1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "logging/log.hpp" 27 #include "memory/resourceArea.hpp" 28 #include "runtime/interfaceSupport.inline.hpp" 29 #include "runtime/javaThread.inline.hpp" 30 #include "runtime/mutex.hpp" 31 #include "runtime/os.inline.hpp" 32 #include "runtime/osThread.hpp" 33 #include "runtime/safepointMechanism.inline.hpp" 34 #include "runtime/semaphore.inline.hpp" 35 #include "runtime/threadCrashProtection.hpp" 36 #include "utilities/events.hpp" 37 #include "utilities/macros.hpp" 38 39 class InFlightMutexRelease { 40 private: 41 Mutex* _in_flight_mutex; 42 public: 43 InFlightMutexRelease(Mutex* in_flight_mutex) : _in_flight_mutex(in_flight_mutex) { 44 assert(in_flight_mutex != nullptr, "must be"); 45 } 46 void operator()(JavaThread* current) { 47 _in_flight_mutex->release_for_safepoint(); 48 _in_flight_mutex = nullptr; 49 } 50 bool not_released() { return _in_flight_mutex != nullptr; } 51 }; 52 53 #ifdef ASSERT 54 void Mutex::check_block_state(Thread* thread) { 55 if (!_allow_vm_block && thread->is_VM_thread()) { 56 // JavaThreads are checked to make sure that they do not hold _allow_vm_block locks during operations 57 // that could safepoint. Make sure the vm thread never uses locks with _allow_vm_block == false. 58 fatal("VM thread could block on lock that may be held by a JavaThread during safepoint: %s", name()); 59 } 60 61 assert(!ThreadCrashProtection::is_crash_protected(thread), 62 "locking not allowed when crash protection is set"); 63 } 64 65 void Mutex::check_safepoint_state(Thread* thread) { 66 check_block_state(thread); 67 68 // If the lock acquisition checks for safepoint, verify that the lock was created with rank that 69 // has safepoint checks. Technically this doesn't affect NonJavaThreads since they won't actually 70 // check for safepoint, but let's make the rule unconditional unless there's a good reason not to. 71 assert(_rank > nosafepoint, 72 "This lock should not be taken with a safepoint check: %s", name()); 73 74 if (thread->is_active_Java_thread()) { 75 // Also check NoSafepointVerifier, and thread state is _thread_in_vm 76 JavaThread::cast(thread)->check_for_valid_safepoint_state(); 77 } 78 } 79 80 void Mutex::check_no_safepoint_state(Thread* thread) { 81 check_block_state(thread); 82 assert(!thread->is_active_Java_thread() || _rank <= nosafepoint, 83 "This lock should always have a safepoint check for Java threads: %s", 84 name()); 85 } 86 #endif // ASSERT 87 88 void Mutex::lock_contended(Thread* self) { 89 DEBUG_ONLY(int retry_cnt = 0;) 90 bool is_active_Java_thread = self->is_active_Java_thread(); 91 do { 92 #ifdef ASSERT 93 if (retry_cnt++ > 3) { 94 log_trace(vmmutex)("JavaThread " INTPTR_FORMAT " on %d attempt trying to acquire vmmutex %s", p2i(self), retry_cnt, _name); 95 } 96 #endif // ASSERT 97 98 // Is it a JavaThread participating in the safepoint protocol. 99 if (is_active_Java_thread) { 100 InFlightMutexRelease ifmr(this); 101 assert(rank() > Mutex::nosafepoint, "Potential deadlock with nosafepoint or lesser rank mutex"); 102 { 103 ThreadBlockInVMPreprocess<InFlightMutexRelease> tbivmdc(JavaThread::cast(self), ifmr); 104 _lock.lock(); 105 } 106 if (ifmr.not_released()) { 107 // Not unlocked by ~ThreadBlockInVMPreprocess 108 break; 109 } 110 } else { 111 _lock.lock(); 112 break; 113 } 114 } while (!_lock.try_lock()); 115 } 116 117 void Mutex::lock(Thread* self) { 118 assert(owner() != self, "invariant"); 119 120 check_safepoint_state(self); 121 check_rank(self); 122 123 if (!