1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compilationPolicy.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/memAllocator.hpp"
  39 #include "interpreter/bytecode.hpp"
  40 #include "interpreter/bytecodeStream.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvm.h"
  44 #include "logging/log.hpp"
  45 #include "logging/logLevel.hpp"
  46 #include "logging/logMessage.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/constantPool.hpp"
  53 #include "oops/fieldStreams.inline.hpp"
  54 #include "oops/method.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/objArrayOop.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvmtiDeferredUpdates.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "prims/methodHandles.hpp"
  64 #include "prims/vectorSupport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/basicLock.inline.hpp"
  67 #include "runtime/continuation.hpp"
  68 #include "runtime/continuationEntry.inline.hpp"
  69 #include "runtime/deoptimization.hpp"
  70 #include "runtime/escapeBarrier.hpp"
  71 #include "runtime/fieldDescriptor.hpp"
  72 #include "runtime/fieldDescriptor.inline.hpp"
  73 #include "runtime/frame.inline.hpp"
  74 #include "runtime/handles.inline.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/javaThread.hpp"
  77 #include "runtime/jniHandles.inline.hpp"
  78 #include "runtime/keepStackGCProcessed.hpp"
  79 #include "runtime/lightweightSynchronizer.hpp"
  80 #include "runtime/lockStack.inline.hpp"
  81 #include "runtime/objectMonitor.inline.hpp"
  82 #include "runtime/osThread.hpp"
  83 #include "runtime/perfData.inline.hpp"
  84 #include "runtime/safepointVerifiers.hpp"
  85 #include "runtime/sharedRuntime.hpp"
  86 #include "runtime/signature.hpp"
  87 #include "runtime/stackFrameStream.inline.hpp"
  88 #include "runtime/stackValue.hpp"
  89 #include "runtime/stackWatermarkSet.hpp"
  90 #include "runtime/stubRoutines.hpp"
  91 #include "runtime/synchronizer.inline.hpp"
  92 #include "runtime/threadSMR.hpp"
  93 #include "runtime/threadWXSetters.inline.hpp"
  94 #include "runtime/vframe.hpp"
  95 #include "runtime/vframeArray.hpp"
  96 #include "runtime/vframe_hp.hpp"
  97 #include "runtime/vmOperations.hpp"
  98 #include "services/management.hpp"
  99 #include "utilities/checkedCast.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/growableArray.hpp"
 102 #include "utilities/macros.hpp"
 103 #include "utilities/preserveException.hpp"
 104 #include "utilities/xmlstream.hpp"
 105 #if INCLUDE_JFR
 106 #include "jfr/jfrEvents.hpp"
 107 #include "jfr/metadata/jfrSerializer.hpp"
 108 #endif
 109 
 110 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 111 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 112 bool     DeoptimizationScope::_committing_in_progress = false;
 113 
 114 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 115   DEBUG_ONLY(_deopted = false;)
 116 
 117   MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
 118   // If there is nothing to deopt _required_gen is the same as comitted.
 119   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 120 }
 121 
 122 DeoptimizationScope::~DeoptimizationScope() {
 123   assert(_deopted, "Deopt not executed");
 124 }
 125 
 126 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) {
 127   if (!nm->can_be_deoptimized()) {
 128     return;
 129   }
 130 
 131   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 132 
 133   // If it's already marked but we still need it to be deopted.
 134   if (nm->is_marked_for_deoptimization()) {
 135     dependent(nm);
 136     return;
 137   }
 138 
 139   nmethod::DeoptimizationStatus status =
 140     inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate;
 141   Atomic::store(&nm->_deoptimization_status, status);
 142 
 143   // Make sure active is not committed
 144   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 145   assert(nm->_deoptimization_generation == 0, "Is already marked");
 146 
 147   nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 148   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 149 }
 150 
 151 void DeoptimizationScope::dependent(nmethod* nm) {
 152   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 153 
 154   // A method marked by someone else may have a _required_gen lower than what we marked with.
 155   // Therefore only store it if it's higher than _required_gen.
 156   if (_required_gen < nm->_deoptimization_generation) {
 157     _required_gen = nm->_deoptimization_generation;
 158   }
 159 }
 160 
 161 void DeoptimizationScope::deoptimize_marked() {
 162   assert(!_deopted, "Already deopted");
 163 
 164   // We are not alive yet.
 165   if (!Universe::is_fully_initialized()) {
 166     DEBUG_ONLY(_deopted = true;)
 167     return;
 168   }
 169 
 170   // Safepoints are a special case, handled here.
 171   if (SafepointSynchronize::is_at_safepoint()) {
 172     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 173     DeoptimizationScope::_active_deopt_gen++;
 174     Deoptimization::deoptimize_all_marked();
 175     DEBUG_ONLY(_deopted = true;)
 176     return;
 177   }
 178 
 179   uint64_t comitting = 0;
 180   bool wait = false;
 181   while (true) {
 182     {
 183       ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 184 
 185       // First we check if we or someone else already deopted the gen we want.
 186       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 187         DEBUG_ONLY(_deopted = true;)
 188         return;
 189       }
 190       if (!_committing_in_progress) {
 191         // The version we are about to commit.
 192         comitting = DeoptimizationScope::_active_deopt_gen;
 193         // Make sure new marks use a higher gen.
 194         DeoptimizationScope::_active_deopt_gen++;
 195         _committing_in_progress = true;
 196         wait = false;
 197       } else {
 198         // Another thread is handshaking and committing a gen.
 199         wait = true;
 200       }
 201     }
 202     if (wait) {
 203       // Wait and let the concurrent handshake be performed.
 204       ThreadBlockInVM tbivm(JavaThread::current());
 205       os::naked_yield();
 206     } else {
 207       // Performs the handshake.
 208       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 209       DEBUG_ONLY(_deopted = true;)
 210       {
 211         ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 212 
 213         // Make sure that committed doesn't go backwards.
 214         // Should only happen if we did a deopt during a safepoint above.
 215         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 216           DeoptimizationScope::_committed_deopt_gen = comitting;
 217         }
 218         _committing_in_progress = false;
 219 
 220         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 221 
 222         return;
 223       }
 224     }
 225   }
 226 }
 227 
 228 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 229                                          int  caller_adjustment,
 230                                          int  caller_actual_parameters,
 231                                          int  number_of_frames,
 232                                          intptr_t* frame_sizes,
 233                                          address* frame_pcs,
 234                                          BasicType return_type,
 235                                          int exec_mode) {
 236   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 237   _caller_adjustment         = caller_adjustment;
 238   _caller_actual_parameters  = caller_actual_parameters;
 239   _number_of_frames          = number_of_frames;
 240   _frame_sizes               = frame_sizes;
 241   _frame_pcs                 = frame_pcs;
 242   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 243   _return_type               = return_type;
 244   _initial_info              = 0;
 245   // PD (x86 only)
 246   _counter_temp              = 0;
 247   _unpack_kind               = exec_mode;
 248   _sender_sp_temp            = 0;
 249 
 250   _total_frame_sizes         = size_of_frames();
 251   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 252 }
 253 
 254 Deoptimization::UnrollBlock::~UnrollBlock() {
 255   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 256   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 257   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 258 }
 259 
 260 int Deoptimization::UnrollBlock::size_of_frames() const {
 261   // Account first for the adjustment of the initial frame
 262   intptr_t result = _caller_adjustment;
 263   for (int index = 0; index < number_of_frames(); index++) {
 264     result += frame_sizes()[index];
 265   }
 266   return checked_cast<int>(result);
 267 }
 268 
 269 void Deoptimization::UnrollBlock::print() {
 270   ResourceMark rm;
 271   stringStream st;
 272   st.print_cr("UnrollBlock");
 273   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 274   st.print(   "  frame_sizes: ");
 275   for (int index = 0; index < number_of_frames(); index++) {
 276     st.print("%zd ", frame_sizes()[index]);
 277   }
 278   st.cr();
 279   tty->print_raw(st.freeze());
 280 }
 281 
 282 // In order to make fetch_unroll_info work properly with escape
 283 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 284 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 285 // which is called from the method fetch_unroll_info_helper below.
 286 JRT_BLOCK_ENTRY_PROF(Deoptimization::UnrollBlock*, Deoptimization, fetch_unroll_info, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 287   // fetch_unroll_info() is called at the beginning of the deoptimization
 288   // handler. Note this fact before we start generating temporary frames
 289   // that can confuse an asynchronous stack walker. This counter is
 290   // decremented at the end of unpack_frames().
 291   current->inc_in_deopt_handler();
 292 
 293   if (exec_mode == Unpack_exception) {
 294     // When we get here, a callee has thrown an exception into a deoptimized
 295     // frame. That throw might have deferred stack watermark checking until
 296     // after unwinding. So we deal with such deferred requests here.
 297     StackWatermarkSet::after_unwind(current);
 298   }
 299 
 300   return fetch_unroll_info_helper(current, exec_mode);
 301 JRT_END
 302 
 303 #if COMPILER2_OR_JVMCI
 304 // print information about reallocated objects
 305 static void print_objects(JavaThread* deoptee_thread,
 306                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 307   ResourceMark rm;
 308   stringStream st;  // change to logStream with logging
 309   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 310   fieldDescriptor fd;
 311 
 312   for (int i = 0; i < objects->length(); i++) {
 313     ObjectValue* sv = (ObjectValue*) objects->at(i);
 314     Handle obj = sv->value();
 315 
 316     if (obj.is_null()) {
 317       st.print_cr("     nullptr");
 318       continue;
 319     }
 320 
 321     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 322 
 323     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 324     k->print_value_on(&st);
 325     st.print_cr(" allocated (" SIZE_FORMAT " bytes)", obj->size() * HeapWordSize);
 326 
 327     if (Verbose && k != nullptr) {
 328       k->oop_print_on(obj(), &st);
 329     }
 330   }
 331   tty->print_raw(st.freeze());
 332 }
 333 
 334 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method,
 335                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 336                                   bool& deoptimized_objects) {
 337   bool realloc_failures = false;
 338   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 339 
 340   JavaThread* deoptee_thread = chunk->at(0)->thread();
 341   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 342          "a frame can only be deoptimized by the owner thread");
 343 
 344   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 345 
 346   // The flag return_oop() indicates call sites which return oop
 347   // in compiled code. Such sites include java method calls,
 348   // runtime calls (for example, used to allocate new objects/arrays
 349   // on slow code path) and any other calls generated in compiled code.
 350   // It is not guaranteed that we can get such information here only
 351   // by analyzing bytecode in deoptimized frames. This is why this flag
 352   // is set during method compilation (see Compile::Process_OopMap_Node()).
 353   // If the previous frame was popped or if we are dispatching an exception,
 354   // we don't have an oop result.
 355   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 356   Handle return_value;
 357   if (save_oop_result) {
 358     // Reallocation may trigger GC. If deoptimization happened on return from
 359     // call which returns oop we need to save it since it is not in oopmap.
 360     oop result = deoptee.saved_oop_result(&map);
 361     assert(oopDesc::is_oop_or_null(result), "must be oop");
 362     return_value = Handle(thread, result);
 363     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 364     if (TraceDeoptimization) {
 365       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 366       tty->cr();
 367     }
 368   }
 369   if (objects != nullptr) {
 370     if (exec_mode == Deoptimization::Unpack_none) {
 371       assert(thread->thread_state() == _thread_in_vm, "assumption");
 372       JavaThread* THREAD = thread; // For exception macros.
 373       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 374       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 375       deoptimized_objects = true;
 376     } else {
 377       JavaThread* current = thread; // For JRT_BLOCK
 378       JRT_BLOCK
 379       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 380       JRT_END
 381     }
 382     bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci();
 383     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 384     if (TraceDeoptimization) {
 385       print_objects(deoptee_thread, objects, realloc_failures);
 386     }
 387   }
 388   if (save_oop_result) {
 389     // Restore result.
