1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compilationPolicy.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/memAllocator.hpp"
  39 #include "interpreter/bytecode.hpp"
  40 #include "interpreter/bytecodeStream.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvm.h"
  44 #include "logging/log.hpp"
  45 #include "logging/logLevel.hpp"
  46 #include "logging/logMessage.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/constantPool.hpp"
  53 #include "oops/fieldStreams.inline.hpp"
  54 #include "oops/method.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/objArrayOop.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvmtiDeferredUpdates.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "prims/methodHandles.hpp"
  64 #include "prims/vectorSupport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/basicLock.inline.hpp"
  67 #include "runtime/continuation.hpp"
  68 #include "runtime/continuationEntry.inline.hpp"
  69 #include "runtime/deoptimization.hpp"
  70 #include "runtime/escapeBarrier.hpp"
  71 #include "runtime/fieldDescriptor.hpp"
  72 #include "runtime/fieldDescriptor.inline.hpp"
  73 #include "runtime/frame.inline.hpp"
  74 #include "runtime/handles.inline.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/javaThread.hpp"
  77 #include "runtime/jniHandles.inline.hpp"
  78 #include "runtime/keepStackGCProcessed.hpp"
  79 #include "runtime/lightweightSynchronizer.hpp"
  80 #include "runtime/lockStack.inline.hpp"
  81 #include "runtime/objectMonitor.inline.hpp"
  82 #include "runtime/osThread.hpp"
  83 #include "runtime/perfData.inline.hpp"
  84 #include "runtime/safepointVerifiers.hpp"
  85 #include "runtime/sharedRuntime.hpp"
  86 #include "runtime/signature.hpp"
  87 #include "runtime/stackFrameStream.inline.hpp"
  88 #include "runtime/stackValue.hpp"
  89 #include "runtime/stackWatermarkSet.hpp"
  90 #include "runtime/stubRoutines.hpp"
  91 #include "runtime/synchronizer.inline.hpp"
  92 #include "runtime/threadSMR.hpp"
  93 #include "runtime/threadWXSetters.inline.hpp"
  94 #include "runtime/vframe.hpp"
  95 #include "runtime/vframeArray.hpp"
  96 #include "runtime/vframe_hp.hpp"
  97 #include "runtime/vmOperations.hpp"
  98 #include "services/management.hpp"
  99 #include "utilities/checkedCast.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/growableArray.hpp"
 102 #include "utilities/macros.hpp"
 103 #include "utilities/preserveException.hpp"
 104 #include "utilities/xmlstream.hpp"
 105 #if INCLUDE_JFR
 106 #include "jfr/jfrEvents.hpp"
 107 #include "jfr/metadata/jfrSerializer.hpp"
 108 #endif
 109 
 110 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 111 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 112 bool     DeoptimizationScope::_committing_in_progress = false;
 113 
 114 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 115   DEBUG_ONLY(_deopted = false;)
 116 
 117   MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
 118   // If there is nothing to deopt _required_gen is the same as comitted.
 119   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 120 }
 121 
 122 DeoptimizationScope::~DeoptimizationScope() {
 123   assert(_deopted, "Deopt not executed");
 124 }
 125 
 126 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) {
 127   if (!nm->can_be_deoptimized()) {
 128     return;
 129   }
 130 
 131   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 132 
 133   // If it's already marked but we still need it to be deopted.
 134   if (nm->is_marked_for_deoptimization()) {
 135     dependent(nm);
 136     return;
 137   }
 138 
 139   nmethod::DeoptimizationStatus status =
 140     inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate;
 141   Atomic::store(&nm->_deoptimization_status, status);
 142 
 143   // Make sure active is not committed
 144   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 145   assert(nm->_deoptimization_generation == 0, "Is already marked");
 146 
 147   nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 148   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 149 }
 150 
 151 void DeoptimizationScope::dependent(nmethod* nm) {
 152   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 153 
 154   // A method marked by someone else may have a _required_gen lower than what we marked with.
 155   // Therefore only store it if it's higher than _required_gen.
 156   if (_required_gen < nm->_deoptimization_generation) {
 157     _required_gen = nm->_deoptimization_generation;
 158   }
 159 }
 160 
 161 void DeoptimizationScope::deoptimize_marked() {
 162   assert(!_deopted, "Already deopted");
 163 
 164   // We are not alive yet.
 165   if (!Universe::is_fully_initialized()) {
 166     DEBUG_ONLY(_deopted = true;)
 167     return;
 168   }
 169 
 170   // Safepoints are a special case, handled here.
 171   if (SafepointSynchronize::is_at_safepoint()) {
 172     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 173     DeoptimizationScope::_active_deopt_gen++;
 174     Deoptimization::deoptimize_all_marked();
 175     DEBUG_ONLY(_deopted = true;)
 176     return;
 177   }
 178 
 179   uint64_t comitting = 0;
 180   bool wait = false;
 181   while (true) {
 182     {
 183       ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 184 
 185       // First we check if we or someone else already deopted the gen we want.
 186       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 187         DEBUG_ONLY(_deopted = true;)
 188         return;
 189       }
 190       if (!_committing_in_progress) {
 191         // The version we are about to commit.
 192         comitting = DeoptimizationScope::_active_deopt_gen;
 193         // Make sure new marks use a higher gen.
 194         DeoptimizationScope::_active_deopt_gen++;
 195         _committing_in_progress = true;
 196         wait = false;
 197       } else {
 198         // Another thread is handshaking and committing a gen.
 199         wait = true;
 200       }
 201     }
 202     if (wait) {
 203       // Wait and let the concurrent handshake be performed.
 204       ThreadBlockInVM tbivm(JavaThread::current());
 205       os::naked_yield();
 206     } else {
 207       // Performs the handshake.
 208       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 209       DEBUG_ONLY(_deopted = true;)
 210       {
 211         ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 212 
 213         // Make sure that committed doesn't go backwards.
 214         // Should only happen if we did a deopt during a safepoint above.
 215         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 216           DeoptimizationScope::_committed_deopt_gen = comitting;
 217         }
 218         _committing_in_progress = false;
 219 
 220         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 221 
 222         return;
 223       }
 224     }
 225   }
 226 }
 227 
 228 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 229                                          int  caller_adjustment,
 230                                          int  caller_actual_parameters,
 231                                          int  number_of_frames,
 232                                          intptr_t* frame_sizes,
 233                                          address* frame_pcs,
 234                                          BasicType return_type,
 235                                          int exec_mode) {
 236   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 237   _caller_adjustment         = caller_adjustment;
 238   _caller_actual_parameters  = caller_actual_parameters;
 239   _number_of_frames          = number_of_frames;
 240   _frame_sizes               = frame_sizes;
 241   _frame_pcs                 = frame_pcs;
 242   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 243   _return_type               = return_type;
 244   _initial_info              = 0;
 245   // PD (x86 only)
 246   _counter_temp              = 0;
 247   _unpack_kind               = exec_mode;
 248   _sender_sp_temp            = 0;
 249 
 250   _total_frame_sizes         = size_of_frames();
 251   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 252 }
 253 
 254 Deoptimization::UnrollBlock::~UnrollBlock() {
 255   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 256   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 257   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 258 }
 259 
 260 int Deoptimization::UnrollBlock::size_of_frames() const {
 261   // Account first for the adjustment of the initial frame
 262   intptr_t result = _caller_adjustment;
 263   for (int index = 0; index < number_of_frames(); index++) {
 264     result += frame_sizes()[index];
 265   }
 266   return checked_cast<int>(result);
 267 }
 268 
 269 void Deoptimization::UnrollBlock::print() {
 270   ResourceMark rm;
 271   stringStream st;
 272   st.print_cr("UnrollBlock");
 273   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 274   st.print(   "  frame_sizes: ");
 275   for (int index = 0; index < number_of_frames(); index++) {
 276     st.print(INTX_FORMAT " ", frame_sizes()[index]);
 277   }
 278   st.cr();
 279   tty->print_raw(st.freeze());
 280 }
 281 
 282 // In order to make fetch_unroll_info work properly with escape
 283 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 284 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 285 // which is called from the method fetch_unroll_info_helper below.
 286 JRT_BLOCK_ENTRY_PROF(Deoptimization::UnrollBlock*, Deoptimization, fetch_unroll_info, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 287   // fetch_unroll_info() is called at the beginning of the deoptimization
 288   // handler. Note this fact before we start generating temporary frames
 289   // that can confuse an asynchronous stack walker. This counter is
 290   // decremented at the end of unpack_frames().
 291   current->inc_in_deopt_handler();
 292 
 293   if (exec_mode == Unpack_exception) {
 294     // When we get here, a callee has thrown an exception into a deoptimized
 295     // frame. That throw might have deferred stack watermark checking until
 296     // after unwinding. So we deal with such deferred requests here.
 297     StackWatermarkSet::after_unwind(current);
 298   }
 299 
 300   return fetch_unroll_info_helper(current, exec_mode);
 301 JRT_END
 302 
 303 #if COMPILER2_OR_JVMCI
 304 // print information about reallocated objects
 305 static void print_objects(JavaThread* deoptee_thread,
 306                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 307   ResourceMark rm;
 308   stringStream st;  // change to logStream with logging
 309   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 310   fieldDescriptor fd;
 311 
 312   for (int i = 0; i < objects->length(); i++) {
 313     ObjectValue* sv = (ObjectValue*) objects->at(i);
 314     Handle obj = sv->value();
 315 
 316     if (obj.is_null()) {
 317       st.print_cr("     nullptr");
 318       continue;
 319     }
 320 
 321     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 322 
 323     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 324     k->print_value_on(&st);
 325     st.print_cr(" allocated (" SIZE_FORMAT " bytes)", obj->size() * HeapWordSize);
 326 
 327     if (Verbose && k != nullptr) {
 328       k->oop_print_on(obj(), &st);
 329     }
 330   }
 331   tty->print_raw(st.freeze());
 332 }
 333 
 334 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method,
 335                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 336                                   bool& deoptimized_objects) {
 337   bool realloc_failures = false;
 338   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 339 
 340   JavaThread* deoptee_thread = chunk->at(0)->thread();
 341   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 342          "a frame can only be deoptimized by the owner thread");
 343 
 344   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 345 
 346   // The flag return_oop() indicates call sites which return oop
 347   // in compiled code. Such sites include java method calls,
 348   // runtime calls (for example, used to allocate new objects/arrays
 349   // on slow code path) and any other calls generated in compiled code.
 350   // It is not guaranteed that we can get such information here only
 351   // by analyzing bytecode in deoptimized frames. This is why this flag
 352   // is set during method compilation (see Compile::Process_OopMap_Node()).
 353   // If the previous frame was popped or if we are dispatching an exception,
 354   // we don't have an oop result.
 355   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 356   Handle return_value;
 357   if (save_oop_result) {
 358     // Reallocation may trigger GC. If deoptimization happened on return from
 359     // call which returns oop we need to save it since it is not in oopmap.
 360     oop result = deoptee.saved_oop_result(&map);
 361     assert(oopDesc::is_oop_or_null(result), "must be oop");
 362     return_value = Handle(thread, result);
 363     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 364     if (TraceDeoptimization) {
 365       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 366       tty->cr();
 367     }
 368   }
 369   if (objects != nullptr) {
 370     if (exec_mode == Deoptimization::Unpack_none) {
 371       assert(thread->thread_state() == _thread_in_vm, "assumption");
 372       JavaThread* THREAD = thread; // For exception macros.
 373       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 374       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 375       deoptimized_objects = true;
 376     } else {
 377       JavaThread* current = thread; // For JRT_BLOCK
 378       JRT_BLOCK
 379       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 380       JRT_END
 381     }
 382     bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci();
 383     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 384     if (TraceDeoptimization) {
 385       print_objects(deoptee_thread, objects, realloc_failures);
 386     }
 387   }
 388   if (save_oop_result) {
 389     // Restore result.
