1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/javaClasses.inline.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compilationPolicy.hpp"
  35 #include "compiler/compilerDefinitions.inline.hpp"
  36 #include "gc/shared/collectedHeap.hpp"
  37 #include "gc/shared/memAllocator.hpp"
  38 #include "interpreter/bytecode.inline.hpp"
  39 #include "interpreter/bytecodeStream.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/oopMapCache.hpp"
  42 #include "jvm.h"
  43 #include "logging/log.hpp"
  44 #include "logging/logLevel.hpp"
  45 #include "logging/logMessage.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/allocation.inline.hpp"
  48 #include "memory/oopFactory.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "memory/universe.hpp"
  51 #include "oops/constantPool.hpp"
  52 #include "oops/fieldStreams.inline.hpp"
  53 #include "oops/method.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/objArrayOop.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/typeArrayOop.inline.hpp"
  58 #include "oops/verifyOopClosure.hpp"
  59 #include "prims/jvmtiDeferredUpdates.hpp"
  60 #include "prims/jvmtiExport.hpp"
  61 #include "prims/jvmtiThreadState.hpp"
  62 #include "prims/methodHandles.hpp"
  63 #include "prims/vectorSupport.hpp"
  64 #include "runtime/atomicAccess.hpp"
  65 #include "runtime/basicLock.inline.hpp"
  66 #include "runtime/continuation.hpp"
  67 #include "runtime/continuationEntry.inline.hpp"
  68 #include "runtime/deoptimization.hpp"
  69 #include "runtime/escapeBarrier.hpp"
  70 #include "runtime/fieldDescriptor.inline.hpp"
  71 #include "runtime/frame.inline.hpp"
  72 #include "runtime/handles.inline.hpp"
  73 #include "runtime/interfaceSupport.inline.hpp"
  74 #include "runtime/javaThread.hpp"
  75 #include "runtime/jniHandles.inline.hpp"
  76 #include "runtime/keepStackGCProcessed.hpp"
  77 #include "runtime/lockStack.inline.hpp"
  78 #include "runtime/objectMonitor.inline.hpp"
  79 #include "runtime/osThread.hpp"
  80 #include "runtime/perfData.inline.hpp"
  81 #include "runtime/safepointVerifiers.hpp"
  82 #include "runtime/sharedRuntime.hpp"
  83 #include "runtime/signature.hpp"
  84 #include "runtime/stackFrameStream.inline.hpp"
  85 #include "runtime/stackValue.hpp"
  86 #include "runtime/stackWatermarkSet.hpp"
  87 #include "runtime/stubRoutines.hpp"
  88 #include "runtime/synchronizer.hpp"
  89 #include "runtime/threadSMR.hpp"
  90 #include "runtime/threadWXSetters.inline.hpp"
  91 #include "runtime/vframe.hpp"
  92 #include "runtime/vframe_hp.hpp"
  93 #include "runtime/vframeArray.hpp"
  94 #include "runtime/vmOperations.hpp"
  95 #include "services/management.hpp"
  96 #include "utilities/checkedCast.hpp"
  97 #include "utilities/events.hpp"
  98 #include "utilities/growableArray.hpp"
  99 #include "utilities/macros.hpp"
 100 #include "utilities/preserveException.hpp"
 101 #include "utilities/xmlstream.hpp"
 102 #if INCLUDE_JFR
 103 #include "jfr/jfr.inline.hpp"
 104 #include "jfr/jfrEvents.hpp"
 105 #include "jfr/metadata/jfrSerializer.hpp"
 106 #endif
 107 
 108 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 109 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 110 bool     DeoptimizationScope::_committing_in_progress = false;
 111 
 112 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 113   DEBUG_ONLY(_deopted = false;)
 114 
 115   MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
 116   // If there is nothing to deopt _required_gen is the same as comitted.
 117   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 118 }
 119 
 120 DeoptimizationScope::~DeoptimizationScope() {
 121   assert(_deopted, "Deopt not executed");
 122 }
 123 
 124 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) {
 125   if (!nm->can_be_deoptimized()) {
 126     return;
 127   }
 128 
 129   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 130 
 131   // If it's already marked but we still need it to be deopted.
 132   if (nm->is_marked_for_deoptimization()) {
 133     dependent(nm);
 134     return;
 135   }
 136 
 137   nmethod::DeoptimizationStatus status =
 138     inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate;
 139   AtomicAccess::store(&nm->_deoptimization_status, status);
 140 
 141   // Make sure active is not committed
 142   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 143   assert(nm->_deoptimization_generation == 0, "Is already marked");
 144 
 145   nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 146   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 147 }
 148 
 149 void DeoptimizationScope::dependent(nmethod* nm) {
 150   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 151 
 152   // A method marked by someone else may have a _required_gen lower than what we marked with.
 153   // Therefore only store it if it's higher than _required_gen.
 154   if (_required_gen < nm->_deoptimization_generation) {
 155     _required_gen = nm->_deoptimization_generation;
 156   }
 157 }
 158 
 159 void DeoptimizationScope::deoptimize_marked() {
 160   assert(!_deopted, "Already deopted");
 161 
 162   // We are not alive yet.
 163   if (!Universe::is_fully_initialized()) {
 164     DEBUG_ONLY(_deopted = true;)
 165     return;
 166   }
 167 
 168   // Safepoints are a special case, handled here.
 169   if (SafepointSynchronize::is_at_safepoint()) {
 170     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 171     DeoptimizationScope::_active_deopt_gen++;
 172     Deoptimization::deoptimize_all_marked();
 173     DEBUG_ONLY(_deopted = true;)
 174     return;
 175   }
 176 
 177   uint64_t comitting = 0;
 178   bool wait = false;
 179   while (true) {
 180     {
 181       ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 182 
 183       // First we check if we or someone else already deopted the gen we want.
 184       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 185         DEBUG_ONLY(_deopted = true;)
 186         return;
 187       }
 188       if (!_committing_in_progress) {
 189         // The version we are about to commit.
 190         comitting = DeoptimizationScope::_active_deopt_gen;
 191         // Make sure new marks use a higher gen.
 192         DeoptimizationScope::_active_deopt_gen++;
 193         _committing_in_progress = true;
 194         wait = false;
 195       } else {
 196         // Another thread is handshaking and committing a gen.
 197         wait = true;
 198       }
 199     }
 200     if (wait) {
 201       // Wait and let the concurrent handshake be performed.
 202       ThreadBlockInVM tbivm(JavaThread::current());
 203       os::naked_yield();
 204     } else {
 205       // Performs the handshake.
 206       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 207       DEBUG_ONLY(_deopted = true;)
 208       {
 209         ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 210 
 211         // Make sure that committed doesn't go backwards.
 212         // Should only happen if we did a deopt during a safepoint above.
 213         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 214           DeoptimizationScope::_committed_deopt_gen = comitting;
 215         }
 216         _committing_in_progress = false;
 217 
 218         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 219 
 220         return;
 221       }
 222     }
 223   }
 224 }
 225 
 226 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 227                                          int  caller_adjustment,
 228                                          int  caller_actual_parameters,
 229                                          int  number_of_frames,
 230                                          intptr_t* frame_sizes,
 231                                          address* frame_pcs,
 232                                          BasicType return_type,
 233                                          int exec_mode) {
 234   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 235   _caller_adjustment         = caller_adjustment;
 236   _caller_actual_parameters  = caller_actual_parameters;
 237   _number_of_frames          = number_of_frames;
 238   _frame_sizes               = frame_sizes;
 239   _frame_pcs                 = frame_pcs;
 240   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 241   _return_type               = return_type;
 242   _initial_info              = 0;
 243   // PD (x86 only)
 244   _counter_temp              = 0;
 245   _unpack_kind               = exec_mode;
 246   _sender_sp_temp            = 0;
 247 
 248   _total_frame_sizes         = size_of_frames();
 249   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 250 }
 251 
 252 Deoptimization::UnrollBlock::~UnrollBlock() {
 253   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 254   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 255   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 256 }
 257 
 258 int Deoptimization::UnrollBlock::size_of_frames() const {
 259   // Account first for the adjustment of the initial frame
 260   intptr_t result = _caller_adjustment;
 261   for (int index = 0; index < number_of_frames(); index++) {
 262     result += frame_sizes()[index];
 263   }
 264   return checked_cast<int>(result);
 265 }
 266 
 267 void Deoptimization::UnrollBlock::print() {
 268   ResourceMark rm;
 269   stringStream st;
 270   st.print_cr("UnrollBlock");
 271   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 272   st.print(   "  frame_sizes: ");
 273   for (int index = 0; index < number_of_frames(); index++) {
 274     st.print("%zd ", frame_sizes()[index]);
 275   }
 276   st.cr();
 277   tty->print_raw(st.freeze());
 278 }
 279 
 280 // In order to make fetch_unroll_info work properly with escape
 281 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 282 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 283 // which is called from the method fetch_unroll_info_helper below.
 284 JRT_BLOCK_ENTRY_PROF(Deoptimization::UnrollBlock*, Deoptimization, fetch_unroll_info, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 285   // fetch_unroll_info() is called at the beginning of the deoptimization
 286   // handler. Note this fact before we start generating temporary frames
 287   // that can confuse an asynchronous stack walker. This counter is
 288   // decremented at the end of unpack_frames().
 289   current->inc_in_deopt_handler();
 290 
 291   if (exec_mode == Unpack_exception) {
 292     // When we get here, a callee has thrown an exception into a deoptimized
 293     // frame. That throw might have deferred stack watermark checking until
 294     // after unwinding. So we deal with such deferred requests here.
 295     StackWatermarkSet::after_unwind(current);
 296   }
 297 
 298   return fetch_unroll_info_helper(current, exec_mode);
 299 JRT_END
 300 
 301 #if COMPILER2_OR_JVMCI
 302 // print information about reallocated objects
 303 static void print_objects(JavaThread* deoptee_thread,
 304                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 305   ResourceMark rm;
 306   stringStream st;  // change to logStream with logging
 307   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 308   fieldDescriptor fd;
 309 
 310   for (int i = 0; i < objects->length(); i++) {
 311     ObjectValue* sv = (ObjectValue*) objects->at(i);
 312     Handle obj = sv->value();
 313 
 314     if (obj.is_null()) {
 315       st.print_cr("     nullptr");
 316       continue;
 317     }
 318 
 319     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 320 
 321     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 322     k->print_value_on(&st);
 323     st.print_cr(" allocated (%zu bytes)", obj->size() * HeapWordSize);
 324 
 325     if (Verbose && k != nullptr) {
 326       k->oop_print_on(obj(), &st);
 327     }
 328   }
 329   tty->print_raw(st.freeze());
 330 }
 331 
 332 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method,
 333                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 334                                   bool& deoptimized_objects) {
 335   bool realloc_failures = false;
 336   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 337 
 338   JavaThread* deoptee_thread = chunk->at(0)->thread();
 339   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 340          "a frame can only be deoptimized by the owner thread");
 341 
 342   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 343 
 344   // The flag return_oop() indicates call sites which return oop
 345   // in compiled code. Such sites include java method calls,
 346   // runtime calls (for example, used to allocate new objects/arrays
 347   // on slow code path) and any other calls generated in compiled code.
 348   // It is not guaranteed that we can get such information here only
 349   // by analyzing bytecode in deoptimized frames. This is why this flag
 350   // is set during method compilation (see Compile::Process_OopMap_Node()).
 351   // If the previous frame was popped or if we are dispatching an exception,
 352   // we don't have an oop result.
 353   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 354   Handle return_value;
 355   if (save_oop_result) {
 356     // Reallocation may trigger GC. If deoptimization happened on return from
 357     // call which returns oop we need to save it since it is not in oopmap.
 358     oop result = deoptee.saved_oop_result(&map);
 359     assert(oopDesc::is_oop_or_null(result), "must be oop");
 360     return_value = Handle(thread, result);
 361     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 362     if (TraceDeoptimization) {
 363       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 364       tty->cr();
 365     }
 366   }
 367   if (objects != nullptr) {
 368     if (exec_mode == Deoptimization::Unpack_none) {
 369       assert(thread->thread_state() == _thread_in_vm, "assumption");
 370       JavaThread* THREAD = thread; // For exception macros.
 371       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 372       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 373       deoptimized_objects = true;
 374     } else {
 375       JavaThread* current = thread; // For JRT_BLOCK
 376       JRT_BLOCK
 377       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 378       JRT_END
 379     }
 380     guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod");
 381     bool is_jvmci = compiled_method->is_compiled_by_jvmci();
 382     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci);
 383     if (TraceDeoptimization) {
 384       print_objects(deoptee_thread, objects, realloc_failures);
 385     }
 386   }
 387   if (save_oop_result) {
 388     // Restore result.
