1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/classLoader.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/nmethod.inline.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/abstractCompiler.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/interpreterRuntime.hpp"
  42 #include "jvm.h"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "logging/log.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "memory/universe.hpp"
  47 #include "metaprogramming/primitiveConversions.hpp"
  48 #include "oops/klass.hpp"
  49 #include "oops/method.inline.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "prims/forte.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/jvmtiThreadState.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/basicLock.inline.hpp"
  60 #include "runtime/frame.inline.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/init.hpp"
  63 #include "runtime/interfaceSupport.inline.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/jniHandles.inline.hpp"
  67 #include "runtime/perfData.hpp"
  68 #include "runtime/sharedRuntime.hpp"
  69 #include "runtime/stackWatermarkSet.hpp"
  70 #include "runtime/stubRoutines.hpp"
  71 #include "runtime/synchronizer.inline.hpp"
  72 #include "runtime/timerTrace.hpp"
  73 #include "runtime/vframe.inline.hpp"
  74 #include "runtime/vframeArray.hpp"
  75 #include "runtime/vm_version.hpp"
  76 #include "utilities/copy.hpp"
  77 #include "utilities/dtrace.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/globalDefinitions.hpp"
  80 #include "utilities/resourceHash.hpp"
  81 #include "utilities/macros.hpp"
  82 #include "utilities/xmlstream.hpp"
  83 #ifdef COMPILER1
  84 #include "c1/c1_Runtime1.hpp"
  85 #endif
  86 #if INCLUDE_JFR
  87 #include "jfr/jfr.hpp"
  88 #endif
  89 
  90 // Shared runtime stub routines reside in their own unique blob with a
  91 // single entry point
  92 
  93 
  94 #define SHARED_STUB_FIELD_DEFINE(name, type) \
  95   type        SharedRuntime::BLOB_FIELD_NAME(name);
  96   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
  97 #undef SHARED_STUB_FIELD_DEFINE
  98 
  99 nmethod*            SharedRuntime::_cont_doYield_stub;
 100 
 101 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 102 const char *SharedRuntime::_stub_names[] = {
 103   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 104 };
 105 
 106 //----------------------------generate_stubs-----------------------------------
 107 void SharedRuntime::generate_initial_stubs() {
 108   // Build this early so it's available for the interpreter.
 109   _throw_StackOverflowError_blob =
 110     generate_throw_exception(SharedStubId::throw_StackOverflowError_id,
 111                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 112 }
 113 
 114 void SharedRuntime::generate_stubs() {
 115   _wrong_method_blob =
 116     generate_resolve_blob(SharedStubId::wrong_method_id,
 117                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 118   _wrong_method_abstract_blob =
 119     generate_resolve_blob(SharedStubId::wrong_method_abstract_id,
 120                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 121   _ic_miss_blob =
 122     generate_resolve_blob(SharedStubId::ic_miss_id,
 123                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 124   _resolve_opt_virtual_call_blob =
 125     generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id,
 126                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 127   _resolve_virtual_call_blob =
 128     generate_resolve_blob(SharedStubId::resolve_virtual_call_id,
 129                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 130   _resolve_static_call_blob =
 131     generate_resolve_blob(SharedStubId::resolve_static_call_id,
 132                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 133 
 134   _throw_delayed_StackOverflowError_blob =
 135     generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id,
 136                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 137 
 138   _throw_AbstractMethodError_blob =
 139     generate_throw_exception(SharedStubId::throw_AbstractMethodError_id,
 140                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 141 
 142   _throw_IncompatibleClassChangeError_blob =
 143     generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id,
 144                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 145 
 146   _throw_NullPointerException_at_call_blob =
 147     generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id,
 148                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 149 
 150   AdapterHandlerLibrary::initialize();
 151 
 152 #if COMPILER2_OR_JVMCI
 153   // Vectors are generated only by C2 and JVMCI.
 154   bool support_wide = is_wide_vector(MaxVectorSize);
 155   if (support_wide) {
 156     _polling_page_vectors_safepoint_handler_blob =
 157       generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id,
 158                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 159   }
 160 #endif // COMPILER2_OR_JVMCI
 161   _polling_page_safepoint_handler_blob =
 162     generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id,
 163                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 164   _polling_page_return_handler_blob =
 165     generate_handler_blob(SharedStubId::polling_page_return_handler_id,
 166                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 167 
 168   generate_deopt_blob();
 169 }
 170 
 171 #if INCLUDE_JFR
 172 //------------------------------generate jfr runtime stubs ------
 173 void SharedRuntime::generate_jfr_stubs() {
 174   ResourceMark rm;
 175   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 176   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 177 
 178   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 179   _jfr_return_lease_blob = generate_jfr_return_lease();
 180 }
 181 
 182 #endif // INCLUDE_JFR
 183 
 184 #include <math.h>
 185 
 186 // Implementation of SharedRuntime
 187 
 188 #ifndef PRODUCT
 189 // For statistics
 190 uint SharedRuntime::_ic_miss_ctr = 0;
 191 uint SharedRuntime::_wrong_method_ctr = 0;
 192 uint SharedRuntime::_resolve_static_ctr = 0;
 193 uint SharedRuntime::_resolve_virtual_ctr = 0;
 194 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
 195 uint SharedRuntime::_implicit_null_throws = 0;
 196 uint SharedRuntime::_implicit_div0_throws = 0;
 197 
 198 int64_t SharedRuntime::_nof_normal_calls = 0;
 199 int64_t SharedRuntime::_nof_inlined_calls = 0;
 200 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 201 int64_t SharedRuntime::_nof_static_calls = 0;
 202 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 203 int64_t SharedRuntime::_nof_interface_calls = 0;
 204 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 205 
 206 uint SharedRuntime::_new_instance_ctr=0;