 390     deoptee.set_saved_oop_result(&map, return_value());
 391   }
 392   return realloc_failures;
 393 }
 394 
 395 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 396                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 397   JavaThread* deoptee_thread = chunk->at(0)->thread();
 398   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 399   assert(thread == Thread::current(), "should be");
 400   HandleMark hm(thread);
 401 #ifndef PRODUCT
 402   bool first = true;
 403 #endif // !PRODUCT
 404   // Start locking from outermost/oldest frame
 405   for (int i = (chunk->length() - 1); i >= 0; i--) {
 406     compiledVFrame* cvf = chunk->at(i);
 407     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 408     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 409     if (monitors->is_nonempty()) {
 410       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 411                                                      exec_mode, realloc_failures);
 412       deoptimized_objects = deoptimized_objects || relocked;
 413 #ifndef PRODUCT
 414       if (PrintDeoptimizationDetails) {
 415         ResourceMark rm;
 416         stringStream st;
 417         for (int j = 0; j < monitors->length(); j++) {
 418           MonitorInfo* mi = monitors->at(j);
 419           if (mi->eliminated()) {
 420             if (first) {
 421               first = false;
 422               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 423             }
 424             if (exec_mode == Deoptimization::Unpack_none) {
 425               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 426               if (monitor != nullptr && monitor->object() == mi->owner()) {
 427                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 428                 continue;
 429               }
 430             }
 431             if (mi->owner_is_scalar_replaced()) {
 432               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 433               st.print_cr("     failed reallocation for klass %s", k->external_name());
 434             } else {
 435               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 436             }
 437           }
 438         }
 439         tty->print_raw(st.freeze());
 440       }
 441 #endif // !PRODUCT
 442     }
 443   }
 444 }
 445 
 446 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 447 // The given vframes cover one physical frame.
 448 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 449                                                  bool& realloc_failures) {
 450   frame deoptee = chunk->at(0)->fr();
 451   JavaThread* deoptee_thread = chunk->at(0)->thread();
 452   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 453   RegisterMap map(chunk->at(0)->register_map());
 454   bool deoptimized_objects = false;
 455 
 456   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 457 
 458   // Reallocate the non-escaping objects and restore their fields.
 459   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 460                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 461     realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects);
 462   }
 463 
 464   // MonitorInfo structures used in eliminate_locks are not GC safe.
 465   NoSafepointVerifier no_safepoint;
 466 
 467   // Now relock objects if synchronization on them was eliminated.
 468   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 469     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 470   }
 471   return deoptimized_objects;
 472 }
 473 #endif // COMPILER2_OR_JVMCI
 474 
 475 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 476 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 477   // When we get here we are about to unwind the deoptee frame. In order to
 478   // catch not yet safe to use frames, the following stack watermark barrier
 479   // poll will make such frames safe to use.
 480   StackWatermarkSet::before_unwind(current);
 481 
 482   // Note: there is a safepoint safety issue here. No matter whether we enter
 483   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 484   // the vframeArray is created.
 485   //
 486 
 487   // Allocate our special deoptimization ResourceMark
 488   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 489   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 490   current->set_deopt_mark(dmark);
 491 
 492   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 493   RegisterMap map(current,
 494                   RegisterMap::UpdateMap::include,
 495                   RegisterMap::ProcessFrames::include,
 496                   RegisterMap::WalkContinuation::skip);
 497   RegisterMap dummy_map(current,
 498                         RegisterMap::UpdateMap::skip,
 499                         RegisterMap::ProcessFrames::include,
 500                         RegisterMap::WalkContinuation::skip);
 501   // Now get the deoptee with a valid map
 502   frame deoptee = stub_frame.sender(&map);
 503   // Set the deoptee nmethod
 504   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 505   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 506   current->set_deopt_compiled_method(nm);
 507 
 508   if (VerifyStack) {
 509     current->validate_frame_layout();
 510   }
 511 
 512   // Create a growable array of VFrames where each VFrame represents an inlined
 513   // Java frame.  This storage is allocated with the usual system arena.
 514   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 515   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 516   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 517   while (!vf->is_top()) {
 518     assert(vf->is_compiled_frame(), "Wrong frame type");
 519     chunk->push(compiledVFrame::cast(vf));
 520     vf = vf->sender();
 521   }
 522   assert(vf->is_compiled_frame(), "Wrong frame type");
 523   chunk->push(compiledVFrame::cast(vf));
 524 
 525   bool realloc_failures = false;
 526 
 527 #if COMPILER2_OR_JVMCI
 528   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 529 
 530   // Reallocate the non-escaping objects and restore their fields. Then
 531   // relock objects if synchronization on them was eliminated.
 532   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 533                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 534     bool unused;
 535     realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused);
 536   }
 537 #endif // COMPILER2_OR_JVMCI
 538 
 539   // Ensure that no safepoint is taken after pointers have been stored
 540   // in fields of rematerialized objects.  If a safepoint occurs from here on
 541   // out the java state residing in the vframeArray will be missed.
 542   // Locks may be rebaised in a safepoint.
 543   NoSafepointVerifier no_safepoint;
 544 
 545 #if COMPILER2_OR_JVMCI
 546   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 547       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 548     bool unused = false;
 549     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 550   }
 551 #endif // COMPILER2_OR_JVMCI
 552 
 553   ScopeDesc* trap_scope = chunk->at(0)->scope();
 554   Handle exceptionObject;
 555   if (trap_scope->rethrow_exception()) {
 556 #ifndef PRODUCT
 557     if (PrintDeoptimizationDetails) {
 558       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 559     }
 560 #endif // !PRODUCT
 561 
 562     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 563     guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw");
 564     ScopeValue* topOfStack = expressions->top();
 565     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 566     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 567   }
 568 
 569   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 570 #if COMPILER2_OR_JVMCI
 571   if (realloc_failures) {
 572     // This destroys all ScopedValue bindings.
 573     current->clear_scopedValueBindings();
 574     pop_frames_failed_reallocs(current, array);
 575   }
 576 #endif
 577 
 578   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 579   current->set_vframe_array_head(array);
 580 
 581   // Now that the vframeArray has been created if we have any deferred local writes
 582   // added by jvmti then we can free up that structure as the data is now in the
 583   // vframeArray
 584 
 585   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 586 
 587   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 588   CodeBlob* cb = stub_frame.cb();
 589   // Verify we have the right vframeArray
 590   assert(cb->frame_size() >= 0, "Unexpected frame size");
 591   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 592 
 593   // If the deopt call site is a MethodHandle invoke call site we have
 594   // to adjust the unpack_sp.
 595   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 596   if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc()))
 597     unpack_sp = deoptee.unextended_sp();
 598 
 599 #ifdef ASSERT
 600   assert(cb->is_deoptimization_stub() ||
 601          cb->is_uncommon_trap_stub() ||
 602          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 603          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 604          "unexpected code blob: %s", cb->name());
 605 #endif
 606 
 607   // This is a guarantee instead of an assert because if vframe doesn't match
 608   // we will unpack the wrong deoptimized frame and wind up in strange places
 609   // where it will be very difficult to figure out what went wrong. Better
 610   // to die an early death here than some very obscure death later when the
 611   // trail is cold.
 612   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 613   // in that it will fail to detect a problem when there is one. This needs
 614   // more work in tiger timeframe.
 615   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 616 
 617   int number_of_frames = array->frames();
 618 
 619   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 620   // virtual activation, which is the reverse of the elements in the vframes array.
 621   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 622   // +1 because we always have an interpreter return address for the final slot.
 623   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 624   int popframe_extra_args = 0;
 625   // Create an interpreter return address for the stub to use as its return
 626   // address so the skeletal frames are perfectly walkable
 627   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 628 
 629   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 630   // activation be put back on the expression stack of the caller for reexecution
 631   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 632     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 633   }
 634 
 635   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 636   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 637   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 638   //
 639   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 640   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 641 
 642   // It's possible that the number of parameters at the call site is
 643   // different than number of arguments in the callee when method
 644   // handles are used.  If the caller is interpreted get the real
 645   // value so that the proper amount of space can be added to it's
 646   // frame.
 647   bool caller_was_method_handle = false;
 648   if (deopt_sender.is_interpreted_frame()) {
 649     methodHandle method(current, deopt_sender.interpreter_frame_method());
 650     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 651     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 652       // Method handle invokes may involve fairly arbitrary chains of
 653       // calls so it's impossible to know how much actual space the
 654       // caller has for locals.
 655       caller_was_method_handle = true;
 656     }
 657   }
 658 
 659   //
 660   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 661   // frame_sizes/frame_pcs[1] next oldest frame (int)
 662   // frame_sizes/frame_pcs[n] youngest frame (int)
 663   //
 664   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 665   // owns the space for the return address to it's caller).  Confusing ain't it.
 666   //
 667   // The vframe array can address vframes with indices running from
 668   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 669   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 670   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 671   // so things look a little strange in this loop.
 672   //
 673   int callee_parameters = 0;
 674   int callee_locals = 0;
 675   for (int index = 0; index < array->frames(); index++ ) {
 676     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 677     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 678     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 679     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 680                                                                                                     callee_locals,
 681                                                                                                     index == 0,
 682                                                                                                     popframe_extra_args);
 683     // This pc doesn't have to be perfect just good enough to identify the frame
 684     // as interpreted so the skeleton frame will be walkable
 685     // The correct pc will be set when the skeleton frame is completely filled out
 686     // The final pc we store in the loop is wrong and will be overwritten below
 687     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 688 
 689     callee_parameters = array->element(index)->method()->size_of_parameters();
 690     callee_locals = array->element(index)->method()->max_locals();
 691     popframe_extra_args = 0;
 692   }
 693 
 694   // Compute whether the root vframe returns a float or double value.
 695   BasicType return_type;
 696   {
 697     methodHandle method(current, array->element(0)->method());
 698     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 699     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 700   }
 701 
 702   // Compute information for handling adapters and adjusting the frame size of the caller.
 703   int caller_adjustment = 0;
 704 
 705   // Compute the amount the oldest interpreter frame will have to adjust
 706   // its caller's stack by. If the caller is a compiled frame then
 707   // we pretend that the callee has no parameters so that the
 708   // extension counts for the full amount of locals and not just
 709   // locals-parms. This is because without a c2i adapter the parm
 710   // area as created by the compiled frame will not be usable by
 711   // the interpreter. (Depending on the calling convention there
 712   // may not even be enough space).
 713 
 714   // QQQ I'd rather see this pushed down into last_frame_adjust
 715   // and have it take the sender (aka caller).
 716 
 717   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 718     caller_adjustment = last_frame_adjust(0, callee_locals);
 719   } else if (callee_locals > callee_parameters) {
 720     // The caller frame may need extending to accommodate
 721     // non-parameter locals of the first unpacked interpreted frame.
 722     // Compute that adjustment.
 723     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 724   }
 725 
 726   // If the sender is deoptimized the we must retrieve the address of the handler
 727   // since the frame will "magically" show the original pc before the deopt
 728   // and we'd undo the deopt.
 729 
 730   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 731   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 732     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 733   }
 734 
 735   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 736 
 737 #if INCLUDE_JVMCI
 738   if (exceptionObject() != nullptr) {
 739     current->set_exception_oop(exceptionObject());
 740     exec_mode = Unpack_exception;
 741   }
 742 #endif
 743 
 744   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 745     assert(current->has_pending_exception(), "should have thrown OOME");
 746     current->set_exception_oop(current->pending_exception());
 747     current->clear_pending_exception();
 748     exec_mode = Unpack_exception;
 749   }
 750 
 751 #if INCLUDE_JVMCI
 752   if (current->frames_to_pop_failed_realloc() > 0) {
 753     current->set_pending_monitorenter(false);
 754   }
 755 #endif
 756 
 757   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 758                                       caller_adjustment * BytesPerWord,
 759                                       caller_was_method_handle ? 0 : callee_parameters,
 760                                       number_of_frames,
 761                                       frame_sizes,
 762                                       frame_pcs,
 763                                       return_type,
 764                                       exec_mode);
 765   // On some platforms, we need a way to pass some platform dependent
 766   // information to the unpacking code so the skeletal frames come out
 767   // correct (initial fp value, unextended sp, ...)
 768   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 769 
 770   if (array->frames() > 1) {
 771     if (VerifyStack && TraceDeoptimization) {
 772       tty->print_cr("Deoptimizing method containing inlining");
 773     }
 774   }
 775 
 776   array->set_unroll_block(info);
 777   return info;
 778 }
 779 
 780 // Called to cleanup deoptimization data structures in normal case
 781 // after unpacking to stack and when stack overflow error occurs
 782 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 783                                         vframeArray *array) {
 784 
 785   // Get array if coming from exception
 786   if (array == nullptr) {
 787     array = thread->vframe_array_head();
 788   }
 789   thread->set_vframe_array_head(nullptr);
 790 
 791   // Free the previous UnrollBlock
 792   vframeArray* old_array = thread->vframe_array_last();
 793   thread->set_vframe_array_last(array);
 794 
 795   if (old_array != nullptr) {
 796     UnrollBlock* old_info = old_array->unroll_block();
 797     old_array->set_unroll_block(nullptr);
 798     delete old_info;
 799     delete old_array;
 800   }
 801 
 802   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 803   // inside the vframeArray (StackValueCollections)
 804 
 805   delete thread->deopt_mark();
 806   thread->set_deopt_mark(nullptr);
 807   thread->set_deopt_compiled_method(nullptr);
 808 
 809 
 810   if (JvmtiExport::can_pop_frame()) {
 811     // Regardless of whether we entered this routine with the pending
 812     // popframe condition bit set, we should always clear it now
 813     thread->clear_popframe_condition();
 814   }
 815 
 816   // unpack_frames() is called at the end of the deoptimization handler
 817   // and (in C2) at the end of the uncommon trap handler. Note this fact
 818   // so that an asynchronous stack walker can work again. This counter is
 819   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 820   // the beginning of uncommon_trap().
