable by 707 // the interpreter. (Depending on the calling convention there 708 // may not even be enough space). 709 710 // QQQ I'd rather see this pushed down into last_frame_adjust 711 // and have it take the sender (aka caller). 712 713 if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) { 714 caller_adjustment = last_frame_adjust(0, callee_locals); 715 } else if (callee_locals > callee_parameters) { 716 // The caller frame may need extending to accommodate 717 // non-parameter locals of the first unpacked interpreted frame. 718 // Compute that adjustment. 719 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals); 720 } 721 722 // If the sender is deoptimized the we must retrieve the address of the handler 723 // since the frame will "magically" show the original pc before the deopt 724 // and we'd undo the deopt. 725 726 frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc(); 727 if (Continuation::is_continuation_enterSpecial(deopt_sender)) { 728 ContinuationEntry::from_frame(deopt_sender)->set_argsize(0); 729 } 730 731 assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc"); 732 733 #if INCLUDE_JVMCI 734 if (exceptionObject() != nullptr) { 735 current->set_exception_oop(exceptionObject()); 736 exec_mode = Unpack_exception; 737 } 738 #endif 739 740 if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) { 741 assert(current->has_pending_exception(), "should have thrown OOME"); 742 current->set_exception_oop(current->pending_exception()); 743 current->clear_pending_exception(); 744 exec_mode = Unpack_exception; 745 } 746 747 #if INCLUDE_JVMCI 748 if (current->frames_to_pop_failed_realloc() > 0) { 749 current->set_pending_monitorenter(false); 750 } 751 #endif 752 753 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord, 754 caller_adjustment * BytesPerWord, 755 caller_was_method_handle ? 0 : callee_parameters, 756 number_of_frames, 757 frame_sizes, 758 frame_pcs, 759 return_type, 760 exec_mode); 761 // On some platforms, we need a way to pass some platform dependent 762 // information to the unpacking code so the skeletal frames come out 763 // correct (initial fp value, unextended sp, ...) 764 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info()); 765 766 if (array->frames() > 1) { 767 if (VerifyStack && TraceDeoptimization) { 768 tty->print_cr("Deoptimizing method containing inlining"); 769 } 770 } 771 772 array->set_unroll_block(info); 773 return info; 774 } 775 776 // Called to cleanup deoptimization data structures in normal case 777 // after unpacking to stack and when stack overflow error occurs 778 void Deoptimization::cleanup_deopt_info(JavaThread *thread, 779 vframeArray *array) { 780 781 // Get array if coming from exception 782 if (array == nullptr) { 783 array = thread->vframe_array_head(); 784 } 785 thread->set_vframe_array_head(nullptr); 786 787 // Free the previous UnrollBlock 788 vframeArray* old_array = thread->vframe_array_last(); 789 thread->set_vframe_array_last(array); 790 791 if (old_array != nullptr) { 792 UnrollBlock* old_info = old_array->unroll_block(); 793 old_array->set_unroll_block(nullptr); 794 delete old_info; 795 delete old_array; 796 } 797 798 // Deallocate any resource creating in this routine and any ResourceObjs allocated 799 // inside the vframeArray (StackValueCollections) 800 801 delete thread->deopt_mark(); 802 thread->set_deopt_mark(nullptr); 803 thread->set_deopt_compiled_method(nullptr); 804 805 806 if (JvmtiExport::can_pop_frame()) { 807 // Regardless of whether we entered this routine with the pending 808 // popframe condition bit set, we should always clear it now 809 thread->clear_popframe_condition(); 810 } 811 812 // unpack_frames() is called at the end of the deoptimization handler 813 // and (in C2) at the end of the uncommon trap handler. Note this fact 814 // so that an asynchronous stack walker can work again. This counter is 815 // incremented at the beginning of fetch_unroll_info() and (in C2) at 816 // the beginning of uncommon_trap(). 817 thread->dec_in_deopt_handler(); 818 } 819 820 // Moved from cpu directories because none of the cpus has callee save values. 821 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp. 822 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { 823 824 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in 825 // the days we had adapter frames. When we deoptimize a situation where a 826 // compiled caller calls a compiled caller will have registers it expects 827 // to survive the call to the callee. If we deoptimize the callee the only 828 // way we can restore these registers is to have the oldest interpreter 829 // frame that we create restore these values. That is what this routine 830 // will accomplish. 831 832 // At the moment we have modified c2 to not have any callee save registers 833 // so this problem does not exist and this routine is just a place holder. 834 835 assert(f->is_interpreted_frame(), "must be interpreted"); 836 } 837 838 #ifndef PRODUCT 839 static bool falls_through(Bytecodes::Code bc) { 840 switch (bc) { 841 // List may be incomplete. Here we really only care about bytecodes where compiled code 842 // can deoptimize. 843 case Bytecodes::_goto: 844 case Bytecodes::_goto_w: 845 case Bytecodes::_athrow: 846 return false; 847 default: 848 return true; 849 } 850 } 851 #endif 852 853 // Return BasicType of value being returned 854 JRT_LEAF_PROF_NO_THREAD(BasicType, Deoptimization, unpack_frames, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)) 855 assert(thread == JavaThread::current(), "pre-condition"); 856 857 // We are already active in the special DeoptResourceMark any ResourceObj's we 858 // allocate will be freed at the end of the routine. 859 860 // JRT_LEAF methods don't normally allocate handles and there is a 861 // NoHandleMark to enforce that. It is actually safe to use Handles 862 // in a JRT_LEAF method, and sometimes desirable, but to do so we 863 // must use ResetNoHandleMark to bypass the NoHandleMark, and 864 // then use a HandleMark to ensure any Handles we do create are 865 // cleaned up in this scope. 866 ResetNoHandleMark rnhm; 867 HandleMark hm(thread); 868 869 frame stub_frame = thread->last_frame(); 870 871 Continuation::notify_deopt(thread, stub_frame.sp()); 872 873 // Since the frame to unpack is the top frame of this thread, the vframe_array_head 874 // must point to the vframeArray for the unpack frame. 875 vframeArray* array = thread->vframe_array_head(); 876 UnrollBlock* info = array->unroll_block(); 877 878 // We set the last_Java frame. But the stack isn't really parsable here. So we 879 // clear it to make sure JFR understands not to try and walk stacks from events 880 // in here. 881 intptr_t* sp = thread->frame_anchor()->last_Java_sp(); 882 thread->frame_anchor()->set_last_Java_sp(nullptr); 883 884 // Unpack the interpreter frames and any adapter frame (c2 only) we might create. 885 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters()); 886 887 thread->frame_anchor()->set_last_Java_sp(sp); 888 889 BasicType bt = info->return_type(); 890 891 // If we have an exception pending, claim that the return type is an oop 892 // so the deopt_blob does not overwrite the exception_oop. 893 894 if (exec_mode == Unpack_exception) 895 bt = T_OBJECT; 896 897 // Cleanup thread deopt data 898 cleanup_deopt_info(thread, array); 899 900 #ifndef PRODUCT 901 if (VerifyStack) { 902 ResourceMark res_mark; 903 // Clear pending exception to not break verification code (restored afterwards) 904 PreserveExceptionMark pm(thread); 905 906 thread->validate_frame_layout(); 907 908 // Verify that the just-unpacked frames match the interpreter's 909 // notions of expression stack and locals 910 vframeArray* cur_array = thread->vframe_array_last(); 911 RegisterMap rm(thread, 912 RegisterMap::UpdateMap::skip, 913 RegisterMap::ProcessFrames::include, 914 RegisterMap::WalkContinuation::skip); 915 rm.set_include_argument_oops(false); 916 bool is_top_frame = true; 917 int callee_size_of_parameters = 0; 918 int callee_max_locals = 0; 919 for (int i = 0; i < cur_array->frames(); i++) { 920 vframeArrayElement* el = cur_array->element(i); 921 frame* iframe = el->iframe(); 922 guarantee(iframe->is_interpreted_frame(), "Wrong frame type"); 923 924 // Get the oop map for this bci 925 InterpreterOopMap mask; 926 int cur_invoke_parameter_size = 0; 927 bool try_next_mask = false; 928 int next_mask_expression_stack_size = -1; 929 int top_frame_expression_stack_adjustment = 0; 930 methodHandle mh(thread, iframe->interpreter_frame_method()); 931 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask); 932 BytecodeStream str(mh, iframe->interpreter_frame_bci()); 933 int max_bci = mh->code_size(); 934 // Get to the next bytecode if possible 935 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 936 // Check to see if we can grab the number of outgoing arguments 937 // at an uncommon trap for an invoke (where the compiler 938 // generates debug info before the invoke has executed) 939 Bytecodes::Code cur_code = str.next(); 940 Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere; 941 if (Bytecodes::is_invoke(cur_code)) { 942 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci()); 943 cur_invoke_parameter_size = invoke.size_of_parameters(); 944 if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) { 945 callee_size_of_parameters++; 946 } 947 } 948 if (str.bci() < max_bci) { 949 next_code = str.next(); 950 if (next_code >= 0) { 951 // The interpreter oop map generator reports results before 952 // the current bytecode has executed except in the case of 953 // calls. It seems to be hard to tell whether the compiler 954 // has emitted debug information matching the "state before" 955 // a given bytecode or the state after, so we try both 956 if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) { 957 // Get expression stack size for the next bytecode 958 InterpreterOopMap next_mask; 959 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask); 960 next_mask_expression_stack_size = next_mask.expression_stack_size(); 961 if (Bytecodes::is_invoke(next_code)) { 962 Bytecode_invoke invoke(mh, str.bci()); 963 next_mask_expression_stack_size += invoke.size_of_parameters(); 964 } 965 // Need to subtract off the size of the result type of 966 // the bytecode because this is not described in the 967 // debug info but returned to the interpreter in the TOS 968 // caching register 969 BasicType bytecode_result_type = Bytecodes::result_type(cur_code); 970 if (bytecode_result_type != T_ILLEGAL) { 971 top_frame_expression_stack_adjustment = type2size[bytecode_result_type]; 972 } 973 assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive"); 974 try_next_mask = true; 975 } 976 } 977 } 978 979 // Verify stack depth and oops in frame 980 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc) 981 if (!