 390     deoptee.set_saved_oop_result(&map, return_value());
 391   }
 392   return realloc_failures;
 393 }
 394 
 395 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 396                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 397   JavaThread* deoptee_thread = chunk->at(0)->thread();
 398   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 399   assert(thread == Thread::current(), "should be");
 400   HandleMark hm(thread);
 401 #ifndef PRODUCT
 402   bool first = true;
 403 #endif // !PRODUCT
 404   // Start locking from outermost/oldest frame
 405   for (int i = (chunk->length() - 1); i >= 0; i--) {
 406     compiledVFrame* cvf = chunk->at(i);
 407     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 408     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 409     if (monitors->is_nonempty()) {
 410       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 411                                                      exec_mode, realloc_failures);
 412       deoptimized_objects = deoptimized_objects || relocked;
 413 #ifndef PRODUCT
 414       if (PrintDeoptimizationDetails) {
 415         ResourceMark rm;
 416         stringStream st;
 417         for (int j = 0; j < monitors->length(); j++) {
 418           MonitorInfo* mi = monitors->at(j);
 419           if (mi->eliminated()) {
 420             if (first) {
 421               first = false;
 422               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 423             }
 424             if (exec_mode == Deoptimization::Unpack_none) {
 425               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 426               if (monitor != nullptr && monitor->object() == mi->owner()) {
 427                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 428                 continue;
 429               }
 430             }
 431             if (mi->owner_is_scalar_replaced()) {
 432               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 433               st.print_cr("     failed reallocation for klass %s", k->external_name());
 434             } else {
 435               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 436             }
 437           }
 438         }
 439         tty->print_raw(st.freeze());
 440       }
 441 #endif // !PRODUCT
 442     }
 443   }
 444 }
 445 
 446 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 447 // The given vframes cover one physical frame.
 448 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 449                                                  bool& realloc_failures) {
 450   frame deoptee = chunk->at(0)->fr();
 451   JavaThread* deoptee_thread = chunk->at(0)->thread();
 452   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 453   RegisterMap map(chunk->at(0)->register_map());
 454   bool deoptimized_objects = false;
 455 
 456   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 457 
 458   // Reallocate the non-escaping objects and restore their fields.
 459   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 460                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 461     realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects);
 462   }
 463 
 464   // MonitorInfo structures used in eliminate_locks are not GC safe.
 465   NoSafepointVerifier no_safepoint;
 466 
 467   // Now relock objects if synchronization on them was eliminated.
 468   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 469     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 470   }
 471   return deoptimized_objects;
 472 }
 473 #endif // COMPILER2_OR_JVMCI
 474 
 475 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 476 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 477   // When we get here we are about to unwind the deoptee frame. In order to
 478   // catch not yet safe to use frames, the following stack watermark barrier
 479   // poll will make such frames safe to use.
 480   StackWatermarkSet::before_unwind(current);
 481 
 482   // Note: there is a safepoint safety issue here. No matter whether we enter
 483   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 484   // the vframeArray is created.
 485   //
 486 
 487   // Allocate our special deoptimization ResourceMark
 488   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 489   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 490   current->set_deopt_mark(dmark);
 491 
 492   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 493   RegisterMap map(current,
 494                   RegisterMap::UpdateMap::include,
 495                   RegisterMap::ProcessFrames::include,
 496                   RegisterMap::WalkContinuation::skip);
 497   RegisterMap dummy_map(current,
 498                         RegisterMap::UpdateMap::skip,
 499                         RegisterMap::ProcessFrames::include,
 500                         RegisterMap::WalkContinuation::skip);
 501   // Now get the deoptee with a valid map
 502   frame deoptee = stub_frame.sender(&map);
 503   // Set the deoptee nmethod
 504   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 505   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 506   current->set_deopt_compiled_method(nm);
 507 
 508   if (VerifyStack) {
 509     current->validate_frame_layout();
 510   }
 511 
 512   // Create a growable array of VFrames where each VFrame represents an inlined
 513   // Java frame.  This storage is allocated with the usual system arena.
 514   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 515   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 516   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 517   while (!vf->is_top()) {
 518     assert(vf->is_compiled_frame(), "Wrong frame type");
 519     chunk->push(compiledVFrame::cast(vf));
 520     vf = vf->sender();
 521   }
 522   assert(vf->is_compiled_frame(), "Wrong frame type");
 523   chunk->push(compiledVFrame::cast(vf));
 524 
 525   bool realloc_failures = false;
 526 
 527 #if COMPILER2_OR_JVMCI
 528   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 529 
 530   // Reallocate the non-escaping objects and restore their fields. Then
 531   // relock objects if synchronization on them was eliminated.
 532   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 533                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 534     bool unused;
 535     realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused);
 536   }
 537 #endif // COMPILER2_OR_JVMCI
 538 
 539   // Ensure that no safepoint is taken after pointers have been stored
 540   // in fields of rematerialized objects.  If a safepoint occurs from here on
 541   // out the java state residing in the vframeArray will be missed.
 542   // Locks may be rebaised in a safepoint.
 543   NoSafepointVerifier no_safepoint;
 544 
 545 #if COMPILER2_OR_JVMCI
 546   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 547       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 548     bool unused = false;
 549     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 550   }
 551 #endif // COMPILER2_OR_JVMCI
 552 
 553   ScopeDesc* trap_scope = chunk->at(0)->scope();
 554   Handle exceptionObject;
 555   if (trap_scope->rethrow_exception()) {
 556 #ifndef PRODUCT
 557     if (PrintDeoptimizationDetails) {
 558       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 559     }
 560 #endif // !PRODUCT
 561 
 562     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 563     guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw");
 564     ScopeValue* topOfStack = expressions->top();
 565     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 566     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 567   }
 568 
 569   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 570 #if COMPILER2_OR_JVMCI
 571   if (realloc_failures) {
 572     // This destroys all ScopedValue bindings.
 573     current->clear_scopedValueBindings();
 574     pop_frames_failed_reallocs(current, array);
 575   }
 576 #endif
 577 
 578   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 579   current->set_vframe_array_head(array);
 580 
 581   // Now that the vframeArray has been created if we have any deferred local writes
 582   // added by jvmti then we can free up that structure as the data is now in the
 583   // vframeArray
 584 
 585   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 586 
 587   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 588   CodeBlob* cb = stub_frame.cb();
 589   // Verify we have the right vframeArray
 590   assert(cb->frame_size() >= 0, "Unexpected frame size");
 591   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 592 
 593   // If the deopt call site is a MethodHandle invoke call site we have
 594   // to adjust the unpack_sp.
 595   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 596   if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc()))
 597     unpack_sp = deoptee.unextended_sp();
 598 
 599 #ifdef ASSERT
 600   assert(cb->is_deoptimization_stub() ||
 601          cb->is_uncommon_trap_stub() ||
 602          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 603          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 604          "unexpected code blob: %s", cb->name());
 605 #endif
 606 
 607   // This is a guarantee instead of an assert because if vframe doesn't match
 608   // we will unpack the wrong deoptimized frame and wind up in strange places
 609   // where it will be very difficult to figure out what went wrong. Better
 610   // to die an early death here than some very obscure death later when the
 611   // trail is cold.
 612   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 613 
 614   int number_of_frames = array->frames();
 615 
 616   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 617   // virtual activation, which is the reverse of the elements in the vframes array.
 618   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 619   // +1 because we always have an interpreter return address for the final slot.
 620   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 621   int popframe_extra_args = 0;
 622   // Create an interpreter return address for the stub to use as its return
 623   // address so the skeletal frames are perfectly walkable
 624   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 625 
 626   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 627   // activation be put back on the expression stack of the caller for reexecution
 628   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 629     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 630   }
 631 
 632   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 633   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 634   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 635   //
 636   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 637   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 638 
 639   // It's possible that the number of parameters at the call site is
 640   // different than number of arguments in the callee when method
 641   // handles are used.  If the caller is interpreted get the real
 642   // value so that the proper amount of space can be added to it's
 643   // frame.
 644   bool caller_was_method_handle = false;
 645   if (deopt_sender.is_interpreted_frame()) {
 646     methodHandle method(current, deopt_sender.interpreter_frame_method());
 647     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 648     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 649       // Method handle invokes may involve fairly arbitrary chains of
 650       // calls so it's impossible to know how much actual space the
 651       // caller has for locals.
 652       caller_was_method_handle = true;
 653     }
 654   }
 655 
 656   //
 657   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 658   // frame_sizes/frame_pcs[1] next oldest frame (int)
 659   // frame_sizes/frame_pcs[n] youngest frame (int)
 660   //
 661   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 662   // owns the space for the return address to it's caller).  Confusing ain't it.
 663   //
 664   // The vframe array can address vframes with indices running from
 665   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 666   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 667   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 668   // so things look a little strange in this loop.
 669   //
 670   int callee_parameters = 0;
 671   int callee_locals = 0;
 672   for (int index = 0; index < array->frames(); index++ ) {
 673     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 674     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 675     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 676     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 677                                                                                                     callee_locals,
 678                                                                                                     index == 0,
 679                                                                                                     popframe_extra_args);
 680     // This pc doesn't have to be perfect just good enough to identify the frame
 681     // as interpreted so the skeleton frame will be walkable
 682     // The correct pc will be set when the skeleton frame is completely filled out
 683     // The final pc we store in the loop is wrong and will be overwritten below
 684     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 685 
 686     callee_parameters = array->element(index)->method()->size_of_parameters();
 687     callee_locals = array->element(index)->method()->max_locals();
 688     popframe_extra_args = 0;
 689   }
 690 
 691   // Compute whether the root vframe returns a float or double value.
 692   BasicType return_type;
 693   {
 694     methodHandle method(current, array->element(0)->method());
 695     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 696     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 697   }
 698 
 699   // Compute information for handling adapters and adjusting the frame size of the caller.
 700   int caller_adjustment = 0;
 701 
 702   // Compute the amount the oldest interpreter frame will have to adjust
 703   // its caller's stack by. If the caller is a compiled frame then
 704   // we pretend that the callee has no parameters so that the
 705   // extension counts for the full amount of locals and not just
 706   // locals-parms. This is because without a c2i adapter the parm
 707   // area as created by the compiled frame will not be usable by
 708   // the interpreter. (Depending on the calling convention there
 709   // may not even be enough space).
 710 
 711   // QQQ I'd rather see this pushed down into last_frame_adjust
 712   // and have it take the sender (aka caller).
 713 
 714   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 715     caller_adjustment = last_frame_adjust(0, callee_locals);
 716   } else if (callee_locals > callee_parameters) {
 717     // The caller frame may need extending to accommodate
 718     // non-parameter locals of the first unpacked interpreted frame.
 719     // Compute that adjustment.
 720     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 721   }
 722 
 723   // If the sender is deoptimized the we must retrieve the address of the handler
 724   // since the frame will "magically" show the original pc before the deopt
 725   // and we'd undo the deopt.
 726 
 727   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 728   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 729     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 730   }
 731 
 732   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 733 
 734 #if INCLUDE_JVMCI
 735   if (exceptionObject() != nullptr) {
 736     current->set_exception_oop(exceptionObject());
 737     exec_mode = Unpack_exception;
 738   }
 739 #endif
 740 
 741   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 742     assert(current->has_pending_exception(), "should have thrown OOME");
 743     current->set_exception_oop(current->pending_exception());
 744     current->clear_pending_exception();
 745     exec_mode = Unpack_exception;
 746   }
 747 
 748 #if INCLUDE_JVMCI
 749   if (current->frames_to_pop_failed_realloc() > 0) {
 750     current->set_pending_monitorenter(false);
 751   }
 752 #endif
 753 
 754   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 755                                       caller_adjustment * BytesPerWord,
 756                                       caller_was_method_handle ? 0 : callee_parameters,
 757                                       number_of_frames,
 758                                       frame_sizes,
 759                                       frame_pcs,
 760                                       return_type,
 761                                       exec_mode);
 762   // On some platforms, we need a way to pass some platform dependent
 763   // information to the unpacking code so the skeletal frames come out
 764   // correct (initial fp value, unextended sp, ...)
 765   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 766 
 767   if (array->frames() > 1) {
 768     if (VerifyStack && TraceDeoptimization) {
 769       tty->print_cr("Deoptimizing method containing inlining");
 770     }
 771   }
 772 
 773   array->set_unroll_block(info);
 774   return info;
 775 }
 776 
 777 // Called to cleanup deoptimization data structures in normal case
 778 // after unpacking to stack and when stack overflow error occurs
 779 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 780                                         vframeArray *array) {
 781 
 782   // Get array if coming from exception
 783   if (array == nullptr) {
 784     array = thread->vframe_array_head();
 785   }
 786   thread->set_vframe_array_head(nullptr);
 787 
 788   // Free the previous UnrollBlock
 789   vframeArray* old_array = thread->vframe_array_last();
 790   thread->set_vframe_array_last(array);
 791 
 792   if (old_array != nullptr) {
 793     UnrollBlock* old_info = old_array->unroll_block();
 794     old_array->set_unroll_block(nullptr);
 795     delete old_info;
 796     delete old_array;
 797   }
 798 
 799   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 800   // inside the vframeArray (StackValueCollections)
 801 
 802   delete thread->deopt_mark();
 803   thread->set_deopt_mark(nullptr);
 804   thread->set_deopt_compiled_method(nullptr);
 805 
 806 
 807   if (JvmtiExport::can_pop_frame()) {
 808     // Regardless of whether we entered this routine with the pending
 809     // popframe condition bit set, we should always clear it now
 810     thread->clear_popframe_condition();
 811   }
 812 
 813   // unpack_frames() is called at the end of the deoptimization handler
 814   // and (in C2) at the end of the uncommon trap handler. Note this fact
 815   // so that an asynchronous stack walker can work again. This counter is
 816   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 817   // the beginning of uncommon_trap().
