1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/javaClasses.inline.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compilationPolicy.hpp"
  35 #include "compiler/compilerDefinitions.inline.hpp"
  36 #include "gc/shared/collectedHeap.hpp"
  37 #include "gc/shared/memAllocator.hpp"
  38 #include "interpreter/bytecode.hpp"
  39 #include "interpreter/bytecode.inline.hpp"
  40 #include "interpreter/bytecodeStream.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvm.h"
  44 #include "logging/log.hpp"
  45 #include "logging/logLevel.hpp"
  46 #include "logging/logMessage.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/constantPool.hpp"
  53 #include "oops/fieldStreams.inline.hpp"
  54 #include "oops/method.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/objArrayOop.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvmtiDeferredUpdates.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "prims/methodHandles.hpp"
  64 #include "prims/vectorSupport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/basicLock.inline.hpp"
  67 #include "runtime/continuation.hpp"
  68 #include "runtime/continuationEntry.inline.hpp"
  69 #include "runtime/deoptimization.hpp"
  70 #include "runtime/escapeBarrier.hpp"
  71 #include "runtime/fieldDescriptor.hpp"
  72 #include "runtime/fieldDescriptor.inline.hpp"
  73 #include "runtime/frame.inline.hpp"
  74 #include "runtime/handles.inline.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/javaThread.hpp"
  77 #include "runtime/jniHandles.inline.hpp"
  78 #include "runtime/keepStackGCProcessed.hpp"
  79 #include "runtime/lightweightSynchronizer.hpp"
  80 #include "runtime/lockStack.inline.hpp"
  81 #include "runtime/objectMonitor.inline.hpp"
  82 #include "runtime/osThread.hpp"
  83 #include "runtime/perfData.inline.hpp"
  84 #include "runtime/safepointVerifiers.hpp"
  85 #include "runtime/sharedRuntime.hpp"
  86 #include "runtime/signature.hpp"
  87 #include "runtime/stackFrameStream.inline.hpp"
  88 #include "runtime/stackValue.hpp"
  89 #include "runtime/stackWatermarkSet.hpp"
  90 #include "runtime/stubRoutines.hpp"
  91 #include "runtime/synchronizer.inline.hpp"
  92 #include "runtime/threadSMR.hpp"
  93 #include "runtime/threadWXSetters.inline.hpp"
  94 #include "runtime/vframe.hpp"
  95 #include "runtime/vframeArray.hpp"
  96 #include "runtime/vframe_hp.hpp"
  97 #include "runtime/vmOperations.hpp"
  98 #include "services/management.hpp"
  99 #include "utilities/checkedCast.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/growableArray.hpp"
 102 #include "utilities/macros.hpp"
 103 #include "utilities/preserveException.hpp"
 104 #include "utilities/xmlstream.hpp"
 105 #if INCLUDE_JFR
 106 #include "jfr/jfrEvents.hpp"
 107 #include "jfr/metadata/jfrSerializer.hpp"
 108 #endif
 109 
 110 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 111 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 112 bool     DeoptimizationScope::_committing_in_progress = false;
 113 
 114 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 115   DEBUG_ONLY(_deopted = false;)
 116 
 117   MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
 118   // If there is nothing to deopt _required_gen is the same as comitted.
 119   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 120 }
 121 
 122 DeoptimizationScope::~DeoptimizationScope() {
 123   assert(_deopted, "Deopt not executed");
 124 }
 125 
 126 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) {
 127   if (!nm->can_be_deoptimized()) {
 128     return;
 129   }
 130 
 131   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 132 
 133   // If it's already marked but we still need it to be deopted.
 134   if (nm->is_marked_for_deoptimization()) {
 135     dependent(nm);
 136     return;
 137   }
 138 
 139   nmethod::DeoptimizationStatus status =
 140     inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate;
 141   Atomic::store(&nm->_deoptimization_status, status);
 142 
 143   // Make sure active is not committed
 144   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 145   assert(nm->_deoptimization_generation == 0, "Is already marked");
 146 
 147   nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 148   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 149 }
 150 
 151 void DeoptimizationScope::dependent(nmethod* nm) {
 152   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 153 
 154   // A method marked by someone else may have a _required_gen lower than what we marked with.
 155   // Therefore only store it if it's higher than _required_gen.
 156   if (_required_gen < nm->_deoptimization_generation) {
 157     _required_gen = nm->_deoptimization_generation;
 158   }
 159 }
 160 
 161 void DeoptimizationScope::deoptimize_marked() {
 162   assert(!_deopted, "Already deopted");
 163 
 164   // We are not alive yet.
 165   if (!Universe::is_fully_initialized()) {
 166     DEBUG_ONLY(_deopted = true;)
 167     return;
 168   }
 169 
 170   // Safepoints are a special case, handled here.
 171   if (SafepointSynchronize::is_at_safepoint()) {
 172     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 173     DeoptimizationScope::_active_deopt_gen++;
 174     Deoptimization::deoptimize_all_marked();
 175     DEBUG_ONLY(_deopted = true;)
 176     return;
 177   }
 178 
 179   uint64_t comitting = 0;
 180   bool wait = false;
 181   while (true) {
 182     {
 183       ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 184 
 185       // First we check if we or someone else already deopted the gen we want.
 186       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 187         DEBUG_ONLY(_deopted = true;)
 188         return;
 189       }
 190       if (!_committing_in_progress) {
 191         // The version we are about to commit.
 192         comitting = DeoptimizationScope::_active_deopt_gen;
 193         // Make sure new marks use a higher gen.
 194         DeoptimizationScope::_active_deopt_gen++;
 195         _committing_in_progress = true;
 196         wait = false;
 197       } else {
 198         // Another thread is handshaking and committing a gen.
 199         wait = true;
 200       }
 201     }
 202     if (wait) {
 203       // Wait and let the concurrent handshake be performed.
 204       ThreadBlockInVM tbivm(JavaThread::current());
 205       os::naked_yield();
 206     } else {
 207       // Performs the handshake.
 208       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 209       DEBUG_ONLY(_deopted = true;)
 210       {
 211         ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 212 
 213         // Make sure that committed doesn't go backwards.
 214         // Should only happen if we did a deopt during a safepoint above.
 215         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 216           DeoptimizationScope::_committed_deopt_gen = comitting;
 217         }
 218         _committing_in_progress = false;
 219 
 220         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 221 
 222         return;
 223       }
 224     }
 225   }
 226 }
 227 
 228 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 229                                          int  caller_adjustment,
 230                                          int  caller_actual_parameters,
 231                                          int  number_of_frames,
 232                                          intptr_t* frame_sizes,
 233                                          address* frame_pcs,
 234                                          BasicType return_type,
 235                                          int exec_mode) {
 236   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 237   _caller_adjustment         = caller_adjustment;
 238   _caller_actual_parameters  = caller_actual_parameters;
 239   _number_of_frames          = number_of_frames;
 240   _frame_sizes               = frame_sizes;
 241   _frame_pcs                 = frame_pcs;
 242   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 243   _return_type               = return_type;
 244   _initial_info              = 0;
 245   // PD (x86 only)
 246   _counter_temp              = 0;
 247   _unpack_kind               = exec_mode;
 248   _sender_sp_temp            = 0;
 249 
 250   _total_frame_sizes         = size_of_frames();
 251   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 252 }
 253 
 254 Deoptimization::UnrollBlock::~UnrollBlock() {
 255   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 256   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 257   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 258 }
 259 
 260 int Deoptimization::UnrollBlock::size_of_frames() const {
 261   // Account first for the adjustment of the initial frame
 262   intptr_t result = _caller_adjustment;
 263   for (int index = 0; index < number_of_frames(); index++) {
 264     result += frame_sizes()[index];
 265   }
 266   return checked_cast<int>(result);
 267 }
 268 
 269 void Deoptimization::UnrollBlock::print() {
 270   ResourceMark rm;
 271   stringStream st;
 272   st.print_cr("UnrollBlock");
 273   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 274   st.print(   "  frame_sizes: ");
 275   for (int index = 0; index < number_of_frames(); index++) {
 276     st.print("%zd ", frame_sizes()[index]);
 277   }
 278   st.cr();
 279   tty->print_raw(st.freeze());
 280 }
 281 
 282 // In order to make fetch_unroll_info work properly with escape
 283 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 284 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 285 // which is called from the method fetch_unroll_info_helper below.
 286 JRT_BLOCK_ENTRY_PROF(Deoptimization::UnrollBlock*, Deoptimization, fetch_unroll_info, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 287   // fetch_unroll_info() is called at the beginning of the deoptimization
 288   // handler. Note this fact before we start generating temporary frames
 289   // that can confuse an asynchronous stack walker. This counter is
 290   // decremented at the end of unpack_frames().
 291   current->inc_in_deopt_handler();
 292 
 293   if (exec_mode == Unpack_exception) {
 294     // When we get here, a callee has thrown an exception into a deoptimized
 295     // frame. That throw might have deferred stack watermark checking until
 296     // after unwinding. So we deal with such deferred requests here.
 297     StackWatermarkSet::after_unwind(current);
 298   }
 299 
 300   return fetch_unroll_info_helper(current, exec_mode);
 301 JRT_END
 302 
 303 #if COMPILER2_OR_JVMCI
 304 // print information about reallocated objects
 305 static void print_objects(JavaThread* deoptee_thread,
 306                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 307   ResourceMark rm;
 308   stringStream st;  // change to logStream with logging
 309   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 310   fieldDescriptor fd;
 311 
 312   for (int i = 0; i < objects->length(); i++) {
 313     ObjectValue* sv = (ObjectValue*) objects->at(i);
 314     Handle obj = sv->value();
 315 
 316     if (obj.is_null()) {
 317       st.print_cr("     nullptr");
 318       continue;
 319     }
 320 
 321     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 322 
 323     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 324     k->print_value_on(&st);
 325     st.print_cr(" allocated (%zu bytes)", obj->size() * HeapWordSize);
 326 
 327     if (Verbose && k != nullptr) {
 328       k->oop_print_on(obj(), &st);
 329     }
 330   }
 331   tty->print_raw(st.freeze());
 332 }
 333 
 334 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method,
 335                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 336                                   bool& deoptimized_objects) {
 337   bool realloc_failures = false;
 338   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 339 
 340   JavaThread* deoptee_thread = chunk->at(0)->thread();
 341   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 342          "a frame can only be deoptimized by the owner thread");
 343 
 344   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 345 
 346   // The flag return_oop() indicates call sites which return oop
 347   // in compiled code. Such sites include java method calls,
 348   // runtime calls (for example, used to allocate new objects/arrays
 349   // on slow code path) and any other calls generated in compiled code.
 350   // It is not guaranteed that we can get such information here only
 351   // by analyzing bytecode in deoptimized frames. This is why this flag
 352   // is set during method compilation (see Compile::Process_OopMap_Node()).
 353   // If the previous frame was popped or if we are dispatching an exception,
 354   // we don't have an oop result.
 355   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 356   Handle return_value;
 357   if (save_oop_result) {
 358     // Reallocation may trigger GC. If deoptimization happened on return from
 359     // call which returns oop we need to save it since it is not in oopmap.
 360     oop result = deoptee.saved_oop_result(&map);
 361     assert(oopDesc::is_oop_or_null(result), "must be oop");
 362     return_value = Handle(thread, result);
 363     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 364     if (TraceDeoptimization) {
 365       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 366       tty->cr();
 367     }
 368   }
 369   if (objects != nullptr) {
 370     if (exec_mode == Deoptimization::Unpack_none) {
 371       assert(thread->thread_state() == _thread_in_vm, "assumption");
 372       JavaThread* THREAD = thread; // For exception macros.
 373       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 374       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 375       deoptimized_objects = true;
 376     } else {
 377       JavaThread* current = thread; // For JRT_BLOCK
 378       JRT_BLOCK
 379       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 380       JRT_END
 381     }
 382     guarantee(compiled_method != nullptr, "deopt must be associated with an nmethod");
 383     bool is_jvmci = compiled_method->is_compiled_by_jvmci();
 384     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, is_jvmci);
 385     if (TraceDeoptimization) {
 386       print_objects(deoptee_thread, objects, realloc_failures);
 387     }
 388   }
 389   if (save_oop_result) {
 390     // Restore result.
