1 /*
  2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "logging/log.hpp"
 27 #include "memory/resourceArea.hpp"
 28 #include "runtime/interfaceSupport.inline.hpp"
 29 #include "runtime/javaThread.inline.hpp"
 30 #include "runtime/mutex.hpp"
 31 #include "runtime/os.inline.hpp"
 32 #include "runtime/osThread.hpp"
 33 #include "runtime/safepointMechanism.inline.hpp"
 34 #include "runtime/semaphore.inline.hpp"
 35 #include "runtime/threadCrashProtection.hpp"
 36 #include "utilities/events.hpp"
 37 #include "utilities/macros.hpp"
 38 
 39 class InFlightMutexRelease {
 40  private:
 41   Mutex* _in_flight_mutex;
 42  public:
 43   InFlightMutexRelease(Mutex* in_flight_mutex) : _in_flight_mutex(in_flight_mutex) {
 44     assert(in_flight_mutex != nullptr, "must be");
 45   }
 46   void operator()(JavaThread* current) {
 47     _in_flight_mutex->release_for_safepoint();
 48     _in_flight_mutex = nullptr;
 49   }
 50   bool not_released() { return _in_flight_mutex != nullptr; }
 51 };
 52 
 53 #ifdef ASSERT
 54 void Mutex::check_block_state(Thread* thread) {
 55   if (!_allow_vm_block && thread->is_VM_thread()) {
 56     // JavaThreads are checked to make sure that they do not hold _allow_vm_block locks during operations
 57     // that could safepoint.  Make sure the vm thread never uses locks with _allow_vm_block == false.
 58     fatal("VM thread could block on lock that may be held by a JavaThread during safepoint: %s", name());
 59   }
 60 
 61   assert(!ThreadCrashProtection::is_crash_protected(thread),
 62          "locking not allowed when crash protection is set");
 63 }
 64 
 65 void Mutex::check_safepoint_state(Thread* thread) {
 66   check_block_state(thread);
 67 
 68   // If the lock acquisition checks for safepoint, verify that the lock was created with rank that
 69   // has safepoint checks. Technically this doesn't affect NonJavaThreads since they won't actually
 70   // check for safepoint, but let's make the rule unconditional unless there's a good reason not to.
 71   assert(_rank > nosafepoint,
 72          "This lock should not be taken with a safepoint check: %s", name());
 73 
 74   if (thread->is_active_Java_thread()) {
 75     // Also check NoSafepointVerifier, and thread state is _thread_in_vm
 76     JavaThread::cast(thread)->check_for_valid_safepoint_state();
 77   }
 78 }
 79 
 80 void Mutex::check_no_safepoint_state(Thread* thread) {
 81   check_block_state(thread);
 82   assert(!thread->is_active_Java_thread() || _rank <= nosafepoint,
 83          "This lock should always have a safepoint check for Java threads: %s",
 84          name());
 85 }
 86 #endif // ASSERT
 87 
 88 void Mutex::lock_contended(Thread* self) {
 89   DEBUG_ONLY(int retry_cnt = 0;)
 90   bool is_active_Java_thread = self->is_active_Java_thread();
 91   do {
 92     #ifdef ASSERT
 93     if (retry_cnt++ > 3) {
 94       log_trace(vmmutex)("JavaThread " INTPTR_FORMAT " on %d attempt trying to acquire vmmutex %s", p2i(self), retry_cnt, _name);
 95     }
 96     #endif // ASSERT
 97 
 98     // Is it a JavaThread participating in the safepoint protocol.