 818   thread->dec_in_deopt_handler();
 819 }
 820 
 821 // Moved from cpu directories because none of the cpus has callee save values.
 822 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 823 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 824 
 825   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 826   // the days we had adapter frames. When we deoptimize a situation where a
 827   // compiled caller calls a compiled caller will have registers it expects
 828   // to survive the call to the callee. If we deoptimize the callee the only
 829   // way we can restore these registers is to have the oldest interpreter
 830   // frame that we create restore these values. That is what this routine
 831   // will accomplish.
 832 
 833   // At the moment we have modified c2 to not have any callee save registers
 834   // so this problem does not exist and this routine is just a place holder.
 835 
 836   assert(f->is_interpreted_frame(), "must be interpreted");
 837 }
 838 
 839 #ifndef PRODUCT
 840 static bool falls_through(Bytecodes::Code bc) {
 841   switch (bc) {
 842     // List may be incomplete.  Here we really only care about bytecodes where compiled code
 843     // can deoptimize.
 844     case Bytecodes::_goto:
 845     case Bytecodes::_goto_w:
 846     case Bytecodes::_athrow:
 847       return false;
 848     default:
 849       return true;
 850   }
 851 }
 852 #endif
 853 
 854 // Return BasicType of value being returned
 855 JRT_LEAF_PROF_NO_THREAD(BasicType, Deoptimization, unpack_frames, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 856   assert(thread == JavaThread::current(), "pre-condition");
 857 
 858   // We are already active in the special DeoptResourceMark any ResourceObj's we
 859   // allocate will be freed at the end of the routine.
 860 
 861   // JRT_LEAF methods don't normally allocate handles and there is a
 862   // NoHandleMark to enforce that. It is actually safe to use Handles
 863   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 864   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 865   // then use a HandleMark to ensure any Handles we do create are
 866   // cleaned up in this scope.
 867   ResetNoHandleMark rnhm;
 868   HandleMark hm(thread);
 869 
 870   frame stub_frame = thread->last_frame();
 871 
 872   Continuation::notify_deopt(thread, stub_frame.sp());
 873 
 874   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 875   // must point to the vframeArray for the unpack frame.
 876   vframeArray* array = thread->vframe_array_head();
 877   UnrollBlock* info = array->unroll_block();
 878 
 879   // We set the last_Java frame. But the stack isn't really parsable here. So we
 880   // clear it to make sure JFR understands not to try and walk stacks from events
 881   // in here.
 882   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 883   thread->frame_anchor()->set_last_Java_sp(nullptr);
 884 
 885   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 886   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 887 
 888   thread->frame_anchor()->set_last_Java_sp(sp);
 889 
 890   BasicType bt = info->return_type();
 891 
 892   // If we have an exception pending, claim that the return type is an oop
 893   // so the deopt_blob does not overwrite the exception_oop.
 894 
 895   if (exec_mode == Unpack_exception)
 896     bt = T_OBJECT;
 897 
 898   // Cleanup thread deopt data
 899   cleanup_deopt_info(thread, array);
 900 
 901 #ifndef PRODUCT
 902   if (VerifyStack) {
 903     ResourceMark res_mark;
 904     // Clear pending exception to not break verification code (restored afterwards)
 905     PreserveExceptionMark pm(thread);
 906 
 907     thread->validate_frame_layout();
 908 
 909     // Verify that the just-unpacked frames match the interpreter's
 910     // notions of expression stack and locals
 911     vframeArray* cur_array = thread->vframe_array_last();
 912     RegisterMap rm(thread,
 913                    RegisterMap::UpdateMap::skip,
 914                    RegisterMap::ProcessFrames::include,
 915                    RegisterMap::WalkContinuation::skip);
 916     rm.set_include_argument_oops(false);
 917     bool is_top_frame = true;
 918     int callee_size_of_parameters = 0;
 919     int callee_max_locals = 0;
 920     for (int i = 0; i < cur_array->frames(); i++) {
 921       vframeArrayElement* el = cur_array->element(i);
 922       frame* iframe = el->iframe();
 923       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 924 
 925       // Get the oop map for this bci
 926       InterpreterOopMap mask;
 927       int cur_invoke_parameter_size = 0;
 928       bool try_next_mask = false;
 929       int next_mask_expression_stack_size = -1;
 930       int top_frame_expression_stack_adjustment = 0;
 931       methodHandle mh(thread, iframe->interpreter_frame_method());
 932       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 933       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 934       int max_bci = mh->code_size();
 935       // Get to the next bytecode if possible
 936       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 937       // Check to see if we can grab the number of outgoing arguments
 938       // at an uncommon trap for an invoke (where the compiler
 939       // generates debug info before the invoke has executed)
 940       Bytecodes::Code cur_code = str.next();
 941       Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere;
 942       if (Bytecodes::is_invoke(cur_code)) {
 943         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 944         cur_invoke_parameter_size = invoke.size_of_parameters();
 945         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 946           callee_size_of_parameters++;
 947         }
 948       }
 949       if (str.bci() < max_bci) {
 950         next_code = str.next();
 951         if (next_code >= 0) {
 952           // The interpreter oop map generator reports results before
 953           // the current bytecode has executed except in the case of
 954           // calls. It seems to be hard to tell whether the compiler
 955           // has emitted debug information matching the "state before"
 956           // a given bytecode or the state after, so we try both
 957           if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) {
 958             // Get expression stack size for the next bytecode
 959             InterpreterOopMap next_mask;
 960             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 961             next_mask_expression_stack_size = next_mask.expression_stack_size();
 962             if (Bytecodes::is_invoke(next_code)) {
 963               Bytecode_invoke invoke(mh, str.bci());
 964               next_mask_expression_stack_size += invoke.size_of_parameters();
 965             }
 966             // Need to subtract off the size of the result type of
 967             // the bytecode because this is not described in the
 968             // debug info but returned to the interpreter in the TOS
 969             // caching register
 970             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 971             if (bytecode_result_type != T_ILLEGAL) {
 972               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 973             }
 974             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 975             try_next_mask = true;
 976           }
 977         }
 978       }
 979 
 980       // Verify stack depth and oops in frame
 981       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 982       if (!(
 983             /* SPARC */
 984             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 985             /* x86 */
 986             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 987             (try_next_mask &&
 988              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 989                                                                     top_frame_expression_stack_adjustment))) ||
 990             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 991             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 992              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 993             )) {
 994         {
 995           // Print out some information that will help us debug the problem
 996           tty->print_cr("Wrong number of expression stack elements during deoptimization");
 997           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 998           tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
 999           if (try_next_mask) {
1000             tty->print_cr("  Next code %s", Bytecodes::name(next_code));
1001           }
1002           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
1003                         iframe->interpreter_frame_expression_stack_size());
1004           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
1005           tty->print_cr("  try_next_mask = %d", try_next_mask);
1006           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
1007           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
1008           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
1009           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1010           tty->print_cr("  exec_mode = %d", exec_mode);
1011           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1012           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1013           tty->print_cr("  Interpreted frames:");
1014           for (int k = 0; k < cur_array->frames(); k++) {
1015             vframeArrayElement* el = cur_array->element(k);
1016             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1017           }
1018           cur_array->print_on_2(tty);
1019         }
1020         guarantee(false, "wrong number of expression stack elements during deopt");
1021       }
1022       VerifyOopClosure verify;
1023       iframe->oops_interpreted_do(&verify, &rm, false);
1024       callee_size_of_parameters = mh->size_of_parameters();
1025       callee_max_locals = mh->max_locals();
1026       is_top_frame = false;
1027     }
1028   }
1029 #endif // !PRODUCT
1030 
1031   return bt;
1032 JRT_END
1033 
1034 class DeoptimizeMarkedClosure : public HandshakeClosure {
1035  public:
1036   DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {}
1037   void do_thread(Thread* thread) {
1038     JavaThread* jt = JavaThread::cast(thread);
1039     jt->deoptimize_marked_methods();
1040   }
1041 };
1042 
1043 void Deoptimization::deoptimize_all_marked() {
1044   ResourceMark rm;
1045 
1046   // Make the dependent methods not entrant
1047   CodeCache::make_marked_nmethods_deoptimized();
1048 
1049   DeoptimizeMarkedClosure deopt;
1050   if (SafepointSynchronize::is_at_safepoint()) {
1051     Threads::java_threads_do(&deopt);
1052   } else {
1053     Handshake::execute(&deopt);
1054   }
1055 }
1056 
1057 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1058   = Deoptimization::Action_reinterpret;
1059 
1060 #if INCLUDE_JVMCI
1061 template<typename CacheType>
1062 class BoxCacheBase : public CHeapObj<mtCompiler> {
1063 protected:
1064   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1065     ResourceMark rm(thread);
1066     char* klass_name_str = klass_name->as_C_string();
1067     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle());
1068     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1069     if (!ik->is_in_error_state()) {
1070       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1071       CacheType::compute_offsets(ik);
1072     }
1073     return ik;
1074   }
1075 };
1076 
1077 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1078   PrimitiveType _low;
1079   PrimitiveType _high;
1080   jobject _cache;
1081 protected:
1082   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1083   BoxCache(Thread* thread) {
1084     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1085     if (ik->is_in_error_state()) {
1086       _low = 1;
1087       _high = 0;
1088       _cache = nullptr;
1089     } else {
1090       objArrayOop cache = CacheType::cache(ik);
1091       assert(cache->length() > 0, "Empty cache");
1092       _low = BoxType::value(cache->obj_at(0));
1093       _high = checked_cast<PrimitiveType>(_low + cache->length() - 1);
1094       _cache = JNIHandles::make_global(Handle(thread, cache));
1095     }
1096   }
1097   ~BoxCache() {
1098     JNIHandles::destroy_global(_cache);
1099   }
1100 public:
1101   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1102     if (_singleton == nullptr) {
1103       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1104       if (!Atomic::replace_if_null(&_singleton, s)) {
1105         delete s;
1106       }
1107     }
1108     return _singleton;
1109   }
1110   oop lookup(PrimitiveType value) {
1111     if (_low <= value && value <= _high) {
1112       int offset = checked_cast<int>(value - _low);
1113       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1114     }
1115     return nullptr;
1116   }
1117   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1118     if (_cache == nullptr) {
1119       cache_init_error = true;
1120       return nullptr;
1121     }
1122     // Have to cast to avoid little/big-endian problems.
1123     if (sizeof(PrimitiveType) > sizeof(jint)) {
1124       jlong value = (jlong)raw_value;
1125       return lookup(value);
1126     }
1127     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1128     return lookup(value);
1129   }
1130 };
1131 
1132 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1133 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1134 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1135 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1136 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1137 
1138 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1139 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1140 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1141 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1142 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1143 
1144 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1145   jobject _true_cache;
1146   jobject _false_cache;
1147 protected:
1148   static BooleanBoxCache *_singleton;
1149   BooleanBoxCache(Thread *thread) {
1150     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1151     if (ik->is_in_error_state()) {
1152       _true_cache = nullptr;
1153       _false_cache = nullptr;
1154     } else {
1155       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1156       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1157     }
1158   }
1159   ~BooleanBoxCache() {
1160     JNIHandles::destroy_global(_true_cache);
1161     JNIHandles::destroy_global(_false_cache);
1162   }
1163 public:
1164   static BooleanBoxCache* singleton(Thread* thread) {
1165     if (_singleton == nullptr) {
1166       BooleanBoxCache* s = new BooleanBoxCache(thread);
1167       if (!Atomic::replace_if_null(&_singleton, s)) {
1168         delete s;
1169       }
1170     }
1171     return _singleton;
1172   }
1173   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1174     if (_true_cache == nullptr) {
1175       cache_in_error = true;
1176       return nullptr;
1177     }
1178     // Have to cast to avoid little/big-endian problems.