 207 uint SharedRuntime::_new_array_ctr=0;
 208 uint SharedRuntime::_multi2_ctr=0;
 209 uint SharedRuntime::_multi3_ctr=0;
 210 uint SharedRuntime::_multi4_ctr=0;
 211 uint SharedRuntime::_multi5_ctr=0;
 212 uint SharedRuntime::_mon_enter_stub_ctr=0;
 213 uint SharedRuntime::_mon_exit_stub_ctr=0;
 214 uint SharedRuntime::_mon_enter_ctr=0;
 215 uint SharedRuntime::_mon_exit_ctr=0;
 216 uint SharedRuntime::_partial_subtype_ctr=0;
 217 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 218 uint SharedRuntime::_jshort_array_copy_ctr=0;
 219 uint SharedRuntime::_jint_array_copy_ctr=0;
 220 uint SharedRuntime::_jlong_array_copy_ctr=0;
 221 uint SharedRuntime::_oop_array_copy_ctr=0;
 222 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 223 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 224 uint SharedRuntime::_generic_array_copy_ctr=0;
 225 uint SharedRuntime::_slow_array_copy_ctr=0;
 226 uint SharedRuntime::_find_handler_ctr=0;
 227 uint SharedRuntime::_rethrow_ctr=0;
 228 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 229 
 230 int     SharedRuntime::_ICmiss_index                    = 0;
 231 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 232 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 233 
 234 
 235 void SharedRuntime::trace_ic_miss(address at) {
 236   for (int i = 0; i < _ICmiss_index; i++) {
 237     if (_ICmiss_at[i] == at) {
 238       _ICmiss_count[i]++;
 239       return;
 240     }
 241   }
 242   int index = _ICmiss_index++;
 243   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 244   _ICmiss_at[index] = at;
 245   _ICmiss_count[index] = 1;
 246 }
 247 
 248 void SharedRuntime::print_ic_miss_histogram() {
 249   if (ICMissHistogram) {
 250     tty->print_cr("IC Miss Histogram:");
 251     int tot_misses = 0;
 252     for (int i = 0; i < _ICmiss_index; i++) {
 253       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 254       tot_misses += _ICmiss_count[i];
 255     }
 256     tty->print_cr("Total IC misses: %7d", tot_misses);
 257   }
 258 }
 259 #endif // PRODUCT
 260 
 261 
 262 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 263   return x * y;
 264 JRT_END
 265 
 266 
 267 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 268   if (x == min_jlong && y == CONST64(-1)) {
 269     return x;
 270   } else {
 271     return x / y;
 272   }
 273 JRT_END
 274 
 275 
 276 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 277   if (x == min_jlong && y == CONST64(-1)) {
 278     return 0;
 279   } else {
 280     return x % y;
 281   }
 282 JRT_END
 283 
 284 
 285 #ifdef _WIN64
 286 const juint  float_sign_mask  = 0x7FFFFFFF;
 287 const juint  float_infinity   = 0x7F800000;
 288 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 289 const julong double_infinity  = CONST64(0x7FF0000000000000);
 290 #endif
 291 
 292 #if !defined(X86)
 293 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 294 #ifdef _WIN64
 295   // 64-bit Windows on amd64 returns the wrong values for
 296   // infinity operands.
 297   juint xbits = PrimitiveConversions::cast<juint>(x);
 298   juint ybits = PrimitiveConversions::cast<juint>(y);
 299   // x Mod Infinity == x unless x is infinity
 300   if (((xbits & float_sign_mask) != float_infinity) &&
 301        ((ybits & float_sign_mask) == float_infinity) ) {
 302     return x;
 303   }
 304   return ((jfloat)fmod_winx64((double)x, (double)y));
 305 #else
 306   return ((jfloat)fmod((double)x,(double)y));
 307 #endif
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 311 #ifdef _WIN64
 312   julong xbits = PrimitiveConversions::cast<julong>(x);
 313   julong ybits = PrimitiveConversions::cast<julong>(y);
 314   // x Mod Infinity == x unless x is infinity
 315   if (((xbits & double_sign_mask) != double_infinity) &&
 316        ((ybits & double_sign_mask) == double_infinity) ) {
 317     return x;
 318   }
 319   return ((jdouble)fmod_winx64((double)x, (double)y));
 320 #else
 321   return ((jdouble)fmod((double)x,(double)y));
 322 #endif
 323 JRT_END
 324 #endif // !X86
 325 
 326 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 327   return (jfloat)x;
 328 JRT_END
 329 
 330 #ifdef __SOFTFP__
 331 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 332   return x + y;
 333 JRT_END
 334 
 335 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 336   return x - y;
 337 JRT_END
 338 
 339 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 340   return x * y;
 341 JRT_END
 342 
 343 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 344   return x / y;
 345 JRT_END
 346 
 347 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 348   return x + y;
 349 JRT_END
 350 
 351 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 352   return x - y;
 353 JRT_END
 354 
 355 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 356   return x * y;
 357 JRT_END
 358 
 359 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 360   return x / y;
 361 JRT_END
 362 
 363 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 364   return (jdouble)x;
 365 JRT_END
 366 
 367 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 368   return (jdouble)x;
 369 JRT_END
 370 
 371 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 372   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 373 JRT_END
 374 
 375 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 376   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 377 JRT_END
 378 
 379 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 380   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 381 JRT_END
 382 
 383 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 384   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 385 JRT_END
 386 
 387 // Functions to return the opposite of the aeabi functions for nan.
 388 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 389   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 390 JRT_END
 391 
 392 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 393   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 394 JRT_END
 395 
 396 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 397   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 398 JRT_END
 399 
 400 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 401   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 402 JRT_END
 403 
 404 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 405   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 406 JRT_END
 407 
 408 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 409   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 410 JRT_END
 411 
 412 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 413   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 414 JRT_END
 415 
 416 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 417   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 418 JRT_END
 419 
 420 // Intrinsics make gcc generate code for these.