 389     deoptee.set_saved_oop_result(&map, return_value());
 390   }
 391   return realloc_failures;
 392 }
 393 
 394 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 395                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 396   JavaThread* deoptee_thread = chunk->at(0)->thread();
 397   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 398   assert(thread == Thread::current(), "should be");
 399   HandleMark hm(thread);
 400 #ifndef PRODUCT
 401   bool first = true;
 402 #endif // !PRODUCT
 403   // Start locking from outermost/oldest frame
 404   for (int i = (chunk->length() - 1); i >= 0; i--) {
 405     compiledVFrame* cvf = chunk->at(i);
 406     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 407     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 408     if (monitors->is_nonempty()) {
 409       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 410                                                      exec_mode, realloc_failures);
 411       deoptimized_objects = deoptimized_objects || relocked;
 412 #ifndef PRODUCT
 413       if (PrintDeoptimizationDetails) {
 414         ResourceMark rm;
 415         stringStream st;
 416         for (int j = 0; j < monitors->length(); j++) {
 417           MonitorInfo* mi = monitors->at(j);
 418           if (mi->eliminated()) {
 419             if (first) {
 420               first = false;
 421               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 422             }
 423             if (exec_mode == Deoptimization::Unpack_none) {
 424               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 425               if (monitor != nullptr && monitor->object() == mi->owner()) {
 426                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 427                 continue;
 428               }
 429             }
 430             if (mi->owner_is_scalar_replaced()) {
 431               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 432               st.print_cr("     failed reallocation for klass %s", k->external_name());
 433             } else {
 434               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 435             }
 436           }
 437         }
 438         tty->print_raw(st.freeze());
 439       }
 440 #endif // !PRODUCT
 441     }
 442   }
 443 }
 444 
 445 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 446 // The given vframes cover one physical frame.
 447 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 448                                                  bool& realloc_failures) {
 449   frame deoptee = chunk->at(0)->fr();
 450   JavaThread* deoptee_thread = chunk->at(0)->thread();
 451   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 452   RegisterMap map(chunk->at(0)->register_map());
 453   bool deoptimized_objects = false;
 454 
 455   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 456 
 457   // Reallocate the non-escaping objects and restore their fields.
 458   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 459                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 460     realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects);
 461   }
 462 
 463   // MonitorInfo structures used in eliminate_locks are not GC safe.
 464   NoSafepointVerifier no_safepoint;
 465 
 466   // Now relock objects if synchronization on them was eliminated.
 467   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 468     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 469   }
 470   return deoptimized_objects;
 471 }
 472 #endif // COMPILER2_OR_JVMCI
 473 
 474 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 475 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 476   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
 477   // When we get here we are about to unwind the deoptee frame. In order to
 478   // catch not yet safe to use frames, the following stack watermark barrier
 479   // poll will make such frames safe to use.
 480   StackWatermarkSet::before_unwind(current);
 481 
 482   // Note: there is a safepoint safety issue here. No matter whether we enter
 483   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 484   // the vframeArray is created.
 485   //
 486 
 487   // Allocate our special deoptimization ResourceMark
 488   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 489   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 490   current->set_deopt_mark(dmark);
 491 
 492   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 493   RegisterMap map(current,
 494                   RegisterMap::UpdateMap::include,
 495                   RegisterMap::ProcessFrames::include,
 496                   RegisterMap::WalkContinuation::skip);
 497   RegisterMap dummy_map(current,
 498                         RegisterMap::UpdateMap::skip,
 499                         RegisterMap::ProcessFrames::include,
 500                         RegisterMap::WalkContinuation::skip);
 501   // Now get the deoptee with a valid map
 502   frame deoptee = stub_frame.sender(&map);
 503   if (exec_mode == Unpack_deopt) {
 504     assert(deoptee.is_deoptimized_frame(), "frame is not marked for deoptimization");
 505   }
 506   // Set the deoptee nmethod
 507   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 508   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 509   current->set_deopt_compiled_method(nm);
 510 
 511   if (VerifyStack) {
 512     current->validate_frame_layout();
 513   }
 514 
 515   // Create a growable array of VFrames where each VFrame represents an inlined
 516   // Java frame.  This storage is allocated with the usual system arena.
 517   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 518   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 519   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 520   while (!vf->is_top()) {
 521     assert(vf->is_compiled_frame(), "Wrong frame type");
 522     chunk->push(compiledVFrame::cast(vf));
 523     vf = vf->sender();
 524   }
 525   assert(vf->is_compiled_frame(), "Wrong frame type");
 526   chunk->push(compiledVFrame::cast(vf));
 527 
 528   bool realloc_failures = false;
 529 
 530 #if COMPILER2_OR_JVMCI
 531   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 532 
 533   // Reallocate the non-escaping objects and restore their fields. Then
 534   // relock objects if synchronization on them was eliminated.
 535   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 536                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 537     bool unused;
 538     realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused);
 539   }
 540 #endif // COMPILER2_OR_JVMCI
 541 
 542   // Ensure that no safepoint is taken after pointers have been stored
 543   // in fields of rematerialized objects.  If a safepoint occurs from here on
 544   // out the java state residing in the vframeArray will be missed.
 545   // Locks may be rebaised in a safepoint.
 546   NoSafepointVerifier no_safepoint;
 547 
 548 #if COMPILER2_OR_JVMCI
 549   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 550       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 551     bool unused = false;
 552     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 553   }
 554 #endif // COMPILER2_OR_JVMCI
 555 
 556   ScopeDesc* trap_scope = chunk->at(0)->scope();
 557   Handle exceptionObject;
 558   if (trap_scope->rethrow_exception()) {
 559 #ifndef PRODUCT
 560     if (PrintDeoptimizationDetails) {
 561       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 562     }
 563 #endif // !PRODUCT
 564 
 565     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 566     guarantee(expressions != nullptr && expressions->length() == 1, "should have only exception on stack");
 567     guarantee(exec_mode != Unpack_exception, "rethrow_exception set with Unpack_exception");
 568     ScopeValue* topOfStack = expressions->top();
 569     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 570     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 571   }
 572 
 573   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 574 #if COMPILER2_OR_JVMCI
 575   if (realloc_failures) {
 576     // This destroys all ScopedValue bindings.
 577     current->clear_scopedValueBindings();
 578     pop_frames_failed_reallocs(current, array);
 579   }
 580 #endif
 581 
 582   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 583   current->set_vframe_array_head(array);
 584 
 585   // Now that the vframeArray has been created if we have any deferred local writes
 586   // added by jvmti then we can free up that structure as the data is now in the
 587   // vframeArray
 588 
 589   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 590 
 591   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 592   CodeBlob* cb = stub_frame.cb();
 593   // Verify we have the right vframeArray
 594   assert(cb->frame_size() >= 0, "Unexpected frame size");
 595   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 596   assert(unpack_sp == deoptee.unextended_sp(), "must be");
 597 
 598 #ifdef ASSERT
 599   assert(cb->is_deoptimization_stub() ||
 600          cb->is_uncommon_trap_stub() ||
 601          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 602          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 603          "unexpected code blob: %s", cb->name());
 604 #endif
 605 
 606   // This is a guarantee instead of an assert because if vframe doesn't match
 607   // we will unpack the wrong deoptimized frame and wind up in strange places
 608   // where it will be very difficult to figure out what went wrong. Better
 609   // to die an early death here than some very obscure death later when the
 610   // trail is cold.
 611   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 612 
 613   int number_of_frames = array->frames();
 614 
 615   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 616   // virtual activation, which is the reverse of the elements in the vframes array.
 617   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 618   // +1 because we always have an interpreter return address for the final slot.
 619   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 620   int popframe_extra_args = 0;
 621   // Create an interpreter return address for the stub to use as its return
 622   // address so the skeletal frames are perfectly walkable
 623   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 624 
 625   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 626   // activation be put back on the expression stack of the caller for reexecution
 627   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 628     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 629   }
 630 
 631   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 632   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 633   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 634   //
 635   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 636   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 637 
 638   // It's possible that the number of parameters at the call site is
 639   // different than number of arguments in the callee when method
 640   // handles are used.  If the caller is interpreted get the real
 641   // value so that the proper amount of space can be added to it's
 642   // frame.
 643   bool caller_was_method_handle = false;
 644   if (deopt_sender.is_interpreted_frame()) {
 645     methodHandle method(current, deopt_sender.interpreter_frame_method());
 646     Bytecode_invoke cur(method, deopt_sender.interpreter_frame_bci());
 647     if (cur.has_member_arg()) {
 648       // This should cover all real-world cases.  One exception is a pathological chain of
 649       // MH.linkToXXX() linker calls, which only trusted code could do anyway.  To handle that case, we
 650       // would need to get the size from the resolved method entry.  Another exception would
 651       // be an invokedynamic with an adapter that is really a MethodHandle linker.
 652       caller_was_method_handle = true;
 653     }
 654   }
 655 
 656   //
 657   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 658   // frame_sizes/frame_pcs[1] next oldest frame (int)
 659   // frame_sizes/frame_pcs[n] youngest frame (int)
 660   //
 661   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 662   // owns the space for the return address to it's caller).  Confusing ain't it.
 663   //
 664   // The vframe array can address vframes with indices running from
 665   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 666   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 667   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 668   // so things look a little strange in this loop.
 669   //
 670   int callee_parameters = 0;
 671   int callee_locals = 0;
 672   for (int index = 0; index < array->frames(); index++ ) {
 673     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 674     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 675     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 676     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 677                                                                                                     callee_locals,
 678                                                                                                     index == 0,
 679                                                                                                     popframe_extra_args);
 680     // This pc doesn't have to be perfect just good enough to identify the frame
 681     // as interpreted so the skeleton frame will be walkable
 682     // The correct pc will be set when the skeleton frame is completely filled out
 683     // The final pc we store in the loop is wrong and will be overwritten below
 684     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 685 
 686     callee_parameters = array->element(index)->method()->size_of_parameters();
 687     callee_locals = array->element(index)->method()->max_locals();
 688     popframe_extra_args = 0;
 689   }
 690 
 691   // Compute whether the root vframe returns a float or double value.
 692   BasicType return_type;
 693   {
 694     methodHandle method(current, array->element(0)->method());
 695     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 696     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 697   }
 698 
 699   // Compute information for handling adapters and adjusting the frame size of the caller.
 700   int caller_adjustment = 0;
 701 
 702   // Compute the amount the oldest interpreter frame will have to adjust
 703   // its caller's stack by. If the caller is a compiled frame then
 704   // we pretend that the callee has no parameters so that the
 705   // extension counts for the full amount of locals and not just
 706   // locals-parms. This is because without a c2i adapter the parm
 707   // area as created by the compiled frame will not be usable by
 708   // the interpreter. (Depending on the calling convention there
 709   // may not even be enough space).
 710 
 711   // QQQ I'd rather see this pushed down into last_frame_adjust
 712   // and have it take the sender (aka caller).
 713 
 714   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 715     caller_adjustment = last_frame_adjust(0, callee_locals);
 716   } else if (callee_locals > callee_parameters) {
 717     // The caller frame may need extending to accommodate
 718     // non-parameter locals of the first unpacked interpreted frame.
 719     // Compute that adjustment.
 720     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 721   }
 722 
 723   // If the sender is deoptimized the we must retrieve the address of the handler
 724   // since the frame will "magically" show the original pc before the deopt
 725   // and we'd undo the deopt.
 726 
 727   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 728   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 729     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 730   }
 731 
 732   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 733 
 734 #if INCLUDE_JVMCI
 735   if (exceptionObject() != nullptr) {
 736     current->set_exception_oop(exceptionObject());
 737     exec_mode = Unpack_exception;
 738     assert(array->element(0)->rethrow_exception(), "must be");
 739   }
 740 #endif
 741 
 742   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 743     assert(current->has_pending_exception(), "should have thrown OOME");
 744     current->set_exception_oop(current->pending_exception());
 745     current->clear_pending_exception();
 746     exec_mode = Unpack_exception;
 747   }
 748 
 749 #if INCLUDE_JVMCI
 750   if (current->frames_to_pop_failed_realloc() > 0) {
 751     current->set_pending_monitorenter(false);
 752   }
 753 #endif
 754 
 755   int caller_actual_parameters = -1; // value not used except for interpreted frames, see below
 756   if (deopt_sender.is_interpreted_frame()) {
 757     caller_actual_parameters = callee_parameters + (caller_was_method_handle ? 1 : 0);
 758   }
 759 
 760   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 761                                       caller_adjustment * BytesPerWord,
 762                                       caller_actual_parameters,
 763                                       number_of_frames,
 764                                       frame_sizes,
 765                                       frame_pcs,
 766                                       return_type,
 767                                       exec_mode);
 768   // On some platforms, we need a way to pass some platform dependent
 769   // information to the unpacking code so the skeletal frames come out
 770   // correct (initial fp value, unextended sp, ...)
 771   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 772 
 773   if (array->frames() > 1) {
 774     if (VerifyStack && TraceDeoptimization) {
 775       tty->print_cr("Deoptimizing method containing inlining");
 776     }
 777   }
 778 
 779   array->set_unroll_block(info);
 780   return info;
 781 }
 782 
 783 // Called to cleanup deoptimization data structures in normal case
 784 // after unpacking to stack and when stack overflow error occurs
 785 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 786                                         vframeArray *array) {
 787 
 788   // Get array if coming from exception
 789   if (array == nullptr) {
 790     array = thread->vframe_array_head();
 791   }
 792   thread->set_vframe_array_head(nullptr);
 793 
 794   // Free the previous UnrollBlock
 795   vframeArray* old_array = thread->vframe_array_last();
 796   thread->set_vframe_array_last(array);
 797 
 798   if (old_array != nullptr) {
 799     UnrollBlock* old_info = old_array->unroll_block();
 800     old_array->set_unroll_block(nullptr);
 801     delete old_info;
 802     delete old_array;
 803   }
 804 
 805   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 806   // inside the vframeArray (StackValueCollections)
 807 
 808   delete thread->deopt_mark();
 809   thread->set_deopt_mark(nullptr);
 810   thread->set_deopt_compiled_method(nullptr);
 811 
 812 
 813   if (JvmtiExport::can_pop_frame()) {
 814     // Regardless of whether we entered this routine with the pending
 815     // popframe condition bit set, we should always clear it now
 816     thread->clear_popframe_condition();
 817   }
 818 
 819   // unpack_frames() is called at the end of the deoptimization handler
 820   // and (in C2) at the end of the uncommon trap handler. Note this fact
 821   // so that an asynchronous stack walker can work again. This counter is
 822   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 823   // the beginning of uncommon_trap().