1179     jboolean value = (jboolean)*((jint*)&raw_value);
1180     return lookup(value);
1181   }
1182   oop lookup(jboolean value) {
1183     if (value != 0) {
1184       return JNIHandles::resolve_non_null(_true_cache);
1185     }
1186     return JNIHandles::resolve_non_null(_false_cache);
1187   }
1188 };
1189 
1190 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1191 
1192 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1193    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1194    BasicType box_type = vmClasses::box_klass_type(k);
1195    if (box_type != T_OBJECT) {
1196      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1197      switch(box_type) {
1198        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1199        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1200        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1201        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1202        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1203        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1204        default:;
1205      }
1206    }
1207    return nullptr;
1208 }
1209 #endif // INCLUDE_JVMCI
1210 
1211 #if COMPILER2_OR_JVMCI
1212 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1213   Handle pending_exception(THREAD, thread->pending_exception());
1214   const char* exception_file = thread->exception_file();
1215   int exception_line = thread->exception_line();
1216   thread->clear_pending_exception();
1217 
1218   bool failures = false;
1219 
1220   for (int i = 0; i < objects->length(); i++) {
1221     assert(objects->at(i)->is_object(), "invalid debug information");
1222     ObjectValue* sv = (ObjectValue*) objects->at(i);
1223 
1224     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1225     oop obj = nullptr;
1226 
1227     bool cache_init_error = false;
1228     if (k->is_instance_klass()) {
1229 #if INCLUDE_JVMCI
1230       nmethod* nm = fr->cb()->as_nmethod_or_null();
1231       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1232         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1233         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1234         if (obj != nullptr) {
1235           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1236           abv->set_cached(true);
1237         } else if (cache_init_error) {
1238           // Results in an OOME which is valid (as opposed to a class initialization error)
1239           // and is fine for the rare case a cache initialization failing.
1240           failures = true;
1241         }
1242       }
1243 #endif // INCLUDE_JVMCI
1244 
1245       InstanceKlass* ik = InstanceKlass::cast(k);
1246       if (obj == nullptr && !cache_init_error) {
1247         InternalOOMEMark iom(THREAD);
1248         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1249           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1250         } else {
1251           obj = ik->allocate_instance(THREAD);
1252         }
1253       }
1254     } else if (k->is_typeArray_klass()) {
1255       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1256       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1257       int len = sv->field_size() / type2size[ak->element_type()];
1258       InternalOOMEMark iom(THREAD);
1259       obj = ak->allocate(len, THREAD);
1260     } else if (k->is_objArray_klass()) {
1261       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1262       InternalOOMEMark iom(THREAD);
1263       obj = ak->allocate(sv->field_size(), THREAD);
1264     }
1265 
1266     if (obj == nullptr) {
1267       failures = true;
1268     }
1269 
1270     assert(sv->value().is_null(), "redundant reallocation");
1271     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1272     CLEAR_PENDING_EXCEPTION;
1273     sv->set_value(obj);
1274   }
1275 
1276   if (failures) {
1277     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1278   } else if (pending_exception.not_null()) {
1279     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1280   }
1281 
1282   return failures;
1283 }
1284 
1285 #if INCLUDE_JVMCI
1286 /**
1287  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1288  * we need to somehow be able to recover the actual kind to be able to write the correct
1289  * amount of bytes.
1290  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1291  * the entries at index n + 1 to n + i are 'markers'.
1292  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1293  * expected form of the array would be:
1294  *
1295  * {b0, b1, b2, b3, INT, marker, b6, b7}
1296  *
1297  * Thus, in order to get back the size of the entry, we simply need to count the number
1298  * of marked entries
1299  *
1300  * @param virtualArray the virtualized byte array
1301  * @param i index of the virtual entry we are recovering
1302  * @return The number of bytes the entry spans
1303  */
1304 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1305   int index = i;
1306   while (++index < virtualArray->field_size() &&
1307            virtualArray->field_at(index)->is_marker()) {}
1308   return index - i;
1309 }
1310 
1311 /**
1312  * If there was a guarantee for byte array to always start aligned to a long, we could
1313  * do a simple check on the parity of the index. Unfortunately, that is not always the
1314  * case. Thus, we check alignment of the actual address we are writing to.
1315  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1316  * write a long to index 3.
1317  */
1318 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1319     jbyte* res = obj->byte_at_addr(index);
1320     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1321     return res;
1322 }
1323 
1324 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) {
1325   switch (byte_count) {
1326     case 1:
1327       obj->byte_at_put(index, (jbyte) value->get_jint());
1328       break;
1329     case 2:
1330       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint();
1331       break;
1332     case 4:
1333       *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint();
1334       break;
1335     case 8:
1336       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr();
1337       break;
1338     default:
1339       ShouldNotReachHere();
1340   }
1341 }
1342 #endif // INCLUDE_JVMCI
1343 
1344 
1345 // restore elements of an eliminated type array
1346 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1347   int index = 0;
1348 
1349   for (int i = 0; i < sv->field_size(); i++) {
1350     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1351     switch(type) {
1352     case T_LONG: case T_DOUBLE: {
1353       assert(value->type() == T_INT, "Agreement.");
1354       StackValue* low =
1355         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1356 #ifdef _LP64
1357       jlong res = (jlong)low->get_intptr();
1358 #else
1359       jlong res = jlong_from(value->get_jint(), low->get_jint());
1360 #endif
1361       obj->long_at_put(index, res);
1362       break;
1363     }
1364 
1365     case T_INT: case T_FLOAT: { // 4 bytes.
1366       assert(value->type() == T_INT, "Agreement.");
1367       bool big_value = false;
1368       if (i + 1 < sv->field_size() && type == T_INT) {
1369         if (sv->field_at(i)->is_location()) {
1370           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1371           if (type == Location::dbl || type == Location::lng) {
1372             big_value = true;
1373           }
1374         } else if (sv->field_at(i)->is_constant_int()) {
1375           ScopeValue* next_scope_field = sv->field_at(i + 1);
1376           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1377             big_value = true;
1378           }
1379         }
1380       }
1381 
1382       if (big_value) {
1383         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1384   #ifdef _LP64
1385         jlong res = (jlong)low->get_intptr();
1386   #else
1387         jlong res = jlong_from(value->get_jint(), low->get_jint());
1388   #endif
1389         obj->int_at_put(index, *(jint*)&res);
1390         obj->int_at_put(++index, *((jint*)&res + 1));
1391       } else {
1392         obj->int_at_put(index, value->get_jint());
1393       }
1394       break;
1395     }
1396 
1397     case T_SHORT:
1398       assert(value->type() == T_INT, "Agreement.");
1399       obj->short_at_put(index, (jshort)value->get_jint());
1400       break;
1401 
1402     case T_CHAR:
1403       assert(value->type() == T_INT, "Agreement.");
1404       obj->char_at_put(index, (jchar)value->get_jint());
1405       break;
1406 
1407     case T_BYTE: {
1408       assert(value->type() == T_INT, "Agreement.");
1409 #if INCLUDE_JVMCI
1410       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1411       int byte_count = count_number_of_bytes_for_entry(sv, i);
1412       byte_array_put(obj, value, index, byte_count);
1413       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1414       i += byte_count - 1; // Balance the loop counter.
1415       index += byte_count;
1416       // index has been updated so continue at top of loop
1417       continue;
1418 #else
1419       obj->byte_at_put(index, (jbyte)value->get_jint());
1420       break;
1421 #endif // INCLUDE_JVMCI
1422     }
1423 
1424     case T_BOOLEAN: {
1425       assert(value->type() == T_INT, "Agreement.");
1426       obj->bool_at_put(index, (jboolean)value->get_jint());
1427       break;
1428     }
1429 
1430       default:
1431         ShouldNotReachHere();
1432     }
1433     index++;
1434   }
1435 }
1436 
1437 // restore fields of an eliminated object array
1438 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1439   for (int i = 0; i < sv->field_size(); i++) {
1440     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1441     assert(value->type() == T_OBJECT, "object element expected");
1442     obj->obj_at_put(i, value->get_obj()());
1443   }
1444 }
1445 
1446 class ReassignedField {
1447 public:
1448   int _offset;
1449   BasicType _type;
1450 public:
1451   ReassignedField() {
1452     _offset = 0;
1453     _type = T_ILLEGAL;
1454   }
1455 };
1456 
1457 static int compare(ReassignedField* left, ReassignedField* right) {
1458   return left->_offset - right->_offset;
1459 }
1460 
1461 // Restore fields of an eliminated instance object using the same field order
1462 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1463 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
1464   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1465   InstanceKlass* ik = klass;
1466   while (ik != nullptr) {
1467     for (AllFieldStream fs(ik); !fs.done(); fs.next()) {
1468       if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) {
1469         ReassignedField field;
1470         field._offset = fs.offset();
1471         field._type = Signature::basic_type(fs.signature());
1472         fields->append(field);
1473       }
1474     }
1475     ik = ik->superklass();
1476   }
1477   fields->sort(compare);
1478   for (int i = 0; i < fields->length(); i++) {
1479     ScopeValue* scope_field = sv->field_at(svIndex);
1480     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1481     int offset = fields->at(i)._offset;
1482     BasicType type = fields->at(i)._type;
1483     switch (type) {
1484       case T_OBJECT: case T_ARRAY:
1485         assert(value->type() == T_OBJECT, "Agreement.");
1486         obj->obj_field_put(offset, value->get_obj()());
1487         break;
1488 
1489       case T_INT: case T_FLOAT: { // 4 bytes.
1490         assert(value->type() == T_INT, "Agreement.");
1491         bool big_value = false;
1492         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1493           if (scope_field->is_location()) {
1494             Location::Type type = ((LocationValue*) scope_field)->location().type();
1495             if (type == Location::dbl || type == Location::lng) {
1496               big_value = true;
1497             }
1498           }
1499           if (scope_field->is_constant_int()) {
1500             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1501             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1502               big_value = true;
1503             }
1504           }
1505         }
1506 
1507         if (big_value) {
1508           i++;
1509           assert(i < fields->length(), "second T_INT field needed");
1510           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1511         } else {
1512           obj->int_field_put(offset, value->get_jint());
1513           break;
1514         }
1515       }
1516         /* no break */
1517 
1518       case T_LONG: case T_DOUBLE: {
1519         assert(value->type() == T_INT, "Agreement.");
1520         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1521 #ifdef _LP64
1522         jlong res = (jlong)low->get_intptr();
1523 #else
1524         jlong res = jlong_from(value->get_jint(), low->get_jint());
1525 #endif
1526         obj->long_field_put(offset, res);
1527         break;
1528       }
1529 
1530       case T_SHORT:
1531         assert(value->type() == T_INT, "Agreement.");
1532         obj->short_field_put(offset, (jshort)value->get_jint());
1533         break;
1534 
1535       case T_CHAR:
1536         assert(value->type() == T_INT, "Agreement.");
1537         obj->char_field_put(offset, (jchar)value->get_jint());
1538         break;
1539 
1540       case T_BYTE:
1541         assert(value->type() == T_INT, "Agreement.");
1542         obj->byte_field_put(offset, (jbyte)value->get_jint());
1543         break;
1544 
1545       case T_BOOLEAN:
1546         assert(value->type() == T_INT, "Agreement.");
1547         obj->bool_field_put(offset, (jboolean)value->get_jint());
1548         break;
1549 
1550       default:
1551         ShouldNotReachHere();
1552     }
1553     svIndex++;
1554   }
1555   return svIndex;
1556 }
1557 
1558 // restore fields of all eliminated objects and arrays
1559 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1560   for (int i = 0; i < objects->length(); i++) {
1561     assert(objects->at(i)->is_object(), "invalid debug information");
1562     ObjectValue* sv = (ObjectValue*) objects->at(i);
1563     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1564     Handle obj = sv->value();
1565     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1566 #ifndef PRODUCT
1567     if (PrintDeoptimizationDetails) {
1568       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1569     }
1570 #endif // !PRODUCT
1571 
1572     if (obj.is_null()) {
1573       continue;
1574     }
1575 
1576 #if INCLUDE_JVMCI
1577     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1578     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1579       continue;
1580     }
1581 #endif // INCLUDE_JVMCI
1582     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1583       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1584       ScopeValue* payload = sv->field_at(0);
1585       if (payload->is_location() &&
1586           payload->as_LocationValue()->location().type() == Location::vector) {
1587 #ifndef PRODUCT
1588         if (PrintDeoptimizationDetails) {
1589           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1590           if (Verbose) {
1591             Handle obj = sv->value();
1592             k->oop_print_on(obj(), tty);
1593           }
1594         }
1595 #endif // !PRODUCT
1596         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1597       }
1598       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1599       // which could be restored after vector object allocation.
1600     }
1601     if (k->is_instance_klass()) {
1602       InstanceKlass* ik = InstanceKlass::cast(k);
1603       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1604     } else if (k->is_typeArray_klass()) {
1605       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1606       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1607     } else if (k->is_objArray_klass()) {
1608       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1609     }
1610   }
1611   // These objects may escape when we return to Interpreter after deoptimization.