_lock.try_lock()) { 124 // The lock is contended, use contended slow-path function to lock 125 lock_contended(self); 126 } 127 128 assert_owner(nullptr); 129 set_owner(self); 130 } 131 132 void Mutex::lock() { 133 lock(Thread::current()); 134 } 135 136 // Lock without safepoint check - a degenerate variant of lock() for use by 137 // JavaThreads when it is known to be safe to not check for a safepoint when 138 // acquiring this lock. If the thread blocks acquiring the lock it is not 139 // safepoint-safe and so will prevent a safepoint from being reached. If used 140 // in the wrong way this can lead to a deadlock with the safepoint code. 141 142 void Mutex::lock_without_safepoint_check(Thread * self) { 143 assert(owner() != self, "invariant"); 144 145 check_no_safepoint_state(self); 146 check_rank(self); 147 148 _lock.lock(); 149 assert_owner(nullptr); 150 set_owner(self); 151 } 152 153 void Mutex::lock_without_safepoint_check() { 154 lock_without_safepoint_check(Thread::current()); 155 } 156 157 158 // Returns true if thread succeeds in grabbing the lock, otherwise false. 159 bool Mutex::try_lock_inner(bool do_rank_checks) { 160 Thread * const self = Thread::current(); 161 // Checking the owner hides the potential difference in recursive locking behaviour 162 // on some platforms. 163 if (owner() == self) { 164 return false; 165 } 166 167 if (do_rank_checks) { 168 check_rank(self); 169 } 170 // Some safepoint checking locks use try_lock, so cannot check 171 // safepoint state, but can check blocking state. 172 check_block_state(self); 173 174 if (_lock.try_lock()) { 175 assert_owner(nullptr); 176 set_owner(self); 177 return true; 178 } 179 return false; 180 } 181 182 bool Mutex::try_lock() { 183 return try_lock_inner(true /* do_rank_checks */); 184 } 185 186 bool Mutex::try_lock_without_rank_check() { 187 bool res = try_lock_inner(false /* do_rank_checks */); 188 DEBUG_ONLY(if (res) _skip_rank_check = true;) 189 return res; 190 } 191 192 void Mutex::release_for_safepoint() { 193 assert_owner(nullptr); 194 _lock.unlock(); 195 } 196 197 void Mutex::unlock() { 198 DEBUG_ONLY(assert_owner(Thread::current())); 199 set_owner(nullptr); 200 _lock.unlock(); 201 } 202 203 void Monitor::notify() { 204 DEBUG_ONLY(assert_owner(Thread::current())); 205 _lock.notify(); 206 } 207 208 void Monitor::notify_all() { 209 DEBUG_ONLY(assert_owner(Thread::current())); 210 _lock.notify_all(); 211 } 212 213 // timeout is in milliseconds - with zero meaning never timeout 214 bool Monitor::wait_without_safepoint_check(uint64_t timeout) { 215 Thread* const self = Thread::current(); 216 217 assert_owner(self); 218 check_rank(self); 219 220 // conceptually set the owner to null in anticipation of 221 // abdicating the lock in wait 222 set_owner(nullptr); 223 224 // Check safepoint state after resetting owner and possible NSV. 225 check_no_safepoint_state(self); 226 227 int wait_status = _lock.wait(timeout); 228 set_owner(self); 229 return wait_status != 0; // return true IFF timeout 230 } 231 232 // timeout is in milliseconds - with zero meaning never timeout 233 bool Monitor::wait(uint64_t timeout) { 234 JavaThread* const self = JavaThread::current(); 235 // Safepoint checking logically implies an active JavaThread. 236 assert(self->is_active_Java_thread(), "invariant"); 237 238 assert_owner(self); 239 check_rank(self); 240 241 // conceptually set the owner to null in anticipation of 242 // abdicating the lock in wait 243 set_owner(nullptr); 244 245 // Check safepoint state after resetting owner and possible NSV. 246 check_safepoint_state(self); 247 248 int wait_status; 249 InFlightMutexRelease ifmr(this); 250 251 { 252 ThreadBlockInVMPreprocess<InFlightMutexRelease> tbivmdc(self, ifmr); 253 OSThreadWaitState osts(self->osthread(), false /* not Object.wait() */); 254 255 wait_status = _lock.wait(timeout); 256 } 257 258 if (ifmr.not_released()) { 259 // Not unlocked by ~ThreadBlockInVMPreprocess 260 assert_owner(nullptr); 261 // Conceptually reestablish ownership of the lock. 262 set_owner(self); 263 } else { 264 lock(self); 265 } 266 267 return wait_status != 0; // return true IFF timeout 268 } 269 270 static const int MAX_NUM_MUTEX = 1204; 271 static Mutex* _internal_mutex_arr[MAX_NUM_MUTEX]; 272 Mutex** Mutex::_mutex_array = _internal_mutex_arr; 273 int Mutex::_num_mutex = 0; 274 275 void Mutex::add_mutex(Mutex* var) { 276 assert(Mutex::_num_mutex < MAX_NUM_MUTEX, "increase