 391     deoptee.set_saved_oop_result(&map, return_value());
 392   }
 393   return realloc_failures;
 394 }
 395 
 396 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 397                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 398   JavaThread* deoptee_thread = chunk->at(0)->thread();
 399   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 400   assert(thread == Thread::current(), "should be");
 401   HandleMark hm(thread);
 402 #ifndef PRODUCT
 403   bool first = true;
 404 #endif // !PRODUCT
 405   // Start locking from outermost/oldest frame
 406   for (int i = (chunk->length() - 1); i >= 0; i--) {
 407     compiledVFrame* cvf = chunk->at(i);
 408     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 409     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 410     if (monitors->is_nonempty()) {
 411       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 412                                                      exec_mode, realloc_failures);
 413       deoptimized_objects = deoptimized_objects || relocked;
 414 #ifndef PRODUCT
 415       if (PrintDeoptimizationDetails) {
 416         ResourceMark rm;
 417         stringStream st;
 418         for (int j = 0; j < monitors->length(); j++) {
 419           MonitorInfo* mi = monitors->at(j);
 420           if (mi->eliminated()) {
 421             if (first) {
 422               first = false;
 423               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 424             }
 425             if (exec_mode == Deoptimization::Unpack_none) {
 426               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 427               if (monitor != nullptr && monitor->object() == mi->owner()) {
 428                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 429                 continue;
 430               }
 431             }
 432             if (mi->owner_is_scalar_replaced()) {
 433               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 434               st.print_cr("     failed reallocation for klass %s", k->external_name());
 435             } else {
 436               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 437             }
 438           }
 439         }
 440         tty->print_raw(st.freeze());
 441       }
 442 #endif // !PRODUCT
 443     }
 444   }
 445 }
 446 
 447 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 448 // The given vframes cover one physical frame.
 449 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 450                                                  bool& realloc_failures) {
 451   frame deoptee = chunk->at(0)->fr();
 452   JavaThread* deoptee_thread = chunk->at(0)->thread();
 453   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 454   RegisterMap map(chunk->at(0)->register_map());
 455   bool deoptimized_objects = false;
 456 
 457   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 458 
 459   // Reallocate the non-escaping objects and restore their fields.
 460   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 461                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 462     realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects);
 463   }
 464 
 465   // MonitorInfo structures used in eliminate_locks are not GC safe.
 466   NoSafepointVerifier no_safepoint;
 467 
 468   // Now relock objects if synchronization on them was eliminated.
 469   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 470     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 471   }
 472   return deoptimized_objects;
 473 }
 474 #endif // COMPILER2_OR_JVMCI
 475 
 476 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 477 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 478   // When we get here we are about to unwind the deoptee frame. In order to
 479   // catch not yet safe to use frames, the following stack watermark barrier
 480   // poll will make such frames safe to use.
 481   StackWatermarkSet::before_unwind(current);
 482 
 483   // Note: there is a safepoint safety issue here. No matter whether we enter
 484   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 485   // the vframeArray is created.
 486   //
 487 
 488   // Allocate our special deoptimization ResourceMark
 489   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 490   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 491   current->set_deopt_mark(dmark);
 492 
 493   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 494   RegisterMap map(current,
 495                   RegisterMap::UpdateMap::include,
 496                   RegisterMap::ProcessFrames::include,
 497                   RegisterMap::WalkContinuation::skip);
 498   RegisterMap dummy_map(current,
 499                         RegisterMap::UpdateMap::skip,
 500                         RegisterMap::ProcessFrames::include,
 501                         RegisterMap::WalkContinuation::skip);
 502   // Now get the deoptee with a valid map
 503   frame deoptee = stub_frame.sender(&map);
 504   // Set the deoptee nmethod
 505   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 506   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 507   current->set_deopt_compiled_method(nm);
 508 
 509   if (VerifyStack) {
 510     current->validate_frame_layout();
 511   }
 512 
 513   // Create a growable array of VFrames where each VFrame represents an inlined
 514   // Java frame.  This storage is allocated with the usual system arena.
 515   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 516   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 517   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 518   while (!vf->is_top()) {
 519     assert(vf->is_compiled_frame(), "Wrong frame type");
 520     chunk->push(compiledVFrame::cast(vf));
 521     vf = vf->sender();
 522   }
 523   assert(vf->is_compiled_frame(), "Wrong frame type");
 524   chunk->push(compiledVFrame::cast(vf));
 525 
 526   bool realloc_failures = false;
 527 
 528 #if COMPILER2_OR_JVMCI
 529   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 530 
 531   // Reallocate the non-escaping objects and restore their fields. Then
 532   // relock objects if synchronization on them was eliminated.
 533   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 534                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 535     bool unused;
 536     realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused);
 537   }
 538 #endif // COMPILER2_OR_JVMCI
 539 
 540   // Ensure that no safepoint is taken after pointers have been stored
 541   // in fields of rematerialized objects.  If a safepoint occurs from here on
 542   // out the java state residing in the vframeArray will be missed.
 543   // Locks may be rebaised in a safepoint.
 544   NoSafepointVerifier no_safepoint;
 545 
 546 #if COMPILER2_OR_JVMCI
 547   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 548       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 549     bool unused = false;
 550     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 551   }
 552 #endif // COMPILER2_OR_JVMCI
 553 
 554   ScopeDesc* trap_scope = chunk->at(0)->scope();
 555   Handle exceptionObject;
 556   if (trap_scope->rethrow_exception()) {
 557 #ifndef PRODUCT
 558     if (PrintDeoptimizationDetails) {
 559       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 560     }
 561 #endif // !PRODUCT
 562 
 563     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 564     guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw");
 565     ScopeValue* topOfStack = expressions->top();
 566     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 567     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 568   }
 569 
 570   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 571 #if COMPILER2_OR_JVMCI
 572   if (realloc_failures) {
 573     // This destroys all ScopedValue bindings.
 574     current->clear_scopedValueBindings();
 575     pop_frames_failed_reallocs(current, array);
 576   }
 577 #endif
 578 
 579   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 580   current->set_vframe_array_head(array);
 581 
 582   // Now that the vframeArray has been created if we have any deferred local writes
 583   // added by jvmti then we can free up that structure as the data is now in the
 584   // vframeArray
 585 
 586   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 587 
 588   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 589   CodeBlob* cb = stub_frame.cb();
 590   // Verify we have the right vframeArray
 591   assert(cb->frame_size() >= 0, "Unexpected frame size");
 592   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 593 
 594   // If the deopt call site is a MethodHandle invoke call site we have
 595   // to adjust the unpack_sp.
 596   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 597   if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc()))
 598     unpack_sp = deoptee.unextended_sp();
 599 
 600 #ifdef ASSERT
 601   assert(cb->is_deoptimization_stub() ||
 602          cb->is_uncommon_trap_stub() ||
 603          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 604          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 605          "unexpected code blob: %s", cb->name());
 606 #endif
 607 
 608   // This is a guarantee instead of an assert because if vframe doesn't match
 609   // we will unpack the wrong deoptimized frame and wind up in strange places
 610   // where it will be very difficult to figure out what went wrong. Better
 611   // to die an early death here than some very obscure death later when the
 612   // trail is cold.
 613   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 614 
 615   int number_of_frames = array->frames();
 616 
 617   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 618   // virtual activation, which is the reverse of the elements in the vframes array.
 619   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 620   // +1 because we always have an interpreter return address for the final slot.
 621   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 622   int popframe_extra_args = 0;
 623   // Create an interpreter return address for the stub to use as its return
 624   // address so the skeletal frames are perfectly walkable
 625   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 626 
 627   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 628   // activation be put back on the expression stack of the caller for reexecution
 629   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 630     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 631   }
 632 
 633   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 634   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 635   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 636   //
 637   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 638   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 639 
 640   // It's possible that the number of parameters at the call site is
 641   // different than number of arguments in the callee when method
 642   // handles are used.  If the caller is interpreted get the real
 643   // value so that the proper amount of space can be added to it's
 644   // frame.
 645   bool caller_was_method_handle = false;
 646   if (deopt_sender.is_interpreted_frame()) {
 647     methodHandle method(current, deopt_sender.interpreter_frame_method());
 648     Bytecode_invoke cur(method, deopt_sender.interpreter_frame_bci());
 649     if (cur.has_member_arg()) {
 650       // This should cover all real-world cases.  One exception is a pathological chain of
 651       // MH.linkToXXX() linker calls, which only trusted code could do anyway.  To handle that case, we
 652       // would need to get the size from the resolved method entry.  Another exception would
 653       // be an invokedynamic with an adapter that is really a MethodHandle linker.
 654       caller_was_method_handle = true;
 655     }
 656   }
 657 
 658   //
 659   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 660   // frame_sizes/frame_pcs[1] next oldest frame (int)
 661   // frame_sizes/frame_pcs[n] youngest frame (int)
 662   //
 663   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 664   // owns the space for the return address to it's caller).  Confusing ain't it.
 665   //
 666   // The vframe array can address vframes with indices running from
 667   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 668   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 669   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 670   // so things look a little strange in this loop.
 671   //
 672   int callee_parameters = 0;
 673   int callee_locals = 0;
 674   for (int index = 0; index < array->frames(); index++ ) {
 675     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 676     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 677     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 678     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 679                                                                                                     callee_locals,
 680                                                                                                     index == 0,
 681                                                                                                     popframe_extra_args);
 682     // This pc doesn't have to be perfect just good enough to identify the frame
 683     // as interpreted so the skeleton frame will be walkable
 684     // The correct pc will be set when the skeleton frame is completely filled out
 685     // The final pc we store in the loop is wrong and will be overwritten below
 686     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 687 
 688     callee_parameters = array->element(index)->method()->size_of_parameters();
 689     callee_locals = array->element(index)->method()->max_locals();
 690     popframe_extra_args = 0;
 691   }
 692 
 693   // Compute whether the root vframe returns a float or double value.
 694   BasicType return_type;
 695   {
 696     methodHandle method(current, array->element(0)->method());
 697     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 698     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 699   }
 700 
 701   // Compute information for handling adapters and adjusting the frame size of the caller.
 702   int caller_adjustment = 0;
 703 
 704   // Compute the amount the oldest interpreter frame will have to adjust
 705   // its caller's stack by. If the caller is a compiled frame then
 706   // we pretend that the callee has no parameters so that the
 707   // extension counts for the full amount of locals and not just
 708   // locals-parms. This is because without a c2i adapter the parm
 709   // area as created by the compiled frame will not be usable by
 710   // the interpreter. (Depending on the calling convention there
 711   // may not even be enough space).
 712 
 713   // QQQ I'd rather see this pushed down into last_frame_adjust
 714   // and have it take the sender (aka caller).
 715 
 716   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 717     caller_adjustment = last_frame_adjust(0, callee_locals);
 718   } else if (callee_locals > callee_parameters) {
 719     // The caller frame may need extending to accommodate
 720     // non-parameter locals of the first unpacked interpreted frame.
 721     // Compute that adjustment.
 722     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 723   }
 724 
 725   // If the sender is deoptimized the we must retrieve the address of the handler
 726   // since the frame will "magically" show the original pc before the deopt
 727   // and we'd undo the deopt.
 728 
 729   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 730   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 731     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 732   }
 733 
 734   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 735 
 736 #if INCLUDE_JVMCI
 737   if (exceptionObject() != nullptr) {
 738     current->set_exception_oop(exceptionObject());
 739     exec_mode = Unpack_exception;
 740   }
 741 #endif
 742 
 743   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 744     assert(current->has_pending_exception(), "should have thrown OOME");
 745     current->set_exception_oop(current->pending_exception());
 746     current->clear_pending_exception();
 747     exec_mode = Unpack_exception;
 748   }
 749 
 750 #if INCLUDE_JVMCI
 751   if (current->frames_to_pop_failed_realloc() > 0) {
 752     current->set_pending_monitorenter(false);
 753   }
 754 #endif
 755 
 756   int caller_actual_parameters = -1; // value not used except for interpreted frames, see below
 757   if (deopt_sender.is_interpreted_frame()) {
 758     caller_actual_parameters = callee_parameters + (caller_was_method_handle ? 1 : 0);
 759   }
 760 
 761   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 762                                       caller_adjustment * BytesPerWord,
 763                                       caller_actual_parameters,
 764                                       number_of_frames,
 765                                       frame_sizes,
 766                                       frame_pcs,
 767                                       return_type,
 768                                       exec_mode);
 769   // On some platforms, we need a way to pass some platform dependent
 770   // information to the unpacking code so the skeletal frames come out
 771   // correct (initial fp value, unextended sp, ...)
 772   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 773 
 774   if (array->frames() > 1) {
 775     if (VerifyStack && TraceDeoptimization) {
 776       tty->print_cr("Deoptimizing method containing inlining");
 777     }
 778   }
 779 
 780   array->set_unroll_block(info);
 781   return info;
 782 }
 783 
 784 // Called to cleanup deoptimization data structures in normal case
 785 // after unpacking to stack and when stack overflow error occurs
 786 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 787                                         vframeArray *array) {
 788 
 789   // Get array if coming from exception
 790   if (array == nullptr) {
 791     array = thread->vframe_array_head();
 792   }
 793   thread->set_vframe_array_head(nullptr);
 794 
 795   // Free the previous UnrollBlock
 796   vframeArray* old_array = thread->vframe_array_last();
 797   thread->set_vframe_array_last(array);
 798 
 799   if (old_array != nullptr) {
 800     UnrollBlock* old_info = old_array->unroll_block();
 801     old_array->set_unroll_block(nullptr);
 802     delete old_info;
 803     delete old_array;
 804   }
 805 
 806   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 807   // inside the vframeArray (StackValueCollections)
 808 
 809   delete thread->deopt_mark();
 810   thread->set_deopt_mark(nullptr);
 811   thread->set_deopt_compiled_method(nullptr);
 812 
 813 
 814   if (JvmtiExport::can_pop_frame()) {
 815     // Regardless of whether we entered this routine with the pending
 816     // popframe condition bit set, we should always clear it now
 817     thread->clear_popframe_condition();
 818   }
 819 
 820   // unpack_frames() is called at the end of the deoptimization handler
 821   // and (in C2) at the end of the uncommon trap handler. Note this fact
 822   // so that an asynchronous stack walker can work again. This counter is
 823   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 824   // the beginning of uncommon_trap().