( 982 /* SPARC */ 983 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) || 984 /* x86 */ 985 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) || 986 (try_next_mask && 987 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size - 988 top_frame_expression_stack_adjustment))) || 989 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) || 990 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) && 991 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size)) 992 )) { 993 { 994 // Print out some information that will help us debug the problem 995 tty->print_cr("Wrong number of expression stack elements during deoptimization"); 996 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1); 997 tty->print_cr(" Current code %s", Bytecodes::name(cur_code)); 998 if (try_next_mask) { 999 tty->print_cr(" Next code %s", Bytecodes::name(next_code)); 1000 } 1001 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements", 1002 iframe->interpreter_frame_expression_stack_size()); 1003 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size()); 1004 tty->print_cr(" try_next_mask = %d", try_next_mask); 1005 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size); 1006 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters); 1007 tty->print_cr(" callee_max_locals = %d", callee_max_locals); 1008 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment); 1009 tty->print_cr(" exec_mode = %d", exec_mode); 1010 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size); 1011 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id()); 1012 tty->print_cr(" Interpreted frames:"); 1013 for (int k = 0; k < cur_array->frames(); k++) { 1014 vframeArrayElement* el = cur_array->element(k); 1015 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci()); 1016 } 1017 cur_array->print_on_2(tty); 1018 } 1019 guarantee(false, "wrong number of expression stack elements during deopt"); 1020 } 1021 VerifyOopClosure verify; 1022 iframe->oops_interpreted_do(&verify, &rm, false); 1023 callee_size_of_parameters = mh->size_of_parameters(); 1024 callee_max_locals = mh->max_locals(); 1025 is_top_frame = false; 1026 } 1027 } 1028 #endif // !PRODUCT 1029 1030 return bt; 1031 JRT_END 1032 1033 class DeoptimizeMarkedClosure : public HandshakeClosure { 1034 public: 1035 DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {} 1036 void do_thread(Thread* thread) { 1037 JavaThread* jt = JavaThread::cast(thread); 1038 jt->deoptimize_marked_methods(); 1039 } 1040 }; 1041 1042 void Deoptimization::deoptimize_all_marked() { 1043 ResourceMark rm; 1044 1045 // Make the dependent methods not entrant 1046 CodeCache::make_marked_nmethods_deoptimized(); 1047 1048 DeoptimizeMarkedClosure deopt; 1049 if (SafepointSynchronize::is_at_safepoint()) { 1050 Threads::java_threads_do(&deopt); 1051 } else { 1052 Handshake::execute(&deopt); 1053 } 1054 } 1055 1056 Deoptimization::DeoptAction Deoptimization::_unloaded_action 1057 = Deoptimization::Action_reinterpret; 1058 1059 #if INCLUDE_JVMCI 1060 template<typename CacheType> 1061 class BoxCacheBase : public CHeapObj<mtCompiler> { 1062 protected: 1063 static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) { 1064 ResourceMark rm(thread); 1065 char* klass_name_str = klass_name->as_C_string(); 1066 InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle(), Handle()); 1067 guarantee(ik != nullptr, "%s must be loaded", klass_name_str); 1068 if (!ik->is_in_error_state()) { 1069 guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str); 1070 CacheType::compute_offsets(ik); 1071 } 1072 return ik; 1073 } 1074 }; 1075 1076 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache : public BoxCacheBase<CacheType> { 1077 PrimitiveType _low; 1078 PrimitiveType _high; 1079 jobject _cache; 1080 protected: 1081 static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton; 1082 BoxCache(Thread* thread) { 1083 InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol()); 1084 if (ik->is_in_error_state()) { 1085 _low = 1; 1086 _high = 0; 1087 _cache = nullptr; 1088 } else { 1089 objArrayOop cache = CacheType::cache(ik); 1090 assert(cache->length() > 0, "Empty cache"); 1091 _low = BoxType::value(cache->obj_at(0)); 1092 _high = checked_cast<PrimitiveType>(_low + cache->length() - 1); 1093 _cache = JNIHandles::make_global(Handle(thread, cache)); 1094 } 1095 } 1096 ~BoxCache() { 1097 JNIHandles::destroy_global(_cache); 1098 } 1099 public: 1100 static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) { 1101 if (_singleton == nullptr) { 1102 BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread); 1103 if (!Atomic::replace_if_null(&_singleton, s)) { 1104 delete s; 1105 } 1106 } 1107 return _singleton; 1108 } 1109 oop lookup(PrimitiveType value) { 1110 if (_low <= value && value <= _high) { 1111 int offset = checked_cast<int>(value - _low); 1112 return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset); 1113 } 1114 return nullptr; 1115 } 1116 oop lookup_raw(intptr_t raw_value, bool& cache_init_error) { 1117 if (_cache == nullptr) { 1118 cache_init_error = true; 1119 return nullptr; 1120 } 1121 // Have to cast to avoid little/big-endian problems. 1122 if (sizeof(PrimitiveType) > sizeof(jint)) { 1123 jlong value = (jlong)raw_value; 1124 return lookup(value); 1125 } 1126 PrimitiveType value = (PrimitiveType)*((jint*)&raw_value); 1127 return lookup(value); 1128 } 1129 }; 1130 1131 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache; 1132 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache; 1133 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache; 1134 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache; 1135 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache; 1136 1137 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr; 1138 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr; 1139 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr; 1140 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr; 1141 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr; 1142 1143 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> { 1144 jobject _true_cache; 1145 jobject _false_cache; 1146 protected: 1147 static BooleanBoxCache *_singleton; 1148 BooleanBoxCache(Thread *thread) { 1149 InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol()); 1150 if (ik->is_in_error_state()) { 1151 _true_cache = nullptr; 1152 _false_cache = nullptr; 1153 } else { 1154 _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik))); 1155 _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik))); 1156 } 1157 } 1158 ~BooleanBoxCache() { 1159 JNIHandles::destroy_global(_true_cache); 1160 JNIHandles::destroy_global(_false_cache); 1161 } 1162 public: 1163 static BooleanBoxCache* singleton(Thread* thread) { 1164 if (_singleton == nullptr) { 1165 BooleanBoxCache* s = new BooleanBoxCache(thread); 1166 if (!Atomic::replace_if_null(&_singleton, s)) { 1167 delete s; 1168 } 1169 } 1170 return _singleton; 1171 } 1172 oop lookup_raw(intptr_t raw_value, bool& cache_in_error) { 1173 if (_true_cache == nullptr) { 1174 cache_in_error = true; 1175 return nullptr; 1176 } 1177 // Have to cast to avoid little/big-endian problems. 1178 jboolean value = (jboolean)*((jint*)&raw_value); 1179 return lookup(value); 1180 } 1181 oop lookup(jboolean value) { 1182 if (value != 0) { 1183 return JNIHandles::resolve_non_null(_true_cache); 1184 } 1185 return JNIHandles::resolve_non_null(_false_cache); 1186 } 1187 }; 1188 1189 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr; 1190 1191 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) { 1192 Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()()); 1193 BasicType box_type = vmClasses::box_klass_type(k); 1194 if (box_type != T_OBJECT) { 1195 StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0)); 1196 switch(box_type) { 1197 case T_INT: return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1198 case T_CHAR: return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1199 case T_SHORT: return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1200 case T_BYTE: return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1201 case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1202 case T_LONG: return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error); 1203 default:; 1204 } 1205 } 1206 return nullptr; 1207 } 1208 #endif // INCLUDE_JVMCI 1209 1210 #if COMPILER2_OR_JVMCI 1211 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) { 1212 Handle pending_exception(THREAD, thread->pending_exception()); 1213 const char* exception_file = thread->exception_file(); 1214 int exception_line = thread->exception_line(); 1215 thread->clear_pending_exception(); 1216 1217 bool failures = false; 1218 1219 for (int i = 0; i < objects->length(); i++) { 1220 assert(objects->at(i)->is_object(), "invalid debug information"); 1221 ObjectValue* sv = (ObjectValue*) objects->at(i); 1222 1223 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1224 oop obj = nullptr; 1225 1226 bool cache_init_error = false; 1227 if (k->is_instance_klass()) { 1228 #if INCLUDE_JVMCI 1229 nmethod* nm = fr->cb()->as_nmethod_or_null(); 1230 if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) { 1231 AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv; 1232 obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD); 1233 if (obj != nullptr) { 1234 // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it. 1235 abv->set_cached(true); 1236 } else if (cache_init_error) { 1237 // Results in an OOME which is valid (as opposed to a class initialization error) 1238 // and is fine for the rare case a cache initialization failing. 1239 failures = true; 1240 } 1241 } 1242 #endif // INCLUDE_JVMCI 1243 1244 InstanceKlass* ik = InstanceKlass::cast(k); 1245 if (obj == nullptr && !cache_init_error) { 1246 InternalOOMEMark iom(THREAD); 1247 if (EnableVectorSupport && VectorSupport::is_vector(ik)) { 1248 obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD); 1249 } else { 1250 obj = ik->allocate_instance(THREAD); 1251 } 1252 } 1253 } else if (k->is_typeArray_klass()) { 1254 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1255 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); 1256 int len = sv->field_size() / type2size[ak->element_type()]; 1257 InternalOOMEMark iom(THREAD); 1258 obj = ak->allocate(len, THREAD); 1259 } else if (k->is_objArray_klass()) { 1260 ObjArrayKlass* ak = ObjArrayKlass::cast(k); 1261 InternalOOMEMark iom(THREAD); 1262 obj = ak->allocate(sv->field_size(), THREAD); 1263 } 1264 1265 if (obj == nullptr) { 1266 failures = true; 1267 } 1268 1269 assert(sv->value().is_null(), "redundant reallocation"); 1270 assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception"); 1271 CLEAR_PENDING_EXCEPTION; 1272 sv->set_value(obj); 1273 } 1274 1275 if (failures) { 1276 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures); 1277 } else if (pending_exception.not_null()) { 1278 thread->set_pending_exception(pending_exception(), exception_file, exception_line); 1279 } 1280 1281 return failures; 1282 } 1283 1284 #if INCLUDE_JVMCI 1285 /** 1286 * For primitive types whose kind gets "erased" at runtime (shorts become stack ints), 1287 * we need to somehow be able to recover the actual kind to be able to write the correct 1288 * amount of bytes. 