 821   thread->dec_in_deopt_handler();
 822 }
 823 
 824 // Moved from cpu directories because none of the cpus has callee save values.
 825 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 826 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 827 
 828   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 829   // the days we had adapter frames. When we deoptimize a situation where a
 830   // compiled caller calls a compiled caller will have registers it expects
 831   // to survive the call to the callee. If we deoptimize the callee the only
 832   // way we can restore these registers is to have the oldest interpreter
 833   // frame that we create restore these values. That is what this routine
 834   // will accomplish.
 835 
 836   // At the moment we have modified c2 to not have any callee save registers
 837   // so this problem does not exist and this routine is just a place holder.
 838 
 839   assert(f->is_interpreted_frame(), "must be interpreted");
 840 }
 841 
 842 #ifndef PRODUCT
 843 static bool falls_through(Bytecodes::Code bc) {
 844   switch (bc) {
 845     // List may be incomplete.  Here we really only care about bytecodes where compiled code
 846     // can deoptimize.
 847     case Bytecodes::_goto:
 848     case Bytecodes::_goto_w:
 849     case Bytecodes::_athrow:
 850       return false;
 851     default:
 852       return true;
 853   }
 854 }
 855 #endif
 856 
 857 // Return BasicType of value being returned
 858 JRT_LEAF_PROF_NO_THREAD(BasicType, Deoptimization, unpack_frames, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 859   assert(thread == JavaThread::current(), "pre-condition");
 860 
 861   // We are already active in the special DeoptResourceMark any ResourceObj's we
 862   // allocate will be freed at the end of the routine.
 863 
 864   // JRT_LEAF methods don't normally allocate handles and there is a
 865   // NoHandleMark to enforce that. It is actually safe to use Handles
 866   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 867   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 868   // then use a HandleMark to ensure any Handles we do create are
 869   // cleaned up in this scope.
 870   ResetNoHandleMark rnhm;
 871   HandleMark hm(thread);
 872 
 873   frame stub_frame = thread->last_frame();
 874 
 875   Continuation::notify_deopt(thread, stub_frame.sp());
 876 
 877   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 878   // must point to the vframeArray for the unpack frame.
 879   vframeArray* array = thread->vframe_array_head();
 880   UnrollBlock* info = array->unroll_block();
 881 
 882   // We set the last_Java frame. But the stack isn't really parsable here. So we
 883   // clear it to make sure JFR understands not to try and walk stacks from events
 884   // in here.
 885   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 886   thread->frame_anchor()->set_last_Java_sp(nullptr);
 887 
 888   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 889   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 890 
 891   thread->frame_anchor()->set_last_Java_sp(sp);
 892 
 893   BasicType bt = info->return_type();
 894 
 895   // If we have an exception pending, claim that the return type is an oop
 896   // so the deopt_blob does not overwrite the exception_oop.
 897 
 898   if (exec_mode == Unpack_exception)
 899     bt = T_OBJECT;
 900 
 901   // Cleanup thread deopt data
 902   cleanup_deopt_info(thread, array);
 903 
 904 #ifndef PRODUCT
 905   if (VerifyStack) {
 906     ResourceMark res_mark;
 907     // Clear pending exception to not break verification code (restored afterwards)
 908     PreserveExceptionMark pm(thread);
 909 
 910     thread->validate_frame_layout();
 911 
 912     // Verify that the just-unpacked frames match the interpreter's
 913     // notions of expression stack and locals
 914     vframeArray* cur_array = thread->vframe_array_last();
 915     RegisterMap rm(thread,
 916                    RegisterMap::UpdateMap::skip,
 917                    RegisterMap::ProcessFrames::include,
 918                    RegisterMap::WalkContinuation::skip);
 919     rm.set_include_argument_oops(false);
 920     bool is_top_frame = true;
 921     int callee_size_of_parameters = 0;
 922     int callee_max_locals = 0;
 923     for (int i = 0; i < cur_array->frames(); i++) {
 924       vframeArrayElement* el = cur_array->element(i);
 925       frame* iframe = el->iframe();
 926       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 927 
 928       // Get the oop map for this bci
 929       InterpreterOopMap mask;
 930       int cur_invoke_parameter_size = 0;
 931       bool try_next_mask = false;
 932       int next_mask_expression_stack_size = -1;
 933       int top_frame_expression_stack_adjustment = 0;
 934       methodHandle mh(thread, iframe->interpreter_frame_method());
 935       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 936       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 937       int max_bci = mh->code_size();
 938       // Get to the next bytecode if possible
 939       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 940       // Check to see if we can grab the number of outgoing arguments
 941       // at an uncommon trap for an invoke (where the compiler
 942       // generates debug info before the invoke has executed)
 943       Bytecodes::Code cur_code = str.next();
 944       Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere;
 945       if (Bytecodes::is_invoke(cur_code)) {
 946         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 947         cur_invoke_parameter_size = invoke.size_of_parameters();
 948         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 949           callee_size_of_parameters++;
 950         }
 951       }
 952       if (str.bci() < max_bci) {
 953         next_code = str.next();
 954         if (next_code >= 0) {
 955           // The interpreter oop map generator reports results before
 956           // the current bytecode has executed except in the case of
 957           // calls. It seems to be hard to tell whether the compiler
 958           // has emitted debug information matching the "state before"
 959           // a given bytecode or the state after, so we try both
 960           if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) {
 961             // Get expression stack size for the next bytecode
 962             InterpreterOopMap next_mask;
 963             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 964             next_mask_expression_stack_size = next_mask.expression_stack_size();
 965             if (Bytecodes::is_invoke(next_code)) {
 966               Bytecode_invoke invoke(mh, str.bci());
 967               next_mask_expression_stack_size += invoke.size_of_parameters();
 968             }
 969             // Need to subtract off the size of the result type of
 970             // the bytecode because this is not described in the
 971             // debug info but returned to the interpreter in the TOS
 972             // caching register
 973             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 974             if (bytecode_result_type != T_ILLEGAL) {
 975               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 976             }
 977             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 978             try_next_mask = true;
 979           }
 980         }
 981       }
 982 
 983       // Verify stack depth and oops in frame
 984       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 985       if (!(
 986             /* SPARC */
 987             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 988             /* x86 */
 989             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 990             (try_next_mask &&
 991              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 992                                                                     top_frame_expression_stack_adjustment))) ||
 993             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 994             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 995              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 996             )) {
 997         {
 998           // Print out some information that will help us debug the problem
 999           tty->print_cr("Wrong number of expression stack elements during deoptimization");
1000           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
1001           tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
1002           if (try_next_mask) {
1003             tty->print_cr("  Next code %s", Bytecodes::name(next_code));
1004           }
1005           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
1006                         iframe->interpreter_frame_expression_stack_size());
1007           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
1008           tty->print_cr("  try_next_mask = %d", try_next_mask);
1009           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
1010           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
1011           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
1012           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1013           tty->print_cr("  exec_mode = %d", exec_mode);
1014           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1015           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1016           tty->print_cr("  Interpreted frames:");
1017           for (int k = 0; k < cur_array->frames(); k++) {
1018             vframeArrayElement* el = cur_array->element(k);
1019             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1020           }
1021           cur_array->print_on_2(tty);
1022         }
1023         guarantee(false, "wrong number of expression stack elements during deopt");
1024       }
1025       VerifyOopClosure verify;
1026       iframe->oops_interpreted_do(&verify, &rm, false);
1027       callee_size_of_parameters = mh->size_of_parameters();
1028       callee_max_locals = mh->max_locals();
1029       is_top_frame = false;
1030     }
1031   }
1032 #endif // !PRODUCT
1033 
1034   return bt;
1035 JRT_END
1036 
1037 class DeoptimizeMarkedClosure : public HandshakeClosure {
1038  public:
1039   DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {}
1040   void do_thread(Thread* thread) {
1041     JavaThread* jt = JavaThread::cast(thread);
1042     jt->deoptimize_marked_methods();
1043   }
1044 };
1045 
1046 void Deoptimization::deoptimize_all_marked() {
1047   ResourceMark rm;
1048 
1049   // Make the dependent methods not entrant
1050   CodeCache::make_marked_nmethods_deoptimized();
1051 
1052   DeoptimizeMarkedClosure deopt;
1053   if (SafepointSynchronize::is_at_safepoint()) {
1054     Threads::java_threads_do(&deopt);
1055   } else {
1056     Handshake::execute(&deopt);
1057   }
1058 }
1059 
1060 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1061   = Deoptimization::Action_reinterpret;
1062 
1063 #if INCLUDE_JVMCI
1064 template<typename CacheType>
1065 class BoxCacheBase : public CHeapObj<mtCompiler> {
1066 protected:
1067   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1068     ResourceMark rm(thread);
1069     char* klass_name_str = klass_name->as_C_string();
1070     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle(), Handle());
1071     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1072     if (!ik->is_in_error_state()) {
1073       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1074       CacheType::compute_offsets(ik);
1075     }
1076     return ik;
1077   }
1078 };
1079 
1080 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1081   PrimitiveType _low;
1082   PrimitiveType _high;
1083   jobject _cache;
1084 protected:
1085   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1086   BoxCache(Thread* thread) {
1087     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1088     if (ik->is_in_error_state()) {
1089       _low = 1;
1090       _high = 0;
1091       _cache = nullptr;
1092     } else {
1093       objArrayOop cache = CacheType::cache(ik);
1094       assert(cache->length() > 0, "Empty cache");
1095       _low = BoxType::value(cache->obj_at(0));
1096       _high = checked_cast<PrimitiveType>(_low + cache->length() - 1);
1097       _cache = JNIHandles::make_global(Handle(thread, cache));
1098     }
1099   }
1100   ~BoxCache() {
1101     JNIHandles::destroy_global(_cache);
1102   }
1103 public:
1104   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1105     if (_singleton == nullptr) {
1106       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1107       if (!Atomic::replace_if_null(&_singleton, s)) {
1108         delete s;
1109       }
1110     }
1111     return _singleton;
1112   }
1113   oop lookup(PrimitiveType value) {
1114     if (_low <= value && value <= _high) {
1115       int offset = checked_cast<int>(value - _low);
1116       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1117     }
1118     return nullptr;
1119   }
1120   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1121     if (_cache == nullptr) {
1122       cache_init_error = true;
1123       return nullptr;
1124     }
1125     // Have to cast to avoid little/big-endian problems.
1126     if (sizeof(PrimitiveType) > sizeof(jint)) {
1127       jlong value = (jlong)raw_value;
1128       return lookup(value);
1129     }
1130     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1131     return lookup(value);
1132   }
1133 };
1134 
1135 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1136 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1137 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1138 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1139 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1140 
1141 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1142 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1143 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1144 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1145 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1146 
1147 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1148   jobject _true_cache;
1149   jobject _false_cache;
1150 protected:
1151   static BooleanBoxCache *_singleton;
1152   BooleanBoxCache(Thread *thread) {
1153     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1154     if (ik->is_in_error_state()) {
1155       _true_cache = nullptr;
1156       _false_cache = nullptr;
1157     } else {
1158       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1159       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1160     }
1161   }
1162   ~BooleanBoxCache() {
1163     JNIHandles::destroy_global(_true_cache);
1164     JNIHandles::destroy_global(_false_cache);
1165   }
1166 public:
1167   static BooleanBoxCache* singleton(Thread* thread) {
1168     if (_singleton == nullptr) {
1169       BooleanBoxCache* s = new BooleanBoxCache(thread);
1170       if (!Atomic::replace_if_null(&_singleton, s)) {
1171         delete s;
1172       }
1173     }
1174     return _singleton;
1175   }
1176   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1177     if (_true_cache == nullptr) {
1178       cache_in_error = true;
1179       return nullptr;
1180     }
1181     // Have to cast to avoid little/big-endian problems.