 824   thread->dec_in_deopt_handler();
 825 }
 826 
 827 // Moved from cpu directories because none of the cpus has callee save values.
 828 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 829 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 830 
 831   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 832   // the days we had adapter frames. When we deoptimize a situation where a
 833   // compiled caller calls a compiled caller will have registers it expects
 834   // to survive the call to the callee. If we deoptimize the callee the only
 835   // way we can restore these registers is to have the oldest interpreter
 836   // frame that we create restore these values. That is what this routine
 837   // will accomplish.
 838 
 839   // At the moment we have modified c2 to not have any callee save registers
 840   // so this problem does not exist and this routine is just a place holder.
 841 
 842   assert(f->is_interpreted_frame(), "must be interpreted");
 843 }
 844 
 845 #ifndef PRODUCT
 846 #ifdef ASSERT
 847 // Return true if the execution after the provided bytecode continues at the
 848 // next bytecode in the code. This is not the case for gotos, returns, and
 849 // throws.
 850 static bool falls_through(Bytecodes::Code bc) {
 851   switch (bc) {
 852     case Bytecodes::_goto:
 853     case Bytecodes::_goto_w:
 854     case Bytecodes::_athrow:
 855     case Bytecodes::_areturn:
 856     case Bytecodes::_dreturn:
 857     case Bytecodes::_freturn:
 858     case Bytecodes::_ireturn:
 859     case Bytecodes::_lreturn:
 860     case Bytecodes::_jsr:
 861     case Bytecodes::_ret:
 862     case Bytecodes::_return:
 863     case Bytecodes::_lookupswitch:
 864     case Bytecodes::_tableswitch:
 865       return false;
 866     default:
 867       return true;
 868   }
 869 }
 870 #endif
 871 #endif
 872 
 873 // Return BasicType of value being returned
 874 JRT_LEAF_PROF_NO_THREAD(BasicType, Deoptimization, unpack_frames, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 875   assert(thread == JavaThread::current(), "pre-condition");
 876 
 877   // We are already active in the special DeoptResourceMark any ResourceObj's we
 878   // allocate will be freed at the end of the routine.
 879 
 880   // JRT_LEAF methods don't normally allocate handles and there is a
 881   // NoHandleMark to enforce that. It is actually safe to use Handles
 882   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 883   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 884   // then use a HandleMark to ensure any Handles we do create are
 885   // cleaned up in this scope.
 886   ResetNoHandleMark rnhm;
 887   HandleMark hm(thread);
 888 
 889   frame stub_frame = thread->last_frame();
 890 
 891   Continuation::notify_deopt(thread, stub_frame.sp());
 892 
 893   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 894   // must point to the vframeArray for the unpack frame.
 895   vframeArray* array = thread->vframe_array_head();
 896   UnrollBlock* info = array->unroll_block();
 897 
 898   // We set the last_Java frame. But the stack isn't really parsable here. So we
 899   // clear it to make sure JFR understands not to try and walk stacks from events
 900   // in here.
 901   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 902   thread->frame_anchor()->set_last_Java_sp(nullptr);
 903 
 904   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 905   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 906 
 907   thread->frame_anchor()->set_last_Java_sp(sp);
 908 
 909   BasicType bt = info->return_type();
 910 
 911   // If we have an exception pending, claim that the return type is an oop
 912   // so the deopt_blob does not overwrite the exception_oop.
 913 
 914   if (exec_mode == Unpack_exception)
 915     bt = T_OBJECT;
 916 
 917   // Cleanup thread deopt data
 918   cleanup_deopt_info(thread, array);
 919 
 920 #ifndef PRODUCT
 921   if (VerifyStack) {
 922     ResourceMark res_mark;
 923     // Clear pending exception to not break verification code (restored afterwards)
 924     PreserveExceptionMark pm(thread);
 925 
 926     thread->validate_frame_layout();
 927 
 928     // Verify that the just-unpacked frames match the interpreter's
 929     // notions of expression stack and locals
 930     vframeArray* cur_array = thread->vframe_array_last();
 931     RegisterMap rm(thread,
 932                    RegisterMap::UpdateMap::skip,
 933                    RegisterMap::ProcessFrames::include,
 934                    RegisterMap::WalkContinuation::skip);
 935     rm.set_include_argument_oops(false);
 936     int callee_size_of_parameters = 0;
 937     for (int frame_idx = 0; frame_idx < cur_array->frames(); frame_idx++) {
 938       bool is_top_frame = (frame_idx == 0);
 939       vframeArrayElement* el = cur_array->element(frame_idx);
 940       frame* iframe = el->iframe();
 941       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 942       methodHandle mh(thread, iframe->interpreter_frame_method());
 943       bool reexecute = el->should_reexecute();
 944 
 945       int cur_invoke_parameter_size = 0;
 946       int top_frame_expression_stack_adjustment = 0;
 947       int max_bci = mh->code_size();
 948       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 949       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 950       Bytecodes::Code cur_code = str.next();
 951 
 952       if (!reexecute && !Bytecodes::is_invoke(cur_code)) {
 953         // We can only compute OopMaps for the before state, so we need to roll forward
 954         // to the next bytecode.
 955         assert(is_top_frame, "must be");
 956         assert(falls_through(cur_code), "must be");
 957         assert(cur_code != Bytecodes::_illegal, "illegal bytecode");
 958         assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 959 
 960         // Need to subtract off the size of the result type of
 961         // the bytecode because this is not described in the
 962         // debug info but returned to the interpreter in the TOS
 963         // caching register
 964         BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 965         if (bytecode_result_type != T_ILLEGAL) {
 966           top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 967         }
 968         assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 969 
 970         cur_code = str.next();
 971         // Reflect the fact that we have rolled forward and now need
 972         // top_frame_expression_stack_adjustment
 973         reexecute = true;
 974       }
 975 
 976       assert(cur_code != Bytecodes::_illegal, "illegal bytecode");
 977       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 978 
 979       // Get the oop map for this bci
 980       InterpreterOopMap mask;
 981       OopMapCache::compute_one_oop_map(mh, str.bci(), &mask);
 982       // Check to see if we can grab the number of outgoing arguments
 983       // at an uncommon trap for an invoke (where the compiler
 984       // generates debug info before the invoke has executed)
 985       if (Bytecodes::is_invoke(cur_code)) {
 986         Bytecode_invoke invoke(mh, str.bci());
 987         cur_invoke_parameter_size = invoke.size_of_parameters();
 988         if (!is_top_frame && invoke.has_member_arg()) {
 989           callee_size_of_parameters++;
 990         }
 991       }
 992 
 993       // Verify stack depth and oops in frame
 994       auto match = [&]() {
 995         int iframe_expr_ssize = iframe->interpreter_frame_expression_stack_size();
 996 #if INCLUDE_JVMCI
 997         if (is_top_frame && el->rethrow_exception()) {
 998           return iframe_expr_ssize == 1;
 999         }
1000 #endif
1001         // This should only be needed for C1
1002         if (is_top_frame && exec_mode == Unpack_exception && iframe_expr_ssize == 0) {
1003           return true;
1004         }
1005         if (reexecute) {
1006           int expr_ssize_before = iframe_expr_ssize + top_frame_expression_stack_adjustment;
1007           int oopmap_expr_invoke_ssize = mask.expression_stack_size() + cur_invoke_parameter_size;
1008           return expr_ssize_before == oopmap_expr_invoke_ssize;
1009         } else {
1010           int oopmap_expr_callee_ssize = mask.expression_stack_size() + callee_size_of_parameters;
1011           return iframe_expr_ssize == oopmap_expr_callee_ssize;
1012         }
1013       };
1014       if (!match()) {
1015         // Print out some information that will help us debug the problem
1016         tty->print_cr("Wrong number of expression stack elements during deoptimization");
1017         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", frame_idx, cur_array->frames() - 1);
1018         tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
1019         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
1020                       iframe->interpreter_frame_expression_stack_size());
1021         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
1022         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
1023         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1024         tty->print_cr("  exec_mode = %d", exec_mode);
1025         tty->print_cr("  original should_reexecute = %s", el->should_reexecute() ? "true" : "false");
1026         tty->print_cr("  reexecute = %s%s", reexecute ? "true" : "false",
1027                       (reexecute != el->should_reexecute()) ? " (changed)" : "");
1028 #if INCLUDE_JVMCI
1029         tty->print_cr("  rethrow_exception = %s", el->rethrow_exception() ? "true" : "false");
1030 #endif
1031         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1032         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1033         tty->print_cr("  Interpreted frames:");
1034         for (int k = 0; k < cur_array->frames(); k++) {
1035           vframeArrayElement* el = cur_array->element(k);
1036           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1037         }
1038         cur_array->print_on_2(tty);
1039         guarantee(false, "wrong number of expression stack elements during deopt");
1040       }
1041       VerifyOopClosure verify;
1042       iframe->oops_interpreted_do(&verify, &rm, false);
1043       callee_size_of_parameters = mh->size_of_parameters();
1044     }
1045   }
1046 #endif // !PRODUCT
1047 
1048   return bt;
1049 JRT_END
1050 
1051 class DeoptimizeMarkedHandshakeClosure : public HandshakeClosure {
1052  public:
1053   DeoptimizeMarkedHandshakeClosure() : HandshakeClosure("Deoptimize") {}
1054   void do_thread(Thread* thread) {
1055     JavaThread* jt = JavaThread::cast(thread);
1056     jt->deoptimize_marked_methods();
1057   }
1058 };
1059 
1060 void Deoptimization::deoptimize_all_marked() {
1061   ResourceMark rm;
1062 
1063   // Make the dependent methods not entrant
1064   CodeCache::make_marked_nmethods_deoptimized();
1065 
1066   DeoptimizeMarkedHandshakeClosure deopt;
1067   if (SafepointSynchronize::is_at_safepoint()) {
1068     Threads::java_threads_do(&deopt);
1069   } else {
1070     Handshake::execute(&deopt);
1071   }
1072 }
1073 
1074 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1075   = Deoptimization::Action_reinterpret;
1076 
1077 #if INCLUDE_JVMCI
1078 template<typename CacheType>
1079 class BoxCacheBase : public CHeapObj<mtCompiler> {
1080 protected:
1081   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1082     ResourceMark rm(thread);
1083     char* klass_name_str = klass_name->as_C_string();
1084     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle());
1085     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1086     if (!ik->is_in_error_state()) {
1087       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1088       CacheType::compute_offsets(ik);
1089     }
1090     return ik;
1091   }
1092 };
1093 
1094 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1095   PrimitiveType _low;
1096   PrimitiveType _high;
1097   jobject _cache;
1098 protected:
1099   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1100   BoxCache(Thread* thread) {
1101     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1102     if (ik->is_in_error_state()) {
1103       _low = 1;
1104       _high = 0;
1105       _cache = nullptr;
1106     } else {
1107       objArrayOop cache = CacheType::cache(ik);
1108       assert(cache->length() > 0, "Empty cache");
1109       _low = BoxType::value(cache->obj_at(0));
1110       _high = checked_cast<PrimitiveType>(_low + cache->length() - 1);
1111       _cache = JNIHandles::make_global(Handle(thread, cache));
1112     }
1113   }
1114   ~BoxCache() {
1115     JNIHandles::destroy_global(_cache);
1116   }
1117 public:
1118   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1119     if (_singleton == nullptr) {
1120       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1121       if (!AtomicAccess::replace_if_null(&_singleton, s)) {
1122         delete s;
1123       }
1124     }
1125     return _singleton;
1126   }
1127   oop lookup(PrimitiveType value) {
1128     if (_low <= value && value <= _high) {
1129       int offset = checked_cast<int>(value - _low);
1130       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1131     }
1132     return nullptr;
1133   }
1134   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1135     if (_cache == nullptr) {
1136       cache_init_error = true;
1137       return nullptr;
1138     }
1139     // Have to cast to avoid little/big-endian problems.
1140     if (sizeof(PrimitiveType) > sizeof(jint)) {
1141       jlong value = (jlong)raw_value;
1142       return lookup(value);
1143     }
1144     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1145     return lookup(value);
1146   }
1147 };
1148 
1149 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1150 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1151 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1152 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1153 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1154 
1155 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1156 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1157 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1158 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1159 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1160 
1161 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1162   jobject _true_cache;
1163   jobject _false_cache;
1164 protected:
1165   static BooleanBoxCache *_singleton;
1166   BooleanBoxCache(Thread *thread) {
1167     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1168     if (ik->is_in_error_state()) {
1169       _true_cache = nullptr;
1170       _false_cache = nullptr;
1171     } else {
1172       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1173       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1174     }
1175   }
1176   ~BooleanBoxCache() {
1177     JNIHandles::destroy_global(_true_cache);
1178     JNIHandles::destroy_global(_false_cache);
1179   }
1180 public:
1181   static BooleanBoxCache* singleton(Thread* thread) {
1182     if (_singleton == nullptr) {
1183       BooleanBoxCache* s = new BooleanBoxCache(thread);
1184       if (!AtomicAccess::replace_if_null(&_singleton, s)) {
1185         delete s;
1186       }
1187     }
1188     return _singleton;
1189   }
1190   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1191     if (_true_cache == nullptr) {
1192       cache_in_error = true;
1193       return nullptr;
1194     }
1195     // Have to cast to avoid little/big-endian problems.