 99     if (is_active_Java_thread) {
100       InFlightMutexRelease ifmr(this);
101       assert(rank() > Mutex::nosafepoint, "Potential deadlock with nosafepoint or lesser rank mutex");
102       {
103         ThreadBlockInVMPreprocess<InFlightMutexRelease> tbivmdc(JavaThread::cast(self), ifmr);
104         _lock.lock();
105       }
106       if (ifmr.not_released()) {
107         // Not unlocked by ~ThreadBlockInVMPreprocess
108         break;
109       }
110     } else {
111       _lock.lock();
112       break;
113     }
114   } while (!_lock.try_lock());
115 }
116 
117 void Mutex::lock(Thread* self) {
118   assert(owner() != self, "invariant");
119 
120   check_safepoint_state(self);
121   check_rank(self);
122 
123   if (!_lock.try_lock()) {
124     // The lock is contended, use contended slow-path function to lock
125     lock_contended(self);
126   }
127 
128   assert_owner(nullptr);
129   set_owner(self);
130 }
131 
132 void Mutex::lock() {
133   lock(Thread::current());
134 }
135 
136 // Lock without safepoint check - a degenerate variant of lock() for use by
137 // JavaThreads when it is known to be safe to not check for a safepoint when
138 // acquiring this lock. If the thread blocks acquiring the lock it is not
139 // safepoint-safe and so will prevent a safepoint from being reached. If used
140 // in the wrong way this can lead to a deadlock with the safepoint code.
141 
142 void Mutex::lock_without_safepoint_check(Thread * self) {
143   assert(owner() != self, "invariant");
144 
145   check_no_safepoint_state(self);
146   check_rank(self);
147 
148   _lock.lock();
149   assert_owner(nullptr);
150   set_owner(self);
151 }
152 
153 void Mutex::lock_without_safepoint_check() {
154   lock_without_safepoint_check(Thread::current());
155 }
156 
157 
158 // Returns true if thread succeeds in grabbing the lock, otherwise false.
159 bool Mutex::try_lock_inner(bool do_rank_checks) {
160   Thread * const self = Thread::current();
161   // Checking the owner hides the potential difference in recursive locking behaviour
162   // on some platforms.
163   if (owner() == self) {
164     return false;
165   }
166 
167   if (do_rank_checks) {
168     check_rank(self);
169   }
170   // Some safepoint checking locks use try_lock, so cannot check
171   // safepoint state, but can check blocking state.
172   check_block_state(self);
173 
174   if (_lock.try_lock()) {
175     assert_owner(nullptr);
176     set_owner(self);
177     return true;
178   }
179   return false;
180 }
181 
182 bool Mutex::try_lock() {
183   return try_lock_inner(true /* do_rank_checks */);
184 }
185 
186 bool Mutex::try_lock_without_rank_check() {
187   bool res = try_lock_inner(false /* do_rank_checks */);
188   DEBUG_ONLY(if (res) _skip_rank_check = true;)
189   return res;
190 }
191 
192 void Mutex::release_for_safepoint() {
193   assert_owner(nullptr);
194   _lock.unlock();
195 }
196 
197 void Mutex::unlock() {
198   DEBUG_ONLY(assert_owner(Thread::current()));
199   set_owner(nullptr);
200   _lock.unlock();
201 }
202 
203 void Monitor::notify() {
204   DEBUG_ONLY(assert_owner(Thread::current()));
205   _lock.notify();
206 }
207 
208 void Monitor::notify_all() {
209   DEBUG_ONLY(assert_owner(Thread::current()));
210   _lock.notify_all();
211 }
212 
213 // timeout is in milliseconds - with zero meaning never timeout
214 bool Monitor::wait_without_safepoint_check(uint64_t timeout) {
215   Thread* const self = Thread::current();
216 
217   assert_owner(self);
218   check_rank(self);
219 
220   // conceptually set the owner to null in anticipation of
221   // abdicating the lock in wait
222   set_owner(nullptr);
223 
224   // Check safepoint state after resetting owner and possible NSV.
225   check_no_safepoint_state(self);
226 
227   int wait_status = _lock.wait(timeout);
228   set_owner(self);
229   return wait_status != 0;          // return true IFF timeout
230 }
231 
232 // timeout is in milliseconds - with zero meaning never timeout
233 bool Monitor::wait(uint64_t timeout) {
234   JavaThread* const self = JavaThread::current();
235   // Safepoint checking logically implies an active JavaThread.
236   assert(self->is_active_Java_thread(), "invariant");
237 
238   assert_owner(self);
239   check_rank(self);
240 
241   // conceptually set the owner to null in anticipation of
242   // abdicating the lock in wait
243   set_owner(nullptr);
244 
245   // Check safepoint state after resetting owner and possible NSV.