1612   // We need barrier so that stores that initialize these objects can't be reordered
1613   // with subsequent stores that make these objects accessible by other threads.
1614   OrderAccess::storestore();
1615 }
1616 
1617 
1618 // relock objects for which synchronization was eliminated
1619 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1620                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1621   bool relocked_objects = false;
1622   for (int i = 0; i < monitors->length(); i++) {
1623     MonitorInfo* mon_info = monitors->at(i);
1624     if (mon_info->eliminated()) {
1625       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1626       relocked_objects = true;
1627       if (!mon_info->owner_is_scalar_replaced()) {
1628         Handle obj(thread, mon_info->owner());
1629         markWord mark = obj->mark();
1630         if (exec_mode == Unpack_none) {
1631           if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) {
1632             // With exec_mode == Unpack_none obj may be thread local and locked in
1633             // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header.
1634             markWord dmw = mark.displaced_mark_helper();
1635             mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr));
1636             obj->set_mark(dmw);
1637           }
1638           if (mark.has_monitor()) {
1639             // defer relocking if the deoptee thread is currently waiting for obj
1640             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1641             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1642               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1643               if (LockingMode == LM_LEGACY) {
1644                 mon_info->lock()->set_displaced_header(markWord::unused_mark());
1645               } else if (UseObjectMonitorTable) {
1646                 mon_info->lock()->clear_object_monitor_cache();
1647               }
1648 #ifdef ASSERT
1649               else {
1650                 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be");
1651                 mon_info->lock()->set_bad_metadata_deopt();
1652               }
1653 #endif
1654               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1655               continue;
1656             }
1657           }
1658         }
1659         BasicLock* lock = mon_info->lock();
1660         if (LockingMode == LM_LIGHTWEIGHT) {
1661           // We have lost information about the correct state of the lock stack.
1662           // Entering may create an invalid lock stack. Inflate the lock if it
1663           // was fast_locked to restore the valid lock stack.
1664           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1665           if (deoptee_thread->lock_stack().contains(obj())) {
1666             LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal,
1667                                                                 deoptee_thread, thread);
1668           }
1669           assert(mon_info->owner()->is_locked(), "object must be locked now");
1670           assert(obj->mark().has_monitor(), "must be");
1671           assert(!deoptee_thread->lock_stack().contains(obj()), "must be");
1672           assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be");
1673         } else {
1674           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1675           assert(mon_info->owner()->is_locked(), "object must be locked now");
1676         }
1677       }
1678     }
1679   }
1680   return relocked_objects;
1681 }
1682 #endif // COMPILER2_OR_JVMCI
1683 
1684 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1685   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1686 
1687   // Register map for next frame (used for stack crawl).  We capture
1688   // the state of the deopt'ing frame's caller.  Thus if we need to
1689   // stuff a C2I adapter we can properly fill in the callee-save
1690   // register locations.
1691   frame caller = fr.sender(reg_map);
1692   int frame_size = pointer_delta_as_int(caller.sp(), fr.sp());
1693 
1694   frame sender = caller;
1695 
1696   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1697   // the vframeArray containing the unpacking information is allocated in the C heap.
1698   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1699   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1700 
1701   // Compare the vframeArray to the collected vframes
1702   assert(array->structural_compare(thread, chunk), "just checking");
1703 
1704   if (TraceDeoptimization) {
1705     ResourceMark rm;
1706     stringStream st;
1707     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1708     st.print("   ");
1709     fr.print_on(&st);
1710     st.print_cr("   Virtual frames (innermost/newest first):");
1711     for (int index = 0; index < chunk->length(); index++) {
1712       compiledVFrame* vf = chunk->at(index);
1713       int bci = vf->raw_bci();
1714       const char* code_name;
1715       if (bci == SynchronizationEntryBCI) {
1716         code_name = "sync entry";
1717       } else {
1718         Bytecodes::Code code = vf->method()->code_at(bci);
1719         code_name = Bytecodes::name(code);
1720       }
1721 
1722       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1723       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1724       st.print(" - %s", code_name);
1725       st.print_cr(" @ bci=%d ", bci);
1726     }
1727     tty->print_raw(st.freeze());
1728     tty->cr();
1729   }
1730 
1731   return array;
1732 }
1733 
1734 #if COMPILER2_OR_JVMCI
1735 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1736   // Reallocation of some scalar replaced objects failed. Record
1737   // that we need to pop all the interpreter frames for the
1738   // deoptimized compiled frame.
1739   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1740   thread->set_frames_to_pop_failed_realloc(array->frames());
1741   // Unlock all monitors here otherwise the interpreter will see a
1742   // mix of locked and unlocked monitors (because of failed
1743   // reallocations of synchronized objects) and be confused.
1744   for (int i = 0; i < array->frames(); i++) {
1745     MonitorChunk* monitors = array->element(i)->monitors();
1746     if (monitors != nullptr) {
1747       // Unlock in reverse order starting from most nested monitor.
1748       for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) {
1749         BasicObjectLock* src = monitors->at(j);
1750         if (src->obj() != nullptr) {
1751           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1752         }
1753       }
1754       array->element(i)->free_monitors();
1755 #ifdef ASSERT
1756       array->element(i)->set_removed_monitors();
1757 #endif
1758     }
1759   }
1760 }
1761 #endif
1762 
1763 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1764   assert(fr.can_be_deoptimized(), "checking frame type");
1765 
1766   nmethod* nm = fr.cb()->as_nmethod_or_null();
1767   assert(nm != nullptr, "only compiled methods can deopt");
1768   DeoptAction action = (nm->is_not_entrant() ? Action_make_not_entrant : Action_none);
1769   ScopeDesc* cur_sd = nm->scope_desc_at(fr.pc());
1770   Bytecodes::Code bc = (cur_sd->bci() == -1 ? Bytecodes::_nop // deopt on method entry
1771                                             : cur_sd->method()->java_code_at(cur_sd->bci()));
1772   gather_statistics(nm, reason, action, bc);
1773 
1774   if (LogCompilation && xtty != nullptr) {
1775     ttyLocker ttyl;
1776     xtty->begin_head("deoptimized thread='%zu' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1777     nm->log_identity(xtty);
1778     xtty->end_head();
1779     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1780       xtty->begin_elem("jvms bci='%d'", sd->bci());
1781       xtty->method(sd->method());
1782       xtty->end_elem();
1783       if (sd->is_top())  break;
1784     }
1785     xtty->tail("deoptimized");
1786   }
1787 
1788   Continuation::notify_deopt(thread, fr.sp());
1789 
1790   // Patch the compiled method so that when execution returns to it we will
1791   // deopt the execution state and return to the interpreter.
1792   fr.deoptimize(thread);
1793 }
1794 
1795 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1796   // Deoptimize only if the frame comes from compile code.
1797   // Do not deoptimize the frame which is already patched
1798   // during the execution of the loops below.
1799   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1800     return;
1801   }
1802   ResourceMark rm;
1803   deoptimize_single_frame(thread, fr, reason);
1804 }
1805 
1806 #if INCLUDE_JVMCI
1807 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) {
1808   // there is no exception handler for this pc => deoptimize
1809   nm->make_not_entrant();
1810 
1811   // Use Deoptimization::deoptimize for all of its side-effects:
1812   // gathering traps statistics, logging...
1813   // it also patches the return pc but we do not care about that
1814   // since we return a continuation to the deopt_blob below.
1815   JavaThread* thread = JavaThread::current();
1816   RegisterMap reg_map(thread,
1817                       RegisterMap::UpdateMap::skip,
1818                       RegisterMap::ProcessFrames::include,
1819                       RegisterMap::WalkContinuation::skip);
1820   frame runtime_frame = thread->last_frame();
1821   frame caller_frame = runtime_frame.sender(&reg_map);
1822   assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method");
1823   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1824   compiledVFrame* cvf = compiledVFrame::cast(vf);
1825   ScopeDesc* imm_scope = cvf->scope();
1826   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1827   if (imm_mdo != nullptr) {
1828     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
1829     MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
1830 
1831     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1832     if (pdata != nullptr && pdata->is_BitData()) {
1833       BitData* bit_data = (BitData*) pdata;
1834       bit_data->set_exception_seen();
1835     }
1836   }
1837 
1838   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1839 
1840   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true);
1841   if (trap_mdo != nullptr) {
1842     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1843   }
1844 
1845   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1846 }
1847 #endif
1848 
1849 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1850   assert(thread == Thread::current() ||
1851          thread->is_handshake_safe_for(Thread::current()) ||
1852          SafepointSynchronize::is_at_safepoint(),
1853          "can only deoptimize other thread at a safepoint/handshake");
1854   // Compute frame and register map based on thread and sp.
1855   RegisterMap reg_map(thread,
1856                       RegisterMap::UpdateMap::skip,
1857                       RegisterMap::ProcessFrames::include,
1858                       RegisterMap::WalkContinuation::skip);
1859   frame fr = thread->last_frame();
1860   while (fr.id() != id) {
1861     fr = fr.sender(&reg_map);
1862   }
1863   deoptimize(thread, fr, reason);
1864 }
1865 
1866 
1867 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1868   Thread* current = Thread::current();
1869   if (thread == current || thread->is_handshake_safe_for(current)) {
1870     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1871   } else {
1872     VM_DeoptimizeFrame deopt(thread, id, reason);
1873     VMThread::execute(&deopt);
1874   }
1875 }
1876 
1877 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1878   deoptimize_frame(thread, id, Reason_constraint);
1879 }
1880 
1881 // JVMTI PopFrame support
1882 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1883 {
1884   assert(thread == JavaThread::current(), "pre-condition");
1885   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1886 }
1887 JRT_END
1888 
1889 MethodData*
1890 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1891                                 bool create_if_missing) {
1892   JavaThread* THREAD = thread; // For exception macros.
1893   MethodData* mdo = m()->method_data();
1894   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1895     // Build an MDO.  Ignore errors like OutOfMemory;
1896     // that simply means we won't have an MDO to update.
1897     Method::build_profiling_method_data(m, THREAD);
1898     if (HAS_PENDING_EXCEPTION) {
1899       // Only metaspace OOM is expected. No Java code executed.
1900       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1901       CLEAR_PENDING_EXCEPTION;
1902     }
1903     mdo = m()->method_data();
1904   }
1905   return mdo;
1906 }
1907 
1908 #if COMPILER2_OR_JVMCI
1909 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1910   // In case of an unresolved klass entry, load the class.
1911   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1912   // and probably nowhere else.
1913   // Even that case would benefit from simply re-interpreting the
1914   // bytecode, without paying special attention to the class index.
1915   // So this whole "class index" feature should probably be removed.
1916 
1917   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1918     Klass* tk = constant_pool->klass_at(index, THREAD);
1919     if (HAS_PENDING_EXCEPTION) {
1920       // Exception happened during classloading. We ignore the exception here, since it
1921       // is going to be rethrown since the current activation is going to be deoptimized and
1922       // the interpreter will re-execute the bytecode.
1923       // Do not clear probable Async Exceptions.
1924       CLEAR_PENDING_NONASYNC_EXCEPTION;
1925       // Class loading called java code which may have caused a stack
1926       // overflow. If the exception was thrown right before the return
1927       // to the runtime the stack is no longer guarded. Reguard the
1928       // stack otherwise if we return to the uncommon trap blob and the
1929       // stack bang causes a stack overflow we crash.