 825   thread->dec_in_deopt_handler();
 826 }
 827 
 828 // Moved from cpu directories because none of the cpus has callee save values.
 829 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 830 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 831 
 832   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 833   // the days we had adapter frames. When we deoptimize a situation where a
 834   // compiled caller calls a compiled caller will have registers it expects
 835   // to survive the call to the callee. If we deoptimize the callee the only
 836   // way we can restore these registers is to have the oldest interpreter
 837   // frame that we create restore these values. That is what this routine
 838   // will accomplish.
 839 
 840   // At the moment we have modified c2 to not have any callee save registers
 841   // so this problem does not exist and this routine is just a place holder.
 842 
 843   assert(f->is_interpreted_frame(), "must be interpreted");
 844 }
 845 
 846 #ifndef PRODUCT
 847 static bool falls_through(Bytecodes::Code bc) {
 848   switch (bc) {
 849     // List may be incomplete.  Here we really only care about bytecodes where compiled code
 850     // can deoptimize.
 851     case Bytecodes::_goto:
 852     case Bytecodes::_goto_w:
 853     case Bytecodes::_athrow:
 854       return false;
 855     default:
 856       return true;
 857   }
 858 }
 859 #endif
 860 
 861 // Return BasicType of value being returned
 862 JRT_LEAF_PROF_NO_THREAD(BasicType, Deoptimization, unpack_frames, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 863   assert(thread == JavaThread::current(), "pre-condition");
 864 
 865   // We are already active in the special DeoptResourceMark any ResourceObj's we
 866   // allocate will be freed at the end of the routine.
 867 
 868   // JRT_LEAF methods don't normally allocate handles and there is a
 869   // NoHandleMark to enforce that. It is actually safe to use Handles
 870   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 871   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 872   // then use a HandleMark to ensure any Handles we do create are
 873   // cleaned up in this scope.
 874   ResetNoHandleMark rnhm;
 875   HandleMark hm(thread);
 876 
 877   frame stub_frame = thread->last_frame();
 878 
 879   Continuation::notify_deopt(thread, stub_frame.sp());
 880 
 881   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 882   // must point to the vframeArray for the unpack frame.
 883   vframeArray* array = thread->vframe_array_head();
 884   UnrollBlock* info = array->unroll_block();
 885 
 886   // We set the last_Java frame. But the stack isn't really parsable here. So we
 887   // clear it to make sure JFR understands not to try and walk stacks from events
 888   // in here.
 889   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 890   thread->frame_anchor()->set_last_Java_sp(nullptr);
 891 
 892   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 893   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 894 
 895   thread->frame_anchor()->set_last_Java_sp(sp);
 896 
 897   BasicType bt = info->return_type();
 898 
 899   // If we have an exception pending, claim that the return type is an oop
 900   // so the deopt_blob does not overwrite the exception_oop.
 901 
 902   if (exec_mode == Unpack_exception)
 903     bt = T_OBJECT;
 904 
 905   // Cleanup thread deopt data
 906   cleanup_deopt_info(thread, array);
 907 
 908 #ifndef PRODUCT
 909   if (VerifyStack) {
 910     ResourceMark res_mark;
 911     // Clear pending exception to not break verification code (restored afterwards)
 912     PreserveExceptionMark pm(thread);
 913 
 914     thread->validate_frame_layout();
 915 
 916     // Verify that the just-unpacked frames match the interpreter's
 917     // notions of expression stack and locals
 918     vframeArray* cur_array = thread->vframe_array_last();
 919     RegisterMap rm(thread,
 920                    RegisterMap::UpdateMap::skip,
 921                    RegisterMap::ProcessFrames::include,
 922                    RegisterMap::WalkContinuation::skip);
 923     rm.set_include_argument_oops(false);
 924     bool is_top_frame = true;
 925     int callee_size_of_parameters = 0;
 926     int callee_max_locals = 0;
 927     for (int i = 0; i < cur_array->frames(); i++) {
 928       vframeArrayElement* el = cur_array->element(i);
 929       frame* iframe = el->iframe();
 930       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 931 
 932       // Get the oop map for this bci
 933       InterpreterOopMap mask;
 934       int cur_invoke_parameter_size = 0;
 935       bool try_next_mask = false;
 936       int next_mask_expression_stack_size = -1;
 937       int top_frame_expression_stack_adjustment = 0;
 938       methodHandle mh(thread, iframe->interpreter_frame_method());
 939       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 940       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 941       int max_bci = mh->code_size();
 942       // Get to the next bytecode if possible
 943       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 944       // Check to see if we can grab the number of outgoing arguments
 945       // at an uncommon trap for an invoke (where the compiler
 946       // generates debug info before the invoke has executed)
 947       Bytecodes::Code cur_code = str.next();
 948       Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere;
 949       if (Bytecodes::is_invoke(cur_code)) {
 950         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 951         cur_invoke_parameter_size = invoke.size_of_parameters();
 952         if (i != 0 && invoke.has_member_arg()) {
 953           callee_size_of_parameters++;
 954         }
 955       }
 956       if (str.bci() < max_bci) {
 957         next_code = str.next();
 958         if (next_code >= 0) {
 959           // The interpreter oop map generator reports results before
 960           // the current bytecode has executed except in the case of
 961           // calls. It seems to be hard to tell whether the compiler
 962           // has emitted debug information matching the "state before"
 963           // a given bytecode or the state after, so we try both
 964           if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) {
 965             // Get expression stack size for the next bytecode
 966             InterpreterOopMap next_mask;
 967             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 968             next_mask_expression_stack_size = next_mask.expression_stack_size();
 969             if (Bytecodes::is_invoke(next_code)) {
 970               Bytecode_invoke invoke(mh, str.bci());
 971               next_mask_expression_stack_size += invoke.size_of_parameters();
 972             }
 973             // Need to subtract off the size of the result type of
 974             // the bytecode because this is not described in the
 975             // debug info but returned to the interpreter in the TOS
 976             // caching register
 977             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 978             if (bytecode_result_type != T_ILLEGAL) {
 979               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 980             }
 981             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 982             try_next_mask = true;
 983           }
 984         }
 985       }
 986 
 987       // Verify stack depth and oops in frame
 988       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 989       if (!(
 990             /* SPARC */
 991             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 992             /* x86 */
 993             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 994             (try_next_mask &&
 995              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 996                                                                     top_frame_expression_stack_adjustment))) ||
 997             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 998             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 999              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
1000             )) {
1001         {
1002           // Print out some information that will help us debug the problem
1003           tty->print_cr("Wrong number of expression stack elements during deoptimization");
1004           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
1005           tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
1006           if (try_next_mask) {
1007             tty->print_cr("  Next code %s", Bytecodes::name(next_code));
1008           }
1009           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
1010                         iframe->interpreter_frame_expression_stack_size());
1011           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
1012           tty->print_cr("  try_next_mask = %d", try_next_mask);
1013           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
1014           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
1015           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
1016           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1017           tty->print_cr("  exec_mode = %d", exec_mode);
1018           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1019           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1020           tty->print_cr("  Interpreted frames:");
1021           for (int k = 0; k < cur_array->frames(); k++) {
1022             vframeArrayElement* el = cur_array->element(k);
1023             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1024           }
1025           cur_array->print_on_2(tty);
1026         }
1027         guarantee(false, "wrong number of expression stack elements during deopt");
1028       }
1029       VerifyOopClosure verify;
1030       iframe->oops_interpreted_do(&verify, &rm, false);
1031       callee_size_of_parameters = mh->size_of_parameters();
1032       callee_max_locals = mh->max_locals();
1033       is_top_frame = false;
1034     }
1035   }
1036 #endif // !PRODUCT
1037 
1038   return bt;
1039 JRT_END
1040 
1041 class DeoptimizeMarkedClosure : public HandshakeClosure {
1042  public:
1043   DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {}
1044   void do_thread(Thread* thread) {
1045     JavaThread* jt = JavaThread::cast(thread);
1046     jt->deoptimize_marked_methods();
1047   }
1048 };
1049 
1050 void Deoptimization::deoptimize_all_marked() {
1051   ResourceMark rm;
1052 
1053   // Make the dependent methods not entrant
1054   CodeCache::make_marked_nmethods_deoptimized();
1055 
1056   DeoptimizeMarkedClosure deopt;
1057   if (SafepointSynchronize::is_at_safepoint()) {
1058     Threads::java_threads_do(&deopt);
1059   } else {
1060     Handshake::execute(&deopt);
1061   }
1062 }
1063 
1064 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1065   = Deoptimization::Action_reinterpret;
1066 
1067 #if INCLUDE_JVMCI
1068 template<typename CacheType>
1069 class BoxCacheBase : public CHeapObj<mtCompiler> {
1070 protected:
1071   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1072     ResourceMark rm(thread);
1073     char* klass_name_str = klass_name->as_C_string();
1074     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle());
1075     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1076     if (!ik->is_in_error_state()) {
1077       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1078       CacheType::compute_offsets(ik);
1079     }
1080     return ik;
1081   }
1082 };
1083 
1084 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1085   PrimitiveType _low;
1086   PrimitiveType _high;
1087   jobject _cache;
1088 protected:
1089   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1090   BoxCache(Thread* thread) {
1091     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1092     if (ik->is_in_error_state()) {
1093       _low = 1;
1094       _high = 0;
1095       _cache = nullptr;
1096     } else {
1097       objArrayOop cache = CacheType::cache(ik);
1098       assert(cache->length() > 0, "Empty cache");
1099       _low = BoxType::value(cache->obj_at(0));
1100       _high = checked_cast<PrimitiveType>(_low + cache->length() - 1);
1101       _cache = JNIHandles::make_global(Handle(thread, cache));
1102     }
1103   }
1104   ~BoxCache() {
1105     JNIHandles::destroy_global(_cache);
1106   }
1107 public:
1108   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1109     if (_singleton == nullptr) {
1110       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1111       if (!Atomic::replace_if_null(&_singleton, s)) {
1112         delete s;
1113       }
1114     }
1115     return _singleton;
1116   }
1117   oop lookup(PrimitiveType value) {
1118     if (_low <= value && value <= _high) {
1119       int offset = checked_cast<int>(value - _low);
1120       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1121     }
1122     return nullptr;
1123   }
1124   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1125     if (_cache == nullptr) {
1126       cache_init_error = true;
1127       return nullptr;
1128     }
1129     // Have to cast to avoid little/big-endian problems.
1130     if (sizeof(PrimitiveType) > sizeof(jint)) {
1131       jlong value = (jlong)raw_value;
1132       return lookup(value);
1133     }
1134     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1135     return lookup(value);
1136   }
1137 };
1138 
1139 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1140 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1141 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1142 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1143 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1144 
1145 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1146 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1147 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1148 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1149 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1150 
1151 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1152   jobject _true_cache;
1153   jobject _false_cache;
1154 protected:
1155   static BooleanBoxCache *_singleton;
1156   BooleanBoxCache(Thread *thread) {
1157     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1158     if (ik->is_in_error_state()) {
1159       _true_cache = nullptr;
1160       _false_cache = nullptr;
1161     } else {
1162       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1163       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1164     }
1165   }
1166   ~BooleanBoxCache() {
1167     JNIHandles::destroy_global(_true_cache);
1168     JNIHandles::destroy_global(_false_cache);
1169   }
1170 public:
1171   static BooleanBoxCache* singleton(Thread* thread) {
1172     if (_singleton == nullptr) {
1173       BooleanBoxCache* s = new BooleanBoxCache(thread);
1174       if (!Atomic::replace_if_null(&_singleton, s)) {
1175         delete s;
1176       }
1177     }
1178     return _singleton;
1179   }
1180   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1181     if (_true_cache == nullptr) {
1182       cache_in_error = true;
1183       return nullptr;
1184     }
1185     // Have to cast to avoid little/big-endian problems.
