1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveBuilder.hpp"
  26 #include "cds/archiveUtils.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/aotCodeCache.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/compiledIC.hpp"
  35 #include "code/nmethod.inline.hpp"
  36 #include "code/scopeDesc.hpp"
  37 #include "code/vtableStubs.hpp"
  38 #include "compiler/abstractCompiler.hpp"
  39 #include "compiler/compileBroker.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/interpreterRuntime.hpp"
  45 #include "jfr/jfrEvents.hpp"
  46 #include "jvm.h"
  47 #include "logging/log.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "metaprogramming/primitiveConversions.hpp"
  51 #include "oops/klass.hpp"
  52 #include "oops/method.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "prims/forte.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/methodHandles.hpp"
  59 #include "prims/nativeLookup.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/atomicAccess.hpp"
  62 #include "runtime/basicLock.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/init.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/jniHandles.inline.hpp"
  70 #include "runtime/osThread.hpp"
  71 #include "runtime/perfData.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/synchronizer.inline.hpp"
  76 #include "runtime/timerTrace.hpp"
  77 #include "runtime/vframe.inline.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vm_version.hpp"
  80 #include "utilities/copy.hpp"
  81 #include "utilities/dtrace.hpp"
  82 #include "utilities/events.hpp"
  83 #include "utilities/globalDefinitions.hpp"
  84 #include "utilities/hashTable.hpp"
  85 #include "utilities/macros.hpp"
  86 #include "utilities/xmlstream.hpp"
  87 #ifdef COMPILER1
  88 #include "c1/c1_Runtime1.hpp"
  89 #endif
  90 #if INCLUDE_JFR
  91 #include "jfr/jfr.inline.hpp"
  92 #endif
  93 
  94 // Shared runtime stub routines reside in their own unique blob with a
  95 // single entry point
  96 
  97 
  98 #define SHARED_STUB_FIELD_DEFINE(name, type) \
  99   type*       SharedRuntime::BLOB_FIELD_NAME(name);
 100   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
 101 #undef SHARED_STUB_FIELD_DEFINE
 102 
 103 nmethod*            SharedRuntime::_cont_doYield_stub;
 104 
 105 #if 0
 106 // TODO tweak global stub name generation to match this
 107 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 108 const char *SharedRuntime::_stub_names[] = {
 109   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 110 };
 111 #endif
 112 
 113 //----------------------------generate_stubs-----------------------------------
 114 void SharedRuntime::generate_initial_stubs() {
 115   // Build this early so it's available for the interpreter.
 116   _throw_StackOverflowError_blob =
 117     generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
 118                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 119 }
 120 
 121 void SharedRuntime::generate_stubs() {
 122   _wrong_method_blob =
 123     generate_resolve_blob(StubId::shared_wrong_method_id,
 124                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 125   _wrong_method_abstract_blob =
 126     generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
 127                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 128   _ic_miss_blob =
 129     generate_resolve_blob(StubId::shared_ic_miss_id,
 130                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 131   _resolve_opt_virtual_call_blob =
 132     generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
 133                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 134   _resolve_virtual_call_blob =
 135     generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
 136                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 137   _resolve_static_call_blob =
 138     generate_resolve_blob(StubId::shared_resolve_static_call_id,
 139                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 140 
 141   _throw_delayed_StackOverflowError_blob =
 142     generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
 143                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 144 
 145   _throw_AbstractMethodError_blob =
 146     generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
 147                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 148 
 149   _throw_IncompatibleClassChangeError_blob =
 150     generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
 151                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 152 
 153   _throw_NullPointerException_at_call_blob =
 154     generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
 155                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 156 
 157 #if COMPILER2_OR_JVMCI
 158   // Vectors are generated only by C2 and JVMCI.
 159   bool support_wide = is_wide_vector(MaxVectorSize);
 160   if (support_wide) {
 161     _polling_page_vectors_safepoint_handler_blob =
 162       generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
 163                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 164   }
 165 #endif // COMPILER2_OR_JVMCI
 166   _polling_page_safepoint_handler_blob =
 167     generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
 168                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 169   _polling_page_return_handler_blob =
 170     generate_handler_blob(StubId::shared_polling_page_return_handler_id,
 171                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 172 
 173   generate_deopt_blob();
 174 }
 175 
 176 void SharedRuntime::init_adapter_library() {
 177   AdapterHandlerLibrary::initialize();
 178 }
 179 
 180 #if INCLUDE_JFR
 181 //------------------------------generate jfr runtime stubs ------
 182 void SharedRuntime::generate_jfr_stubs() {
 183   ResourceMark rm;
 184   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 185   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 186 
 187   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 188   _jfr_return_lease_blob = generate_jfr_return_lease();
 189 }
 190 
 191 #endif // INCLUDE_JFR
 192 
 193 #include <math.h>
 194 
 195 // Implementation of SharedRuntime
 196 
 197 #ifndef PRODUCT
 198 // For statistics
 199 uint SharedRuntime::_ic_miss_ctr = 0;
 200 uint SharedRuntime::_wrong_method_ctr = 0;
 201 uint SharedRuntime::_resolve_static_ctr = 0;
 202 uint SharedRuntime::_resolve_virtual_ctr = 0;
 203 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
 204 uint SharedRuntime::_implicit_null_throws = 0;
 205 uint SharedRuntime::_implicit_div0_throws = 0;
 206 
 207 int64_t SharedRuntime::_nof_normal_calls = 0;
 208 int64_t SharedRuntime::_nof_inlined_calls = 0;
 209 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 210 int64_t SharedRuntime::_nof_static_calls = 0;
 211 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 212 int64_t SharedRuntime::_nof_interface_calls = 0;
 213 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 214 
 215 uint SharedRuntime::_new_instance_ctr=0;
 216 uint SharedRuntime::_new_array_ctr=0;
 217 uint SharedRuntime::_multi2_ctr=0;
 218 uint SharedRuntime::_multi3_ctr=0;
 219 uint SharedRuntime::_multi4_ctr=0;
 220 uint SharedRuntime::_multi5_ctr=0;
 221 uint SharedRuntime::_mon_enter_stub_ctr=0;
 222 uint SharedRuntime::_mon_exit_stub_ctr=0;
 223 uint SharedRuntime::_mon_enter_ctr=0;
 224 uint SharedRuntime::_mon_exit_ctr=0;
 225 uint SharedRuntime::_partial_subtype_ctr=0;
 226 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 227 uint SharedRuntime::_jshort_array_copy_ctr=0;
 228 uint SharedRuntime::_jint_array_copy_ctr=0;
 229 uint SharedRuntime::_jlong_array_copy_ctr=0;
 230 uint SharedRuntime::_oop_array_copy_ctr=0;
 231 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 232 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 233 uint SharedRuntime::_generic_array_copy_ctr=0;
 234 uint SharedRuntime::_slow_array_copy_ctr=0;
 235 uint SharedRuntime::_find_handler_ctr=0;
 236 uint SharedRuntime::_rethrow_ctr=0;
 237 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 238 
 239 int     SharedRuntime::_ICmiss_index                    = 0;
 240 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 241 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 242 
 243 
 244 void SharedRuntime::trace_ic_miss(address at) {
 245   for (int i = 0; i < _ICmiss_index; i++) {
 246     if (_ICmiss_at[i] == at) {
 247       _ICmiss_count[i]++;
 248       return;
 249     }
 250   }
 251   int index = _ICmiss_index++;
 252   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 253   _ICmiss_at[index] = at;
 254   _ICmiss_count[index] = 1;
 255 }
 256 
 257 void SharedRuntime::print_ic_miss_histogram() {
 258   if (ICMissHistogram) {
 259     tty->print_cr("IC Miss Histogram:");
 260     int tot_misses = 0;
 261     for (int i = 0; i < _ICmiss_index; i++) {
 262       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 263       tot_misses += _ICmiss_count[i];
 264     }
 265     tty->print_cr("Total IC misses: %7d", tot_misses);
 266   }
 267 }
 268 
 269 #ifdef COMPILER2
 270 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
 271 void SharedRuntime::debug_print_value(jboolean x) {
 272   tty->print_cr("boolean %d", x);
 273 }
 274 
 275 void SharedRuntime::debug_print_value(jbyte x) {
 276   tty->print_cr("byte %d", x);
 277 }
 278 
 279 void SharedRuntime::debug_print_value(jshort x) {
 280   tty->print_cr("short %d", x);
 281 }
 282 
 283 void SharedRuntime::debug_print_value(jchar x) {
 284   tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
 285 }
 286 
 287 void SharedRuntime::debug_print_value(jint x) {
 288   tty->print_cr("int %d", x);
 289 }
 290 
 291 void SharedRuntime::debug_print_value(jlong x) {
 292   tty->print_cr("long " JLONG_FORMAT, x);
 293 }
 294 
 295 void SharedRuntime::debug_print_value(jfloat x) {
 296   tty->print_cr("float %f", x);
 297 }
 298 
 299 void SharedRuntime::debug_print_value(jdouble x) {
 300   tty->print_cr("double %lf", x);
 301 }
 302 
 303 void SharedRuntime::debug_print_value(oopDesc* x) {
 304   x->print();
 305 }
 306 #endif // COMPILER2
 307 
 308 #endif // PRODUCT
 309 
 310 
 311 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 312   return x * y;
 313 JRT_END
 314 
 315 
 316 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 317   if (x == min_jlong && y == CONST64(-1)) {
 318     return x;
 319   } else {
 320     return x / y;
 321   }
 322 JRT_END
 323 
 324 
 325 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 326   if (x == min_jlong && y == CONST64(-1)) {
 327     return 0;
 328   } else {
 329     return x % y;
 330   }
 331 JRT_END
 332 
 333 
 334 #ifdef _WIN64
 335 const juint  float_sign_mask  = 0x7FFFFFFF;
 336 const juint  float_infinity   = 0x7F800000;
 337 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 338 const julong double_infinity  = CONST64(0x7FF0000000000000);
 339 #endif
 340 
 341 #if !defined(X86)
 342 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 343 #ifdef _WIN64
 344   // 64-bit Windows on amd64 returns the wrong values for
 345   // infinity operands.
 346   juint xbits = PrimitiveConversions::cast<juint>(x);
 347   juint ybits = PrimitiveConversions::cast<juint>(y);
 348   // x Mod Infinity == x unless x is infinity
 349   if (((xbits & float_sign_mask) != float_infinity) &&
 350        ((ybits & float_sign_mask) == float_infinity) ) {
 351     return x;
 352   }
 353   return ((jfloat)fmod_winx64((double)x, (double)y));
 354 #else
 355   return ((jfloat)fmod((double)x,(double)y));
 356 #endif
 357 JRT_END
 358 
 359 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 360 #ifdef _WIN64
 361   julong xbits = PrimitiveConversions::cast<julong>(x);
 362   julong ybits = PrimitiveConversions::cast<julong>(y);
 363   // x Mod Infinity == x unless x is infinity
 364   if (((xbits & double_sign_mask) != double_infinity) &&
 365        ((ybits & double_sign_mask) == double_infinity) ) {
 366     return x;
 367   }
 368   return ((jdouble)fmod_winx64((double)x, (double)y));
 369 #else
 370   return ((jdouble)fmod((double)x,(double)y));
 371 #endif
 372 JRT_END
 373 #endif // !X86
 374 
 375 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 376   return (jfloat)x;
 377 JRT_END
 378 
 379 #ifdef __SOFTFP__
 380 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 381   return x + y;
 382 JRT_END
 383 
 384 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 385   return x - y;
 386 JRT_END
 387 
 388 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 389   return x * y;
 390 JRT_END
 391 
 392 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 393   return x / y;
 394 JRT_END
 395 
 396 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 397   return x + y;
 398 JRT_END
 399 
 400 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 401   return x - y;
 402 JRT_END
 403 
 404 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 405   return x * y;
 406 JRT_END
 407 
 408 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 409   return x / y;
 410 JRT_END
 411 
 412 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 413   return (jdouble)x;
 414 JRT_END
 415 
 416 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 417   return (jdouble)x;
 418 JRT_END
 419 
 420 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 421   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 422 JRT_END
 423 
 424 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 425   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 426 JRT_END
 427 
 428 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 429   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 430 JRT_END
 431 
 432 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 433   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 434 JRT_END
 435 
 436 // Functions to return the opposite of the aeabi functions for nan.
 437 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 438   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 439 JRT_END
 440 
 441 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 442   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 443 JRT_END
 444 
 445 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 446   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 447 JRT_END
 448 
 449 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 450   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 451 JRT_END
 452 
 453 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 454   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 455 JRT_END
 456 
 457 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 458   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 459 JRT_END
 460 
 461 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 462   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 463 JRT_END
 464 
 465 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 466   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 467 JRT_END
 468 
 469 // Intrinsics make gcc generate code for these.
 470 float  SharedRuntime::fneg(float f)   {
 471   return -f;
 472 }
 473 
 474 double SharedRuntime::dneg(double f)  {
 475   return -f;
 476 }
 477 
 478 #endif // __SOFTFP__
 479 
 480 #if defined(__SOFTFP__) || defined(E500V2)
 481 // Intrinsics make gcc generate code for these.