246   check_safepoint_state(self);
247 
248   int wait_status;
249   InFlightMutexRelease ifmr(this);
250 
251   {
252     ThreadBlockInVMPreprocess<InFlightMutexRelease> tbivmdc(self, ifmr);
253     OSThreadWaitState osts(self->osthread(), false /* not Object.wait() */);
254 
255     wait_status = _lock.wait(timeout);
256   }
257 
258   if (ifmr.not_released()) {
259     // Not unlocked by ~ThreadBlockInVMPreprocess
260     assert_owner(nullptr);
261     // Conceptually reestablish ownership of the lock.
262     set_owner(self);
263   } else {
264     lock(self);
265   }
266 
267   return wait_status != 0;          // return true IFF timeout
268 }
269 
270 Mutex::~Mutex() {
271   assert_owner(nullptr);
272   os::free(const_cast<char*>(_name));
273 }
274 
275 Mutex::Mutex(Rank rank, const char * name, bool allow_vm_block) : _owner(nullptr), _id(-1) {
276   assert(os::mutex_init_done(), "Too early!");
277   assert(name != nullptr, "Mutex requires a name");
278   _name = os::strdup(name, mtInternal);
279   _id = MutexLocker::name2id(name);
280 #ifdef ASSERT
281   _allow_vm_block  = allow_vm_block;
282   _rank            = rank;
283   _skip_rank_check = false;
284 
285   assert(_rank >= static_cast<Rank>(0) && _rank <= safepoint, "Bad lock rank %s: %s", rank_name(), name);
286 
287   // The allow_vm_block also includes allowing other non-Java threads to block or
288   // allowing Java threads to block in native.
289   assert(_rank > nosafepoint || _allow_vm_block,
290          "Locks that don't check for safepoint should always allow the vm to block: %s", name);
291 #endif
292 }
293 
294 bool Mutex::owned_by_self() const {
295   return owner() == Thread::current();
296 }
297 
298 void Mutex::print_on_error(outputStream* st) const {
299   st->print("[" PTR_FORMAT, p2i(this));
300   st->print("] %s", _name);
301   st->print(" - owner thread: " PTR_FORMAT, p2i(owner()));
302 }
303 
304 // ----------------------------------------------------------------------------------
305 // Non-product code
306 //
307 #ifdef ASSERT
308 static Mutex::Rank _ranks[] = { Mutex::event, Mutex::service, Mutex::stackwatermark, Mutex::tty, Mutex::oopstorage,
309                                 Mutex::nosafepoint, Mutex::safepoint };
310 
311 static const char* _rank_names[] = { "event", "service", "stackwatermark", "tty", "oopstorage",
312                                      "nosafepoint", "safepoint" };
313 
314 static const int _num_ranks = 7;
315 
316 static const char* rank_name_internal(Mutex::Rank r) {
317   // Find closest rank and print out the name
318   stringStream st;
319   for (int i = 0; i < _num_ranks; i++) {
320     if (r == _ranks[i]) {
321       return _rank_names[i];
322     } else if (r  > _ranks[i] && (i < _num_ranks-1 && r < _ranks[i+1])) {
323       int delta = static_cast<int>(_ranks[i+1]) - static_cast<int>(r);
324       st.print("%s-%d", _rank_names[i+1], delta);
325       return st.as_string();
326     }
327   }
328   return "fail";
329 }
330 
331 const char* Mutex::rank_name() const {
332   return rank_name_internal(_rank);
333 }
334 
335 
336 void Mutex::assert_no_overlap(Rank orig, Rank adjusted, int adjust) {
337   int i = 0;
338   while (_ranks[i] < orig) i++;
339   // underflow is caught in constructor
340   if (i != 0 && adjusted > event && adjusted <= _ranks[i-1]) {
341     ResourceMark rm;
342     assert(adjusted > _ranks[i-1],
343            "Rank %s-%d overlaps with %s",
344            rank_name_internal(orig), adjust, rank_name_internal(adjusted));
345   }
346 }
347 #endif // ASSERT
348 
349 #ifndef PRODUCT
350 void Mutex::print_on(outputStream* st) const {
351   st->print("Mutex: [" PTR_FORMAT "] %s - owner: " PTR_FORMAT,
352             p2i(this), _name, p2i(owner()));
353   if (_allow_vm_block) {