1186     jboolean value = (jboolean)*((jint*)&raw_value);
1187     return lookup(value);
1188   }
1189   oop lookup(jboolean value) {
1190     if (value != 0) {
1191       return JNIHandles::resolve_non_null(_true_cache);
1192     }
1193     return JNIHandles::resolve_non_null(_false_cache);
1194   }
1195 };
1196 
1197 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1198 
1199 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1200    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1201    BasicType box_type = vmClasses::box_klass_type(k);
1202    if (box_type != T_OBJECT) {
1203      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1204      switch(box_type) {
1205        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1206        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1207        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1208        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1209        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1210        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1211        default:;
1212      }
1213    }
1214    return nullptr;
1215 }
1216 #endif // INCLUDE_JVMCI
1217 
1218 #if COMPILER2_OR_JVMCI
1219 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1220   Handle pending_exception(THREAD, thread->pending_exception());
1221   const char* exception_file = thread->exception_file();
1222   int exception_line = thread->exception_line();
1223   thread->clear_pending_exception();
1224 
1225   bool failures = false;
1226 
1227   for (int i = 0; i < objects->length(); i++) {
1228     assert(objects->at(i)->is_object(), "invalid debug information");
1229     ObjectValue* sv = (ObjectValue*) objects->at(i);
1230 
1231     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1232     oop obj = nullptr;
1233 
1234     bool cache_init_error = false;
1235     if (k->is_instance_klass()) {
1236 #if INCLUDE_JVMCI
1237       nmethod* nm = fr->cb()->as_nmethod_or_null();
1238       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1239         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1240         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1241         if (obj != nullptr) {
1242           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1243           abv->set_cached(true);
1244         } else if (cache_init_error) {
1245           // Results in an OOME which is valid (as opposed to a class initialization error)
1246           // and is fine for the rare case a cache initialization failing.
1247           failures = true;
1248         }
1249       }
1250 #endif // INCLUDE_JVMCI
1251 
1252       InstanceKlass* ik = InstanceKlass::cast(k);
1253       if (obj == nullptr && !cache_init_error) {
1254         InternalOOMEMark iom(THREAD);
1255         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1256           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1257         } else {
1258           obj = ik->allocate_instance(THREAD);
1259         }
1260       }
1261     } else if (k->is_typeArray_klass()) {
1262       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1263       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1264       int len = sv->field_size() / type2size[ak->element_type()];
1265       InternalOOMEMark iom(THREAD);
1266       obj = ak->allocate(len, THREAD);
1267     } else if (k->is_objArray_klass()) {
1268       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1269       InternalOOMEMark iom(THREAD);
1270       obj = ak->allocate(sv->field_size(), THREAD);
1271     }
1272 
1273     if (obj == nullptr) {
1274       failures = true;
1275     }
1276 
1277     assert(sv->value().is_null(), "redundant reallocation");
1278     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1279     CLEAR_PENDING_EXCEPTION;
1280     sv->set_value(obj);
1281   }
1282 
1283   if (failures) {
1284     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1285   } else if (pending_exception.not_null()) {
1286     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1287   }
1288 
1289   return failures;
1290 }
1291 
1292 #if INCLUDE_JVMCI
1293 /**
1294  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1295  * we need to somehow be able to recover the actual kind to be able to write the correct
1296  * amount of bytes.
1297  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1298  * the entries at index n + 1 to n + i are 'markers'.
1299  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1300  * expected form of the array would be:
1301  *
1302  * {b0, b1, b2, b3, INT, marker, b6, b7}
1303  *
1304  * Thus, in order to get back the size of the entry, we simply need to count the number
1305  * of marked entries
1306  *
1307  * @param virtualArray the virtualized byte array
1308  * @param i index of the virtual entry we are recovering
1309  * @return The number of bytes the entry spans
1310  */
1311 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1312   int index = i;
1313   while (++index < virtualArray->field_size() &&
1314            virtualArray->field_at(index)->is_marker()) {}
1315   return index - i;
1316 }
1317 
1318 /**
1319  * If there was a guarantee for byte array to always start aligned to a long, we could
1320  * do a simple check on the parity of the index. Unfortunately, that is not always the
1321  * case. Thus, we check alignment of the actual address we are writing to.
1322  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1323  * write a long to index 3.
1324  */
1325 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1326     jbyte* res = obj->byte_at_addr(index);
1327     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1328     return res;
1329 }
1330 
1331 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) {
1332   switch (byte_count) {
1333     case 1:
1334       obj->byte_at_put(index, (jbyte) value->get_jint());
1335       break;
1336     case 2:
1337       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint();
1338       break;
1339     case 4:
1340       *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint();
1341       break;
1342     case 8:
1343       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr();
1344       break;
1345     default:
1346       ShouldNotReachHere();
1347   }
1348 }
1349 #endif // INCLUDE_JVMCI
1350 
1351 
1352 // restore elements of an eliminated type array
1353 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1354   int index = 0;
1355 
1356   for (int i = 0; i < sv->field_size(); i++) {
1357     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1358     switch(type) {
1359     case T_LONG: case T_DOUBLE: {
1360       assert(value->type() == T_INT, "Agreement.");
1361       StackValue* low =
1362         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1363 #ifdef _LP64
1364       jlong res = (jlong)low->get_intptr();
1365 #else
1366       jlong res = jlong_from(value->get_jint(), low->get_jint());
1367 #endif
1368       obj->long_at_put(index, res);
1369       break;
1370     }
1371 
1372     case T_INT: case T_FLOAT: { // 4 bytes.
1373       assert(value->type() == T_INT, "Agreement.");
1374       bool big_value = false;
1375       if (i + 1 < sv->field_size() && type == T_INT) {
1376         if (sv->field_at(i)->is_location()) {
1377           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1378           if (type == Location::dbl || type == Location::lng) {
1379             big_value = true;
1380           }
1381         } else if (sv->field_at(i)->is_constant_int()) {
1382           ScopeValue* next_scope_field = sv->field_at(i + 1);
1383           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1384             big_value = true;
1385           }
1386         }
1387       }
1388 
1389       if (big_value) {
1390         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1391   #ifdef _LP64
1392         jlong res = (jlong)low->get_intptr();
1393   #else
1394         jlong res = jlong_from(value->get_jint(), low->get_jint());
1395   #endif
1396         obj->int_at_put(index, *(jint*)&res);
1397         obj->int_at_put(++index, *((jint*)&res + 1));
1398       } else {
1399         obj->int_at_put(index, value->get_jint());
1400       }
1401       break;
1402     }
1403 
1404     case T_SHORT:
1405       assert(value->type() == T_INT, "Agreement.");
1406       obj->short_at_put(index, (jshort)value->get_jint());
1407       break;
1408 
1409     case T_CHAR:
1410       assert(value->type() == T_INT, "Agreement.");
1411       obj->char_at_put(index, (jchar)value->get_jint());
1412       break;
1413 
1414     case T_BYTE: {
1415       assert(value->type() == T_INT, "Agreement.");
1416 #if INCLUDE_JVMCI
1417       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1418       int byte_count = count_number_of_bytes_for_entry(sv, i);
1419       byte_array_put(obj, value, index, byte_count);
1420       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1421       i += byte_count - 1; // Balance the loop counter.
1422       index += byte_count;
1423       // index has been updated so continue at top of loop
1424       continue;
1425 #else
1426       obj->byte_at_put(index, (jbyte)value->get_jint());
1427       break;
1428 #endif // INCLUDE_JVMCI
1429     }
1430 
1431     case T_BOOLEAN: {
1432       assert(value->type() == T_INT, "Agreement.");
1433       obj->bool_at_put(index, (jboolean)value->get_jint());
1434       break;
1435     }
1436 
1437       default:
1438         ShouldNotReachHere();
1439     }
1440     index++;
1441   }
1442 }
1443 
1444 // restore fields of an eliminated object array
1445 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1446   for (int i = 0; i < sv->field_size(); i++) {
1447     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1448     assert(value->type() == T_OBJECT, "object element expected");
1449     obj->obj_at_put(i, value->get_obj()());
1450   }
1451 }
1452 
1453 class ReassignedField {
1454 public:
1455   int _offset;
1456   BasicType _type;
1457 public:
1458   ReassignedField() {
1459     _offset = 0;
1460     _type = T_ILLEGAL;
1461   }
1462 };
1463 
1464 // Gets the fields of `klass` that are eliminated by escape analysis and need to be reassigned
1465 static GrowableArray<ReassignedField>* get_reassigned_fields(InstanceKlass* klass, GrowableArray<ReassignedField>* fields, bool is_jvmci) {
1466   InstanceKlass* super = klass->superklass();
1467   if (super != nullptr) {
1468     get_reassigned_fields(super, fields, is_jvmci);
1469   }
1470   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1471     if (!fs.access_flags().is_static() && (is_jvmci || !fs.field_flags().is_injected())) {
1472       ReassignedField field;
1473       field._offset = fs.offset();
1474       field._type = Signature::basic_type(fs.signature());
1475       fields->append(field);
1476     }
1477   }
1478   return fields;
1479 }
1480 
1481 // Restore fields of an eliminated instance object employing the same field order used by the compiler.
1482 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool is_jvmci) {
1483   GrowableArray<ReassignedField>* fields = get_reassigned_fields(klass, new GrowableArray<ReassignedField>(), is_jvmci);
1484   for (int i = 0; i < fields->length(); i++) {
1485     ScopeValue* scope_field = sv->field_at(svIndex);
1486     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1487     int offset = fields->at(i)._offset;
1488     BasicType type = fields->at(i)._type;
1489     switch (type) {
1490       case T_OBJECT: case T_ARRAY:
1491         assert(value->type() == T_OBJECT, "Agreement.");
1492         obj->obj_field_put(offset, value->get_obj()());
1493         break;
1494 
1495       case T_INT: case T_FLOAT: { // 4 bytes.
1496         assert(value->type() == T_INT, "Agreement.");
1497         bool big_value = false;
1498         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1499           if (scope_field->is_location()) {
1500             Location::Type type = ((LocationValue*) scope_field)->location().type();
1501             if (type == Location::dbl || type == Location::lng) {
1502               big_value = true;
1503             }
1504           }
1505           if (scope_field->is_constant_int()) {
1506             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1507             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1508               big_value = true;
1509             }
1510           }
1511         }
1512 
1513         if (big_value) {
1514           i++;
1515           assert(i < fields->length(), "second T_INT field needed");
1516           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1517         } else {
1518           obj->int_field_put(offset, value->get_jint());
1519           break;
1520         }
1521       }
1522         /* no break */
1523 
1524       case T_LONG: case T_DOUBLE: {
1525         assert(value->type() == T_INT, "Agreement.");
1526         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1527 #ifdef _LP64
1528         jlong res = (jlong)low->get_intptr();
1529 #else
1530         jlong res = jlong_from(value->get_jint(), low->get_jint());
1531 #endif
1532         obj->long_field_put(offset, res);
1533         break;
1534       }
1535 
1536       case T_SHORT:
1537         assert(value->type() == T_INT, "Agreement.");
1538         obj->short_field_put(offset, (jshort)value->get_jint());
1539         break;
1540 
1541       case T_CHAR:
1542         assert(value->type() == T_INT, "Agreement.");
1543         obj->char_field_put(offset, (jchar)value->get_jint());
1544         break;
1545 
1546       case T_BYTE:
1547         assert(value->type() == T_INT, "Agreement.");
1548         obj->byte_field_put(offset, (jbyte)value->get_jint());
1549         break;
1550 
1551       case T_BOOLEAN:
1552         assert(value->type() == T_INT, "Agreement.");
1553         obj->bool_field_put(offset, (jboolean)value->get_jint());
1554         break;
1555 
1556       default:
1557         ShouldNotReachHere();
1558     }
1559     svIndex++;
1560   }
1561   return svIndex;
1562 }
1563 
1564 // restore fields of all eliminated objects and arrays
1565 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool is_jvmci) {
1566   for (int i = 0; i < objects->length(); i++) {
1567     assert(objects->at(i)->is_object(), "invalid debug information");
1568     ObjectValue* sv = (ObjectValue*) objects->at(i);
1569     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1570     Handle obj = sv->value();
1571     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1572 #ifndef PRODUCT
1573     if (PrintDeoptimizationDetails) {
1574       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1575     }
1576 #endif // !PRODUCT
1577 
1578     if (obj.is_null()) {
1579       continue;
1580     }
1581 
1582 #if INCLUDE_JVMCI
1583     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1584     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1585       continue;
1586     }
1587 #endif // INCLUDE_JVMCI
1588     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1589       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1590       ScopeValue* payload = sv->field_at(0);
1591       if (payload->is_location() &&
1592           payload->as_LocationValue()->location().type() == Location::vector) {
1593 #ifndef PRODUCT
1594         if (PrintDeoptimizationDetails) {
1595           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1596           if (Verbose) {
1597             Handle obj = sv->value();
1598             k->oop_print_on(obj(), tty);
1599           }
1600         }
1601 #endif // !PRODUCT
1602         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1603       }
1604       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1605       // which could be restored after vector object allocation.