1289 * For that purpose, this method assumes that, for an entry spanning n bytes at index i, 1290 * the entries at index n + 1 to n + i are 'markers'. 1291 * For example, if we were writing a short at index 4 of a byte array of size 8, the 1292 * expected form of the array would be: 1293 * 1294 * {b0, b1, b2, b3, INT, marker, b6, b7} 1295 * 1296 * Thus, in order to get back the size of the entry, we simply need to count the number 1297 * of marked entries 1298 * 1299 * @param virtualArray the virtualized byte array 1300 * @param i index of the virtual entry we are recovering 1301 * @return The number of bytes the entry spans 1302 */ 1303 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) { 1304 int index = i; 1305 while (++index < virtualArray->field_size() && 1306 virtualArray->field_at(index)->is_marker()) {} 1307 return index - i; 1308 } 1309 1310 /** 1311 * If there was a guarantee for byte array to always start aligned to a long, we could 1312 * do a simple check on the parity of the index. Unfortunately, that is not always the 1313 * case. Thus, we check alignment of the actual address we are writing to. 1314 * In the unlikely case index 0 is 5-aligned for example, it would then be possible to 1315 * write a long to index 3. 1316 */ 1317 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) { 1318 jbyte* res = obj->byte_at_addr(index); 1319 assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write"); 1320 return res; 1321 } 1322 1323 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) { 1324 switch (byte_count) { 1325 case 1: 1326 obj->byte_at_put(index, (jbyte) value->get_jint()); 1327 break; 1328 case 2: 1329 *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint(); 1330 break; 1331 case 4: 1332 *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint(); 1333 break; 1334 case 8: 1335 *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr(); 1336 break; 1337 default: 1338 ShouldNotReachHere(); 1339 } 1340 } 1341 #endif // INCLUDE_JVMCI 1342 1343 1344 // restore elements of an eliminated type array 1345 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) { 1346 int index = 0; 1347 1348 for (int i = 0; i < sv->field_size(); i++) { 1349 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1350 switch(type) { 1351 case T_LONG: case T_DOUBLE: { 1352 assert(value->type() == T_INT, "Agreement."); 1353 StackValue* low = 1354 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1355 #ifdef _LP64 1356 jlong res = (jlong)low->get_intptr(); 1357 #else 1358 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1359 #endif 1360 obj->long_at_put(index, res); 1361 break; 1362 } 1363 1364 case T_INT: case T_FLOAT: { // 4 bytes. 1365 assert(value->type() == T_INT, "Agreement."); 1366 bool big_value = false; 1367 if (i + 1 < sv->field_size() && type == T_INT) { 1368 if (sv->field_at(i)->is_location()) { 1369 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type(); 1370 if (type == Location::dbl || type == Location::lng) { 1371 big_value = true; 1372 } 1373 } else if (sv->field_at(i)->is_constant_int()) { 1374 ScopeValue* next_scope_field = sv->field_at(i + 1); 1375 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1376 big_value = true; 1377 } 1378 } 1379 } 1380 1381 if (big_value) { 1382 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1383 #ifdef _LP64 1384 jlong res = (jlong)low->get_intptr(); 1385 #else 1386 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1387 #endif 1388 obj->int_at_put(index, *(jint*)&res); 1389 obj->int_at_put(++index, *((jint*)&res + 1)); 1390 } else { 1391 obj->int_at_put(index, value->get_jint()); 1392 } 1393 break; 1394 } 1395 1396 case T_SHORT: 1397 assert(value->type() == T_INT, "Agreement."); 1398 obj->short_at_put(index, (jshort)value->get_jint()); 1399 break; 1400 1401 case T_CHAR: 1402 assert(value->type() == T_INT, "Agreement."); 1403 obj->char_at_put(index, (jchar)value->get_jint()); 1404 break; 1405 1406 case T_BYTE: { 1407 assert(value->type() == T_INT, "Agreement."); 1408 #if INCLUDE_JVMCI 1409 // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'. 1410 int byte_count = count_number_of_bytes_for_entry(sv, i); 1411 byte_array_put(obj, value, index, byte_count); 1412 // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip. 1413 i += byte_count - 1; // Balance the loop counter. 1414 index += byte_count; 1415 // index has been updated so continue at top of loop 1416 continue; 1417 #else 1418 obj->byte_at_put(index, (jbyte)value->get_jint()); 1419 break; 1420 #endif // INCLUDE_JVMCI 1421 } 1422 1423 case T_BOOLEAN: { 1424 assert(value->type() == T_INT, "Agreement."); 1425 obj->bool_at_put(index, (jboolean)value->get_jint()); 1426 break; 1427 } 1428 1429 default: 1430 ShouldNotReachHere(); 1431 } 1432 index++; 1433 } 1434 } 1435 1436 // restore fields of an eliminated object array 1437 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) { 1438 for (int i = 0; i < sv->field_size(); i++) { 1439 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1440 assert(value->type() == T_OBJECT, "object element expected"); 1441 obj->obj_at_put(i, value->get_obj()()); 1442 } 1443 } 1444 1445 class ReassignedField { 1446 public: 1447 int _offset; 1448 BasicType _type; 1449 public: 1450 ReassignedField() { 1451 _offset = 0; 1452 _type = T_ILLEGAL; 1453 } 1454 }; 1455 1456 static int compare(ReassignedField* left, ReassignedField* right) { 1457 return left->_offset - right->_offset; 1458 } 1459 1460 // Restore fields of an eliminated instance object using the same field order 1461 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true) 1462 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) { 1463 GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>(); 1464 InstanceKlass* ik = klass; 1465 while (ik != nullptr) { 1466 for (AllFieldStream fs(ik); !fs.done(); fs.next()) { 1467 if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) { 1468 ReassignedField field; 1469 field._offset = fs.offset(); 1470 field._type = Signature::basic_type(fs.signature()); 1471 fields->append(field); 1472 } 1473 } 1474 ik = ik->superklass(); 1475 } 1476 fields->sort(compare); 1477 for (int i = 0; i < fields->length(); i++) { 1478 ScopeValue* scope_field = sv->field_at(svIndex); 1479 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1480 int offset = fields->at(i)._offset; 1481 BasicType type = fields->at(i)._type; 1482 switch (type) { 1483 case T_OBJECT: case T_ARRAY: 1484 assert(value->type() == T_OBJECT, "Agreement."); 1485 obj->obj_field_put(offset, value->get_obj()()); 1486 break; 1487 1488 case T_INT: case T_FLOAT: { // 4 bytes. 1489 assert(value->type() == T_INT, "Agreement."); 1490 bool big_value = false; 1491 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) { 1492 if (scope_field->is_location()) { 1493 Location::Type type = ((LocationValue*) scope_field)->location().type(); 1494 if (type == Location::dbl || type == Location::lng) { 1495 big_value = true; 1496 } 1497 } 1498 if (scope_field->is_constant_int()) { 1499 ScopeValue* next_scope_field = sv->field_at(svIndex + 1); 1500 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1501 big_value = true; 1502 } 1503 } 1504 } 1505 1506 if (big_value) { 1507 i++; 1508 assert(i < fields->length(), "second T_INT field needed"); 1509 assert(fields->at(i)._type == T_INT, "T_INT field needed"); 1510 } else { 1511 obj->int_field_put(offset, value->get_jint()); 1512 break; 1513 } 1514 } 1515 /* no break */ 1516 1517 case T_LONG: case T_DOUBLE: { 1518 assert(value->type() == T_INT, "Agreement."); 1519 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex)); 1520 #ifdef _LP64 1521 jlong res = (jlong)low->get_intptr(); 1522 #else 1523 jlong res = jlong_from(value->get_jint(), low->get_jint()); 1524 #endif 1525 obj->long_field_put(offset, res); 1526 break; 1527 } 1528 1529 case T_SHORT: 1530 assert(value->type() == T_INT, "Agreement."); 1531 obj->short_field_put(offset, (jshort)value->get_jint()); 1532 break; 1533 1534 case T_CHAR: 1535 assert(value->type() == T_INT, "Agreement."); 1536 obj->char_field_put(offset, (jchar)value->get_jint()); 1537 break; 1538 1539 case T_BYTE: 1540 assert(value->type() == T_INT, "Agreement."); 1541 obj->byte_field_put(offset, (jbyte)value->get_jint()); 1542 break; 1543 1544 case T_BOOLEAN: 1545 assert(value->type() == T_INT, "Agreement."); 1546 obj->bool_field_put(offset, (jboolean)value->get_jint()); 1547 break; 1548 1549 default: 1550 ShouldNotReachHere(); 1551 } 1552 svIndex++; 1553 } 1554 return svIndex; 1555 } 1556 1557 // restore fields of all eliminated objects and arrays 1558 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) { 1559 for (int i = 0; i < objects->length(); i++) { 1560 assert(objects->at(i)->is_object(), "invalid debug information"); 1561 ObjectValue* sv = (ObjectValue*) objects->at(i); 1562 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1563 Handle obj = sv->value(); 1564 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 1565 #ifndef PRODUCT 1566 if (PrintDeoptimizationDetails) { 1567 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string()); 1568 } 1569 #endif // !PRODUCT 1570 1571 if (obj.is_null()) { 1572 continue; 1573 } 1574 1575 #if INCLUDE_JVMCI 1576 // Don't reassign fields of boxes that came from a cache. Caches may be in CDS. 1577 if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) { 1578 continue; 1579 } 1580 #endif // INCLUDE_JVMCI 1581 if (EnableVectorSupport && VectorSupport::is_vector(k)) { 1582 assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string()); 1583 ScopeValue* payload = sv->field_at(0); 1584 if (payload->is_location() && 1585 payload->as_LocationValue()->location().type() == Location::vector) { 1586 #ifndef PRODUCT 1587 if (PrintDeoptimizationDetails) { 1588 tty->print_cr("skip field reassignment for this vector - it should be assigned already"); 1589 if (Verbose) { 1590 Handle obj = sv->value(); 1591 k->oop_print_on(obj(), tty); 1592 } 1593 } 1594 #endif // !PRODUCT 1595 continue; // Such vector's value was already restored in VectorSupport::allocate_vector(). 1596 } 1597 // Else fall-through to do assignment for scalar-replaced boxed vector representation 1598 // which could be restored after vector object allocation. 1599 } 1600 if (k->is_instance_klass()) { 1601 InstanceKlass* ik = InstanceKlass::cast(k); 1602 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal); 1603 } else if (k->is_typeArray_klass()) { 1604 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1605 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type()); 1606 } else if (k->is_objArray_klass()) { 1607 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj()); 1608 } 1609 } 1610 // These objects may escape when we return to Interpreter after deoptimization. 