 482 double SharedRuntime::dabs(double f)  {
 483   return (f <= (double)0.0) ? (double)0.0 - f : f;
 484 }
 485 
 486 #endif
 487 
 488 #if defined(__SOFTFP__)
 489 double SharedRuntime::dsqrt(double f) {
 490   return sqrt(f);
 491 }
 492 #endif
 493 
 494 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 495   if (g_isnan(x))
 496     return 0;
 497   if (x >= (jfloat) max_jint)
 498     return max_jint;
 499   if (x <= (jfloat) min_jint)
 500     return min_jint;
 501   return (jint) x;
 502 JRT_END
 503 
 504 
 505 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 506   if (g_isnan(x))
 507     return 0;
 508   if (x >= (jfloat) max_jlong)
 509     return max_jlong;
 510   if (x <= (jfloat) min_jlong)
 511     return min_jlong;
 512   return (jlong) x;
 513 JRT_END
 514 
 515 
 516 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 517   if (g_isnan(x))
 518     return 0;
 519   if (x >= (jdouble) max_jint)
 520     return max_jint;
 521   if (x <= (jdouble) min_jint)
 522     return min_jint;
 523   return (jint) x;
 524 JRT_END
 525 
 526 
 527 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 528   if (g_isnan(x))
 529     return 0;
 530   if (x >= (jdouble) max_jlong)
 531     return max_jlong;
 532   if (x <= (jdouble) min_jlong)
 533     return min_jlong;
 534   return (jlong) x;
 535 JRT_END
 536 
 537 
 538 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 539   return (jfloat)x;
 540 JRT_END
 541 
 542 
 543 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 544   return (jfloat)x;
 545 JRT_END
 546 
 547 
 548 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 549   return (jdouble)x;
 550 JRT_END
 551 
 552 
 553 // Exception handling across interpreter/compiler boundaries
 554 //
 555 // exception_handler_for_return_address(...) returns the continuation address.
 556 // The continuation address is the entry point of the exception handler of the
 557 // previous frame depending on the return address.
 558 
 559 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 560   // Note: This is called when we have unwound the frame of the callee that did
 561   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 562   // Notably, the stack is not walkable at this point, and hence the check must
 563   // be deferred until later. Specifically, any of the handlers returned here in
 564   // this function, will get dispatched to, and call deferred checks to
 565   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 566   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 567   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 568 
 569 #if INCLUDE_JVMCI
 570   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 571   // and other exception handler continuations do not read it
 572   current->set_exception_pc(nullptr);
 573 #endif // INCLUDE_JVMCI
 574 
 575   if (Continuation::is_return_barrier_entry(return_address)) {
 576     return StubRoutines::cont_returnBarrierExc();
 577   }
 578 
 579   // The fastest case first
 580   CodeBlob* blob = CodeCache::find_blob(return_address);
 581   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 582   if (nm != nullptr) {
 583     // native nmethods don't have exception handlers
 584     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 585     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 586     if (nm->is_deopt_pc(return_address)) {
 587       // If we come here because of a stack overflow, the stack may be
 588       // unguarded. Reguard the stack otherwise if we return to the
 589       // deopt blob and the stack bang causes a stack overflow we
 590       // crash.
 591       StackOverflow* overflow_state = current->stack_overflow_state();
 592       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 593       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 594         overflow_state->set_reserved_stack_activation(current->stack_base());
 595       }
 596       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 597       // The deferred StackWatermarkSet::after_unwind check will be performed in
 598       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 599       return SharedRuntime::deopt_blob()->unpack_with_exception();
 600     } else {
 601       // The deferred StackWatermarkSet::after_unwind check will be performed in
 602       // * OptoRuntime::handle_exception_C_helper for C2 code
 603       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 604       return nm->exception_begin();
 605     }
 606   }
 607 
 608   // Entry code
 609   if (StubRoutines::returns_to_call_stub(return_address)) {
 610     // The deferred StackWatermarkSet::after_unwind check will be performed in
 611     // JavaCallWrapper::~JavaCallWrapper
 612     assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
 613     return StubRoutines::catch_exception_entry();
 614   }
 615   if (blob != nullptr && blob->is_upcall_stub()) {
 616     return StubRoutines::upcall_stub_exception_handler();
 617   }
 618   // Interpreted code
 619   if (Interpreter::contains(return_address)) {
 620     // The deferred StackWatermarkSet::after_unwind check will be performed in
 621     // InterpreterRuntime::exception_handler_for_exception
 622     return Interpreter::rethrow_exception_entry();
 623   }
 624 
 625   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 626   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 627 
 628 #ifndef PRODUCT
 629   { ResourceMark rm;
 630     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 631     os::print_location(tty, (intptr_t)return_address);
 632     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 633     tty->print_cr("b) other problem");
 634   }
 635 #endif // PRODUCT
 636   ShouldNotReachHere();
 637   return nullptr;
 638 }
 639 
 640 
 641 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 642   return raw_exception_handler_for_return_address(current, return_address);
 643 JRT_END
 644 
 645 
 646 address SharedRuntime::get_poll_stub(address pc) {
 647   address stub;
 648   // Look up the code blob
 649   CodeBlob *cb = CodeCache::find_blob(pc);
 650 
 651   // Should be an nmethod
 652   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 653 
 654   // Look up the relocation information
 655   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 656       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 657 
 658 #ifdef ASSERT
 659   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 660     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 661     Disassembler::decode(cb);
 662     fatal("Only polling locations are used for safepoint");
 663   }
 664 #endif
 665 
 666   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 667   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 668   if (at_poll_return) {
 669     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 670            "polling page return stub not created yet");
 671     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 672   } else if (has_wide_vectors) {
 673     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 674            "polling page vectors safepoint stub not created yet");
 675     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 676   } else {
 677     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 678            "polling page safepoint stub not created yet");
 679     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 680   }
 681   log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
 682                        INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
 683                        p2i(Thread::current()),
 684                        Thread::current()->osthread()->thread_id(),
 685                        p2i(pc),
 686                        at_poll_return ? "return" : "loop",
 687                        p2i(stub));
 688   return stub;
 689 }
 690 
 691 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 692   if (JvmtiExport::can_post_on_exceptions()) {
 693     vframeStream vfst(current, true);
 694     methodHandle method = methodHandle(current, vfst.method());
 695     address bcp = method()->bcp_from(vfst.bci());
 696     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 697   }
 698 
 699 #if INCLUDE_JVMCI
 700   if (EnableJVMCI) {
 701     vframeStream vfst(current, true);
 702     methodHandle method = methodHandle(current, vfst.method());
 703     int bci = vfst.bci();
 704     MethodData* trap_mdo = method->method_data();
 705     if (trap_mdo != nullptr) {
 706       // Set exception_seen if the exceptional bytecode is an invoke
 707       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 708       if (call.is_valid()) {
 709         ResourceMark rm(current);
 710 
 711         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 712         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 713 
 714         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 715         if (pdata != nullptr && pdata->is_BitData()) {
 716           BitData* bit_data = (BitData*) pdata;
 717           bit_data->set_exception_seen();
 718         }
 719       }
 720     }
 721   }
 722 #endif
 723 
 724   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 725 }
 726 
 727 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 728   Handle h_exception = Exceptions::new_exception(current, name, message);
 729   throw_and_post_jvmti_exception(current, h_exception);
 730 }
 731 
 732 #if INCLUDE_JVMTI
 733 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 734   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 735   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 736   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 737   JNIHandles::destroy_local(vthread);
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 741   assert(hide == JNI_TRUE, "must be VTMS transition start");
 742   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 743   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 744   JNIHandles::destroy_local(vthread);
 745 JRT_END
 746 
 747 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 748   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 749   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 750   JNIHandles::destroy_local(vthread);
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 754   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 755   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 756   JNIHandles::destroy_local(vthread);
 757 JRT_END
 758 #endif // INCLUDE_JVMTI
 759 
 760 // The interpreter code to call this tracing function is only
 761 // called/generated when UL is on for redefine, class and has the right level
 762 // and tags. Since obsolete methods are never compiled, we don't have
 763 // to modify the compilers to generate calls to this function.
 764 //
 765 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 766     JavaThread* thread, Method* method))
 767   if (method->is_obsolete()) {
 768     // We are calling an obsolete method, but this is not necessarily
 769     // an error. Our method could have been redefined just after we
 770     // fetched the Method* from the constant pool.
 771     ResourceMark rm;
 772     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 773   }
 774   return 0;
 775 JRT_END
 776 
 777 // ret_pc points into caller; we are returning caller's exception handler
 778 // for given exception
 779 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 780 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 781                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 782   assert(nm != nullptr, "must exist");
 783   ResourceMark rm;
 784 
 785 #if INCLUDE_JVMCI
 786   if (nm->is_compiled_by_jvmci()) {
 787     // lookup exception handler for this pc
 788     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 789     ExceptionHandlerTable table(nm);
 790     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 791     if (t != nullptr) {
 792       return nm->code_begin() + t->pco();
 793     } else {
 794       return Deoptimization::deoptimize_for_missing_exception_handler(nm);
 795     }
 796   }
 797 #endif // INCLUDE_JVMCI
 798 
 799   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 800   // determine handler bci, if any
 801   EXCEPTION_MARK;
 802 
 803   int handler_bci = -1;
 804   int scope_depth = 0;
 805   if (!force_unwind) {
 806     int bci = sd->bci();
 807     bool recursive_exception = false;
 808     do {
 809       bool skip_scope_increment = false;
 810       // exception handler lookup
 811       Klass* ek = exception->klass();
 812       methodHandle mh(THREAD, sd->method());
 813       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 814       if (HAS_PENDING_EXCEPTION) {
 815         recursive_exception = true;
 816         // We threw an exception while trying to find the exception handler.
 817         // Transfer the new exception to the exception handle which will
 818         // be set into thread local storage, and do another lookup for an
 819         // exception handler for this exception, this time starting at the
 820         // BCI of the exception handler which caused the exception to be
 821         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 822         // argument to ensure that the correct exception is thrown (4870175).
 823         recursive_exception_occurred = true;
 824         exception = Handle(THREAD, PENDING_EXCEPTION);
 825         CLEAR_PENDING_EXCEPTION;
 826         if (handler_bci >= 0) {
 827           bci = handler_bci;
 828           handler_bci = -1;
 829           skip_scope_increment = true;
 830         }
 831       }
 832       else {
 833         recursive_exception = false;
 834       }
 835       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 836         sd = sd->sender();
 837         if (sd != nullptr) {
 838           bci = sd->bci();
 839         }
 840         ++scope_depth;
 841       }
 842     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 843   }
 844 
 845   // found handling method => lookup exception handler
 846   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 847 
 848   ExceptionHandlerTable table(nm);
 849   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 850   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 851     // Allow abbreviated catch tables.  The idea is to allow a method
 852     // to materialize its exceptions without committing to the exact
 853     // routing of exceptions.  In particular this is needed for adding
 854     // a synthetic handler to unlock monitors when inlining
 855     // synchronized methods since the unlock path isn't represented in
 856     // the bytecodes.
 857     t = table.entry_for(catch_pco, -1, 0);
 858   }
 859 
 860 #ifdef COMPILER1
 861   if (t == nullptr && nm->is_compiled_by_c1()) {
 862     assert(nm->unwind_handler_begin() != nullptr, "");
 863     return nm->unwind_handler_begin();
 864   }
 865 #endif
 866 
 867   if (t == nullptr) {
 868     ttyLocker ttyl;
 869     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 870     tty->print_cr("   Exception:");
 871     exception->print();
 872     tty->cr();
 873     tty->print_cr(" Compiled exception table :");
 874     table.print();
 875     nm->print();
 876     nm->print_code();
 877     guarantee(false, "missing exception handler");
 878     return nullptr;
 879   }
 880 
 881   if (handler_bci != -1) { // did we find a handler in this method?
 882     sd->method()->set_exception_handler_entered(handler_bci); // profile
 883   }
 884   return nm->code_begin() + t->pco();
 885 }
 886 
 887 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 888   // These errors occur only at call sites
 889   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 890 JRT_END
 891 
 892 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 893   // These errors occur only at call sites
 894   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 895 JRT_END
 896 
 897 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 898   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 899 JRT_END
 900 
 901 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 902   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 903 JRT_END
 904 
 905 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 906   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 907   // cache sites (when the callee activation is not yet set up) so we are at a call site
 908   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 909 JRT_END
 910 
 911 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 912   throw_StackOverflowError_common(current, false);
 913 JRT_END
 914 
 915 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 916   throw_StackOverflowError_common(current, true);
 917 JRT_END
 918 
 919 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 920   // We avoid using the normal exception construction in this case because
 921   // it performs an upcall to Java, and we're already out of stack space.
 922   JavaThread* THREAD = current; // For exception macros.
 923   InstanceKlass* k = vmClasses::StackOverflowError_klass();
 924   oop exception_oop = k->allocate_instance(CHECK);
 925   if (delayed) {
 926     java_lang_Throwable::set_message(exception_oop,
 927                                      Universe::delayed_stack_overflow_error_message());
 928   }
 929   Handle exception (current, exception_oop);
 930   if (StackTraceInThrowable) {
 931     java_lang_Throwable::fill_in_stack_trace(exception);
 932   }
 933   // Remove the ScopedValue bindings in case we got a
 934   // StackOverflowError while we were trying to remove ScopedValue
 935   // bindings.
 936   current->clear_scopedValueBindings();
 937   // Increment counter for hs_err file reporting
 938   AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
 939   throw_and_post_jvmti_exception(current, exception);
 940 }
 941 
 942 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 943                                                            address pc,
 944                                                            ImplicitExceptionKind exception_kind)
 945 {
 946   address target_pc = nullptr;
 947 
 948   if (Interpreter::contains(pc)) {
 949     switch (exception_kind) {
 950       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 951       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 952       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 953       default:                      ShouldNotReachHere();
 954     }
 955   } else {
 956     switch (exception_kind) {
 957       case STACK_OVERFLOW: {
 958         // Stack overflow only occurs upon frame setup; the callee is
 959         // going to be unwound. Dispatch to a shared runtime stub
 960         // which will cause the StackOverflowError to be fabricated
 961         // and processed.