1930       JavaThread* jt = THREAD;
1931       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1932       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1933     }
1934     return;
1935   }
1936 
1937   assert(!constant_pool->tag_at(index).is_symbol(),
1938          "no symbolic names here, please");
1939 }
1940 
1941 #if INCLUDE_JFR
1942 
1943 class DeoptReasonSerializer : public JfrSerializer {
1944  public:
1945   void serialize(JfrCheckpointWriter& writer) {
1946     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1947     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1948       writer.write_key((u8)i);
1949       writer.write(Deoptimization::trap_reason_name(i));
1950     }
1951   }
1952 };
1953 
1954 class DeoptActionSerializer : public JfrSerializer {
1955  public:
1956   void serialize(JfrCheckpointWriter& writer) {
1957     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1958     writer.write_count(nof_actions);
1959     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1960       writer.write_key(i);
1961       writer.write(Deoptimization::trap_action_name((int)i));
1962     }
1963   }
1964 };
1965 
1966 static void register_serializers() {
1967   static int critical_section = 0;
1968   if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) {
1969     return;
1970   }
1971   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1972   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1973 }
1974 
1975 static void post_deoptimization_event(nmethod* nm,
1976                                       const Method* method,
1977                                       int trap_bci,
1978                                       int instruction,
1979                                       Deoptimization::DeoptReason reason,
1980                                       Deoptimization::DeoptAction action) {
1981   assert(nm != nullptr, "invariant");
1982   assert(method != nullptr, "invariant");
1983   if (EventDeoptimization::is_enabled()) {
1984     static bool serializers_registered = false;
1985     if (!serializers_registered) {
1986       register_serializers();
1987       serializers_registered = true;
1988     }
1989     EventDeoptimization event;
1990     event.set_compileId(nm->compile_id());
1991     event.set_compiler(nm->compiler_type());
1992     event.set_method(method);
1993     event.set_lineNumber(method->line_number_from_bci(trap_bci));
1994     event.set_bci(trap_bci);
1995     event.set_instruction(instruction);
1996     event.set_reason(reason);
1997     event.set_action(action);
1998     event.commit();
1999   }
2000 }
2001 
2002 #endif // INCLUDE_JFR
2003 
2004 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
2005                               const char* reason_name, const char* reason_action) {
2006   LogTarget(Debug, deoptimization) lt;
2007   if (lt.is_enabled()) {
2008     LogStream ls(lt);
2009     bool is_osr = nm->is_osr_method();
2010     ls.print("cid=%4d %s level=%d",
2011              nm->compile_id(), (is_osr ? "osr" : "   "), nm->comp_level());
2012     ls.print(" %s", tm->name_and_sig_as_C_string());
2013     ls.print(" trap_bci=%d ", trap_bci);
2014     if (is_osr) {
2015       ls.print("osr_bci=%d ", nm->osr_entry_bci());
2016     }
2017     ls.print("%s ", reason_name);
2018     ls.print("%s ", reason_action);
2019     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2020              pc, fr.pc() - nm->code_begin());
2021   }
2022 }
2023 
2024 JRT_ENTRY_PROF(void, Deoptimization, uncommon_trap_inner, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2025   HandleMark hm(current);
2026 
2027   // uncommon_trap() is called at the beginning of the uncommon trap
2028   // handler. Note this fact before we start generating temporary frames
2029   // that can confuse an asynchronous stack walker. This counter is
2030   // decremented at the end of unpack_frames().
2031 
2032   current->inc_in_deopt_handler();
2033 
2034 #if INCLUDE_JVMCI
2035   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2036   RegisterMap reg_map(current,
2037                       RegisterMap::UpdateMap::include,
2038                       RegisterMap::ProcessFrames::include,
2039                       RegisterMap::WalkContinuation::skip);
2040 #else
2041   RegisterMap reg_map(current,
2042                       RegisterMap::UpdateMap::skip,
2043                       RegisterMap::ProcessFrames::include,
2044                       RegisterMap::WalkContinuation::skip);
2045 #endif
2046   frame stub_frame = current->last_frame();
2047   frame fr = stub_frame.sender(&reg_map);
2048 
2049   // Log a message
2050   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2051               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2052 
2053   {
2054     ResourceMark rm;
2055 
2056     DeoptReason reason = trap_request_reason(trap_request);
2057     DeoptAction action = trap_request_action(trap_request);
2058 #if INCLUDE_JVMCI
2059     int debug_id = trap_request_debug_id(trap_request);
2060 #endif
2061     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2062 
2063     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2064     compiledVFrame* cvf = compiledVFrame::cast(vf);
2065 
2066     nmethod* nm = cvf->code();
2067 
2068     ScopeDesc*      trap_scope  = cvf->scope();
2069 
2070     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2071 
2072     if (is_receiver_constraint_failure) {
2073       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2074                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2075                     JVMCI_ONLY(COMMA debug_id));
2076     }
2077 
2078     methodHandle    trap_method(current, trap_scope->method());
2079     int             trap_bci    = trap_scope->bci();
2080 #if INCLUDE_JVMCI
2081     jlong           speculation = current->pending_failed_speculation();
2082     if (nm->is_compiled_by_jvmci()) {
2083       nm->update_speculation(current);
2084     } else {
2085       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2086     }
2087 
2088     if (trap_bci == SynchronizationEntryBCI) {
2089       trap_bci = 0;
2090       current->set_pending_monitorenter(true);
2091     }
2092 
2093     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2094       current->set_pending_transfer_to_interpreter(true);
2095     }
2096 #endif
2097 
2098     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2099     // Record this event in the histogram.
2100     gather_statistics(nm, reason, action, trap_bc);
2101 
2102     // Ensure that we can record deopt. history:
2103     bool create_if_missing = ProfileTraps;
2104 
2105     methodHandle profiled_method;
2106 #if INCLUDE_JVMCI
2107     if (nm->is_compiled_by_jvmci()) {
2108       profiled_method = methodHandle(current, nm->method());
2109     } else {
2110       profiled_method = trap_method;
2111     }
2112 #else
2113     profiled_method = trap_method;
2114 #endif
2115 
2116     MethodData* trap_mdo =
2117       get_method_data(current, profiled_method, create_if_missing);
2118 
2119     { // Log Deoptimization event for JFR, UL and event system
2120       Method* tm = trap_method();
2121       const char* reason_name = trap_reason_name(reason);
2122       const char* reason_action = trap_action_name(action);
2123       intptr_t pc = p2i(fr.pc());
2124 
2125       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2126       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action);
2127       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
2128                                 reason_name, reason_action, pc,
2129                                 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
2130     }
2131 
2132     // Print a bunch of diagnostics, if requested.
2133     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2134       ResourceMark rm;
2135 
2136       // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2137       // We must do this already now, since we cannot acquire this lock while
2138       // holding the tty lock (lock ordering by rank).
2139       MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2140 
2141       ttyLocker ttyl;
2142 
2143       char buf[100];
2144       if (xtty != nullptr) {
2145         xtty->begin_head("uncommon_trap thread='%zu' %s",
2146                          os::current_thread_id(),
2147                          format_trap_request(buf, sizeof(buf), trap_request));
2148 #if INCLUDE_JVMCI
2149         if (speculation != 0) {
2150           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2151         }
2152 #endif
2153         nm->log_identity(xtty);
2154       }
2155       Symbol* class_name = nullptr;
2156       bool unresolved = false;
2157       if (unloaded_class_index >= 0) {
2158         constantPoolHandle constants (current, trap_method->constants());
2159         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2160           class_name = constants->klass_name_at(unloaded_class_index);
2161           unresolved = true;
2162           if (xtty != nullptr)
2163             xtty->print(" unresolved='1'");
2164         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2165           class_name = constants->symbol_at(unloaded_class_index);
2166         }
2167         if (xtty != nullptr)
2168           xtty->name(class_name);
2169       }
2170       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2171         // Dump the relevant MDO state.
2172         // This is the deopt count for the current reason, any previous
2173         // reasons or recompiles seen at this point.
2174         int dcnt = trap_mdo->trap_count(reason);
2175         if (dcnt != 0)
2176           xtty->print(" count='%d'", dcnt);
2177 
2178         // We need to lock to read the ProfileData. But to keep the locks ordered, we need to
2179         // lock extra_data_lock before the tty lock.
2180         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2181         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2182         if (dos != 0) {
2183           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2184           if (trap_state_is_recompiled(dos)) {
2185             int recnt2 = trap_mdo->overflow_recompile_count();
2186             if (recnt2 != 0)
2187               xtty->print(" recompiles2='%d'", recnt2);
2188           }
2189         }
2190       }
2191       if (xtty != nullptr) {
2192         xtty->stamp();
2193         xtty->end_head();
2194       }
2195       if (TraceDeoptimization) {  // make noise on the tty
2196         stringStream st;
2197         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2198         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2199                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2200         st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
2201 #if INCLUDE_JVMCI
2202         if (nm->is_compiled_by_jvmci()) {
2203           const char* installed_code_name = nm->jvmci_name();
2204           if (installed_code_name != nullptr) {
2205             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2206           }
2207         }
2208 #endif
2209         st.print(" (@" INTPTR_FORMAT ") thread=%zu reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2210                    p2i(fr.pc()),
2211                    os::current_thread_id(),
2212                    trap_reason_name(reason),
2213                    trap_action_name(action),
2214                    unloaded_class_index
2215 #if INCLUDE_JVMCI
2216                    , debug_id
2217 #endif
2218                    );
2219         if (class_name != nullptr) {
2220           st.print(unresolved ? " unresolved class: " : " symbol: ");
2221           class_name->print_symbol_on(&st);
2222         }
2223         st.cr();
2224         tty->print_raw(st.freeze());
2225       }
2226       if (xtty != nullptr) {
2227         // Log the precise location of the trap.
2228         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2229           xtty->begin_elem("jvms bci='%d'", sd->bci());
2230           xtty->method(sd->method());
2231           xtty->end_elem();
2232           if (sd->is_top())  break;
2233         }
2234         xtty->tail("uncommon_trap");
2235       }
2236     }
2237     // (End diagnostic printout.)
2238 
2239     if (is_receiver_constraint_failure) {
2240       fatal("missing receiver type check");
2241     }
2242 
2243     // Load class if necessary
2244     if (unloaded_class_index >= 0) {
2245       constantPoolHandle constants(current, trap_method->constants());
2246       load_class_by_index(constants, unloaded_class_index, THREAD);
2247     }
2248 
2249     // Flush the nmethod if necessary and desirable.
2250     //
2251     // We need to avoid situations where we are re-flushing the nmethod
2252     // because of a hot deoptimization site.  Repeated flushes at the same
2253     // point need to be detected by the compiler and avoided.  If the compiler
2254     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2255     // module must take measures to avoid an infinite cycle of recompilation
2256     // and deoptimization.  There are several such measures:
2257     //
2258     //   1. If a recompilation is ordered a second time at some site X
2259     //   and for the same reason R, the action is adjusted to 'reinterpret',
2260     //   to give the interpreter time to exercise the method more thoroughly.
2261     //   If this happens, the method's overflow_recompile_count is incremented.
2262     //
2263     //   2. If the compiler fails to reduce the deoptimization rate, then
2264     //   the method's overflow_recompile_count will begin to exceed the set
2265     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2266     //   is adjusted to 'make_not_compilable', and the method is abandoned
2267     //   to the interpreter.  This is a performance hit for hot methods,
2268     //   but is better than a disastrous infinite cycle of recompilations.
2269     //   (Actually, only the method containing the site X is abandoned.)
2270     //
2271     //   3. In parallel with the previous measures, if the total number of
2272     //   recompilations of a method exceeds the much larger set limit
2273     //   PerMethodRecompilationCutoff, the method is abandoned.
2274     //   This should only happen if the method is very large and has
2275     //   many "lukewarm" deoptimizations.  The code which enforces this
2276     //   limit is elsewhere (class nmethod, class Method).
2277     //
2278     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2279     // to recompile at each bytecode independently of the per-BCI cutoff.
2280     //
2281     // The decision to update code is up to the compiler, and is encoded
2282     // in the Action_xxx code.  If the compiler requests Action_none
2283     // no trap state is changed, no compiled code is changed, and the
2284     // computation suffers along in the interpreter.
2285     //
2286     // The other action codes specify various tactics for decompilation
2287     // and recompilation.  Action_maybe_recompile is the loosest, and
2288     // allows the compiled code to stay around until enough traps are seen,
2289     // and until the compiler gets around to recompiling the trapping method.
2290     //
2291     // The other actions cause immediate removal of the present code.
2292 
2293     // Traps caused by injected profile shouldn't pollute trap counts.
2294     bool injected_profile_trap = trap_method->has_injected_profile() &&
2295                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2296 
2297     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2298     bool make_not_entrant = false;
2299     bool make_not_compilable = false;
2300     bool reprofile = false;
2301     switch (action) {
2302     case Action_none:
2303       // Keep the old code.
2304       update_trap_state = false;
2305       break;
2306     case Action_maybe_recompile:
2307       // Do not need to invalidate the present code, but we can
2308       // initiate another
2309       // Start compiler without (necessarily) invalidating the nmethod.
2310       // The system will tolerate the old code, but new code should be
2311       // generated when possible.
2312       break;
2313     case Action_reinterpret:
2314       // Go back into the interpreter for a while, and then consider
2315       // recompiling form scratch.
2316       make_not_entrant = true;
2317       // Reset invocation counter for outer most method.
2318       // This will allow the interpreter to exercise the bytecodes
2319       // for a while before recompiling.
2320       // By contrast, Action_make_not_entrant is immediate.
2321       //
2322       // Note that the compiler will track null_check, null_assert,
2323       // range_check, and class_check events and log them as if they
2324       // had been traps taken from compiled code.  This will update
2325       // the MDO trap history so that the next compilation will
2326       // properly detect hot trap sites.
2327       reprofile = true;
2328       break;
2329     case Action_make_not_entrant:
2330       // Request immediate recompilation, and get rid of the old code.