354     st->print("%s", " allow_vm_block");
355   }
356   DEBUG_ONLY(st->print(" %s", rank_name()));
357   st->cr();
358 }
359 
360 void Mutex::print() const {
361   print_on(::tty);
362 }
363 #endif // PRODUCT
364 
365 #ifdef ASSERT
366 void Mutex::assert_owner(Thread * expected) {
367   const char* msg = "invalid owner";
368   if (expected == nullptr) {
369     msg = "should be un-owned";
370   }
371   else if (expected == Thread::current()) {
372     msg = "should be owned by current thread";
373   }
374   assert(owner() == expected,
375          "%s: owner=" INTPTR_FORMAT ", should be=" INTPTR_FORMAT,
376          msg, p2i(owner()), p2i(expected));
377 }
378 
379 Mutex* Mutex::get_least_ranked_lock(Mutex* locks) {
380   Mutex *res, *tmp;
381   for (res = tmp = locks; tmp != nullptr; tmp = tmp->next()) {
382     if (tmp->rank() < res->rank()) {
383       res = tmp;
384     }
385   }
386   return res;
387 }
388 
389 Mutex* Mutex::get_least_ranked_lock_besides_this(Mutex* locks) {
390   Mutex *res, *tmp;
391   for (res = nullptr, tmp = locks; tmp != nullptr; tmp = tmp->next()) {
392     if (tmp != this && (res == nullptr || tmp->rank() < res->rank())) {
393       res = tmp;
394     }
395   }
396   assert(res != this, "invariant");
397   return res;
398 }
399 
400 // Tests for rank violations that might indicate exposure to deadlock.
401 void Mutex::check_rank(Thread* thread) {
402   Mutex* locks_owned = thread->owned_locks();
403 
404   // We expect the locks already acquired to be in increasing rank order,
405   // modulo locks acquired in try_lock_without_rank_check()
406   for (Mutex* tmp = locks_owned; tmp != nullptr; tmp = tmp->next()) {
407     if (tmp->next() != nullptr) {
408       assert(tmp->rank() < tmp->next()->rank()
409              || tmp->skip_rank_check(), "mutex rank anomaly?");
410     }
411   }
412 
413   if (owned_by_self()) {
414     // wait() case
415     Mutex* least = get_least_ranked_lock_besides_this(locks_owned);
416     // For JavaThreads, we enforce not holding locks of rank nosafepoint or lower while waiting
417     // because the held lock has a NoSafepointVerifier so waiting on a lower ranked lock will not be
418     // able to check for safepoints first with a TBIVM.
419     // For all threads, we enforce not holding the tty lock or below, since this could block progress also.
420     // Also "this" should be the monitor with lowest rank owned by this thread.
421     if (least != nullptr && ((least->rank() <= Mutex::nosafepoint && thread->is_Java_thread()) ||
422                            least->rank() <= Mutex::tty ||
423                            least->rank() <= this->rank())) {
424       ResourceMark rm(thread);
425       assert(false, "Attempting to wait on monitor %s/%s while holding lock %s/%s -- "
426              "possible deadlock. %s", name(), rank_name(), least->name(), least->rank_name(),
427              least->rank() <= this->rank() ?
428               "Should wait on the least ranked monitor from all owned locks." :
429              thread->is_Java_thread() ?
430               "Should not block(wait) while holding a lock of rank nosafepoint or below." :
431               "Should not block(wait) while holding a lock of rank tty or below.");
432     }
433   } else {
434     // lock()/lock_without_safepoint_check()/try_lock() case
435     Mutex* least = get_least_ranked_lock(locks_owned);
436     // Deadlock prevention rules require us to acquire Mutexes only in
437     // a global total order. For example, if m1 is the lowest ranked mutex
438     // that the thread holds and m2 is the mutex the thread is trying
439     // to acquire, then deadlock prevention rules require that the rank
440     // of m2 be less than the rank of m1. This prevents circular waits.
