1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/javaClasses.inline.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compilationPolicy.hpp"
  35 #include "compiler/compilerDefinitions.inline.hpp"
  36 #include "gc/shared/collectedHeap.hpp"
  37 #include "gc/shared/memAllocator.hpp"
  38 #include "interpreter/bytecode.inline.hpp"
  39 #include "interpreter/bytecodeStream.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/oopMapCache.hpp"
  42 #include "jvm.h"
  43 #include "logging/log.hpp"
  44 #include "logging/logLevel.hpp"
  45 #include "logging/logMessage.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/allocation.inline.hpp"
  48 #include "memory/oopFactory.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "memory/universe.hpp"
  51 #include "oops/constantPool.hpp"
  52 #include "oops/fieldStreams.inline.hpp"
  53 #include "oops/method.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/objArrayOop.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/typeArrayOop.inline.hpp"
  58 #include "oops/verifyOopClosure.hpp"
  59 #include "prims/jvmtiDeferredUpdates.hpp"
  60 #include "prims/jvmtiExport.hpp"
  61 #include "prims/jvmtiThreadState.hpp"
  62 #include "prims/methodHandles.hpp"
  63 #include "prims/vectorSupport.hpp"
  64 #include "runtime/atomicAccess.hpp"
  65 #include "runtime/basicLock.inline.hpp"
  66 #include "runtime/continuation.hpp"
  67 #include "runtime/continuationEntry.inline.hpp"
  68 #include "runtime/deoptimization.hpp"
  69 #include "runtime/escapeBarrier.hpp"
  70 #include "runtime/fieldDescriptor.inline.hpp"
  71 #include "runtime/frame.inline.hpp"
  72 #include "runtime/handles.inline.hpp"
  73 #include "runtime/interfaceSupport.inline.hpp"
  74 #include "runtime/javaThread.hpp"
  75 #include "runtime/jniHandles.inline.hpp"
  76 #include "runtime/keepStackGCProcessed.hpp"
  77 #include "runtime/lockStack.inline.hpp"
  78 #include "runtime/objectMonitor.inline.hpp"
  79 #include "runtime/osThread.hpp"
  80 #include "runtime/perfData.inline.hpp"
  81 #include "runtime/safepointVerifiers.hpp"
  82 #include "runtime/sharedRuntime.hpp"
  83 #include "runtime/signature.hpp"
  84 #include "runtime/stackFrameStream.inline.hpp"
  85 #include "runtime/stackValue.hpp"
  86 #include "runtime/stackWatermarkSet.hpp"
  87 #include "runtime/stubRoutines.hpp"
  88 #include "runtime/synchronizer.hpp"
  89 #include "runtime/threadSMR.hpp"
  90 #include "runtime/threadWXSetters.inline.hpp"
  91 #include "runtime/vframe.hpp"
  92 #include "runtime/vframe_hp.hpp"
  93 #include "runtime/vframeArray.hpp"
  94 #include "runtime/vmOperations.hpp"
  95 #include "services/management.hpp"
  96 #include "utilities/checkedCast.hpp"
  97 #include "utilities/events.hpp"
  98 #include "utilities/growableArray.hpp"
  99 #include "utilities/macros.hpp"
 100 #include "utilities/preserveException.hpp"
 101 #include "utilities/xmlstream.hpp"
 102 #if INCLUDE_JFR
 103 #include "jfr/jfr.inline.hpp"
 104 #include "jfr/jfrEvents.hpp"
 105 #include "jfr/metadata/jfrSerializer.hpp"
 106 #endif
 107 
 108 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 109 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 110 bool     DeoptimizationScope::_committing_in_progress = false;
 111 
 112 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 113   DEBUG_ONLY(_deopted = false;)
 114 
 115   MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
 116   // If there is nothing to deopt _required_gen is the same as comitted.
 117   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 118 }
 119 
 120 DeoptimizationScope::~DeoptimizationScope() {
 121   assert(_deopted, "Deopt not executed");
 122 }
 123 
 124 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) {
 125   if (!nm->can_be_deoptimized()) {
 126     return;
 127   }
 128 
 129   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 130 
 131   // If it's already marked but we still need it to be deopted.
 132   if (nm->is_marked_for_deoptimization()) {
 133     dependent(nm);
 134     return;
 135   }
 136 
 137   nmethod::DeoptimizationStatus status =
 138     inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate;
 139   AtomicAccess::store(&nm->_deoptimization_status, status);
 140 
 141   // Make sure active is not committed
 142   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 143   assert(nm->_deoptimization_generation == 0, "Is already marked");
 144 
 145   nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 146   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 147 }
 148 
 149 void DeoptimizationScope::dependent(nmethod* nm) {
 150   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 151 
 152   // A method marked by someone else may have a _required_gen lower than what we marked with.
 153   // Therefore only store it if it's higher than _required_gen.
 154   if (_required_gen < nm->_deoptimization_generation) {
 155     _required_gen = nm->_deoptimization_generation;
 156   }
 157 }
 158 
 159 void DeoptimizationScope::deoptimize_marked() {
 160   assert(!_deopted, "Already deopted");
 161 
 162   // We are not alive yet.
 163   if (!Universe::is_fully_initialized()) {
 164     DEBUG_ONLY(_deopted = true;)
 165     return;
 166   }
 167 
 168   // Safepoints are a special case, handled here.
 169   if (SafepointSynchronize::is_at_safepoint()) {
 170     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 171     DeoptimizationScope::_active_deopt_gen++;
 172     Deoptimization::deoptimize_all_marked();
 173     DEBUG_ONLY(_deopted = true;)
 174     return;
 175   }
 176 
 177   uint64_t comitting = 0;
 178   bool wait = false;
 179   while (true) {
 180     {
 181       ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 182 
 183       // First we check if we or someone else already deopted the gen we want.
 184       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 185         DEBUG_ONLY(_deopted = true;)
 186         return;
 187       }
 188       if (!_committing_in_progress) {
 189         // The version we are about to commit.
 190         comitting = DeoptimizationScope::_active_deopt_gen;
 191         // Make sure new marks use a higher gen.
 192         DeoptimizationScope::_active_deopt_gen++;
 193         _committing_in_progress = true;
 194         wait = false;
 195       } else {
 196         // Another thread is handshaking and committing a gen.
 197         wait = true;
 198       }
 199     }
 200     if (wait) {
 201       // Wait and let the concurrent handshake be performed.
 202       ThreadBlockInVM tbivm(JavaThread::current());
 203       os::naked_yield();
 204     } else {
 205       // Performs the handshake.
 206       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 207       DEBUG_ONLY(_deopted = true;)
 208       {
 209         ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 210 
 211         // Make sure that committed doesn't go backwards.
 212         // Should only happen if we did a deopt during a safepoint above.
 213         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 214           DeoptimizationScope::_committed_deopt_gen = comitting;
 215         }
 216         _committing_in_progress = false;
 217 
 218         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 219 
 220         return;
 221       }
 222     }
 223   }
 224 }
 225 
 226 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 227                                          int  caller_adjustment,
 228                                          int  caller_actual_parameters,
 229                                          int  number_of_frames,
 230                                          intptr_t* frame_sizes,
 231                                          address* frame_pcs,
 232                                          BasicType return_type,
 233                                          int exec_mode) {
 234   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 235   _caller_adjustment         = caller_adjustment;
 236   _caller_actual_parameters  = caller_actual_parameters;
 237   _number_of_frames          = number_of_frames;
 238   _frame_sizes               = frame_sizes;
 239   _frame_pcs                 = frame_pcs;
 240   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 241   _return_type               = return_type;
 242   _initial_info              = 0;
 243   // PD (x86 only)
 244   _counter_temp              = 0;
 245   _unpack_kind               = exec_mode;
 246   _sender_sp_temp            = 0;
 247 
 248   _total_frame_sizes         = size_of_frames();
 249   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 250 }
 251 
 252 Deoptimization::UnrollBlock::~UnrollBlock() {
 253   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 254   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 255   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 256 }
 257 
 258 int Deoptimization::UnrollBlock::size_of_frames() const {
 259   // Account first for the adjustment of the initial frame
 260   intptr_t result = _caller_adjustment;
 261   for (int index = 0; index < number_of_frames(); index++) {
 262     result += frame_sizes()[index];
 263   }
 264   return checked_cast<int>(result);
 265 }
 266 
 267 void Deoptimization::UnrollBlock::print() {
 268   ResourceMark rm;
 269   stringStream st;
 270   st.print_cr("UnrollBlock");
 271   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 272   st.print(   "  frame_sizes: ");
 273   for (int index = 0; index < number_of_frames(); index++) {
 274     st.print("%zd ", frame_sizes()[index]);
 275   }
 276   st.cr();
 277   tty->print_raw(st.freeze());
 278 }
 279 
 280 // In order to make fetch_unroll_info work properly with escape
 281 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 282 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 283 // which is called from the method fetch_unroll_info_helper below.
 284 JRT_BLOCK_ENTRY_PROF(Deoptimization::UnrollBlock*, Deoptimization, fetch_unroll_info, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 285   // fetch_unroll_info() is called at the beginning of the deoptimization
 286   // handler. Note this fact before we start generating temporary frames
 287   // that can confuse an asynchronous stack walker. This counter is
 288   // decremented at the end of unpack_frames().
 289   current->inc_in_deopt_handler();
 290 
 291   if (exec_mode == Unpack_exception) {
 292     // When we get here, a callee has thrown an exception into a deoptimized
 293     // frame. That throw might have deferred stack watermark checking until
 294     // after unwinding. So we deal with such deferred requests here.
 295     StackWatermarkSet::after_unwind(current);
 296   }
 297 
 298   return fetch_unroll_info_helper(current, exec_mode);
 299 JRT_END
 300 
 301 #if COMPILER2_OR_JVMCI
 302 // print information about reallocated objects
 303 static void print_objects(JavaThread* deoptee_thread,
 304                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 305   ResourceMark rm;
 306   stringStream st;  // change to logStream with logging
 307   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 308   fieldDescriptor fd;
 309 
 310   for (int i = 0; i < objects->length(); i++) {
 311     ObjectValue* sv = (ObjectValue*) objects->at(i);
 312     Handle obj = sv->value();
 313 
 314     if (obj.is_null()) {
 315       st.print_cr("     nullptr");
 316       continue;
 317     }
 318 
 319     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 320 
 321     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 322     k->print_value_on(&st);
 323     st.print_cr(" allocated (%zu bytes)", obj->size() * HeapWordSize);
 324 
 325     if (Verbose && k != nullptr) {
 326       k->oop_print_on(obj(), &st);
 327     }
 328   }
 329   tty->print_raw(st.freeze());
 330 }
 331 
 332 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method,
 333                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 334                                   bool& deoptimized_objects) {
 335   bool realloc_failures = false;
 336   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 337 
 338   JavaThread* deoptee_thread = chunk->at(0)->thread();
 339   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 340          "a frame can only be deoptimized by the owner thread");
 341 
 342   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 343 
 344   // The flag return_oop() indicates call sites which return oop
 345   // in compiled code. Such sites include java method calls,
 346   // runtime calls (for example, used to allocate new objects/arrays
 347   // on slow code path) and any other calls generated in compiled code.
 348   // It is not guaranteed that we can get such information here only
 349   // by analyzing bytecode in deoptimized frames. This is why this flag
 350   // is set during method compilation (see Compile::Process_OopMap_Node()).
 351   // If the previous frame was popped or if we are dispatching an exception,
 352   // we don't have an oop result.
 353   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 354   Handle return_value;
 355   if (save_oop_result) {
 356     // Reallocation may trigger GC. If deoptimization happened on return from
 357     // call which returns oop we need to save it since it is not in oopmap.
 358     oop result = deoptee.saved_oop_result(&map);
 359     assert(oopDesc::is_oop_or_null(result), "must be oop");
 360     return_value = Handle(thread, result);
 361     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 362     if (TraceDeoptimization) {
 363       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 364       tty->cr();
 365     }
 366   }
 367   if (objects != nullptr) {
 368     if (exec_mode == Deoptimization::Unpack_none) {
 369       assert(thread->thread_state() == _thread_in_vm, "assumption");
 370       JavaThread* THREAD = thread; // For exception macros.
 371       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 372       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 373       deoptimized_objects = true;
 374     } else {
 375       JavaThread* current = thread; // For JRT_BLOCK
 376       JRT_BLOCK
 377       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 378       JRT_END
 379     }
 380     guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod");
 381     bool is_jvmci = compiled_method->is_compiled_by_jvmci();
 382     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci);
 383     if (TraceDeoptimization) {
 384       print_objects(deoptee_thread, objects, realloc_failures);
 385     }
 386   }
 387   if (save_oop_result) {
 388     // Restore result.