 962         // Stack overflow should never occur during deoptimization:
 963         // the compiled method bangs the stack by as much as the
 964         // interpreter would need in case of a deoptimization. The
 965         // deoptimization blob and uncommon trap blob bang the stack
 966         // in a debug VM to verify the correctness of the compiled
 967         // method stack banging.
 968         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 969         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 970         return SharedRuntime::throw_StackOverflowError_entry();
 971       }
 972 
 973       case IMPLICIT_NULL: {
 974         if (VtableStubs::contains(pc)) {
 975           // We haven't yet entered the callee frame. Fabricate an
 976           // exception and begin dispatching it in the caller. Since
 977           // the caller was at a call site, it's safe to destroy all
 978           // caller-saved registers, as these entry points do.
 979           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 980 
 981           // If vt_stub is null, then return null to signal handler to report the SEGV error.
 982           if (vt_stub == nullptr) return nullptr;
 983 
 984           if (vt_stub->is_abstract_method_error(pc)) {
 985             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 986             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 987             // Instead of throwing the abstract method error here directly, we re-resolve
 988             // and will throw the AbstractMethodError during resolve. As a result, we'll
 989             // get a more detailed error message.
 990             return SharedRuntime::get_handle_wrong_method_stub();
 991           } else {
 992             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 993             // Assert that the signal comes from the expected location in stub code.
 994             assert(vt_stub->is_null_pointer_exception(pc),
 995                    "obtained signal from unexpected location in stub code");
 996             return SharedRuntime::throw_NullPointerException_at_call_entry();
 997           }
 998         } else {
 999           CodeBlob* cb = CodeCache::find_blob(pc);
1000 
1001           // If code blob is null, then return null to signal handler to report the SEGV error.
1002           if (cb == nullptr) return nullptr;
1003 
1004           // Exception happened in CodeCache. Must be either:
1005           // 1. Inline-cache check in C2I handler blob,
1006           // 2. Inline-cache check in nmethod, or
1007           // 3. Implicit null exception in nmethod
1008 
1009           if (!cb->is_nmethod()) {
1010             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1011             if (!is_in_blob) {
1012               // Allow normal crash reporting to handle this
1013               return nullptr;
1014             }
1015             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1016             // There is no handler here, so we will simply unwind.
1017             return SharedRuntime::throw_NullPointerException_at_call_entry();
1018           }
1019 
1020           // Otherwise, it's a compiled method.  Consult its exception handlers.
1021           nmethod* nm = cb->as_nmethod();
1022           if (nm->inlinecache_check_contains(pc)) {
1023             // exception happened inside inline-cache check code
1024             // => the nmethod is not yet active (i.e., the frame
1025             // is not set up yet) => use return address pushed by
1026             // caller => don't push another return address
1027             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1028             return SharedRuntime::throw_NullPointerException_at_call_entry();
1029           }
1030 
1031           if (nm->method()->is_method_handle_intrinsic()) {
1032             // exception happened inside MH dispatch code, similar to a vtable stub
1033             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1034             return SharedRuntime::throw_NullPointerException_at_call_entry();
1035           }
1036 
1037 #ifndef PRODUCT
1038           _implicit_null_throws++;
1039 #endif
1040           target_pc = nm->continuation_for_implicit_null_exception(pc);
1041           // If there's an unexpected fault, target_pc might be null,
1042           // in which case we want to fall through into the normal
1043           // error handling code.
1044         }
1045 
1046         break; // fall through
1047       }
1048 
1049 
1050       case IMPLICIT_DIVIDE_BY_ZERO: {
1051         nmethod* nm = CodeCache::find_nmethod(pc);
1052         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1053 #ifndef PRODUCT
1054         _implicit_div0_throws++;
1055 #endif
1056         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1057         // If there's an unexpected fault, target_pc might be null,
1058         // in which case we want to fall through into the normal
1059         // error handling code.
1060         break; // fall through
1061       }
1062 
1063       default: ShouldNotReachHere();
1064     }
1065 
1066     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1067 
1068     if (exception_kind == IMPLICIT_NULL) {
1069 #ifndef PRODUCT
1070       // for AbortVMOnException flag
1071       Exceptions::debug_check_abort("java.lang.NullPointerException");
1072 #endif //PRODUCT
1073       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1074     } else {
1075 #ifndef PRODUCT
1076       // for AbortVMOnException flag
1077       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1078 #endif //PRODUCT
1079       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1080     }
1081     return target_pc;
1082   }
1083 
1084   ShouldNotReachHere();
1085   return nullptr;
1086 }
1087 
1088 
1089 /**
1090  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1091  * installed in the native function entry of all native Java methods before
1092  * they get linked to their actual native methods.
1093  *
1094  * \note
1095  * This method actually never gets called!  The reason is because
1096  * the interpreter's native entries call NativeLookup::lookup() which
1097  * throws the exception when the lookup fails.  The exception is then
1098  * caught and forwarded on the return from NativeLookup::lookup() call
1099  * before the call to the native function.  This might change in the future.
1100  */
1101 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1102 {
1103   // We return a bad value here to make sure that the exception is
1104   // forwarded before we look at the return value.
1105   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1106 }
1107 JNI_END
1108 
1109 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1110   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1111 }
1112 
1113 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1114 #if INCLUDE_JVMCI
1115   if (!obj->klass()->has_finalizer()) {
1116     return;
1117   }
1118 #endif // INCLUDE_JVMCI
1119   assert(oopDesc::is_oop(obj), "must be a valid oop");
1120   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1121   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1122 JRT_END
1123 
1124 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1125   assert(thread != nullptr, "No thread");
1126   if (thread == nullptr) {
1127     return 0;
1128   }
1129   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1130             "current cannot touch oops after its GC barrier is detached.");
1131   oop obj = thread->threadObj();
1132   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1133 }
1134 
1135 /**
1136  * This function ought to be a void function, but cannot be because
1137  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1138  * 6254741.  Once that is fixed we can remove the dummy return value.
1139  */
1140 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1141   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1142 }
1143 
1144 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1145   return dtrace_object_alloc(thread, o, o->size());
1146 }
1147 
1148 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1149   assert(DTraceAllocProbes, "wrong call");
1150   Klass* klass = o->klass();
1151   Symbol* name = klass->name();
1152   HOTSPOT_OBJECT_ALLOC(
1153                    get_java_tid(thread),
1154                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1155   return 0;
1156 }
1157 
1158 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1159     JavaThread* current, Method* method))
1160   assert(current == JavaThread::current(), "pre-condition");
1161 
1162   assert(DTraceMethodProbes, "wrong call");
1163   Symbol* kname = method->klass_name();
1164   Symbol* name = method->name();
1165   Symbol* sig = method->signature();
1166   HOTSPOT_METHOD_ENTRY(
1167       get_java_tid(current),
1168       (char *) kname->bytes(), kname->utf8_length(),
1169       (char *) name->bytes(), name->utf8_length(),
1170       (char *) sig->bytes(), sig->utf8_length());
1171   return 0;
1172 JRT_END
1173 
1174 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1175     JavaThread* current, Method* method))
1176   assert(current == JavaThread::current(), "pre-condition");
1177   assert(DTraceMethodProbes, "wrong call");
1178   Symbol* kname = method->klass_name();
1179   Symbol* name = method->name();
1180   Symbol* sig = method->signature();
1181   HOTSPOT_METHOD_RETURN(
1182       get_java_tid(current),
1183       (char *) kname->bytes(), kname->utf8_length(),
1184       (char *) name->bytes(), name->utf8_length(),
1185       (char *) sig->bytes(), sig->utf8_length());
1186   return 0;
1187 JRT_END
1188 
1189 
1190 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1191 // for a call current in progress, i.e., arguments has been pushed on stack
1192 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1193 // vtable updates, etc.  Caller frame must be compiled.
1194 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1195   JavaThread* current = THREAD;
1196   ResourceMark rm(current);
1197 
1198   // last java frame on stack (which includes native call frames)
1199   vframeStream vfst(current, true);  // Do not skip and javaCalls
1200 
1201   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1202 }
1203 
1204 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1205   nmethod* caller = vfst.nm();
1206 
1207   address pc = vfst.frame_pc();
1208   { // Get call instruction under lock because another thread may be busy patching it.
1209     CompiledICLocker ic_locker(caller);
1210     return caller->attached_method_before_pc(pc);
1211   }
1212   return nullptr;
1213 }
1214 
1215 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1216 // for a call current in progress, i.e., arguments has been pushed on stack
1217 // but callee has not been invoked yet.  Caller frame must be compiled.
1218 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1219                                               CallInfo& callinfo, TRAPS) {
1220   Handle receiver;
1221   Handle nullHandle;  // create a handy null handle for exception returns
1222   JavaThread* current = THREAD;
1223 
1224   assert(!vfst.at_end(), "Java frame must exist");
1225 
1226   // Find caller and bci from vframe
1227   methodHandle caller(current, vfst.method());
1228   int          bci   = vfst.bci();
1229 
1230   if (caller->is_continuation_enter_intrinsic()) {
1231     bc = Bytecodes::_invokestatic;
1232     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1233     return receiver;
1234   }
1235 
1236   Bytecode_invoke bytecode(caller, bci);
1237   int bytecode_index = bytecode.index();
1238   bc = bytecode.invoke_code();
1239 
1240   methodHandle attached_method(current, extract_attached_method(vfst));
1241   if (attached_method.not_null()) {
1242     Method* callee = bytecode.static_target(CHECK_NH);
1243     vmIntrinsics::ID id = callee->intrinsic_id();
1244     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1245     // it attaches statically resolved method to the call site.
1246     if (MethodHandles::is_signature_polymorphic(id) &&
1247         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1248       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1249 
1250       // Adjust invocation mode according to the attached method.
1251       switch (bc) {
1252         case Bytecodes::_invokevirtual:
1253           if (attached_method->method_holder()->is_interface()) {
1254             bc = Bytecodes::_invokeinterface;
1255           }
1256           break;
1257         case Bytecodes::_invokeinterface:
1258           if (!attached_method->method_holder()->is_interface()) {
1259             bc = Bytecodes::_invokevirtual;
1260           }
1261           break;
1262         case Bytecodes::_invokehandle:
1263           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1264             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1265                                               : Bytecodes::_invokevirtual;
1266           }
1267           break;
1268         default:
1269           break;
1270       }
1271     }
1272   }
1273 
1274   assert(bc != Bytecodes::_illegal, "not initialized");
1275 
1276   bool has_receiver = bc != Bytecodes::_invokestatic &&
1277                       bc != Bytecodes::_invokedynamic &&
1278                       bc != Bytecodes::_invokehandle;
1279 
1280   // Find receiver for non-static call
1281   if (has_receiver) {
1282     // This register map must be update since we need to find the receiver for
1283     // compiled frames. The receiver might be in a register.
1284     RegisterMap reg_map2(current,
1285                          RegisterMap::UpdateMap::include,
1286                          RegisterMap::ProcessFrames::include,
1287                          RegisterMap::WalkContinuation::skip);
1288     frame stubFrame   = current->last_frame();
1289     // Caller-frame is a compiled frame
1290     frame callerFrame = stubFrame.sender(&reg_map2);
1291 
1292     if (attached_method.is_null()) {
1293       Method* callee = bytecode.static_target(CHECK_NH);
1294       if (callee == nullptr) {
1295         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1296       }
1297     }
1298 
1299     // Retrieve from a compiled argument list
1300     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1301     assert(oopDesc::is_oop_or_null(receiver()), "");
1302 
1303     if (receiver.is_null()) {
1304       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1305     }
1306   }
1307 
1308   // Resolve method
1309   if (attached_method.not_null()) {
1310     // Parameterized by attached method.
1311     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1312   } else {
1313     // Parameterized by bytecode.
1314     constantPoolHandle constants(current, caller->constants());
1315     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1316   }
1317 
1318 #ifdef ASSERT
1319   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1320   if (has_receiver) {
1321     assert(receiver.not_null(), "should have thrown exception");
1322     Klass* receiver_klass = receiver->klass();
1323     Klass* rk = nullptr;
1324     if (attached_method.not_null()) {
1325       // In case there's resolved method attached, use its holder during the check.
1326       rk = attached_method->method_holder();
1327     } else {
1328       // Klass is already loaded.
1329       constantPoolHandle constants(current, caller->constants());
1330       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1331     }
1332     Klass* static_receiver_klass = rk;
1333     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1334            "actual receiver must be subclass of static receiver klass");
1335     if (receiver_klass->is_instance_klass()) {
1336       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1337         tty->print_cr("ERROR: Klass not yet initialized!!");
1338         receiver_klass->print();
1339       }
1340       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1341     }
1342   }
1343 #endif
1344 
1345   return receiver;
1346 }
1347 
1348 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1349   JavaThread* current = THREAD;
1350   ResourceMark rm(current);
1351   // We need first to check if any Java activations (compiled, interpreted)
1352   // exist on the stack since last JavaCall.  If not, we need
1353   // to get the target method from the JavaCall wrapper.
1354   vframeStream vfst(current, true);  // Do not skip any javaCalls
1355   methodHandle callee_method;
1356   if (vfst.at_end()) {
1357     // No Java frames were found on stack since we did the JavaCall.
1358     // Hence the stack can only contain an entry_frame.  We need to
1359     // find the target method from the stub frame.
1360     RegisterMap reg_map(current,
1361                         RegisterMap::UpdateMap::skip,
1362                         RegisterMap::ProcessFrames::include,
1363                         RegisterMap::WalkContinuation::skip);
1364     frame fr = current->last_frame();
1365     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1366     fr = fr.sender(&reg_map);
1367     assert(fr.is_entry_frame(), "must be");
1368     // fr is now pointing to the entry frame.