1611 // We need barrier so that stores that initialize these objects can't be reordered 1612 // with subsequent stores that make these objects accessible by other threads. 1613 OrderAccess::storestore(); 1614 } 1615 1616 1617 // relock objects for which synchronization was eliminated 1618 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors, 1619 JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) { 1620 bool relocked_objects = false; 1621 for (int i = 0; i < monitors->length(); i++) { 1622 MonitorInfo* mon_info = monitors->at(i); 1623 if (mon_info->eliminated()) { 1624 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed"); 1625 relocked_objects = true; 1626 if (!mon_info->owner_is_scalar_replaced()) { 1627 Handle obj(thread, mon_info->owner()); 1628 markWord mark = obj->mark(); 1629 if (exec_mode == Unpack_none) { 1630 if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) { 1631 // With exec_mode == Unpack_none obj may be thread local and locked in 1632 // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header. 1633 markWord dmw = mark.displaced_mark_helper(); 1634 mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr)); 1635 obj->set_mark(dmw); 1636 } 1637 if (mark.has_monitor()) { 1638 // defer relocking if the deoptee thread is currently waiting for obj 1639 ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor(); 1640 if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) { 1641 assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization"); 1642 if (LockingMode == LM_LEGACY) { 1643 mon_info->lock()->set_displaced_header(markWord::unused_mark()); 1644 } else if (UseObjectMonitorTable) { 1645 mon_info->lock()->clear_object_monitor_cache(); 1646 } 1647 #ifdef ASSERT 1648 else { 1649 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be"); 1650 mon_info->lock()->set_bad_metadata_deopt(); 1651 } 1652 #endif 1653 JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread); 1654 continue; 1655 } 1656 } 1657 } 1658 BasicLock* lock = mon_info->lock(); 1659 if (LockingMode == LM_LIGHTWEIGHT) { 1660 // We have lost information about the correct state of the lock stack. 1661 // Entering may create an invalid lock stack. Inflate the lock if it 1662 // was fast_locked to restore the valid lock stack. 1663 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1664 if (deoptee_thread->lock_stack().contains(obj())) { 1665 LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal, 1666 deoptee_thread, thread); 1667 } 1668 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1669 assert(obj->mark().has_monitor(), "must be"); 1670 assert(!deoptee_thread->lock_stack().contains(obj()), "must be"); 1671 assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->owner() == deoptee_thread, "must be"); 1672 } else { 1673 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1674 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1675 } 1676 } 1677 } 1678 } 1679 return relocked_objects; 1680 } 1681 #endif // COMPILER2_OR_JVMCI 1682 1683 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) { 1684 Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp())); 1685 1686 // Register map for next frame (used for stack crawl). We capture 1687 // the state of the deopt'ing frame's caller. Thus if we need to 1688 // stuff a C2I adapter we can properly fill in the callee-save 1689 // register locations. 1690 frame caller = fr.sender(reg_map); 1691 int frame_size = pointer_delta_as_int(caller.sp(), fr.sp()); 1692 1693 frame sender = caller; 1694 1695 // Since the Java thread being deoptimized will eventually adjust it's own stack, 1696 // the vframeArray containing the unpacking information is allocated in the C heap. 1697 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). 1698 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures); 1699 1700 // Compare the vframeArray to the collected vframes 1701 assert(array->structural_compare(thread, chunk), "just checking"); 1702 1703 if (TraceDeoptimization) { 1704 ResourceMark rm; 1705 stringStream st; 1706 st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array)); 1707 st.print(" "); 1708 fr.print_on(&st); 1709 st.print_cr(" Virtual frames (innermost/newest first):"); 1710 for (int index = 0; index < chunk->length(); index++) { 1711 compiledVFrame* vf = chunk->at(index); 1712 int bci = vf->raw_bci(); 1713 const char* code_name; 1714 if (bci == SynchronizationEntryBCI) { 1715 code_name = "sync entry"; 1716 } else { 1717 Bytecodes::Code code = vf->method()->code_at(bci); 1718 code_name = Bytecodes::name(code); 1719 } 1720 1721 st.print(" VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf)); 1722 st.print(" - %s", vf->method()->name_and_sig_as_C_string()); 1723 st.print(" - %s", code_name); 1724 st.print_cr(" @ bci=%d ", bci); 1725 } 1726 tty->print_raw(st.freeze()); 1727 tty->cr(); 1728 } 1729 1730 return array; 1731 } 1732 1733 #if COMPILER2_OR_JVMCI 1734 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) { 1735 // Reallocation of some scalar replaced objects failed. Record 1736 // that we need to pop all the interpreter frames for the 1737 // deoptimized compiled frame. 1738 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?"); 1739 thread->set_frames_to_pop_failed_realloc(array->frames()); 1740 // Unlock all monitors here otherwise the interpreter will see a 1741 // mix of locked and unlocked monitors (because of failed 1742 // reallocations of synchronized objects) and be confused. 1743 for (int i = 0; i < array->frames(); i++) { 1744 MonitorChunk* monitors = array->element(i)->monitors(); 1745 if (monitors != nullptr) { 1746 // Unlock in reverse order starting from most nested monitor. 1747 for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) { 1748 BasicObjectLock* src = monitors->at(j); 1749 if (src->obj() != nullptr) { 1750 ObjectSynchronizer::exit(src->obj(), src->lock(), thread); 1751 } 1752 } 1753 array->element(i)->free_monitors(); 1754 #ifdef ASSERT 1755 array->element(i)->set_removed_monitors(); 1756 #endif 1757 } 1758 } 1759 } 1760 #endif 1761 1762 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) { 1763 assert(fr.can_be_deoptimized(), "checking frame type"); 1764 1765 nmethod* nm = fr.cb()->as_nmethod_or_null(); 1766 assert(nm != nullptr, "only compiled methods can deopt"); 1767 DeoptAction action = (nm->is_not_entrant() ? Action_make_not_entrant : Action_none); 1768 ScopeDesc* cur_sd = nm->scope_desc_at(fr.pc()); 1769 Bytecodes::Code bc = (cur_sd->bci() == -1 ? Bytecodes::_nop // deopt on method entry 1770 : cur_sd->method()->java_code_at(cur_sd->bci())); 1771 gather_statistics(nm, reason, action, bc); 1772 1773 if (LogCompilation && xtty != nullptr) { 1774 ttyLocker ttyl; 1775 xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc())); 1776 nm->log_identity(xtty); 1777 xtty->end_head(); 1778 for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) { 1779 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1780 xtty->method(sd->method()); 1781 xtty->end_elem(); 1782 if (sd->is_top()) break; 1783 } 1784 xtty->tail("deoptimized"); 1785 } 1786 1787 Continuation::notify_deopt(thread, fr.sp()); 1788 1789 // Patch the compiled method so that when execution returns to it we will 1790 // deopt the execution state and return to the interpreter. 1791 fr.deoptimize(thread); 1792 } 1793 1794 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) { 1795 // Deoptimize only if the frame comes from compile code. 1796 // Do not deoptimize the frame which is already patched 1797 // during the execution of the loops below. 1798 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) { 1799 return; 1800 } 1801 ResourceMark rm; 1802 deoptimize_single_frame(thread, fr, reason); 1803 } 1804 1805 #if INCLUDE_JVMCI 1806 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) { 1807 // there is no exception handler for this pc => deoptimize 1808 nm->make_not_entrant(); 1809 1810 // Use Deoptimization::deoptimize for all of its side-effects: 1811 // gathering traps statistics, logging... 1812 // it also patches the return pc but we do not care about that 1813 // since we return a continuation to the deopt_blob below. 1814 JavaThread* thread = JavaThread::current(); 1815 RegisterMap reg_map(thread, 1816 RegisterMap::UpdateMap::skip, 1817 RegisterMap::ProcessFrames::include, 1818 RegisterMap::WalkContinuation::skip); 1819 frame runtime_frame = thread->last_frame(); 1820 frame caller_frame = runtime_frame.sender(®_map); 1821 assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method"); 1822 vframe* vf = vframe::new_vframe(&caller_frame, ®_map, thread); 1823 compiledVFrame* cvf = compiledVFrame::cast(vf); 1824 ScopeDesc* imm_scope = cvf->scope(); 1825 MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true); 1826 if (imm_mdo != nullptr) { 1827 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 1828 MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 1829 1830 ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr); 1831 if (pdata != nullptr && pdata->is_BitData()) { 1832 BitData* bit_data = (BitData*) pdata; 1833 bit_data->set_exception_seen(); 1834 } 1835 } 1836 1837 Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler); 1838 1839 MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true); 1840 if (trap_mdo != nullptr) { 1841 trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler); 1842 } 1843 1844 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 1845 } 1846 #endif 1847 1848 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1849 assert(thread == Thread::current() || 1850 thread->is_handshake_safe_for(Thread::current()) || 1851 SafepointSynchronize::is_at_safepoint(), 1852 "can only deoptimize other thread at a safepoint/handshake"); 1853 // Compute frame and register map based on thread and sp. 1854 RegisterMap reg_map(thread, 1855 RegisterMap::UpdateMap::skip, 1856 RegisterMap::ProcessFrames::include, 1857 RegisterMap::WalkContinuation::skip); 1858 frame fr = thread->last_frame(); 1859 while (fr.id() != id) { 1860 fr = fr.sender(®_map); 1861 } 1862 deoptimize(thread, fr, reason); 1863 } 1864 1865 1866 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1867 Thread* current = Thread::current(); 1868 if (thread == current || thread->is_handshake_safe_for(current)) { 1869 Deoptimization::deoptimize_frame_internal(thread, id, reason); 1870 } else { 1871 VM_DeoptimizeFrame deopt(thread, id, reason); 1872 VMThread::execute(&deopt); 1873 } 1874 } 1875 1876 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) { 1877 deoptimize_frame(thread, id, Reason_constraint); 1878 } 1879 1880 // JVMTI PopFrame support 1881 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address)) 1882 { 1883 assert(thread == JavaThread::current(), "pre-condition"); 1884 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address); 1885 } 1886 JRT_END 1887 1888 MethodData* 1889 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m, 1890 bool create_if_missing) { 1891 JavaThread* THREAD = thread; // For exception macros. 