441     if (least != nullptr && least->rank() <= this->rank()) {
442       ResourceMark rm(thread);
443       if (least->rank() > Mutex::tty) {
444         // Printing owned locks acquires tty lock. If the least rank was below or equal
445         // tty, then deadlock detection code would circle back here, until we run
446         // out of stack and crash hard. Print locks only when it is safe.
447         thread->print_owned_locks();
448       }
449       assert(false, "Attempting to acquire lock %s/%s out of order with lock %s/%s -- "
450              "possible deadlock", this->name(), this->rank_name(), least->name(), least->rank_name());
451     }
452   }
453 }
454 
455 // Called immediately after lock acquisition or release as a diagnostic
456 // to track the lock-set of the thread.
457 // Rather like an EventListener for _owner (:>).
458 
459 void Mutex::set_owner_implementation(Thread *new_owner) {
460   // This function is solely responsible for maintaining
461   // and checking the invariant that threads and locks
462   // are in a 1/N relation, with some some locks unowned.
463   // It uses the Mutex::_owner, Mutex::_next, and
464   // Thread::_owned_locks fields, and no other function
465   // changes those fields.
466   // It is illegal to set the mutex from one non-null
467   // owner to another--it must be owned by null as an
468   // intermediate state.
469 
470   if (new_owner != nullptr) {
471     // the thread is acquiring this lock
472 
473     assert(new_owner == Thread::current(), "Should I be doing this?");
474     assert(owner() == nullptr, "setting the owner thread of an already owned mutex");
475     raw_set_owner(new_owner); // set the owner
476 
477     // link "this" into the owned locks list
478     this->_next = new_owner->_owned_locks;
479     new_owner->_owned_locks = this;
480 
481     // NSV implied with locking allow_vm_block flag.
482     // The tty_lock is special because it is released for the safepoint by
483     // the safepoint mechanism.
484     if (new_owner->is_Java_thread() && _allow_vm_block && this != tty_lock) {
485       JavaThread::cast(new_owner)->inc_no_safepoint_count();
486     }
487 
488   } else {
489     // the thread is releasing this lock
490 
491     Thread* old_owner = owner();
492     _last_owner = old_owner;
493     _skip_rank_check = false;
494 
495     assert(old_owner != nullptr, "removing the owner thread of an unowned mutex");
496     assert(old_owner == Thread::current(), "removing the owner thread of an unowned mutex");
497 
498     raw_set_owner(nullptr); // set the owner
499 
500     Mutex* locks = old_owner->owned_locks();
501 
502     // remove "this" from the owned locks list
503 
504     Mutex* prev = nullptr;
505     bool found = false;
506     for (; locks != nullptr; prev = locks, locks = locks->next()) {
507       if (locks == this) {
508         found = true;
509         break;
510       }
511     }
512     assert(found, "Removing a lock not owned");
513     if (prev == nullptr) {
514       old_owner->_owned_locks = _next;
515     } else {
516       prev->_next = _next;
517     }
518     _next = nullptr;
519 
520     // ~NSV implied with locking allow_vm_block flag.
521     if (old_owner->is_Java_thread() && _allow_vm_block && this != tty_lock) {
522       JavaThread::cast(old_owner)->dec_no_safepoint_count();
523     }
524   }
525 }
526 #endif // ASSERT
527 
528 
529 RecursiveMutex::RecursiveMutex() : _sem(1), _owner(nullptr), _recursions(0) {}
530 
531 void RecursiveMutex::lock(Thread* current) {
532   assert(current == Thread::current(), "must be current thread");
533   if (current == _owner) {
534     _recursions++;
535   } else {
536     // can be called by jvmti by VMThread.
537     if (current->is_Java_thread()) {
538       _sem.wait_with_safepoint_check(JavaThread::cast(current));
539     } else {
540       _sem.wait();
541     }
542     _recursions++;
543     assert(_recursions == 1, "should be");
544     _owner = current;
545   }
546 }
547 
548 void RecursiveMutex::unlock(Thread* current) {
549   assert(current == Thread::current(), "must be current thread");
550   assert(current == _owner, "must be owner");
551   _recursions--;
552   if (_recursions == 0) {
553     _owner = nullptr;
554     _sem.signal();
555   }
556 }