 421 float  SharedRuntime::fneg(float f)   {
 422   return -f;
 423 }
 424 
 425 double SharedRuntime::dneg(double f)  {
 426   return -f;
 427 }
 428 
 429 #endif // __SOFTFP__
 430 
 431 #if defined(__SOFTFP__) || defined(E500V2)
 432 // Intrinsics make gcc generate code for these.
 433 double SharedRuntime::dabs(double f)  {
 434   return (f <= (double)0.0) ? (double)0.0 - f : f;
 435 }
 436 
 437 #endif
 438 
 439 #if defined(__SOFTFP__) || defined(PPC)
 440 double SharedRuntime::dsqrt(double f) {
 441   return sqrt(f);
 442 }
 443 #endif
 444 
 445 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 446   if (g_isnan(x))
 447     return 0;
 448   if (x >= (jfloat) max_jint)
 449     return max_jint;
 450   if (x <= (jfloat) min_jint)
 451     return min_jint;
 452   return (jint) x;
 453 JRT_END
 454 
 455 
 456 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 457   if (g_isnan(x))
 458     return 0;
 459   if (x >= (jfloat) max_jlong)
 460     return max_jlong;
 461   if (x <= (jfloat) min_jlong)
 462     return min_jlong;
 463   return (jlong) x;
 464 JRT_END
 465 
 466 
 467 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 468   if (g_isnan(x))
 469     return 0;
 470   if (x >= (jdouble) max_jint)
 471     return max_jint;
 472   if (x <= (jdouble) min_jint)
 473     return min_jint;
 474   return (jint) x;
 475 JRT_END
 476 
 477 
 478 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 479   if (g_isnan(x))
 480     return 0;
 481   if (x >= (jdouble) max_jlong)
 482     return max_jlong;
 483   if (x <= (jdouble) min_jlong)
 484     return min_jlong;
 485   return (jlong) x;
 486 JRT_END
 487 
 488 
 489 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 490   return (jfloat)x;
 491 JRT_END
 492 
 493 
 494 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 495   return (jfloat)x;
 496 JRT_END
 497 
 498 
 499 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 500   return (jdouble)x;
 501 JRT_END
 502 
 503 
 504 // Exception handling across interpreter/compiler boundaries
 505 //
 506 // exception_handler_for_return_address(...) returns the continuation address.
 507 // The continuation address is the entry point of the exception handler of the
 508 // previous frame depending on the return address.
 509 
 510 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 511   // Note: This is called when we have unwound the frame of the callee that did
 512   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 513   // Notably, the stack is not walkable at this point, and hence the check must
 514   // be deferred until later. Specifically, any of the handlers returned here in
 515   // this function, will get dispatched to, and call deferred checks to
 516   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 517   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 518   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 519 
 520   // Reset method handle flag.
 521   current->set_is_method_handle_return(false);
 522 
 523 #if INCLUDE_JVMCI
 524   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 525   // and other exception handler continuations do not read it
 526   current->set_exception_pc(nullptr);
 527 #endif // INCLUDE_JVMCI
 528 
 529   if (Continuation::is_return_barrier_entry(return_address)) {
 530     return StubRoutines::cont_returnBarrierExc();
 531   }
 532 
 533   // The fastest case first
 534   CodeBlob* blob = CodeCache::find_blob(return_address);
 535   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 536   if (nm != nullptr) {
 537     // Set flag if return address is a method handle call site.
 538     current->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 539     // native nmethods don't have exception handlers
 540     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 541     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 542     if (nm->is_deopt_pc(return_address)) {
 543       // If we come here because of a stack overflow, the stack may be
 544       // unguarded. Reguard the stack otherwise if we return to the
 545       // deopt blob and the stack bang causes a stack overflow we
 546       // crash.
 547       StackOverflow* overflow_state = current->stack_overflow_state();
 548       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 549       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 550         overflow_state->set_reserved_stack_activation(current->stack_base());
 551       }
 552       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 553       // The deferred StackWatermarkSet::after_unwind check will be performed in
 554       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 555       return SharedRuntime::deopt_blob()->unpack_with_exception();
 556     } else {
 557       // The deferred StackWatermarkSet::after_unwind check will be performed in
 558       // * OptoRuntime::handle_exception_C_helper for C2 code
 559       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 560       return nm->exception_begin();
 561     }
 562   }
 563 
 564   // Entry code
 565   if (StubRoutines::returns_to_call_stub(return_address)) {
 566     // The deferred StackWatermarkSet::after_unwind check will be performed in
 567     // JavaCallWrapper::~JavaCallWrapper
 568     return StubRoutines::catch_exception_entry();
 569   }
 570   if (blob != nullptr && blob->is_upcall_stub()) {
 571     return StubRoutines::upcall_stub_exception_handler();
 572   }
 573   // Interpreted code
 574   if (Interpreter::contains(return_address)) {
 575     // The deferred StackWatermarkSet::after_unwind check will be performed in
 576     // InterpreterRuntime::exception_handler_for_exception
 577     return Interpreter::rethrow_exception_entry();
 578   }
 579 
 580   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 581   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 582 
 583 #ifndef PRODUCT
 584   { ResourceMark rm;
 585     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 586     os::print_location(tty, (intptr_t)return_address);
 587     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 588     tty->print_cr("b) other problem");
 589   }
 590 #endif // PRODUCT
 591   ShouldNotReachHere();
 592   return nullptr;
 593 }
 594 
 595 
 596 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 597   return raw_exception_handler_for_return_address(current, return_address);
 598 JRT_END
 599 
 600 
 601 address SharedRuntime::get_poll_stub(address pc) {
 602   address stub;
 603   // Look up the code blob
 604   CodeBlob *cb = CodeCache::find_blob(pc);
 605 
 606   // Should be an nmethod
 607   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 608 
 609   // Look up the relocation information
 610   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 611       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 612 
 613 #ifdef ASSERT
 614   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 615     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 616     Disassembler::decode(cb);
 617     fatal("Only polling locations are used for safepoint");
 618   }
 619 #endif
 620 
 621   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 622   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 623   if (at_poll_return) {
 624     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 625            "polling page return stub not created yet");
 626     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 627   } else if (has_wide_vectors) {