MAX_NUM_MUTEX"); 277 Mutex::_mutex_array[_num_mutex++] = var; 278 } 279 280 Mutex::~Mutex() { 281 assert_owner(nullptr); 282 os::free(const_cast<char*>(_name)); 283 } 284 285 Mutex::Mutex(Rank rank, const char * name, bool allow_vm_block) : _owner(nullptr), _id(-1) { 286 assert(os::mutex_init_done(), "Too early!"); 287 assert(name != nullptr, "Mutex requires a name"); 288 _name = os::strdup(name, mtInternal); 289 _id = MutexLocker::name2id(name); 290 #ifdef ASSERT 291 _allow_vm_block = allow_vm_block; 292 _rank = rank; 293 _skip_rank_check = false; 294 295 assert(_rank >= static_cast<Rank>(0) && _rank <= safepoint, "Bad lock rank %s: %s", rank_name(), name); 296 297 // The allow_vm_block also includes allowing other non-Java threads to block or 298 // allowing Java threads to block in native. 299 assert(_rank > nosafepoint || _allow_vm_block, 300 "Locks that don't check for safepoint should always allow the vm to block: %s", name); 301 #endif 302 } 303 304 bool Mutex::owned_by_self() const { 305 return owner() == Thread::current(); 306 } 307 308 void Mutex::print_on_error(outputStream* st) const { 309 st->print("[" PTR_FORMAT, p2i(this)); 310 st->print("] %s", _name); 311 st->print(" - owner thread: " PTR_FORMAT, p2i(owner())); 312 } 313 314 // ---------------------------------------------------------------------------------- 315 // Non-product code 316 // 317 #ifdef ASSERT 318 static Mutex::Rank _ranks[] = { Mutex::event, Mutex::service, Mutex::stackwatermark, Mutex::tty, Mutex::oopstorage, 319 Mutex::nosafepoint, Mutex::safepoint }; 320 321 static const char* _rank_names[] = { "event", "service", "stackwatermark", "tty", "oopstorage", 322 "nosafepoint", "safepoint" }; 323 324 static const int _num_ranks = 7; 325 326 static const char* rank_name_internal(Mutex::Rank r) { 327 // Find closest rank and print out the name 328 stringStream st; 329 for (int i = 0; i < _num_ranks; i++) { 330 if (r == _ranks[i]) { 331 return _rank_names[i]; 332 } else if (r > _ranks[i] && (i < _num_ranks-1 && r < _ranks[i+1])) { 333 int delta = static_cast<int>(_ranks[i+1]) - static_cast<int>(r); 334 st.print("%s-%d", _rank_names[i+1], delta); 335 return st.as_string(); 336 } 337 } 338 return "fail"; 339 } 340 341 const char* Mutex::rank_name() const { 342 return rank_name_internal(_rank); 343 } 344 345 346 void Mutex::assert_no_overlap(Rank orig, Rank adjusted, int adjust) { 347 int i = 0; 348 while (_ranks[i] < orig) i++; 349 // underflow is caught in constructor 350 if (i != 0 && adjusted > event && adjusted <= _ranks[i-1]) { 351 ResourceMark rm; 352 assert(adjusted > _ranks[i-1], 353 "Rank %s-%d overlaps with %s", 354 rank_name_internal(orig), adjust, rank_name_internal(adjusted)); 355 } 356 } 357 #endif // ASSERT 358 359 #ifndef PRODUCT 360 void Mutex::print_on(outputStream* st) const { 361 st->print("Mutex: [" PTR_FORMAT "] %s - owner: " PTR_FORMAT, 362 p2i(this), _name, p2i(owner())); 363 if (_allow_vm_block) { 364 st->print("%s", " allow_vm_block"); 365 } 366 DEBUG_ONLY(st->print(" %s", rank_name())); 367 st->cr(); 368 } 369 370 void Mutex::print() const { 371 print_on(::tty); 372 } 373 #endif // PRODUCT 374 375 #ifdef ASSERT 376 void Mutex::assert_owner(Thread * expected) { 377 const char* msg = "invalid owner"; 378 if (expected == nullptr) { 379 msg = "should be un-owned"; 380 } 381 else if (expected == Thread::current()) { 382 msg = "should be owned by current thread"; 383 } 384 assert(owner() == expected, 385 "%s: owner=" INTPTR_FORMAT ", should be=" INTPTR_FORMAT, 386 msg, p2i(owner()), p2i(expected)); 387 } 388 389 Mutex* Mutex::get_least_ranked_lock(Mutex* locks) { 390 Mutex *res, *tmp; 391 for (res = tmp = locks; tmp != nullptr; tmp = tmp->next()) { 392 if (tmp->rank() < res->rank()) { 393 res = tmp; 394 } 395 } 396 return res; 397 } 398 399 Mutex* Mutex::get_least_ranked_lock_besides_this(Mutex* locks) { 400 Mutex *res, *tmp; 401 for (res = nullptr, tmp = locks; tmp != nullptr; tmp = tmp->next()) { 402 if (tmp != this && (res == nullptr || tmp->rank() < res->rank())) { 403 res = tmp; 404 } 405 } 406 assert(res != this, "invariant"); 407 return res; 408 } 409 410 // Tests for rank violations that might indicate exposure to deadlock. 