1196     jboolean value = (jboolean)*((jint*)&raw_value);
1197     return lookup(value);
1198   }
1199   oop lookup(jboolean value) {
1200     if (value != 0) {
1201       return JNIHandles::resolve_non_null(_true_cache);
1202     }
1203     return JNIHandles::resolve_non_null(_false_cache);
1204   }
1205 };
1206 
1207 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1208 
1209 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1210    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1211    BasicType box_type = vmClasses::box_klass_type(k);
1212    if (box_type != T_OBJECT) {
1213      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1214      switch(box_type) {
1215        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1216        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1217        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1218        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1219        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1220        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1221        default:;
1222      }
1223    }
1224    return nullptr;
1225 }
1226 #endif // INCLUDE_JVMCI
1227 
1228 #if COMPILER2_OR_JVMCI
1229 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1230   Handle pending_exception(THREAD, thread->pending_exception());
1231   const char* exception_file = thread->exception_file();
1232   int exception_line = thread->exception_line();
1233   thread->clear_pending_exception();
1234 
1235   bool failures = false;
1236 
1237   for (int i = 0; i < objects->length(); i++) {
1238     assert(objects->at(i)->is_object(), "invalid debug information");
1239     ObjectValue* sv = (ObjectValue*) objects->at(i);
1240 
1241     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1242     oop obj = nullptr;
1243 
1244     bool cache_init_error = false;
1245     if (k->is_instance_klass()) {
1246 #if INCLUDE_JVMCI
1247       nmethod* nm = fr->cb()->as_nmethod_or_null();
1248       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1249         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1250         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1251         if (obj != nullptr) {
1252           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1253           abv->set_cached(true);
1254         } else if (cache_init_error) {
1255           // Results in an OOME which is valid (as opposed to a class initialization error)
1256           // and is fine for the rare case a cache initialization failing.
1257           failures = true;
1258         }
1259       }
1260 #endif // INCLUDE_JVMCI
1261 
1262       InstanceKlass* ik = InstanceKlass::cast(k);
1263       if (obj == nullptr && !cache_init_error) {
1264         InternalOOMEMark iom(THREAD);
1265         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1266           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1267         } else {
1268           obj = ik->allocate_instance(THREAD);
1269         }
1270       }
1271     } else if (k->is_typeArray_klass()) {
1272       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1273       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1274       int len = sv->field_size() / type2size[ak->element_type()];
1275       InternalOOMEMark iom(THREAD);
1276       obj = ak->allocate_instance(len, THREAD);
1277     } else if (k->is_objArray_klass()) {
1278       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1279       InternalOOMEMark iom(THREAD);
1280       obj = ak->allocate_instance(sv->field_size(), THREAD);
1281     }
1282 
1283     if (obj == nullptr) {
1284       failures = true;
1285     }
1286 
1287     assert(sv->value().is_null(), "redundant reallocation");
1288     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1289     CLEAR_PENDING_EXCEPTION;
1290     sv->set_value(obj);
1291   }
1292 
1293   if (failures) {
1294     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1295   } else if (pending_exception.not_null()) {
1296     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1297   }
1298 
1299   return failures;
1300 }
1301 
1302 #if INCLUDE_JVMCI
1303 /**
1304  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1305  * we need to somehow be able to recover the actual kind to be able to write the correct
1306  * amount of bytes.
1307  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1308  * the entries at index n + 1 to n + i are 'markers'.
1309  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1310  * expected form of the array would be:
1311  *
1312  * {b0, b1, b2, b3, INT, marker, b6, b7}
1313  *
1314  * Thus, in order to get back the size of the entry, we simply need to count the number
1315  * of marked entries
1316  *
1317  * @param virtualArray the virtualized byte array
1318  * @param i index of the virtual entry we are recovering
1319  * @return The number of bytes the entry spans
1320  */
1321 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1322   int index = i;
1323   while (++index < virtualArray->field_size() &&
1324            virtualArray->field_at(index)->is_marker()) {}
1325   return index - i;
1326 }
1327 
1328 /**
1329  * If there was a guarantee for byte array to always start aligned to a long, we could
1330  * do a simple check on the parity of the index. Unfortunately, that is not always the
1331  * case. Thus, we check alignment of the actual address we are writing to.
1332  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1333  * write a long to index 3.
1334  */
1335 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1336     jbyte* res = obj->byte_at_addr(index);
1337     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1338     return res;
1339 }
1340 
1341 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) {
1342   switch (byte_count) {
1343     case 1:
1344       obj->byte_at_put(index, (jbyte) value->get_jint());
1345       break;
1346     case 2:
1347       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint();
1348       break;
1349     case 4:
1350       *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint();
1351       break;
1352     case 8:
1353       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr();
1354       break;
1355     default:
1356       ShouldNotReachHere();
1357   }
1358 }
1359 #endif // INCLUDE_JVMCI
1360 
1361 
1362 // restore elements of an eliminated type array
1363 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1364   int index = 0;
1365 
1366   for (int i = 0; i < sv->field_size(); i++) {
1367     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1368     switch(type) {
1369     case T_LONG: case T_DOUBLE: {
1370       assert(value->type() == T_INT, "Agreement.");
1371       StackValue* low =
1372         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1373 #ifdef _LP64
1374       jlong res = (jlong)low->get_intptr();
1375 #else
1376       jlong res = jlong_from(value->get_jint(), low->get_jint());
1377 #endif
1378       obj->long_at_put(index, res);
1379       break;
1380     }
1381 
1382     case T_INT: case T_FLOAT: { // 4 bytes.
1383       assert(value->type() == T_INT, "Agreement.");
1384 #if INCLUDE_JVMCI
1385       // big_value allows encoding double/long value as e.g. [int = 0, long], and storing
1386       // the value in two array elements.
1387       bool big_value = false;
1388       if (i + 1 < sv->field_size() && type == T_INT) {
1389         if (sv->field_at(i)->is_location()) {
1390           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1391           if (type == Location::dbl || type == Location::lng) {
1392             big_value = true;
1393           }
1394         } else if (sv->field_at(i)->is_constant_int()) {
1395           ScopeValue* next_scope_field = sv->field_at(i + 1);
1396           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1397             big_value = true;
1398           }
1399         }
1400       }
1401 
1402       if (big_value) {
1403         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1404   #ifdef _LP64
1405         jlong res = (jlong)low->get_intptr();
1406   #else
1407         jlong res = jlong_from(value->get_jint(), low->get_jint());
1408   #endif
1409         obj->int_at_put(index, *(jint*)&res);
1410         obj->int_at_put(++index, *((jint*)&res + 1));
1411       } else {
1412         obj->int_at_put(index, value->get_jint());
1413       }
1414 #else // not INCLUDE_JVMCI
1415       obj->int_at_put(index, value->get_jint());
1416 #endif // INCLUDE_JVMCI
1417       break;
1418     }
1419 
1420     case T_SHORT:
1421       assert(value->type() == T_INT, "Agreement.");
1422       obj->short_at_put(index, (jshort)value->get_jint());
1423       break;
1424 
1425     case T_CHAR:
1426       assert(value->type() == T_INT, "Agreement.");
1427       obj->char_at_put(index, (jchar)value->get_jint());
1428       break;
1429 
1430     case T_BYTE: {
1431       assert(value->type() == T_INT, "Agreement.");
1432 #if INCLUDE_JVMCI
1433       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1434       int byte_count = count_number_of_bytes_for_entry(sv, i);
1435       byte_array_put(obj, value, index, byte_count);
1436       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1437       i += byte_count - 1; // Balance the loop counter.
1438       index += byte_count;
1439       // index has been updated so continue at top of loop
1440       continue;
1441 #else
1442       obj->byte_at_put(index, (jbyte)value->get_jint());
1443       break;
1444 #endif // INCLUDE_JVMCI
1445     }
1446 
1447     case T_BOOLEAN: {
1448       assert(value->type() == T_INT, "Agreement.");
1449       obj->bool_at_put(index, (jboolean)value->get_jint());
1450       break;
1451     }
1452 
1453       default:
1454         ShouldNotReachHere();
1455     }
1456     index++;
1457   }
1458 }
1459 
1460 // restore fields of an eliminated object array
1461 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1462   for (int i = 0; i < sv->field_size(); i++) {
1463     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1464     assert(value->type() == T_OBJECT, "object element expected");
1465     obj->obj_at_put(i, value->get_obj()());
1466   }
1467 }
1468 
1469 class ReassignedField {
1470 public:
1471   int _offset;
1472   BasicType _type;
1473 public:
1474   ReassignedField() {
1475     _offset = 0;
1476     _type = T_ILLEGAL;
1477   }
1478 };
1479 
1480 // Gets the fields of `klass` that are eliminated by escape analysis and need to be reassigned
1481 static GrowableArray<ReassignedField>* get_reassigned_fields(InstanceKlass* klass, GrowableArray<ReassignedField>* fields, bool is_jvmci) {
1482   InstanceKlass* super = klass->super();
1483   if (super != nullptr) {
1484     get_reassigned_fields(super, fields, is_jvmci);
1485   }
1486   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1487     if (!fs.access_flags().is_static() && (is_jvmci || !fs.field_flags().is_injected())) {
1488       ReassignedField field;
1489       field._offset = fs.offset();
1490       field._type = Signature::basic_type(fs.signature());
1491       fields->append(field);
1492     }
1493   }
1494   return fields;
1495 }
1496 
1497 // Restore fields of an eliminated instance object employing the same field order used by the compiler.
1498 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool is_jvmci) {
1499   GrowableArray<ReassignedField>* fields = get_reassigned_fields(klass, new GrowableArray<ReassignedField>(), is_jvmci);
1500   for (int i = 0; i < fields->length(); i++) {
1501     ScopeValue* scope_field = sv->field_at(svIndex);
1502     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1503     int offset = fields->at(i)._offset;
1504     BasicType type = fields->at(i)._type;
1505     switch (type) {
1506       case T_OBJECT: case T_ARRAY:
1507         assert(value->type() == T_OBJECT, "Agreement.");
1508         obj->obj_field_put(offset, value->get_obj()());
1509         break;
1510 
1511       case T_INT: case T_FLOAT: { // 4 bytes.
1512         assert(value->type() == T_INT, "Agreement.");
1513         bool big_value = false;
1514         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1515           if (scope_field->is_location()) {
1516             Location::Type type = ((LocationValue*) scope_field)->location().type();
1517             if (type == Location::dbl || type == Location::lng) {
1518               big_value = true;
1519             }
1520           }
1521           if (scope_field->is_constant_int()) {
1522             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1523             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1524               big_value = true;
1525             }
1526           }
1527         }
1528 
1529         if (big_value) {
1530           i++;
1531           assert(i < fields->length(), "second T_INT field needed");
1532           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1533         } else {
1534           obj->int_field_put(offset, value->get_jint());
1535           break;
1536         }
1537       }
1538         /* no break */
1539 
1540       case T_LONG: case T_DOUBLE: {
1541         assert(value->type() == T_INT, "Agreement.");
1542         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1543 #ifdef _LP64
1544         jlong res = (jlong)low->get_intptr();
1545 #else
1546         jlong res = jlong_from(value->get_jint(), low->get_jint());
1547 #endif
1548         obj->long_field_put(offset, res);
1549         break;
1550       }
1551 
1552       case T_SHORT:
1553         assert(value->type() == T_INT, "Agreement.");
1554         obj->short_field_put(offset, (jshort)value->get_jint());
1555         break;
1556 
1557       case T_CHAR:
1558         assert(value->type() == T_INT, "Agreement.");
1559         obj->char_field_put(offset, (jchar)value->get_jint());
1560         break;
1561 
1562       case T_BYTE:
1563         assert(value->type() == T_INT, "Agreement.");
1564         obj->byte_field_put(offset, (jbyte)value->get_jint());
1565         break;
1566 
1567       case T_BOOLEAN:
1568         assert(value->type() == T_INT, "Agreement.");
1569         obj->bool_field_put(offset, (jboolean)value->get_jint());
1570         break;
1571 
1572       default:
1573         ShouldNotReachHere();
1574     }
1575     svIndex++;
1576   }
1577   return svIndex;
1578 }
1579 
1580 // restore fields of all eliminated objects and arrays
1581 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool is_jvmci) {
1582   for (int i = 0; i < objects->length(); i++) {
1583     assert(objects->at(i)->is_object(), "invalid debug information");
1584     ObjectValue* sv = (ObjectValue*) objects->at(i);
1585     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1586     Handle obj = sv->value();
1587     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1588 #ifndef PRODUCT
1589     if (PrintDeoptimizationDetails) {
1590       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1591     }
1592 #endif // !PRODUCT
1593 
1594     if (obj.is_null()) {
1595       continue;
1596     }
1597 
1598 #if INCLUDE_JVMCI
1599     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1600     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1601       continue;
1602     }
1603 #endif // INCLUDE_JVMCI
1604     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1605       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1606       ScopeValue* payload = sv->field_at(0);
1607       if (payload->is_location() &&
1608           payload->as_LocationValue()->location().type() == Location::vector) {
1609 #ifndef PRODUCT
1610         if (PrintDeoptimizationDetails) {
1611           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1612           if (Verbose) {
1613             Handle obj = sv->value();
1614             k->oop_print_on(obj(), tty);
1615           }
1616         }
1617 #endif // !PRODUCT
1618         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1619       }
1620       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1621       // which could be restored after vector object allocation.