 389     deoptee.set_saved_oop_result(&map, return_value());
 390   }
 391   return realloc_failures;
 392 }
 393 
 394 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 395                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 396   JavaThread* deoptee_thread = chunk->at(0)->thread();
 397   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 398   assert(thread == Thread::current(), "should be");
 399   HandleMark hm(thread);
 400 #ifndef PRODUCT
 401   bool first = true;
 402 #endif // !PRODUCT
 403   // Start locking from outermost/oldest frame
 404   for (int i = (chunk->length() - 1); i >= 0; i--) {
 405     compiledVFrame* cvf = chunk->at(i);
 406     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 407     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 408     if (monitors->is_nonempty()) {
 409       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 410                                                      exec_mode, realloc_failures);
 411       deoptimized_objects = deoptimized_objects || relocked;
 412 #ifndef PRODUCT
 413       if (PrintDeoptimizationDetails) {
 414         ResourceMark rm;
 415         stringStream st;
 416         for (int j = 0; j < monitors->length(); j++) {
 417           MonitorInfo* mi = monitors->at(j);
 418           if (mi->eliminated()) {
 419             if (first) {
 420               first = false;
 421               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 422             }
 423             if (exec_mode == Deoptimization::Unpack_none) {
 424               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 425               if (monitor != nullptr && monitor->object() == mi->owner()) {
 426                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 427                 continue;
 428               }
 429             }
 430             if (mi->owner_is_scalar_replaced()) {
 431               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 432               st.print_cr("     failed reallocation for klass %s", k->external_name());
 433             } else {
 434               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 435             }
 436           }
 437         }
 438         tty->print_raw(st.freeze());
 439       }
 440 #endif // !PRODUCT
 441     }
 442   }
 443 }
 444 
 445 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 446 // The given vframes cover one physical frame.
 447 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 448                                                  bool& realloc_failures) {
 449   frame deoptee = chunk->at(0)->fr();
 450   JavaThread* deoptee_thread = chunk->at(0)->thread();
 451   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 452   RegisterMap map(chunk->at(0)->register_map());
 453   bool deoptimized_objects = false;
 454 
 455   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 456 
 457   // Reallocate the non-escaping objects and restore their fields.
 458   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 459                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 460     realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects);
 461   }
 462 
 463   // MonitorInfo structures used in eliminate_locks are not GC safe.
 464   NoSafepointVerifier no_safepoint;
 465 
 466   // Now relock objects if synchronization on them was eliminated.
 467   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 468     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 469   }
 470   return deoptimized_objects;
 471 }
 472 #endif // COMPILER2_OR_JVMCI
 473 
 474 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 475 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 476   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
 477   // When we get here we are about to unwind the deoptee frame. In order to
 478   // catch not yet safe to use frames, the following stack watermark barrier
 479   // poll will make such frames safe to use.
 480   StackWatermarkSet::before_unwind(current);
 481 
 482   // Note: there is a safepoint safety issue here. No matter whether we enter
 483   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 484   // the vframeArray is created.
 485   //
 486 
 487   // Allocate our special deoptimization ResourceMark
 488   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 489   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 490   current->set_deopt_mark(dmark);
 491 
 492   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 493   RegisterMap map(current,
 494                   RegisterMap::UpdateMap::include,
 495                   RegisterMap::ProcessFrames::include,
 496                   RegisterMap::WalkContinuation::skip);
 497   RegisterMap dummy_map(current,
 498                         RegisterMap::UpdateMap::skip,
 499                         RegisterMap::ProcessFrames::include,
 500                         RegisterMap::WalkContinuation::skip);
 501   // Now get the deoptee with a valid map
 502   frame deoptee = stub_frame.sender(&map);
 503   // Set the deoptee nmethod
 504   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 505   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 506   current->set_deopt_compiled_method(nm);
 507 
 508   if (VerifyStack) {
 509     current->validate_frame_layout();
 510   }
 511 
 512   // Create a growable array of VFrames where each VFrame represents an inlined
 513   // Java frame.  This storage is allocated with the usual system arena.
 514   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 515   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 516   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 517   while (!vf->is_top()) {
 518     assert(vf->is_compiled_frame(), "Wrong frame type");
 519     chunk->push(compiledVFrame::cast(vf));
 520     vf = vf->sender();
 521   }
 522   assert(vf->is_compiled_frame(), "Wrong frame type");
 523   chunk->push(compiledVFrame::cast(vf));
 524 
 525   bool realloc_failures = false;
 526 
 527 #if COMPILER2_OR_JVMCI
 528   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 529 
 530   // Reallocate the non-escaping objects and restore their fields. Then
 531   // relock objects if synchronization on them was eliminated.
 532   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 533                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 534     bool unused;
 535     realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused);
 536   }
 537 #endif // COMPILER2_OR_JVMCI
 538 
 539   // Ensure that no safepoint is taken after pointers have been stored
 540   // in fields of rematerialized objects.  If a safepoint occurs from here on
 541   // out the java state residing in the vframeArray will be missed.
 542   // Locks may be rebaised in a safepoint.
 543   NoSafepointVerifier no_safepoint;
 544 
 545 #if COMPILER2_OR_JVMCI
 546   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 547       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 548     bool unused = false;
 549     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 550   }
 551 #endif // COMPILER2_OR_JVMCI
 552 
 553   ScopeDesc* trap_scope = chunk->at(0)->scope();
 554   Handle exceptionObject;
 555   if (trap_scope->rethrow_exception()) {
 556 #ifndef PRODUCT
 557     if (PrintDeoptimizationDetails) {
 558       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 559     }
 560 #endif // !PRODUCT
 561 
 562     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 563     guarantee(expressions != nullptr && expressions->length() == 1, "should have only exception on stack");
 564     guarantee(exec_mode != Unpack_exception, "rethrow_exception set with Unpack_exception");
 565     ScopeValue* topOfStack = expressions->top();
 566     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 567     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 568   }
 569 
 570   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 571 #if COMPILER2_OR_JVMCI
 572   if (realloc_failures) {
 573     // This destroys all ScopedValue bindings.
 574     current->clear_scopedValueBindings();
 575     pop_frames_failed_reallocs(current, array);
 576   }
 577 #endif
 578 
 579   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 580   current->set_vframe_array_head(array);
 581 
 582   // Now that the vframeArray has been created if we have any deferred local writes
 583   // added by jvmti then we can free up that structure as the data is now in the
 584   // vframeArray
 585 
 586   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 587 
 588   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 589   CodeBlob* cb = stub_frame.cb();
 590   // Verify we have the right vframeArray
 591   assert(cb->frame_size() >= 0, "Unexpected frame size");
 592   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 593   assert(unpack_sp == deoptee.unextended_sp(), "must be");
 594 
 595 #ifdef ASSERT
 596   assert(cb->is_deoptimization_stub() ||
 597          cb->is_uncommon_trap_stub() ||
 598          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 599          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 600          "unexpected code blob: %s", cb->name());
 601 #endif
 602 
 603   // This is a guarantee instead of an assert because if vframe doesn't match
 604   // we will unpack the wrong deoptimized frame and wind up in strange places
 605   // where it will be very difficult to figure out what went wrong. Better
 606   // to die an early death here than some very obscure death later when the
 607   // trail is cold.
 608   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 609 
 610   int number_of_frames = array->frames();
 611 
 612   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 613   // virtual activation, which is the reverse of the elements in the vframes array.
 614   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 615   // +1 because we always have an interpreter return address for the final slot.
 616   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 617   int popframe_extra_args = 0;
 618   // Create an interpreter return address for the stub to use as its return
 619   // address so the skeletal frames are perfectly walkable
 620   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 621 
 622   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 623   // activation be put back on the expression stack of the caller for reexecution
 624   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 625     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 626   }
 627 
 628   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 629   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 630   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 631   //
 632   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 633   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 634 
 635   // It's possible that the number of parameters at the call site is
 636   // different than number of arguments in the callee when method
 637   // handles are used.  If the caller is interpreted get the real
 638   // value so that the proper amount of space can be added to it's
 639   // frame.
 640   bool caller_was_method_handle = false;
 641   if (deopt_sender.is_interpreted_frame()) {
 642     methodHandle method(current, deopt_sender.interpreter_frame_method());
 643     Bytecode_invoke cur(method, deopt_sender.interpreter_frame_bci());
 644     if (cur.has_member_arg()) {
 645       // This should cover all real-world cases.  One exception is a pathological chain of
 646       // MH.linkToXXX() linker calls, which only trusted code could do anyway.  To handle that case, we
 647       // would need to get the size from the resolved method entry.  Another exception would
 648       // be an invokedynamic with an adapter that is really a MethodHandle linker.
 649       caller_was_method_handle = true;
 650     }
 651   }
 652 
 653   //
 654   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 655   // frame_sizes/frame_pcs[1] next oldest frame (int)
 656   // frame_sizes/frame_pcs[n] youngest frame (int)
 657   //
 658   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 659   // owns the space for the return address to it's caller).  Confusing ain't it.
 660   //
 661   // The vframe array can address vframes with indices running from
 662   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 663   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 664   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 665   // so things look a little strange in this loop.
 666   //
 667   int callee_parameters = 0;
 668   int callee_locals = 0;
 669   for (int index = 0; index < array->frames(); index++ ) {
 670     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 671     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 672     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 673     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 674                                                                                                     callee_locals,
 675                                                                                                     index == 0,
 676                                                                                                     popframe_extra_args);
 677     // This pc doesn't have to be perfect just good enough to identify the frame
 678     // as interpreted so the skeleton frame will be walkable
 679     // The correct pc will be set when the skeleton frame is completely filled out
 680     // The final pc we store in the loop is wrong and will be overwritten below
 681     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 682 
 683     callee_parameters = array->element(index)->method()->size_of_parameters();
 684     callee_locals = array->element(index)->method()->max_locals();
 685     popframe_extra_args = 0;
 686   }
 687 
 688   // Compute whether the root vframe returns a float or double value.
 689   BasicType return_type;
 690   {
 691     methodHandle method(current, array->element(0)->method());
 692     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 693     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 694   }
 695 
 696   // Compute information for handling adapters and adjusting the frame size of the caller.
 697   int caller_adjustment = 0;
 698 
 699   // Compute the amount the oldest interpreter frame will have to adjust
 700   // its caller's stack by. If the caller is a compiled frame then
 701   // we pretend that the callee has no parameters so that the
 702   // extension counts for the full amount of locals and not just
 703   // locals-parms. This is because without a c2i adapter the parm
 704   // area as created by the compiled frame will not be usable by
 705   // the interpreter. (Depending on the calling convention there
 706   // may not even be enough space).
 707 
 708   // QQQ I'd rather see this pushed down into last_frame_adjust
 709   // and have it take the sender (aka caller).
 710 
 711   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 712     caller_adjustment = last_frame_adjust(0, callee_locals);
 713   } else if (callee_locals > callee_parameters) {
 714     // The caller frame may need extending to accommodate
 715     // non-parameter locals of the first unpacked interpreted frame.
 716     // Compute that adjustment.
 717     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 718   }
 719 
 720   // If the sender is deoptimized the we must retrieve the address of the handler
 721   // since the frame will "magically" show the original pc before the deopt
 722   // and we'd undo the deopt.
 723 
 724   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 725   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 726     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 727   }
 728 
 729   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 730 
 731 #if INCLUDE_JVMCI
 732   if (exceptionObject() != nullptr) {
 733     current->set_exception_oop(exceptionObject());
 734     exec_mode = Unpack_exception;
 735     assert(array->element(0)->rethrow_exception(), "must be");
 736   }
 737 #endif
 738 
 739   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 740     assert(current->has_pending_exception(), "should have thrown OOME");
 741     current->set_exception_oop(current->pending_exception());
 742     current->clear_pending_exception();
 743     exec_mode = Unpack_exception;
 744   }
 745 
 746 #if INCLUDE_JVMCI
 747   if (current->frames_to_pop_failed_realloc() > 0) {
 748     current->set_pending_monitorenter(false);
 749   }
 750 #endif
 751 
 752   int caller_actual_parameters = -1; // value not used except for interpreted frames, see below
 753   if (deopt_sender.is_interpreted_frame()) {
 754     caller_actual_parameters = callee_parameters + (caller_was_method_handle ? 1 : 0);
 755   }
 756 
 757   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 758                                       caller_adjustment * BytesPerWord,
 759                                       caller_actual_parameters,
 760                                       number_of_frames,
 761                                       frame_sizes,
 762                                       frame_pcs,
 763                                       return_type,
 764                                       exec_mode);
 765   // On some platforms, we need a way to pass some platform dependent
 766   // information to the unpacking code so the skeletal frames come out
 767   // correct (initial fp value, unextended sp, ...)
 768   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 769 
 770   if (array->frames() > 1) {
 771     if (VerifyStack && TraceDeoptimization) {
 772       tty->print_cr("Deoptimizing method containing inlining");
 773     }
 774   }
 775 
 776   array->set_unroll_block(info);
 777   return info;
 778 }
 779 
 780 // Called to cleanup deoptimization data structures in normal case
 781 // after unpacking to stack and when stack overflow error occurs
 782 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 783                                         vframeArray *array) {
 784 
 785   // Get array if coming from exception
 786   if (array == nullptr) {
 787     array = thread->vframe_array_head();
 788   }
 789   thread->set_vframe_array_head(nullptr);
 790 
 791   // Free the previous UnrollBlock
 792   vframeArray* old_array = thread->vframe_array_last();
 793   thread->set_vframe_array_last(array);
 794 
 795   if (old_array != nullptr) {
 796     UnrollBlock* old_info = old_array->unroll_block();
 797     old_array->set_unroll_block(nullptr);
 798     delete old_info;
 799     delete old_array;
 800   }
 801 
 802   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 803   // inside the vframeArray (StackValueCollections)
 804 
 805   delete thread->deopt_mark();
 806   thread->set_deopt_mark(nullptr);
 807   thread->set_deopt_compiled_method(nullptr);
 808 
 809 
 810   if (JvmtiExport::can_pop_frame()) {
 811     // Regardless of whether we entered this routine with the pending
 812     // popframe condition bit set, we should always clear it now
 813     thread->clear_popframe_condition();
 814   }
 815 
 816   // unpack_frames() is called at the end of the deoptimization handler
 817   // and (in C2) at the end of the uncommon trap handler. Note this fact
 818   // so that an asynchronous stack walker can work again. This counter is
 819   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 820   // the beginning of uncommon_trap().