1369     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1370   } else {
1371     Bytecodes::Code bc;
1372     CallInfo callinfo;
1373     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1374     callee_method = methodHandle(current, callinfo.selected_method());
1375   }
1376   assert(callee_method()->is_method(), "must be");
1377   return callee_method;
1378 }
1379 
1380 // Resolves a call.
1381 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1382   JavaThread* current = THREAD;
1383   ResourceMark rm(current);
1384   RegisterMap cbl_map(current,
1385                       RegisterMap::UpdateMap::skip,
1386                       RegisterMap::ProcessFrames::include,
1387                       RegisterMap::WalkContinuation::skip);
1388   frame caller_frame = current->last_frame().sender(&cbl_map);
1389 
1390   CodeBlob* caller_cb = caller_frame.cb();
1391   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1392   nmethod* caller_nm = caller_cb->as_nmethod();
1393 
1394   // determine call info & receiver
1395   // note: a) receiver is null for static calls
1396   //       b) an exception is thrown if receiver is null for non-static calls
1397   CallInfo call_info;
1398   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1399   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1400 
1401   NoSafepointVerifier nsv;
1402 
1403   methodHandle callee_method(current, call_info.selected_method());
1404 
1405   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1406          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1407          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1408          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1409          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1410 
1411   assert(!caller_nm->is_unloading(), "It should not be unloading");
1412 
1413 #ifndef PRODUCT
1414   // tracing/debugging/statistics
1415   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1416                  (is_virtual) ? (&_resolve_virtual_ctr) :
1417                                 (&_resolve_static_ctr);
1418   AtomicAccess::inc(addr);
1419 
1420   if (TraceCallFixup) {
1421     ResourceMark rm(current);
1422     tty->print("resolving %s%s (%s) call to",
1423                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1424                Bytecodes::name(invoke_code));
1425     callee_method->print_short_name(tty);
1426     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1427                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1428   }
1429 #endif
1430 
1431   if (invoke_code == Bytecodes::_invokestatic) {
1432     assert(callee_method->method_holder()->is_initialized() ||
1433            callee_method->method_holder()->is_reentrant_initialization(current),
1434            "invalid class initialization state for invoke_static");
1435     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1436       // In order to keep class initialization check, do not patch call
1437       // site for static call when the class is not fully initialized.
1438       // Proper check is enforced by call site re-resolution on every invocation.
1439       //
1440       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1441       // explicit class initialization check is put in nmethod entry (VEP).
1442       assert(callee_method->method_holder()->is_linked(), "must be");
1443       return callee_method;
1444     }
1445   }
1446 
1447 
1448   // JSR 292 key invariant:
1449   // If the resolved method is a MethodHandle invoke target, the call
1450   // site must be a MethodHandle call site, because the lambda form might tail-call
1451   // leaving the stack in a state unknown to either caller or callee
1452 
1453   // Compute entry points. The computation of the entry points is independent of
1454   // patching the call.
1455 
1456   // Make sure the callee nmethod does not get deoptimized and removed before
1457   // we are done patching the code.
1458 
1459 
1460   CompiledICLocker ml(caller_nm);
1461   if (is_virtual && !is_optimized) {
1462     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1463     inline_cache->update(&call_info, receiver->klass());
1464   } else {
1465     // Callsite is a direct call - set it to the destination method
1466     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1467     callsite->set(callee_method);
1468   }
1469 
1470   return callee_method;
1471 }
1472 
1473 // Inline caches exist only in compiled code
1474 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1475 #ifdef ASSERT
1476   RegisterMap reg_map(current,
1477                       RegisterMap::UpdateMap::skip,
1478                       RegisterMap::ProcessFrames::include,
1479                       RegisterMap::WalkContinuation::skip);
1480   frame stub_frame = current->last_frame();
1481   assert(stub_frame.is_runtime_frame(), "sanity check");
1482   frame caller_frame = stub_frame.sender(&reg_map);
1483   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1484 #endif /* ASSERT */
1485 
1486   methodHandle callee_method;
1487   JRT_BLOCK
1488     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1489     // Return Method* through TLS
1490     current->set_vm_result_metadata(callee_method());
1491   JRT_BLOCK_END
1492   // return compiled code entry point after potential safepoints
1493   return get_resolved_entry(current, callee_method);
1494 JRT_END
1495 
1496 
1497 // Handle call site that has been made non-entrant
1498 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1499   // 6243940 We might end up in here if the callee is deoptimized
1500   // as we race to call it.  We don't want to take a safepoint if
1501   // the caller was interpreted because the caller frame will look
1502   // interpreted to the stack walkers and arguments are now
1503   // "compiled" so it is much better to make this transition
1504   // invisible to the stack walking code. The i2c path will
1505   // place the callee method in the callee_target. It is stashed
1506   // there because if we try and find the callee by normal means a
1507   // safepoint is possible and have trouble gc'ing the compiled args.
1508   RegisterMap reg_map(current,
1509                       RegisterMap::UpdateMap::skip,
1510                       RegisterMap::ProcessFrames::include,
1511                       RegisterMap::WalkContinuation::skip);
1512   frame stub_frame = current->last_frame();
1513   assert(stub_frame.is_runtime_frame(), "sanity check");
1514   frame caller_frame = stub_frame.sender(&reg_map);
1515 
1516   if (caller_frame.is_interpreted_frame() ||
1517       caller_frame.is_entry_frame() ||
1518       caller_frame.is_upcall_stub_frame()) {
1519     Method* callee = current->callee_target();
1520     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1521     current->set_vm_result_metadata(callee);
1522     current->set_callee_target(nullptr);
1523     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1524       // Bypass class initialization checks in c2i when caller is in native.
1525       // JNI calls to static methods don't have class initialization checks.
1526       // Fast class initialization checks are present in c2i adapters and call into
1527       // SharedRuntime::handle_wrong_method() on the slow path.
1528       //
1529       // JVM upcalls may land here as well, but there's a proper check present in
1530       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1531       // so bypassing it in c2i adapter is benign.
1532       return callee->get_c2i_no_clinit_check_entry();
1533     } else {
1534       return callee->get_c2i_entry();
1535     }
1536   }
1537 
1538   // Must be compiled to compiled path which is safe to stackwalk
1539   methodHandle callee_method;
1540   JRT_BLOCK
1541     // Force resolving of caller (if we called from compiled frame)
1542     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1543     current->set_vm_result_metadata(callee_method());
1544   JRT_BLOCK_END
1545   // return compiled code entry point after potential safepoints
1546   return get_resolved_entry(current, callee_method);
1547 JRT_END
1548 
1549 // Handle abstract method call
1550 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1551   // Verbose error message for AbstractMethodError.
1552   // Get the called method from the invoke bytecode.
1553   vframeStream vfst(current, true);
1554   assert(!vfst.at_end(), "Java frame must exist");
1555   methodHandle caller(current, vfst.method());
1556   Bytecode_invoke invoke(caller, vfst.bci());
1557   DEBUG_ONLY( invoke.verify(); )
1558 
1559   // Find the compiled caller frame.
1560   RegisterMap reg_map(current,
1561                       RegisterMap::UpdateMap::include,
1562                       RegisterMap::ProcessFrames::include,
1563                       RegisterMap::WalkContinuation::skip);
1564   frame stubFrame = current->last_frame();
1565   assert(stubFrame.is_runtime_frame(), "must be");
1566   frame callerFrame = stubFrame.sender(&reg_map);
1567   assert(callerFrame.is_compiled_frame(), "must be");
1568 
1569   // Install exception and return forward entry.
1570   address res = SharedRuntime::throw_AbstractMethodError_entry();
1571   JRT_BLOCK
1572     methodHandle callee(current, invoke.static_target(current));
1573     if (!callee.is_null()) {
1574       oop recv = callerFrame.retrieve_receiver(&reg_map);
1575       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1576       res = StubRoutines::forward_exception_entry();
1577       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1578     }
1579   JRT_BLOCK_END
1580   return res;
1581 JRT_END
1582 
1583 // return verified_code_entry if interp_only_mode is not set for the current thread;
1584 // otherwise return c2i entry.
1585 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1586   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1587     // In interp_only_mode we need to go to the interpreted entry
1588     // The c2i won't patch in this mode -- see fixup_callers_callsite
1589     return callee_method->get_c2i_entry();
1590   }
1591   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1592   return callee_method->verified_code_entry();
1593 }
1594 
1595 // resolve a static call and patch code
1596 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1597   methodHandle callee_method;
1598   bool enter_special = false;
1599   JRT_BLOCK
1600     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1601     current->set_vm_result_metadata(callee_method());
1602   JRT_BLOCK_END
1603   // return compiled code entry point after potential safepoints
1604   return get_resolved_entry(current, callee_method);
1605 JRT_END
1606 
1607 // resolve virtual call and update inline cache to monomorphic
1608 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1609   methodHandle callee_method;
1610   JRT_BLOCK
1611     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1612     current->set_vm_result_metadata(callee_method());
1613   JRT_BLOCK_END
1614   // return compiled code entry point after potential safepoints
1615   return get_resolved_entry(current, callee_method);
1616 JRT_END
1617 
1618 
1619 // Resolve a virtual call that can be statically bound (e.g., always
1620 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1621 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1622   methodHandle callee_method;
1623   JRT_BLOCK
1624     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1625     current->set_vm_result_metadata(callee_method());
1626   JRT_BLOCK_END
1627   // return compiled code entry point after potential safepoints
1628   return get_resolved_entry(current, callee_method);
1629 JRT_END
1630 
1631 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1632   JavaThread* current = THREAD;
1633   ResourceMark rm(current);
1634   CallInfo call_info;
1635   Bytecodes::Code bc;
1636 
1637   // receiver is null for static calls. An exception is thrown for null
1638   // receivers for non-static calls
1639   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1640 
1641   methodHandle callee_method(current, call_info.selected_method());
1642 
1643 #ifndef PRODUCT
1644   AtomicAccess::inc(&_ic_miss_ctr);
1645 
1646   // Statistics & Tracing
1647   if (TraceCallFixup) {
1648     ResourceMark rm(current);
1649     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1650     callee_method->print_short_name(tty);
1651     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1652   }
1653 
1654   if (ICMissHistogram) {
1655     MutexLocker m(VMStatistic_lock);
1656     RegisterMap reg_map(current,
1657                         RegisterMap::UpdateMap::skip,
1658                         RegisterMap::ProcessFrames::include,
1659                         RegisterMap::WalkContinuation::skip);
1660     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1661     // produce statistics under the lock
1662     trace_ic_miss(f.pc());
1663   }
1664 #endif
1665 
1666   // install an event collector so that when a vtable stub is created the
1667   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1668   // event can't be posted when the stub is created as locks are held
1669   // - instead the event will be deferred until the event collector goes
1670   // out of scope.
1671   JvmtiDynamicCodeEventCollector event_collector;
1672 
1673   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1674   RegisterMap reg_map(current,
1675                       RegisterMap::UpdateMap::skip,
1676                       RegisterMap::ProcessFrames::include,
1677                       RegisterMap::WalkContinuation::skip);
1678   frame caller_frame = current->last_frame().sender(&reg_map);
1679   CodeBlob* cb = caller_frame.cb();
1680   nmethod* caller_nm = cb->as_nmethod();
1681 
1682   CompiledICLocker ml(caller_nm);
1683   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1684   inline_cache->update(&call_info, receiver()->klass());
1685 
1686   return callee_method;
1687 }
1688 
1689 //
1690 // Resets a call-site in compiled code so it will get resolved again.
1691 // This routines handles both virtual call sites, optimized virtual call
1692 // sites, and static call sites. Typically used to change a call sites
1693 // destination from compiled to interpreted.
1694 //
1695 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1696   JavaThread* current = THREAD;
1697   ResourceMark rm(current);
1698   RegisterMap reg_map(current,
1699                       RegisterMap::UpdateMap::skip,
1700                       RegisterMap::ProcessFrames::include,
1701                       RegisterMap::WalkContinuation::skip);
1702   frame stub_frame = current->last_frame();
1703   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1704   frame caller = stub_frame.sender(&reg_map);
1705 
1706   // Do nothing if the frame isn't a live compiled frame.
1707   // nmethod could be deoptimized by the time we get here
1708   // so no update to the caller is needed.
1709 
1710   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1711       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1712 
1713     address pc = caller.pc();
1714 
1715     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1716     assert(caller_nm != nullptr, "did not find caller nmethod");
1717 
1718     // Default call_addr is the location of the "basic" call.
1719     // Determine the address of the call we a reresolving. With
1720     // Inline Caches we will always find a recognizable call.
1721     // With Inline Caches disabled we may or may not find a
1722     // recognizable call. We will always find a call for static
1723     // calls and for optimized virtual calls. For vanilla virtual
1724     // calls it depends on the state of the UseInlineCaches switch.
1725     //
1726     // With Inline Caches disabled we can get here for a virtual call
1727     // for two reasons:
1728     //   1 - calling an abstract method. The vtable for abstract methods
1729     //       will run us thru handle_wrong_method and we will eventually
1730     //       end up in the interpreter to throw the ame.
1731     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1732     //       call and between the time we fetch the entry address and
1733     //       we jump to it the target gets deoptimized. Similar to 1
1734     //       we will wind up in the interprter (thru a c2i with c2).
1735     //
1736     CompiledICLocker ml(caller_nm);
1737     address call_addr = caller_nm->call_instruction_address(pc);
1738 
1739     if (call_addr != nullptr) {
1740       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1741       // bytes back in the instruction stream so we must also check for reloc info.