 628     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 629            "polling page vectors safepoint stub not created yet");
 630     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 631   } else {
 632     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 633            "polling page safepoint stub not created yet");
 634     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 635   }
 636   log_debug(safepoint)("... found polling page %s exception at pc = "
 637                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 638                        at_poll_return ? "return" : "loop",
 639                        (intptr_t)pc, (intptr_t)stub);
 640   return stub;
 641 }
 642 
 643 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 644   if (JvmtiExport::can_post_on_exceptions()) {
 645     vframeStream vfst(current, true);
 646     methodHandle method = methodHandle(current, vfst.method());
 647     address bcp = method()->bcp_from(vfst.bci());
 648     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 649   }
 650 
 651 #if INCLUDE_JVMCI
 652   if (EnableJVMCI) {
 653     vframeStream vfst(current, true);
 654     methodHandle method = methodHandle(current, vfst.method());
 655     int bci = vfst.bci();
 656     MethodData* trap_mdo = method->method_data();
 657     if (trap_mdo != nullptr) {
 658       // Set exception_seen if the exceptional bytecode is an invoke
 659       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 660       if (call.is_valid()) {
 661         ResourceMark rm(current);
 662 
 663         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 664         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 665 
 666         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 667         if (pdata != nullptr && pdata->is_BitData()) {
 668           BitData* bit_data = (BitData*) pdata;
 669           bit_data->set_exception_seen();
 670         }
 671       }
 672     }
 673   }
 674 #endif
 675 
 676   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 677 }
 678 
 679 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 680   Handle h_exception = Exceptions::new_exception(current, name, message);
 681   throw_and_post_jvmti_exception(current, h_exception);
 682 }
 683 
 684 #if INCLUDE_JVMTI
 685 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 686   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 687   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 688   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 689   JNIHandles::destroy_local(vthread);
 690 JRT_END
 691 
 692 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 693   assert(hide == JNI_TRUE, "must be VTMS transition start");
 694   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 695   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 696   JNIHandles::destroy_local(vthread);
 697 JRT_END
 698 
 699 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 700   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 701   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 702   JNIHandles::destroy_local(vthread);
 703 JRT_END
 704 
 705 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 706   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 707   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 708   JNIHandles::destroy_local(vthread);
 709 JRT_END
 710 #endif // INCLUDE_JVMTI
 711 
 712 // The interpreter code to call this tracing function is only
 713 // called/generated when UL is on for redefine, class and has the right level
 714 // and tags. Since obsolete methods are never compiled, we don't have
 715 // to modify the compilers to generate calls to this function.
 716 //
 717 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 718     JavaThread* thread, Method* method))
 719   if (method->is_obsolete()) {
 720     // We are calling an obsolete method, but this is not necessarily
 721     // an error. Our method could have been redefined just after we
 722     // fetched the Method* from the constant pool.
 723     ResourceMark rm;
 724     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 725   }
 726   return 0;
 727 JRT_END
 728 
 729 // ret_pc points into caller; we are returning caller's exception handler
 730 // for given exception
 731 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 732 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 733                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 734   assert(nm != nullptr, "must exist");
 735   ResourceMark rm;
 736 
 737 #if INCLUDE_JVMCI
 738   if (nm->is_compiled_by_jvmci()) {
 739     // lookup exception handler for this pc
 740     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 741     ExceptionHandlerTable table(nm);
 742     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 743     if (t != nullptr) {
 744       return nm->code_begin() + t->pco();
 745     } else {
 746       return Deoptimization::deoptimize_for_missing_exception_handler(nm);
 747     }
 748   }
 749 #endif // INCLUDE_JVMCI
 750 
 751   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 752   // determine handler bci, if any
 753   EXCEPTION_MARK;
 754 
 755   int handler_bci = -1;
 756   int scope_depth = 0;
 757   if (!force_unwind) {
 758     int bci = sd->bci();
 759     bool recursive_exception = false;
 760     do {
 761       bool skip_scope_increment = false;
 762       // exception handler lookup
 763       Klass* ek = exception->klass();
 764       methodHandle mh(THREAD, sd->method());
 765       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 766       if (HAS_PENDING_EXCEPTION) {
 767         recursive_exception = true;
 768         // We threw an exception while trying to find the exception handler.
 769         // Transfer the new exception to the exception handle which will
 770         // be set into thread local storage, and do another lookup for an
 771         // exception handler for this exception, this time starting at the
 772         // BCI of the exception handler which caused the exception to be
 773         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 774         // argument to ensure that the correct exception is thrown (4870175).
 775         recursive_exception_occurred = true;
 776         exception = Handle(THREAD, PENDING_EXCEPTION);
 777         CLEAR_PENDING_EXCEPTION;
 778         if (handler_bci >= 0) {
 779           bci = handler_bci;
 780           handler_bci = -1;
 781           skip_scope_increment = true;
 782         }
 783       }
 784       else {
 785         recursive_exception = false;
 786       }
 787       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 788         sd = sd->sender();
 789         if (sd != nullptr) {
 790           bci = sd->bci();
 791         }
 792         ++scope_depth;
 793       }
 794     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 795   }
 796 
 797   // found handling method => lookup exception handler
 798   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 799 
 800   ExceptionHandlerTable table(nm);
 801   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 802   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 803     // Allow abbreviated catch tables.  The idea is to allow a method
 804     // to materialize its exceptions without committing to the exact
 805     // routing of exceptions.  In particular this is needed for adding
 806     // a synthetic handler to unlock monitors when inlining
 807     // synchronized methods since the unlock path isn't represented in
 808     // the bytecodes.