1892 MethodData* mdo = m()->method_data(); 1893 if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) { 1894 // Build an MDO. Ignore errors like OutOfMemory; 1895 // that simply means we won't have an MDO to update. 1896 Method::build_profiling_method_data(m, THREAD); 1897 if (HAS_PENDING_EXCEPTION) { 1898 // Only metaspace OOM is expected. No Java code executed. 1899 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1900 CLEAR_PENDING_EXCEPTION; 1901 } 1902 mdo = m()->method_data(); 1903 } 1904 return mdo; 1905 } 1906 1907 #if COMPILER2_OR_JVMCI 1908 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) { 1909 // In case of an unresolved klass entry, load the class. 1910 // This path is exercised from case _ldc in Parse::do_one_bytecode, 1911 // and probably nowhere else. 1912 // Even that case would benefit from simply re-interpreting the 1913 // bytecode, without paying special attention to the class index. 1914 // So this whole "class index" feature should probably be removed. 1915 1916 if (constant_pool->tag_at(index).is_unresolved_klass()) { 1917 Klass* tk = constant_pool->klass_at(index, THREAD); 1918 if (HAS_PENDING_EXCEPTION) { 1919 // Exception happened during classloading. We ignore the exception here, since it 1920 // is going to be rethrown since the current activation is going to be deoptimized and 1921 // the interpreter will re-execute the bytecode. 1922 // Do not clear probable Async Exceptions. 1923 CLEAR_PENDING_NONASYNC_EXCEPTION; 1924 // Class loading called java code which may have caused a stack 1925 // overflow. If the exception was thrown right before the return 1926 // to the runtime the stack is no longer guarded. Reguard the 1927 // stack otherwise if we return to the uncommon trap blob and the 1928 // stack bang causes a stack overflow we crash. 1929 JavaThread* jt = THREAD; 1930 bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed(); 1931 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash"); 1932 } 1933 return; 1934 } 1935 1936 assert(!constant_pool->tag_at(index).is_symbol(), 1937 "no symbolic names here, please"); 1938 } 1939 1940 #if INCLUDE_JFR 1941 1942 class DeoptReasonSerializer : public JfrSerializer { 1943 public: 1944 void serialize(JfrCheckpointWriter& writer) { 1945 writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1) 1946 for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) { 1947 writer.write_key((u8)i); 1948 writer.write(Deoptimization::trap_reason_name(i)); 1949 } 1950 } 1951 }; 1952 1953 class DeoptActionSerializer : public JfrSerializer { 1954 public: 1955 void serialize(JfrCheckpointWriter& writer) { 1956 static const u4 nof_actions = Deoptimization::Action_LIMIT; 1957 writer.write_count(nof_actions); 1958 for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) { 1959 writer.write_key(i); 1960 writer.write(Deoptimization::trap_action_name((int)i)); 1961 } 1962 } 1963 }; 1964 1965 static void register_serializers() { 1966 static int critical_section = 0; 1967 if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) { 1968 return; 1969 } 1970 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer()); 1971 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer()); 1972 } 1973 1974 static void post_deoptimization_event(nmethod* nm, 1975 const Method* method, 1976 int trap_bci, 1977 int instruction, 1978 Deoptimization::DeoptReason reason, 1979 Deoptimization::DeoptAction action) { 1980 assert(nm != nullptr, "invariant"); 1981 assert(method != nullptr, "invariant"); 1982 if (EventDeoptimization::is_enabled()) { 1983 static bool serializers_registered = false; 1984 if (!serializers_registered) { 1985 register_serializers(); 1986 serializers_registered = true; 1987 } 1988 EventDeoptimization event; 1989 event.set_compileId(nm->compile_id()); 1990 event.set_compiler(nm->compiler_type()); 1991 event.set_method(method); 1992 event.set_lineNumber(method->line_number_from_bci(trap_bci)); 1993 event.set_bci(trap_bci); 1994 event.set_instruction(instruction); 1995 event.set_reason(reason); 1996 event.set_action(action); 1997 event.commit(); 1998 } 1999 } 2000 2001 #endif // INCLUDE_JFR 2002 2003 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci, 2004 const char* reason_name, const char* reason_action) { 2005 LogTarget(Debug, deoptimization) lt; 2006 if (lt.is_enabled()) { 2007 LogStream ls(lt); 2008 bool is_osr = nm->is_osr_method(); 2009 ls.print("cid=%4d %s level=%d", 2010 nm->compile_id(), (is_osr ? "osr" : " "), nm->comp_level()); 2011 ls.print(" %s", tm->name_and_sig_as_C_string()); 2012 ls.print(" trap_bci=%d ", trap_bci); 2013 if (is_osr) { 2014 ls.print("osr_bci=%d ", nm->osr_entry_bci()); 2015 } 2016 ls.print("%s ", reason_name); 2017 ls.print("%s ", reason_action); 2018 ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT, 2019 pc, fr.pc() - nm->code_begin()); 2020 } 2021 } 2022 2023 JRT_ENTRY_PROF(void, Deoptimization, uncommon_trap_inner, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) { 2024 HandleMark hm(current); 2025 2026 // uncommon_trap() is called at the beginning of the uncommon trap 2027 // handler. Note this fact before we start generating temporary frames 2028 // that can confuse an asynchronous stack walker. This counter is 2029 // decremented at the end of unpack_frames(). 2030 2031 current->inc_in_deopt_handler(); 2032 2033 #if INCLUDE_JVMCI 2034 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid 2035 RegisterMap reg_map(current, 2036 RegisterMap::UpdateMap::include, 2037 RegisterMap::ProcessFrames::include, 2038 RegisterMap::WalkContinuation::skip); 2039 #else 2040 RegisterMap reg_map(current, 2041 RegisterMap::UpdateMap::skip, 2042 RegisterMap::ProcessFrames::include, 2043 RegisterMap::WalkContinuation::skip); 2044 #endif 2045 frame stub_frame = current->last_frame(); 2046 frame fr = stub_frame.sender(®_map); 2047 2048 // Log a message 2049 Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT, 2050 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin()); 2051 2052 { 2053 ResourceMark rm; 2054 2055 DeoptReason reason = trap_request_reason(trap_request); 2056 DeoptAction action = trap_request_action(trap_request); 2057 #if INCLUDE_JVMCI 2058 int debug_id = trap_request_debug_id(trap_request); 2059 #endif 2060 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1 2061 2062 vframe* vf = vframe::new_vframe(&fr, ®_map, current); 2063 compiledVFrame* cvf = compiledVFrame::cast(vf); 2064 2065 nmethod* nm = cvf->code(); 2066 2067 ScopeDesc* trap_scope = cvf->scope(); 2068 2069 bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint); 2070 2071 if (is_receiver_constraint_failure) { 2072 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), 2073 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string() 2074 JVMCI_ONLY(COMMA debug_id)); 2075 } 2076 2077 methodHandle trap_method(current, trap_scope->method()); 2078 int trap_bci = trap_scope->bci(); 2079 #if INCLUDE_JVMCI 2080 jlong speculation = current->pending_failed_speculation(); 2081 if (nm->is_compiled_by_jvmci()) { 2082 nm->update_speculation(current); 2083 } else { 2084 assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers"); 2085 } 2086 2087 if (trap_bci == SynchronizationEntryBCI) { 2088 trap_bci = 0; 2089 current->set_pending_monitorenter(true); 2090 } 2091 2092 if (reason == Deoptimization::Reason_transfer_to_interpreter) { 2093 current->set_pending_transfer_to_interpreter(true); 2094 } 2095 #endif 2096 2097 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci); 2098 // Record this event in the histogram. 2099 gather_statistics(nm, reason, action, trap_bc); 2100 2101 // Ensure that we can record deopt. history: 2102 bool create_if_missing = ProfileTraps; 2103 2104 methodHandle profiled_method; 2105 #if INCLUDE_JVMCI 2106 if (nm->is_compiled_by_jvmci()) { 2107 profiled_method = methodHandle(current, nm->method()); 2108 } else { 2109 profiled_method = trap_method; 2110 } 2111 #else 2112 profiled_method = trap_method; 2113 #endif 2114 2115 MethodData* trap_mdo = 2116 get_method_data(current, profiled_method, create_if_missing); 2117 2118 { // Log Deoptimization event for JFR, UL and event system 2119 Method* tm = trap_method(); 2120 const char* reason_name = trap_reason_name(reason); 2121 const char* reason_action = trap_action_name(action); 2122 intptr_t pc = p2i(fr.pc()); 2123 2124 JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);) 2125 log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action); 2126 Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s", 2127 reason_name, reason_action, pc, 2128 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name()); 2129 } 2130 2131 // Print a bunch of diagnostics, if requested. 2132 if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) { 2133 ResourceMark rm; 2134 2135 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2136 // We must do this already now, since we cannot acquire this lock while 2137 // holding the tty lock (lock ordering by rank). 2138 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2139 2140 ttyLocker ttyl; 2141 2142 char buf[100]; 2143 if (xtty != nullptr) { 2144 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s", 2145 os::current_thread_id(), 2146 format_trap_request(buf, sizeof(buf), trap_request)); 2147 #if INCLUDE_JVMCI 2148 if (speculation != 0) { 2149 xtty->print(" speculation='" JLONG_FORMAT "'", speculation); 2150 } 2151 #endif 2152 nm->log_identity(xtty); 2153 } 2154 Symbol* class_name = nullptr; 2155 bool unresolved = false; 2156 if (unloaded_class_index >= 0) { 2157 constantPoolHandle constants (current, trap_method->constants()); 2158 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) { 2159 class_name = constants->klass_name_at(unloaded_class_index); 2160 unresolved = true; 2161 if (xtty != nullptr) 2162 xtty->print(" unresolved='1'"); 2163 } else if (constants->tag_at(unloaded_class_index).is_symbol()) { 2164 class_name = constants->symbol_at(unloaded_class_index); 2165 } 2166 if (xtty != nullptr) 2167 xtty->name(class_name); 2168 } 2169 if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) { 2170 // Dump the relevant MDO state. 2171 // This is the deopt count for the current reason, any previous 2172 // reasons or recompiles seen at this point. 2173 int dcnt = trap_mdo->trap_count(reason); 2174 if (dcnt != 0) 2175 xtty->print(" count='%d'", dcnt); 2176 2177 // We need to lock to read the ProfileData. But to keep the locks ordered, we need to 2178 // lock extra_data_lock before the tty lock. 2179 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci); 2180 int dos = (pdata == nullptr)? 