1742       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1743       bool ret = iter.next(); // Get item
1744       if (ret) {
1745         switch (iter.type()) {
1746           case relocInfo::static_call_type:
1747           case relocInfo::opt_virtual_call_type: {
1748             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1749             cdc->set_to_clean();
1750             break;
1751           }
1752 
1753           case relocInfo::virtual_call_type: {
1754             // compiled, dispatched call (which used to call an interpreted method)
1755             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1756             inline_cache->set_to_clean();
1757             break;
1758           }
1759           default:
1760             break;
1761         }
1762       }
1763     }
1764   }
1765 
1766   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1767 
1768 
1769 #ifndef PRODUCT
1770   AtomicAccess::inc(&_wrong_method_ctr);
1771 
1772   if (TraceCallFixup) {
1773     ResourceMark rm(current);
1774     tty->print("handle_wrong_method reresolving call to");
1775     callee_method->print_short_name(tty);
1776     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1777   }
1778 #endif
1779 
1780   return callee_method;
1781 }
1782 
1783 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1784   // The faulting unsafe accesses should be changed to throw the error
1785   // synchronously instead. Meanwhile the faulting instruction will be
1786   // skipped over (effectively turning it into a no-op) and an
1787   // asynchronous exception will be raised which the thread will
1788   // handle at a later point. If the instruction is a load it will
1789   // return garbage.
1790 
1791   // Request an async exception.
1792   thread->set_pending_unsafe_access_error();
1793 
1794   // Return address of next instruction to execute.
1795   return next_pc;
1796 }
1797 
1798 #ifdef ASSERT
1799 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1800                                                                 const BasicType* sig_bt,
1801                                                                 const VMRegPair* regs) {
1802   ResourceMark rm;
1803   const int total_args_passed = method->size_of_parameters();
1804   const VMRegPair*    regs_with_member_name = regs;
1805         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1806 
1807   const int member_arg_pos = total_args_passed - 1;
1808   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1809   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1810 
1811   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1812 
1813   for (int i = 0; i < member_arg_pos; i++) {
1814     VMReg a =    regs_with_member_name[i].first();
1815     VMReg b = regs_without_member_name[i].first();
1816     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1817   }
1818   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1819 }
1820 #endif
1821 
1822 // ---------------------------------------------------------------------------
1823 // We are calling the interpreter via a c2i. Normally this would mean that
1824 // we were called by a compiled method. However we could have lost a race
1825 // where we went int -> i2c -> c2i and so the caller could in fact be
1826 // interpreted. If the caller is compiled we attempt to patch the caller
1827 // so he no longer calls into the interpreter.
1828 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1829   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1830 
1831   // It's possible that deoptimization can occur at a call site which hasn't
1832   // been resolved yet, in which case this function will be called from
1833   // an nmethod that has been patched for deopt and we can ignore the
1834   // request for a fixup.
1835   // Also it is possible that we lost a race in that from_compiled_entry
1836   // is now back to the i2c in that case we don't need to patch and if
1837   // we did we'd leap into space because the callsite needs to use
1838   // "to interpreter" stub in order to load up the Method*. Don't
1839   // ask me how I know this...
1840 
1841   // Result from nmethod::is_unloading is not stable across safepoints.
1842   NoSafepointVerifier nsv;
1843 
1844   nmethod* callee = method->code();
1845   if (callee == nullptr) {
1846     return;
1847   }
1848 
1849   // write lock needed because we might patch call site by set_to_clean()
1850   // and is_unloading() can modify nmethod's state
1851   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1852 
1853   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1854   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1855     return;
1856   }
1857 
1858   // The check above makes sure this is an nmethod.
1859   nmethod* caller = cb->as_nmethod();
1860 
1861   // Get the return PC for the passed caller PC.
1862   address return_pc = caller_pc + frame::pc_return_offset;
1863 
1864   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1865     return;
1866   }
1867 
1868   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1869   CompiledICLocker ic_locker(caller);
1870   ResourceMark rm;
1871 
1872   // If we got here through a static call or opt_virtual call, then we know where the
1873   // call address would be; let's peek at it
1874   address callsite_addr = (address)nativeCall_before(return_pc);
1875   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1876   if (!iter.next()) {
1877     // No reloc entry found; not a static or optimized virtual call
1878     return;
1879   }
1880 
1881   relocInfo::relocType type = iter.reloc()->type();
1882   if (type != relocInfo::static_call_type &&
1883       type != relocInfo::opt_virtual_call_type) {
1884     return;
1885   }
1886 
1887   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1888   callsite->set_to_clean();
1889 JRT_END
1890 
1891 
1892 // same as JVM_Arraycopy, but called directly from compiled code
1893 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1894                                                 oopDesc* dest, jint dest_pos,
1895                                                 jint length,
1896                                                 JavaThread* current)) {
1897 #ifndef PRODUCT
1898   _slow_array_copy_ctr++;
1899 #endif
1900   // Check if we have null pointers
1901   if (src == nullptr || dest == nullptr) {
1902     THROW(vmSymbols::java_lang_NullPointerException());
1903   }
1904   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1905   // even though the copy_array API also performs dynamic checks to ensure
1906   // that src and dest are truly arrays (and are conformable).
1907   // The copy_array mechanism is awkward and could be removed, but
1908   // the compilers don't call this function except as a last resort,
1909   // so it probably doesn't matter.
1910   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1911                                         (arrayOopDesc*)dest, dest_pos,
1912                                         length, current);
1913 }
1914 JRT_END
1915 
1916 // The caller of generate_class_cast_message() (or one of its callers)
1917 // must use a ResourceMark in order to correctly free the result.
1918 char* SharedRuntime::generate_class_cast_message(
1919     JavaThread* thread, Klass* caster_klass) {
1920 
1921   // Get target class name from the checkcast instruction
1922   vframeStream vfst(thread, true);
1923   assert(!vfst.at_end(), "Java frame must exist");
1924   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1925   constantPoolHandle cpool(thread, vfst.method()->constants());
1926   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1927   Symbol* target_klass_name = nullptr;
1928   if (target_klass == nullptr) {
1929     // This klass should be resolved, but just in case, get the name in the klass slot.
1930     target_klass_name = cpool->klass_name_at(cc.index());
1931   }
1932   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1933 }
1934 
1935 
1936 // The caller of generate_class_cast_message() (or one of its callers)
1937 // must use a ResourceMark in order to correctly free the result.
1938 char* SharedRuntime::generate_class_cast_message(
1939     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1940   const char* caster_name = caster_klass->external_name();
1941 
1942   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
1943   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
1944                                                    target_klass->external_name();
1945 
1946   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1947 
1948   const char* caster_klass_description = "";
1949   const char* target_klass_description = "";
1950   const char* klass_separator = "";
1951   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
1952     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1953   } else {
1954     caster_klass_description = caster_klass->class_in_module_of_loader();
1955     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
1956     klass_separator = (target_klass != nullptr) ? "; " : "";
1957   }
1958 
1959   // add 3 for parenthesis and preceding space
1960   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1961 
1962   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1963   if (message == nullptr) {
1964     // Shouldn't happen, but don't cause even more problems if it does
1965     message = const_cast<char*>(caster_klass->external_name());
1966   } else {
1967     jio_snprintf(message,
1968                  msglen,
1969                  "class %s cannot be cast to class %s (%s%s%s)",
1970                  caster_name,
1971                  target_name,
1972                  caster_klass_description,
1973                  klass_separator,
1974                  target_klass_description
1975                  );
1976   }
1977   return message;
1978 }
1979 
1980 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1981   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
1982 JRT_END
1983 
1984 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1985   if (!SafepointSynchronize::is_synchronizing()) {
1986     // Only try quick_enter() if we're not trying to reach a safepoint
1987     // so that the calling thread reaches the safepoint more quickly.
1988     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
1989       return;
1990     }
1991   }
1992   // NO_ASYNC required because an async exception on the state transition destructor
1993   // would leave you with the lock held and it would never be released.
1994   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1995   // and the model is that an exception implies the method failed.
1996   JRT_BLOCK_NO_ASYNC
1997   Handle h_obj(THREAD, obj);
1998   ObjectSynchronizer::enter(h_obj, lock, current);
1999   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2000   JRT_BLOCK_END
2001 }
2002 
2003 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2004 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2005   SharedRuntime::monitor_enter_helper(obj, lock, current);
2006 JRT_END
2007 
2008 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2009   assert(JavaThread::current() == current, "invariant");
2010   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2011   ExceptionMark em(current);
2012 
2013   // Check if C2_MacroAssembler::fast_unlock() or
2014   // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated
2015   // monitor before going slow path.  Since there is no safepoint
2016   // polling when calling into the VM, we can be sure that the monitor
2017   // hasn't been deallocated.
2018   ObjectMonitor* m = current->unlocked_inflated_monitor();
2019   if (m != nullptr) {
2020     assert(!m->has_owner(current), "must be");
2021     current->clear_unlocked_inflated_monitor();
2022 
2023     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2024     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2025       // Some other thread acquired the lock (or the monitor was
2026       // deflated). Either way we are done.
2027       return;
2028     }
2029   }
2030 
2031   // The object could become unlocked through a JNI call, which we have no other checks for.
2032   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2033   if (obj->is_unlocked()) {
2034     if (CheckJNICalls) {
2035       fatal("Object has been unlocked by JNI");
2036     }
2037     return;
2038   }
2039   ObjectSynchronizer::exit(obj, lock, current);
2040 }
2041 
2042 // Handles the uncommon cases of monitor unlocking in compiled code
2043 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2044   assert(current == JavaThread::current(), "pre-condition");
2045   SharedRuntime::monitor_exit_helper(obj, lock, current);
2046 JRT_END
2047 
2048 #ifndef PRODUCT
2049 
2050 void SharedRuntime::print_statistics() {
2051   ttyLocker ttyl;
2052   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2053 
2054   SharedRuntime::print_ic_miss_histogram();
2055 
2056   // Dump the JRT_ENTRY counters
2057   if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
2058   if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
2059   if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2060   if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2061   if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2062   if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2063 
2064   tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2065   tty->print_cr("%5u wrong method", _wrong_method_ctr);
2066   tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2067   tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2068   tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2069 
2070   if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2071   if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2072   if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2073   if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2074   if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2075   if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2076   if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2077   if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
2078   if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2079   if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2080   if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2081   if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2082   if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2083   if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2084   if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
2085   if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
2086   if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2087 
2088   AdapterHandlerLibrary::print_statistics();
2089 
2090   if (xtty != nullptr)  xtty->tail("statistics");
2091 }
2092 
2093 inline double percent(int64_t x, int64_t y) {
2094   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2095 }
2096 
2097 class MethodArityHistogram {
2098  public:
2099   enum { MAX_ARITY = 256 };
2100  private:
2101   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2102   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2103   static uint64_t _total_compiled_calls;
2104   static uint64_t _max_compiled_calls_per_method;
2105   static int _max_arity;                       // max. arity seen
2106   static int _max_size;                        // max. arg size seen
2107 
2108   static void add_method_to_histogram(nmethod* nm) {
2109     Method* method = (nm == nullptr) ? nullptr : nm->method();
2110     if (method != nullptr) {
2111       ArgumentCount args(method->signature());
2112       int arity   = args.size() + (method->is_static() ? 0 : 1);
2113       int argsize = method->size_of_parameters();
2114       arity   = MIN2(arity, MAX_ARITY-1);
2115       argsize = MIN2(argsize, MAX_ARITY-1);
2116       uint64_t count = (uint64_t)method->compiled_invocation_count();
2117       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2118       _total_compiled_calls    += count;
2119       _arity_histogram[arity]  += count;
2120       _size_histogram[argsize] += count;
2121       _max_arity = MAX2(_max_arity, arity);
2122       _max_size  = MAX2(_max_size, argsize);
2123     }
2124   }
2125 
2126   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2127     const int N = MIN2(9, n);
2128     double sum = 0;
2129     double weighted_sum = 0;
2130     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2131     if (sum >= 1) { // prevent divide by zero or divide overflow
2132       double rest = sum;
2133       double percent = sum / 100;
2134       for (int i = 0; i <= N; i++) {
2135         rest -= (double)histo[i];
2136         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2137       }
2138       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2139       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2140       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2141       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2142     } else {
2143       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2144     }
2145   }
2146 
2147   void print_histogram() {
2148     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2149     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2150     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2151     print_histogram_helper(_max_size, _size_histogram, "size");
2152     tty->cr();
2153   }
2154 
2155  public:
2156   MethodArityHistogram() {
2157     // Take the Compile_lock to protect against changes in the CodeBlob structures
2158     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2159     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2160     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2161     _max_arity = _max_size = 0;
2162     _total_compiled_calls = 0;
2163     _max_compiled_calls_per_method = 0;
2164     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2165     CodeCache::nmethods_do(add_method_to_histogram);
2166     print_histogram();
2167   }
2168 };
2169 
2170 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2171 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2172 uint64_t MethodArityHistogram::_total_compiled_calls;
2173 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2174 int MethodArityHistogram::_max_arity;
2175 int MethodArityHistogram::_max_size;
2176 
2177 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2178   tty->print_cr("Calls from compiled code:");
2179   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2180   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2181   int64_t mono_i = _nof_interface_calls;
2182   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2183   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2184   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2185   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2186   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2187   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2188   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2189   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2190   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2191   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2192   tty->cr();
2193   tty->print_cr("Note 1: counter updates are not MT-safe.");
2194   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2195   tty->print_cr("        %% in nested categories are relative to their category");
2196   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2197   tty->cr();
2198 
2199   MethodArityHistogram h;
2200 }
2201 #endif
2202 
2203 #ifndef PRODUCT
2204 static int _lookups; // number of calls to lookup
2205 static int _equals;  // number of buckets checked with matching hash
2206 static int _archived_hits; // number of successful lookups in archived table
2207 static int _runtime_hits;  // number of successful lookups in runtime table
2208 #endif
2209 
2210 // A simple wrapper class around the calling convention information
2211 // that allows sharing of adapters for the same calling convention.