411 void Mutex::check_rank(Thread* thread) { 412 Mutex* locks_owned = thread->owned_locks(); 413 414 // We expect the locks already acquired to be in increasing rank order, 415 // modulo locks acquired in try_lock_without_rank_check() 416 for (Mutex* tmp = locks_owned; tmp != nullptr; tmp = tmp->next()) { 417 if (tmp->next() != nullptr) { 418 assert(tmp->rank() < tmp->next()->rank() 419 || tmp->skip_rank_check(), "mutex rank anomaly?"); 420 } 421 } 422 423 if (owned_by_self()) { 424 // wait() case 425 Mutex* least = get_least_ranked_lock_besides_this(locks_owned); 426 // For JavaThreads, we enforce not holding locks of rank nosafepoint or lower while waiting 427 // because the held lock has a NoSafepointVerifier so waiting on a lower ranked lock will not be 428 // able to check for safepoints first with a TBIVM. 429 // For all threads, we enforce not holding the tty lock or below, since this could block progress also. 430 // Also "this" should be the monitor with lowest rank owned by this thread. 431 if (least != nullptr && ((least->rank() <= Mutex::nosafepoint && thread->is_Java_thread()) || 432 least->rank() <= Mutex::tty || 433 least->rank() <= this->rank())) { 434 ResourceMark rm(thread); 435 assert(false, "Attempting to wait on monitor %s/%s while holding lock %s/%s -- " 436 "possible deadlock. %s", name(), rank_name(), least->name(), least->rank_name(), 437 least->rank() <= this->rank() ? 438 "Should wait on the least ranked monitor from all owned locks." : 439 thread->is_Java_thread() ? 440 "Should not block(wait) while holding a lock of rank nosafepoint or below." : 441 "Should not block(wait) while holding a lock of rank tty or below."); 442 } 443 } else { 444 // lock()/lock_without_safepoint_check()/try_lock() case 445 Mutex* least = get_least_ranked_lock(locks_owned); 446 // Deadlock prevention rules require us to acquire Mutexes only in 447 // a global total order. For example, if m1 is the lowest ranked mutex 448 // that the thread holds and m2 is the mutex the thread is trying 449 // to acquire, then deadlock prevention rules require that the rank 450 // of m2 be less than the rank of m1. This prevents circular waits. 451 if (least != nullptr && least->rank() <= this->rank()) { 452 ResourceMark rm(thread); 453 if (least->rank() > Mutex::tty) { 454 // Printing owned locks acquires tty lock. If the least rank was below or equal 455 // tty, then deadlock detection code would circle back here, until we run 456 // out of stack and crash hard. Print locks only when it is safe. 457 thread->print_owned_locks(); 458 } 459 assert(false, "Attempting to acquire lock %s/%s out of order with lock %s/%s -- " 460 "possible deadlock", this->name(), this->rank_name(), least->name(), least->rank_name()); 461 } 462 } 463 } 464 465 // Called immediately after lock acquisition or release as a diagnostic 466 // to track the lock-set of the thread. 467 // Rather like an EventListener for _owner (:>). 468 469 void Mutex::set_owner_implementation(Thread *new_owner) { 470 // This function is solely responsible for maintaining 471 // and checking the invariant that threads and locks 472 // are in a 1/N relation, with some some locks unowned. 473 // It uses the Mutex::_owner, Mutex::_next, and 474 // Thread::_owned_locks fields, and no other function 475 // changes those fields. 476 // It is illegal to set the mutex from one non-null 477 // owner to another--it must be owned by null as an 478 // intermediate state. 