0: pdata->trap_state(); 2181 if (dos != 0) { 2182 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos)); 2183 if (trap_state_is_recompiled(dos)) { 2184 int recnt2 = trap_mdo->overflow_recompile_count(); 2185 if (recnt2 != 0) 2186 xtty->print(" recompiles2='%d'", recnt2); 2187 } 2188 } 2189 } 2190 if (xtty != nullptr) { 2191 xtty->stamp(); 2192 xtty->end_head(); 2193 } 2194 if (TraceDeoptimization) { // make noise on the tty 2195 stringStream st; 2196 st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string()); 2197 st.print(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"), 2198 trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id)); 2199 st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id()); 2200 #if INCLUDE_JVMCI 2201 if (nm->is_compiled_by_jvmci()) { 2202 const char* installed_code_name = nm->jvmci_name(); 2203 if (installed_code_name != nullptr) { 2204 st.print(" (JVMCI: installed code name=%s) ", installed_code_name); 2205 } 2206 } 2207 #endif 2208 st.print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"), 2209 p2i(fr.pc()), 2210 os::current_thread_id(), 2211 trap_reason_name(reason), 2212 trap_action_name(action), 2213 unloaded_class_index 2214 #if INCLUDE_JVMCI 2215 , debug_id 2216 #endif 2217 ); 2218 if (class_name != nullptr) { 2219 st.print(unresolved ? " unresolved class: " : " symbol: "); 2220 class_name->print_symbol_on(&st); 2221 } 2222 st.cr(); 2223 tty->print_raw(st.freeze()); 2224 } 2225 if (xtty != nullptr) { 2226 // Log the precise location of the trap. 2227 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) { 2228 xtty->begin_elem("jvms bci='%d'", sd->bci()); 2229 xtty->method(sd->method()); 2230 xtty->end_elem(); 2231 if (sd->is_top()) break; 2232 } 2233 xtty->tail("uncommon_trap"); 2234 } 2235 } 2236 // (End diagnostic printout.) 2237 2238 if (is_receiver_constraint_failure) { 2239 fatal("missing receiver type check"); 2240 } 2241 2242 // Load class if necessary 2243 if (unloaded_class_index >= 0) { 2244 constantPoolHandle constants(current, trap_method->constants()); 2245 load_class_by_index(constants, unloaded_class_index, THREAD); 2246 } 2247 2248 // Flush the nmethod if necessary and desirable. 2249 // 2250 // We need to avoid situations where we are re-flushing the nmethod 2251 // because of a hot deoptimization site. Repeated flushes at the same 2252 // point need to be detected by the compiler and avoided. If the compiler 2253 // cannot avoid them (or has a bug and "refuses" to avoid them), this 2254 // module must take measures to avoid an infinite cycle of recompilation 2255 // and deoptimization. There are several such measures: 2256 // 2257 // 1. If a recompilation is ordered a second time at some site X 2258 // and for the same reason R, the action is adjusted to 'reinterpret', 2259 // to give the interpreter time to exercise the method more thoroughly. 2260 // If this happens, the method's overflow_recompile_count is incremented. 2261 // 2262 // 2. If the compiler fails to reduce the deoptimization rate, then 2263 // the method's overflow_recompile_count will begin to exceed the set 2264 // limit PerBytecodeRecompilationCutoff. If this happens, the action 2265 // is adjusted to 'make_not_compilable', and the method is abandoned 2266 // to the interpreter. This is a performance hit for hot methods, 2267 // but is better than a disastrous infinite cycle of recompilations. 2268 // (Actually, only the method containing the site X is abandoned.) 2269 // 2270 // 3. In parallel with the previous measures, if the total number of 2271 // recompilations of a method exceeds the much larger set limit 2272 // PerMethodRecompilationCutoff, the method is abandoned. 2273 // This should only happen if the method is very large and has 2274 // many "lukewarm" deoptimizations. The code which enforces this 2275 // limit is elsewhere (class nmethod, class Method). 2276 // 2277 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance 2278 // to recompile at each bytecode independently of the per-BCI cutoff. 2279 // 2280 // The decision to update code is up to the compiler, and is encoded 2281 // in the Action_xxx code. If the compiler requests Action_none 2282 // no trap state is changed, no compiled code is changed, and the 2283 // computation suffers along in the interpreter. 2284 // 2285 // The other action codes specify various tactics for decompilation 2286 // and recompilation. Action_maybe_recompile is the loosest, and 2287 // allows the compiled code to stay around until enough traps are seen, 2288 // and until the compiler gets around to recompiling the trapping method. 2289 // 2290 // The other actions cause immediate removal of the present code. 2291 2292 // Traps caused by injected profile shouldn't pollute trap counts. 2293 bool injected_profile_trap = trap_method->has_injected_profile() && 2294 (reason == Reason_intrinsic || reason == Reason_unreached); 2295 2296 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap; 2297 bool make_not_entrant = false; 2298 bool make_not_compilable = false; 2299 bool reprofile = false; 2300 switch (action) { 2301 case Action_none: 2302 // Keep the old code. 2303 update_trap_state = false; 2304 break; 2305 case Action_maybe_recompile: 2306 // Do not need to invalidate the present code, but we can 2307 // initiate another 2308 // Start compiler without (necessarily) invalidating the nmethod. 2309 // The system will tolerate the old code, but new code should be 2310 // generated when possible. 2311 break; 2312 case Action_reinterpret: 2313 // Go back into the interpreter for a while, and then consider 2314 // recompiling form scratch. 2315 make_not_entrant = true; 2316 // Reset invocation counter for outer most method. 2317 // This will allow the interpreter to exercise the bytecodes 2318 // for a while before recompiling. 2319 // By contrast, Action_make_not_entrant is immediate. 2320 // 2321 // Note that the compiler will track null_check, null_assert, 2322 // range_check, and class_check events and log them as if they 2323 // had been traps taken from compiled code. This will update 2324 // the MDO trap history so that the next compilation will 2325 // properly detect hot trap sites. 2326 reprofile = true; 2327 break; 2328 case Action_make_not_entrant: 2329 // Request immediate recompilation, and get rid of the old code. 2330 // Make them not entrant, so next time they are called they get 2331 // recompiled. Unloaded classes are loaded now so recompile before next 2332 // time they are called. Same for uninitialized. The interpreter will 2333 // link the missing class, if any. 2334 make_not_entrant = true; 2335 break; 2336 case Action_make_not_compilable: 2337 // Give up on compiling this method at all. 2338 make_not_entrant = true; 2339 make_not_compilable = true; 2340 break; 2341 default: 2342 ShouldNotReachHere(); 2343 } 2344 2345 // Setting +ProfileTraps fixes the following, on all platforms: 2346 // 4852688: ProfileInterpreter is off by default for ia64. The result is 2347 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the 2348 // recompile relies on a MethodData* to record heroic opt failures. 2349 2350 // Whether the interpreter is producing MDO data or not, we also need 2351 // to use the MDO to detect hot deoptimization points and control 2352 // aggressive optimization. 2353 bool inc_recompile_count = false; 2354 2355 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2356 ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr, 2357 (trap_mdo != nullptr), 2358 Mutex::_no_safepoint_check_flag); 2359 ProfileData* pdata = nullptr; 2360 if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) { 2361 assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity"); 2362 uint this_trap_count = 0; 2363 bool maybe_prior_trap = false; 2364 bool maybe_prior_recompile = false; 2365 2366 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true, 2367 #if INCLUDE_JVMCI 2368 nm->is_compiled_by_jvmci() && nm->is_osr_method(), 2369 #endif 2370 nm->method(), 2371 //outputs: 2372 this_trap_count, 2373 maybe_prior_trap, 2374 maybe_prior_recompile); 2375 // Because the interpreter also counts null, div0, range, and class 2376 // checks, these traps from compiled code are double-counted. 2377 // This is harmless; it just means that the PerXTrapLimit values 2378 // are in effect a little smaller than they look. 2379 2380 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2381 if (per_bc_reason != Reason_none) { 2382 // Now take action based on the partially known per-BCI history. 2383 if (maybe_prior_trap 2384 && this_trap_count >= (uint)PerBytecodeTrapLimit) { 2385 // If there are too many traps at this BCI, force a recompile. 2386 // This will allow the compiler to see the limit overflow, and 2387 // take corrective action, if possible. The compiler generally 2388 // does not use the exact PerBytecodeTrapLimit value, but instead 2389 // changes its tactics if it sees any traps at all. This provides 2390 // a little hysteresis, delaying a recompile until a trap happens 2391 // several times. 2392 // 2393 // Actually, since there is only one bit of counter per BCI, 2394 // the possible per-BCI counts are {0,1,(per-method count)}. 2395 // This produces accurate results if in fact there is only 2396 // one hot trap site, but begins to get fuzzy if there are 2397 // many sites. For example, if there are ten sites each 2398 // trapping two or more times, they each get the blame for 2399 // all of their traps. 2400 make_not_entrant = true; 2401 } 2402 2403 // Detect repeated recompilation at the same BCI, and enforce a limit. 2404 if (make_not_entrant && maybe_prior_recompile) { 2405 // More than one recompile at this point. 2406 inc_recompile_count = maybe_prior_trap; 2407 } 2408 } else { 2409 // For reasons which are not recorded per-bytecode, we simply 2410 // force recompiles unconditionally. 2411 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.) 2412 make_not_entrant = true; 2413 } 2414 2415 // Go back to the compiler if there are too many traps in this method. 2416 if (this_trap_count >= per_method_trap_limit(reason)) { 2417 // If there are too many traps in this method, force a recompile. 2418 // This will allow the compiler to see the limit overflow, and 2419 // take corrective action, if possible. 2420 // (This condition is an unlikely backstop only, because the 2421 // PerBytecodeTrapLimit is more likely to take effect first, 2422 // if it is applicable.) 2423 make_not_entrant = true; 2424 } 2425 2426 // Here's more hysteresis: If there has been a recompile at 2427 // this trap point already, run the method in the interpreter 2428 // for a while to exercise it more thoroughly. 