1622     }
1623     if (k->is_instance_klass()) {
1624       InstanceKlass* ik = InstanceKlass::cast(k);
1625       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), is_jvmci);
1626     } else if (k->is_typeArray_klass()) {
1627       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1628       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1629     } else if (k->is_objArray_klass()) {
1630       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1631     }
1632   }
1633   // These objects may escape when we return to Interpreter after deoptimization.
1634   // We need barrier so that stores that initialize these objects can't be reordered
1635   // with subsequent stores that make these objects accessible by other threads.
1636   OrderAccess::storestore();
1637 }
1638 
1639 
1640 // relock objects for which synchronization was eliminated
1641 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1642                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1643   bool relocked_objects = false;
1644   for (int i = 0; i < monitors->length(); i++) {
1645     MonitorInfo* mon_info = monitors->at(i);
1646     if (mon_info->eliminated()) {
1647       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1648       relocked_objects = true;
1649       if (!mon_info->owner_is_scalar_replaced()) {
1650         Handle obj(thread, mon_info->owner());
1651         markWord mark = obj->mark();
1652         if (exec_mode == Unpack_none) {
1653           if (mark.has_monitor()) {
1654             // defer relocking if the deoptee thread is currently waiting for obj
1655             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1656             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1657               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1658               if (UseObjectMonitorTable) {
1659                 mon_info->lock()->clear_object_monitor_cache();
1660               }
1661 #ifdef ASSERT
1662               else {
1663                 assert(!UseObjectMonitorTable, "must be");
1664                 mon_info->lock()->set_bad_monitor_deopt();
1665               }
1666 #endif
1667               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1668               continue;
1669             }
1670           }
1671         }
1672         BasicLock* lock = mon_info->lock();
1673         // We have lost information about the correct state of the lock stack.
1674         // Entering may create an invalid lock stack. Inflate the lock if it
1675         // was fast_locked to restore the valid lock stack.
1676         if (UseObjectMonitorTable) {
1677           // UseObjectMonitorTable expects the BasicLock cache to be either a
1678           // valid ObjectMonitor* or nullptr. Right now it is garbage, set it
1679           // to nullptr.
1680           lock->clear_object_monitor_cache();
1681         }
1682         ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1683         if (deoptee_thread->lock_stack().contains(obj())) {
1684             ObjectSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal,
1685                                                            deoptee_thread, thread);
1686         }
1687         assert(mon_info->owner()->is_locked(), "object must be locked now");
1688         assert(obj->mark().has_monitor(), "must be");
1689         assert(!deoptee_thread->lock_stack().contains(obj()), "must be");
1690         assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be");
1691       }
1692     }
1693   }
1694   return relocked_objects;
1695 }
1696 #endif // COMPILER2_OR_JVMCI
1697 
1698 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1699   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1700 
1701   // Register map for next frame (used for stack crawl).  We capture
1702   // the state of the deopt'ing frame's caller.  Thus if we need to
1703   // stuff a C2I adapter we can properly fill in the callee-save
1704   // register locations.
1705   frame caller = fr.sender(reg_map);
1706   int frame_size = pointer_delta_as_int(caller.sp(), fr.sp());
1707 
1708   frame sender = caller;
1709 
1710   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1711   // the vframeArray containing the unpacking information is allocated in the C heap.
1712   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1713   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1714 
1715   // Compare the vframeArray to the collected vframes
1716   assert(array->structural_compare(thread, chunk), "just checking");
1717 
1718   if (TraceDeoptimization) {
1719     ResourceMark rm;
1720     stringStream st;
1721     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1722     st.print("   ");
1723     fr.print_on(&st);
1724     st.print_cr("   Virtual frames (innermost/newest first):");
1725     for (int index = 0; index < chunk->length(); index++) {
1726       compiledVFrame* vf = chunk->at(index);
1727       int bci = vf->raw_bci();
1728       const char* code_name;
1729       if (bci == SynchronizationEntryBCI) {
1730         code_name = "sync entry";
1731       } else {
1732         Bytecodes::Code code = vf->method()->code_at(bci);
1733         code_name = Bytecodes::name(code);
1734       }
1735 
1736       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1737       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1738       st.print(" - %s", code_name);
1739       st.print_cr(" @ bci=%d ", bci);
1740     }
1741     tty->print_raw(st.freeze());
1742     tty->cr();
1743   }
1744 
1745   return array;
1746 }
1747 
1748 #if COMPILER2_OR_JVMCI
1749 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1750   // Reallocation of some scalar replaced objects failed. Record
1751   // that we need to pop all the interpreter frames for the
1752   // deoptimized compiled frame.
1753   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1754   thread->set_frames_to_pop_failed_realloc(array->frames());
1755   // Unlock all monitors here otherwise the interpreter will see a
1756   // mix of locked and unlocked monitors (because of failed
1757   // reallocations of synchronized objects) and be confused.
1758   for (int i = 0; i < array->frames(); i++) {
1759     MonitorChunk* monitors = array->element(i)->monitors();
1760     if (monitors != nullptr) {
1761       // Unlock in reverse order starting from most nested monitor.
1762       for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) {
1763         BasicObjectLock* src = monitors->at(j);
1764         if (src->obj() != nullptr) {
1765           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1766         }
1767       }
1768       array->element(i)->free_monitors();
1769 #ifdef ASSERT
1770       array->element(i)->set_removed_monitors();
1771 #endif
1772     }
1773   }
1774 }
1775 #endif
1776 
1777 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1778   assert(fr.can_be_deoptimized(), "checking frame type");
1779 
1780   nmethod* nm = fr.cb()->as_nmethod_or_null();
1781   assert(nm != nullptr, "only compiled methods can deopt");
1782   DeoptAction action = (nm->is_not_entrant() ? Action_make_not_entrant : Action_none);
1783   ScopeDesc* cur_sd = nm->scope_desc_at(fr.pc());
1784   Bytecodes::Code bc = (cur_sd->bci() == -1 ? Bytecodes::_nop // deopt on method entry
1785                                             : cur_sd->method()->java_code_at(cur_sd->bci()));
1786   gather_statistics(nm, reason, action, bc);
1787 
1788   if (LogCompilation && xtty != nullptr) {
1789     ttyLocker ttyl;
1790     xtty->begin_head("deoptimized thread='%zu' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1791     nm->log_identity(xtty);
1792     xtty->end_head();
1793     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1794       xtty->begin_elem("jvms bci='%d'", sd->bci());
1795       xtty->method(sd->method());
1796       xtty->end_elem();
1797       if (sd->is_top())  break;
1798     }
1799     xtty->tail("deoptimized");
1800   }
1801 
1802   Continuation::notify_deopt(thread, fr.sp());
1803 
1804   // Patch the compiled method so that when execution returns to it we will
1805   // deopt the execution state and return to the interpreter.
1806   fr.deoptimize(thread);
1807 }
1808 
1809 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1810   // Deoptimize only if the frame comes from compile code.
1811   // Do not deoptimize the frame which is already patched
1812   // during the execution of the loops below.
1813   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1814     return;
1815   }
1816   ResourceMark rm;
1817   deoptimize_single_frame(thread, fr, reason);
1818 }
1819 
1820 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm, bool make_not_entrant) {
1821   // there is no exception handler for this pc => deoptimize
1822   if (make_not_entrant) {
1823     nm->make_not_entrant(nmethod::InvalidationReason::MISSING_EXCEPTION_HANDLER);
1824   }
1825 
1826   // Use Deoptimization::deoptimize for all of its side-effects:
1827   // gathering traps statistics, logging...
1828   // it also patches the return pc but we do not care about that
1829   // since we return a continuation to the deopt_blob below.
1830   JavaThread* thread = JavaThread::current();
1831   RegisterMap reg_map(thread,
1832                       RegisterMap::UpdateMap::skip,
1833                       RegisterMap::ProcessFrames::include,
1834                       RegisterMap::WalkContinuation::skip);
1835   frame runtime_frame = thread->last_frame();
1836   frame caller_frame = runtime_frame.sender(&reg_map);
1837   assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method");
1838 
1839   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1840 
1841   if (!nm->is_compiled_by_jvmci()) {
1842     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1843   }
1844 
1845 #if INCLUDE_JVMCI
1846   // JVMCI support
1847   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1848   compiledVFrame* cvf = compiledVFrame::cast(vf);
1849   ScopeDesc* imm_scope = cvf->scope();
1850   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1851   if (imm_mdo != nullptr) {
1852     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
1853     MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
1854 
1855     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1856     if (pdata != nullptr && pdata->is_BitData()) {
1857       BitData* bit_data = (BitData*) pdata;
1858       bit_data->set_exception_seen();
1859     }
1860   }
1861 
1862 
1863   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true);
1864   if (trap_mdo != nullptr) {
1865     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1866   }
1867 #endif
1868 
1869   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1870 }
1871 
1872 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1873   assert(thread == Thread::current() ||
1874          thread->is_handshake_safe_for(Thread::current()) ||
1875          SafepointSynchronize::is_at_safepoint(),
1876          "can only deoptimize other thread at a safepoint/handshake");
1877   // Compute frame and register map based on thread and sp.
1878   RegisterMap reg_map(thread,
1879                       RegisterMap::UpdateMap::skip,
1880                       RegisterMap::ProcessFrames::include,
1881                       RegisterMap::WalkContinuation::skip);
1882   frame fr = thread->last_frame();
1883   while (fr.id() != id) {
1884     fr = fr.sender(&reg_map);
1885   }
1886   deoptimize(thread, fr, reason);
1887 }
1888 
1889 
1890 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1891   Thread* current = Thread::current();
1892   if (thread == current || thread->is_handshake_safe_for(current)) {
1893     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1894   } else {
1895     VM_DeoptimizeFrame deopt(thread, id, reason);
1896     VMThread::execute(&deopt);
1897   }
1898 }
1899 
1900 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1901   deoptimize_frame(thread, id, Reason_constraint);
1902 }
1903 
1904 // JVMTI PopFrame support
1905 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1906 {
1907   assert(thread == JavaThread::current(), "pre-condition");
1908   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1909 }
1910 JRT_END
1911 
1912 MethodData*
1913 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1914                                 bool create_if_missing) {
1915   JavaThread* THREAD = thread; // For exception macros.
1916   MethodData* mdo = m()->method_data();
1917   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1918     // Build an MDO.  Ignore errors like OutOfMemory;
1919     // that simply means we won't have an MDO to update.
1920     Method::build_profiling_method_data(m, THREAD);
1921     if (HAS_PENDING_EXCEPTION) {
1922       // Only metaspace OOM is expected. No Java code executed.
1923       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1924       CLEAR_PENDING_EXCEPTION;
1925     }
1926     mdo = m()->method_data();
1927   }
1928   return mdo;
1929 }
1930 
1931 #if COMPILER2_OR_JVMCI
1932 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1933   // In case of an unresolved klass entry, load the class.
1934   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1935   // and probably nowhere else.
1936   // Even that case would benefit from simply re-interpreting the
1937   // bytecode, without paying special attention to the class index.
1938   // So this whole "class index" feature should probably be removed.
1939 
1940   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1941     Klass* tk = constant_pool->klass_at(index, THREAD);
1942     if (HAS_PENDING_EXCEPTION) {
1943       // Exception happened during classloading. We ignore the exception here, since it
1944       // is going to be rethrown since the current activation is going to be deoptimized and
1945       // the interpreter will re-execute the bytecode.
1946       // Do not clear probable Async Exceptions.
1947       CLEAR_PENDING_NONASYNC_EXCEPTION;
1948       // Class loading called java code which may have caused a stack
1949       // overflow. If the exception was thrown right before the return
1950       // to the runtime the stack is no longer guarded. Reguard the
1951       // stack otherwise if we return to the uncommon trap blob and the
1952       // stack bang causes a stack overflow we crash.