 821   thread->dec_in_deopt_handler();
 822 }
 823 
 824 // Moved from cpu directories because none of the cpus has callee save values.
 825 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 826 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 827 
 828   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 829   // the days we had adapter frames. When we deoptimize a situation where a
 830   // compiled caller calls a compiled caller will have registers it expects
 831   // to survive the call to the callee. If we deoptimize the callee the only
 832   // way we can restore these registers is to have the oldest interpreter
 833   // frame that we create restore these values. That is what this routine
 834   // will accomplish.
 835 
 836   // At the moment we have modified c2 to not have any callee save registers
 837   // so this problem does not exist and this routine is just a place holder.
 838 
 839   assert(f->is_interpreted_frame(), "must be interpreted");
 840 }
 841 
 842 #ifndef PRODUCT
 843 #ifdef ASSERT
 844 // Return true if the execution after the provided bytecode continues at the
 845 // next bytecode in the code. This is not the case for gotos, returns, and
 846 // throws.
 847 static bool falls_through(Bytecodes::Code bc) {
 848   switch (bc) {
 849     case Bytecodes::_goto:
 850     case Bytecodes::_goto_w:
 851     case Bytecodes::_athrow:
 852     case Bytecodes::_areturn:
 853     case Bytecodes::_dreturn:
 854     case Bytecodes::_freturn:
 855     case Bytecodes::_ireturn:
 856     case Bytecodes::_lreturn:
 857     case Bytecodes::_jsr:
 858     case Bytecodes::_ret:
 859     case Bytecodes::_return:
 860     case Bytecodes::_lookupswitch:
 861     case Bytecodes::_tableswitch:
 862       return false;
 863     default:
 864       return true;
 865   }
 866 }
 867 #endif
 868 #endif
 869 
 870 // Return BasicType of value being returned
 871 JRT_LEAF_PROF_NO_THREAD(BasicType, Deoptimization, unpack_frames, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 872   assert(thread == JavaThread::current(), "pre-condition");
 873 
 874   // We are already active in the special DeoptResourceMark any ResourceObj's we
 875   // allocate will be freed at the end of the routine.
 876 
 877   // JRT_LEAF methods don't normally allocate handles and there is a
 878   // NoHandleMark to enforce that. It is actually safe to use Handles
 879   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 880   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 881   // then use a HandleMark to ensure any Handles we do create are
 882   // cleaned up in this scope.
 883   ResetNoHandleMark rnhm;
 884   HandleMark hm(thread);
 885 
 886   frame stub_frame = thread->last_frame();
 887 
 888   Continuation::notify_deopt(thread, stub_frame.sp());
 889 
 890   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 891   // must point to the vframeArray for the unpack frame.
 892   vframeArray* array = thread->vframe_array_head();
 893   UnrollBlock* info = array->unroll_block();
 894 
 895   // We set the last_Java frame. But the stack isn't really parsable here. So we
 896   // clear it to make sure JFR understands not to try and walk stacks from events
 897   // in here.
 898   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 899   thread->frame_anchor()->set_last_Java_sp(nullptr);
 900 
 901   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 902   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 903 
 904   thread->frame_anchor()->set_last_Java_sp(sp);
 905 
 906   BasicType bt = info->return_type();
 907 
 908   // If we have an exception pending, claim that the return type is an oop
 909   // so the deopt_blob does not overwrite the exception_oop.
 910 
 911   if (exec_mode == Unpack_exception)
 912     bt = T_OBJECT;
 913 
 914   // Cleanup thread deopt data
 915   cleanup_deopt_info(thread, array);
 916 
 917 #ifndef PRODUCT
 918   if (VerifyStack) {
 919     ResourceMark res_mark;
 920     // Clear pending exception to not break verification code (restored afterwards)
 921     PreserveExceptionMark pm(thread);
 922 
 923     thread->validate_frame_layout();
 924 
 925     // Verify that the just-unpacked frames match the interpreter's
 926     // notions of expression stack and locals
 927     vframeArray* cur_array = thread->vframe_array_last();
 928     RegisterMap rm(thread,
 929                    RegisterMap::UpdateMap::skip,
 930                    RegisterMap::ProcessFrames::include,
 931                    RegisterMap::WalkContinuation::skip);
 932     rm.set_include_argument_oops(false);
 933     int callee_size_of_parameters = 0;
 934     for (int frame_idx = 0; frame_idx < cur_array->frames(); frame_idx++) {
 935       bool is_top_frame = (frame_idx == 0);
 936       vframeArrayElement* el = cur_array->element(frame_idx);
 937       frame* iframe = el->iframe();
 938       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 939       methodHandle mh(thread, iframe->interpreter_frame_method());
 940       bool reexecute = el->should_reexecute();
 941 
 942       int cur_invoke_parameter_size = 0;
 943       int top_frame_expression_stack_adjustment = 0;
 944       int max_bci = mh->code_size();
 945       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 946       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 947       Bytecodes::Code cur_code = str.next();
 948 
 949       if (!reexecute && !Bytecodes::is_invoke(cur_code)) {
 950         // We can only compute OopMaps for the before state, so we need to roll forward
 951         // to the next bytecode.
 952         assert(is_top_frame, "must be");
 953         assert(falls_through(cur_code), "must be");
 954         assert(cur_code != Bytecodes::_illegal, "illegal bytecode");
 955         assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 956 
 957         // Need to subtract off the size of the result type of
 958         // the bytecode because this is not described in the
 959         // debug info but returned to the interpreter in the TOS
 960         // caching register
 961         BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 962         if (bytecode_result_type != T_ILLEGAL) {
 963           top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 964         }
 965         assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 966 
 967         cur_code = str.next();
 968         // Reflect the fact that we have rolled forward and now need
 969         // top_frame_expression_stack_adjustment
 970         reexecute = true;
 971       }
 972 
 973       assert(cur_code != Bytecodes::_illegal, "illegal bytecode");
 974       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 975 
 976       // Get the oop map for this bci
 977       InterpreterOopMap mask;
 978       OopMapCache::compute_one_oop_map(mh, str.bci(), &mask);
 979       // Check to see if we can grab the number of outgoing arguments
 980       // at an uncommon trap for an invoke (where the compiler
 981       // generates debug info before the invoke has executed)
 982       if (Bytecodes::is_invoke(cur_code)) {
 983         Bytecode_invoke invoke(mh, str.bci());
 984         cur_invoke_parameter_size = invoke.size_of_parameters();
 985         if (!is_top_frame && invoke.has_member_arg()) {
 986           callee_size_of_parameters++;
 987         }
 988       }
 989 
 990       // Verify stack depth and oops in frame
 991       auto match = [&]() {
 992         int iframe_expr_ssize = iframe->interpreter_frame_expression_stack_size();
 993 #if INCLUDE_JVMCI
 994         if (is_top_frame && el->rethrow_exception()) {
 995           return iframe_expr_ssize == 1;
 996         }
 997 #endif
 998         // This should only be needed for C1
 999         if (is_top_frame && exec_mode == Unpack_exception && iframe_expr_ssize == 0) {
1000           return true;
1001         }
1002         if (reexecute) {
1003           int expr_ssize_before = iframe_expr_ssize + top_frame_expression_stack_adjustment;
1004           int oopmap_expr_invoke_ssize = mask.expression_stack_size() + cur_invoke_parameter_size;
1005           return expr_ssize_before == oopmap_expr_invoke_ssize;
1006         } else {
1007           int oopmap_expr_callee_ssize = mask.expression_stack_size() + callee_size_of_parameters;
1008           return iframe_expr_ssize == oopmap_expr_callee_ssize;
1009         }
1010       };
1011       if (!match()) {
1012         // Print out some information that will help us debug the problem
1013         tty->print_cr("Wrong number of expression stack elements during deoptimization");
1014         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", frame_idx, cur_array->frames() - 1);
1015         tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
1016         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
1017                       iframe->interpreter_frame_expression_stack_size());
1018         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
1019         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
1020         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1021         tty->print_cr("  exec_mode = %d", exec_mode);
1022         tty->print_cr("  original should_reexecute = %s", el->should_reexecute() ? "true" : "false");
1023         tty->print_cr("  reexecute = %s%s", reexecute ? "true" : "false",
1024                       (reexecute != el->should_reexecute()) ? " (changed)" : "");
1025 #if INCLUDE_JVMCI
1026         tty->print_cr("  rethrow_exception = %s", el->rethrow_exception() ? "true" : "false");
1027 #endif
1028         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1029         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1030         tty->print_cr("  Interpreted frames:");
1031         for (int k = 0; k < cur_array->frames(); k++) {
1032           vframeArrayElement* el = cur_array->element(k);
1033           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1034         }
1035         cur_array->print_on_2(tty);
1036         guarantee(false, "wrong number of expression stack elements during deopt");
1037       }
1038       VerifyOopClosure verify;
1039       iframe->oops_interpreted_do(&verify, &rm, false);
1040       callee_size_of_parameters = mh->size_of_parameters();
1041     }
1042   }
1043 #endif // !PRODUCT
1044 
1045   return bt;
1046 JRT_END
1047 
1048 class DeoptimizeMarkedHandshakeClosure : public HandshakeClosure {
1049  public:
1050   DeoptimizeMarkedHandshakeClosure() : HandshakeClosure("Deoptimize") {}
1051   void do_thread(Thread* thread) {
1052     JavaThread* jt = JavaThread::cast(thread);
1053     jt->deoptimize_marked_methods();
1054   }
1055 };
1056 
1057 void Deoptimization::deoptimize_all_marked() {
1058   ResourceMark rm;
1059 
1060   // Make the dependent methods not entrant
1061   CodeCache::make_marked_nmethods_deoptimized();
1062 
1063   DeoptimizeMarkedHandshakeClosure deopt;
1064   if (SafepointSynchronize::is_at_safepoint()) {
1065     Threads::java_threads_do(&deopt);
1066   } else {
1067     Handshake::execute(&deopt);
1068   }
1069 }
1070 
1071 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1072   = Deoptimization::Action_reinterpret;
1073 
1074 #if INCLUDE_JVMCI
1075 template<typename CacheType>
1076 class BoxCacheBase : public CHeapObj<mtCompiler> {
1077 protected:
1078   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1079     ResourceMark rm(thread);
1080     char* klass_name_str = klass_name->as_C_string();
1081     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle());
1082     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1083     if (!ik->is_in_error_state()) {
1084       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1085       CacheType::compute_offsets(ik);
1086     }
1087     return ik;
1088   }
1089 };
1090 
1091 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1092   PrimitiveType _low;
1093   PrimitiveType _high;
1094   jobject _cache;
1095 protected:
1096   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1097   BoxCache(Thread* thread) {
1098     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1099     if (ik->is_in_error_state()) {
1100       _low = 1;
1101       _high = 0;
1102       _cache = nullptr;
1103     } else {
1104       objArrayOop cache = CacheType::cache(ik);
1105       assert(cache->length() > 0, "Empty cache");
1106       _low = BoxType::value(cache->obj_at(0));
1107       _high = checked_cast<PrimitiveType>(_low + cache->length() - 1);
1108       _cache = JNIHandles::make_global(Handle(thread, cache));
1109     }
1110   }
1111   ~BoxCache() {
1112     JNIHandles::destroy_global(_cache);
1113   }
1114 public:
1115   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1116     if (_singleton == nullptr) {
1117       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1118       if (!AtomicAccess::replace_if_null(&_singleton, s)) {
1119         delete s;
1120       }
1121     }
1122     return _singleton;
1123   }
1124   oop lookup(PrimitiveType value) {
1125     if (_low <= value && value <= _high) {
1126       int offset = checked_cast<int>(value - _low);
1127       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1128     }
1129     return nullptr;
1130   }
1131   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1132     if (_cache == nullptr) {
1133       cache_init_error = true;
1134       return nullptr;
1135     }
1136     // Have to cast to avoid little/big-endian problems.