2212 class AdapterFingerPrint : public MetaspaceObj {
2213  private:
2214   enum {
2215     _basic_type_bits = 4,
2216     _basic_type_mask = right_n_bits(_basic_type_bits),
2217     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2218   };
2219   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2220   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2221 
2222   int _length;
2223 
2224   static int data_offset() { return sizeof(AdapterFingerPrint); }
2225   int* data_pointer() {
2226     return (int*)((address)this + data_offset());
2227   }
2228 
2229   // Private construtor. Use allocate() to get an instance.
2230   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2231     int* data = data_pointer();
2232     // Pack the BasicTypes with 8 per int
2233     assert(len == length(total_args_passed), "sanity");
2234     _length = len;
2235     int sig_index = 0;
2236     for (int index = 0; index < _length; index++) {
2237       int value = 0;
2238       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2239         int bt = adapter_encoding(sig_bt[sig_index++]);
2240         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2241         value = (value << _basic_type_bits) | bt;
2242       }
2243       data[index] = value;
2244     }
2245   }
2246 
2247   // Call deallocate instead
2248   ~AdapterFingerPrint() {
2249     ShouldNotCallThis();
2250   }
2251 
2252   static int length(int total_args) {
2253     return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2254   }
2255 
2256   static int compute_size_in_words(int len) {
2257     return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2258   }
2259 
2260   // Remap BasicTypes that are handled equivalently by the adapters.
2261   // These are correct for the current system but someday it might be
2262   // necessary to make this mapping platform dependent.
2263   static int adapter_encoding(BasicType in) {
2264     switch (in) {
2265       case T_BOOLEAN:
2266       case T_BYTE:
2267       case T_SHORT:
2268       case T_CHAR:
2269         // There are all promoted to T_INT in the calling convention
2270         return T_INT;
2271 
2272       case T_OBJECT:
2273       case T_ARRAY:
2274         // In other words, we assume that any register good enough for
2275         // an int or long is good enough for a managed pointer.
2276 #ifdef _LP64
2277         return T_LONG;
2278 #else
2279         return T_INT;
2280 #endif
2281 
2282       case T_INT:
2283       case T_LONG:
2284       case T_FLOAT:
2285       case T_DOUBLE:
2286       case T_VOID:
2287         return in;
2288 
2289       default:
2290         ShouldNotReachHere();
2291         return T_CONFLICT;
2292     }
2293   }
2294 
2295   void* operator new(size_t size, size_t fp_size) throw() {
2296     assert(fp_size >= size, "sanity check");
2297     void* p = AllocateHeap(fp_size, mtCode);
2298     memset(p, 0, fp_size);
2299     return p;
2300   }
2301 
2302   template<typename Function>
2303   void iterate_args(Function function) {
2304     for (int i = 0; i < length(); i++) {
2305       unsigned val = (unsigned)value(i);
2306       // args are packed so that first/lower arguments are in the highest
2307       // bits of each int value, so iterate from highest to the lowest
2308       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2309         unsigned v = (val >> j) & _basic_type_mask;
2310         if (v == 0) {
2311           continue;
2312         }
2313         function(v);
2314       }
2315     }
2316   }
2317 
2318  public:
2319   static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2320     int len = length(total_args_passed);
2321     int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2322     AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2323     assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2324     return afp;
2325   }
2326 
2327   static void deallocate(AdapterFingerPrint* fp) {
2328     FreeHeap(fp);
2329   }
2330 
2331   int value(int index) {
2332     int* data = data_pointer();
2333     return data[index];
2334   }
2335 
2336   int length() {
2337     return _length;
2338   }
2339 
2340   unsigned int compute_hash() {
2341     int hash = 0;
2342     for (int i = 0; i < length(); i++) {
2343       int v = value(i);
2344       //Add arithmetic operation to the hash, like +3 to improve hashing
2345       hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2346     }
2347     return (unsigned int)hash;
2348   }
2349 
2350   const char* as_string() {
2351     stringStream st;
2352     st.print("0x");
2353     for (int i = 0; i < length(); i++) {
2354       st.print("%x", value(i));
2355     }
2356     return st.as_string();
2357   }
2358 
2359   const char* as_basic_args_string() {
2360     stringStream st;
2361     bool long_prev = false;
2362     iterate_args([&] (int arg) {
2363       if (long_prev) {
2364         long_prev = false;
2365         if (arg == T_VOID) {
2366           st.print("J");
2367         } else {
2368           st.print("L");
2369         }
2370       }
2371       switch (arg) {
2372         case T_INT:    st.print("I");    break;
2373         case T_LONG:   long_prev = true; break;
2374         case T_FLOAT:  st.print("F");    break;
2375         case T_DOUBLE: st.print("D");    break;
2376         case T_VOID:   break;
2377         default: ShouldNotReachHere();
2378       }
2379     });
2380     if (long_prev) {
2381       st.print("L");
2382     }
2383     return st.as_string();
2384   }
2385 
2386   BasicType* as_basic_type(int& nargs) {
2387     nargs = 0;
2388     GrowableArray<BasicType> btarray;
2389     bool long_prev = false;
2390 
2391     iterate_args([&] (int arg) {
2392       if (long_prev) {
2393         long_prev = false;
2394         if (arg == T_VOID) {
2395           btarray.append(T_LONG);
2396         } else {
2397           btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2398         }
2399       }
2400       switch (arg) {
2401         case T_INT: // fallthrough
2402         case T_FLOAT: // fallthrough
2403         case T_DOUBLE:
2404         case T_VOID:
2405           btarray.append((BasicType)arg);
2406           break;
2407         case T_LONG:
2408           long_prev = true;
2409           break;
2410         default: ShouldNotReachHere();
2411       }
2412     });
2413 
2414     if (long_prev) {
2415       btarray.append(T_OBJECT);
2416     }
2417 
2418     nargs = btarray.length();
2419     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2420     int index = 0;
2421     GrowableArrayIterator<BasicType> iter = btarray.begin();
2422     while (iter != btarray.end()) {
2423       sig_bt[index++] = *iter;
2424       ++iter;
2425     }
2426     assert(index == btarray.length(), "sanity check");
2427 #ifdef ASSERT
2428     {
2429       AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2430       assert(this->equals(compare_fp), "sanity check");
2431       AdapterFingerPrint::deallocate(compare_fp);
2432     }
2433 #endif
2434     return sig_bt;
2435   }
2436 
2437   bool equals(AdapterFingerPrint* other) {
2438     if (other->_length != _length) {
2439       return false;
2440     } else {
2441       for (int i = 0; i < _length; i++) {
2442         if (value(i) != other->value(i)) {
2443           return false;
2444         }
2445       }
2446     }
2447     return true;
2448   }
2449 
2450   // methods required by virtue of being a MetaspaceObj
2451   void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2452   int size() const { return compute_size_in_words(_length); }
2453   MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2454 
2455   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2456     NOT_PRODUCT(_equals++);
2457     return fp1->equals(fp2);
2458   }
2459 
2460   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2461     return fp->compute_hash();
2462   }
2463 };
2464 
2465 #if INCLUDE_CDS
2466 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2467   return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2468 }
2469 
2470 class ArchivedAdapterTable : public OffsetCompactHashtable<
2471   AdapterFingerPrint*,
2472   AdapterHandlerEntry*,
2473   adapter_fp_equals_compact_hashtable_entry> {};
2474 #endif // INCLUDE_CDS
2475 
2476 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2477 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2478                   AnyObj::C_HEAP, mtCode,
2479                   AdapterFingerPrint::compute_hash,
2480                   AdapterFingerPrint::equals>;
2481 static AdapterHandlerTable* _adapter_handler_table;
2482 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2483 
2484 // Find a entry with the same fingerprint if it exists
2485 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2486   NOT_PRODUCT(_lookups++);
2487   assert_lock_strong(AdapterHandlerLibrary_lock);
2488   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2489   AdapterHandlerEntry* entry = nullptr;
2490 #if INCLUDE_CDS
2491   // if we are building the archive then the archived adapter table is
2492   // not valid and we need to use the ones added to the runtime table
2493   if (AOTCodeCache::is_using_adapter()) {
2494     // Search archived table first. It is read-only table so can be searched without lock
2495     entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2496 #ifndef PRODUCT
2497     if (entry != nullptr) {
2498       _archived_hits++;
2499     }
2500 #endif
2501   }
2502 #endif // INCLUDE_CDS
2503   if (entry == nullptr) {
2504     assert_lock_strong(AdapterHandlerLibrary_lock);
2505     AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2506     if (entry_p != nullptr) {
2507       entry = *entry_p;
2508       assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2509              entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2510              fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2511   #ifndef PRODUCT
2512       _runtime_hits++;
2513   #endif
2514     }
2515   }
2516   AdapterFingerPrint::deallocate(fp);
2517   return entry;
2518 }
2519 
2520 #ifndef PRODUCT
2521 static void print_table_statistics() {
2522   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2523     return sizeof(*key) + sizeof(*a);
2524   };
2525   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2526   ts.print(tty, "AdapterHandlerTable");
2527   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2528                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2529   int total_hits = _archived_hits + _runtime_hits;
2530   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2531                 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2532 }
2533 #endif
2534 
2535 // ---------------------------------------------------------------------------
2536 // Implementation of AdapterHandlerLibrary
2537 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2538 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2539 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2540 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2541 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2542 #if INCLUDE_CDS
2543 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2544 #endif // INCLUDE_CDS
2545 static const int AdapterHandlerLibrary_size = 16*K;
2546 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2547 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2548 
2549 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2550   assert(_buffer != nullptr, "should be initialized");
2551   return _buffer;
2552 }
2553 
2554 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2555   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2556     AdapterBlob* adapter_blob = entry->adapter_blob();
2557     char blob_id[256];
2558     jio_snprintf(blob_id,
2559                  sizeof(blob_id),
2560                  "%s(%s)",
2561                  adapter_blob->name(),
2562                  entry->fingerprint()->as_string());
2563     if (Forte::is_enabled()) {
2564       Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2565     }
2566 
2567     if (JvmtiExport::should_post_dynamic_code_generated()) {
2568       JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2569     }
2570   }
2571 }
2572 
2573 void AdapterHandlerLibrary::initialize() {
2574   {
2575     ResourceMark rm;
2576     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2577     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2578   }
2579 
2580 #if INCLUDE_CDS
2581   // Link adapters in AOT Cache to their code in AOT Code Cache
2582   if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2583     link_aot_adapters();
2584     lookup_simple_adapters();
2585     return;
2586   }
2587 #endif // INCLUDE_CDS
2588 
2589   ResourceMark rm;
2590   {
2591     MutexLocker mu(AdapterHandlerLibrary_lock);
2592 
2593     _no_arg_handler = create_adapter(0, nullptr);
2594 
2595     BasicType obj_args[] = { T_OBJECT };
2596     _obj_arg_handler = create_adapter(1, obj_args);
2597 
2598     BasicType int_args[] = { T_INT };
2599     _int_arg_handler = create_adapter(1, int_args);
2600 
2601     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2602     _obj_int_arg_handler = create_adapter(2, obj_int_args);
2603 
2604     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2605     _obj_obj_arg_handler = create_adapter(2, obj_obj_args);
2606 
2607     // we should always get an entry back but we don't have any
2608     // associated blob on Zero
2609     assert(_no_arg_handler != nullptr &&
2610            _obj_arg_handler != nullptr &&
2611            _int_arg_handler != nullptr &&
2612            _obj_int_arg_handler != nullptr &&
2613            _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2614   }
2615 
2616   // Outside of the lock
2617 #ifndef ZERO
2618   // no blobs to register when we are on Zero
2619   post_adapter_creation(_no_arg_handler);
2620   post_adapter_creation(_obj_arg_handler);
2621   post_adapter_creation(_int_arg_handler);
2622   post_adapter_creation(_obj_int_arg_handler);
2623   post_adapter_creation(_obj_obj_arg_handler);
2624 #endif // ZERO
2625 }
2626 
2627 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2628   uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2629   assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2630   return AdapterHandlerEntry::allocate(id, fingerprint);
2631 }
2632 
2633 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2634   int total_args_passed = method->size_of_parameters(); // All args on stack
2635   if (total_args_passed == 0) {
2636     return _no_arg_handler;
2637   } else if (total_args_passed == 1) {
2638     if (!method->is_static()) {
2639       return _obj_arg_handler;
2640     }
2641     switch (method->signature()->char_at(1)) {
2642       case JVM_SIGNATURE_CLASS:
2643       case JVM_SIGNATURE_ARRAY:
2644         return _obj_arg_handler;
2645       case JVM_SIGNATURE_INT:
2646       case JVM_SIGNATURE_BOOLEAN:
2647       case JVM_SIGNATURE_CHAR:
2648       case JVM_SIGNATURE_BYTE:
2649       case JVM_SIGNATURE_SHORT:
2650         return _int_arg_handler;
2651     }
2652   } else if (total_args_passed == 2 &&
2653              !method->is_static()) {
2654     switch (method->signature()->char_at(1)) {
2655       case JVM_SIGNATURE_CLASS:
2656       case JVM_SIGNATURE_ARRAY:
2657         return _obj_obj_arg_handler;
2658       case JVM_SIGNATURE_INT:
2659       case JVM_SIGNATURE_BOOLEAN:
2660       case JVM_SIGNATURE_CHAR:
2661       case JVM_SIGNATURE_BYTE:
2662       case JVM_SIGNATURE_SHORT:
2663         return _obj_int_arg_handler;
2664     }
2665   }
2666   return nullptr;
2667 }
2668 
2669 class AdapterSignatureIterator : public SignatureIterator {
2670  private:
2671   BasicType stack_sig_bt[16];
2672   BasicType* sig_bt;
2673   int index;
2674 
2675  public:
2676   AdapterSignatureIterator(Symbol* signature,
2677                            fingerprint_t fingerprint,
2678                            bool is_static,
2679                            int total_args_passed) :
2680     SignatureIterator(signature, fingerprint),
2681     index(0)
2682   {
2683     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2684     if (!is_static) { // Pass in receiver first
2685       sig_bt[index++] = T_OBJECT;
2686     }
2687     do_parameters_on(this);
2688   }
2689 
2690   BasicType* basic_types() {
2691     return sig_bt;
2692   }
2693 
2694 #ifdef ASSERT
2695   int slots() {
2696     return index;
2697   }
2698 #endif
2699 
2700  private:
2701 
2702   friend class SignatureIterator;  // so do_parameters_on can call do_type
2703   void do_type(BasicType type) {
2704     sig_bt[index++] = type;
2705     if (type == T_LONG || type == T_DOUBLE) {
2706       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2707     }
2708   }
2709 };
2710 
2711 
2712 const char* AdapterHandlerEntry::_entry_names[] = {
2713   "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2714 };
2715 
2716 #ifdef ASSERT
2717 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2718   // we can only check for the same code if there is any
2719 #ifndef ZERO
2720   AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true);
2721   assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
2722   assert(comparison_entry->compare_code(cached_entry), "code must match");
2723   // Release the one just created
2724   AdapterHandlerEntry::deallocate(comparison_entry);
2725 # endif // ZERO
2726 }
2727 #endif /* ASSERT*/
2728 
2729 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2730   assert(!method->is_abstract(), "abstract methods do not have adapters");
2731   // Use customized signature handler.  Need to lock around updates to
2732   // the _adapter_handler_table (it is not safe for concurrent readers
2733   // and a single writer: this could be fixed if it becomes a
2734   // problem).