 809     t = table.entry_for(catch_pco, -1, 0);
 810   }
 811 
 812 #ifdef COMPILER1
 813   if (t == nullptr && nm->is_compiled_by_c1()) {
 814     assert(nm->unwind_handler_begin() != nullptr, "");
 815     return nm->unwind_handler_begin();
 816   }
 817 #endif
 818 
 819   if (t == nullptr) {
 820     ttyLocker ttyl;
 821     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 822     tty->print_cr("   Exception:");
 823     exception->print();
 824     tty->cr();
 825     tty->print_cr(" Compiled exception table :");
 826     table.print();
 827     nm->print();
 828     nm->print_code();
 829     guarantee(false, "missing exception handler");
 830     return nullptr;
 831   }
 832 
 833   if (handler_bci != -1) { // did we find a handler in this method?
 834     sd->method()->set_exception_handler_entered(handler_bci); // profile
 835   }
 836   return nm->code_begin() + t->pco();
 837 }
 838 
 839 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 840   // These errors occur only at call sites
 841   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 842 JRT_END
 843 
 844 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 845   // These errors occur only at call sites
 846   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 847 JRT_END
 848 
 849 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 850   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 851 JRT_END
 852 
 853 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 854   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 855 JRT_END
 856 
 857 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 858   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 859   // cache sites (when the callee activation is not yet set up) so we are at a call site
 860   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 861 JRT_END
 862 
 863 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 864   throw_StackOverflowError_common(current, false);
 865 JRT_END
 866 
 867 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 868   throw_StackOverflowError_common(current, true);
 869 JRT_END
 870 
 871 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 872   // We avoid using the normal exception construction in this case because
 873   // it performs an upcall to Java, and we're already out of stack space.
 874   JavaThread* THREAD = current; // For exception macros.
 875   Klass* k = vmClasses::StackOverflowError_klass();
 876   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 877   if (delayed) {
 878     java_lang_Throwable::set_message(exception_oop,
 879                                      Universe::delayed_stack_overflow_error_message());
 880   }
 881   Handle exception (current, exception_oop);
 882   if (StackTraceInThrowable) {
 883     java_lang_Throwable::fill_in_stack_trace(exception);
 884   }
 885   // Remove the ScopedValue bindings in case we got a
 886   // StackOverflowError while we were trying to remove ScopedValue
 887   // bindings.
 888   current->clear_scopedValueBindings();
 889   // Increment counter for hs_err file reporting
 890   Atomic::inc(&Exceptions::_stack_overflow_errors);
 891   throw_and_post_jvmti_exception(current, exception);
 892 }
 893 
 894 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 895                                                            address pc,
 896                                                            ImplicitExceptionKind exception_kind)
 897 {
 898   address target_pc = nullptr;
 899 
 900   if (Interpreter::contains(pc)) {
 901     switch (exception_kind) {
 902       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 903       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 904       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 905       default:                      ShouldNotReachHere();
 906     }
 907   } else {
 908     switch (exception_kind) {
 909       case STACK_OVERFLOW: {
 910         // Stack overflow only occurs upon frame setup; the callee is
 911         // going to be unwound. Dispatch to a shared runtime stub
 912         // which will cause the StackOverflowError to be fabricated
 913         // and processed.
 914         // Stack overflow should never occur during deoptimization:
 915         // the compiled method bangs the stack by as much as the
 916         // interpreter would need in case of a deoptimization. The
 917         // deoptimization blob and uncommon trap blob bang the stack
 918         // in a debug VM to verify the correctness of the compiled
 919         // method stack banging.
 920         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 921         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 922         return SharedRuntime::throw_StackOverflowError_entry();
 923       }
 924 
 925       case IMPLICIT_NULL: {
 926         if (VtableStubs::contains(pc)) {
 927           // We haven't yet entered the callee frame. Fabricate an
 928           // exception and begin dispatching it in the caller. Since
 929           // the caller was at a call site, it's safe to destroy all
 930           // caller-saved registers, as these entry points do.
 931           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 932 
 933           // If vt_stub is null, then return null to signal handler to report the SEGV error.
 934           if (vt_stub == nullptr) return nullptr;
 935 
 936           if (vt_stub->is_abstract_method_error(pc)) {
 937             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 938             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 939             // Instead of throwing the abstract method error here directly, we re-resolve
 940             // and will throw the AbstractMethodError during resolve. As a result, we'll
 941             // get a more detailed error message.
 942             return SharedRuntime::get_handle_wrong_method_stub();
 943           } else {
 944             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 945             // Assert that the signal comes from the expected location in stub code.
 946             assert(vt_stub->is_null_pointer_exception(pc),
 947                    "obtained signal from unexpected location in stub code");
 948             return SharedRuntime::throw_NullPointerException_at_call_entry();
 949           }
 950         } else {
 951           CodeBlob* cb = CodeCache::find_blob(pc);
 952 
 953           // If code blob is null, then return null to signal handler to report the SEGV error.
 954           if (cb == nullptr) return nullptr;
 955 
 956           // Exception happened in CodeCache. Must be either:
 957           // 1. Inline-cache check in C2I handler blob,
 958           // 2. Inline-cache check in nmethod, or
 959           // 3. Implicit null exception in nmethod
 960 
 961           if (!cb->is_nmethod()) {
 962             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 963             if (!is_in_blob) {
 964               // Allow normal crash reporting to handle this
 965               return nullptr;
 966             }
 967             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 968             // There is no handler here, so we will simply unwind.