1137     if (sizeof(PrimitiveType) > sizeof(jint)) {
1138       jlong value = (jlong)raw_value;
1139       return lookup(value);
1140     }
1141     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1142     return lookup(value);
1143   }
1144 };
1145 
1146 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1147 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1148 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1149 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1150 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1151 
1152 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1153 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1154 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1155 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1156 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1157 
1158 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1159   jobject _true_cache;
1160   jobject _false_cache;
1161 protected:
1162   static BooleanBoxCache *_singleton;
1163   BooleanBoxCache(Thread *thread) {
1164     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1165     if (ik->is_in_error_state()) {
1166       _true_cache = nullptr;
1167       _false_cache = nullptr;
1168     } else {
1169       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1170       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1171     }
1172   }
1173   ~BooleanBoxCache() {
1174     JNIHandles::destroy_global(_true_cache);
1175     JNIHandles::destroy_global(_false_cache);
1176   }
1177 public:
1178   static BooleanBoxCache* singleton(Thread* thread) {
1179     if (_singleton == nullptr) {
1180       BooleanBoxCache* s = new BooleanBoxCache(thread);
1181       if (!AtomicAccess::replace_if_null(&_singleton, s)) {
1182         delete s;
1183       }
1184     }
1185     return _singleton;
1186   }
1187   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1188     if (_true_cache == nullptr) {
1189       cache_in_error = true;
1190       return nullptr;
1191     }
1192     // Have to cast to avoid little/big-endian problems.
1193     jboolean value = (jboolean)*((jint*)&raw_value);
1194     return lookup(value);
1195   }
1196   oop lookup(jboolean value) {
1197     if (value != 0) {
1198       return JNIHandles::resolve_non_null(_true_cache);
1199     }
1200     return JNIHandles::resolve_non_null(_false_cache);
1201   }
1202 };
1203 
1204 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1205 
1206 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1207    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1208    BasicType box_type = vmClasses::box_klass_type(k);
1209    if (box_type != T_OBJECT) {
1210      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1211      switch(box_type) {
1212        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1213        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1214        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1215        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1216        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1217        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1218        default:;
1219      }
1220    }
1221    return nullptr;
1222 }
1223 #endif // INCLUDE_JVMCI
1224 
1225 #if COMPILER2_OR_JVMCI
1226 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1227   Handle pending_exception(THREAD, thread->pending_exception());
1228   const char* exception_file = thread->exception_file();
1229   int exception_line = thread->exception_line();
1230   thread->clear_pending_exception();
1231 
1232   bool failures = false;
1233 
1234   for (int i = 0; i < objects->length(); i++) {
1235     assert(objects->at(i)->is_object(), "invalid debug information");
1236     ObjectValue* sv = (ObjectValue*) objects->at(i);
1237 
1238     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1239     oop obj = nullptr;
1240 
1241     bool cache_init_error = false;
1242     if (k->is_instance_klass()) {
1243 #if INCLUDE_JVMCI
1244       nmethod* nm = fr->cb()->as_nmethod_or_null();
1245       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1246         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1247         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1248         if (obj != nullptr) {
1249           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1250           abv->set_cached(true);
1251         } else if (cache_init_error) {
1252           // Results in an OOME which is valid (as opposed to a class initialization error)
1253           // and is fine for the rare case a cache initialization failing.
1254           failures = true;
1255         }
1256       }
1257 #endif // INCLUDE_JVMCI
1258 
1259       InstanceKlass* ik = InstanceKlass::cast(k);
1260       if (obj == nullptr && !cache_init_error) {
1261         InternalOOMEMark iom(THREAD);
1262         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1263           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1264         } else {
1265           obj = ik->allocate_instance(THREAD);
1266         }
1267       }
1268     } else if (k->is_typeArray_klass()) {
1269       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1270       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1271       int len = sv->field_size() / type2size[ak->element_type()];
1272       InternalOOMEMark iom(THREAD);
1273       obj = ak->allocate_instance(len, THREAD);
1274     } else if (k->is_objArray_klass()) {
1275       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1276       InternalOOMEMark iom(THREAD);
1277       obj = ak->allocate_instance(sv->field_size(), THREAD);
1278     }
1279 
1280     if (obj == nullptr) {
1281       failures = true;
1282     }
1283 
1284     assert(sv->value().is_null(), "redundant reallocation");
1285     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1286     CLEAR_PENDING_EXCEPTION;
1287     sv->set_value(obj);
1288   }
1289 
1290   if (failures) {
1291     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1292   } else if (pending_exception.not_null()) {
1293     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1294   }
1295 
1296   return failures;
1297 }
1298 
1299 #if INCLUDE_JVMCI
1300 /**
1301  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1302  * we need to somehow be able to recover the actual kind to be able to write the correct
1303  * amount of bytes.
1304  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1305  * the entries at index n + 1 to n + i are 'markers'.
1306  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1307  * expected form of the array would be:
1308  *
1309  * {b0, b1, b2, b3, INT, marker, b6, b7}
1310  *
1311  * Thus, in order to get back the size of the entry, we simply need to count the number
1312  * of marked entries
1313  *
1314  * @param virtualArray the virtualized byte array
1315  * @param i index of the virtual entry we are recovering
1316  * @return The number of bytes the entry spans
1317  */
1318 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1319   int index = i;
1320   while (++index < virtualArray->field_size() &&
1321            virtualArray->field_at(index)->is_marker()) {}
1322   return index - i;
1323 }
1324 
1325 /**
1326  * If there was a guarantee for byte array to always start aligned to a long, we could
1327  * do a simple check on the parity of the index. Unfortunately, that is not always the
1328  * case. Thus, we check alignment of the actual address we are writing to.
1329  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1330  * write a long to index 3.
1331  */
1332 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1333     jbyte* res = obj->byte_at_addr(index);
1334     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1335     return res;
1336 }
1337 
1338 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) {
1339   switch (byte_count) {
1340     case 1:
1341       obj->byte_at_put(index, (jbyte) value->get_jint());
1342       break;
1343     case 2:
1344       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint();
1345       break;
1346     case 4:
1347       *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint();
1348       break;
1349     case 8:
1350       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr();
1351       break;
1352     default:
1353       ShouldNotReachHere();
1354   }
1355 }
1356 #endif // INCLUDE_JVMCI
1357 
1358 
1359 // restore elements of an eliminated type array
1360 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1361   int index = 0;
1362 
1363   for (int i = 0; i < sv->field_size(); i++) {
1364     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1365     switch(type) {
1366     case T_LONG: case T_DOUBLE: {
1367       assert(value->type() == T_INT, "Agreement.");
1368       StackValue* low =
1369         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1370 #ifdef _LP64
1371       jlong res = (jlong)low->get_intptr();
1372 #else
1373       jlong res = jlong_from(value->get_jint(), low->get_jint());
1374 #endif
1375       obj->long_at_put(index, res);
1376       break;
1377     }
1378 
1379     case T_INT: case T_FLOAT: { // 4 bytes.
1380       assert(value->type() == T_INT, "Agreement.");
1381 #if INCLUDE_JVMCI
1382       // big_value allows encoding double/long value as e.g. [int = 0, long], and storing
1383       // the value in two array elements.
1384       bool big_value = false;
1385       if (i + 1 < sv->field_size() && type == T_INT) {
1386         if (sv->field_at(i)->is_location()) {
1387           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1388           if (type == Location::dbl || type == Location::lng) {
1389             big_value = true;
1390           }
1391         } else if (sv->field_at(i)->is_constant_int()) {
1392           ScopeValue* next_scope_field = sv->field_at(i + 1);
1393           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1394             big_value = true;
1395           }
1396         }
1397       }
1398 
1399       if (big_value) {
1400         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1401   #ifdef _LP64
1402         jlong res = (jlong)low->get_intptr();
1403   #else
1404         jlong res = jlong_from(value->get_jint(), low->get_jint());
1405   #endif
1406         obj->int_at_put(index, *(jint*)&res);
1407         obj->int_at_put(++index, *((jint*)&res + 1));
1408       } else {
1409         obj->int_at_put(index, value->get_jint());
1410       }
1411 #else // not INCLUDE_JVMCI
1412       obj->int_at_put(index, value->get_jint());
1413 #endif // INCLUDE_JVMCI
1414       break;
1415     }
1416 
1417     case T_SHORT:
1418       assert(value->type() == T_INT, "Agreement.");
1419       obj->short_at_put(index, (jshort)value->get_jint());
1420       break;
1421 
1422     case T_CHAR:
1423       assert(value->type() == T_INT, "Agreement.");
1424       obj->char_at_put(index, (jchar)value->get_jint());
1425       break;
1426 
1427     case T_BYTE: {
1428       assert(value->type() == T_INT, "Agreement.");
1429 #if INCLUDE_JVMCI
1430       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1431       int byte_count = count_number_of_bytes_for_entry(sv, i);
1432       byte_array_put(obj, value, index, byte_count);
1433       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1434       i += byte_count - 1; // Balance the loop counter.
1435       index += byte_count;
1436       // index has been updated so continue at top of loop
1437       continue;
1438 #else
1439       obj->byte_at_put(index, (jbyte)value->get_jint());
1440       break;
1441 #endif // INCLUDE_JVMCI
1442     }
1443 
1444     case T_BOOLEAN: {
1445       assert(value->type() == T_INT, "Agreement.");
1446       obj->bool_at_put(index, (jboolean)value->get_jint());
1447       break;
1448     }
1449 
1450       default:
1451         ShouldNotReachHere();
1452     }
1453     index++;
1454   }
1455 }
1456 
1457 // restore fields of an eliminated object array
1458 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1459   for (int i = 0; i < sv->field_size(); i++) {
1460     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1461     assert(value->type() == T_OBJECT, "object element expected");
1462     obj->obj_at_put(i, value->get_obj()());
1463   }
1464 }
1465 
1466 class ReassignedField {
1467 public:
1468   int _offset;
1469   BasicType _type;
1470 public:
1471   ReassignedField() {
1472     _offset = 0;
1473     _type = T_ILLEGAL;
1474   }
1475 };
1476 
1477 // Gets the fields of `klass` that are eliminated by escape analysis and need to be reassigned
1478 static GrowableArray<ReassignedField>* get_reassigned_fields(InstanceKlass* klass, GrowableArray<ReassignedField>* fields, bool is_jvmci) {
1479   InstanceKlass* super = klass->super();
1480   if (super != nullptr) {
1481     get_reassigned_fields(super, fields, is_jvmci);
1482   }
1483   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1484     if (!fs.access_flags().is_static() && (is_jvmci || !fs.field_flags().is_injected())) {
1485       ReassignedField field;
1486       field._offset = fs.offset();
1487       field._type = Signature::basic_type(fs.signature());
1488       fields->append(field);
1489     }
1490   }
1491   return fields;
1492 }
1493 
1494 // Restore fields of an eliminated instance object employing the same field order used by the compiler.
1495 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool is_jvmci) {
1496   GrowableArray<ReassignedField>* fields = get_reassigned_fields(klass, new GrowableArray<ReassignedField>(), is_jvmci);
1497   for (int i = 0; i < fields->length(); i++) {
1498     ScopeValue* scope_field = sv->field_at(svIndex);
1499     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1500     int offset = fields->at(i)._offset;
1501     BasicType type = fields->at(i)._type;
1502     switch (type) {
1503       case T_OBJECT: case T_ARRAY:
1504         assert(value->type() == T_OBJECT, "Agreement.");
1505         obj->obj_field_put(offset, value->get_obj()());
1506         break;
1507 
1508       case T_INT: case T_FLOAT: { // 4 bytes.
1509         assert(value->type() == T_INT, "Agreement.");
1510         bool big_value = false;
1511         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1512           if (scope_field->is_location()) {
1513             Location::Type type = ((LocationValue*) scope_field)->location().type();
1514             if (type == Location::dbl || type == Location::lng) {
1515               big_value = true;
1516             }
1517           }
1518           if (scope_field->is_constant_int()) {
1519             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1520             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1521               big_value = true;
1522             }
1523           }
1524         }
1525 
1526         if (big_value) {
1527           i++;
1528           assert(i < fields->length(), "second T_INT field needed");
1529           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1530         } else {
1531           obj->int_field_put(offset, value->get_jint());
1532           break;
1533         }
1534       }
1535         /* no break */
1536 
1537       case T_LONG: case T_DOUBLE: {
1538         assert(value->type() == T_INT, "Agreement.");
1539         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1540 #ifdef _LP64
1541         jlong res = (jlong)low->get_intptr();
1542 #else
1543         jlong res = jlong_from(value->get_jint(), low->get_jint());
1544 #endif
1545         obj->long_field_put(offset, res);
1546         break;
1547       }
1548 
1549       case T_SHORT:
1550         assert(value->type() == T_INT, "Agreement.");
1551         obj->short_field_put(offset, (jshort)value->get_jint());
1552         break;
1553 
1554       case T_CHAR:
1555         assert(value->type() == T_INT, "Agreement.");
1556         obj->char_field_put(offset, (jchar)value->get_jint());
1557         break;
1558 
1559       case T_BYTE:
1560         assert(value->type() == T_INT, "Agreement.");
1561         obj->byte_field_put(offset, (jbyte)value->get_jint());
1562         break;
1563 
1564       case T_BOOLEAN:
1565         assert(value->type() == T_INT, "Agreement.");
1566         obj->bool_field_put(offset, (jboolean)value->get_jint());
1567         break;
1568 
1569       default:
1570         ShouldNotReachHere();
1571     }
1572     svIndex++;
1573   }
1574   return svIndex;
1575 }
1576 
1577 // restore fields of all eliminated objects and arrays
1578 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool is_jvmci) {
1579   for (int i = 0; i < objects->length(); i++) {
1580     assert(objects->at(i)->is_object(), "invalid debug information");
1581     ObjectValue* sv = (ObjectValue*) objects->at(i);
1582     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1583     Handle obj = sv->value();
1584     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1585 #ifndef PRODUCT
1586     if (PrintDeoptimizationDetails) {
1587       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1588     }
1589 #endif // !PRODUCT
1590 
1591     if (obj.is_null()) {
1592       continue;
1593     }
1594 
1595 #if INCLUDE_JVMCI
1596     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1597     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1598       continue;
1599     }
1600 #endif // INCLUDE_JVMCI
1601     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1602       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1603       ScopeValue* payload = sv->field_at(0);
1604       if (payload->is_location() &&
1605           payload->as_LocationValue()->location().type() == Location::vector) {
1606 #ifndef PRODUCT
1607         if (PrintDeoptimizationDetails) {
1608           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1609           if (Verbose) {
1610             Handle obj = sv->value();
1611             k->oop_print_on(obj(), tty);
1612           }
1613         }
1614 #endif // !PRODUCT
1615         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1616       }
1617       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1618       // which could be restored after vector object allocation.