1953       JavaThread* jt = THREAD;
1954       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1955       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1956     }
1957     return;
1958   }
1959 
1960   assert(!constant_pool->tag_at(index).is_symbol(),
1961          "no symbolic names here, please");
1962 }
1963 
1964 #if INCLUDE_JFR
1965 
1966 class DeoptReasonSerializer : public JfrSerializer {
1967  public:
1968   void serialize(JfrCheckpointWriter& writer) {
1969     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1970     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1971       writer.write_key((u8)i);
1972       writer.write(Deoptimization::trap_reason_name(i));
1973     }
1974   }
1975 };
1976 
1977 class DeoptActionSerializer : public JfrSerializer {
1978  public:
1979   void serialize(JfrCheckpointWriter& writer) {
1980     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1981     writer.write_count(nof_actions);
1982     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1983       writer.write_key(i);
1984       writer.write(Deoptimization::trap_action_name((int)i));
1985     }
1986   }
1987 };
1988 
1989 static void register_serializers() {
1990   static int critical_section = 0;
1991   if (1 == critical_section || AtomicAccess::cmpxchg(&critical_section, 0, 1) == 1) {
1992     return;
1993   }
1994   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1995   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1996 }
1997 
1998 static void post_deoptimization_event(nmethod* nm,
1999                                       const Method* method,
2000                                       int trap_bci,
2001                                       int instruction,
2002                                       Deoptimization::DeoptReason reason,
2003                                       Deoptimization::DeoptAction action) {
2004   assert(nm != nullptr, "invariant");
2005   assert(method != nullptr, "invariant");
2006   if (EventDeoptimization::is_enabled()) {
2007     static bool serializers_registered = false;
2008     if (!serializers_registered) {
2009       register_serializers();
2010       serializers_registered = true;
2011     }
2012     EventDeoptimization event;
2013     event.set_compileId(nm->compile_id());
2014     event.set_compiler(nm->compiler_type());
2015     event.set_method(method);
2016     event.set_lineNumber(method->line_number_from_bci(trap_bci));
2017     event.set_bci(trap_bci);
2018     event.set_instruction(instruction);
2019     event.set_reason(reason);
2020     event.set_action(action);
2021     event.commit();
2022   }
2023 }
2024 
2025 #endif // INCLUDE_JFR
2026 
2027 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
2028                       const char* reason_name, const char* reason_action, const char* class_name) {
2029   LogTarget(Debug, deoptimization) lt;
2030   if (lt.is_enabled()) {
2031     LogStream ls(lt);
2032     bool is_osr = nm->is_osr_method();
2033     ls.print("cid=%4d %s%s%s level=%d",
2034              nm->compile_id(), (is_osr ? "osr" : "   "),
2035              (nm->is_aot() ? "aot " : ""),
2036              (nm->preloaded() ? "preload " : ""),
2037              nm->comp_level());
2038     ls.print(" %s", tm->name_and_sig_as_C_string());
2039     ls.print(" trap_bci=%d ", trap_bci);
2040     if (is_osr) {
2041       ls.print("osr_bci=%d ", nm->osr_entry_bci());
2042     }
2043     ls.print("%s ", reason_name);
2044     ls.print("%s ", reason_action);
2045     if (class_name != nullptr) {
2046       ls.print("%s ", class_name);
2047     }
2048     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2049              pc, fr.pc() - nm->code_begin());
2050   }
2051 }
2052 
2053 JRT_ENTRY_PROF(void, Deoptimization, uncommon_trap_inner, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2054   HandleMark hm(current);
2055 
2056   // uncommon_trap() is called at the beginning of the uncommon trap
2057   // handler. Note this fact before we start generating temporary frames
2058   // that can confuse an asynchronous stack walker. This counter is
2059   // decremented at the end of unpack_frames().
2060 
2061   current->inc_in_deopt_handler();
2062 
2063 #if INCLUDE_JVMCI
2064   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2065   RegisterMap reg_map(current,
2066                       RegisterMap::UpdateMap::include,
2067                       RegisterMap::ProcessFrames::include,
2068                       RegisterMap::WalkContinuation::skip);
2069 #else
2070   RegisterMap reg_map(current,
2071                       RegisterMap::UpdateMap::skip,
2072                       RegisterMap::ProcessFrames::include,
2073                       RegisterMap::WalkContinuation::skip);
2074 #endif
2075   frame stub_frame = current->last_frame();
2076   frame fr = stub_frame.sender(&reg_map);
2077 
2078   // Log a message
2079   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2080               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2081 
2082   {
2083     ResourceMark rm;
2084 
2085     DeoptReason reason = trap_request_reason(trap_request);
2086     DeoptAction action = trap_request_action(trap_request);
2087 #if INCLUDE_JVMCI
2088     int debug_id = trap_request_debug_id(trap_request);
2089 #endif
2090     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2091 
2092     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2093     compiledVFrame* cvf = compiledVFrame::cast(vf);
2094 
2095     nmethod* nm = cvf->code();
2096 
2097     ScopeDesc*      trap_scope  = cvf->scope();
2098 
2099     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2100 
2101     if (is_receiver_constraint_failure) {
2102       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2103                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2104                     JVMCI_ONLY(COMMA debug_id));
2105     }
2106 
2107     methodHandle    trap_method(current, trap_scope->method());
2108     int             trap_bci    = trap_scope->bci();
2109 #if INCLUDE_JVMCI
2110     jlong           speculation = current->pending_failed_speculation();
2111     if (nm->is_compiled_by_jvmci()) {
2112       nm->update_speculation(current);
2113     } else {
2114       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2115     }
2116 
2117     if (trap_bci == SynchronizationEntryBCI) {
2118       trap_bci = 0;
2119       current->set_pending_monitorenter(true);
2120     }
2121 
2122     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2123       current->set_pending_transfer_to_interpreter(true);
2124     }
2125 #endif
2126 
2127     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2128     // Record this event in the histogram.
2129     gather_statistics(nm, reason, action, trap_bc);
2130 
2131     // Ensure that we can record deopt. history:
2132     bool create_if_missing = ProfileTraps;
2133 
2134     methodHandle profiled_method;
2135 #if INCLUDE_JVMCI
2136     if (nm->is_compiled_by_jvmci()) {
2137       profiled_method = methodHandle(current, nm->method());
2138     } else {
2139       profiled_method = trap_method;
2140     }
2141 #else
2142     profiled_method = trap_method;
2143 #endif
2144 
2145     const char* nm_kind = nm->compile_kind();
2146     MethodData* trap_mdo =
2147       get_method_data(current, profiled_method, create_if_missing);
2148 
2149     { // Log Deoptimization event for JFR, UL and event system
2150       Method* tm = trap_method();
2151       const char* reason_name = trap_reason_name(reason);
2152       const char* reason_action = trap_action_name(action);
2153       intptr_t pc = p2i(fr.pc());
2154 
2155       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2156 
2157       ResourceMark rm;
2158 
2159       const char* class_name = nullptr;
2160       stringStream st;
2161       if (unloaded_class_index >= 0) {
2162         constantPoolHandle constants (current, tm->constants());
2163         Symbol* class_symbol = nullptr;
2164         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2165           class_symbol = constants->klass_name_at(unloaded_class_index);
2166         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2167           class_symbol = constants->symbol_at(unloaded_class_index);
2168         }
2169         if (class_symbol != nullptr) {
2170           class_symbol->print_symbol_on(&st);
2171           class_name = st.freeze();
2172         }
2173       }
2174 
2175       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action, class_name);
2176       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s %s %s",
2177                                 reason_name, reason_action, pc,
2178                                 tm->name_and_sig_as_C_string(), trap_bci, (class_name != nullptr ? class_name : ""), nm->compiler_name(), nm_kind);
2179     }
2180 
2181     // Print a bunch of diagnostics, if requested.
2182     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2183       ResourceMark rm;
2184 
2185       // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2186       // We must do this already now, since we cannot acquire this lock while
2187       // holding the tty lock (lock ordering by rank).
2188       MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2189 
2190       ttyLocker ttyl;
2191 
2192       char buf[100];
2193       if (xtty != nullptr) {
2194         xtty->begin_head("uncommon_trap thread='%zu' %s",
2195                          os::current_thread_id(),
2196                          format_trap_request(buf, sizeof(buf), trap_request));
2197 #if INCLUDE_JVMCI
2198         if (speculation != 0) {
2199           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2200         }
2201 #endif
2202         nm->log_identity(xtty);
2203       }
2204       Symbol* class_name = nullptr;
2205       bool unresolved = false;
2206       if (unloaded_class_index >= 0) {
2207         constantPoolHandle constants (current, trap_method->constants());
2208         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2209           class_name = constants->klass_name_at(unloaded_class_index);
2210           unresolved = true;
2211           if (xtty != nullptr)
2212             xtty->print(" unresolved='1'");
2213         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2214           class_name = constants->symbol_at(unloaded_class_index);
2215         }
2216         if (xtty != nullptr)
2217           xtty->name(class_name);
2218       }
2219       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2220         // Dump the relevant MDO state.
2221         // This is the deopt count for the current reason, any previous
2222         // reasons or recompiles seen at this point.
2223         int dcnt = trap_mdo->trap_count(reason);
2224         if (dcnt != 0)
2225           xtty->print(" count='%d'", dcnt);
2226 
2227         // We need to lock to read the ProfileData. But to keep the locks ordered, we need to
2228         // lock extra_data_lock before the tty lock.
2229         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2230         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2231         if (dos != 0) {
2232           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2233           if (trap_state_is_recompiled(dos)) {
2234             int recnt2 = trap_mdo->overflow_recompile_count();
2235             if (recnt2 != 0)
2236               xtty->print(" recompiles2='%d'", recnt2);
2237           }
2238         }
2239       }
2240       if (xtty != nullptr) {
2241         xtty->stamp();
2242         xtty->end_head();
2243       }
2244       if (TraceDeoptimization) {  // make noise on the tty
2245         stringStream st;
2246         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2247         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2248                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2249         st.print(" compiler=%s compile_id=%d kind=%s", nm->compiler_name(), nm->compile_id(), nm_kind);
2250 #if INCLUDE_JVMCI
2251         if (nm->is_compiled_by_jvmci()) {
2252           const char* installed_code_name = nm->jvmci_name();
2253           if (installed_code_name != nullptr) {
2254             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2255           }
2256         }
2257 #endif
2258         st.print(" (@" INTPTR_FORMAT ") thread=%zu reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2259                    p2i(fr.pc()),
2260                    os::current_thread_id(),
2261                    trap_reason_name(reason),
2262                    trap_action_name(action),
2263                    unloaded_class_index
2264 #if INCLUDE_JVMCI
2265                    , debug_id
2266 #endif
2267                    );
2268         if (class_name != nullptr) {
2269           st.print(unresolved ? " unresolved class: " : " symbol: ");
2270           class_name->print_symbol_on(&st);
2271         }
2272         st.cr();
2273         tty->print_raw(st.freeze());
2274       }
2275       if (xtty != nullptr) {
2276         // Log the precise location of the trap.
2277         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2278           xtty->begin_elem("jvms bci='%d'", sd->bci());
2279           xtty->method(sd->method());
2280           xtty->end_elem();
2281           if (sd->is_top())  break;
2282         }
2283         xtty->tail("uncommon_trap");
2284       }
2285     }
2286     // (End diagnostic printout.)
2287 
2288     if (is_receiver_constraint_failure) {
2289       fatal("missing receiver type check");
2290     }
2291 
2292     // Load class if necessary
2293     if (unloaded_class_index >= 0) {
2294       constantPoolHandle constants(current, trap_method->constants());
2295       load_class_by_index(constants, unloaded_class_index, THREAD);
2296     }
2297 
2298     // Flush the nmethod if necessary and desirable.
2299     //
2300     // We need to avoid situations where we are re-flushing the nmethod
2301     // because of a hot deoptimization site.  Repeated flushes at the same
2302     // point need to be detected by the compiler and avoided.  If the compiler
2303     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2304     // module must take measures to avoid an infinite cycle of recompilation
2305     // and deoptimization.  There are several such measures:
2306     //
2307     //   1. If a recompilation is ordered a second time at some site X
2308     //   and for the same reason R, the action is adjusted to 'reinterpret',
2309     //   to give the interpreter time to exercise the method more thoroughly.
2310     //   If this happens, the method's overflow_recompile_count is incremented.
2311     //
2312     //   2. If the compiler fails to reduce the deoptimization rate, then
2313     //   the method's overflow_recompile_count will begin to exceed the set
2314     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2315     //   is adjusted to 'make_not_compilable', and the method is abandoned
2316     //   to the interpreter.  This is a performance hit for hot methods,
2317     //   but is better than a disastrous infinite cycle of recompilations.
2318     //   (Actually, only the method containing the site X is abandoned.)
2319     //
2320     //   3. In parallel with the previous measures, if the total number of
2321     //   recompilations of a method exceeds the much larger set limit
2322     //   PerMethodRecompilationCutoff, the method is abandoned.
2323     //   This should only happen if the method is very large and has
2324     //   many "lukewarm" deoptimizations.  The code which enforces this
2325     //   limit is elsewhere (class nmethod, class Method).
2326     //
2327     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2328     // to recompile at each bytecode independently of the per-BCI cutoff.
2329     //
2330     // The decision to update code is up to the compiler, and is encoded
2331     // in the Action_xxx code.  If the compiler requests Action_none
2332     // no trap state is changed, no compiled code is changed, and the
2333     // computation suffers along in the interpreter.
2334     //
2335     // The other action codes specify various tactics for decompilation
2336     // and recompilation.  Action_maybe_recompile is the loosest, and
2337     // allows the compiled code to stay around until enough traps are seen,
2338     // and until the compiler gets around to recompiling the trapping method.
2339     //
2340     // The other actions cause immediate removal of the present code.
2341 
2342     // Traps caused by injected profile shouldn't pollute trap counts.
2343     bool injected_profile_trap = trap_method->has_injected_profile() &&
2344                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2345 
2346     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2347     bool make_not_entrant = false;
2348     bool make_not_compilable = false;
2349     bool reprofile = false;
2350     switch (action) {
2351     case Action_none:
2352       // Keep the old code.