1182     jboolean value = (jboolean)*((jint*)&raw_value);
1183     return lookup(value);
1184   }
1185   oop lookup(jboolean value) {
1186     if (value != 0) {
1187       return JNIHandles::resolve_non_null(_true_cache);
1188     }
1189     return JNIHandles::resolve_non_null(_false_cache);
1190   }
1191 };
1192 
1193 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1194 
1195 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1196    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1197    BasicType box_type = vmClasses::box_klass_type(k);
1198    if (box_type != T_OBJECT) {
1199      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1200      switch(box_type) {
1201        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1202        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1203        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1204        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1205        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1206        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1207        default:;
1208      }
1209    }
1210    return nullptr;
1211 }
1212 #endif // INCLUDE_JVMCI
1213 
1214 #if COMPILER2_OR_JVMCI
1215 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1216   Handle pending_exception(THREAD, thread->pending_exception());
1217   const char* exception_file = thread->exception_file();
1218   int exception_line = thread->exception_line();
1219   thread->clear_pending_exception();
1220 
1221   bool failures = false;
1222 
1223   for (int i = 0; i < objects->length(); i++) {
1224     assert(objects->at(i)->is_object(), "invalid debug information");
1225     ObjectValue* sv = (ObjectValue*) objects->at(i);
1226 
1227     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1228     oop obj = nullptr;
1229 
1230     bool cache_init_error = false;
1231     if (k->is_instance_klass()) {
1232 #if INCLUDE_JVMCI
1233       nmethod* nm = fr->cb()->as_nmethod_or_null();
1234       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1235         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1236         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1237         if (obj != nullptr) {
1238           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1239           abv->set_cached(true);
1240         } else if (cache_init_error) {
1241           // Results in an OOME which is valid (as opposed to a class initialization error)
1242           // and is fine for the rare case a cache initialization failing.
1243           failures = true;
1244         }
1245       }
1246 #endif // INCLUDE_JVMCI
1247 
1248       InstanceKlass* ik = InstanceKlass::cast(k);
1249       if (obj == nullptr && !cache_init_error) {
1250         InternalOOMEMark iom(THREAD);
1251         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1252           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1253         } else {
1254           obj = ik->allocate_instance(THREAD);
1255         }
1256       }
1257     } else if (k->is_typeArray_klass()) {
1258       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1259       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1260       int len = sv->field_size() / type2size[ak->element_type()];
1261       InternalOOMEMark iom(THREAD);
1262       obj = ak->allocate(len, THREAD);
1263     } else if (k->is_objArray_klass()) {
1264       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1265       InternalOOMEMark iom(THREAD);
1266       obj = ak->allocate(sv->field_size(), THREAD);
1267     }
1268 
1269     if (obj == nullptr) {
1270       failures = true;
1271     }
1272 
1273     assert(sv->value().is_null(), "redundant reallocation");
1274     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1275     CLEAR_PENDING_EXCEPTION;
1276     sv->set_value(obj);
1277   }
1278 
1279   if (failures) {
1280     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1281   } else if (pending_exception.not_null()) {
1282     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1283   }
1284 
1285   return failures;
1286 }
1287 
1288 #if INCLUDE_JVMCI
1289 /**
1290  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1291  * we need to somehow be able to recover the actual kind to be able to write the correct
1292  * amount of bytes.
1293  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1294  * the entries at index n + 1 to n + i are 'markers'.
1295  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1296  * expected form of the array would be:
1297  *
1298  * {b0, b1, b2, b3, INT, marker, b6, b7}
1299  *
1300  * Thus, in order to get back the size of the entry, we simply need to count the number
1301  * of marked entries
1302  *
1303  * @param virtualArray the virtualized byte array
1304  * @param i index of the virtual entry we are recovering
1305  * @return The number of bytes the entry spans
1306  */
1307 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1308   int index = i;
1309   while (++index < virtualArray->field_size() &&
1310            virtualArray->field_at(index)->is_marker()) {}
1311   return index - i;
1312 }
1313 
1314 /**
1315  * If there was a guarantee for byte array to always start aligned to a long, we could
1316  * do a simple check on the parity of the index. Unfortunately, that is not always the
1317  * case. Thus, we check alignment of the actual address we are writing to.
1318  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1319  * write a long to index 3.
1320  */
1321 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1322     jbyte* res = obj->byte_at_addr(index);
1323     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1324     return res;
1325 }
1326 
1327 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) {
1328   switch (byte_count) {
1329     case 1:
1330       obj->byte_at_put(index, (jbyte) value->get_jint());
1331       break;
1332     case 2:
1333       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint();
1334       break;
1335     case 4:
1336       *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint();
1337       break;
1338     case 8:
1339       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr();
1340       break;
1341     default:
1342       ShouldNotReachHere();
1343   }
1344 }
1345 #endif // INCLUDE_JVMCI
1346 
1347 
1348 // restore elements of an eliminated type array
1349 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1350   int index = 0;
1351 
1352   for (int i = 0; i < sv->field_size(); i++) {
1353     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1354     switch(type) {
1355     case T_LONG: case T_DOUBLE: {
1356       assert(value->type() == T_INT, "Agreement.");
1357       StackValue* low =
1358         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1359 #ifdef _LP64
1360       jlong res = (jlong)low->get_intptr();
1361 #else
1362       jlong res = jlong_from(value->get_jint(), low->get_jint());
1363 #endif
1364       obj->long_at_put(index, res);
1365       break;
1366     }
1367 
1368     case T_INT: case T_FLOAT: { // 4 bytes.
1369       assert(value->type() == T_INT, "Agreement.");
1370       bool big_value = false;
1371       if (i + 1 < sv->field_size() && type == T_INT) {
1372         if (sv->field_at(i)->is_location()) {
1373           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1374           if (type == Location::dbl || type == Location::lng) {
1375             big_value = true;
1376           }
1377         } else if (sv->field_at(i)->is_constant_int()) {
1378           ScopeValue* next_scope_field = sv->field_at(i + 1);
1379           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1380             big_value = true;
1381           }
1382         }
1383       }
1384 
1385       if (big_value) {
1386         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1387   #ifdef _LP64
1388         jlong res = (jlong)low->get_intptr();
1389   #else
1390         jlong res = jlong_from(value->get_jint(), low->get_jint());
1391   #endif
1392         obj->int_at_put(index, *(jint*)&res);
1393         obj->int_at_put(++index, *((jint*)&res + 1));
1394       } else {
1395         obj->int_at_put(index, value->get_jint());
1396       }
1397       break;
1398     }
1399 
1400     case T_SHORT:
1401       assert(value->type() == T_INT, "Agreement.");
1402       obj->short_at_put(index, (jshort)value->get_jint());
1403       break;
1404 
1405     case T_CHAR:
1406       assert(value->type() == T_INT, "Agreement.");
1407       obj->char_at_put(index, (jchar)value->get_jint());
1408       break;
1409 
1410     case T_BYTE: {
1411       assert(value->type() == T_INT, "Agreement.");
1412 #if INCLUDE_JVMCI
1413       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1414       int byte_count = count_number_of_bytes_for_entry(sv, i);
1415       byte_array_put(obj, value, index, byte_count);
1416       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1417       i += byte_count - 1; // Balance the loop counter.
1418       index += byte_count;
1419       // index has been updated so continue at top of loop
1420       continue;
1421 #else
1422       obj->byte_at_put(index, (jbyte)value->get_jint());
1423       break;
1424 #endif // INCLUDE_JVMCI
1425     }
1426 
1427     case T_BOOLEAN: {
1428       assert(value->type() == T_INT, "Agreement.");
1429       obj->bool_at_put(index, (jboolean)value->get_jint());
1430       break;
1431     }
1432 
1433       default:
1434         ShouldNotReachHere();
1435     }
1436     index++;
1437   }
1438 }
1439 
1440 // restore fields of an eliminated object array
1441 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1442   for (int i = 0; i < sv->field_size(); i++) {
1443     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1444     assert(value->type() == T_OBJECT, "object element expected");
1445     obj->obj_at_put(i, value->get_obj()());
1446   }
1447 }
1448 
1449 class ReassignedField {
1450 public:
1451   int _offset;
1452   BasicType _type;
1453 public:
1454   ReassignedField() {
1455     _offset = 0;
1456     _type = T_ILLEGAL;
1457   }
1458 };
1459 
1460 static int compare(ReassignedField* left, ReassignedField* right) {
1461   return left->_offset - right->_offset;
1462 }
1463 
1464 // Restore fields of an eliminated instance object using the same field order
1465 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1466 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
1467   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1468   InstanceKlass* ik = klass;
1469   while (ik != nullptr) {
1470     for (AllFieldStream fs(ik); !fs.done(); fs.next()) {
1471       if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) {
1472         ReassignedField field;
1473         field._offset = fs.offset();
1474         field._type = Signature::basic_type(fs.signature());
1475         fields->append(field);
1476       }
1477     }
1478     ik = ik->superklass();
1479   }
1480   fields->sort(compare);
1481   for (int i = 0; i < fields->length(); i++) {
1482     ScopeValue* scope_field = sv->field_at(svIndex);
1483     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1484     int offset = fields->at(i)._offset;
1485     BasicType type = fields->at(i)._type;
1486     switch (type) {
1487       case T_OBJECT: case T_ARRAY:
1488         assert(value->type() == T_OBJECT, "Agreement.");
1489         obj->obj_field_put(offset, value->get_obj()());
1490         break;
1491 
1492       case T_INT: case T_FLOAT: { // 4 bytes.
1493         assert(value->type() == T_INT, "Agreement.");
1494         bool big_value = false;
1495         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1496           if (scope_field->is_location()) {
1497             Location::Type type = ((LocationValue*) scope_field)->location().type();
1498             if (type == Location::dbl || type == Location::lng) {
1499               big_value = true;
1500             }
1501           }
1502           if (scope_field->is_constant_int()) {
1503             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1504             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1505               big_value = true;
1506             }
1507           }
1508         }
1509 
1510         if (big_value) {
1511           i++;
1512           assert(i < fields->length(), "second T_INT field needed");
1513           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1514         } else {
1515           obj->int_field_put(offset, value->get_jint());
1516           break;
1517         }
1518       }
1519         /* no break */
1520 
1521       case T_LONG: case T_DOUBLE: {
1522         assert(value->type() == T_INT, "Agreement.");
1523         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1524 #ifdef _LP64
1525         jlong res = (jlong)low->get_intptr();
1526 #else
1527         jlong res = jlong_from(value->get_jint(), low->get_jint());
1528 #endif
1529         obj->long_field_put(offset, res);
1530         break;
1531       }
1532 
1533       case T_SHORT:
1534         assert(value->type() == T_INT, "Agreement.");
1535         obj->short_field_put(offset, (jshort)value->get_jint());
1536         break;
1537 
1538       case T_CHAR:
1539         assert(value->type() == T_INT, "Agreement.");
1540         obj->char_field_put(offset, (jchar)value->get_jint());
1541         break;
1542 
1543       case T_BYTE:
1544         assert(value->type() == T_INT, "Agreement.");
1545         obj->byte_field_put(offset, (jbyte)value->get_jint());
1546         break;
1547 
1548       case T_BOOLEAN:
1549         assert(value->type() == T_INT, "Agreement.");
1550         obj->bool_field_put(offset, (jboolean)value->get_jint());
1551         break;
1552 
1553       default:
1554         ShouldNotReachHere();
1555     }
1556     svIndex++;
1557   }
1558   return svIndex;
1559 }
1560 
1561 // restore fields of all eliminated objects and arrays
1562 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1563   for (int i = 0; i < objects->length(); i++) {
1564     assert(objects->at(i)->is_object(), "invalid debug information");
1565     ObjectValue* sv = (ObjectValue*) objects->at(i);
1566     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1567     Handle obj = sv->value();
1568     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1569 #ifndef PRODUCT
1570     if (PrintDeoptimizationDetails) {
1571       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1572     }
1573 #endif // !PRODUCT
1574 
1575     if (obj.is_null()) {
1576       continue;
1577     }
1578 
1579 #if INCLUDE_JVMCI
1580     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1581     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1582       continue;
1583     }
1584 #endif // INCLUDE_JVMCI
1585     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1586       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1587       ScopeValue* payload = sv->field_at(0);
1588       if (payload->is_location() &&
1589           payload->as_LocationValue()->location().type() == Location::vector) {
1590 #ifndef PRODUCT
1591         if (PrintDeoptimizationDetails) {
1592           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1593           if (Verbose) {
1594             Handle obj = sv->value();
1595             k->oop_print_on(obj(), tty);
1596           }
1597         }
1598 #endif // !PRODUCT
1599         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1600       }
1601       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1602       // which could be restored after vector object allocation.
1603     }
1604     if (k->is_instance_klass()) {
1605       InstanceKlass* ik = InstanceKlass::cast(k);
1606       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1607     } else if (k->is_typeArray_klass()) {
1608       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1609       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1610     } else if (k->is_objArray_klass()) {
1611       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1612     }
1613   }
1614   // These objects may escape when we return to Interpreter after deoptimization.