1619     }
1620     if (k->is_instance_klass()) {
1621       InstanceKlass* ik = InstanceKlass::cast(k);
1622       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), is_jvmci);
1623     } else if (k->is_typeArray_klass()) {
1624       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1625       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1626     } else if (k->is_objArray_klass()) {
1627       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1628     }
1629   }
1630   // These objects may escape when we return to Interpreter after deoptimization.
1631   // We need barrier so that stores that initialize these objects can't be reordered
1632   // with subsequent stores that make these objects accessible by other threads.
1633   OrderAccess::storestore();
1634 }
1635 
1636 
1637 // relock objects for which synchronization was eliminated
1638 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1639                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1640   bool relocked_objects = false;
1641   for (int i = 0; i < monitors->length(); i++) {
1642     MonitorInfo* mon_info = monitors->at(i);
1643     if (mon_info->eliminated()) {
1644       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1645       relocked_objects = true;
1646       if (!mon_info->owner_is_scalar_replaced()) {
1647         Handle obj(thread, mon_info->owner());
1648         markWord mark = obj->mark();
1649         if (exec_mode == Unpack_none) {
1650           if (mark.has_monitor()) {
1651             // defer relocking if the deoptee thread is currently waiting for obj
1652             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1653             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1654               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1655               if (UseObjectMonitorTable) {
1656                 mon_info->lock()->clear_object_monitor_cache();
1657               }
1658 #ifdef ASSERT
1659               else {
1660                 assert(!UseObjectMonitorTable, "must be");
1661                 mon_info->lock()->set_bad_monitor_deopt();
1662               }
1663 #endif
1664               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1665               continue;
1666             }
1667           }
1668         }
1669         BasicLock* lock = mon_info->lock();
1670         // We have lost information about the correct state of the lock stack.
1671         // Entering may create an invalid lock stack. Inflate the lock if it
1672         // was fast_locked to restore the valid lock stack.
1673         if (UseObjectMonitorTable) {
1674           // UseObjectMonitorTable expects the BasicLock cache to be either a
1675           // valid ObjectMonitor* or nullptr. Right now it is garbage, set it
1676           // to nullptr.
1677           lock->clear_object_monitor_cache();
1678         }
1679         ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1680         if (deoptee_thread->lock_stack().contains(obj())) {
1681             ObjectSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal,
1682                                                            deoptee_thread, thread);
1683         }
1684         assert(mon_info->owner()->is_locked(), "object must be locked now");
1685         assert(obj->mark().has_monitor(), "must be");
1686         assert(!deoptee_thread->lock_stack().contains(obj()), "must be");
1687         assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be");
1688       }
1689     }
1690   }
1691   return relocked_objects;
1692 }
1693 #endif // COMPILER2_OR_JVMCI
1694 
1695 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1696   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1697 
1698   // Register map for next frame (used for stack crawl).  We capture
1699   // the state of the deopt'ing frame's caller.  Thus if we need to
1700   // stuff a C2I adapter we can properly fill in the callee-save
1701   // register locations.
1702   frame caller = fr.sender(reg_map);
1703   int frame_size = pointer_delta_as_int(caller.sp(), fr.sp());
1704 
1705   frame sender = caller;
1706 
1707   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1708   // the vframeArray containing the unpacking information is allocated in the C heap.
1709   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1710   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1711 
1712   // Compare the vframeArray to the collected vframes
1713   assert(array->structural_compare(thread, chunk), "just checking");
1714 
1715   if (TraceDeoptimization) {
1716     ResourceMark rm;
1717     stringStream st;
1718     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1719     st.print("   ");
1720     fr.print_on(&st);
1721     st.print_cr("   Virtual frames (innermost/newest first):");
1722     for (int index = 0; index < chunk->length(); index++) {
1723       compiledVFrame* vf = chunk->at(index);
1724       int bci = vf->raw_bci();
1725       const char* code_name;
1726       if (bci == SynchronizationEntryBCI) {
1727         code_name = "sync entry";
1728       } else {
1729         Bytecodes::Code code = vf->method()->code_at(bci);
1730         code_name = Bytecodes::name(code);
1731       }
1732 
1733       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1734       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1735       st.print(" - %s", code_name);
1736       st.print_cr(" @ bci=%d ", bci);
1737     }
1738     tty->print_raw(st.freeze());
1739     tty->cr();
1740   }
1741 
1742   return array;
1743 }
1744 
1745 #if COMPILER2_OR_JVMCI
1746 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1747   // Reallocation of some scalar replaced objects failed. Record
1748   // that we need to pop all the interpreter frames for the
1749   // deoptimized compiled frame.
1750   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1751   thread->set_frames_to_pop_failed_realloc(array->frames());
1752   // Unlock all monitors here otherwise the interpreter will see a
1753   // mix of locked and unlocked monitors (because of failed
1754   // reallocations of synchronized objects) and be confused.
1755   for (int i = 0; i < array->frames(); i++) {
1756     MonitorChunk* monitors = array->element(i)->monitors();
1757     if (monitors != nullptr) {
1758       // Unlock in reverse order starting from most nested monitor.
1759       for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) {
1760         BasicObjectLock* src = monitors->at(j);
1761         if (src->obj() != nullptr) {
1762           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1763         }
1764       }
1765       array->element(i)->free_monitors();
1766 #ifdef ASSERT
1767       array->element(i)->set_removed_monitors();
1768 #endif
1769     }
1770   }
1771 }
1772 #endif
1773 
1774 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1775   assert(fr.can_be_deoptimized(), "checking frame type");
1776 
1777   nmethod* nm = fr.cb()->as_nmethod_or_null();
1778   assert(nm != nullptr, "only compiled methods can deopt");
1779   DeoptAction action = (nm->is_not_entrant() ? Action_make_not_entrant : Action_none);
1780   ScopeDesc* cur_sd = nm->scope_desc_at(fr.pc());
1781   Bytecodes::Code bc = (cur_sd->bci() == -1 ? Bytecodes::_nop // deopt on method entry
1782                                             : cur_sd->method()->java_code_at(cur_sd->bci()));
1783   gather_statistics(nm, reason, action, bc);
1784 
1785   if (LogCompilation && xtty != nullptr) {
1786     ttyLocker ttyl;
1787     xtty->begin_head("deoptimized thread='%zu' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1788     nm->log_identity(xtty);
1789     xtty->end_head();
1790     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1791       xtty->begin_elem("jvms bci='%d'", sd->bci());
1792       xtty->method(sd->method());
1793       xtty->end_elem();
1794       if (sd->is_top())  break;
1795     }
1796     xtty->tail("deoptimized");
1797   }
1798 
1799   Continuation::notify_deopt(thread, fr.sp());
1800 
1801   // Patch the compiled method so that when execution returns to it we will
1802   // deopt the execution state and return to the interpreter.
1803   fr.deoptimize(thread);
1804 }
1805 
1806 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1807   // Deoptimize only if the frame comes from compile code.
1808   // Do not deoptimize the frame which is already patched
1809   // during the execution of the loops below.
1810   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1811     return;
1812   }
1813   ResourceMark rm;
1814   deoptimize_single_frame(thread, fr, reason);
1815 }
1816 
1817 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm, bool make_not_entrant) {
1818   // there is no exception handler for this pc => deoptimize
1819   if (make_not_entrant) {
1820     nm->make_not_entrant(nmethod::InvalidationReason::MISSING_EXCEPTION_HANDLER);
1821   }
1822 
1823   // Use Deoptimization::deoptimize for all of its side-effects:
1824   // gathering traps statistics, logging...
1825   // it also patches the return pc but we do not care about that
1826   // since we return a continuation to the deopt_blob below.
1827   JavaThread* thread = JavaThread::current();
1828   RegisterMap reg_map(thread,
1829                       RegisterMap::UpdateMap::skip,
1830                       RegisterMap::ProcessFrames::include,
1831                       RegisterMap::WalkContinuation::skip);
1832   frame runtime_frame = thread->last_frame();
1833   frame caller_frame = runtime_frame.sender(&reg_map);
1834   assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method");
1835 
1836   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1837 
1838   if (!nm->is_compiled_by_jvmci()) {
1839     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1840   }
1841 
1842 #if INCLUDE_JVMCI
1843   // JVMCI support
1844   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1845   compiledVFrame* cvf = compiledVFrame::cast(vf);
1846   ScopeDesc* imm_scope = cvf->scope();
1847   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1848   if (imm_mdo != nullptr) {
1849     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
1850     MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
1851 
1852     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1853     if (pdata != nullptr && pdata->is_BitData()) {
1854       BitData* bit_data = (BitData*) pdata;
1855       bit_data->set_exception_seen();
1856     }
1857   }
1858 
1859 
1860   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true);
1861   if (trap_mdo != nullptr) {
1862     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1863   }
1864 #endif
1865 
1866   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1867 }
1868 
1869 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1870   assert(thread == Thread::current() ||
1871          thread->is_handshake_safe_for(Thread::current()) ||
1872          SafepointSynchronize::is_at_safepoint(),
1873          "can only deoptimize other thread at a safepoint/handshake");
1874   // Compute frame and register map based on thread and sp.
1875   RegisterMap reg_map(thread,
1876                       RegisterMap::UpdateMap::skip,
1877                       RegisterMap::ProcessFrames::include,
1878                       RegisterMap::WalkContinuation::skip);
1879   frame fr = thread->last_frame();
1880   while (fr.id() != id) {
1881     fr = fr.sender(&reg_map);
1882   }
1883   deoptimize(thread, fr, reason);
1884 }
1885 
1886 
1887 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1888   Thread* current = Thread::current();
1889   if (thread == current || thread->is_handshake_safe_for(current)) {
1890     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1891   } else {
1892     VM_DeoptimizeFrame deopt(thread, id, reason);
1893     VMThread::execute(&deopt);
1894   }
1895 }
1896 
1897 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1898   deoptimize_frame(thread, id, Reason_constraint);
1899 }
1900 
1901 // JVMTI PopFrame support
1902 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1903 {
1904   assert(thread == JavaThread::current(), "pre-condition");
1905   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1906 }
1907 JRT_END
1908 
1909 MethodData*
1910 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1911                                 bool create_if_missing) {
1912   JavaThread* THREAD = thread; // For exception macros.
1913   MethodData* mdo = m()->method_data();
1914   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1915     // Build an MDO.  Ignore errors like OutOfMemory;
1916     // that simply means we won't have an MDO to update.
1917     Method::build_profiling_method_data(m, THREAD);
1918     if (HAS_PENDING_EXCEPTION) {
1919       // Only metaspace OOM is expected. No Java code executed.
1920       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1921       CLEAR_PENDING_EXCEPTION;
1922     }
1923     mdo = m()->method_data();
1924   }
1925   return mdo;
1926 }
1927 
1928 #if COMPILER2_OR_JVMCI
1929 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1930   // In case of an unresolved klass entry, load the class.
1931   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1932   // and probably nowhere else.
1933   // Even that case would benefit from simply re-interpreting the
1934   // bytecode, without paying special attention to the class index.
1935   // So this whole "class index" feature should probably be removed.
1936 
1937   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1938     Klass* tk = constant_pool->klass_at(index, THREAD);
1939     if (HAS_PENDING_EXCEPTION) {
1940       // Exception happened during classloading. We ignore the exception here, since it
1941       // is going to be rethrown since the current activation is going to be deoptimized and
1942       // the interpreter will re-execute the bytecode.
1943       // Do not clear probable Async Exceptions.
1944       CLEAR_PENDING_NONASYNC_EXCEPTION;
1945       // Class loading called java code which may have caused a stack
1946       // overflow. If the exception was thrown right before the return
1947       // to the runtime the stack is no longer guarded. Reguard the
1948       // stack otherwise if we return to the uncommon trap blob and the
1949       // stack bang causes a stack overflow we crash.