2353       update_trap_state = false;
2354       break;
2355     case Action_maybe_recompile:
2356       // Do not need to invalidate the present code, but we can
2357       // initiate another
2358       // Start compiler without (necessarily) invalidating the nmethod.
2359       // The system will tolerate the old code, but new code should be
2360       // generated when possible.
2361       break;
2362     case Action_reinterpret:
2363       // Go back into the interpreter for a while, and then consider
2364       // recompiling form scratch.
2365       make_not_entrant = true;
2366       // Reset invocation counter for outer most method.
2367       // This will allow the interpreter to exercise the bytecodes
2368       // for a while before recompiling.
2369       // By contrast, Action_make_not_entrant is immediate.
2370       //
2371       // Note that the compiler will track null_check, null_assert,
2372       // range_check, and class_check events and log them as if they
2373       // had been traps taken from compiled code.  This will update
2374       // the MDO trap history so that the next compilation will
2375       // properly detect hot trap sites.
2376       reprofile = true;
2377       break;
2378     case Action_make_not_entrant:
2379       // Request immediate recompilation, and get rid of the old code.
2380       // Make them not entrant, so next time they are called they get
2381       // recompiled.  Unloaded classes are loaded now so recompile before next
2382       // time they are called.  Same for uninitialized.  The interpreter will
2383       // link the missing class, if any.
2384       make_not_entrant = true;
2385       break;
2386     case Action_make_not_compilable:
2387       // Give up on compiling this method at all.
2388       make_not_entrant = true;
2389       make_not_compilable = true;
2390       break;
2391     default:
2392       ShouldNotReachHere();
2393     }
2394 
2395 #if INCLUDE_JVMCI
2396     // Deoptimization count is used by the CompileBroker to reason about compilations
2397     // it requests so do not pollute the count for deoptimizations in non-default (i.e.
2398     // non-CompilerBroker) compilations.
2399     if (nm->jvmci_skip_profile_deopt()) {
2400       update_trap_state = false;
2401     }
2402 #endif
2403     // Setting +ProfileTraps fixes the following, on all platforms:
2404     // The result is infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2405     // recompile relies on a MethodData* to record heroic opt failures.
2406 
2407     // Whether the interpreter is producing MDO data or not, we also need
2408     // to use the MDO to detect hot deoptimization points and control
2409     // aggressive optimization.
2410     bool inc_recompile_count = false;
2411 
2412     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2413     ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr,
2414                               (trap_mdo != nullptr),
2415                               Mutex::_no_safepoint_check_flag);
2416     ProfileData* pdata = nullptr;
2417     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2418       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2419       uint this_trap_count = 0;
2420       bool maybe_prior_trap = false;
2421       bool maybe_prior_recompile = false;
2422 
2423       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2424 #if INCLUDE_JVMCI
2425                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2426 #endif
2427                                    nm->method(),
2428                                    //outputs:
2429                                    this_trap_count,
2430                                    maybe_prior_trap,
2431                                    maybe_prior_recompile);
2432       // Because the interpreter also counts null, div0, range, and class
2433       // checks, these traps from compiled code are double-counted.
2434       // This is harmless; it just means that the PerXTrapLimit values
2435       // are in effect a little smaller than they look.
2436 
2437       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2438       if (per_bc_reason != Reason_none) {
2439         // Now take action based on the partially known per-BCI history.
2440         if (maybe_prior_trap
2441             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2442           // If there are too many traps at this BCI, force a recompile.
2443           // This will allow the compiler to see the limit overflow, and
2444           // take corrective action, if possible.  The compiler generally
2445           // does not use the exact PerBytecodeTrapLimit value, but instead
2446           // changes its tactics if it sees any traps at all.  This provides
2447           // a little hysteresis, delaying a recompile until a trap happens
2448           // several times.
2449           //
2450           // Actually, since there is only one bit of counter per BCI,
2451           // the possible per-BCI counts are {0,1,(per-method count)}.
2452           // This produces accurate results if in fact there is only
2453           // one hot trap site, but begins to get fuzzy if there are
2454           // many sites.  For example, if there are ten sites each
2455           // trapping two or more times, they each get the blame for
2456           // all of their traps.
2457           make_not_entrant = true;
2458         }
2459 
2460         // Detect repeated recompilation at the same BCI, and enforce a limit.
2461         if (make_not_entrant && maybe_prior_recompile) {
2462           // More than one recompile at this point.
2463           inc_recompile_count = maybe_prior_trap;
2464         }
2465       } else {
2466         // For reasons which are not recorded per-bytecode, we simply
2467         // force recompiles unconditionally.
2468         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2469         make_not_entrant = true;
2470       }
2471 
2472       // Go back to the compiler if there are too many traps in this method.
2473       if (this_trap_count >= per_method_trap_limit(reason)) {
2474         // If there are too many traps in this method, force a recompile.
2475         // This will allow the compiler to see the limit overflow, and
2476         // take corrective action, if possible.
2477         // (This condition is an unlikely backstop only, because the
2478         // PerBytecodeTrapLimit is more likely to take effect first,
2479         // if it is applicable.)
2480         make_not_entrant = true;
2481       }
2482 
2483       // Here's more hysteresis:  If there has been a recompile at
2484       // this trap point already, run the method in the interpreter
2485       // for a while to exercise it more thoroughly.
2486       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2487         reprofile = true;
2488       }
2489     }
2490 
2491     // Take requested actions on the method:
2492 
2493     // Recompile
2494     if (make_not_entrant) {
2495       if (!nm->make_not_entrant(nmethod::InvalidationReason::UNCOMMON_TRAP)) {
2496         return; // the call did not change nmethod's state
2497       }
2498 
2499       if (pdata != nullptr) {
2500         // Record the recompilation event, if any.
2501         int tstate0 = pdata->trap_state();
2502         int tstate1 = trap_state_set_recompiled(tstate0, true);
2503         if (tstate1 != tstate0)
2504           pdata->set_trap_state(tstate1);
2505       }
2506 
2507       // For code aging we count traps separately here, using make_not_entrant()
2508       // as a guard against simultaneous deopts in multiple threads.
2509       if (reason == Reason_tenured && trap_mdo != nullptr) {
2510         trap_mdo->inc_tenure_traps();
2511       }
2512     }
2513     if (inc_recompile_count) {
2514       trap_mdo->inc_overflow_recompile_count();
2515       if ((uint)trap_mdo->overflow_recompile_count() >
2516           (uint)PerBytecodeRecompilationCutoff) {
2517         // Give up on the method containing the bad BCI.
2518         if (trap_method() == nm->method()) {
2519           make_not_compilable = true;
2520         } else {
2521           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2522           // But give grace to the enclosing nm->method().
2523         }
2524       }
2525     }
2526 
2527     // Reprofile
2528     if (reprofile) {
2529       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2530     }
2531 
2532     // Give up compiling
2533     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2534       assert(make_not_entrant, "consistent");
2535       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2536     }
2537 
2538     if (ProfileExceptionHandlers && trap_mdo != nullptr) {
2539       BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci);
2540       if (exception_handler_data != nullptr) {
2541         // uncommon trap at the start of an exception handler.
2542         // C2 generates these for un-entered exception handlers.
2543         // mark the handler as entered to avoid generating
2544         // another uncommon trap the next time the handler is compiled
2545         exception_handler_data->set_exception_handler_entered();
2546       }
2547     }
2548 
2549   } // Free marked resources
2550 
2551 }
2552 JRT_END
2553 
2554 ProfileData*
2555 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2556                                          int trap_bci,
2557                                          Deoptimization::DeoptReason reason,
2558                                          bool update_total_trap_count,
2559 #if INCLUDE_JVMCI
2560                                          bool is_osr,
2561 #endif
2562                                          Method* compiled_method,
2563                                          //outputs:
2564                                          uint& ret_this_trap_count,
2565                                          bool& ret_maybe_prior_trap,
2566                                          bool& ret_maybe_prior_recompile) {
2567   trap_mdo->check_extra_data_locked();
2568 
2569   bool maybe_prior_trap = false;
2570   bool maybe_prior_recompile = false;
2571   uint this_trap_count = 0;
2572   if (update_total_trap_count) {
2573     uint idx = reason;
2574 #if INCLUDE_JVMCI
2575     if (is_osr) {
2576       // Upper half of history array used for traps in OSR compilations
2577       idx += Reason_TRAP_HISTORY_LENGTH;
2578     }
2579 #endif
2580     uint prior_trap_count = trap_mdo->trap_count(idx);
2581     this_trap_count  = trap_mdo->inc_trap_count(idx);
2582 
2583     // If the runtime cannot find a place to store trap history,
2584     // it is estimated based on the general condition of the method.
2585     // If the method has ever been recompiled, or has ever incurred
2586     // a trap with the present reason , then this BCI is assumed
2587     // (pessimistically) to be the culprit.
2588     maybe_prior_trap      = (prior_trap_count != 0);
2589     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2590   }
2591   ProfileData* pdata = nullptr;
2592 
2593 
2594   // For reasons which are recorded per bytecode, we check per-BCI data.
2595   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2596   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2597   if (per_bc_reason != Reason_none) {
2598     // Find the profile data for this BCI.  If there isn't one,
2599     // try to allocate one from the MDO's set of spares.
2600     // This will let us detect a repeated trap at this point.
2601     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2602 
2603     if (pdata != nullptr) {
2604       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2605         if (LogCompilation && xtty != nullptr) {
2606           ttyLocker ttyl;
2607           // no more room for speculative traps in this MDO
2608           xtty->elem("speculative_traps_oom");
2609         }
2610       }
2611       // Query the trap state of this profile datum.
2612       int tstate0 = pdata->trap_state();
2613       if (!trap_state_has_reason(tstate0, per_bc_reason))
2614         maybe_prior_trap = false;
2615       if (!trap_state_is_recompiled(tstate0))
2616         maybe_prior_recompile = false;
2617 
2618       // Update the trap state of this profile datum.
2619       int tstate1 = tstate0;
2620       // Record the reason.
2621       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2622       // Store the updated state on the MDO, for next time.
2623       if (tstate1 != tstate0)
2624         pdata->set_trap_state(tstate1);
2625     } else {
2626       if (LogCompilation && xtty != nullptr) {
2627         ttyLocker ttyl;
2628         // Missing MDP?  Leave a small complaint in the log.
2629         xtty->elem("missing_mdp bci='%d'", trap_bci);
2630       }
2631     }
2632   }
2633 
2634   // Return results:
2635   ret_this_trap_count = this_trap_count;
2636   ret_maybe_prior_trap = maybe_prior_trap;
2637   ret_maybe_prior_recompile = maybe_prior_recompile;
2638   return pdata;
2639 }
2640 
2641 void
2642 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2643   ResourceMark rm;
2644   // Ignored outputs:
2645   uint ignore_this_trap_count;
2646   bool ignore_maybe_prior_trap;
2647   bool ignore_maybe_prior_recompile;
2648   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2649   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2650   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2651 
2652   // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2653   MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2654 
2655   query_update_method_data(trap_mdo, trap_bci,
2656                            (DeoptReason)reason,
2657                            update_total_counts,
2658 #if INCLUDE_JVMCI
2659                            false,
2660 #endif
2661                            nullptr,
2662                            ignore_this_trap_count,
2663                            ignore_maybe_prior_trap,
2664                            ignore_maybe_prior_recompile);
2665 }
2666 
2667 PROF_ENTRY(Deoptimization::UnrollBlock*, Deoptimization, uncommon_trap, Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode))
2668   // Enable WXWrite: current function is called from methods compiled by C2 directly
2669   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2670 
2671   // Still in Java no safepoints
2672   {
2673     // This enters VM and may safepoint
2674     uncommon_trap_inner(current, trap_request);
2675   }
2676   HandleMark hm(current);
2677   return fetch_unroll_info_helper(current, exec_mode);
2678 PROF_END
2679 
2680 // Local derived constants.
2681 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2682 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2683 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2684 
2685 //---------------------------trap_state_reason---------------------------------
2686 Deoptimization::DeoptReason
2687 Deoptimization::trap_state_reason(int trap_state) {
2688   // This assert provides the link between the width of DataLayout::trap_bits
2689   // and the encoding of "recorded" reasons.  It ensures there are enough
2690   // bits to store all needed reasons in the per-BCI MDO profile.
2691   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2692   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2693   trap_state -= recompile_bit;
2694   if (trap_state == DS_REASON_MASK) {
2695     return Reason_many;
2696   } else {
2697     assert((int)Reason_none == 0, "state=0 => Reason_none");
2698     return (DeoptReason)trap_state;
2699   }
2700 }
2701 //-------------------------trap_state_has_reason-------------------------------
2702 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2703   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2704   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2705   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2706   trap_state -= recompile_bit;
2707   if (trap_state == DS_REASON_MASK) {
2708     return -1;  // true, unspecifically (bottom of state lattice)
2709   } else if (trap_state == reason) {
2710     return 1;   // true, definitely
2711   } else if (trap_state == 0) {
2712     return 0;   // false, definitely (top of state lattice)
2713   } else {
2714     return 0;   // false, definitely
2715   }
2716 }
2717 //-------------------------trap_state_add_reason-------------------------------
2718 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2719   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2720   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2721   trap_state -= recompile_bit;
2722   if (trap_state == DS_REASON_MASK) {
2723     return trap_state + recompile_bit;     // already at state lattice bottom
2724   } else if (trap_state == reason) {
2725     return trap_state + recompile_bit;     // the condition is already true
2726   } else if (trap_state == 0) {
2727     return reason + recompile_bit;          // no condition has yet been true
2728   } else {
2729     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2730   }
2731 }
2732 //-----------------------trap_state_is_recompiled------------------------------
2733 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2734   return (trap_state & DS_RECOMPILE_BIT) != 0;
2735 }
2736 //-----------------------trap_state_set_recompiled-----------------------------
2737 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2738   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2739   else    return trap_state & ~DS_RECOMPILE_BIT;
2740 }
2741 //---------------------------format_trap_state---------------------------------
2742 // This is used for debugging and diagnostics, including LogFile output.