479 480 if (new_owner != nullptr) { 481 // the thread is acquiring this lock 482 483 assert(new_owner == Thread::current(), "Should I be doing this?"); 484 assert(owner() == nullptr, "setting the owner thread of an already owned mutex"); 485 raw_set_owner(new_owner); // set the owner 486 487 // link "this" into the owned locks list 488 this->_next = new_owner->_owned_locks; 489 new_owner->_owned_locks = this; 490 491 // NSV implied with locking allow_vm_block flag. 492 // The tty_lock is special because it is released for the safepoint by 493 // the safepoint mechanism. 494 if (new_owner->is_Java_thread() && _allow_vm_block && this != tty_lock) { 495 JavaThread::cast(new_owner)->inc_no_safepoint_count(); 496 } 497 498 } else { 499 // the thread is releasing this lock 500 501 Thread* old_owner = owner(); 502 _last_owner = old_owner; 503 _skip_rank_check = false; 504 505 assert(old_owner != nullptr, "removing the owner thread of an unowned mutex"); 506 assert(old_owner == Thread::current(), "removing the owner thread of an unowned mutex"); 507 508 raw_set_owner(nullptr); // set the owner 509 510 Mutex* locks = old_owner->owned_locks(); 511 512 // remove "this" from the owned locks list 513 514 Mutex* prev = nullptr; 515 bool found = false; 516 for (; locks != nullptr; prev = locks, locks = locks->next()) { 517 if (locks == this) { 518 found = true; 519 break; 520 } 521 } 522 assert(found, "Removing a lock not owned"); 523 if (prev == nullptr) { 524 old_owner->_owned_locks = _next; 525 } else { 526 prev->_next = _next; 527 } 528 _next = nullptr; 529 530 // ~NSV implied with locking allow_vm_block flag. 531 if (old_owner->is_Java_thread() && _allow_vm_block && this != tty_lock) { 532 JavaThread::cast(old_owner)->dec_no_safepoint_count(); 533 } 534 } 535 } 536 #endif // ASSERT 537 538 // Print all mutexes/monitors that are currently owned by a thread; called 539 // by fatal error handler. 540 void Mutex::print_owned_locks_on_error(outputStream* st) { 541 st->print("VM Mutex/Monitor currently owned by a thread: "); 542 bool none = true; 543 for (int i = 0; i < _num_mutex; i++) { 544 // see if it has an owner 545 if (_mutex_array[i]->owner() != nullptr) { 546 if (none) { 547 // print format used by Mutex::print_on_error() 548 st->print_cr(" ([mutex/lock_event])"); 549 none = false; 550 } 551 _mutex_array[i]->print_on_error(st); 552 st->cr(); 553 } 554 } 555 if (none) st->print_cr("None"); 556 } 557 558 void Mutex::print_lock_ranks(outputStream* st) { 559 st->print_cr("VM Mutex/Monitor ranks: "); 560 561 #ifdef ASSERT 562 // Be extra defensive and figure out the bounds on 563 // ranks right here. This also saves a bit of time 564 // in the #ranks*#mutexes loop below. 565 int min_rank = INT_MAX; 566 int max_rank = INT_MIN; 567 for (int i = 0; i < _num_mutex; i++) { 568 Mutex* m = _mutex_array[i]; 569 int r = (int) m->rank(); 570 if (min_rank > r) min_rank = r; 571 if (max_rank < r) max_rank = r; 572 } 573 574 // Print the listings rank by rank 575 for (int r = min_rank; r <= max_rank; r++) { 576 bool first = true; 577 for (int i = 0; i < _num_mutex; i++) { 578 Mutex* m = _mutex_array[i]; 579 if (r != (int) m->rank()) continue; 580 581 if (first) { 582 st->cr(); 583 st->print_cr("Rank \"%s\":", m->rank_name()); 584 first = false; 585 } 586 st->print_cr(" %s", m->name()); 587 } 588 } 589 #else 590 st->print_cr(" Only known in debug builds."); 591 #endif // ASSERT 592 } 593 594 RecursiveMutex::RecursiveMutex() : _sem(1), _owner(nullptr), _recursions(0) {} 595 596 void RecursiveMutex::lock(Thread* current) { 597 assert(current == Thread::current(), "must be current thread"); 598 if (current == _owner) { 599 _recursions++; 600 } else { 601 // can be called by jvmti by VMThread. 602 if (current->is_Java_thread()) { 603 _sem.wait_with_safepoint_check(JavaThread::cast(current)); 604 } else { 605 _sem.wait(); 606 } 607 _recursions++; 608 assert(_recursions == 1, "should be"); 609 _owner = current; 610 } 611 } 612 613 void RecursiveMutex::unlock(Thread* current) { 614 assert(current == Thread::current(), "must be current thread"); 615 assert(current == _owner, "must be owner"); 616 _recursions--; 617 if (_recursions == 0) { 618 _owner = nullptr; 619 _sem.signal(); 620 } 621 }