1950       JavaThread* jt = THREAD;
1951       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1952       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1953     }
1954     return;
1955   }
1956 
1957   assert(!constant_pool->tag_at(index).is_symbol(),
1958          "no symbolic names here, please");
1959 }
1960 
1961 #if INCLUDE_JFR
1962 
1963 class DeoptReasonSerializer : public JfrSerializer {
1964  public:
1965   void serialize(JfrCheckpointWriter& writer) {
1966     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1967     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1968       writer.write_key((u8)i);
1969       writer.write(Deoptimization::trap_reason_name(i));
1970     }
1971   }
1972 };
1973 
1974 class DeoptActionSerializer : public JfrSerializer {
1975  public:
1976   void serialize(JfrCheckpointWriter& writer) {
1977     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1978     writer.write_count(nof_actions);
1979     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1980       writer.write_key(i);
1981       writer.write(Deoptimization::trap_action_name((int)i));
1982     }
1983   }
1984 };
1985 
1986 static void register_serializers() {
1987   static int critical_section = 0;
1988   if (1 == critical_section || AtomicAccess::cmpxchg(&critical_section, 0, 1) == 1) {
1989     return;
1990   }
1991   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1992   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1993 }
1994 
1995 static void post_deoptimization_event(nmethod* nm,
1996                                       const Method* method,
1997                                       int trap_bci,
1998                                       int instruction,
1999                                       Deoptimization::DeoptReason reason,
2000                                       Deoptimization::DeoptAction action) {
2001   assert(nm != nullptr, "invariant");
2002   assert(method != nullptr, "invariant");
2003   if (EventDeoptimization::is_enabled()) {
2004     static bool serializers_registered = false;
2005     if (!serializers_registered) {
2006       register_serializers();
2007       serializers_registered = true;
2008     }
2009     EventDeoptimization event;
2010     event.set_compileId(nm->compile_id());
2011     event.set_compiler(nm->compiler_type());
2012     event.set_method(method);
2013     event.set_lineNumber(method->line_number_from_bci(trap_bci));
2014     event.set_bci(trap_bci);
2015     event.set_instruction(instruction);
2016     event.set_reason(reason);
2017     event.set_action(action);
2018     event.commit();
2019   }
2020 }
2021 
2022 #endif // INCLUDE_JFR
2023 
2024 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
2025                               const char* reason_name, const char* reason_action) {
2026   LogTarget(Debug, deoptimization) lt;
2027   if (lt.is_enabled()) {
2028     LogStream ls(lt);
2029     bool is_osr = nm->is_osr_method();
2030     ls.print("cid=%4d %s%s%s level=%d",
2031              nm->compile_id(), (is_osr ? "osr" : "   "),
2032              (nm->is_aot() ? "aot " : ""),
2033              (nm->preloaded() ? "preload " : ""),
2034              nm->comp_level());
2035     ls.print(" %s", tm->name_and_sig_as_C_string());
2036     ls.print(" trap_bci=%d ", trap_bci);
2037     if (is_osr) {
2038       ls.print("osr_bci=%d ", nm->osr_entry_bci());
2039     }
2040     ls.print("%s ", reason_name);
2041     ls.print("%s ", reason_action);
2042     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2043              pc, fr.pc() - nm->code_begin());
2044   }
2045 }
2046 
2047 JRT_ENTRY_PROF(void, Deoptimization, uncommon_trap_inner, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2048   HandleMark hm(current);
2049 
2050   // uncommon_trap() is called at the beginning of the uncommon trap
2051   // handler. Note this fact before we start generating temporary frames
2052   // that can confuse an asynchronous stack walker. This counter is
2053   // decremented at the end of unpack_frames().
2054 
2055   current->inc_in_deopt_handler();
2056 
2057 #if INCLUDE_JVMCI
2058   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2059   RegisterMap reg_map(current,
2060                       RegisterMap::UpdateMap::include,
2061                       RegisterMap::ProcessFrames::include,
2062                       RegisterMap::WalkContinuation::skip);
2063 #else
2064   RegisterMap reg_map(current,
2065                       RegisterMap::UpdateMap::skip,
2066                       RegisterMap::ProcessFrames::include,
2067                       RegisterMap::WalkContinuation::skip);
2068 #endif
2069   frame stub_frame = current->last_frame();
2070   frame fr = stub_frame.sender(&reg_map);
2071 
2072   // Log a message
2073   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2074               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2075 
2076   {
2077     ResourceMark rm;
2078 
2079     DeoptReason reason = trap_request_reason(trap_request);
2080     DeoptAction action = trap_request_action(trap_request);
2081 #if INCLUDE_JVMCI
2082     int debug_id = trap_request_debug_id(trap_request);
2083 #endif
2084     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2085 
2086     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2087     compiledVFrame* cvf = compiledVFrame::cast(vf);
2088 
2089     nmethod* nm = cvf->code();
2090 
2091     ScopeDesc*      trap_scope  = cvf->scope();
2092 
2093     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2094 
2095     if (is_receiver_constraint_failure) {
2096       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2097                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2098                     JVMCI_ONLY(COMMA debug_id));
2099     }
2100 
2101     methodHandle    trap_method(current, trap_scope->method());
2102     int             trap_bci    = trap_scope->bci();
2103 #if INCLUDE_JVMCI
2104     jlong           speculation = current->pending_failed_speculation();
2105     if (nm->is_compiled_by_jvmci()) {
2106       nm->update_speculation(current);
2107     } else {
2108       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2109     }
2110 
2111     if (trap_bci == SynchronizationEntryBCI) {
2112       trap_bci = 0;
2113       current->set_pending_monitorenter(true);
2114     }
2115 
2116     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2117       current->set_pending_transfer_to_interpreter(true);
2118     }
2119 #endif
2120 
2121     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2122     // Record this event in the histogram.
2123     gather_statistics(nm, reason, action, trap_bc);
2124 
2125     // Ensure that we can record deopt. history:
2126     bool create_if_missing = ProfileTraps;
2127 
2128     methodHandle profiled_method;
2129 #if INCLUDE_JVMCI
2130     if (nm->is_compiled_by_jvmci()) {
2131       profiled_method = methodHandle(current, nm->method());
2132     } else {
2133       profiled_method = trap_method;
2134     }
2135 #else
2136     profiled_method = trap_method;
2137 #endif
2138 
2139     const char* nm_kind = nm->compile_kind();
2140     MethodData* trap_mdo =
2141       get_method_data(current, profiled_method, create_if_missing);
2142 
2143     { // Log Deoptimization event for JFR, UL and event system
2144       Method* tm = trap_method();
2145       const char* reason_name = trap_reason_name(reason);
2146       const char* reason_action = trap_action_name(action);
2147       intptr_t pc = p2i(fr.pc());
2148 
2149       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2150       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action);
2151       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s %s",
2152                                 reason_name, reason_action, pc,
2153                                 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name(), nm_kind);
2154     }
2155 
2156     // Print a bunch of diagnostics, if requested.
2157     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2158       ResourceMark rm;
2159 
2160       // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2161       // We must do this already now, since we cannot acquire this lock while
2162       // holding the tty lock (lock ordering by rank).
2163       MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2164 
2165       ttyLocker ttyl;
2166 
2167       char buf[100];
2168       if (xtty != nullptr) {
2169         xtty->begin_head("uncommon_trap thread='%zu' %s",
2170                          os::current_thread_id(),
2171                          format_trap_request(buf, sizeof(buf), trap_request));
2172 #if INCLUDE_JVMCI
2173         if (speculation != 0) {
2174           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2175         }
2176 #endif
2177         nm->log_identity(xtty);
2178       }
2179       Symbol* class_name = nullptr;
2180       bool unresolved = false;
2181       if (unloaded_class_index >= 0) {
2182         constantPoolHandle constants (current, trap_method->constants());
2183         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2184           class_name = constants->klass_name_at(unloaded_class_index);
2185           unresolved = true;
2186           if (xtty != nullptr)
2187             xtty->print(" unresolved='1'");
2188         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2189           class_name = constants->symbol_at(unloaded_class_index);
2190         }
2191         if (xtty != nullptr)
2192           xtty->name(class_name);
2193       }
2194       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2195         // Dump the relevant MDO state.
2196         // This is the deopt count for the current reason, any previous
2197         // reasons or recompiles seen at this point.
2198         int dcnt = trap_mdo->trap_count(reason);
2199         if (dcnt != 0)
2200           xtty->print(" count='%d'", dcnt);
2201 
2202         // We need to lock to read the ProfileData. But to keep the locks ordered, we need to
2203         // lock extra_data_lock before the tty lock.
2204         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2205         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2206         if (dos != 0) {
2207           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2208           if (trap_state_is_recompiled(dos)) {
2209             int recnt2 = trap_mdo->overflow_recompile_count();
2210             if (recnt2 != 0)
2211               xtty->print(" recompiles2='%d'", recnt2);
2212           }
2213         }
2214       }
2215       if (xtty != nullptr) {
2216         xtty->stamp();
2217         xtty->end_head();
2218       }
2219       if (TraceDeoptimization) {  // make noise on the tty
2220         stringStream st;
2221         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2222         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2223                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2224         st.print(" compiler=%s compile_id=%d kind=%s", nm->compiler_name(), nm->compile_id(), nm_kind);
2225 #if INCLUDE_JVMCI
2226         if (nm->is_compiled_by_jvmci()) {
2227           const char* installed_code_name = nm->jvmci_name();
2228           if (installed_code_name != nullptr) {
2229             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2230           }
2231         }
2232 #endif
2233         st.print(" (@" INTPTR_FORMAT ") thread=%zu reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2234                    p2i(fr.pc()),
2235                    os::current_thread_id(),
2236                    trap_reason_name(reason),
2237                    trap_action_name(action),
2238                    unloaded_class_index
2239 #if INCLUDE_JVMCI
2240                    , debug_id
2241 #endif
2242                    );
2243         if (class_name != nullptr) {
2244           st.print(unresolved ? " unresolved class: " : " symbol: ");
2245           class_name->print_symbol_on(&st);
2246         }
2247         st.cr();
2248         tty->print_raw(st.freeze());
2249       }
2250       if (xtty != nullptr) {
2251         // Log the precise location of the trap.
2252         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2253           xtty->begin_elem("jvms bci='%d'", sd->bci());
2254           xtty->method(sd->method());
2255           xtty->end_elem();
2256           if (sd->is_top())  break;
2257         }
2258         xtty->tail("uncommon_trap");
2259       }
2260     }
2261     // (End diagnostic printout.)
2262 
2263     if (is_receiver_constraint_failure) {
2264       fatal("missing receiver type check");
2265     }
2266 
2267     // Load class if necessary
2268     if (unloaded_class_index >= 0) {
2269       constantPoolHandle constants(current, trap_method->constants());
2270       load_class_by_index(constants, unloaded_class_index, THREAD);
2271     }
2272 
2273     // Flush the nmethod if necessary and desirable.
2274     //
2275     // We need to avoid situations where we are re-flushing the nmethod
2276     // because of a hot deoptimization site.  Repeated flushes at the same
2277     // point need to be detected by the compiler and avoided.  If the compiler
2278     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2279     // module must take measures to avoid an infinite cycle of recompilation
2280     // and deoptimization.  There are several such measures:
2281     //
2282     //   1. If a recompilation is ordered a second time at some site X
2283     //   and for the same reason R, the action is adjusted to 'reinterpret',
2284     //   to give the interpreter time to exercise the method more thoroughly.
2285     //   If this happens, the method's overflow_recompile_count is incremented.
2286     //
2287     //   2. If the compiler fails to reduce the deoptimization rate, then
2288     //   the method's overflow_recompile_count will begin to exceed the set
2289     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2290     //   is adjusted to 'make_not_compilable', and the method is abandoned
2291     //   to the interpreter.  This is a performance hit for hot methods,
2292     //   but is better than a disastrous infinite cycle of recompilations.
2293     //   (Actually, only the method containing the site X is abandoned.)
2294     //
2295     //   3. In parallel with the previous measures, if the total number of
2296     //   recompilations of a method exceeds the much larger set limit
2297     //   PerMethodRecompilationCutoff, the method is abandoned.
2298     //   This should only happen if the method is very large and has
2299     //   many "lukewarm" deoptimizations.  The code which enforces this
2300     //   limit is elsewhere (class nmethod, class Method).
2301     //
2302     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2303     // to recompile at each bytecode independently of the per-BCI cutoff.
2304     //
2305     // The decision to update code is up to the compiler, and is encoded
2306     // in the Action_xxx code.  If the compiler requests Action_none
2307     // no trap state is changed, no compiled code is changed, and the
2308     // computation suffers along in the interpreter.
2309     //
2310     // The other action codes specify various tactics for decompilation
2311     // and recompilation.  Action_maybe_recompile is the loosest, and
2312     // allows the compiled code to stay around until enough traps are seen,
2313     // and until the compiler gets around to recompiling the trapping method.
2314     //
2315     // The other actions cause immediate removal of the present code.
2316 
2317     // Traps caused by injected profile shouldn't pollute trap counts.
2318     bool injected_profile_trap = trap_method->has_injected_profile() &&
2319                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2320 
2321     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2322     bool make_not_entrant = false;
2323     bool make_not_compilable = false;
2324     bool reprofile = false;
2325     switch (action) {
2326     case Action_none:
2327       // Keep the old code.
2328       update_trap_state = false;
2329       break;
2330     case Action_maybe_recompile:
2331       // Do not need to invalidate the present code, but we can
2332       // initiate another
2333       // Start compiler without (necessarily) invalidating the nmethod.
2334       // The system will tolerate the old code, but new code should be
2335       // generated when possible.