1615   // We need barrier so that stores that initialize these objects can't be reordered
1616   // with subsequent stores that make these objects accessible by other threads.
1617   OrderAccess::storestore();
1618 }
1619 
1620 
1621 // relock objects for which synchronization was eliminated
1622 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1623                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1624   bool relocked_objects = false;
1625   for (int i = 0; i < monitors->length(); i++) {
1626     MonitorInfo* mon_info = monitors->at(i);
1627     if (mon_info->eliminated()) {
1628       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1629       relocked_objects = true;
1630       if (!mon_info->owner_is_scalar_replaced()) {
1631         Handle obj(thread, mon_info->owner());
1632         markWord mark = obj->mark();
1633         if (exec_mode == Unpack_none) {
1634           if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) {
1635             // With exec_mode == Unpack_none obj may be thread local and locked in
1636             // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header.
1637             markWord dmw = mark.displaced_mark_helper();
1638             mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr));
1639             obj->set_mark(dmw);
1640           }
1641           if (mark.has_monitor()) {
1642             // defer relocking if the deoptee thread is currently waiting for obj
1643             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1644             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1645               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1646               if (LockingMode == LM_LEGACY) {
1647                 mon_info->lock()->set_displaced_header(markWord::unused_mark());
1648               } else if (UseObjectMonitorTable) {
1649                 mon_info->lock()->clear_object_monitor_cache();
1650               }
1651 #ifdef ASSERT
1652               else {
1653                 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be");
1654                 mon_info->lock()->set_bad_metadata_deopt();
1655               }
1656 #endif
1657               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1658               continue;
1659             }
1660           }
1661         }
1662         BasicLock* lock = mon_info->lock();
1663         if (LockingMode == LM_LIGHTWEIGHT) {
1664           // We have lost information about the correct state of the lock stack.
1665           // Entering may create an invalid lock stack. Inflate the lock if it
1666           // was fast_locked to restore the valid lock stack.
1667           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1668           if (deoptee_thread->lock_stack().contains(obj())) {
1669             LightweightSynchronizer::inflate_fast_locked_object(obj(), ObjectSynchronizer::InflateCause::inflate_cause_vm_internal,
1670                                                                 deoptee_thread, thread);
1671           }
1672           assert(mon_info->owner()->is_locked(), "object must be locked now");
1673           assert(obj->mark().has_monitor(), "must be");
1674           assert(!deoptee_thread->lock_stack().contains(obj()), "must be");
1675           assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->has_owner(deoptee_thread), "must be");
1676         } else {
1677           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1678           assert(mon_info->owner()->is_locked(), "object must be locked now");
1679         }
1680       }
1681     }
1682   }
1683   return relocked_objects;
1684 }
1685 #endif // COMPILER2_OR_JVMCI
1686 
1687 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1688   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1689 
1690   // Register map for next frame (used for stack crawl).  We capture
1691   // the state of the deopt'ing frame's caller.  Thus if we need to
1692   // stuff a C2I adapter we can properly fill in the callee-save
1693   // register locations.
1694   frame caller = fr.sender(reg_map);
1695   int frame_size = pointer_delta_as_int(caller.sp(), fr.sp());
1696 
1697   frame sender = caller;
1698 
1699   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1700   // the vframeArray containing the unpacking information is allocated in the C heap.
1701   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1702   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1703 
1704   // Compare the vframeArray to the collected vframes
1705   assert(array->structural_compare(thread, chunk), "just checking");
1706 
1707   if (TraceDeoptimization) {
1708     ResourceMark rm;
1709     stringStream st;
1710     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1711     st.print("   ");
1712     fr.print_on(&st);
1713     st.print_cr("   Virtual frames (innermost/newest first):");
1714     for (int index = 0; index < chunk->length(); index++) {
1715       compiledVFrame* vf = chunk->at(index);
1716       int bci = vf->raw_bci();
1717       const char* code_name;
1718       if (bci == SynchronizationEntryBCI) {
1719         code_name = "sync entry";
1720       } else {
1721         Bytecodes::Code code = vf->method()->code_at(bci);
1722         code_name = Bytecodes::name(code);
1723       }
1724 
1725       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1726       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1727       st.print(" - %s", code_name);
1728       st.print_cr(" @ bci=%d ", bci);
1729     }
1730     tty->print_raw(st.freeze());
1731     tty->cr();
1732   }
1733 
1734   return array;
1735 }
1736 
1737 #if COMPILER2_OR_JVMCI
1738 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1739   // Reallocation of some scalar replaced objects failed. Record
1740   // that we need to pop all the interpreter frames for the
1741   // deoptimized compiled frame.
1742   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1743   thread->set_frames_to_pop_failed_realloc(array->frames());
1744   // Unlock all monitors here otherwise the interpreter will see a
1745   // mix of locked and unlocked monitors (because of failed
1746   // reallocations of synchronized objects) and be confused.
1747   for (int i = 0; i < array->frames(); i++) {
1748     MonitorChunk* monitors = array->element(i)->monitors();
1749     if (monitors != nullptr) {
1750       // Unlock in reverse order starting from most nested monitor.
1751       for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) {
1752         BasicObjectLock* src = monitors->at(j);
1753         if (src->obj() != nullptr) {
1754           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1755         }
1756       }
1757       array->element(i)->free_monitors();
1758 #ifdef ASSERT
1759       array->element(i)->set_removed_monitors();
1760 #endif
1761     }
1762   }
1763 }
1764 #endif
1765 
1766 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1767   assert(fr.can_be_deoptimized(), "checking frame type");
1768 
1769   nmethod* nm = fr.cb()->as_nmethod_or_null();
1770   assert(nm != nullptr, "only compiled methods can deopt");
1771   DeoptAction action = (nm->is_not_entrant() ? Action_make_not_entrant : Action_none);
1772   ScopeDesc* cur_sd = nm->scope_desc_at(fr.pc());
1773   Bytecodes::Code bc = (cur_sd->bci() == -1 ? Bytecodes::_nop // deopt on method entry
1774                                             : cur_sd->method()->java_code_at(cur_sd->bci()));
1775   gather_statistics(nm, reason, action, bc);
1776 
1777   if (LogCompilation && xtty != nullptr) {
1778     ttyLocker ttyl;
1779     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1780     nm->log_identity(xtty);
1781     xtty->end_head();
1782     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1783       xtty->begin_elem("jvms bci='%d'", sd->bci());
1784       xtty->method(sd->method());
1785       xtty->end_elem();
1786       if (sd->is_top())  break;
1787     }
1788     xtty->tail("deoptimized");
1789   }
1790 
1791   Continuation::notify_deopt(thread, fr.sp());
1792 
1793   // Patch the compiled method so that when execution returns to it we will
1794   // deopt the execution state and return to the interpreter.
1795   fr.deoptimize(thread);
1796 }
1797 
1798 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1799   // Deoptimize only if the frame comes from compile code.
1800   // Do not deoptimize the frame which is already patched
1801   // during the execution of the loops below.
1802   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1803     return;
1804   }
1805   ResourceMark rm;
1806   deoptimize_single_frame(thread, fr, reason);
1807 }
1808 
1809 #if INCLUDE_JVMCI
1810 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) {
1811   // there is no exception handler for this pc => deoptimize
1812   nm->make_not_entrant();
1813 
1814   // Use Deoptimization::deoptimize for all of its side-effects:
1815   // gathering traps statistics, logging...
1816   // it also patches the return pc but we do not care about that
1817   // since we return a continuation to the deopt_blob below.
1818   JavaThread* thread = JavaThread::current();
1819   RegisterMap reg_map(thread,
1820                       RegisterMap::UpdateMap::skip,
1821                       RegisterMap::ProcessFrames::include,
1822                       RegisterMap::WalkContinuation::skip);
1823   frame runtime_frame = thread->last_frame();
1824   frame caller_frame = runtime_frame.sender(&reg_map);
1825   assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method");
1826   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1827   compiledVFrame* cvf = compiledVFrame::cast(vf);
1828   ScopeDesc* imm_scope = cvf->scope();
1829   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1830   if (imm_mdo != nullptr) {
1831     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
1832     MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
1833 
1834     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1835     if (pdata != nullptr && pdata->is_BitData()) {
1836       BitData* bit_data = (BitData*) pdata;
1837       bit_data->set_exception_seen();
1838     }
1839   }
1840 
1841   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1842 
1843   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true);
1844   if (trap_mdo != nullptr) {
1845     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1846   }
1847 
1848   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1849 }
1850 #endif
1851 
1852 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1853   assert(thread == Thread::current() ||
1854          thread->is_handshake_safe_for(Thread::current()) ||
1855          SafepointSynchronize::is_at_safepoint(),
1856          "can only deoptimize other thread at a safepoint/handshake");
1857   // Compute frame and register map based on thread and sp.
1858   RegisterMap reg_map(thread,
1859                       RegisterMap::UpdateMap::skip,
1860                       RegisterMap::ProcessFrames::include,
1861                       RegisterMap::WalkContinuation::skip);
1862   frame fr = thread->last_frame();
1863   while (fr.id() != id) {
1864     fr = fr.sender(&reg_map);
1865   }
1866   deoptimize(thread, fr, reason);
1867 }
1868 
1869 
1870 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1871   Thread* current = Thread::current();
1872   if (thread == current || thread->is_handshake_safe_for(current)) {
1873     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1874   } else {
1875     VM_DeoptimizeFrame deopt(thread, id, reason);
1876     VMThread::execute(&deopt);
1877   }
1878 }
1879 
1880 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1881   deoptimize_frame(thread, id, Reason_constraint);
1882 }
1883 
1884 // JVMTI PopFrame support
1885 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1886 {
1887   assert(thread == JavaThread::current(), "pre-condition");
1888   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1889 }
1890 JRT_END
1891 
1892 MethodData*
1893 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1894                                 bool create_if_missing) {
1895   JavaThread* THREAD = thread; // For exception macros.
1896   MethodData* mdo = m()->method_data();
1897   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1898     // Build an MDO.  Ignore errors like OutOfMemory;
1899     // that simply means we won't have an MDO to update.
1900     Method::build_profiling_method_data(m, THREAD);
1901     if (HAS_PENDING_EXCEPTION) {
1902       // Only metaspace OOM is expected. No Java code executed.
1903       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1904       CLEAR_PENDING_EXCEPTION;
1905     }
1906     mdo = m()->method_data();
1907   }
1908   return mdo;
1909 }
1910 
1911 #if COMPILER2_OR_JVMCI
1912 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1913   // In case of an unresolved klass entry, load the class.
1914   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1915   // and probably nowhere else.
1916   // Even that case would benefit from simply re-interpreting the
1917   // bytecode, without paying special attention to the class index.
1918   // So this whole "class index" feature should probably be removed.
1919 
1920   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1921     Klass* tk = constant_pool->klass_at(index, THREAD);
1922     if (HAS_PENDING_EXCEPTION) {
1923       // Exception happened during classloading. We ignore the exception here, since it
1924       // is going to be rethrown since the current activation is going to be deoptimized and
1925       // the interpreter will re-execute the bytecode.
1926       // Do not clear probable Async Exceptions.
1927       CLEAR_PENDING_NONASYNC_EXCEPTION;
1928       // Class loading called java code which may have caused a stack
1929       // overflow. If the exception was thrown right before the return
1930       // to the runtime the stack is no longer guarded. Reguard the
1931       // stack otherwise if we return to the uncommon trap blob and the
1932       // stack bang causes a stack overflow we crash.