1606     }
1607     if (k->is_instance_klass()) {
1608       InstanceKlass* ik = InstanceKlass::cast(k);
1609       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), is_jvmci);
1610     } else if (k->is_typeArray_klass()) {
1611       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1612       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1613     } else if (k->is_objArray_klass()) {
1614       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1615     }
1616   }
1617   // These objects may escape when we return to Interpreter after deoptimization.
1618   // We need barrier so that stores that initialize these objects can't be reordered
1619   // with subsequent stores that make these objects accessible by other threads.
1620   OrderAccess::storestore();
1621 }
1622 
1623 
1624 // relock objects for which synchronization was eliminated
1625 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1626                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1627   bool relocked_objects = false;
1628   for (int i = 0; i < monitors->length(); i++) {
1629     MonitorInfo* mon_info = monitors->at(i);
1630     if (mon_info->eliminated()) {
1631       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1632       relocked_objects = true;
1633       if (!mon_info->owner_is_scalar_replaced()) {
1634         Handle obj(thread, mon_info->owner());
1635         markWord mark = obj->mark();
1636         if (exec_mode == Unpack_none) {
1637           if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) {
1638             // With exec_mode == Unpack_none obj may be thread local and locked in
1639             // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header.
1640             markWord dmw = mark.displaced_mark_helper();
1641             mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr));
1642             obj->set_mark(dmw);
1643           }
1644           if (mark.has_monitor()) {
1645             // defer relocking if the deoptee thread is currently waiting for obj
1646             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1647             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1648               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1649               if (LockingMode == LM_LEGACY) {
1650                 mon_info->lock()->set_displaced_header(markWord::unused_mark());
1651               } else if (UseObjectMonitorTable) {
1652                 mon_info->lock()->clear_object_monitor_cache();
1653               }
1654 #ifdef ASSERT
1655               else {
1656                 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be");
1657                 mon_info->lock()->set_bad_metadata_deopt();
1658               }
1659 #endif
1660               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1661               continue;
1662             }
1663           }
1664         }
1665         BasicLock* lock = mon_info->lock();
1666         if (LockingMode == LM_LIGHTWEIGHT) {
1667           // We have lost information about the correct state of the lock stack.
1668           // Entering may create an invalid lock stack. Inflate the lock if it
1669           // was fast_locked to restore the valid lock stack.
1670           if (UseObjectMonitorTable) {
1671             // UseObjectMonitorTable expects the BasicLock cache to be either a
1672             // valid ObjectMonitor* or nullptr. Right now it is garbage, set it
1673             // to nullptr.
1674             lock->clear_object_monitor_cache();
1675           }
1676           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1677           if (deoptee_thread->lock_stack().contains(obj())) {
1678             LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal,
1679                                                                 deoptee_thread, thread);
1680           }
1681           assert(mon_info->owner()->is_locked(), "object must be locked now");
1682           assert(obj->mark().has_monitor(), "must be");
1683           assert(!deoptee_thread->lock_stack().contains(obj()), "must be");
1684           assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be");
1685         } else {
1686           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1687           assert(mon_info->owner()->is_locked(), "object must be locked now");
1688         }
1689       }
1690     }
1691   }
1692   return relocked_objects;
1693 }
1694 #endif // COMPILER2_OR_JVMCI
1695 
1696 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1697   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1698 
1699   // Register map for next frame (used for stack crawl).  We capture
1700   // the state of the deopt'ing frame's caller.  Thus if we need to
1701   // stuff a C2I adapter we can properly fill in the callee-save
1702   // register locations.
1703   frame caller = fr.sender(reg_map);
1704   int frame_size = pointer_delta_as_int(caller.sp(), fr.sp());
1705 
1706   frame sender = caller;
1707 
1708   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1709   // the vframeArray containing the unpacking information is allocated in the C heap.
1710   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1711   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1712 
1713   // Compare the vframeArray to the collected vframes
1714   assert(array->structural_compare(thread, chunk), "just checking");
1715 
1716   if (TraceDeoptimization) {
1717     ResourceMark rm;
1718     stringStream st;
1719     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1720     st.print("   ");
1721     fr.print_on(&st);
1722     st.print_cr("   Virtual frames (innermost/newest first):");
1723     for (int index = 0; index < chunk->length(); index++) {
1724       compiledVFrame* vf = chunk->at(index);
1725       int bci = vf->raw_bci();
1726       const char* code_name;
1727       if (bci == SynchronizationEntryBCI) {
1728         code_name = "sync entry";
1729       } else {
1730         Bytecodes::Code code = vf->method()->code_at(bci);
1731         code_name = Bytecodes::name(code);
1732       }
1733 
1734       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1735       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1736       st.print(" - %s", code_name);
1737       st.print_cr(" @ bci=%d ", bci);
1738     }
1739     tty->print_raw(st.freeze());
1740     tty->cr();
1741   }
1742 
1743   return array;
1744 }
1745 
1746 #if COMPILER2_OR_JVMCI
1747 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1748   // Reallocation of some scalar replaced objects failed. Record
1749   // that we need to pop all the interpreter frames for the
1750   // deoptimized compiled frame.
1751   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1752   thread->set_frames_to_pop_failed_realloc(array->frames());
1753   // Unlock all monitors here otherwise the interpreter will see a
1754   // mix of locked and unlocked monitors (because of failed
1755   // reallocations of synchronized objects) and be confused.
1756   for (int i = 0; i < array->frames(); i++) {
1757     MonitorChunk* monitors = array->element(i)->monitors();
1758     if (monitors != nullptr) {
1759       // Unlock in reverse order starting from most nested monitor.
1760       for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) {
1761         BasicObjectLock* src = monitors->at(j);
1762         if (src->obj() != nullptr) {
1763           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1764         }
1765       }
1766       array->element(i)->free_monitors();
1767 #ifdef ASSERT
1768       array->element(i)->set_removed_monitors();
1769 #endif
1770     }
1771   }
1772 }
1773 #endif
1774 
1775 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1776   assert(fr.can_be_deoptimized(), "checking frame type");
1777 
1778   nmethod* nm = fr.cb()->as_nmethod_or_null();
1779   assert(nm != nullptr, "only compiled methods can deopt");
1780   DeoptAction action = (nm->is_not_entrant() ? Action_make_not_entrant : Action_none);
1781   ScopeDesc* cur_sd = nm->scope_desc_at(fr.pc());
1782   Bytecodes::Code bc = (cur_sd->bci() == -1 ? Bytecodes::_nop // deopt on method entry
1783                                             : cur_sd->method()->java_code_at(cur_sd->bci()));
1784   gather_statistics(nm, reason, action, bc);
1785 
1786   if (LogCompilation && xtty != nullptr) {
1787     ttyLocker ttyl;
1788     xtty->begin_head("deoptimized thread='%zu' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1789     nm->log_identity(xtty);
1790     xtty->end_head();
1791     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1792       xtty->begin_elem("jvms bci='%d'", sd->bci());
1793       xtty->method(sd->method());
1794       xtty->end_elem();
1795       if (sd->is_top())  break;
1796     }
1797     xtty->tail("deoptimized");
1798   }
1799 
1800   Continuation::notify_deopt(thread, fr.sp());
1801 
1802   // Patch the compiled method so that when execution returns to it we will
1803   // deopt the execution state and return to the interpreter.
1804   fr.deoptimize(thread);
1805 }
1806 
1807 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1808   // Deoptimize only if the frame comes from compile code.
1809   // Do not deoptimize the frame which is already patched
1810   // during the execution of the loops below.
1811   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1812     return;
1813   }
1814   ResourceMark rm;
1815   deoptimize_single_frame(thread, fr, reason);
1816 }
1817 
1818 #if INCLUDE_JVMCI
1819 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) {
1820   // there is no exception handler for this pc => deoptimize
1821   nm->make_not_entrant("missing exception handler");
1822 
1823   // Use Deoptimization::deoptimize for all of its side-effects:
1824   // gathering traps statistics, logging...
1825   // it also patches the return pc but we do not care about that
1826   // since we return a continuation to the deopt_blob below.
1827   JavaThread* thread = JavaThread::current();
1828   RegisterMap reg_map(thread,
1829                       RegisterMap::UpdateMap::skip,
1830                       RegisterMap::ProcessFrames::include,
1831                       RegisterMap::WalkContinuation::skip);
1832   frame runtime_frame = thread->last_frame();
1833   frame caller_frame = runtime_frame.sender(&reg_map);
1834   assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method");
1835   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1836   compiledVFrame* cvf = compiledVFrame::cast(vf);
1837   ScopeDesc* imm_scope = cvf->scope();
1838   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1839   if (imm_mdo != nullptr) {
1840     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
1841     MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
1842 
1843     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1844     if (pdata != nullptr && pdata->is_BitData()) {
1845       BitData* bit_data = (BitData*) pdata;
1846       bit_data->set_exception_seen();
1847     }
1848   }
1849 
1850   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1851 
1852   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true);
1853   if (trap_mdo != nullptr) {
1854     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1855   }
1856 
1857   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1858 }
1859 #endif
1860 
1861 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1862   assert(thread == Thread::current() ||
1863          thread->is_handshake_safe_for(Thread::current()) ||
1864          SafepointSynchronize::is_at_safepoint(),
1865          "can only deoptimize other thread at a safepoint/handshake");
1866   // Compute frame and register map based on thread and sp.
1867   RegisterMap reg_map(thread,
1868                       RegisterMap::UpdateMap::skip,
1869                       RegisterMap::ProcessFrames::include,
1870                       RegisterMap::WalkContinuation::skip);
1871   frame fr = thread->last_frame();
1872   while (fr.id() != id) {
1873     fr = fr.sender(&reg_map);
1874   }
1875   deoptimize(thread, fr, reason);
1876 }
1877 
1878 
1879 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1880   Thread* current = Thread::current();
1881   if (thread == current || thread->is_handshake_safe_for(current)) {
1882     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1883   } else {
1884     VM_DeoptimizeFrame deopt(thread, id, reason);
1885     VMThread::execute(&deopt);
1886   }
1887 }
1888 
1889 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1890   deoptimize_frame(thread, id, Reason_constraint);
1891 }
1892 
1893 // JVMTI PopFrame support
1894 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1895 {
1896   assert(thread == JavaThread::current(), "pre-condition");
1897   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1898 }
1899 JRT_END
1900 
1901 MethodData*
1902 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1903                                 bool create_if_missing) {
1904   JavaThread* THREAD = thread; // For exception macros.
1905   MethodData* mdo = m()->method_data();
1906   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1907     // Build an MDO.  Ignore errors like OutOfMemory;
1908     // that simply means we won't have an MDO to update.
1909     Method::build_profiling_method_data(m, THREAD);
1910     if (HAS_PENDING_EXCEPTION) {
1911       // Only metaspace OOM is expected. No Java code executed.
1912       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1913       CLEAR_PENDING_EXCEPTION;
1914     }
1915     mdo = m()->method_data();
1916   }
1917   return mdo;
1918 }
1919 
1920 #if COMPILER2_OR_JVMCI
1921 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1922   // In case of an unresolved klass entry, load the class.
1923   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1924   // and probably nowhere else.
1925   // Even that case would benefit from simply re-interpreting the
1926   // bytecode, without paying special attention to the class index.
1927   // So this whole "class index" feature should probably be removed.
1928 
1929   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1930     Klass* tk = constant_pool->klass_at(index, THREAD);
1931     if (HAS_PENDING_EXCEPTION) {
1932       // Exception happened during classloading. We ignore the exception here, since it
1933       // is going to be rethrown since the current activation is going to be deoptimized and
1934       // the interpreter will re-execute the bytecode.
1935       // Do not clear probable Async Exceptions.
1936       CLEAR_PENDING_NONASYNC_EXCEPTION;
1937       // Class loading called java code which may have caused a stack
1938       // overflow. If the exception was thrown right before the return
1939       // to the runtime the stack is no longer guarded. Reguard the
1940       // stack otherwise if we return to the uncommon trap blob and the
1941       // stack bang causes a stack overflow we crash.