2336       break;
2337     case Action_reinterpret:
2338       // Go back into the interpreter for a while, and then consider
2339       // recompiling form scratch.
2340       make_not_entrant = true;
2341       // Reset invocation counter for outer most method.
2342       // This will allow the interpreter to exercise the bytecodes
2343       // for a while before recompiling.
2344       // By contrast, Action_make_not_entrant is immediate.
2345       //
2346       // Note that the compiler will track null_check, null_assert,
2347       // range_check, and class_check events and log them as if they
2348       // had been traps taken from compiled code.  This will update
2349       // the MDO trap history so that the next compilation will
2350       // properly detect hot trap sites.
2351       reprofile = true;
2352       break;
2353     case Action_make_not_entrant:
2354       // Request immediate recompilation, and get rid of the old code.
2355       // Make them not entrant, so next time they are called they get
2356       // recompiled.  Unloaded classes are loaded now so recompile before next
2357       // time they are called.  Same for uninitialized.  The interpreter will
2358       // link the missing class, if any.
2359       make_not_entrant = true;
2360       break;
2361     case Action_make_not_compilable:
2362       // Give up on compiling this method at all.
2363       make_not_entrant = true;
2364       make_not_compilable = true;
2365       break;
2366     default:
2367       ShouldNotReachHere();
2368     }
2369 
2370 #if INCLUDE_JVMCI
2371     // Deoptimization count is used by the CompileBroker to reason about compilations
2372     // it requests so do not pollute the count for deoptimizations in non-default (i.e.
2373     // non-CompilerBroker) compilations.
2374     if (nm->jvmci_skip_profile_deopt()) {
2375       update_trap_state = false;
2376     }
2377 #endif
2378     // Setting +ProfileTraps fixes the following, on all platforms:
2379     // The result is infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2380     // recompile relies on a MethodData* to record heroic opt failures.
2381 
2382     // Whether the interpreter is producing MDO data or not, we also need
2383     // to use the MDO to detect hot deoptimization points and control
2384     // aggressive optimization.
2385     bool inc_recompile_count = false;
2386 
2387     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2388     ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr,
2389                               (trap_mdo != nullptr),
2390                               Mutex::_no_safepoint_check_flag);
2391     ProfileData* pdata = nullptr;
2392     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2393       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2394       uint this_trap_count = 0;
2395       bool maybe_prior_trap = false;
2396       bool maybe_prior_recompile = false;
2397 
2398       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2399 #if INCLUDE_JVMCI
2400                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2401 #endif
2402                                    nm->method(),
2403                                    //outputs:
2404                                    this_trap_count,
2405                                    maybe_prior_trap,
2406                                    maybe_prior_recompile);
2407       // Because the interpreter also counts null, div0, range, and class
2408       // checks, these traps from compiled code are double-counted.
2409       // This is harmless; it just means that the PerXTrapLimit values
2410       // are in effect a little smaller than they look.
2411 
2412       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2413       if (per_bc_reason != Reason_none) {
2414         // Now take action based on the partially known per-BCI history.
2415         if (maybe_prior_trap
2416             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2417           // If there are too many traps at this BCI, force a recompile.
2418           // This will allow the compiler to see the limit overflow, and
2419           // take corrective action, if possible.  The compiler generally
2420           // does not use the exact PerBytecodeTrapLimit value, but instead
2421           // changes its tactics if it sees any traps at all.  This provides
2422           // a little hysteresis, delaying a recompile until a trap happens
2423           // several times.
2424           //
2425           // Actually, since there is only one bit of counter per BCI,
2426           // the possible per-BCI counts are {0,1,(per-method count)}.
2427           // This produces accurate results if in fact there is only
2428           // one hot trap site, but begins to get fuzzy if there are
2429           // many sites.  For example, if there are ten sites each
2430           // trapping two or more times, they each get the blame for
2431           // all of their traps.
2432           make_not_entrant = true;
2433         }
2434 
2435         // Detect repeated recompilation at the same BCI, and enforce a limit.
2436         if (make_not_entrant && maybe_prior_recompile) {
2437           // More than one recompile at this point.
2438           inc_recompile_count = maybe_prior_trap;
2439         }
2440       } else {
2441         // For reasons which are not recorded per-bytecode, we simply
2442         // force recompiles unconditionally.
2443         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2444         make_not_entrant = true;
2445       }
2446 
2447       // Go back to the compiler if there are too many traps in this method.
2448       if (this_trap_count >= per_method_trap_limit(reason)) {
2449         // If there are too many traps in this method, force a recompile.
2450         // This will allow the compiler to see the limit overflow, and
2451         // take corrective action, if possible.
2452         // (This condition is an unlikely backstop only, because the
2453         // PerBytecodeTrapLimit is more likely to take effect first,
2454         // if it is applicable.)
2455         make_not_entrant = true;
2456       }
2457 
2458       // Here's more hysteresis:  If there has been a recompile at
2459       // this trap point already, run the method in the interpreter
2460       // for a while to exercise it more thoroughly.
2461       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2462         reprofile = true;
2463       }
2464     }
2465 
2466     // Take requested actions on the method:
2467 
2468     // Recompile
2469     if (make_not_entrant) {
2470       if (!nm->make_not_entrant(nmethod::InvalidationReason::UNCOMMON_TRAP)) {
2471         return; // the call did not change nmethod's state
2472       }
2473 
2474       if (pdata != nullptr) {
2475         // Record the recompilation event, if any.
2476         int tstate0 = pdata->trap_state();
2477         int tstate1 = trap_state_set_recompiled(tstate0, true);
2478         if (tstate1 != tstate0)
2479           pdata->set_trap_state(tstate1);
2480       }
2481 
2482       // For code aging we count traps separately here, using make_not_entrant()
2483       // as a guard against simultaneous deopts in multiple threads.
2484       if (reason == Reason_tenured && trap_mdo != nullptr) {
2485         trap_mdo->inc_tenure_traps();
2486       }
2487     }
2488     if (inc_recompile_count) {
2489       trap_mdo->inc_overflow_recompile_count();
2490       if ((uint)trap_mdo->overflow_recompile_count() >
2491           (uint)PerBytecodeRecompilationCutoff) {
2492         // Give up on the method containing the bad BCI.
2493         if (trap_method() == nm->method()) {
2494           make_not_compilable = true;
2495         } else {
2496           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2497           // But give grace to the enclosing nm->method().
2498         }
2499       }
2500     }
2501 
2502     // Reprofile
2503     if (reprofile) {
2504       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2505     }
2506 
2507     // Give up compiling
2508     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2509       assert(make_not_entrant, "consistent");
2510       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2511     }
2512 
2513     if (ProfileExceptionHandlers && trap_mdo != nullptr) {
2514       BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci);
2515       if (exception_handler_data != nullptr) {
2516         // uncommon trap at the start of an exception handler.
2517         // C2 generates these for un-entered exception handlers.
2518         // mark the handler as entered to avoid generating
2519         // another uncommon trap the next time the handler is compiled
2520         exception_handler_data->set_exception_handler_entered();
2521       }
2522     }
2523 
2524   } // Free marked resources
2525 
2526 }
2527 JRT_END
2528 
2529 ProfileData*
2530 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2531                                          int trap_bci,
2532                                          Deoptimization::DeoptReason reason,
2533                                          bool update_total_trap_count,
2534 #if INCLUDE_JVMCI
2535                                          bool is_osr,
2536 #endif
2537                                          Method* compiled_method,
2538                                          //outputs:
2539                                          uint& ret_this_trap_count,
2540                                          bool& ret_maybe_prior_trap,
2541                                          bool& ret_maybe_prior_recompile) {
2542   trap_mdo->check_extra_data_locked();
2543 
2544   bool maybe_prior_trap = false;
2545   bool maybe_prior_recompile = false;
2546   uint this_trap_count = 0;
2547   if (update_total_trap_count) {
2548     uint idx = reason;
2549 #if INCLUDE_JVMCI
2550     if (is_osr) {
2551       // Upper half of history array used for traps in OSR compilations
2552       idx += Reason_TRAP_HISTORY_LENGTH;
2553     }
2554 #endif
2555     uint prior_trap_count = trap_mdo->trap_count(idx);
2556     this_trap_count  = trap_mdo->inc_trap_count(idx);
2557 
2558     // If the runtime cannot find a place to store trap history,
2559     // it is estimated based on the general condition of the method.
2560     // If the method has ever been recompiled, or has ever incurred
2561     // a trap with the present reason , then this BCI is assumed
2562     // (pessimistically) to be the culprit.
2563     maybe_prior_trap      = (prior_trap_count != 0);
2564     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2565   }
2566   ProfileData* pdata = nullptr;
2567 
2568 
2569   // For reasons which are recorded per bytecode, we check per-BCI data.
2570   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2571   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2572   if (per_bc_reason != Reason_none) {
2573     // Find the profile data for this BCI.  If there isn't one,
2574     // try to allocate one from the MDO's set of spares.
2575     // This will let us detect a repeated trap at this point.
2576     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2577 
2578     if (pdata != nullptr) {
2579       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2580         if (LogCompilation && xtty != nullptr) {
2581           ttyLocker ttyl;
2582           // no more room for speculative traps in this MDO
2583           xtty->elem("speculative_traps_oom");
2584         }
2585       }
2586       // Query the trap state of this profile datum.
2587       int tstate0 = pdata->trap_state();
2588       if (!trap_state_has_reason(tstate0, per_bc_reason))
2589         maybe_prior_trap = false;
2590       if (!trap_state_is_recompiled(tstate0))
2591         maybe_prior_recompile = false;
2592 
2593       // Update the trap state of this profile datum.
2594       int tstate1 = tstate0;
2595       // Record the reason.
2596       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2597       // Store the updated state on the MDO, for next time.
2598       if (tstate1 != tstate0)
2599         pdata->set_trap_state(tstate1);
2600     } else {
2601       if (LogCompilation && xtty != nullptr) {
2602         ttyLocker ttyl;
2603         // Missing MDP?  Leave a small complaint in the log.
2604         xtty->elem("missing_mdp bci='%d'", trap_bci);
2605       }
2606     }
2607   }
2608 
2609   // Return results:
2610   ret_this_trap_count = this_trap_count;
2611   ret_maybe_prior_trap = maybe_prior_trap;
2612   ret_maybe_prior_recompile = maybe_prior_recompile;
2613   return pdata;
2614 }
2615 
2616 void
2617 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2618   ResourceMark rm;
2619   // Ignored outputs:
2620   uint ignore_this_trap_count;
2621   bool ignore_maybe_prior_trap;
2622   bool ignore_maybe_prior_recompile;
2623   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2624   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2625   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2626 
2627   // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2628   MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2629 
2630   query_update_method_data(trap_mdo, trap_bci,
2631                            (DeoptReason)reason,
2632                            update_total_counts,
2633 #if INCLUDE_JVMCI
2634                            false,
2635 #endif
2636                            nullptr,
2637                            ignore_this_trap_count,
2638                            ignore_maybe_prior_trap,
2639                            ignore_maybe_prior_recompile);
2640 }
2641 
2642 PROF_ENTRY(Deoptimization::UnrollBlock*, Deoptimization, uncommon_trap, Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode))
2643   // Enable WXWrite: current function is called from methods compiled by C2 directly
2644   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2645 
2646   // Still in Java no safepoints
2647   {
2648     // This enters VM and may safepoint
2649     uncommon_trap_inner(current, trap_request);
2650   }
2651   HandleMark hm(current);
2652   return fetch_unroll_info_helper(current, exec_mode);
2653 PROF_END
2654 
2655 // Local derived constants.
2656 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2657 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2658 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2659 
2660 //---------------------------trap_state_reason---------------------------------
2661 Deoptimization::DeoptReason
2662 Deoptimization::trap_state_reason(int trap_state) {
2663   // This assert provides the link between the width of DataLayout::trap_bits
2664   // and the encoding of "recorded" reasons.  It ensures there are enough
2665   // bits to store all needed reasons in the per-BCI MDO profile.
2666   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2667   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2668   trap_state -= recompile_bit;
2669   if (trap_state == DS_REASON_MASK) {
2670     return Reason_many;
2671   } else {
2672     assert((int)Reason_none == 0, "state=0 => Reason_none");
2673     return (DeoptReason)trap_state;
2674   }
2675 }
2676 //-------------------------trap_state_has_reason-------------------------------
2677 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2678   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2679   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2680   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2681   trap_state -= recompile_bit;
2682   if (trap_state == DS_REASON_MASK) {
2683     return -1;  // true, unspecifically (bottom of state lattice)
2684   } else if (trap_state == reason) {
2685     return 1;   // true, definitely
2686   } else if (trap_state == 0) {
2687     return 0;   // false, definitely (top of state lattice)
2688   } else {
2689     return 0;   // false, definitely
2690   }
2691 }
2692 //-------------------------trap_state_add_reason-------------------------------
2693 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2694   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2695   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2696   trap_state -= recompile_bit;
2697   if (trap_state == DS_REASON_MASK) {
2698     return trap_state + recompile_bit;     // already at state lattice bottom
2699   } else if (trap_state == reason) {
2700     return trap_state + recompile_bit;     // the condition is already true
2701   } else if (trap_state == 0) {
2702     return reason + recompile_bit;          // no condition has yet been true
2703   } else {
2704     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2705   }
2706 }
2707 //-----------------------trap_state_is_recompiled------------------------------
2708 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2709   return (trap_state & DS_RECOMPILE_BIT) != 0;
2710 }
2711 //-----------------------trap_state_set_recompiled-----------------------------
2712 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2713   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2714   else    return trap_state & ~DS_RECOMPILE_BIT;
2715 }
2716 //---------------------------format_trap_state---------------------------------
2717 // This is used for debugging and diagnostics, including LogFile output.