 969             return SharedRuntime::throw_NullPointerException_at_call_entry();
 970           }
 971 
 972           // Otherwise, it's a compiled method.  Consult its exception handlers.
 973           nmethod* nm = cb->as_nmethod();
 974           if (nm->inlinecache_check_contains(pc)) {
 975             // exception happened inside inline-cache check code
 976             // => the nmethod is not yet active (i.e., the frame
 977             // is not set up yet) => use return address pushed by
 978             // caller => don't push another return address
 979             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 980             return SharedRuntime::throw_NullPointerException_at_call_entry();
 981           }
 982 
 983           if (nm->method()->is_method_handle_intrinsic()) {
 984             // exception happened inside MH dispatch code, similar to a vtable stub
 985             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 986             return SharedRuntime::throw_NullPointerException_at_call_entry();
 987           }
 988 
 989 #ifndef PRODUCT
 990           _implicit_null_throws++;
 991 #endif
 992           target_pc = nm->continuation_for_implicit_null_exception(pc);
 993           // If there's an unexpected fault, target_pc might be null,
 994           // in which case we want to fall through into the normal
 995           // error handling code.
 996         }
 997 
 998         break; // fall through
 999       }
1000 
1001 
1002       case IMPLICIT_DIVIDE_BY_ZERO: {
1003         nmethod* nm = CodeCache::find_nmethod(pc);
1004         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1005 #ifndef PRODUCT
1006         _implicit_div0_throws++;
1007 #endif
1008         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1009         // If there's an unexpected fault, target_pc might be null,
1010         // in which case we want to fall through into the normal
1011         // error handling code.
1012         break; // fall through
1013       }
1014 
1015       default: ShouldNotReachHere();
1016     }
1017 
1018     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1019 
1020     if (exception_kind == IMPLICIT_NULL) {
1021 #ifndef PRODUCT
1022       // for AbortVMOnException flag
1023       Exceptions::debug_check_abort("java.lang.NullPointerException");
1024 #endif //PRODUCT
1025       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1026     } else {
1027 #ifndef PRODUCT
1028       // for AbortVMOnException flag
1029       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1030 #endif //PRODUCT
1031       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1032     }
1033     return target_pc;
1034   }
1035 
1036   ShouldNotReachHere();
1037   return nullptr;
1038 }
1039 
1040 
1041 /**
1042  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1043  * installed in the native function entry of all native Java methods before
1044  * they get linked to their actual native methods.
1045  *
1046  * \note
1047  * This method actually never gets called!  The reason is because
1048  * the interpreter's native entries call NativeLookup::lookup() which
1049  * throws the exception when the lookup fails.  The exception is then
1050  * caught and forwarded on the return from NativeLookup::lookup() call
1051  * before the call to the native function.  This might change in the future.
1052  */
1053 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1054 {
1055   // We return a bad value here to make sure that the exception is
1056   // forwarded before we look at the return value.
1057   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1058 }
1059 JNI_END
1060 
1061 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1062   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1063 }
1064 
1065 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1066 #if INCLUDE_JVMCI
1067   if (!obj->klass()->has_finalizer()) {
1068     return;
1069   }
1070 #endif // INCLUDE_JVMCI
1071   assert(oopDesc::is_oop(obj), "must be a valid oop");
1072   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1073   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1074 JRT_END
1075 
1076 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1077   assert(thread != nullptr, "No thread");
1078   if (thread == nullptr) {
1079     return 0;
1080   }
1081   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1082             "current cannot touch oops after its GC barrier is detached.");
1083   oop obj = thread->threadObj();
1084   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1085 }
1086 
1087 /**
1088  * This function ought to be a void function, but cannot be because
1089  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1090  * 6254741.  Once that is fixed we can remove the dummy return value.
1091  */
1092 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1093   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1094 }
1095 
1096 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1097   return dtrace_object_alloc(thread, o, o->size());
1098 }
1099 
1100 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1101   assert(DTraceAllocProbes, "wrong call");
1102   Klass* klass = o->klass();
1103   Symbol* name = klass->name();
1104   HOTSPOT_OBJECT_ALLOC(
1105                    get_java_tid(thread),
1106                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1107   return 0;
1108 }
1109 
1110 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1111     JavaThread* current, Method* method))
1112   assert(current == JavaThread::current(), "pre-condition");
1113 
1114   assert(DTraceMethodProbes, "wrong call");
1115   Symbol* kname = method->klass_name();
1116   Symbol* name = method->name();
1117   Symbol* sig = method->signature();
1118   HOTSPOT_METHOD_ENTRY(
1119       get_java_tid(current),
1120       (char *) kname->bytes(), kname->utf8_length(),
1121       (char *) name->bytes(), name->utf8_length(),
1122       (char *) sig->bytes(), sig->utf8_length());
1123   return 0;
1124 JRT_END
1125 
1126 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1127     JavaThread* current, Method* method))
1128   assert(current == JavaThread::current(), "pre-condition");
1129   assert(DTraceMethodProbes, "wrong call");
1130   Symbol* kname = method->klass_name();
1131   Symbol* name = method->name();
1132   Symbol* sig = method->signature();
1133   HOTSPOT_METHOD_RETURN(
1134       get_java_tid(current),
1135       (char *) kname->bytes(), kname->utf8_length(),
1136       (char *) name->bytes(), name->utf8_length(),
1137       (char *) sig->bytes(), sig->utf8_length());
1138   return 0;
1139 JRT_END
1140 
1141 
1142 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1143 // for a call current in progress, i.e., arguments has been pushed on stack
1144 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1145 // vtable updates, etc.  Caller frame must be compiled.
1146 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1147   JavaThread* current = THREAD;
1148   ResourceMark rm(current);
1149 
1150   // last java frame on stack (which includes native call frames)
1151   vframeStream vfst(current, true);  // Do not skip and javaCalls
1152 
1153   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1154 }
1155 
1156 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1157   nmethod* caller = vfst.nm();
1158 
1159   address pc = vfst.frame_pc();
1160   { // Get call instruction under lock because another thread may be busy patching it.