2429 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) { 2430 reprofile = true; 2431 } 2432 } 2433 2434 // Take requested actions on the method: 2435 2436 // Recompile 2437 if (make_not_entrant) { 2438 if (!nm->make_not_entrant()) { 2439 return; // the call did not change nmethod's state 2440 } 2441 2442 if (pdata != nullptr) { 2443 // Record the recompilation event, if any. 2444 int tstate0 = pdata->trap_state(); 2445 int tstate1 = trap_state_set_recompiled(tstate0, true); 2446 if (tstate1 != tstate0) 2447 pdata->set_trap_state(tstate1); 2448 } 2449 2450 // For code aging we count traps separately here, using make_not_entrant() 2451 // as a guard against simultaneous deopts in multiple threads. 2452 if (reason == Reason_tenured && trap_mdo != nullptr) { 2453 trap_mdo->inc_tenure_traps(); 2454 } 2455 } 2456 2457 if (inc_recompile_count) { 2458 trap_mdo->inc_overflow_recompile_count(); 2459 if ((uint)trap_mdo->overflow_recompile_count() > 2460 (uint)PerBytecodeRecompilationCutoff) { 2461 // Give up on the method containing the bad BCI. 2462 if (trap_method() == nm->method()) { 2463 make_not_compilable = true; 2464 } else { 2465 trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization); 2466 // But give grace to the enclosing nm->method(). 2467 } 2468 } 2469 } 2470 2471 // Reprofile 2472 if (reprofile) { 2473 CompilationPolicy::reprofile(trap_scope, nm->is_osr_method()); 2474 } 2475 2476 // Give up compiling 2477 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) { 2478 assert(make_not_entrant, "consistent"); 2479 nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization); 2480 } 2481 2482 if (ProfileExceptionHandlers && trap_mdo != nullptr) { 2483 BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci); 2484 if (exception_handler_data != nullptr) { 2485 // uncommon trap at the start of an exception handler. 2486 // C2 generates these for un-entered exception handlers. 2487 // mark the handler as entered to avoid generating 2488 // another uncommon trap the next time the handler is compiled 2489 exception_handler_data->set_exception_handler_entered(); 2490 } 2491 } 2492 2493 } // Free marked resources 2494 2495 } 2496 JRT_END 2497 2498 ProfileData* 2499 Deoptimization::query_update_method_data(MethodData* trap_mdo, 2500 int trap_bci, 2501 Deoptimization::DeoptReason reason, 2502 bool update_total_trap_count, 2503 #if INCLUDE_JVMCI 2504 bool is_osr, 2505 #endif 2506 Method* compiled_method, 2507 //outputs: 2508 uint& ret_this_trap_count, 2509 bool& ret_maybe_prior_trap, 2510 bool& ret_maybe_prior_recompile) { 2511 trap_mdo->check_extra_data_locked(); 2512 2513 bool maybe_prior_trap = false; 2514 bool maybe_prior_recompile = false; 2515 uint this_trap_count = 0; 2516 if (update_total_trap_count) { 2517 uint idx = reason; 2518 #if INCLUDE_JVMCI 2519 if (is_osr) { 2520 // Upper half of history array used for traps in OSR compilations 2521 idx += Reason_TRAP_HISTORY_LENGTH; 2522 } 2523 #endif 2524 uint prior_trap_count = trap_mdo->trap_count(idx); 2525 this_trap_count = trap_mdo->inc_trap_count(idx); 2526 2527 // If the runtime cannot find a place to store trap history, 2528 // it is estimated based on the general condition of the method. 2529 // If the method has ever been recompiled, or has ever incurred 2530 // a trap with the present reason , then this BCI is assumed 2531 // (pessimistically) to be the culprit. 2532 maybe_prior_trap = (prior_trap_count != 0); 2533 maybe_prior_recompile = (trap_mdo->decompile_count() != 0); 2534 } 2535 ProfileData* pdata = nullptr; 2536 2537 2538 // For reasons which are recorded per bytecode, we check per-BCI data. 2539 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2540 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be"); 2541 if (per_bc_reason != Reason_none) { 2542 // Find the profile data for this BCI. If there isn't one, 2543 // try to allocate one from the MDO's set of spares. 2544 // This will let us detect a repeated trap at this point. 2545 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr); 2546 2547 if (pdata != nullptr) { 2548 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) { 2549 if (LogCompilation && xtty != nullptr) { 2550 ttyLocker ttyl; 2551 // no more room for speculative traps in this MDO 2552 xtty->elem("speculative_traps_oom"); 2553 } 2554 } 2555 // Query the trap state of this profile datum. 2556 int tstate0 = pdata->trap_state(); 2557 if (!trap_state_has_reason(tstate0, per_bc_reason)) 2558 maybe_prior_trap = false; 2559 if (!trap_state_is_recompiled(tstate0)) 2560 maybe_prior_recompile = false; 2561 2562 // Update the trap state of this profile datum. 2563 int tstate1 = tstate0; 2564 // Record the reason. 2565 tstate1 = trap_state_add_reason(tstate1, per_bc_reason); 2566 // Store the updated state on the MDO, for next time. 2567 if (tstate1 != tstate0) 2568 pdata->set_trap_state(tstate1); 2569 } else { 2570 if (LogCompilation && xtty != nullptr) { 2571 ttyLocker ttyl; 2572 // Missing MDP? Leave a small complaint in the log. 2573 xtty->elem("missing_mdp bci='%d'", trap_bci); 2574 } 2575 } 2576 } 2577 2578 // Return results: 2579 ret_this_trap_count = this_trap_count; 2580 ret_maybe_prior_trap = maybe_prior_trap; 2581 ret_maybe_prior_recompile = maybe_prior_recompile; 2582 return pdata; 2583 } 2584 2585 void 2586 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2587 ResourceMark rm; 2588 // Ignored outputs: 2589 uint ignore_this_trap_count; 2590 bool ignore_maybe_prior_trap; 2591 bool ignore_maybe_prior_recompile; 2592 assert(!reason_is_speculate(reason), "reason speculate only used by compiler"); 2593 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts 2594 bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler); 2595 2596 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 2597 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 2598 2599 query_update_method_data(trap_mdo, trap_bci, 2600 (DeoptReason)reason, 2601 update_total_counts, 2602 #if INCLUDE_JVMCI 2603 false, 2604 #endif 2605 nullptr, 2606 ignore_this_trap_count, 2607 ignore_maybe_prior_trap, 2608 ignore_maybe_prior_recompile); 2609 } 2610 2611 PROF_ENTRY(Deoptimization::UnrollBlock*, Deoptimization, uncommon_trap, Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode)) 2612 // Enable WXWrite: current function is called from methods compiled by C2 directly 2613 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 2614 2615 // Still in Java no safepoints 2616 { 2617 // This enters VM and may safepoint 2618 uncommon_trap_inner(current, trap_request); 2619 } 2620 HandleMark hm(current); 2621 return fetch_unroll_info_helper(current, exec_mode); 2622 PROF_END 2623 2624 // Local derived constants. 2625 // Further breakdown of DataLayout::trap_state, as promised by DataLayout. 2626 const int DS_REASON_MASK = ((uint)DataLayout::trap_mask) >> 1; 2627 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK; 2628 2629 //---------------------------trap_state_reason--------------------------------- 2630 Deoptimization::DeoptReason 2631 Deoptimization::trap_state_reason(int trap_state) { 2632 // This assert provides the link between the width of DataLayout::trap_bits 2633 // and the encoding of "recorded" reasons. It ensures there are enough 2634 // bits to store all needed reasons in the per-BCI MDO profile. 2635 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2636 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2637 trap_state -= recompile_bit; 2638 if (trap_state == DS_REASON_MASK) { 2639 return Reason_many; 2640 } else { 2641 assert((int)Reason_none == 0, "state=0 => Reason_none"); 2642 return (DeoptReason)trap_state; 2643 } 2644 } 2645 //-------------------------trap_state_has_reason------------------------------- 2646 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2647 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason"); 2648 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2649 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2650 trap_state -= recompile_bit; 2651 if (trap_state == DS_REASON_MASK) { 2652 return -1; // true, unspecifically (bottom of state lattice) 2653 } else if (trap_state == reason) { 2654 return 1; // true, definitely 2655 } else if (trap_state == 0) { 2656 return 0; // false, definitely (top of state lattice) 2657 } else { 2658 return 0; // false, definitely 2659 } 2660 } 2661 //-------------------------trap_state_add_reason------------------------------- 2662 int Deoptimization::trap_state_add_reason(int trap_state, int reason) { 2663 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason"); 2664 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2665 trap_state -= recompile_bit; 2666 if (trap_state == DS_REASON_MASK) { 2667 return trap_state + recompile_bit; // already at state lattice bottom 2668 } else if (trap_state == reason) { 2669 return trap_state + recompile_bit; // the condition is already true 2670 } else if (trap_state == 0) { 2671 return reason + recompile_bit; // no condition has yet been true 2672 } else { 2673 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom 2674 } 2675 } 2676 //-----------------------trap_state_is_recompiled------------------------------ 2677 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2678 return (trap_state & DS_RECOMPILE_BIT) != 0; 2679 } 2680 //-----------------------trap_state_set_recompiled----------------------------- 2681 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) { 2682 if (z) return trap_state | DS_RECOMPILE_BIT; 2683 else return trap_state & ~DS_RECOMPILE_BIT; 2684 } 2685 //---------------------------format_trap_state--------------------------------- 2686 // This is used for debugging and diagnostics, including LogFile output. 2687 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2688 int trap_state) { 2689 assert(buflen > 0, "sanity"); 2690 DeoptReason reason = trap_state_reason(trap_state); 2691 bool recomp_flag = trap_state_is_recompiled(trap_state); 2692 // Re-encode the state from its decoded components. 2693 int decoded_state = 0; 2694 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many) 2695 decoded_state = trap_state_add_reason(decoded_state, reason); 2696 if (recomp_flag) 2697 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag); 2698 // If the state re-encodes properly, format it symbolically. 2699 // Because this routine is used for debugging and diagnostics, 2700 // be robust even if the state is a strange value. 2701 size_t len; 2702 if (decoded_state != trap_state) { 2703 // Random buggy state that doesn't decode?? 2704 len = jio_snprintf(buf, buflen, "#%d", trap_state); 2705 } else { 2706 len = jio_snprintf(buf, buflen, "%s%s", 2707 trap_reason_name(reason), 2708 recomp_flag ? " recompiled" : ""); 2709 } 2710 return buf; 2711 } 2712 2713 2714 //--------------------------------statics-------------------------------------- 2715 const char* Deoptimization::_trap_reason_name[] = { 2716 // Note: Keep this in sync. with enum DeoptReason. 