2718 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2719                                               int trap_state) {
2720   assert(buflen > 0, "sanity");
2721   DeoptReason reason      = trap_state_reason(trap_state);
2722   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2723   // Re-encode the state from its decoded components.
2724   int decoded_state = 0;
2725   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2726     decoded_state = trap_state_add_reason(decoded_state, reason);
2727   if (recomp_flag)
2728     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2729   // If the state re-encodes properly, format it symbolically.
2730   // Because this routine is used for debugging and diagnostics,
2731   // be robust even if the state is a strange value.
2732   size_t len;
2733   if (decoded_state != trap_state) {
2734     // Random buggy state that doesn't decode??
2735     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2736   } else {
2737     len = jio_snprintf(buf, buflen, "%s%s",
2738                        trap_reason_name(reason),
2739                        recomp_flag ? " recompiled" : "");
2740   }
2741   return buf;
2742 }
2743 
2744 
2745 //--------------------------------statics--------------------------------------
2746 const char* Deoptimization::_trap_reason_name[] = {
2747   // Note:  Keep this in sync. with enum DeoptReason.
2748   "none",
2749   "null_check",
2750   "null_assert" JVMCI_ONLY("_or_unreached0"),
2751   "range_check",
2752   "class_check",
2753   "array_check",
2754   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2755   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2756   "profile_predicate",
2757   "auto_vectorization_check",
2758   "unloaded",
2759   "uninitialized",
2760   "initialized",
2761   "unreached",
2762   "unhandled",
2763   "constraint",
2764   "div0_check",
2765   "age",
2766   "predicate",
2767   "loop_limit_check",
2768   "speculate_class_check",
2769   "speculate_null_check",
2770   "speculate_null_assert",
2771   "unstable_if",
2772   "unstable_fused_if",
2773   "receiver_constraint",
2774   "not_compiled_exception_handler",
2775   "short_running_loop" JVMCI_ONLY("_or_aliasing"),
2776 #if INCLUDE_JVMCI
2777   "transfer_to_interpreter",
2778   "unresolved",
2779   "jsr_mismatch",
2780 #endif
2781   "tenured"
2782 };
2783 const char* Deoptimization::_trap_action_name[] = {
2784   // Note:  Keep this in sync. with enum DeoptAction.
2785   "none",
2786   "maybe_recompile",
2787   "reinterpret",
2788   "make_not_entrant",
2789   "make_not_compilable"
2790 };
2791 
2792 const char* Deoptimization::trap_reason_name(int reason) {
2793   // Check that every reason has a name
2794   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2795 
2796   if (reason == Reason_many)  return "many";
2797   if ((uint)reason < Reason_LIMIT)
2798     return _trap_reason_name[reason];
2799   static char buf[20];
2800   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2801   return buf;
2802 }
2803 const char* Deoptimization::trap_action_name(int action) {
2804   // Check that every action has a name
2805   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2806 
2807   if ((uint)action < Action_LIMIT)
2808     return _trap_action_name[action];
2809   static char buf[20];
2810   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2811   return buf;
2812 }
2813 
2814 // This is used for debugging and diagnostics, including LogFile output.
2815 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2816                                                 int trap_request) {
2817   jint unloaded_class_index = trap_request_index(trap_request);
2818   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2819   const char* action = trap_action_name(trap_request_action(trap_request));
2820 #if INCLUDE_JVMCI
2821   int debug_id = trap_request_debug_id(trap_request);
2822 #endif
2823   size_t len;
2824   if (unloaded_class_index < 0) {
2825     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2826                        reason, action
2827 #if INCLUDE_JVMCI
2828                        ,debug_id
2829 #endif
2830                        );
2831   } else {
2832     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2833                        reason, action, unloaded_class_index
2834 #if INCLUDE_JVMCI
2835                        ,debug_id
2836 #endif
2837                        );
2838   }
2839   return buf;
2840 }
2841 
2842 juint Deoptimization::_deoptimization_hist
2843         [1 + 4 + 5] // total + online + archived
2844         [Deoptimization::Reason_LIMIT]
2845     [1 + Deoptimization::Action_LIMIT]
2846         [Deoptimization::BC_CASE_LIMIT]
2847   = {0};
2848 
2849 enum {
2850   LSB_BITS = 8,
2851   LSB_MASK = right_n_bits(LSB_BITS)
2852 };
2853 
2854 static void update(juint* cases, Bytecodes::Code bc) {
2855   juint* bc_counter_addr = nullptr;
2856   juint  bc_counter      = 0;
2857   // Look for an unused counter, or an exact match to this BC.
2858   if (bc != Bytecodes::_illegal) {
2859     for (int bc_case = 0; bc_case < Deoptimization::BC_CASE_LIMIT; bc_case++) {
2860       juint* counter_addr = &cases[bc_case];
2861       juint  counter = *counter_addr;
2862       if ((counter == 0 && bc_counter_addr == nullptr)
2863           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2864         // this counter is either free or is already devoted to this BC
2865         bc_counter_addr = counter_addr;
2866         bc_counter = counter | bc;
2867       }
2868     }
2869   }
2870   if (bc_counter_addr == nullptr) {
2871     // Overflow, or no given bytecode.
2872     bc_counter_addr = &cases[Deoptimization::BC_CASE_LIMIT-1];
2873     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2874   }
2875   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2876 }
2877 
2878 
2879 void Deoptimization::gather_statistics(nmethod* nm, DeoptReason reason, DeoptAction action,
2880                                        Bytecodes::Code bc) {
2881   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2882   assert(action >= 0 && action < Action_LIMIT, "oob");
2883   _deoptimization_hist[0][Reason_none][0][0] += 1;  // total
2884   _deoptimization_hist[0][reason][0][0]      += 1;  // per-reason total
2885 
2886   update(_deoptimization_hist[0][reason][1+action], bc);
2887 
2888   uint lvl = nm->comp_level() + (nm->is_aot() ? 4 : 0) + (nm->preloaded() ? 1 : 0);
2889   _deoptimization_hist[lvl][Reason_none][0][0] += 1;  // total
2890   _deoptimization_hist[lvl][reason][0][0]      += 1;  // per-reason total
2891   update(_deoptimization_hist[lvl][reason][1+action], bc);
2892 }
2893 
2894 jint Deoptimization::total_deoptimization_count() {
2895   return _deoptimization_hist[0][Reason_none][0][0];
2896 }
2897 
2898 // Get the deopt count for a specific reason and a specific action. If either
2899 // one of 'reason' or 'action' is null, the method returns the sum of all
2900 // deoptimizations with the specific 'action' or 'reason' respectively.
2901 // If both arguments are null, the method returns the total deopt count.
2902 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2903   if (reason_str == nullptr && action_str == nullptr) {
2904     return total_deoptimization_count();
2905   }
2906   juint counter = 0;
2907   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2908     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2909       for (int action = 0; action < Action_LIMIT; action++) {
2910         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2911           juint* cases = _deoptimization_hist[0][reason][1+action];
2912           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2913             counter += cases[bc_case] >> LSB_BITS;
2914           }
2915         }
2916       }
2917     }
2918   }
2919   return counter;
2920 }
2921 
2922 void Deoptimization::print_statistics() {
2923   ttyLocker ttyl;
2924   if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2925   tty->print_cr("Deoptimization traps recorded:");
2926   print_statistics_on(tty);
2927   if (xtty != nullptr)  xtty->tail("statistics");
2928 }
2929 
2930 void Deoptimization::print_statistics_on(const char* title, int lvl, outputStream* st) {
2931   juint total = _deoptimization_hist[lvl][Reason_none][0][0];
2932   juint account = total;
2933 #define PRINT_STAT_LINE(name, r) \
2934       st->print_cr("    %d (%4.1f%%) %s", (int)(r), ((r) == total ? 100.0 : (((r) * 100.0) / total)), name);
2935   if (total > 0) {
2936     st->print("  %s: ", title);
2937     PRINT_STAT_LINE("total", total);
2938     // For each non-zero entry in the histogram, print the reason,
2939     // the action, and (if specifically known) the type of bytecode.
2940     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2941       for (int action = 0; action < Action_LIMIT; action++) {
2942         juint* cases = Deoptimization::_deoptimization_hist[lvl][reason][1+action];
2943         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2944           juint counter = cases[bc_case];
2945           if (counter != 0) {
2946             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2947             const char* bc_name = "other";
2948             if (bc_case == (BC_CASE_LIMIT-1) && bc == Bytecodes::_nop) {
2949               // overwritten
2950             } else if (Bytecodes::is_defined(bc)) {
2951               bc_name = Bytecodes::name(bc);
2952             }
2953             juint r = counter >> LSB_BITS;
2954             st->print_cr("    %-34s %16s %16s: " UINT32_FORMAT_W(5) " (%4.1f%%)",
2955                          trap_reason_name(reason), trap_action_name(action), bc_name,
2956                          r, (r * 100.0) / total);
2957             account -= r;
2958           }
2959         }
2960       }
2961     }
2962     if (account != 0) {
2963       PRINT_STAT_LINE("unaccounted", account);
2964     }
2965 #undef PRINT_STAT_LINE
2966   }
2967 }
2968 
2969 void Deoptimization::print_statistics_on(outputStream* st) {
2970 //  print_statistics_on("Total", 0, st);
2971   print_statistics_on("Tier1", 1, st);
2972   print_statistics_on("Tier2", 2, st);
2973   print_statistics_on("Tier3", 3, st);
2974   print_statistics_on("Tier4", 4, st);
2975 
2976   print_statistics_on("AOT Code Tier1", 5, st);
2977   print_statistics_on("AOT Code Tier2", 6, st);
2978   print_statistics_on("AOT Code Tier4", 8, st);
2979   print_statistics_on("AOT Code Tier5 (preloaded)", 9, st);
2980 }
2981 
2982 #define DO_COUNTERS(macro) \
2983   macro(Deoptimization, fetch_unroll_info)   \
2984   macro(Deoptimization, unpack_frames) \
2985   macro(Deoptimization, uncommon_trap_inner) \
2986   macro(Deoptimization, uncommon_trap)
2987 
2988 #define INIT_COUNTER(sub, name) \
2989   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_RT, #sub "::" #name) \
2990   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_RT, #sub "::" #name "_count");
2991 
2992 void Deoptimization::init_counters() {
2993   if (ProfileRuntimeCalls && UsePerfData) {
2994     EXCEPTION_MARK;
2995 
2996     DO_COUNTERS(INIT_COUNTER)
2997 
2998     if (HAS_PENDING_EXCEPTION) {
2999       vm_exit_during_initialization("jvm_perf_init failed unexpectedly");
3000     }
3001   }
3002 }
3003 #undef INIT_COUNTER
3004 
3005 #define PRINT_COUNTER(sub, name) { \
3006   jlong count = _perf_##sub##_##name##_count->get_value(); \
3007   if (count > 0) { \
3008     st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
3009                  _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
3010                  _perf_##sub##_##name##_timer->thread_counter_value_us(), \
3011                  count); \
3012   }}
3013 
3014 void Deoptimization::print_counters_on(outputStream* st) {
3015   if (ProfileRuntimeCalls && UsePerfData) {
3016     DO_COUNTERS(PRINT_COUNTER)
3017   } else {
3018     st->print_cr("  Deoptimization: no info (%s is disabled)", (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData"));
3019   }
3020 }
3021 
3022 #undef PRINT_COUNTER
3023 #undef DO_COUNTERS
3024 
3025 #else // COMPILER2_OR_JVMCI
3026 
3027 
3028 // Stubs for C1 only system.
3029 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
3030   return false;
3031 }
3032 
3033 const char* Deoptimization::trap_reason_name(int reason) {
3034   return "unknown";
3035 }
3036 
3037 jint Deoptimization::total_deoptimization_count() {
3038   return 0;
3039 }
3040 
3041 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
3042   return 0;
3043 }
3044 
3045 void Deoptimization::print_statistics() {
3046   // no output
3047 }
3048 
3049 void
3050 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
3051   // no update
3052 }
3053 
3054 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
3055   return 0;
3056 }
3057 
3058 void Deoptimization::gather_statistics(nmethod* nm, DeoptReason reason, DeoptAction action,
3059                                        Bytecodes::Code bc) {
3060   // no update
3061 }
3062 
3063 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
3064                                               int trap_state) {
3065   jio_snprintf(buf, buflen, "#%d", trap_state);
3066   return buf;
3067 }
3068 
3069 void Deoptimization::init_counters() {
3070   // nothing to do
3071 }
3072 
3073 void Deoptimization::print_counters_on(outputStream* st) {
3074   // no output
3075 }
3076 
3077 void Deoptimization::print_statistics_on(outputStream* st) {
3078   // no output
3079 }
3080 
3081 #endif // COMPILER2_OR_JVMCI