1942       JavaThread* jt = THREAD;
1943       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1944       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1945     }
1946     return;
1947   }
1948 
1949   assert(!constant_pool->tag_at(index).is_symbol(),
1950          "no symbolic names here, please");
1951 }
1952 
1953 #if INCLUDE_JFR
1954 
1955 class DeoptReasonSerializer : public JfrSerializer {
1956  public:
1957   void serialize(JfrCheckpointWriter& writer) {
1958     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1959     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1960       writer.write_key((u8)i);
1961       writer.write(Deoptimization::trap_reason_name(i));
1962     }
1963   }
1964 };
1965 
1966 class DeoptActionSerializer : public JfrSerializer {
1967  public:
1968   void serialize(JfrCheckpointWriter& writer) {
1969     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1970     writer.write_count(nof_actions);
1971     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1972       writer.write_key(i);
1973       writer.write(Deoptimization::trap_action_name((int)i));
1974     }
1975   }
1976 };
1977 
1978 static void register_serializers() {
1979   static int critical_section = 0;
1980   if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) {
1981     return;
1982   }
1983   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1984   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1985 }
1986 
1987 static void post_deoptimization_event(nmethod* nm,
1988                                       const Method* method,
1989                                       int trap_bci,
1990                                       int instruction,
1991                                       Deoptimization::DeoptReason reason,
1992                                       Deoptimization::DeoptAction action) {
1993   assert(nm != nullptr, "invariant");
1994   assert(method != nullptr, "invariant");
1995   if (EventDeoptimization::is_enabled()) {
1996     static bool serializers_registered = false;
1997     if (!serializers_registered) {
1998       register_serializers();
1999       serializers_registered = true;
2000     }
2001     EventDeoptimization event;
2002     event.set_compileId(nm->compile_id());
2003     event.set_compiler(nm->compiler_type());
2004     event.set_method(method);
2005     event.set_lineNumber(method->line_number_from_bci(trap_bci));
2006     event.set_bci(trap_bci);
2007     event.set_instruction(instruction);
2008     event.set_reason(reason);
2009     event.set_action(action);
2010     event.commit();
2011   }
2012 }
2013 
2014 #endif // INCLUDE_JFR
2015 
2016 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
2017                               const char* reason_name, const char* reason_action) {
2018   LogTarget(Debug, deoptimization) lt;
2019   if (lt.is_enabled()) {
2020     LogStream ls(lt);
2021     bool is_osr = nm->is_osr_method();
2022     ls.print("cid=%4d %s%s level=%d",
2023              nm->compile_id(), (is_osr ? "osr" : "   "), (nm->preloaded() ? "preload" : ""), nm->comp_level());
2024     ls.print(" %s", tm->name_and_sig_as_C_string());
2025     ls.print(" trap_bci=%d ", trap_bci);
2026     if (is_osr) {
2027       ls.print("osr_bci=%d ", nm->osr_entry_bci());
2028     }
2029     ls.print("%s ", reason_name);
2030     ls.print("%s ", reason_action);
2031     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2032              pc, fr.pc() - nm->code_begin());
2033   }
2034 }
2035 
2036 JRT_ENTRY_PROF(void, Deoptimization, uncommon_trap_inner, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2037   HandleMark hm(current);
2038 
2039   // uncommon_trap() is called at the beginning of the uncommon trap
2040   // handler. Note this fact before we start generating temporary frames
2041   // that can confuse an asynchronous stack walker. This counter is
2042   // decremented at the end of unpack_frames().
2043 
2044   current->inc_in_deopt_handler();
2045 
2046 #if INCLUDE_JVMCI
2047   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2048   RegisterMap reg_map(current,
2049                       RegisterMap::UpdateMap::include,
2050                       RegisterMap::ProcessFrames::include,
2051                       RegisterMap::WalkContinuation::skip);
2052 #else
2053   RegisterMap reg_map(current,
2054                       RegisterMap::UpdateMap::skip,
2055                       RegisterMap::ProcessFrames::include,
2056                       RegisterMap::WalkContinuation::skip);
2057 #endif
2058   frame stub_frame = current->last_frame();
2059   frame fr = stub_frame.sender(&reg_map);
2060 
2061   // Log a message
2062   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2063               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2064 
2065   {
2066     ResourceMark rm;
2067 
2068     DeoptReason reason = trap_request_reason(trap_request);
2069     DeoptAction action = trap_request_action(trap_request);
2070 #if INCLUDE_JVMCI
2071     int debug_id = trap_request_debug_id(trap_request);
2072 #endif
2073     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2074 
2075     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2076     compiledVFrame* cvf = compiledVFrame::cast(vf);
2077 
2078     nmethod* nm = cvf->code();
2079 
2080     ScopeDesc*      trap_scope  = cvf->scope();
2081 
2082     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2083 
2084     if (is_receiver_constraint_failure) {
2085       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2086                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2087                     JVMCI_ONLY(COMMA debug_id));
2088     }
2089 
2090     methodHandle    trap_method(current, trap_scope->method());
2091     int             trap_bci    = trap_scope->bci();
2092 #if INCLUDE_JVMCI
2093     jlong           speculation = current->pending_failed_speculation();
2094     if (nm->is_compiled_by_jvmci()) {
2095       nm->update_speculation(current);
2096     } else {
2097       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2098     }
2099 
2100     if (trap_bci == SynchronizationEntryBCI) {
2101       trap_bci = 0;
2102       current->set_pending_monitorenter(true);
2103     }
2104 
2105     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2106       current->set_pending_transfer_to_interpreter(true);
2107     }
2108 #endif
2109 
2110     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2111     // Record this event in the histogram.
2112     gather_statistics(nm, reason, action, trap_bc);
2113 
2114     // Ensure that we can record deopt. history:
2115     bool create_if_missing = ProfileTraps;
2116 
2117     methodHandle profiled_method;
2118 #if INCLUDE_JVMCI
2119     if (nm->is_compiled_by_jvmci()) {
2120       profiled_method = methodHandle(current, nm->method());
2121     } else {
2122       profiled_method = trap_method;
2123     }
2124 #else
2125     profiled_method = trap_method;
2126 #endif
2127 
2128     MethodData* trap_mdo =
2129       get_method_data(current, profiled_method, create_if_missing);
2130 
2131     { // Log Deoptimization event for JFR, UL and event system
2132       Method* tm = trap_method();
2133       const char* reason_name = trap_reason_name(reason);
2134       const char* reason_action = trap_action_name(action);
2135       intptr_t pc = p2i(fr.pc());
2136 
2137       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2138       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action);
2139       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
2140                                 reason_name, reason_action, pc,
2141                                 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
2142     }
2143 
2144     // Print a bunch of diagnostics, if requested.
2145     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2146       ResourceMark rm;
2147 
2148       // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2149       // We must do this already now, since we cannot acquire this lock while
2150       // holding the tty lock (lock ordering by rank).
2151       MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2152 
2153       ttyLocker ttyl;
2154 
2155       char buf[100];
2156       if (xtty != nullptr) {
2157         xtty->begin_head("uncommon_trap thread='%zu' %s",
2158                          os::current_thread_id(),
2159                          format_trap_request(buf, sizeof(buf), trap_request));
2160 #if INCLUDE_JVMCI
2161         if (speculation != 0) {
2162           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2163         }
2164 #endif
2165         nm->log_identity(xtty);
2166       }
2167       Symbol* class_name = nullptr;
2168       bool unresolved = false;
2169       if (unloaded_class_index >= 0) {
2170         constantPoolHandle constants (current, trap_method->constants());
2171         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2172           class_name = constants->klass_name_at(unloaded_class_index);
2173           unresolved = true;
2174           if (xtty != nullptr)
2175             xtty->print(" unresolved='1'");
2176         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2177           class_name = constants->symbol_at(unloaded_class_index);
2178         }
2179         if (xtty != nullptr)
2180           xtty->name(class_name);
2181       }
2182       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2183         // Dump the relevant MDO state.
2184         // This is the deopt count for the current reason, any previous
2185         // reasons or recompiles seen at this point.
2186         int dcnt = trap_mdo->trap_count(reason);
2187         if (dcnt != 0)
2188           xtty->print(" count='%d'", dcnt);
2189 
2190         // We need to lock to read the ProfileData. But to keep the locks ordered, we need to
2191         // lock extra_data_lock before the tty lock.
2192         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2193         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2194         if (dos != 0) {
2195           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2196           if (trap_state_is_recompiled(dos)) {
2197             int recnt2 = trap_mdo->overflow_recompile_count();
2198             if (recnt2 != 0)
2199               xtty->print(" recompiles2='%d'", recnt2);
2200           }
2201         }
2202       }
2203       if (xtty != nullptr) {
2204         xtty->stamp();
2205         xtty->end_head();
2206       }
2207       if (TraceDeoptimization) {  // make noise on the tty
2208         stringStream st;
2209         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2210         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2211                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2212         st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
2213 #if INCLUDE_JVMCI
2214         if (nm->is_compiled_by_jvmci()) {
2215           const char* installed_code_name = nm->jvmci_name();
2216           if (installed_code_name != nullptr) {
2217             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2218           }
2219         }
2220 #endif
2221         st.print(" (@" INTPTR_FORMAT ") thread=%zu reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2222                    p2i(fr.pc()),
2223                    os::current_thread_id(),
2224                    trap_reason_name(reason),
2225                    trap_action_name(action),
2226                    unloaded_class_index
2227 #if INCLUDE_JVMCI
2228                    , debug_id
2229 #endif
2230                    );
2231         if (class_name != nullptr) {
2232           st.print(unresolved ? " unresolved class: " : " symbol: ");
2233           class_name->print_symbol_on(&st);
2234         }
2235         st.cr();
2236         tty->print_raw(st.freeze());
2237       }
2238       if (xtty != nullptr) {
2239         // Log the precise location of the trap.
2240         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2241           xtty->begin_elem("jvms bci='%d'", sd->bci());
2242           xtty->method(sd->method());
2243           xtty->end_elem();
2244           if (sd->is_top())  break;
2245         }
2246         xtty->tail("uncommon_trap");
2247       }
2248     }
2249     // (End diagnostic printout.)
2250 
2251     if (is_receiver_constraint_failure) {
2252       fatal("missing receiver type check");
2253     }
2254 
2255     // Load class if necessary
2256     if (unloaded_class_index >= 0) {
2257       constantPoolHandle constants(current, trap_method->constants());
2258       load_class_by_index(constants, unloaded_class_index, THREAD);
2259     }
2260 
2261     // Flush the nmethod if necessary and desirable.
2262     //
2263     // We need to avoid situations where we are re-flushing the nmethod
2264     // because of a hot deoptimization site.  Repeated flushes at the same
2265     // point need to be detected by the compiler and avoided.  If the compiler
2266     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2267     // module must take measures to avoid an infinite cycle of recompilation
2268     // and deoptimization.  There are several such measures:
2269     //
2270     //   1. If a recompilation is ordered a second time at some site X
2271     //   and for the same reason R, the action is adjusted to 'reinterpret',
2272     //   to give the interpreter time to exercise the method more thoroughly.
2273     //   If this happens, the method's overflow_recompile_count is incremented.
2274     //
2275     //   2. If the compiler fails to reduce the deoptimization rate, then
2276     //   the method's overflow_recompile_count will begin to exceed the set
2277     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2278     //   is adjusted to 'make_not_compilable', and the method is abandoned
2279     //   to the interpreter.  This is a performance hit for hot methods,
2280     //   but is better than a disastrous infinite cycle of recompilations.
2281     //   (Actually, only the method containing the site X is abandoned.)
2282     //
2283     //   3. In parallel with the previous measures, if the total number of
2284     //   recompilations of a method exceeds the much larger set limit
2285     //   PerMethodRecompilationCutoff, the method is abandoned.
2286     //   This should only happen if the method is very large and has
2287     //   many "lukewarm" deoptimizations.  The code which enforces this
2288     //   limit is elsewhere (class nmethod, class Method).
2289     //
2290     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2291     // to recompile at each bytecode independently of the per-BCI cutoff.
2292     //
2293     // The decision to update code is up to the compiler, and is encoded
2294     // in the Action_xxx code.  If the compiler requests Action_none
2295     // no trap state is changed, no compiled code is changed, and the
2296     // computation suffers along in the interpreter.
2297     //
2298     // The other action codes specify various tactics for decompilation
2299     // and recompilation.  Action_maybe_recompile is the loosest, and
2300     // allows the compiled code to stay around until enough traps are seen,
2301     // and until the compiler gets around to recompiling the trapping method.
2302     //
2303     // The other actions cause immediate removal of the present code.
2304 
2305     // Traps caused by injected profile shouldn't pollute trap counts.
2306     bool injected_profile_trap = trap_method->has_injected_profile() &&
2307                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2308 
2309     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2310     bool make_not_entrant = false;
2311     bool make_not_compilable = false;
2312     bool reprofile = false;
2313     switch (action) {
2314     case Action_none:
2315       // Keep the old code.
2316       update_trap_state = false;
2317       break;
2318     case Action_maybe_recompile:
2319       // Do not need to invalidate the present code, but we can
2320       // initiate another
2321       // Start compiler without (necessarily) invalidating the nmethod.
2322       // The system will tolerate the old code, but new code should be
2323       // generated when possible.
2324       break;
2325     case Action_reinterpret:
2326       // Go back into the interpreter for a while, and then consider
2327       // recompiling form scratch.
2328       make_not_entrant = true;
2329       // Reset invocation counter for outer most method.
2330       // This will allow the interpreter to exercise the bytecodes
2331       // for a while before recompiling.
2332       // By contrast, Action_make_not_entrant is immediate.