1933       JavaThread* jt = THREAD;
1934       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1935       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1936     }
1937     return;
1938   }
1939 
1940   assert(!constant_pool->tag_at(index).is_symbol(),
1941          "no symbolic names here, please");
1942 }
1943 
1944 #if INCLUDE_JFR
1945 
1946 class DeoptReasonSerializer : public JfrSerializer {
1947  public:
1948   void serialize(JfrCheckpointWriter& writer) {
1949     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1950     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1951       writer.write_key((u8)i);
1952       writer.write(Deoptimization::trap_reason_name(i));
1953     }
1954   }
1955 };
1956 
1957 class DeoptActionSerializer : public JfrSerializer {
1958  public:
1959   void serialize(JfrCheckpointWriter& writer) {
1960     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1961     writer.write_count(nof_actions);
1962     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1963       writer.write_key(i);
1964       writer.write(Deoptimization::trap_action_name((int)i));
1965     }
1966   }
1967 };
1968 
1969 static void register_serializers() {
1970   static int critical_section = 0;
1971   if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) {
1972     return;
1973   }
1974   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1975   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1976 }
1977 
1978 static void post_deoptimization_event(nmethod* nm,
1979                                       const Method* method,
1980                                       int trap_bci,
1981                                       int instruction,
1982                                       Deoptimization::DeoptReason reason,
1983                                       Deoptimization::DeoptAction action) {
1984   assert(nm != nullptr, "invariant");
1985   assert(method != nullptr, "invariant");
1986   if (EventDeoptimization::is_enabled()) {
1987     static bool serializers_registered = false;
1988     if (!serializers_registered) {
1989       register_serializers();
1990       serializers_registered = true;
1991     }
1992     EventDeoptimization event;
1993     event.set_compileId(nm->compile_id());
1994     event.set_compiler(nm->compiler_type());
1995     event.set_method(method);
1996     event.set_lineNumber(method->line_number_from_bci(trap_bci));
1997     event.set_bci(trap_bci);
1998     event.set_instruction(instruction);
1999     event.set_reason(reason);
2000     event.set_action(action);
2001     event.commit();
2002   }
2003 }
2004 
2005 #endif // INCLUDE_JFR
2006 
2007 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
2008                               const char* reason_name, const char* reason_action) {
2009   LogTarget(Debug, deoptimization) lt;
2010   if (lt.is_enabled()) {
2011     LogStream ls(lt);
2012     bool is_osr = nm->is_osr_method();
2013     ls.print("cid=%4d %s level=%d",
2014              nm->compile_id(), (is_osr ? "osr" : "   "), nm->comp_level());
2015     ls.print(" %s", tm->name_and_sig_as_C_string());
2016     ls.print(" trap_bci=%d ", trap_bci);
2017     if (is_osr) {
2018       ls.print("osr_bci=%d ", nm->osr_entry_bci());
2019     }
2020     ls.print("%s ", reason_name);
2021     ls.print("%s ", reason_action);
2022     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2023              pc, fr.pc() - nm->code_begin());
2024   }
2025 }
2026 
2027 JRT_ENTRY_PROF(void, Deoptimization, uncommon_trap_inner, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2028   HandleMark hm(current);
2029 
2030   // uncommon_trap() is called at the beginning of the uncommon trap
2031   // handler. Note this fact before we start generating temporary frames
2032   // that can confuse an asynchronous stack walker. This counter is
2033   // decremented at the end of unpack_frames().
2034 
2035   current->inc_in_deopt_handler();
2036 
2037 #if INCLUDE_JVMCI
2038   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2039   RegisterMap reg_map(current,
2040                       RegisterMap::UpdateMap::include,
2041                       RegisterMap::ProcessFrames::include,
2042                       RegisterMap::WalkContinuation::skip);
2043 #else
2044   RegisterMap reg_map(current,
2045                       RegisterMap::UpdateMap::skip,
2046                       RegisterMap::ProcessFrames::include,
2047                       RegisterMap::WalkContinuation::skip);
2048 #endif
2049   frame stub_frame = current->last_frame();
2050   frame fr = stub_frame.sender(&reg_map);
2051 
2052   // Log a message
2053   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2054               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2055 
2056   {
2057     ResourceMark rm;
2058 
2059     DeoptReason reason = trap_request_reason(trap_request);
2060     DeoptAction action = trap_request_action(trap_request);
2061 #if INCLUDE_JVMCI
2062     int debug_id = trap_request_debug_id(trap_request);
2063 #endif
2064     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2065 
2066     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2067     compiledVFrame* cvf = compiledVFrame::cast(vf);
2068 
2069     nmethod* nm = cvf->code();
2070 
2071     ScopeDesc*      trap_scope  = cvf->scope();
2072 
2073     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2074 
2075     if (is_receiver_constraint_failure) {
2076       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2077                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2078                     JVMCI_ONLY(COMMA debug_id));
2079     }
2080 
2081     methodHandle    trap_method(current, trap_scope->method());
2082     int             trap_bci    = trap_scope->bci();
2083 #if INCLUDE_JVMCI
2084     jlong           speculation = current->pending_failed_speculation();
2085     if (nm->is_compiled_by_jvmci()) {
2086       nm->update_speculation(current);
2087     } else {
2088       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2089     }
2090 
2091     if (trap_bci == SynchronizationEntryBCI) {
2092       trap_bci = 0;
2093       current->set_pending_monitorenter(true);
2094     }
2095 
2096     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2097       current->set_pending_transfer_to_interpreter(true);
2098     }
2099 #endif
2100 
2101     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2102     // Record this event in the histogram.
2103     gather_statistics(nm, reason, action, trap_bc);
2104 
2105     // Ensure that we can record deopt. history:
2106     bool create_if_missing = ProfileTraps;
2107 
2108     methodHandle profiled_method;
2109 #if INCLUDE_JVMCI
2110     if (nm->is_compiled_by_jvmci()) {
2111       profiled_method = methodHandle(current, nm->method());
2112     } else {
2113       profiled_method = trap_method;
2114     }
2115 #else
2116     profiled_method = trap_method;
2117 #endif
2118 
2119     MethodData* trap_mdo =
2120       get_method_data(current, profiled_method, create_if_missing);
2121 
2122     { // Log Deoptimization event for JFR, UL and event system
2123       Method* tm = trap_method();
2124       const char* reason_name = trap_reason_name(reason);
2125       const char* reason_action = trap_action_name(action);
2126       intptr_t pc = p2i(fr.pc());
2127 
2128       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2129       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action);
2130       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
2131                                 reason_name, reason_action, pc,
2132                                 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
2133     }
2134 
2135     // Print a bunch of diagnostics, if requested.
2136     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2137       ResourceMark rm;
2138 
2139       // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2140       // We must do this already now, since we cannot acquire this lock while
2141       // holding the tty lock (lock ordering by rank).
2142       MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2143 
2144       ttyLocker ttyl;
2145 
2146       char buf[100];
2147       if (xtty != nullptr) {
2148         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
2149                          os::current_thread_id(),
2150                          format_trap_request(buf, sizeof(buf), trap_request));
2151 #if INCLUDE_JVMCI
2152         if (speculation != 0) {
2153           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2154         }
2155 #endif
2156         nm->log_identity(xtty);
2157       }
2158       Symbol* class_name = nullptr;
2159       bool unresolved = false;
2160       if (unloaded_class_index >= 0) {
2161         constantPoolHandle constants (current, trap_method->constants());
2162         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2163           class_name = constants->klass_name_at(unloaded_class_index);
2164           unresolved = true;
2165           if (xtty != nullptr)
2166             xtty->print(" unresolved='1'");
2167         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2168           class_name = constants->symbol_at(unloaded_class_index);
2169         }
2170         if (xtty != nullptr)
2171           xtty->name(class_name);
2172       }
2173       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2174         // Dump the relevant MDO state.
2175         // This is the deopt count for the current reason, any previous
2176         // reasons or recompiles seen at this point.
2177         int dcnt = trap_mdo->trap_count(reason);
2178         if (dcnt != 0)
2179           xtty->print(" count='%d'", dcnt);
2180 
2181         // We need to lock to read the ProfileData. But to keep the locks ordered, we need to
2182         // lock extra_data_lock before the tty lock.
2183         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2184         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2185         if (dos != 0) {
2186           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2187           if (trap_state_is_recompiled(dos)) {
2188             int recnt2 = trap_mdo->overflow_recompile_count();
2189             if (recnt2 != 0)
2190               xtty->print(" recompiles2='%d'", recnt2);
2191           }
2192         }
2193       }
2194       if (xtty != nullptr) {
2195         xtty->stamp();
2196         xtty->end_head();
2197       }
2198       if (TraceDeoptimization) {  // make noise on the tty
2199         stringStream st;
2200         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2201         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2202                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2203         st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
2204 #if INCLUDE_JVMCI
2205         if (nm->is_compiled_by_jvmci()) {
2206           const char* installed_code_name = nm->jvmci_name();
2207           if (installed_code_name != nullptr) {
2208             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2209           }
2210         }
2211 #endif
2212         st.print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2213                    p2i(fr.pc()),
2214                    os::current_thread_id(),
2215                    trap_reason_name(reason),
2216                    trap_action_name(action),
2217                    unloaded_class_index
2218 #if INCLUDE_JVMCI
2219                    , debug_id
2220 #endif
2221                    );
2222         if (class_name != nullptr) {
2223           st.print(unresolved ? " unresolved class: " : " symbol: ");
2224           class_name->print_symbol_on(&st);
2225         }
2226         st.cr();
2227         tty->print_raw(st.freeze());
2228       }
2229       if (xtty != nullptr) {
2230         // Log the precise location of the trap.
2231         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2232           xtty->begin_elem("jvms bci='%d'", sd->bci());
2233           xtty->method(sd->method());
2234           xtty->end_elem();
2235           if (sd->is_top())  break;
2236         }
2237         xtty->tail("uncommon_trap");
2238       }
2239     }
2240     // (End diagnostic printout.)
2241 
2242     if (is_receiver_constraint_failure) {
2243       fatal("missing receiver type check");
2244     }
2245 
2246     // Load class if necessary
2247     if (unloaded_class_index >= 0) {
2248       constantPoolHandle constants(current, trap_method->constants());
2249       load_class_by_index(constants, unloaded_class_index, THREAD);
2250     }
2251 
2252     // Flush the nmethod if necessary and desirable.
2253     //
2254     // We need to avoid situations where we are re-flushing the nmethod
2255     // because of a hot deoptimization site.  Repeated flushes at the same
2256     // point need to be detected by the compiler and avoided.  If the compiler
2257     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2258     // module must take measures to avoid an infinite cycle of recompilation
2259     // and deoptimization.  There are several such measures:
2260     //
2261     //   1. If a recompilation is ordered a second time at some site X
2262     //   and for the same reason R, the action is adjusted to 'reinterpret',
2263     //   to give the interpreter time to exercise the method more thoroughly.
2264     //   If this happens, the method's overflow_recompile_count is incremented.
2265     //
2266     //   2. If the compiler fails to reduce the deoptimization rate, then
2267     //   the method's overflow_recompile_count will begin to exceed the set
2268     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2269     //   is adjusted to 'make_not_compilable', and the method is abandoned
2270     //   to the interpreter.  This is a performance hit for hot methods,
2271     //   but is better than a disastrous infinite cycle of recompilations.
2272     //   (Actually, only the method containing the site X is abandoned.)
2273     //
2274     //   3. In parallel with the previous measures, if the total number of
2275     //   recompilations of a method exceeds the much larger set limit
2276     //   PerMethodRecompilationCutoff, the method is abandoned.
2277     //   This should only happen if the method is very large and has
2278     //   many "lukewarm" deoptimizations.  The code which enforces this
2279     //   limit is elsewhere (class nmethod, class Method).
2280     //
2281     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2282     // to recompile at each bytecode independently of the per-BCI cutoff.
2283     //
2284     // The decision to update code is up to the compiler, and is encoded
2285     // in the Action_xxx code.  If the compiler requests Action_none
2286     // no trap state is changed, no compiled code is changed, and the
2287     // computation suffers along in the interpreter.
2288     //
2289     // The other action codes specify various tactics for decompilation
2290     // and recompilation.  Action_maybe_recompile is the loosest, and
2291     // allows the compiled code to stay around until enough traps are seen,
2292     // and until the compiler gets around to recompiling the trapping method.
2293     //
2294     // The other actions cause immediate removal of the present code.
2295 
2296     // Traps caused by injected profile shouldn't pollute trap counts.
2297     bool injected_profile_trap = trap_method->has_injected_profile() &&
2298                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2299 
2300     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2301     bool make_not_entrant = false;
2302     bool make_not_compilable = false;
2303     bool reprofile = false;
2304     switch (action) {
2305     case Action_none:
2306       // Keep the old code.
2307       update_trap_state = false;
2308       break;
2309     case Action_maybe_recompile:
2310       // Do not need to invalidate the present code, but we can
2311       // initiate another
2312       // Start compiler without (necessarily) invalidating the nmethod.
2313       // The system will tolerate the old code, but new code should be
2314       // generated when possible.
2315       break;
2316     case Action_reinterpret:
2317       // Go back into the interpreter for a while, and then consider
2318       // recompiling form scratch.
2319       make_not_entrant = true;
2320       // Reset invocation counter for outer most method.
2321       // This will allow the interpreter to exercise the bytecodes
2322       // for a while before recompiling.
2323       // By contrast, Action_make_not_entrant is immediate.
2324       //
2325       // Note that the compiler will track null_check, null_assert,
2326       // range_check, and class_check events and log them as if they
2327       // had been traps taken from compiled code.  This will update
2328       // the MDO trap history so that the next compilation will
2329       // properly detect hot trap sites.
2330       reprofile = true;
2331       break;
2332     case Action_make_not_entrant:
2333       // Request immediate recompilation, and get rid of the old code.