1161     CompiledICLocker ic_locker(caller);
1162     return caller->attached_method_before_pc(pc);
1163   }
1164   return nullptr;
1165 }
1166 
1167 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1168 // for a call current in progress, i.e., arguments has been pushed on stack
1169 // but callee has not been invoked yet.  Caller frame must be compiled.
1170 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1171                                               CallInfo& callinfo, TRAPS) {
1172   Handle receiver;
1173   Handle nullHandle;  // create a handy null handle for exception returns
1174   JavaThread* current = THREAD;
1175 
1176   assert(!vfst.at_end(), "Java frame must exist");
1177 
1178   // Find caller and bci from vframe
1179   methodHandle caller(current, vfst.method());
1180   int          bci   = vfst.bci();
1181 
1182   if (caller->is_continuation_enter_intrinsic()) {
1183     bc = Bytecodes::_invokestatic;
1184     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1185     return receiver;
1186   }
1187 
1188   Bytecode_invoke bytecode(caller, bci);
1189   int bytecode_index = bytecode.index();
1190   bc = bytecode.invoke_code();
1191 
1192   methodHandle attached_method(current, extract_attached_method(vfst));
1193   if (attached_method.not_null()) {
1194     Method* callee = bytecode.static_target(CHECK_NH);
1195     vmIntrinsics::ID id = callee->intrinsic_id();
1196     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1197     // it attaches statically resolved method to the call site.
1198     if (MethodHandles::is_signature_polymorphic(id) &&
1199         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1200       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1201 
1202       // Adjust invocation mode according to the attached method.
1203       switch (bc) {
1204         case Bytecodes::_invokevirtual:
1205           if (attached_method->method_holder()->is_interface()) {
1206             bc = Bytecodes::_invokeinterface;
1207           }
1208           break;
1209         case Bytecodes::_invokeinterface:
1210           if (!attached_method->method_holder()->is_interface()) {
1211             bc = Bytecodes::_invokevirtual;
1212           }
1213           break;
1214         case Bytecodes::_invokehandle:
1215           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1216             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1217                                               : Bytecodes::_invokevirtual;
1218           }
1219           break;
1220         default:
1221           break;
1222       }
1223     }
1224   }
1225 
1226   assert(bc != Bytecodes::_illegal, "not initialized");
1227 
1228   bool has_receiver = bc != Bytecodes::_invokestatic &&
1229                       bc != Bytecodes::_invokedynamic &&
1230                       bc != Bytecodes::_invokehandle;
1231 
1232   // Find receiver for non-static call
1233   if (has_receiver) {
1234     // This register map must be update since we need to find the receiver for
1235     // compiled frames. The receiver might be in a register.
1236     RegisterMap reg_map2(current,
1237                          RegisterMap::UpdateMap::include,
1238                          RegisterMap::ProcessFrames::include,
1239                          RegisterMap::WalkContinuation::skip);
1240     frame stubFrame   = current->last_frame();
1241     // Caller-frame is a compiled frame
1242     frame callerFrame = stubFrame.sender(&reg_map2);
1243 
1244     if (attached_method.is_null()) {
1245       Method* callee = bytecode.static_target(CHECK_NH);
1246       if (callee == nullptr) {
1247         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1248       }
1249     }
1250 
1251     // Retrieve from a compiled argument list
1252     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1253     assert(oopDesc::is_oop_or_null(receiver()), "");
1254 
1255     if (receiver.is_null()) {
1256       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1257     }
1258   }
1259 
1260   // Resolve method
1261   if (attached_method.not_null()) {
1262     // Parameterized by attached method.
1263     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1264   } else {
1265     // Parameterized by bytecode.
1266     constantPoolHandle constants(current, caller->constants());
1267     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1268   }
1269 
1270 #ifdef ASSERT
1271   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1272   if (has_receiver) {
1273     assert(receiver.not_null(), "should have thrown exception");
1274     Klass* receiver_klass = receiver->klass();
1275     Klass* rk = nullptr;
1276     if (attached_method.not_null()) {
1277       // In case there's resolved method attached, use its holder during the check.
1278       rk = attached_method->method_holder();
1279     } else {
1280       // Klass is already loaded.
1281       constantPoolHandle constants(current, caller->constants());
1282       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1283     }
1284     Klass* static_receiver_klass = rk;
1285     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1286            "actual receiver must be subclass of static receiver klass");
1287     if (receiver_klass->is_instance_klass()) {
1288       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1289         tty->print_cr("ERROR: Klass not yet initialized!!");
1290         receiver_klass->print();
1291       }
1292       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1293     }
1294   }
1295 #endif
1296 
1297   return receiver;
1298 }
1299 
1300 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1301   JavaThread* current = THREAD;
1302   ResourceMark rm(current);
1303   // We need first to check if any Java activations (compiled, interpreted)
1304   // exist on the stack since last JavaCall.  If not, we need
1305   // to get the target method from the JavaCall wrapper.
1306   vframeStream vfst(current, true);  // Do not skip any javaCalls
1307   methodHandle callee_method;
1308   if (vfst.at_end()) {
1309     // No Java frames were found on stack since we did the JavaCall.
1310     // Hence the stack can only contain an entry_frame.  We need to
1311     // find the target method from the stub frame.
1312     RegisterMap reg_map(current,
1313                         RegisterMap::UpdateMap::skip,
1314                         RegisterMap::ProcessFrames::include,
1315                         RegisterMap::WalkContinuation::skip);
1316     frame fr = current->last_frame();
1317     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1318     fr = fr.sender(&reg_map);
1319     assert(fr.is_entry_frame(), "must be");
1320     // fr is now pointing to the entry frame.