2333       //
2334       // Note that the compiler will track null_check, null_assert,
2335       // range_check, and class_check events and log them as if they
2336       // had been traps taken from compiled code.  This will update
2337       // the MDO trap history so that the next compilation will
2338       // properly detect hot trap sites.
2339       reprofile = true;
2340       break;
2341     case Action_make_not_entrant:
2342       // Request immediate recompilation, and get rid of the old code.
2343       // Make them not entrant, so next time they are called they get
2344       // recompiled.  Unloaded classes are loaded now so recompile before next
2345       // time they are called.  Same for uninitialized.  The interpreter will
2346       // link the missing class, if any.
2347       make_not_entrant = true;
2348       break;
2349     case Action_make_not_compilable:
2350       // Give up on compiling this method at all.
2351       make_not_entrant = true;
2352       make_not_compilable = true;
2353       break;
2354     default:
2355       ShouldNotReachHere();
2356     }
2357 
2358     // Setting +ProfileTraps fixes the following, on all platforms:
2359     // The result is infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2360     // recompile relies on a MethodData* to record heroic opt failures.
2361 
2362     // Whether the interpreter is producing MDO data or not, we also need
2363     // to use the MDO to detect hot deoptimization points and control
2364     // aggressive optimization.
2365     bool inc_recompile_count = false;
2366 
2367     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2368     ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr,
2369                               (trap_mdo != nullptr),
2370                               Mutex::_no_safepoint_check_flag);
2371     ProfileData* pdata = nullptr;
2372     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2373       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2374       uint this_trap_count = 0;
2375       bool maybe_prior_trap = false;
2376       bool maybe_prior_recompile = false;
2377 
2378       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2379 #if INCLUDE_JVMCI
2380                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2381 #endif
2382                                    nm->method(),
2383                                    //outputs:
2384                                    this_trap_count,
2385                                    maybe_prior_trap,
2386                                    maybe_prior_recompile);
2387       // Because the interpreter also counts null, div0, range, and class
2388       // checks, these traps from compiled code are double-counted.
2389       // This is harmless; it just means that the PerXTrapLimit values
2390       // are in effect a little smaller than they look.
2391 
2392       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2393       if (per_bc_reason != Reason_none) {
2394         // Now take action based on the partially known per-BCI history.
2395         if (maybe_prior_trap
2396             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2397           // If there are too many traps at this BCI, force a recompile.
2398           // This will allow the compiler to see the limit overflow, and
2399           // take corrective action, if possible.  The compiler generally
2400           // does not use the exact PerBytecodeTrapLimit value, but instead
2401           // changes its tactics if it sees any traps at all.  This provides
2402           // a little hysteresis, delaying a recompile until a trap happens
2403           // several times.
2404           //
2405           // Actually, since there is only one bit of counter per BCI,
2406           // the possible per-BCI counts are {0,1,(per-method count)}.
2407           // This produces accurate results if in fact there is only
2408           // one hot trap site, but begins to get fuzzy if there are
2409           // many sites.  For example, if there are ten sites each
2410           // trapping two or more times, they each get the blame for
2411           // all of their traps.
2412           make_not_entrant = true;
2413         }
2414 
2415         // Detect repeated recompilation at the same BCI, and enforce a limit.
2416         if (make_not_entrant && maybe_prior_recompile) {
2417           // More than one recompile at this point.
2418           inc_recompile_count = maybe_prior_trap;
2419         }
2420       } else {
2421         // For reasons which are not recorded per-bytecode, we simply
2422         // force recompiles unconditionally.
2423         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2424         make_not_entrant = true;
2425       }
2426 
2427       // Go back to the compiler if there are too many traps in this method.
2428       if (this_trap_count >= per_method_trap_limit(reason)) {
2429         // If there are too many traps in this method, force a recompile.
2430         // This will allow the compiler to see the limit overflow, and
2431         // take corrective action, if possible.
2432         // (This condition is an unlikely backstop only, because the
2433         // PerBytecodeTrapLimit is more likely to take effect first,
2434         // if it is applicable.)
2435         make_not_entrant = true;
2436       }
2437 
2438       // Here's more hysteresis:  If there has been a recompile at
2439       // this trap point already, run the method in the interpreter
2440       // for a while to exercise it more thoroughly.
2441       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2442         reprofile = true;
2443       }
2444     }
2445 
2446     // Take requested actions on the method:
2447 
2448     // Recompile
2449     if (make_not_entrant) {
2450       if (!nm->make_not_entrant("uncommon trap")) {
2451         return; // the call did not change nmethod's state
2452       }
2453 
2454       if (pdata != nullptr) {
2455         // Record the recompilation event, if any.
2456         int tstate0 = pdata->trap_state();
2457         int tstate1 = trap_state_set_recompiled(tstate0, true);
2458         if (tstate1 != tstate0)
2459           pdata->set_trap_state(tstate1);
2460       }
2461 
2462       // For code aging we count traps separately here, using make_not_entrant()
2463       // as a guard against simultaneous deopts in multiple threads.
2464       if (reason == Reason_tenured && trap_mdo != nullptr) {
2465         trap_mdo->inc_tenure_traps();
2466       }
2467     }
2468 
2469     if (inc_recompile_count) {
2470       trap_mdo->inc_overflow_recompile_count();
2471       if ((uint)trap_mdo->overflow_recompile_count() >
2472           (uint)PerBytecodeRecompilationCutoff) {
2473         // Give up on the method containing the bad BCI.
2474         if (trap_method() == nm->method()) {
2475           make_not_compilable = true;
2476         } else {
2477           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2478           // But give grace to the enclosing nm->method().
2479         }
2480       }
2481     }
2482 
2483     // Reprofile
2484     if (reprofile) {
2485       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2486     }
2487 
2488     // Give up compiling
2489     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2490       assert(make_not_entrant, "consistent");
2491       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2492     }
2493 
2494     if (ProfileExceptionHandlers && trap_mdo != nullptr) {
2495       BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci);
2496       if (exception_handler_data != nullptr) {
2497         // uncommon trap at the start of an exception handler.
2498         // C2 generates these for un-entered exception handlers.
2499         // mark the handler as entered to avoid generating
2500         // another uncommon trap the next time the handler is compiled
2501         exception_handler_data->set_exception_handler_entered();
2502       }
2503     }
2504 
2505   } // Free marked resources
2506 
2507 }
2508 JRT_END
2509 
2510 ProfileData*
2511 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2512                                          int trap_bci,
2513                                          Deoptimization::DeoptReason reason,
2514                                          bool update_total_trap_count,
2515 #if INCLUDE_JVMCI
2516                                          bool is_osr,
2517 #endif
2518                                          Method* compiled_method,
2519                                          //outputs:
2520                                          uint& ret_this_trap_count,
2521                                          bool& ret_maybe_prior_trap,
2522                                          bool& ret_maybe_prior_recompile) {
2523   trap_mdo->check_extra_data_locked();
2524 
2525   bool maybe_prior_trap = false;
2526   bool maybe_prior_recompile = false;
2527   uint this_trap_count = 0;
2528   if (update_total_trap_count) {
2529     uint idx = reason;
2530 #if INCLUDE_JVMCI
2531     if (is_osr) {
2532       // Upper half of history array used for traps in OSR compilations
2533       idx += Reason_TRAP_HISTORY_LENGTH;
2534     }
2535 #endif
2536     uint prior_trap_count = trap_mdo->trap_count(idx);
2537     this_trap_count  = trap_mdo->inc_trap_count(idx);
2538 
2539     // If the runtime cannot find a place to store trap history,
2540     // it is estimated based on the general condition of the method.
2541     // If the method has ever been recompiled, or has ever incurred
2542     // a trap with the present reason , then this BCI is assumed
2543     // (pessimistically) to be the culprit.
2544     maybe_prior_trap      = (prior_trap_count != 0);
2545     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2546   }
2547   ProfileData* pdata = nullptr;
2548 
2549 
2550   // For reasons which are recorded per bytecode, we check per-BCI data.
2551   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2552   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2553   if (per_bc_reason != Reason_none) {
2554     // Find the profile data for this BCI.  If there isn't one,
2555     // try to allocate one from the MDO's set of spares.
2556     // This will let us detect a repeated trap at this point.
2557     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2558 
2559     if (pdata != nullptr) {
2560       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2561         if (LogCompilation && xtty != nullptr) {
2562           ttyLocker ttyl;
2563           // no more room for speculative traps in this MDO
2564           xtty->elem("speculative_traps_oom");
2565         }
2566       }
2567       // Query the trap state of this profile datum.
2568       int tstate0 = pdata->trap_state();
2569       if (!trap_state_has_reason(tstate0, per_bc_reason))
2570         maybe_prior_trap = false;
2571       if (!trap_state_is_recompiled(tstate0))
2572         maybe_prior_recompile = false;
2573 
2574       // Update the trap state of this profile datum.
2575       int tstate1 = tstate0;
2576       // Record the reason.
2577       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2578       // Store the updated state on the MDO, for next time.
2579       if (tstate1 != tstate0)
2580         pdata->set_trap_state(tstate1);
2581     } else {
2582       if (LogCompilation && xtty != nullptr) {
2583         ttyLocker ttyl;
2584         // Missing MDP?  Leave a small complaint in the log.
2585         xtty->elem("missing_mdp bci='%d'", trap_bci);
2586       }
2587     }
2588   }
2589 
2590   // Return results:
2591   ret_this_trap_count = this_trap_count;
2592   ret_maybe_prior_trap = maybe_prior_trap;
2593   ret_maybe_prior_recompile = maybe_prior_recompile;
2594   return pdata;
2595 }
2596 
2597 void
2598 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2599   ResourceMark rm;
2600   // Ignored outputs:
2601   uint ignore_this_trap_count;
2602   bool ignore_maybe_prior_trap;
2603   bool ignore_maybe_prior_recompile;
2604   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2605   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2606   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2607 
2608   // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2609   MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2610 
2611   query_update_method_data(trap_mdo, trap_bci,
2612                            (DeoptReason)reason,
2613                            update_total_counts,
2614 #if INCLUDE_JVMCI
2615                            false,
2616 #endif
2617                            nullptr,
2618                            ignore_this_trap_count,
2619                            ignore_maybe_prior_trap,
2620                            ignore_maybe_prior_recompile);
2621 }
2622 
2623 PROF_ENTRY(Deoptimization::UnrollBlock*, Deoptimization, uncommon_trap, Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode))
2624   // Enable WXWrite: current function is called from methods compiled by C2 directly
2625   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2626 
2627   // Still in Java no safepoints
2628   {
2629     // This enters VM and may safepoint
2630     uncommon_trap_inner(current, trap_request);
2631   }
2632   HandleMark hm(current);
2633   return fetch_unroll_info_helper(current, exec_mode);
2634 PROF_END
2635 
2636 // Local derived constants.
2637 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2638 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2639 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2640 
2641 //---------------------------trap_state_reason---------------------------------
2642 Deoptimization::DeoptReason
2643 Deoptimization::trap_state_reason(int trap_state) {
2644   // This assert provides the link between the width of DataLayout::trap_bits
2645   // and the encoding of "recorded" reasons.  It ensures there are enough
2646   // bits to store all needed reasons in the per-BCI MDO profile.
2647   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2648   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2649   trap_state -= recompile_bit;
2650   if (trap_state == DS_REASON_MASK) {
2651     return Reason_many;
2652   } else {
2653     assert((int)Reason_none == 0, "state=0 => Reason_none");
2654     return (DeoptReason)trap_state;
2655   }
2656 }
2657 //-------------------------trap_state_has_reason-------------------------------
2658 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2659   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2660   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2661   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2662   trap_state -= recompile_bit;
2663   if (trap_state == DS_REASON_MASK) {
2664     return -1;  // true, unspecifically (bottom of state lattice)
2665   } else if (trap_state == reason) {
2666     return 1;   // true, definitely
2667   } else if (trap_state == 0) {
2668     return 0;   // false, definitely (top of state lattice)
2669   } else {
2670     return 0;   // false, definitely
2671   }
2672 }
2673 //-------------------------trap_state_add_reason-------------------------------
2674 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2675   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2676   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2677   trap_state -= recompile_bit;
2678   if (trap_state == DS_REASON_MASK) {
2679     return trap_state + recompile_bit;     // already at state lattice bottom
2680   } else if (trap_state == reason) {
2681     return trap_state + recompile_bit;     // the condition is already true
2682   } else if (trap_state == 0) {
2683     return reason + recompile_bit;          // no condition has yet been true
2684   } else {
2685     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2686   }
2687 }
2688 //-----------------------trap_state_is_recompiled------------------------------
2689 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2690   return (trap_state & DS_RECOMPILE_BIT) != 0;
2691 }
2692 //-----------------------trap_state_set_recompiled-----------------------------
2693 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2694   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2695   else    return trap_state & ~DS_RECOMPILE_BIT;
2696 }
2697 //---------------------------format_trap_state---------------------------------
2698 // This is used for debugging and diagnostics, including LogFile output.