2334       // Make them not entrant, so next time they are called they get
2335       // recompiled.  Unloaded classes are loaded now so recompile before next
2336       // time they are called.  Same for uninitialized.  The interpreter will
2337       // link the missing class, if any.
2338       make_not_entrant = true;
2339       break;
2340     case Action_make_not_compilable:
2341       // Give up on compiling this method at all.
2342       make_not_entrant = true;
2343       make_not_compilable = true;
2344       break;
2345     default:
2346       ShouldNotReachHere();
2347     }
2348 
2349     // Setting +ProfileTraps fixes the following, on all platforms:
2350     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
2351     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2352     // recompile relies on a MethodData* to record heroic opt failures.
2353 
2354     // Whether the interpreter is producing MDO data or not, we also need
2355     // to use the MDO to detect hot deoptimization points and control
2356     // aggressive optimization.
2357     bool inc_recompile_count = false;
2358 
2359     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2360     ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr,
2361                               (trap_mdo != nullptr),
2362                               Mutex::_no_safepoint_check_flag);
2363     ProfileData* pdata = nullptr;
2364     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2365       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2366       uint this_trap_count = 0;
2367       bool maybe_prior_trap = false;
2368       bool maybe_prior_recompile = false;
2369 
2370       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2371 #if INCLUDE_JVMCI
2372                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2373 #endif
2374                                    nm->method(),
2375                                    //outputs:
2376                                    this_trap_count,
2377                                    maybe_prior_trap,
2378                                    maybe_prior_recompile);
2379       // Because the interpreter also counts null, div0, range, and class
2380       // checks, these traps from compiled code are double-counted.
2381       // This is harmless; it just means that the PerXTrapLimit values
2382       // are in effect a little smaller than they look.
2383 
2384       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2385       if (per_bc_reason != Reason_none) {
2386         // Now take action based on the partially known per-BCI history.
2387         if (maybe_prior_trap
2388             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2389           // If there are too many traps at this BCI, force a recompile.
2390           // This will allow the compiler to see the limit overflow, and
2391           // take corrective action, if possible.  The compiler generally
2392           // does not use the exact PerBytecodeTrapLimit value, but instead
2393           // changes its tactics if it sees any traps at all.  This provides
2394           // a little hysteresis, delaying a recompile until a trap happens
2395           // several times.
2396           //
2397           // Actually, since there is only one bit of counter per BCI,
2398           // the possible per-BCI counts are {0,1,(per-method count)}.
2399           // This produces accurate results if in fact there is only
2400           // one hot trap site, but begins to get fuzzy if there are
2401           // many sites.  For example, if there are ten sites each
2402           // trapping two or more times, they each get the blame for
2403           // all of their traps.
2404           make_not_entrant = true;
2405         }
2406 
2407         // Detect repeated recompilation at the same BCI, and enforce a limit.
2408         if (make_not_entrant && maybe_prior_recompile) {
2409           // More than one recompile at this point.
2410           inc_recompile_count = maybe_prior_trap;
2411         }
2412       } else {
2413         // For reasons which are not recorded per-bytecode, we simply
2414         // force recompiles unconditionally.
2415         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2416         make_not_entrant = true;
2417       }
2418 
2419       // Go back to the compiler if there are too many traps in this method.
2420       if (this_trap_count >= per_method_trap_limit(reason)) {
2421         // If there are too many traps in this method, force a recompile.
2422         // This will allow the compiler to see the limit overflow, and
2423         // take corrective action, if possible.
2424         // (This condition is an unlikely backstop only, because the
2425         // PerBytecodeTrapLimit is more likely to take effect first,
2426         // if it is applicable.)
2427         make_not_entrant = true;
2428       }
2429 
2430       // Here's more hysteresis:  If there has been a recompile at
2431       // this trap point already, run the method in the interpreter
2432       // for a while to exercise it more thoroughly.
2433       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2434         reprofile = true;
2435       }
2436     }
2437 
2438     // Take requested actions on the method:
2439 
2440     // Recompile
2441     if (make_not_entrant) {
2442       if (!nm->make_not_entrant()) {
2443         return; // the call did not change nmethod's state
2444       }
2445 
2446       if (pdata != nullptr) {
2447         // Record the recompilation event, if any.
2448         int tstate0 = pdata->trap_state();
2449         int tstate1 = trap_state_set_recompiled(tstate0, true);
2450         if (tstate1 != tstate0)
2451           pdata->set_trap_state(tstate1);
2452       }
2453 
2454       // For code aging we count traps separately here, using make_not_entrant()
2455       // as a guard against simultaneous deopts in multiple threads.
2456       if (reason == Reason_tenured && trap_mdo != nullptr) {
2457         trap_mdo->inc_tenure_traps();
2458       }
2459     }
2460 
2461     if (inc_recompile_count) {
2462       trap_mdo->inc_overflow_recompile_count();
2463       if ((uint)trap_mdo->overflow_recompile_count() >
2464           (uint)PerBytecodeRecompilationCutoff) {
2465         // Give up on the method containing the bad BCI.
2466         if (trap_method() == nm->method()) {
2467           make_not_compilable = true;
2468         } else {
2469           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2470           // But give grace to the enclosing nm->method().
2471         }
2472       }
2473     }
2474 
2475     // Reprofile
2476     if (reprofile) {
2477       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2478     }
2479 
2480     // Give up compiling
2481     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2482       assert(make_not_entrant, "consistent");
2483       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2484     }
2485 
2486     if (ProfileExceptionHandlers && trap_mdo != nullptr) {
2487       BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci);
2488       if (exception_handler_data != nullptr) {
2489         // uncommon trap at the start of an exception handler.
2490         // C2 generates these for un-entered exception handlers.
2491         // mark the handler as entered to avoid generating
2492         // another uncommon trap the next time the handler is compiled
2493         exception_handler_data->set_exception_handler_entered();
2494       }
2495     }
2496 
2497   } // Free marked resources
2498 
2499 }
2500 JRT_END
2501 
2502 ProfileData*
2503 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2504                                          int trap_bci,
2505                                          Deoptimization::DeoptReason reason,
2506                                          bool update_total_trap_count,
2507 #if INCLUDE_JVMCI
2508                                          bool is_osr,
2509 #endif
2510                                          Method* compiled_method,
2511                                          //outputs:
2512                                          uint& ret_this_trap_count,
2513                                          bool& ret_maybe_prior_trap,
2514                                          bool& ret_maybe_prior_recompile) {
2515   trap_mdo->check_extra_data_locked();
2516 
2517   bool maybe_prior_trap = false;
2518   bool maybe_prior_recompile = false;
2519   uint this_trap_count = 0;
2520   if (update_total_trap_count) {
2521     uint idx = reason;
2522 #if INCLUDE_JVMCI
2523     if (is_osr) {
2524       // Upper half of history array used for traps in OSR compilations
2525       idx += Reason_TRAP_HISTORY_LENGTH;
2526     }
2527 #endif
2528     uint prior_trap_count = trap_mdo->trap_count(idx);
2529     this_trap_count  = trap_mdo->inc_trap_count(idx);
2530 
2531     // If the runtime cannot find a place to store trap history,
2532     // it is estimated based on the general condition of the method.
2533     // If the method has ever been recompiled, or has ever incurred
2534     // a trap with the present reason , then this BCI is assumed
2535     // (pessimistically) to be the culprit.
2536     maybe_prior_trap      = (prior_trap_count != 0);
2537     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2538   }
2539   ProfileData* pdata = nullptr;
2540 
2541 
2542   // For reasons which are recorded per bytecode, we check per-BCI data.
2543   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2544   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2545   if (per_bc_reason != Reason_none) {
2546     // Find the profile data for this BCI.  If there isn't one,
2547     // try to allocate one from the MDO's set of spares.
2548     // This will let us detect a repeated trap at this point.
2549     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2550 
2551     if (pdata != nullptr) {
2552       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2553         if (LogCompilation && xtty != nullptr) {
2554           ttyLocker ttyl;
2555           // no more room for speculative traps in this MDO
2556           xtty->elem("speculative_traps_oom");
2557         }
2558       }
2559       // Query the trap state of this profile datum.
2560       int tstate0 = pdata->trap_state();
2561       if (!trap_state_has_reason(tstate0, per_bc_reason))
2562         maybe_prior_trap = false;
2563       if (!trap_state_is_recompiled(tstate0))
2564         maybe_prior_recompile = false;
2565 
2566       // Update the trap state of this profile datum.
2567       int tstate1 = tstate0;
2568       // Record the reason.
2569       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2570       // Store the updated state on the MDO, for next time.
2571       if (tstate1 != tstate0)
2572         pdata->set_trap_state(tstate1);
2573     } else {
2574       if (LogCompilation && xtty != nullptr) {
2575         ttyLocker ttyl;
2576         // Missing MDP?  Leave a small complaint in the log.
2577         xtty->elem("missing_mdp bci='%d'", trap_bci);
2578       }
2579     }
2580   }
2581 
2582   // Return results:
2583   ret_this_trap_count = this_trap_count;
2584   ret_maybe_prior_trap = maybe_prior_trap;
2585   ret_maybe_prior_recompile = maybe_prior_recompile;
2586   return pdata;
2587 }
2588 
2589 void
2590 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2591   ResourceMark rm;
2592   // Ignored outputs:
2593   uint ignore_this_trap_count;
2594   bool ignore_maybe_prior_trap;
2595   bool ignore_maybe_prior_recompile;
2596   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2597   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2598   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2599 
2600   // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2601   MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2602 
2603   query_update_method_data(trap_mdo, trap_bci,
2604                            (DeoptReason)reason,
2605                            update_total_counts,
2606 #if INCLUDE_JVMCI
2607                            false,
2608 #endif
2609                            nullptr,
2610                            ignore_this_trap_count,
2611                            ignore_maybe_prior_trap,
2612                            ignore_maybe_prior_recompile);
2613 }
2614 
2615 PROF_ENTRY(Deoptimization::UnrollBlock*, Deoptimization, uncommon_trap, Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode))
2616   // Enable WXWrite: current function is called from methods compiled by C2 directly
2617   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2618 
2619   // Still in Java no safepoints
2620   {
2621     // This enters VM and may safepoint
2622     uncommon_trap_inner(current, trap_request);
2623   }
2624   HandleMark hm(current);
2625   return fetch_unroll_info_helper(current, exec_mode);
2626 PROF_END
2627 
2628 // Local derived constants.
2629 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2630 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2631 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2632 
2633 //---------------------------trap_state_reason---------------------------------
2634 Deoptimization::DeoptReason
2635 Deoptimization::trap_state_reason(int trap_state) {
2636   // This assert provides the link between the width of DataLayout::trap_bits
2637   // and the encoding of "recorded" reasons.  It ensures there are enough
2638   // bits to store all needed reasons in the per-BCI MDO profile.
2639   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2640   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2641   trap_state -= recompile_bit;
2642   if (trap_state == DS_REASON_MASK) {
2643     return Reason_many;
2644   } else {
2645     assert((int)Reason_none == 0, "state=0 => Reason_none");
2646     return (DeoptReason)trap_state;
2647   }
2648 }
2649 //-------------------------trap_state_has_reason-------------------------------
2650 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2651   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2652   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2653   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2654   trap_state -= recompile_bit;
2655   if (trap_state == DS_REASON_MASK) {
2656     return -1;  // true, unspecifically (bottom of state lattice)
2657   } else if (trap_state == reason) {
2658     return 1;   // true, definitely
2659   } else if (trap_state == 0) {
2660     return 0;   // false, definitely (top of state lattice)
2661   } else {
2662     return 0;   // false, definitely
2663   }
2664 }
2665 //-------------------------trap_state_add_reason-------------------------------
2666 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2667   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2668   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2669   trap_state -= recompile_bit;
2670   if (trap_state == DS_REASON_MASK) {
2671     return trap_state + recompile_bit;     // already at state lattice bottom
2672   } else if (trap_state == reason) {
2673     return trap_state + recompile_bit;     // the condition is already true
2674   } else if (trap_state == 0) {
2675     return reason + recompile_bit;          // no condition has yet been true
2676   } else {
2677     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2678   }
2679 }
2680 //-----------------------trap_state_is_recompiled------------------------------
2681 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2682   return (trap_state & DS_RECOMPILE_BIT) != 0;
2683 }
2684 //-----------------------trap_state_set_recompiled-----------------------------
2685 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2686   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2687   else    return trap_state & ~DS_RECOMPILE_BIT;
2688 }
2689 //---------------------------format_trap_state---------------------------------
2690 // This is used for debugging and diagnostics, including LogFile output.