2717 "none", 2718 "null_check", 2719 "null_assert" JVMCI_ONLY("_or_unreached0"), 2720 "range_check", 2721 "class_check", 2722 "array_check", 2723 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"), 2724 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"), 2725 "profile_predicate", 2726 "unloaded", 2727 "uninitialized", 2728 "initialized", 2729 "unreached", 2730 "unhandled", 2731 "constraint", 2732 "div0_check", 2733 "age", 2734 "predicate", 2735 "loop_limit_check", 2736 "speculate_class_check", 2737 "speculate_null_check", 2738 "speculate_null_assert", 2739 "unstable_if", 2740 "unstable_fused_if", 2741 "receiver_constraint", 2742 #if INCLUDE_JVMCI 2743 "aliasing", 2744 "transfer_to_interpreter", 2745 "not_compiled_exception_handler", 2746 "unresolved", 2747 "jsr_mismatch", 2748 #endif 2749 "tenured" 2750 }; 2751 const char* Deoptimization::_trap_action_name[] = { 2752 // Note: Keep this in sync. with enum DeoptAction. 2753 "none", 2754 "maybe_recompile", 2755 "reinterpret", 2756 "make_not_entrant", 2757 "make_not_compilable" 2758 }; 2759 2760 const char* Deoptimization::trap_reason_name(int reason) { 2761 // Check that every reason has a name 2762 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT); 2763 2764 if (reason == Reason_many) return "many"; 2765 if ((uint)reason < Reason_LIMIT) 2766 return _trap_reason_name[reason]; 2767 static char buf[20]; 2768 os::snprintf_checked(buf, sizeof(buf), "reason%d", reason); 2769 return buf; 2770 } 2771 const char* Deoptimization::trap_action_name(int action) { 2772 // Check that every action has a name 2773 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT); 2774 2775 if ((uint)action < Action_LIMIT) 2776 return _trap_action_name[action]; 2777 static char buf[20]; 2778 os::snprintf_checked(buf, sizeof(buf), "action%d", action); 2779 return buf; 2780 } 2781 2782 // This is used for debugging and diagnostics, including LogFile output. 2783 const char* Deoptimization::format_trap_request(char* buf, size_t buflen, 2784 int trap_request) { 2785 jint unloaded_class_index = trap_request_index(trap_request); 2786 const char* reason = trap_reason_name(trap_request_reason(trap_request)); 2787 const char* action = trap_action_name(trap_request_action(trap_request)); 2788 #if INCLUDE_JVMCI 2789 int debug_id = trap_request_debug_id(trap_request); 2790 #endif 2791 size_t len; 2792 if (unloaded_class_index < 0) { 2793 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"), 2794 reason, action 2795 #if INCLUDE_JVMCI 2796 ,debug_id 2797 #endif 2798 ); 2799 } else { 2800 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"), 2801 reason, action, unloaded_class_index 2802 #if INCLUDE_JVMCI 2803 ,debug_id 2804 #endif 2805 ); 2806 } 2807 return buf; 2808 } 2809 2810 juint Deoptimization::_deoptimization_hist 2811 [1 + 4 + 5] // total + online + archived 2812 [Deoptimization::Reason_LIMIT] 2813 [1 + Deoptimization::Action_LIMIT] 2814 [Deoptimization::BC_CASE_LIMIT] 2815 = {0}; 2816 2817 enum { 2818 LSB_BITS = 8, 2819 LSB_MASK = right_n_bits(LSB_BITS) 2820 }; 2821 2822 static void update(juint* cases, Bytecodes::Code bc) { 2823 juint* bc_counter_addr = nullptr; 2824 juint bc_counter = 0; 2825 // Look for an unused counter, or an exact match to this BC. 2826 if (bc != Bytecodes::_illegal) { 2827 for (int bc_case = 0; bc_case < Deoptimization::BC_CASE_LIMIT; bc_case++) { 2828 juint* counter_addr = &cases[bc_case]; 2829 juint counter = *counter_addr; 2830 if ((counter == 0 && bc_counter_addr == nullptr) 2831 || (Bytecodes::Code)(counter & LSB_MASK) == bc) { 2832 // this counter is either free or is already devoted to this BC 2833 bc_counter_addr = counter_addr; 2834 bc_counter = counter | bc; 2835 } 2836 } 2837 } 2838 if (bc_counter_addr == nullptr) { 2839 // Overflow, or no given bytecode. 2840 bc_counter_addr = &cases[Deoptimization::BC_CASE_LIMIT-1]; 2841 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB 2842 } 2843 *bc_counter_addr = bc_counter + (1 << LSB_BITS); 2844 } 2845 2846 2847 void Deoptimization::gather_statistics(nmethod* nm, DeoptReason reason, DeoptAction action, 2848 Bytecodes::Code bc) { 2849 assert(reason >= 0 && reason < Reason_LIMIT, "oob"); 2850 assert(action >= 0 && action < Action_LIMIT, "oob"); 2851 _deoptimization_hist[0][Reason_none][0][0] += 1; // total 2852 _deoptimization_hist[0][reason][0][0] += 1; // per-reason total 2853 2854 update(_deoptimization_hist[0][reason][1+action], bc); 2855 2856 uint lvl = nm->comp_level() + (nm->is_scc() ? 4 : 0) + (nm->preloaded() ? 1 : 0); 2857 _deoptimization_hist[lvl][Reason_none][0][0] += 1; // total 2858 _deoptimization_hist[lvl][reason][0][0] += 1; // per-reason total 2859 update(_deoptimization_hist[lvl][reason][1+action], bc); 2860 } 2861 2862 jint Deoptimization::total_deoptimization_count() { 2863 return _deoptimization_hist[0][Reason_none][0][0]; 2864 } 2865 2866 // Get the deopt count for a specific reason and a specific action. If either 2867 // one of 'reason' or 'action' is null, the method returns the sum of all 2868 // deoptimizations with the specific 'action' or 'reason' respectively. 2869 // If both arguments are null, the method returns the total deopt count. 2870 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 2871 if (reason_str == nullptr && action_str == nullptr) { 2872 return total_deoptimization_count(); 2873 } 2874 juint counter = 0; 2875 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2876 if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) { 2877 for (int action = 0; action < Action_LIMIT; action++) { 2878 if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) { 2879 juint* cases = _deoptimization_hist[0][reason][1+action]; 2880 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2881 counter += cases[bc_case] >> LSB_BITS; 2882 } 2883 } 2884 } 2885 } 2886 } 2887 return counter; 2888 } 2889 2890 void Deoptimization::print_statistics() { 2891 ttyLocker ttyl; 2892 if (xtty != nullptr) xtty->head("statistics type='deoptimization'"); 2893 tty->print_cr("Deoptimization traps recorded:"); 2894 print_statistics_on(tty); 2895 if (xtty != nullptr) xtty->tail("statistics"); 2896 } 2897 2898 void Deoptimization::print_statistics_on(const char* title, int lvl, outputStream* st) { 2899 juint total = _deoptimization_hist[lvl][Reason_none][0][0]; 2900 juint account = total; 2901 #define PRINT_STAT_LINE(name, r) \ 2902 st->print_cr(" %d (%4.1f%%) %s", (int)(r), ((r) == total ? 100.0 : (((r) * 100.0) / total)), name); 2903 if (total > 0) { 2904 st->print(" %s: ", title); 2905 PRINT_STAT_LINE("total", total); 2906 // For each non-zero entry in the histogram, print the reason, 2907 // the action, and (if specifically known) the type of bytecode. 2908 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2909 for (int action = 0; action < Action_LIMIT; action++) { 2910 juint* cases = Deoptimization::_deoptimization_hist[lvl][reason][1+action]; 2911 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2912 juint counter = cases[bc_case]; 2913 if (counter != 0) { 2914 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK); 2915 const char* bc_name = "other"; 2916 if (bc_case == (BC_CASE_LIMIT-1) && bc == Bytecodes::_nop) { 2917 // overwritten 2918 } else if (Bytecodes::is_defined(bc)) { 2919 bc_name = Bytecodes::name(bc); 2920 } 2921 juint r = counter >> LSB_BITS; 2922 st->print_cr(" %-34s %16s %16s: " UINT32_FORMAT_W(5) " (%4.1f%%)", 2923 trap_reason_name(reason), trap_action_name(action), bc_name, 2924 r, (r * 100.0) / total); 2925 account -= r; 2926 } 2927 } 2928 } 2929 } 2930 if (account != 0) { 2931 PRINT_STAT_LINE("unaccounted", account); 2932 } 2933 #undef PRINT_STAT_LINE 2934 } 2935 } 2936 2937 void Deoptimization::print_statistics_on(outputStream* st) { 2938 // print_statistics_on("Total", 0, st); 2939 print_statistics_on("Tier1", 1, st); 2940 print_statistics_on("Tier2", 2, st); 2941 print_statistics_on("Tier3", 3, st); 2942 print_statistics_on("Tier4", 4, st); 2943 2944 print_statistics_on("SC Tier1", 5, st); 2945 print_statistics_on("SC Tier2", 6, st); 2946 print_statistics_on("SC Tier4", 8, st); 2947 print_statistics_on("SC Tier5 (preloaded)", 9, st); 2948 } 2949 2950 #define DO_COUNTERS(macro) \ 2951 macro(Deoptimization, fetch_unroll_info) \ 2952 macro(Deoptimization, unpack_frames) \ 2953 macro(Deoptimization, uncommon_trap_inner) \ 2954 macro(Deoptimization, uncommon_trap) 2955 2956 #define INIT_COUNTER(sub, name) \ 2957 NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_RT, #sub "::" #name) \ 2958 NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_RT, #sub "::" #name "_count"); 2959 2960 void Deoptimization::init_counters() { 2961 if (ProfileRuntimeCalls && UsePerfData) { 2962 EXCEPTION_MARK; 2963 2964 DO_COUNTERS(INIT_COUNTER) 2965 2966 if (HAS_PENDING_EXCEPTION) { 2967 vm_exit_during_initialization("jvm_perf_init failed unexpectedly"); 2968 } 2969 } 2970 } 2971 #undef INIT_COUNTER 2972 2973 #define PRINT_COUNTER(sub, name) { \ 2974 jlong count = _perf_##sub##_##name##_count->get_value(); \ 2975 if (count > 0) { \ 2976 st->print_cr(" %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \ 2977 _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \ 2978 _perf_##sub##_##name##_timer->thread_counter_value_us(), \ 2979 count); \ 2980 }} 2981 2982 void Deoptimization::print_counters_on(outputStream* st) { 2983 if (ProfileRuntimeCalls && UsePerfData) { 2984 DO_COUNTERS(PRINT_COUNTER) 2985 } else { 2986 st->print_cr(" Deoptimization: no info (%s is disabled)", (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData")); 2987 } 2988 } 2989 2990 #undef PRINT_COUNTER 2991 #undef DO_COUNTERS 2992 2993 #else // COMPILER2_OR_JVMCI 2994 2995 2996 // Stubs for C1 only system. 2997 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2998 return false; 2999 } 3000 3001 const char* Deoptimization::trap_reason_name(int reason) { 3002 return "unknown"; 3003 } 3004 3005 jint Deoptimization::total_deoptimization_count() { 3006 return 0; 3007 } 3008 3009 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) { 3010 return 0; 3011 } 3012 3013 void Deoptimization::print_statistics() { 3014 // no output 3015 } 3016 3017 void 3018 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 3019 // no update 3020 } 3021 3022 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 3023 return 0; 3024 } 3025 3026 void Deoptimization::gather_statistics(nmethod* nm, DeoptReason reason, DeoptAction action, 3027 Bytecodes::Code bc) { 3028 // no update 3029 } 3030 3031 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 3032 int trap_state) { 3033 jio_snprintf(buf, buflen, "#%d", trap_state); 3034 return buf; 3035 } 3036 3037 void Deoptimization::init_counters() { 3038 // nothing to do 3039 } 3040 3041 void Deoptimization::print_counters_on(outputStream* st) { 3042 // no output 3043 } 3044 3045 void Deoptimization::print_statistics_on(outputStream* st) { 3046 // no output 3047 } 3048 3049 #endif // COMPILER2_OR_JVMCI