2699 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2700                                               int trap_state) {
2701   assert(buflen > 0, "sanity");
2702   DeoptReason reason      = trap_state_reason(trap_state);
2703   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2704   // Re-encode the state from its decoded components.
2705   int decoded_state = 0;
2706   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2707     decoded_state = trap_state_add_reason(decoded_state, reason);
2708   if (recomp_flag)
2709     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2710   // If the state re-encodes properly, format it symbolically.
2711   // Because this routine is used for debugging and diagnostics,
2712   // be robust even if the state is a strange value.
2713   size_t len;
2714   if (decoded_state != trap_state) {
2715     // Random buggy state that doesn't decode??
2716     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2717   } else {
2718     len = jio_snprintf(buf, buflen, "%s%s",
2719                        trap_reason_name(reason),
2720                        recomp_flag ? " recompiled" : "");
2721   }
2722   return buf;
2723 }
2724 
2725 
2726 //--------------------------------statics--------------------------------------
2727 const char* Deoptimization::_trap_reason_name[] = {
2728   // Note:  Keep this in sync. with enum DeoptReason.
2729   "none",
2730   "null_check",
2731   "null_assert" JVMCI_ONLY("_or_unreached0"),
2732   "range_check",
2733   "class_check",
2734   "array_check",
2735   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2736   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2737   "profile_predicate",
2738   "auto_vectorization_check",
2739   "unloaded",
2740   "uninitialized",
2741   "initialized",
2742   "unreached",
2743   "unhandled",
2744   "constraint",
2745   "div0_check",
2746   "age",
2747   "predicate",
2748   "loop_limit_check",
2749   "speculate_class_check",
2750   "speculate_null_check",
2751   "speculate_null_assert",
2752   "unstable_if",
2753   "unstable_fused_if",
2754   "receiver_constraint",
2755 #if INCLUDE_JVMCI
2756   "aliasing",
2757   "transfer_to_interpreter",
2758   "not_compiled_exception_handler",
2759   "unresolved",
2760   "jsr_mismatch",
2761 #endif
2762   "tenured"
2763 };
2764 const char* Deoptimization::_trap_action_name[] = {
2765   // Note:  Keep this in sync. with enum DeoptAction.
2766   "none",
2767   "maybe_recompile",
2768   "reinterpret",
2769   "make_not_entrant",
2770   "make_not_compilable"
2771 };
2772 
2773 const char* Deoptimization::trap_reason_name(int reason) {
2774   // Check that every reason has a name
2775   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2776 
2777   if (reason == Reason_many)  return "many";
2778   if ((uint)reason < Reason_LIMIT)
2779     return _trap_reason_name[reason];
2780   static char buf[20];
2781   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2782   return buf;
2783 }
2784 const char* Deoptimization::trap_action_name(int action) {
2785   // Check that every action has a name
2786   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2787 
2788   if ((uint)action < Action_LIMIT)
2789     return _trap_action_name[action];
2790   static char buf[20];
2791   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2792   return buf;
2793 }
2794 
2795 // This is used for debugging and diagnostics, including LogFile output.
2796 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2797                                                 int trap_request) {
2798   jint unloaded_class_index = trap_request_index(trap_request);
2799   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2800   const char* action = trap_action_name(trap_request_action(trap_request));
2801 #if INCLUDE_JVMCI
2802   int debug_id = trap_request_debug_id(trap_request);
2803 #endif
2804   size_t len;
2805   if (unloaded_class_index < 0) {
2806     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2807                        reason, action
2808 #if INCLUDE_JVMCI
2809                        ,debug_id
2810 #endif
2811                        );
2812   } else {
2813     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2814                        reason, action, unloaded_class_index
2815 #if INCLUDE_JVMCI
2816                        ,debug_id
2817 #endif
2818                        );
2819   }
2820   return buf;
2821 }
2822 
2823 juint Deoptimization::_deoptimization_hist
2824         [1 + 4 + 5] // total + online + archived
2825         [Deoptimization::Reason_LIMIT]
2826     [1 + Deoptimization::Action_LIMIT]
2827         [Deoptimization::BC_CASE_LIMIT]
2828   = {0};
2829 
2830 enum {
2831   LSB_BITS = 8,
2832   LSB_MASK = right_n_bits(LSB_BITS)
2833 };
2834 
2835 static void update(juint* cases, Bytecodes::Code bc) {
2836   juint* bc_counter_addr = nullptr;
2837   juint  bc_counter      = 0;
2838   // Look for an unused counter, or an exact match to this BC.
2839   if (bc != Bytecodes::_illegal) {
2840     for (int bc_case = 0; bc_case < Deoptimization::BC_CASE_LIMIT; bc_case++) {
2841       juint* counter_addr = &cases[bc_case];
2842       juint  counter = *counter_addr;
2843       if ((counter == 0 && bc_counter_addr == nullptr)
2844           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2845         // this counter is either free or is already devoted to this BC
2846         bc_counter_addr = counter_addr;
2847         bc_counter = counter | bc;
2848       }
2849     }
2850   }
2851   if (bc_counter_addr == nullptr) {
2852     // Overflow, or no given bytecode.
2853     bc_counter_addr = &cases[Deoptimization::BC_CASE_LIMIT-1];
2854     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2855   }
2856   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2857 }
2858 
2859 
2860 void Deoptimization::gather_statistics(nmethod* nm, DeoptReason reason, DeoptAction action,
2861                                        Bytecodes::Code bc) {
2862   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2863   assert(action >= 0 && action < Action_LIMIT, "oob");
2864   _deoptimization_hist[0][Reason_none][0][0] += 1;  // total
2865   _deoptimization_hist[0][reason][0][0]      += 1;  // per-reason total
2866 
2867   update(_deoptimization_hist[0][reason][1+action], bc);
2868 
2869   uint lvl = nm->comp_level() + (nm->is_aot() ? 4 : 0) + (nm->preloaded() ? 1 : 0);
2870   _deoptimization_hist[lvl][Reason_none][0][0] += 1;  // total
2871   _deoptimization_hist[lvl][reason][0][0]      += 1;  // per-reason total
2872   update(_deoptimization_hist[lvl][reason][1+action], bc);
2873 }
2874 
2875 jint Deoptimization::total_deoptimization_count() {
2876   return _deoptimization_hist[0][Reason_none][0][0];
2877 }
2878 
2879 // Get the deopt count for a specific reason and a specific action. If either
2880 // one of 'reason' or 'action' is null, the method returns the sum of all
2881 // deoptimizations with the specific 'action' or 'reason' respectively.
2882 // If both arguments are null, the method returns the total deopt count.
2883 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2884   if (reason_str == nullptr && action_str == nullptr) {
2885     return total_deoptimization_count();
2886   }
2887   juint counter = 0;
2888   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2889     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2890       for (int action = 0; action < Action_LIMIT; action++) {
2891         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2892           juint* cases = _deoptimization_hist[0][reason][1+action];
2893           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2894             counter += cases[bc_case] >> LSB_BITS;
2895           }
2896         }
2897       }
2898     }
2899   }
2900   return counter;
2901 }
2902 
2903 void Deoptimization::print_statistics() {
2904   ttyLocker ttyl;
2905   if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2906   tty->print_cr("Deoptimization traps recorded:");
2907   print_statistics_on(tty);
2908   if (xtty != nullptr)  xtty->tail("statistics");
2909 }
2910 
2911 void Deoptimization::print_statistics_on(const char* title, int lvl, outputStream* st) {
2912   juint total = _deoptimization_hist[lvl][Reason_none][0][0];
2913   juint account = total;
2914 #define PRINT_STAT_LINE(name, r) \
2915       st->print_cr("    %d (%4.1f%%) %s", (int)(r), ((r) == total ? 100.0 : (((r) * 100.0) / total)), name);
2916   if (total > 0) {
2917     st->print("  %s: ", title);
2918     PRINT_STAT_LINE("total", total);
2919     // For each non-zero entry in the histogram, print the reason,
2920     // the action, and (if specifically known) the type of bytecode.
2921     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2922       for (int action = 0; action < Action_LIMIT; action++) {
2923         juint* cases = Deoptimization::_deoptimization_hist[lvl][reason][1+action];
2924         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2925           juint counter = cases[bc_case];
2926           if (counter != 0) {
2927             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2928             const char* bc_name = "other";
2929             if (bc_case == (BC_CASE_LIMIT-1) && bc == Bytecodes::_nop) {
2930               // overwritten
2931             } else if (Bytecodes::is_defined(bc)) {
2932               bc_name = Bytecodes::name(bc);
2933             }
2934             juint r = counter >> LSB_BITS;
2935             st->print_cr("    %-34s %16s %16s: " UINT32_FORMAT_W(5) " (%4.1f%%)",
2936                          trap_reason_name(reason), trap_action_name(action), bc_name,
2937                          r, (r * 100.0) / total);
2938             account -= r;
2939           }
2940         }
2941       }
2942     }
2943     if (account != 0) {
2944       PRINT_STAT_LINE("unaccounted", account);
2945     }
2946 #undef PRINT_STAT_LINE
2947   }
2948 }
2949 
2950 void Deoptimization::print_statistics_on(outputStream* st) {
2951 //  print_statistics_on("Total", 0, st);
2952   print_statistics_on("Tier1", 1, st);
2953   print_statistics_on("Tier2", 2, st);
2954   print_statistics_on("Tier3", 3, st);
2955   print_statistics_on("Tier4", 4, st);
2956 
2957   print_statistics_on("AOT Code Tier1", 5, st);
2958   print_statistics_on("AOT Code Tier2", 6, st);
2959   print_statistics_on("AOT Code Tier4", 8, st);
2960   print_statistics_on("AOT Code Tier5 (preloaded)", 9, st);
2961 }
2962 
2963 #define DO_COUNTERS(macro) \
2964   macro(Deoptimization, fetch_unroll_info)   \
2965   macro(Deoptimization, unpack_frames) \
2966   macro(Deoptimization, uncommon_trap_inner) \
2967   macro(Deoptimization, uncommon_trap)
2968 
2969 #define INIT_COUNTER(sub, name) \
2970   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_RT, #sub "::" #name) \
2971   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_RT, #sub "::" #name "_count");
2972 
2973 void Deoptimization::init_counters() {
2974   if (ProfileRuntimeCalls && UsePerfData) {
2975     EXCEPTION_MARK;
2976 
2977     DO_COUNTERS(INIT_COUNTER)
2978 
2979     if (HAS_PENDING_EXCEPTION) {
2980       vm_exit_during_initialization("jvm_perf_init failed unexpectedly");
2981     }
2982   }
2983 }
2984 #undef INIT_COUNTER
2985 
2986 #define PRINT_COUNTER(sub, name) { \
2987   jlong count = _perf_##sub##_##name##_count->get_value(); \
2988   if (count > 0) { \
2989     st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
2990                  _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
2991                  _perf_##sub##_##name##_timer->thread_counter_value_us(), \
2992                  count); \
2993   }}
2994 
2995 void Deoptimization::print_counters_on(outputStream* st) {
2996   if (ProfileRuntimeCalls && UsePerfData) {
2997     DO_COUNTERS(PRINT_COUNTER)
2998   } else {
2999     st->print_cr("  Deoptimization: no info (%s is disabled)", (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData"));
3000   }
3001 }
3002 
3003 #undef PRINT_COUNTER
3004 #undef DO_COUNTERS
3005 
3006 #else // COMPILER2_OR_JVMCI
3007 
3008 
3009 // Stubs for C1 only system.
3010 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
3011   return false;
3012 }
3013 
3014 const char* Deoptimization::trap_reason_name(int reason) {
3015   return "unknown";
3016 }
3017 
3018 jint Deoptimization::total_deoptimization_count() {
3019   return 0;
3020 }
3021 
3022 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
3023   return 0;
3024 }
3025 
3026 void Deoptimization::print_statistics() {
3027   // no output
3028 }
3029 
3030 void
3031 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
3032   // no update
3033 }
3034 
3035 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
3036   return 0;
3037 }
3038 
3039 void Deoptimization::gather_statistics(nmethod* nm, DeoptReason reason, DeoptAction action,
3040                                        Bytecodes::Code bc) {
3041   // no update
3042 }
3043 
3044 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
3045                                               int trap_state) {
3046   jio_snprintf(buf, buflen, "#%d", trap_state);
3047   return buf;
3048 }
3049 
3050 void Deoptimization::init_counters() {
3051   // nothing to do
3052 }
3053 
3054 void Deoptimization::print_counters_on(outputStream* st) {
3055   // no output
3056 }
3057 
3058 void Deoptimization::print_statistics_on(outputStream* st) {
3059   // no output
3060 }
3061 
3062 #endif // COMPILER2_OR_JVMCI