2691 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2692                                               int trap_state) {
2693   assert(buflen > 0, "sanity");
2694   DeoptReason reason      = trap_state_reason(trap_state);
2695   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2696   // Re-encode the state from its decoded components.
2697   int decoded_state = 0;
2698   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2699     decoded_state = trap_state_add_reason(decoded_state, reason);
2700   if (recomp_flag)
2701     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2702   // If the state re-encodes properly, format it symbolically.
2703   // Because this routine is used for debugging and diagnostics,
2704   // be robust even if the state is a strange value.
2705   size_t len;
2706   if (decoded_state != trap_state) {
2707     // Random buggy state that doesn't decode??
2708     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2709   } else {
2710     len = jio_snprintf(buf, buflen, "%s%s",
2711                        trap_reason_name(reason),
2712                        recomp_flag ? " recompiled" : "");
2713   }
2714   return buf;
2715 }
2716 
2717 
2718 //--------------------------------statics--------------------------------------
2719 const char* Deoptimization::_trap_reason_name[] = {
2720   // Note:  Keep this in sync. with enum DeoptReason.
2721   "none",
2722   "null_check",
2723   "null_assert" JVMCI_ONLY("_or_unreached0"),
2724   "range_check",
2725   "class_check",
2726   "array_check",
2727   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2728   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2729   "profile_predicate",
2730   "unloaded",
2731   "uninitialized",
2732   "initialized",
2733   "unreached",
2734   "unhandled",
2735   "constraint",
2736   "div0_check",
2737   "age",
2738   "predicate",
2739   "loop_limit_check",
2740   "speculate_class_check",
2741   "speculate_null_check",
2742   "speculate_null_assert",
2743   "unstable_if",
2744   "unstable_fused_if",
2745   "receiver_constraint",
2746 #if INCLUDE_JVMCI
2747   "aliasing",
2748   "transfer_to_interpreter",
2749   "not_compiled_exception_handler",
2750   "unresolved",
2751   "jsr_mismatch",
2752 #endif
2753   "tenured"
2754 };
2755 const char* Deoptimization::_trap_action_name[] = {
2756   // Note:  Keep this in sync. with enum DeoptAction.
2757   "none",
2758   "maybe_recompile",
2759   "reinterpret",
2760   "make_not_entrant",
2761   "make_not_compilable"
2762 };
2763 
2764 const char* Deoptimization::trap_reason_name(int reason) {
2765   // Check that every reason has a name
2766   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2767 
2768   if (reason == Reason_many)  return "many";
2769   if ((uint)reason < Reason_LIMIT)
2770     return _trap_reason_name[reason];
2771   static char buf[20];
2772   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2773   return buf;
2774 }
2775 const char* Deoptimization::trap_action_name(int action) {
2776   // Check that every action has a name
2777   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2778 
2779   if ((uint)action < Action_LIMIT)
2780     return _trap_action_name[action];
2781   static char buf[20];
2782   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2783   return buf;
2784 }
2785 
2786 // This is used for debugging and diagnostics, including LogFile output.
2787 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2788                                                 int trap_request) {
2789   jint unloaded_class_index = trap_request_index(trap_request);
2790   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2791   const char* action = trap_action_name(trap_request_action(trap_request));
2792 #if INCLUDE_JVMCI
2793   int debug_id = trap_request_debug_id(trap_request);
2794 #endif
2795   size_t len;
2796   if (unloaded_class_index < 0) {
2797     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2798                        reason, action
2799 #if INCLUDE_JVMCI
2800                        ,debug_id
2801 #endif
2802                        );
2803   } else {
2804     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2805                        reason, action, unloaded_class_index
2806 #if INCLUDE_JVMCI
2807                        ,debug_id
2808 #endif
2809                        );
2810   }
2811   return buf;
2812 }
2813 
2814 juint Deoptimization::_deoptimization_hist
2815         [1 + 4 + 5] // total + online + archived
2816         [Deoptimization::Reason_LIMIT]
2817     [1 + Deoptimization::Action_LIMIT]
2818         [Deoptimization::BC_CASE_LIMIT]
2819   = {0};
2820 
2821 enum {
2822   LSB_BITS = 8,
2823   LSB_MASK = right_n_bits(LSB_BITS)
2824 };
2825 
2826 static void update(juint* cases, Bytecodes::Code bc) {
2827   juint* bc_counter_addr = nullptr;
2828   juint  bc_counter      = 0;
2829   // Look for an unused counter, or an exact match to this BC.
2830   if (bc != Bytecodes::_illegal) {
2831     for (int bc_case = 0; bc_case < Deoptimization::BC_CASE_LIMIT; bc_case++) {
2832       juint* counter_addr = &cases[bc_case];
2833       juint  counter = *counter_addr;
2834       if ((counter == 0 && bc_counter_addr == nullptr)
2835           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2836         // this counter is either free or is already devoted to this BC
2837         bc_counter_addr = counter_addr;
2838         bc_counter = counter | bc;
2839       }
2840     }
2841   }
2842   if (bc_counter_addr == nullptr) {
2843     // Overflow, or no given bytecode.
2844     bc_counter_addr = &cases[Deoptimization::BC_CASE_LIMIT-1];
2845     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2846   }
2847   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2848 }
2849 
2850 
2851 void Deoptimization::gather_statistics(nmethod* nm, DeoptReason reason, DeoptAction action,
2852                                        Bytecodes::Code bc) {
2853   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2854   assert(action >= 0 && action < Action_LIMIT, "oob");
2855   _deoptimization_hist[0][Reason_none][0][0] += 1;  // total
2856   _deoptimization_hist[0][reason][0][0]      += 1;  // per-reason total
2857 
2858   update(_deoptimization_hist[0][reason][1+action], bc);
2859 
2860   uint lvl = nm->comp_level() + (nm->is_scc() ? 4 : 0) + (nm->preloaded() ? 1 : 0);
2861   _deoptimization_hist[lvl][Reason_none][0][0] += 1;  // total
2862   _deoptimization_hist[lvl][reason][0][0]      += 1;  // per-reason total
2863   update(_deoptimization_hist[lvl][reason][1+action], bc);
2864 }
2865 
2866 jint Deoptimization::total_deoptimization_count() {
2867   return _deoptimization_hist[0][Reason_none][0][0];
2868 }
2869 
2870 // Get the deopt count for a specific reason and a specific action. If either
2871 // one of 'reason' or 'action' is null, the method returns the sum of all
2872 // deoptimizations with the specific 'action' or 'reason' respectively.
2873 // If both arguments are null, the method returns the total deopt count.
2874 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2875   if (reason_str == nullptr && action_str == nullptr) {
2876     return total_deoptimization_count();
2877   }
2878   juint counter = 0;
2879   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2880     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2881       for (int action = 0; action < Action_LIMIT; action++) {
2882         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2883           juint* cases = _deoptimization_hist[0][reason][1+action];
2884           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2885             counter += cases[bc_case] >> LSB_BITS;
2886           }
2887         }
2888       }
2889     }
2890   }
2891   return counter;
2892 }
2893 
2894 void Deoptimization::print_statistics() {
2895   ttyLocker ttyl;
2896   if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2897   tty->print_cr("Deoptimization traps recorded:");
2898   print_statistics_on(tty);
2899   if (xtty != nullptr)  xtty->tail("statistics");
2900 }
2901 
2902 void Deoptimization::print_statistics_on(const char* title, int lvl, outputStream* st) {
2903   juint total = _deoptimization_hist[lvl][Reason_none][0][0];
2904   juint account = total;
2905 #define PRINT_STAT_LINE(name, r) \
2906       st->print_cr("    %d (%4.1f%%) %s", (int)(r), ((r) == total ? 100.0 : (((r) * 100.0) / total)), name);
2907   if (total > 0) {
2908     st->print("  %s: ", title);
2909     PRINT_STAT_LINE("total", total);
2910     // For each non-zero entry in the histogram, print the reason,
2911     // the action, and (if specifically known) the type of bytecode.
2912     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2913       for (int action = 0; action < Action_LIMIT; action++) {
2914         juint* cases = Deoptimization::_deoptimization_hist[lvl][reason][1+action];
2915         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2916           juint counter = cases[bc_case];
2917           if (counter != 0) {
2918             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2919             const char* bc_name = "other";
2920             if (bc_case == (BC_CASE_LIMIT-1) && bc == Bytecodes::_nop) {
2921               // overwritten
2922             } else if (Bytecodes::is_defined(bc)) {
2923               bc_name = Bytecodes::name(bc);
2924             }
2925             juint r = counter >> LSB_BITS;
2926             st->print_cr("    %-34s %16s %16s: " UINT32_FORMAT_W(5) " (%4.1f%%)",
2927                          trap_reason_name(reason), trap_action_name(action), bc_name,
2928                          r, (r * 100.0) / total);
2929             account -= r;
2930           }
2931         }
2932       }
2933     }
2934     if (account != 0) {
2935       PRINT_STAT_LINE("unaccounted", account);
2936     }
2937 #undef PRINT_STAT_LINE
2938   }
2939 }
2940 
2941 void Deoptimization::print_statistics_on(outputStream* st) {
2942 //  print_statistics_on("Total", 0, st);
2943   print_statistics_on("Tier1", 1, st);
2944   print_statistics_on("Tier2", 2, st);
2945   print_statistics_on("Tier3", 3, st);
2946   print_statistics_on("Tier4", 4, st);
2947 
2948   print_statistics_on("SC Tier1", 5, st);
2949   print_statistics_on("SC Tier2", 6, st);
2950   print_statistics_on("SC Tier4", 8, st);
2951   print_statistics_on("SC Tier5 (preloaded)", 9, st);
2952 }
2953 
2954 #define DO_COUNTERS(macro) \
2955   macro(Deoptimization, fetch_unroll_info)   \
2956   macro(Deoptimization, unpack_frames) \
2957   macro(Deoptimization, uncommon_trap_inner) \
2958   macro(Deoptimization, uncommon_trap)
2959 
2960 #define INIT_COUNTER(sub, name) \
2961   NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_RT, #sub "::" #name) \
2962   NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_RT, #sub "::" #name "_count");
2963 
2964 void Deoptimization::init_counters() {
2965   if (ProfileRuntimeCalls && UsePerfData) {
2966     EXCEPTION_MARK;
2967 
2968     DO_COUNTERS(INIT_COUNTER)
2969 
2970     if (HAS_PENDING_EXCEPTION) {
2971       vm_exit_during_initialization("jvm_perf_init failed unexpectedly");
2972     }
2973   }
2974 }
2975 #undef INIT_COUNTER
2976 
2977 #define PRINT_COUNTER(sub, name) { \
2978   jlong count = _perf_##sub##_##name##_count->get_value(); \
2979   if (count > 0) { \
2980     st->print_cr("  %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", #sub "::" #name, \
2981                  _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
2982                  _perf_##sub##_##name##_timer->thread_counter_value_us(), \
2983                  count); \
2984   }}
2985 
2986 void Deoptimization::print_counters_on(outputStream* st) {
2987   if (ProfileRuntimeCalls && UsePerfData) {
2988     DO_COUNTERS(PRINT_COUNTER)
2989   } else {
2990     st->print_cr("  Deoptimization: no info (%s is disabled)", (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData"));
2991   }
2992 }
2993 
2994 #undef PRINT_COUNTER
2995 #undef DO_COUNTERS
2996 
2997 #else // COMPILER2_OR_JVMCI
2998 
2999 
3000 // Stubs for C1 only system.
3001 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
3002   return false;
3003 }
3004 
3005 const char* Deoptimization::trap_reason_name(int reason) {
3006   return "unknown";
3007 }
3008 
3009 jint Deoptimization::total_deoptimization_count() {
3010   return 0;
3011 }
3012 
3013 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
3014   return 0;
3015 }
3016 
3017 void Deoptimization::print_statistics() {
3018   // no output
3019 }
3020 
3021 void
3022 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
3023   // no update
3024 }
3025 
3026 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
3027   return 0;
3028 }
3029 
3030 void Deoptimization::gather_statistics(nmethod* nm, DeoptReason reason, DeoptAction action,
3031                                        Bytecodes::Code bc) {
3032   // no update
3033 }
3034 
3035 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
3036                                               int trap_state) {
3037   jio_snprintf(buf, buflen, "#%d", trap_state);
3038   return buf;
3039 }
3040 
3041 void Deoptimization::init_counters() {
3042   // nothing to do
3043 }
3044 
3045 void Deoptimization::print_counters_on(outputStream* st) {
3046   // no output
3047 }
3048 
3049 void Deoptimization::print_statistics_on(outputStream* st) {
3050   // no output
3051 }
3052 
3053 #endif // COMPILER2_OR_JVMCI