2743 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2744                                               int trap_state) {
2745   assert(buflen > 0, "sanity");
2746   DeoptReason reason      = trap_state_reason(trap_state);
2747   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2748   // Re-encode the state from its decoded components.
2749   int decoded_state = 0;
2750   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2751     decoded_state = trap_state_add_reason(decoded_state, reason);
2752   if (recomp_flag)
2753     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2754   // If the state re-encodes properly, format it symbolically.
2755   // Because this routine is used for debugging and diagnostics,
2756   // be robust even if the state is a strange value.
2757   size_t len;
2758   if (decoded_state != trap_state) {
2759     // Random buggy state that doesn't decode??
2760     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2761   } else {
2762     len = jio_snprintf(buf, buflen, "%s%s",
2763                        trap_reason_name(reason),
2764                        recomp_flag ? " recompiled" : "");
2765   }
2766   return buf;
2767 }
2768 
2769 
2770 //--------------------------------statics--------------------------------------
2771 const char* Deoptimization::_trap_reason_name[] = {
2772   // Note:  Keep this in sync. with enum DeoptReason.
2773   "none",
2774   "null_check",
2775   "null_assert" JVMCI_ONLY("_or_unreached0"),
2776   "range_check",
2777   "class_check",
2778   "array_check",
2779   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2780   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2781   "profile_predicate",
2782   "auto_vectorization_check",
2783   "unloaded",
2784   "uninitialized",
2785   "initialized",
2786   "unreached",
2787   "unhandled",
2788   "constraint",
2789   "div0_check",
2790   "age",
2791   "predicate",
2792   "loop_limit_check",
2793   "speculate_class_check",
2794   "speculate_null_check",
2795   "speculate_null_assert",
2796   "unstable_if",
2797   "unstable_fused_if",
2798   "receiver_constraint",
2799   "not_compiled_exception_handler",
2800   "short_running_loop" JVMCI_ONLY("_or_aliasing"),
2801 #if INCLUDE_JVMCI
2802   "transfer_to_interpreter",
2803   "unresolved",
2804   "jsr_mismatch",
2805 #endif
2806   "tenured"
2807 };
2808 const char* Deoptimization::_trap_action_name[] = {
2809   // Note:  Keep this in sync. with enum DeoptAction.
2810   "none",
2811   "maybe_recompile",
2812   "reinterpret",
2813   "make_not_entrant",
2814   "make_not_compilable"
2815 };
2816 
2817 const char* Deoptimization::trap_reason_name(int reason) {
2818   // Check that every reason has a name
2819   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2820 
2821   if (reason == Reason_many)  return "many";
2822   if ((uint)reason < Reason_LIMIT)
2823     return _trap_reason_name[reason];
2824   static char buf[20];
2825   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2826   return buf;
2827 }
2828 const char* Deoptimization::trap_action_name(int action) {
2829   // Check that every action has a name
2830   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2831 
2832   if ((uint)action < Action_LIMIT)
2833     return _trap_action_name[action];
2834   static char buf[20];
2835   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2836   return buf;
2837 }
2838 
2839 // This is used for debugging and diagnostics, including LogFile output.
2840 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2841                                                 int trap_request) {
2842   jint unloaded_class_index = trap_request_index(trap_request);
2843   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2844   const char* action = trap_action_name(trap_request_action(trap_request));
2845 #if INCLUDE_JVMCI
2846   int debug_id = trap_request_debug_id(trap_request);
2847 #endif
2848   size_t len;
2849   if (unloaded_class_index < 0) {
2850     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2851                        reason, action
2852 #if INCLUDE_JVMCI
2853                        ,debug_id
2854 #endif
2855                        );
2856   } else {
2857     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2858                        reason, action, unloaded_class_index
2859 #if INCLUDE_JVMCI
2860                        ,debug_id
2861 #endif
2862                        );
2863   }
2864   return buf;
2865 }
2866 
2867 juint Deoptimization::_deoptimization_hist
2868         [1 + 4 + 5] // total + online + archived
2869         [Deoptimization::Reason_LIMIT]
2870     [1 + Deoptimization::Action_LIMIT]
2871         [Deoptimization::BC_CASE_LIMIT]
2872   = {0};
2873 
2874 enum {
2875   LSB_BITS = 8,
2876   LSB_MASK = right_n_bits(LSB_BITS)
2877 };
2878 
2879 static void update(juint* cases, Bytecodes::Code bc) {
2880   juint* bc_counter_addr = nullptr;
2881   juint  bc_counter      = 0;
2882   // Look for an unused counter, or an exact match to this BC.
2883   if (bc != Bytecodes::_illegal) {
2884     for (int bc_case = 0; bc_case < Deoptimization::BC_CASE_LIMIT; bc_case++) {
2885       juint* counter_addr = &cases[bc_case];
2886       juint  counter = *counter_addr;
2887       if ((counter == 0 && bc_counter_addr == nullptr)
2888           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2889         // this counter is either free or is already devoted to this BC
2890         bc_counter_addr = counter_addr;
2891         bc_counter = counter | bc;
2892       }
2893     }
2894   }
2895   if (bc_counter_addr == nullptr) {
2896     // Overflow, or no given bytecode.
2897     bc_counter_addr = &cases[Deoptimization::BC_CASE_LIMIT-1];
2898     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2899   }
2900   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2901 }
2902 
2903 
2904 void Deoptimization::gather_statistics(nmethod* nm, DeoptReason reason, DeoptAction action,
2905                                        Bytecodes::Code bc) {
2906   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2907   assert(action >= 0 && action < Action_LIMIT, "oob");
2908   _deoptimization_hist[0][Reason_none][0][0] += 1;  // total
2909   _deoptimization_hist[0][reason][0][0]      += 1;  // per-reason total
2910 
2911   update(_deoptimization_hist[0][reason][1+action], bc);
2912 
2913   uint lvl = nm->comp_level() + (nm->is_aot() ? 4 : 0) + (nm->preloaded() ? 1 : 0);
2914   _deoptimization_hist[lvl][Reason_none][0][0] += 1;  // total
2915   _deoptimization_hist[lvl][reason][0][0]      += 1;  // per-reason total
2916   update(_deoptimization_hist[lvl][reason][1+action], bc);
2917 }
2918 
2919 jint Deoptimization::total_deoptimization_count() {
2920   return _deoptimization_hist[0][Reason_none][0][0];
2921 }
2922 
2923 // Get the deopt count for a specific reason and a specific action. If either
2924 // one of 'reason' or 'action' is null, the method returns the sum of all
2925 // deoptimizations with the specific 'action' or 'reason' respectively.
2926 // If both arguments are null, the method returns the total deopt count.
2927 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2928   if (reason_str == nullptr && action_str == nullptr) {
2929     return total_deoptimization_count();
2930   }
2931   juint counter = 0;
2932   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2933     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2934       for (int action = 0; action < Action_LIMIT; action++) {
2935         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2936           juint* cases = _deoptimization_hist[0][reason][1+action];
2937           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2938             counter += cases[bc_case] >> LSB_BITS;
2939           }
2940         }
2941       }
2942     }
2943   }
2944   return counter;
2945 }
2946 
2947 void Deoptimization::print_statistics() {
2948   ttyLocker ttyl;
2949   if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2950   tty->print_cr("Deoptimization traps recorded:");
2951   print_statistics_on(tty);
2952   if (xtty != nullptr)  xtty->tail("statistics");
2953 }
2954 
2955 void Deoptimization::print_statistics_on(const char* title, int lvl, outputStream* st) {
2956   juint total = _deoptimization_hist[lvl][Reason_none][0][0];
2957   juint account = total;
2958 #define PRINT_STAT_LINE(name, r) \
2959       st->print_cr("    %d (%4.1f%%) %s", (int)(r), ((r) == total ? 100.0 : (((r) * 100.0) / total)), name);
2960   if (total > 0) {
2961     st->print("  %s: ", title);
2962     PRINT_STAT_LINE("total", total);
2963     // For each non-zero entry in the histogram, print the reason,
2964     // the action, and (if specifically known) the type of bytecode.
2965     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2966       for (int action = 0; action < Action_LIMIT; action++) {
2967         juint* cases = Deoptimization::_deoptimization_hist[lvl][reason][1+action];
2968         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2969           juint counter = cases[bc_case];
2970           if (counter != 0) {
2971             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2972             const char* bc_name = "other";
2973             if (bc_case == (BC_CASE_LIMIT-1) && bc == Bytecodes::_nop) {
2974               // overwritten
2975             } else if (Bytecodes::is_defined(bc)) {
2976               bc_name = Bytecodes::name(bc);
2977             }
2978             juint r = counter >> LSB_BITS;
2979             st->print_cr("    %-34s %16s %16s: " UINT32_FORMAT_W(5) " (%4.1f%%)",
2980                          trap_reason_name(reason), trap_action_name(action), bc_name,
2981                          r, (r * 100.0) / total);
2982             account -= r;
2983           }
2984         }
2985       }
2986     }
2987     if (account != 0) {
2988       PRINT_STAT_LINE("unaccounted", account);
2989     }
2990 #undef PRINT_STAT_LINE
2991   }
2992 }
2993 
2994 void Deoptimization::print_statistics_on(outputStream* st) {
2995 //  print_statistics_on("Total", 0, st);
2996   print_statistics_on("Tier1", 1, st);
2997   print_statistics_on("Tier2", 2, st);
2998   print_statistics_on("Tier3", 3, st);
2999   print_statistics_on("Tier4", 4, st);
3000 
3001   print_statistics_on("AOT Code Tier1", 5, st);
3002   print_statistics_on("AOT Code Tier2", 6, st);
3003   print_statistics_on("AOT Code Tier4", 8, st);
3004   print_statistics_on("AOT Code Tier5 (preloaded)", 9, st);
3005 }
3006 
3007 #define DO_COUNTERS(macro) \
3008   macro(Deoptimization, fetch_unroll_info)   \
3009   macro(Deoptimization, unpack_frames) \
3010   macro(Deoptimization, uncommon_trap_inner) \
3011   macro(Deoptimization, uncommon_trap)
3012 
3013 #define INIT_COUNTER(sub, name) \
3014   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_RT, #sub "::" #name) \
3015   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_RT, #sub "::" #name "_count");
3016 
3017 void Deoptimization::init_counters() {
3018   if (ProfileRuntimeCalls && UsePerfData) {
3019     EXCEPTION_MARK;
3020 
3021     DO_COUNTERS(INIT_COUNTER)
3022 
3023     if (HAS_PENDING_EXCEPTION) {
3024       vm_exit_during_initialization("jvm_perf_init failed unexpectedly");
3025     }
3026   }
3027 }
3028 #undef INIT_COUNTER
3029 
3030 #define PRINT_COUNTER(sub, name) { \
3031   jlong count = _perf_##sub##_##name##_count->get_value(); \
3032   if (count > 0) { \
3033     st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
3034                  _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
3035                  _perf_##sub##_##name##_timer->thread_counter_value_us(), \
3036                  count); \
3037   }}
3038 
3039 void Deoptimization::print_counters_on(outputStream* st) {
3040   if (ProfileRuntimeCalls && UsePerfData) {
3041     DO_COUNTERS(PRINT_COUNTER)
3042   } else {
3043     st->print_cr("  Deoptimization: no info (%s is disabled)", (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData"));
3044   }
3045 }
3046 
3047 #undef PRINT_COUNTER
3048 #undef DO_COUNTERS
3049 
3050 #else // COMPILER2_OR_JVMCI
3051 
3052 
3053 // Stubs for C1 only system.
3054 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
3055   return false;
3056 }
3057 
3058 const char* Deoptimization::trap_reason_name(int reason) {
3059   return "unknown";
3060 }
3061 
3062 jint Deoptimization::total_deoptimization_count() {
3063   return 0;
3064 }
3065 
3066 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
3067   return 0;
3068 }
3069 
3070 void Deoptimization::print_statistics() {
3071   // no output
3072 }
3073 
3074 void
3075 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
3076   // no update
3077 }
3078 
3079 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
3080   return 0;
3081 }
3082 
3083 void Deoptimization::gather_statistics(nmethod* nm, DeoptReason reason, DeoptAction action,
3084                                        Bytecodes::Code bc) {
3085   // no update
3086 }
3087 
3088 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
3089                                               int trap_state) {
3090   jio_snprintf(buf, buflen, "#%d", trap_state);
3091   return buf;
3092 }
3093 
3094 void Deoptimization::init_counters() {
3095   // nothing to do
3096 }
3097 
3098 void Deoptimization::print_counters_on(outputStream* st) {
3099   // no output
3100 }
3101 
3102 void Deoptimization::print_statistics_on(outputStream* st) {
3103   // no output
3104 }
3105 
3106 #endif // COMPILER2_OR_JVMCI