2735 
2736   // Fast-path for trivial adapters
2737   AdapterHandlerEntry* entry = get_simple_adapter(method);
2738   if (entry != nullptr) {
2739     return entry;
2740   }
2741 
2742   ResourceMark rm;
2743   bool new_entry = false;
2744 
2745   // Fill in the signature array, for the calling-convention call.
2746   int total_args_passed = method->size_of_parameters(); // All args on stack
2747 
2748   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2749                               method->is_static(), total_args_passed);
2750   assert(si.slots() == total_args_passed, "");
2751   BasicType* sig_bt = si.basic_types();
2752   {
2753     MutexLocker mu(AdapterHandlerLibrary_lock);
2754 
2755     // Lookup method signature's fingerprint
2756     entry = lookup(total_args_passed, sig_bt);
2757 
2758     if (entry != nullptr) {
2759 #ifndef ZERO
2760       assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2761 #endif
2762 #ifdef ASSERT
2763       if (!entry->in_aot_cache() && VerifyAdapterSharing) {
2764         verify_adapter_sharing(total_args_passed, sig_bt, entry);
2765       }
2766 #endif
2767     } else {
2768       entry = create_adapter(total_args_passed, sig_bt);
2769       if (entry != nullptr) {
2770         new_entry = true;
2771       }
2772     }
2773   }
2774 
2775   // Outside of the lock
2776   if (new_entry) {
2777     post_adapter_creation(entry);
2778   }
2779   return entry;
2780 }
2781 
2782 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2783   ResourceMark rm;
2784   const char* name = AdapterHandlerLibrary::name(handler);
2785   const uint32_t id = AdapterHandlerLibrary::id(handler);
2786 
2787   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
2788   if (blob != nullptr) {
2789     handler->set_adapter_blob(blob->as_adapter_blob());
2790   }
2791 }
2792 
2793 #ifndef PRODUCT
2794 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
2795   ttyLocker ttyl;
2796   ResourceMark rm;
2797   int insts_size;
2798   // on Zero the blob may be null
2799   handler->print_adapter_on(tty);
2800   AdapterBlob* adapter_blob = handler->adapter_blob();
2801   if (adapter_blob == nullptr) {
2802     return;
2803   }
2804   insts_size = adapter_blob->code_size();
2805   st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2806                 handler->fingerprint()->as_basic_args_string(),
2807                 handler->fingerprint()->as_string(), insts_size);
2808   st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2809   if (Verbose || PrintStubCode) {
2810     address first_pc = adapter_blob->content_begin();
2811     if (first_pc != nullptr) {
2812       Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2813       st->cr();
2814     }
2815   }
2816 }
2817 #endif // PRODUCT
2818 
2819 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
2820                                               int entry_offset[AdapterBlob::ENTRY_COUNT]) {
2821   entry_offset[AdapterBlob::I2C] = 0;
2822   entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
2823   entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
2824   if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
2825     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
2826   } else {
2827     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
2828   }
2829 }
2830 
2831 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
2832                                                   int total_args_passed,
2833                                                   BasicType* sig_bt,
2834                                                   bool is_transient) {
2835   if (log_is_enabled(Info, perf, class, link)) {
2836     ClassLoader::perf_method_adapters_count()->inc();
2837   }
2838 
2839 #ifndef ZERO
2840   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2841   CodeBuffer buffer(buf);
2842   short buffer_locs[20];
2843   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2844                                          sizeof(buffer_locs)/sizeof(relocInfo));
2845   MacroAssembler masm(&buffer);
2846   VMRegPair stack_regs[16];
2847   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2848 
2849   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2850   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2851   address entry_address[AdapterBlob::ENTRY_COUNT];
2852   SharedRuntime::generate_i2c2i_adapters(&masm,
2853                                          total_args_passed,
2854                                          comp_args_on_stack,
2855                                          sig_bt,
2856                                          regs,
2857                                          entry_address);
2858   // On zero there is no code to save and no need to create a blob and
2859   // or relocate the handler.
2860   int entry_offset[AdapterBlob::ENTRY_COUNT];
2861   address_to_offset(entry_address, entry_offset);
2862 #ifdef ASSERT
2863   if (VerifyAdapterSharing) {
2864     handler->save_code(buf->code_begin(), buffer.insts_size());
2865     if (is_transient) {
2866       return true;
2867     }
2868   }
2869 #endif
2870   AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset);
2871   if (adapter_blob == nullptr) {
2872     // CodeCache is full, disable compilation
2873     // Ought to log this but compile log is only per compile thread
2874     // and we're some non descript Java thread.
2875     return false;
2876   }
2877   handler->set_adapter_blob(adapter_blob);
2878   if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2879     // try to save generated code
2880     const char* name = AdapterHandlerLibrary::name(handler);
2881     const uint32_t id = AdapterHandlerLibrary::id(handler);
2882     bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
2883     assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2884   }
2885 #endif // ZERO
2886 
2887 #ifndef PRODUCT
2888   // debugging support
2889   if (PrintAdapterHandlers || PrintStubCode) {
2890     print_adapter_handler_info(tty, handler);
2891   }
2892 #endif
2893 
2894   return true;
2895 }
2896 
2897 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed,
2898                                                            BasicType* sig_bt,
2899                                                            bool is_transient) {
2900   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2901   AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2902   if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) {
2903     AdapterHandlerEntry::deallocate(handler);
2904     return nullptr;
2905   }
2906   if (!is_transient) {
2907     assert_lock_strong(AdapterHandlerLibrary_lock);
2908     _adapter_handler_table->put(fp, handler);
2909   }
2910   return handler;
2911 }
2912 
2913 #if INCLUDE_CDS
2914 void AdapterHandlerEntry::remove_unshareable_info() {
2915 #ifdef ASSERT
2916    _saved_code = nullptr;
2917    _saved_code_length = 0;
2918 #endif // ASSERT
2919    _adapter_blob = nullptr;
2920    _linked = false;
2921 }
2922 
2923 class CopyAdapterTableToArchive : StackObj {
2924 private:
2925   CompactHashtableWriter* _writer;
2926   ArchiveBuilder* _builder;
2927 public:
2928   CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
2929                                                              _builder(ArchiveBuilder::current())
2930   {}
2931 
2932   bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
2933     LogStreamHandle(Trace, aot) lsh;
2934     if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
2935       assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
2936       AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
2937       assert(buffered_fp != nullptr,"sanity check");
2938       AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
2939       assert(buffered_entry != nullptr,"sanity check");
2940 
2941       uint hash = fp->compute_hash();
2942       u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
2943       _writer->add(hash, delta);
2944       if (lsh.is_enabled()) {
2945         address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
2946         address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
2947         log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
2948       }
2949     } else {
2950       if (lsh.is_enabled()) {
2951         log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
2952       }
2953     }
2954     return true;
2955   }
2956 };
2957 
2958 void AdapterHandlerLibrary::dump_aot_adapter_table() {
2959   CompactHashtableStats stats;
2960   CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
2961   CopyAdapterTableToArchive copy(&writer);
2962   _adapter_handler_table->iterate(&copy);
2963   writer.dump(&_aot_adapter_handler_table, "archived adapter table");
2964 }
2965 
2966 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
2967   _aot_adapter_handler_table.serialize_header(soc);
2968 }
2969 
2970 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
2971 #ifdef ASSERT
2972   if (TestAOTAdapterLinkFailure) {
2973     return;
2974   }
2975 #endif
2976   lookup_aot_cache(handler);
2977 #ifndef PRODUCT
2978   // debugging support
2979   if (PrintAdapterHandlers || PrintStubCode) {
2980     print_adapter_handler_info(tty, handler);
2981   }
2982 #endif
2983 }
2984 
2985 // This method is used during production run to link archived adapters (stored in AOT Cache)
2986 // to their code in AOT Code Cache
2987 void AdapterHandlerEntry::link() {
2988   ResourceMark rm;
2989   assert(_fingerprint != nullptr, "_fingerprint must not be null");
2990   bool generate_code = false;
2991   // Generate code only if AOTCodeCache is not available, or
2992   // caching adapters is disabled, or we fail to link
2993   // the AdapterHandlerEntry to its code in the AOTCodeCache
2994   if (AOTCodeCache::is_using_adapter()) {
2995     AdapterHandlerLibrary::link_aot_adapter_handler(this);
2996     // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
2997     if (_adapter_blob == nullptr) {
2998       log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
2999       generate_code = true;
3000     }
3001   } else {
3002     generate_code = true;
3003   }
3004   if (generate_code) {
3005     int nargs;
3006     BasicType* bt = _fingerprint->as_basic_type(nargs);
3007     if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) {
3008       // Don't throw exceptions during VM initialization because java.lang.* classes
3009       // might not have been initialized, causing problems when constructing the
3010       // Java exception object.
3011       vm_exit_during_initialization("Out of space in CodeCache for adapters");
3012     }
3013   }
3014   if (_adapter_blob != nullptr) {
3015     post_adapter_creation(this);
3016   }
3017   assert(_linked, "AdapterHandlerEntry must now be linked");
3018 }
3019 
3020 void AdapterHandlerLibrary::link_aot_adapters() {
3021   uint max_id = 0;
3022   assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3023   /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3024    * That implies adapter ids of the adapters in the cache may not be contiguous.
3025    * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3026    * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3027    * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3028    */
3029   _aot_adapter_handler_table.iterate([&](AdapterHandlerEntry* entry) {
3030     assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3031     entry->link();
3032     max_id = MAX2(max_id, entry->id());
3033   });
3034   // Set adapter id to the maximum id found in the AOTCache
3035   assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3036   _id_counter = max_id;
3037 }
3038 
3039 // This method is called during production run to lookup simple adapters
3040 // in the archived adapter handler table
3041 void AdapterHandlerLibrary::lookup_simple_adapters() {
3042   assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3043 
3044   MutexLocker mu(AdapterHandlerLibrary_lock);
3045   _no_arg_handler = lookup(0, nullptr);
3046 
3047   BasicType obj_args[] = { T_OBJECT };
3048   _obj_arg_handler = lookup(1, obj_args);
3049 
3050   BasicType int_args[] = { T_INT };
3051   _int_arg_handler = lookup(1, int_args);
3052 
3053   BasicType obj_int_args[] = { T_OBJECT, T_INT };
3054   _obj_int_arg_handler = lookup(2, obj_int_args);
3055 
3056   BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3057   _obj_obj_arg_handler = lookup(2, obj_obj_args);
3058 
3059   assert(_no_arg_handler != nullptr &&
3060          _obj_arg_handler != nullptr &&
3061          _int_arg_handler != nullptr &&
3062          _obj_int_arg_handler != nullptr &&
3063          _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3064   assert(_no_arg_handler->is_linked() &&
3065          _obj_arg_handler->is_linked() &&
3066          _int_arg_handler->is_linked() &&
3067          _obj_int_arg_handler->is_linked() &&
3068          _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3069 }
3070 #endif // INCLUDE_CDS
3071 
3072 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3073   LogStreamHandle(Trace, aot) lsh;
3074   if (lsh.is_enabled()) {
3075     lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3076     lsh.cr();
3077   }
3078   it->push(&_fingerprint);
3079 }
3080 
3081 AdapterHandlerEntry::~AdapterHandlerEntry() {
3082   if (_fingerprint != nullptr) {
3083     AdapterFingerPrint::deallocate(_fingerprint);
3084     _fingerprint = nullptr;
3085   }
3086 #ifdef ASSERT
3087   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3088 #endif
3089   FreeHeap(this);
3090 }
3091 
3092 
3093 #ifdef ASSERT
3094 // Capture the code before relocation so that it can be compared
3095 // against other versions.  If the code is captured after relocation
3096 // then relative instructions won't be equivalent.