2331       // Make them not entrant, so next time they are called they get
2332       // recompiled.  Unloaded classes are loaded now so recompile before next
2333       // time they are called.  Same for uninitialized.  The interpreter will
2334       // link the missing class, if any.
2335       make_not_entrant = true;
2336       break;
2337     case Action_make_not_compilable:
2338       // Give up on compiling this method at all.
2339       make_not_entrant = true;
2340       make_not_compilable = true;
2341       break;
2342     default:
2343       ShouldNotReachHere();
2344     }
2345 
2346     // Setting +ProfileTraps fixes the following, on all platforms:
2347     // The result is infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2348     // recompile relies on a MethodData* to record heroic opt failures.
2349 
2350     // Whether the interpreter is producing MDO data or not, we also need
2351     // to use the MDO to detect hot deoptimization points and control
2352     // aggressive optimization.
2353     bool inc_recompile_count = false;
2354 
2355     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2356     ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr,
2357                               (trap_mdo != nullptr),
2358                               Mutex::_no_safepoint_check_flag);
2359     ProfileData* pdata = nullptr;
2360     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2361       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2362       uint this_trap_count = 0;
2363       bool maybe_prior_trap = false;
2364       bool maybe_prior_recompile = false;
2365 
2366       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2367 #if INCLUDE_JVMCI
2368                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2369 #endif
2370                                    nm->method(),
2371                                    //outputs:
2372                                    this_trap_count,
2373                                    maybe_prior_trap,
2374                                    maybe_prior_recompile);
2375       // Because the interpreter also counts null, div0, range, and class
2376       // checks, these traps from compiled code are double-counted.
2377       // This is harmless; it just means that the PerXTrapLimit values
2378       // are in effect a little smaller than they look.
2379 
2380       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2381       if (per_bc_reason != Reason_none) {
2382         // Now take action based on the partially known per-BCI history.
2383         if (maybe_prior_trap
2384             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2385           // If there are too many traps at this BCI, force a recompile.
2386           // This will allow the compiler to see the limit overflow, and
2387           // take corrective action, if possible.  The compiler generally
2388           // does not use the exact PerBytecodeTrapLimit value, but instead
2389           // changes its tactics if it sees any traps at all.  This provides
2390           // a little hysteresis, delaying a recompile until a trap happens
2391           // several times.
2392           //
2393           // Actually, since there is only one bit of counter per BCI,
2394           // the possible per-BCI counts are {0,1,(per-method count)}.
2395           // This produces accurate results if in fact there is only
2396           // one hot trap site, but begins to get fuzzy if there are
2397           // many sites.  For example, if there are ten sites each
2398           // trapping two or more times, they each get the blame for
2399           // all of their traps.
2400           make_not_entrant = true;
2401         }
2402 
2403         // Detect repeated recompilation at the same BCI, and enforce a limit.
2404         if (make_not_entrant && maybe_prior_recompile) {
2405           // More than one recompile at this point.
2406           inc_recompile_count = maybe_prior_trap;
2407         }
2408       } else {
2409         // For reasons which are not recorded per-bytecode, we simply
2410         // force recompiles unconditionally.
2411         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2412         make_not_entrant = true;
2413       }
2414 
2415       // Go back to the compiler if there are too many traps in this method.
2416       if (this_trap_count >= per_method_trap_limit(reason)) {
2417         // If there are too many traps in this method, force a recompile.
2418         // This will allow the compiler to see the limit overflow, and
2419         // take corrective action, if possible.
2420         // (This condition is an unlikely backstop only, because the
2421         // PerBytecodeTrapLimit is more likely to take effect first,
2422         // if it is applicable.)
2423         make_not_entrant = true;
2424       }
2425 
2426       // Here's more hysteresis:  If there has been a recompile at
2427       // this trap point already, run the method in the interpreter
2428       // for a while to exercise it more thoroughly.
2429       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2430         reprofile = true;
2431       }
2432     }
2433 
2434     // Take requested actions on the method:
2435 
2436     // Recompile
2437     if (make_not_entrant) {
2438       if (!nm->make_not_entrant()) {
2439         return; // the call did not change nmethod's state
2440       }
2441 
2442       if (pdata != nullptr) {
2443         // Record the recompilation event, if any.
2444         int tstate0 = pdata->trap_state();
2445         int tstate1 = trap_state_set_recompiled(tstate0, true);
2446         if (tstate1 != tstate0)
2447           pdata->set_trap_state(tstate1);
2448       }
2449 
2450       // For code aging we count traps separately here, using make_not_entrant()
2451       // as a guard against simultaneous deopts in multiple threads.
2452       if (reason == Reason_tenured && trap_mdo != nullptr) {
2453         trap_mdo->inc_tenure_traps();
2454       }
2455     }
2456 
2457     if (inc_recompile_count) {
2458       trap_mdo->inc_overflow_recompile_count();
2459       if ((uint)trap_mdo->overflow_recompile_count() >
2460           (uint)PerBytecodeRecompilationCutoff) {
2461         // Give up on the method containing the bad BCI.
2462         if (trap_method() == nm->method()) {
2463           make_not_compilable = true;
2464         } else {
2465           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2466           // But give grace to the enclosing nm->method().
2467         }
2468       }
2469     }
2470 
2471     // Reprofile
2472     if (reprofile) {
2473       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2474     }
2475 
2476     // Give up compiling
2477     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2478       assert(make_not_entrant, "consistent");
2479       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2480     }
2481 
2482     if (ProfileExceptionHandlers && trap_mdo != nullptr) {
2483       BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci);
2484       if (exception_handler_data != nullptr) {
2485         // uncommon trap at the start of an exception handler.
2486         // C2 generates these for un-entered exception handlers.
2487         // mark the handler as entered to avoid generating
2488         // another uncommon trap the next time the handler is compiled
2489         exception_handler_data->set_exception_handler_entered();
2490       }
2491     }
2492 
2493   } // Free marked resources
2494 
2495 }
2496 JRT_END
2497 
2498 ProfileData*
2499 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2500                                          int trap_bci,
2501                                          Deoptimization::DeoptReason reason,
2502                                          bool update_total_trap_count,
2503 #if INCLUDE_JVMCI
2504                                          bool is_osr,
2505 #endif
2506                                          Method* compiled_method,
2507                                          //outputs:
2508                                          uint& ret_this_trap_count,
2509                                          bool& ret_maybe_prior_trap,
2510                                          bool& ret_maybe_prior_recompile) {
2511   trap_mdo->check_extra_data_locked();
2512 
2513   bool maybe_prior_trap = false;
2514   bool maybe_prior_recompile = false;
2515   uint this_trap_count = 0;
2516   if (update_total_trap_count) {
2517     uint idx = reason;
2518 #if INCLUDE_JVMCI
2519     if (is_osr) {
2520       // Upper half of history array used for traps in OSR compilations
2521       idx += Reason_TRAP_HISTORY_LENGTH;
2522     }
2523 #endif
2524     uint prior_trap_count = trap_mdo->trap_count(idx);
2525     this_trap_count  = trap_mdo->inc_trap_count(idx);
2526 
2527     // If the runtime cannot find a place to store trap history,
2528     // it is estimated based on the general condition of the method.
2529     // If the method has ever been recompiled, or has ever incurred
2530     // a trap with the present reason , then this BCI is assumed
2531     // (pessimistically) to be the culprit.
2532     maybe_prior_trap      = (prior_trap_count != 0);
2533     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2534   }
2535   ProfileData* pdata = nullptr;
2536 
2537 
2538   // For reasons which are recorded per bytecode, we check per-BCI data.
2539   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2540   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2541   if (per_bc_reason != Reason_none) {
2542     // Find the profile data for this BCI.  If there isn't one,
2543     // try to allocate one from the MDO's set of spares.
2544     // This will let us detect a repeated trap at this point.
2545     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2546 
2547     if (pdata != nullptr) {
2548       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2549         if (LogCompilation && xtty != nullptr) {
2550           ttyLocker ttyl;
2551           // no more room for speculative traps in this MDO
2552           xtty->elem("speculative_traps_oom");
2553         }
2554       }
2555       // Query the trap state of this profile datum.
2556       int tstate0 = pdata->trap_state();
2557       if (!trap_state_has_reason(tstate0, per_bc_reason))
2558         maybe_prior_trap = false;
2559       if (!trap_state_is_recompiled(tstate0))
2560         maybe_prior_recompile = false;
2561 
2562       // Update the trap state of this profile datum.
2563       int tstate1 = tstate0;
2564       // Record the reason.
2565       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2566       // Store the updated state on the MDO, for next time.
2567       if (tstate1 != tstate0)
2568         pdata->set_trap_state(tstate1);
2569     } else {
2570       if (LogCompilation && xtty != nullptr) {
2571         ttyLocker ttyl;
2572         // Missing MDP?  Leave a small complaint in the log.
2573         xtty->elem("missing_mdp bci='%d'", trap_bci);
2574       }
2575     }
2576   }
2577 
2578   // Return results:
2579   ret_this_trap_count = this_trap_count;
2580   ret_maybe_prior_trap = maybe_prior_trap;
2581   ret_maybe_prior_recompile = maybe_prior_recompile;
2582   return pdata;
2583 }
2584 
2585 void
2586 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2587   ResourceMark rm;
2588   // Ignored outputs:
2589   uint ignore_this_trap_count;
2590   bool ignore_maybe_prior_trap;
2591   bool ignore_maybe_prior_recompile;
2592   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2593   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2594   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2595 
2596   // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2597   MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2598 
2599   query_update_method_data(trap_mdo, trap_bci,
2600                            (DeoptReason)reason,
2601                            update_total_counts,
2602 #if INCLUDE_JVMCI
2603                            false,
2604 #endif
2605                            nullptr,
2606                            ignore_this_trap_count,
2607                            ignore_maybe_prior_trap,
2608                            ignore_maybe_prior_recompile);
2609 }
2610 
2611 PROF_ENTRY(Deoptimization::UnrollBlock*, Deoptimization, uncommon_trap, Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode))
2612   // Enable WXWrite: current function is called from methods compiled by C2 directly
2613   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2614 
2615   // Still in Java no safepoints
2616   {
2617     // This enters VM and may safepoint
2618     uncommon_trap_inner(current, trap_request);
2619   }
2620   HandleMark hm(current);
2621   return fetch_unroll_info_helper(current, exec_mode);
2622 PROF_END
2623 
2624 // Local derived constants.
2625 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2626 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2627 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2628 
2629 //---------------------------trap_state_reason---------------------------------
2630 Deoptimization::DeoptReason
2631 Deoptimization::trap_state_reason(int trap_state) {
2632   // This assert provides the link between the width of DataLayout::trap_bits
2633   // and the encoding of "recorded" reasons.  It ensures there are enough
2634   // bits to store all needed reasons in the per-BCI MDO profile.
2635   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2636   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2637   trap_state -= recompile_bit;
2638   if (trap_state == DS_REASON_MASK) {
2639     return Reason_many;
2640   } else {
2641     assert((int)Reason_none == 0, "state=0 => Reason_none");
2642     return (DeoptReason)trap_state;
2643   }
2644 }
2645 //-------------------------trap_state_has_reason-------------------------------
2646 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2647   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2648   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2649   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2650   trap_state -= recompile_bit;
2651   if (trap_state == DS_REASON_MASK) {
2652     return -1;  // true, unspecifically (bottom of state lattice)
2653   } else if (trap_state == reason) {
2654     return 1;   // true, definitely
2655   } else if (trap_state == 0) {
2656     return 0;   // false, definitely (top of state lattice)
2657   } else {
2658     return 0;   // false, definitely
2659   }
2660 }
2661 //-------------------------trap_state_add_reason-------------------------------
2662 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2663   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2664   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2665   trap_state -= recompile_bit;
2666   if (trap_state == DS_REASON_MASK) {
2667     return trap_state + recompile_bit;     // already at state lattice bottom
2668   } else if (trap_state == reason) {
2669     return trap_state + recompile_bit;     // the condition is already true
2670   } else if (trap_state == 0) {
2671     return reason + recompile_bit;          // no condition has yet been true
2672   } else {
2673     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2674   }
2675 }
2676 //-----------------------trap_state_is_recompiled------------------------------
2677 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2678   return (trap_state & DS_RECOMPILE_BIT) != 0;
2679 }
2680 //-----------------------trap_state_set_recompiled-----------------------------
2681 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2682   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2683   else    return trap_state & ~DS_RECOMPILE_BIT;
2684 }
2685 //---------------------------format_trap_state---------------------------------
2686 // This is used for debugging and diagnostics, including LogFile output.
2687 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2688                                               int trap_state) {
2689   assert(buflen > 0, "sanity");
2690   DeoptReason reason      = trap_state_reason(trap_state);
2691   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2692   // Re-encode the state from its decoded components.
2693   int decoded_state = 0;
2694   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2695     decoded_state = trap_state_add_reason(decoded_state, reason);
2696   if (recomp_flag)
2697     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2698   // If the state re-encodes properly, format it symbolically.
2699   // Because this routine is used for debugging and diagnostics,
2700   // be robust even if the state is a strange value.
2701   size_t len;
2702   if (decoded_state != trap_state) {
2703     // Random buggy state that doesn't decode??
2704     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2705   } else {
2706     len = jio_snprintf(buf, buflen, "%s%s",
2707                        trap_reason_name(reason),
2708                        recomp_flag ? " recompiled" : "");
2709   }
2710   return buf;
2711 }
2712 
2713 
2714 //--------------------------------statics--------------------------------------
2715 const char* Deoptimization::_trap_reason_name[] = {
2716   // Note:  Keep this in sync. with enum DeoptReason.
2717   "none",
2718   "null_check",
2719   "null_assert" JVMCI_ONLY("_or_unreached0"),
2720   "range_check",
2721   "class_check",
2722   "array_check",
2723   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2724   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2725   "profile_predicate",
2726   "unloaded",
2727   "uninitialized",
2728   "initialized",
2729   "unreached",
2730   "unhandled",
2731   "constraint",
2732   "div0_check",
2733   "age",
2734   "predicate",
2735   "loop_limit_check",
2736   "speculate_class_check",
2737   "speculate_null_check",
2738   "speculate_null_assert",
2739   "unstable_if",
2740   "unstable_fused_if",
2741   "receiver_constraint",
2742 #if INCLUDE_JVMCI
2743   "aliasing",
2744   "transfer_to_interpreter",
2745   "not_compiled_exception_handler",
2746   "unresolved",
2747   "jsr_mismatch",
2748 #endif
2749   "tenured"
2750 };
2751 const char* Deoptimization::_trap_action_name[] = {
2752   // Note:  Keep this in sync. with enum DeoptAction.
2753   "none",
2754   "maybe_recompile",
2755   "reinterpret",
2756   "make_not_entrant",
2757   "make_not_compilable"
2758 };
2759 
2760 const char* Deoptimization::trap_reason_name(int reason) {
2761   // Check that every reason has a name
2762   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2763 
2764   if (reason == Reason_many)  return "many";
2765   if ((uint)reason < Reason_LIMIT)
2766     return _trap_reason_name[reason];
2767   static char buf[20];
2768   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2769   return buf;
2770 }
2771 const char* Deoptimization::trap_action_name(int action) {
2772   // Check that every action has a name
2773   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2774 
2775   if ((uint)action < Action_LIMIT)
2776     return _trap_action_name[action];
2777   static char buf[20];
2778   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2779   return buf;
2780 }
2781 
2782 // This is used for debugging and diagnostics, including LogFile output.
2783 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2784                                                 int trap_request) {
2785   jint unloaded_class_index = trap_request_index(trap_request);
2786   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2787   const char* action = trap_action_name(trap_request_action(trap_request));
2788 #if INCLUDE_JVMCI
2789   int debug_id = trap_request_debug_id(trap_request);
2790 #endif
2791   size_t len;
2792   if (unloaded_class_index < 0) {
2793     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2794                        reason, action
2795 #if INCLUDE_JVMCI
2796                        ,debug_id
2797 #endif
2798                        );
2799   } else {
2800     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2801                        reason, action, unloaded_class_index
2802 #if INCLUDE_JVMCI
2803                        ,debug_id
2804 #endif
2805                        );
2806   }
2807   return buf;
2808 }
2809 
2810 juint Deoptimization::_deoptimization_hist
2811         [1 + 4 + 5] // total + online + archived
2812         [Deoptimization::Reason_LIMIT]
2813     [1 + Deoptimization::Action_LIMIT]
2814         [Deoptimization::BC_CASE_LIMIT]
2815   = {0};
2816 
2817 enum {
2818   LSB_BITS = 8,
2819   LSB_MASK = right_n_bits(LSB_BITS)
2820 };
2821 
2822 static void update(juint* cases, Bytecodes::Code bc) {
2823   juint* bc_counter_addr = nullptr;
2824   juint  bc_counter      = 0;
2825   // Look for an unused counter, or an exact match to this BC.
2826   if (bc != Bytecodes::_illegal) {
2827     for (int bc_case = 0; bc_case < Deoptimization::BC_CASE_LIMIT; bc_case++) {
2828       juint* counter_addr = &cases[bc_case];
2829       juint  counter = *counter_addr;
2830       if ((counter == 0 && bc_counter_addr == nullptr)
2831           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2832         // this counter is either free or is already devoted to this BC
2833         bc_counter_addr = counter_addr;
2834         bc_counter = counter | bc;
2835       }
2836     }
2837   }
2838   if (bc_counter_addr == nullptr) {
2839     // Overflow, or no given bytecode.
2840     bc_counter_addr = &cases[Deoptimization::BC_CASE_LIMIT-1];
2841     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2842   }
2843   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2844 }
2845 
2846 
2847 void Deoptimization::gather_statistics(nmethod* nm, DeoptReason reason, DeoptAction action,
2848                                        Bytecodes::Code bc) {
2849   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2850   assert(action >= 0 && action < Action_LIMIT, "oob");
2851   _deoptimization_hist[0][Reason_none][0][0] += 1;  // total
2852   _deoptimization_hist[0][reason][0][0]      += 1;  // per-reason total
2853 
2854   update(_deoptimization_hist[0][reason][1+action], bc);
2855 
2856   uint lvl = nm->comp_level() + (nm->is_scc() ? 4 : 0) + (nm->preloaded() ? 1 : 0);
2857   _deoptimization_hist[lvl][Reason_none][0][0] += 1;  // total
2858   _deoptimization_hist[lvl][reason][0][0]      += 1;  // per-reason total
2859   update(_deoptimization_hist[lvl][reason][1+action], bc);
2860 }
2861 
2862 jint Deoptimization::total_deoptimization_count() {
2863   return _deoptimization_hist[0][Reason_none][0][0];
2864 }
2865 
2866 // Get the deopt count for a specific reason and a specific action. If either
2867 // one of 'reason' or 'action' is null, the method returns the sum of all
2868 // deoptimizations with the specific 'action' or 'reason' respectively.
2869 // If both arguments are null, the method returns the total deopt count.
2870 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2871   if (reason_str == nullptr && action_str == nullptr) {
2872     return total_deoptimization_count();
2873   }
2874   juint counter = 0;
2875   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2876     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2877       for (int action = 0; action < Action_LIMIT; action++) {
2878         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2879           juint* cases = _deoptimization_hist[0][reason][1+action];
2880           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2881             counter += cases[bc_case] >> LSB_BITS;
2882           }
2883         }
2884       }
2885     }
2886   }
2887   return counter;
2888 }
2889 
2890 void Deoptimization::print_statistics() {
2891   ttyLocker ttyl;
2892   if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2893   tty->print_cr("Deoptimization traps recorded:");
2894   print_statistics_on(tty);
2895   if (xtty != nullptr)  xtty->tail("statistics");
2896 }
2897 
2898 void Deoptimization::print_statistics_on(const char* title, int lvl, outputStream* st) {
2899   juint total = _deoptimization_hist[lvl][Reason_none][0][0];
2900   juint account = total;
2901 #define PRINT_STAT_LINE(name, r) \
2902       st->print_cr("    %d (%4.1f%%) %s", (int)(r), ((r) == total ? 100.0 : (((r) * 100.0) / total)), name);
2903   if (total > 0) {
2904     st->print("  %s: ", title);
2905     PRINT_STAT_LINE("total", total);
2906     // For each non-zero entry in the histogram, print the reason,
2907     // the action, and (if specifically known) the type of bytecode.
2908     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2909       for (int action = 0; action < Action_LIMIT; action++) {
2910         juint* cases = Deoptimization::_deoptimization_hist[lvl][reason][1+action];
2911         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2912           juint counter = cases[bc_case];
2913           if (counter != 0) {
2914             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2915             const char* bc_name = "other";
2916             if (bc_case == (BC_CASE_LIMIT-1) && bc == Bytecodes::_nop) {
2917               // overwritten
2918             } else if (Bytecodes::is_defined(bc)) {
2919               bc_name = Bytecodes::name(bc);
2920             }
2921             juint r = counter >> LSB_BITS;
2922             st->print_cr("    %-34s %16s %16s: " UINT32_FORMAT_W(5) " (%4.1f%%)",
2923                          trap_reason_name(reason), trap_action_name(action), bc_name,
2924                          r, (r * 100.0) / total);
2925             account -= r;
2926           }
2927         }
2928       }
2929     }
2930     if (account != 0) {
2931       PRINT_STAT_LINE("unaccounted", account);
2932     }
2933 #undef PRINT_STAT_LINE
2934   }
2935 }
2936 
2937 void Deoptimization::print_statistics_on(outputStream* st) {
2938 //  print_statistics_on("Total", 0, st);
2939   print_statistics_on("Tier1", 1, st);
2940   print_statistics_on("Tier2", 2, st);
2941   print_statistics_on("Tier3", 3, st);
2942   print_statistics_on("Tier4", 4, st);
2943 
2944   print_statistics_on("SC Tier1", 5, st);
2945   print_statistics_on("SC Tier2", 6, st);
2946   print_statistics_on("SC Tier4", 8, st);
2947   print_statistics_on("SC Tier5 (preloaded)", 9, st);
2948 }
2949 
2950 #define DO_COUNTERS(macro) \
2951   macro(Deoptimization, fetch_unroll_info)   \
2952   macro(Deoptimization, unpack_frames) \
2953   macro(Deoptimization, uncommon_trap_inner) \
2954   macro(Deoptimization, uncommon_trap)
2955 
2956 #define INIT_COUNTER(sub, name) \
2957   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_RT, #sub "::" #name) \
2958   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_RT, #sub "::" #name "_count");
2959 
2960 void Deoptimization::init_counters() {
2961   if (ProfileRuntimeCalls && UsePerfData) {
2962     EXCEPTION_MARK;
2963 
2964     DO_COUNTERS(INIT_COUNTER)
2965 
2966     if (HAS_PENDING_EXCEPTION) {
2967       vm_exit_during_initialization("jvm_perf_init failed unexpectedly");
2968     }
2969   }
2970 }
2971 #undef INIT_COUNTER
2972 
2973 #define PRINT_COUNTER(sub, name) { \
2974   jlong count = _perf_##sub##_##name##_count->get_value(); \
2975   if (count > 0) { \
2976     st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
2977                  _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
2978                  _perf_##sub##_##name##_timer->thread_counter_value_us(), \
2979                  count); \
2980   }}
2981 
2982 void Deoptimization::print_counters_on(outputStream* st) {
2983   if (ProfileRuntimeCalls && UsePerfData) {
2984     DO_COUNTERS(PRINT_COUNTER)
2985   } else {
2986     st->print_cr("  Deoptimization: no info (%s is disabled)", (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData"));
2987   }
2988 }
2989 
2990 #undef PRINT_COUNTER
2991 #undef DO_COUNTERS
2992 
2993 #else // COMPILER2_OR_JVMCI
2994 
2995 
2996 // Stubs for C1 only system.
2997 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2998   return false;
2999 }
3000 
3001 const char* Deoptimization::trap_reason_name(int reason) {
3002   return "unknown";
3003 }
3004 
3005 jint Deoptimization::total_deoptimization_count() {
3006   return 0;
3007 }
3008 
3009 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
3010   return 0;
3011 }
3012 
3013 void Deoptimization::print_statistics() {
3014   // no output
3015 }
3016 
3017 void
3018 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
3019   // no update
3020 }
3021 
3022 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
3023   return 0;
3024 }
3025 
3026 void Deoptimization::gather_statistics(nmethod* nm, DeoptReason reason, DeoptAction action,
3027                                        Bytecodes::Code bc) {
3028   // no update
3029 }
3030 
3031 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
3032                                               int trap_state) {
3033   jio_snprintf(buf, buflen, "#%d", trap_state);
3034   return buf;
3035 }
3036 
3037 void Deoptimization::init_counters() {
3038   // nothing to do
3039 }
3040 
3041 void Deoptimization::print_counters_on(outputStream* st) {
3042   // no output
3043 }
3044 
3045 void Deoptimization::print_statistics_on(outputStream* st) {
3046   // no output
3047 }
3048 
3049 #endif // COMPILER2_OR_JVMCI