3097 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3098   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3099   _saved_code_length = length;
3100   memcpy(_saved_code, buffer, length);
3101 }
3102 
3103 
3104 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3105   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3106 
3107   if (other->_saved_code_length != _saved_code_length) {
3108     return false;
3109   }
3110 
3111   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3112 }
3113 #endif
3114 
3115 
3116 /**
3117  * Create a native wrapper for this native method.  The wrapper converts the
3118  * Java-compiled calling convention to the native convention, handles
3119  * arguments, and transitions to native.  On return from the native we transition
3120  * back to java blocking if a safepoint is in progress.
3121  */
3122 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3123   ResourceMark rm;
3124   nmethod* nm = nullptr;
3125 
3126   // Check if memory should be freed before allocation
3127   CodeCache::gc_on_allocation();
3128 
3129   assert(method->is_native(), "must be native");
3130   assert(method->is_special_native_intrinsic() ||
3131          method->has_native_function(), "must have something valid to call!");
3132 
3133   {
3134     // Perform the work while holding the lock, but perform any printing outside the lock
3135     MutexLocker mu(AdapterHandlerLibrary_lock);
3136     // See if somebody beat us to it
3137     if (method->code() != nullptr) {
3138       return;
3139     }
3140 
3141     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3142     assert(compile_id > 0, "Must generate native wrapper");
3143 
3144 
3145     ResourceMark rm;
3146     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3147     if (buf != nullptr) {
3148       CodeBuffer buffer(buf);
3149 
3150       if (method->is_continuation_enter_intrinsic()) {
3151         buffer.initialize_stubs_size(192);
3152       }
3153 
3154       struct { double data[20]; } locs_buf;
3155       struct { double data[20]; } stubs_locs_buf;
3156       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3157 #if defined(AARCH64) || defined(PPC64)
3158       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3159       // in the constant pool to ensure ordering between the barrier and oops
3160       // accesses. For native_wrappers we need a constant.
3161       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3162       // static java call that is resolved in the runtime.
3163       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3164         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3165       }
3166 #endif
3167       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3168       MacroAssembler _masm(&buffer);
3169 
3170       // Fill in the signature array, for the calling-convention call.
3171       const int total_args_passed = method->size_of_parameters();
3172 
3173       VMRegPair stack_regs[16];
3174       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3175 
3176       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3177                               method->is_static(), total_args_passed);
3178       BasicType* sig_bt = si.basic_types();
3179       assert(si.slots() == total_args_passed, "");
3180       BasicType ret_type = si.return_type();
3181 
3182       // Now get the compiled-Java arguments layout.
3183       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3184 
3185       // Generate the compiled-to-native wrapper code
3186       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3187 
3188       if (nm != nullptr) {
3189         {
3190           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3191           if (nm->make_in_use()) {
3192             method->set_code(method, nm);
3193           }
3194         }
3195 
3196         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3197         if (directive->PrintAssemblyOption) {
3198           nm->print_code();
3199         }
3200         DirectivesStack::release(directive);
3201       }
3202     }
3203   } // Unlock AdapterHandlerLibrary_lock
3204 
3205 
3206   // Install the generated code.
3207   if (nm != nullptr) {
3208     const char *msg = method->is_static() ? "(static)" : "";
3209     CompileTask::print_ul(nm, msg);
3210     if (PrintCompilation) {
3211       ttyLocker ttyl;
3212       CompileTask::print(tty, nm, msg);
3213     }
3214     nm->post_compiled_method_load_event();
3215   }
3216 }
3217 
3218 // -------------------------------------------------------------------------
3219 // Java-Java calling convention
3220 // (what you use when Java calls Java)
3221 
3222 //------------------------------name_for_receiver----------------------------------
3223 // For a given signature, return the VMReg for parameter 0.
3224 VMReg SharedRuntime::name_for_receiver() {
3225   VMRegPair regs;
3226   BasicType sig_bt = T_OBJECT;
3227   (void) java_calling_convention(&sig_bt, &regs, 1);
3228   // Return argument 0 register.  In the LP64 build pointers
3229   // take 2 registers, but the VM wants only the 'main' name.
3230   return regs.first();
3231 }
3232 
3233 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3234   // This method is returning a data structure allocating as a
3235   // ResourceObject, so do not put any ResourceMarks in here.
3236 
3237   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3238   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3239   int cnt = 0;
3240   if (has_receiver) {
3241     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3242   }
3243 
3244   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3245     BasicType type = ss.type();
3246     sig_bt[cnt++] = type;
3247     if (is_double_word_type(type))
3248       sig_bt[cnt++] = T_VOID;
3249   }
3250 
3251   if (has_appendix) {
3252     sig_bt[cnt++] = T_OBJECT;
3253   }
3254 
3255   assert(cnt < 256, "grow table size");
3256 
3257   int comp_args_on_stack;
3258   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3259 
3260   // the calling convention doesn't count out_preserve_stack_slots so
3261   // we must add that in to get "true" stack offsets.
3262 
3263   if (comp_args_on_stack) {
3264     for (int i = 0; i < cnt; i++) {
3265       VMReg reg1 = regs[i].first();
3266       if (reg1->is_stack()) {
3267         // Yuck
3268         reg1 = reg1->bias(out_preserve_stack_slots());
3269       }
3270       VMReg reg2 = regs[i].second();
3271       if (reg2->is_stack()) {
3272         // Yuck
3273         reg2 = reg2->bias(out_preserve_stack_slots());
3274       }
3275       regs[i].set_pair(reg2, reg1);
3276     }
3277   }
3278 
3279   // results
3280   *arg_size = cnt;
3281   return regs;
3282 }
3283 
3284 // OSR Migration Code
3285 //
3286 // This code is used convert interpreter frames into compiled frames.  It is
3287 // called from very start of a compiled OSR nmethod.  A temp array is
3288 // allocated to hold the interesting bits of the interpreter frame.  All
3289 // active locks are inflated to allow them to move.  The displaced headers and
3290 // active interpreter locals are copied into the temp buffer.  Then we return
3291 // back to the compiled code.  The compiled code then pops the current
3292 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3293 // copies the interpreter locals and displaced headers where it wants.
3294 // Finally it calls back to free the temp buffer.
3295 //
3296 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3297 
3298 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3299   assert(current == JavaThread::current(), "pre-condition");
3300   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3301   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3302   // frame. The stack watermark code below ensures that the interpreted frame is processed
3303   // before it gets unwound. This is helpful as the size of the compiled frame could be
3304   // larger than the interpreted frame, which could result in the new frame not being
3305   // processed correctly.
3306   StackWatermarkSet::before_unwind(current);
3307 
3308   //
3309   // This code is dependent on the memory layout of the interpreter local
3310   // array and the monitors. On all of our platforms the layout is identical
3311   // so this code is shared. If some platform lays the their arrays out
3312   // differently then this code could move to platform specific code or
3313   // the code here could be modified to copy items one at a time using
3314   // frame accessor methods and be platform independent.
3315 
3316   frame fr = current->last_frame();
3317   assert(fr.is_interpreted_frame(), "");
3318   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3319 
3320   // Figure out how many monitors are active.
3321   int active_monitor_count = 0;
3322   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3323        kptr < fr.interpreter_frame_monitor_begin();
3324        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3325     if (kptr->obj() != nullptr) active_monitor_count++;
3326   }
3327 
3328   // QQQ we could place number of active monitors in the array so that compiled code
3329   // could double check it.
3330 
3331   Method* moop = fr.interpreter_frame_method();
3332   int max_locals = moop->max_locals();
3333   // Allocate temp buffer, 1 word per local & 2 per active monitor
3334   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3335   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3336 
3337   // Copy the locals.  Order is preserved so that loading of longs works.
3338   // Since there's no GC I can copy the oops blindly.
3339   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3340   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3341                        (HeapWord*)&buf[0],
3342                        max_locals);
3343 
3344   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3345   int i = max_locals;
3346   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3347        kptr2 < fr.interpreter_frame_monitor_begin();
3348        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3349     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3350       BasicLock *lock = kptr2->lock();
3351       if (UseObjectMonitorTable) {
3352         buf[i] = (intptr_t)lock->object_monitor_cache();
3353       }
3354 #ifdef ASSERT
3355       else {
3356         buf[i] = badDispHeaderOSR;
3357       }
3358 #endif
3359       i++;
3360       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3361     }
3362   }
3363   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3364 
3365   RegisterMap map(current,
3366                   RegisterMap::UpdateMap::skip,
3367                   RegisterMap::ProcessFrames::include,
3368                   RegisterMap::WalkContinuation::skip);
3369   frame sender = fr.sender(&map);
3370   if (sender.is_interpreted_frame()) {
3371     current->push_cont_fastpath(sender.sp());
3372   }
3373 
3374   return buf;
3375 JRT_END
3376 
3377 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3378   FREE_C_HEAP_ARRAY(intptr_t, buf);
3379 JRT_END
3380 
3381 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3382   bool found = false;
3383 #if INCLUDE_CDS
3384   if (AOTCodeCache::is_using_adapter()) {
3385     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3386       return (found = (b == CodeCache::find_blob(handler->get_i2c_entry())));
3387     };
3388     _aot_adapter_handler_table.iterate(findblob_archived_table);
3389   }
3390 #endif // INCLUDE_CDS
3391   if (!found) {
3392     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3393       return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3394     };
3395     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3396     _adapter_handler_table->iterate(findblob_runtime_table);
3397   }
3398   return found;
3399 }
3400 
3401 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3402   return handler->fingerprint()->as_basic_args_string();
3403 }
3404 
3405 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3406   return handler->id();
3407 }
3408 
3409 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3410   bool found = false;
3411 #if INCLUDE_CDS
3412   if (AOTCodeCache::is_using_adapter()) {
3413     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3414       if (b == CodeCache::find_blob(handler->get_i2c_entry())) {
3415         found = true;
3416         st->print("Adapter for signature: ");
3417         handler->print_adapter_on(st);
3418         return true;
3419       } else {
3420         return false; // keep looking
3421       }
3422     };
3423     _aot_adapter_handler_table.iterate(findblob_archived_table);
3424   }
3425 #endif // INCLUDE_CDS
3426   if (!found) {
3427     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3428       if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3429         found = true;
3430         st->print("Adapter for signature: ");
3431         a->print_adapter_on(st);
3432         return true;
3433       } else {
3434         return false; // keep looking
3435       }
3436     };
3437     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3438     _adapter_handler_table->iterate(findblob_runtime_table);
3439   }
3440   assert(found, "Should have found handler");
3441 }
3442 
3443 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3444   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3445   if (adapter_blob() != nullptr) {
3446     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3447     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3448     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3449     if (get_c2i_no_clinit_check_entry() != nullptr) {
3450       st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3451     }
3452   }
3453   st->cr();
3454 }
3455 
3456 #ifndef PRODUCT
3457 
3458 void AdapterHandlerLibrary::print_statistics() {
3459   print_table_statistics();
3460 }
3461 
3462 #endif /* PRODUCT */
3463 
3464 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3465   assert(current == JavaThread::current(), "pre-condition");
3466   StackOverflow* overflow_state = current->stack_overflow_state();
3467   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3468   overflow_state->set_reserved_stack_activation(current->stack_base());
3469 JRT_END
3470 
3471 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3472   ResourceMark rm(current);
3473   frame activation;
3474   nmethod* nm = nullptr;
3475   int count = 1;
3476 
3477   assert(fr.is_java_frame(), "Must start on Java frame");
3478 
3479   RegisterMap map(JavaThread::current(),
3480                   RegisterMap::UpdateMap::skip,
3481                   RegisterMap::ProcessFrames::skip,
3482                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3483   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3484     if (!fr.is_java_frame()) {
3485       continue;
3486     }
3487 
3488     Method* method = nullptr;
3489     bool found = false;
3490     if (fr.is_interpreted_frame()) {
3491       method = fr.interpreter_frame_method();
3492       if (method != nullptr && method->has_reserved_stack_access()) {
3493         found = true;
3494       }
3495     } else {
3496       CodeBlob* cb = fr.cb();
3497       if (cb != nullptr && cb->is_nmethod()) {
3498         nm = cb->as_nmethod();
3499         method = nm->method();
3500         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3501           method = sd->method();
3502           if (method != nullptr && method->has_reserved_stack_access()) {
3503             found = true;
3504           }
3505         }
3506       }
3507     }
3508     if (found) {
3509       activation = fr;
3510       warning("Potentially dangerous stack overflow in "
3511               "ReservedStackAccess annotated method %s [%d]",
3512               method->name_and_sig_as_C_string(), count++);
3513       EventReservedStackActivation event;
3514       if (event.should_commit()) {
3515         event.set_method(method);
3516         event.commit();
3517       }
3518     }
3519   }
3520   return activation;
3521 }
3522 
3523 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3524   // After any safepoint, just before going back to compiled code,
3525   // we inform the GC that we will be doing initializing writes to
3526   // this object in the future without emitting card-marks, so
3527   // GC may take any compensating steps.
3528 
3529   oop new_obj = current->vm_result_oop();
3530   if (new_obj == nullptr) return;
3531 
3532   BarrierSet *bs = BarrierSet::barrier_set();
3533   bs->on_slowpath_allocation_exit(current, new_obj);
3534 }