1321     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1322   } else {
1323     Bytecodes::Code bc;
1324     CallInfo callinfo;
1325     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1326     callee_method = methodHandle(current, callinfo.selected_method());
1327   }
1328   assert(callee_method()->is_method(), "must be");
1329   return callee_method;
1330 }
1331 
1332 // Resolves a call.
1333 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1334   JavaThread* current = THREAD;
1335   ResourceMark rm(current);
1336   RegisterMap cbl_map(current,
1337                       RegisterMap::UpdateMap::skip,
1338                       RegisterMap::ProcessFrames::include,
1339                       RegisterMap::WalkContinuation::skip);
1340   frame caller_frame = current->last_frame().sender(&cbl_map);
1341 
1342   CodeBlob* caller_cb = caller_frame.cb();
1343   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1344   nmethod* caller_nm = caller_cb->as_nmethod();
1345 
1346   // determine call info & receiver
1347   // note: a) receiver is null for static calls
1348   //       b) an exception is thrown if receiver is null for non-static calls
1349   CallInfo call_info;
1350   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1351   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1352 
1353   NoSafepointVerifier nsv;
1354 
1355   methodHandle callee_method(current, call_info.selected_method());
1356 
1357   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1358          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1359          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1360          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1361          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1362 
1363   assert(!caller_nm->is_unloading(), "It should not be unloading");
1364 
1365 #ifndef PRODUCT
1366   // tracing/debugging/statistics
1367   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1368                  (is_virtual) ? (&_resolve_virtual_ctr) :
1369                                 (&_resolve_static_ctr);
1370   Atomic::inc(addr);
1371 
1372   if (TraceCallFixup) {
1373     ResourceMark rm(current);
1374     tty->print("resolving %s%s (%s) call to",
1375                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1376                Bytecodes::name(invoke_code));
1377     callee_method->print_short_name(tty);
1378     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1379                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1380   }
1381 #endif
1382 
1383   if (invoke_code == Bytecodes::_invokestatic) {
1384     assert(callee_method->method_holder()->is_initialized() ||
1385            callee_method->method_holder()->is_reentrant_initialization(current),
1386            "invalid class initialization state for invoke_static");
1387     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1388       // In order to keep class initialization check, do not patch call
1389       // site for static call when the class is not fully initialized.
1390       // Proper check is enforced by call site re-resolution on every invocation.
1391       //
1392       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1393       // explicit class initialization check is put in nmethod entry (VEP).
1394       assert(callee_method->method_holder()->is_linked(), "must be");
1395       return callee_method;
1396     }
1397   }
1398 
1399 
1400   // JSR 292 key invariant:
1401   // If the resolved method is a MethodHandle invoke target, the call
1402   // site must be a MethodHandle call site, because the lambda form might tail-call
1403   // leaving the stack in a state unknown to either caller or callee
1404 
1405   // Compute entry points. The computation of the entry points is independent of
1406   // patching the call.
1407 
1408   // Make sure the callee nmethod does not get deoptimized and removed before
1409   // we are done patching the code.
1410 
1411 
1412   CompiledICLocker ml(caller_nm);
1413   if (is_virtual && !is_optimized) {
1414     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1415     inline_cache->update(&call_info, receiver->klass());
1416   } else {
1417     // Callsite is a direct call - set it to the destination method
1418     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1419     callsite->set(callee_method);
1420   }
1421 
1422   return callee_method;
1423 }
1424 
1425 // Inline caches exist only in compiled code
1426 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1427 #ifdef ASSERT
1428   RegisterMap reg_map(current,
1429                       RegisterMap::UpdateMap::skip,
1430                       RegisterMap::ProcessFrames::include,
1431                       RegisterMap::WalkContinuation::skip);
1432   frame stub_frame = current->last_frame();
1433   assert(stub_frame.is_runtime_frame(), "sanity check");
1434   frame caller_frame = stub_frame.sender(&reg_map);
1435   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1436 #endif /* ASSERT */
1437 
1438   methodHandle callee_method;
1439   JRT_BLOCK
1440     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1441     // Return Method* through TLS
1442     current->set_vm_result_2(callee_method());
1443   JRT_BLOCK_END
1444   // return compiled code entry point after potential safepoints
1445   return get_resolved_entry(current, callee_method);
1446 JRT_END
1447 
1448 
1449 // Handle call site that has been made non-entrant
1450 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1451   // 6243940 We might end up in here if the callee is deoptimized
1452   // as we race to call it.  We don't want to take a safepoint if
1453   // the caller was interpreted because the caller frame will look
1454   // interpreted to the stack walkers and arguments are now
1455   // "compiled" so it is much better to make this transition
1456   // invisible to the stack walking code. The i2c path will
1457   // place the callee method in the callee_target. It is stashed
1458   // there because if we try and find the callee by normal means a
1459   // safepoint is possible and have trouble gc'ing the compiled args.
1460   RegisterMap reg_map(current,
1461                       RegisterMap::UpdateMap::skip,
1462                       RegisterMap::ProcessFrames::include,
1463                       RegisterMap::WalkContinuation::skip);
1464   frame stub_frame = current->last_frame();
1465   assert(stub_frame.is_runtime_frame(), "sanity check");
1466   frame caller_frame = stub_frame.sender(&reg_map);
1467 
1468   if (caller_frame.is_interpreted_frame() ||
1469       caller_frame.is_entry_frame() ||
1470       caller_frame.is_upcall_stub_frame()) {
1471     Method* callee = current->callee_target();
1472     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1473     current->set_vm_result_2(callee);
1474     current->set_callee_target(nullptr);
1475     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1476       // Bypass class initialization checks in c2i when caller is in native.
1477       // JNI calls to static methods don't have class initialization checks.
1478       // Fast class initialization checks are present in c2i adapters and call into
1479       // SharedRuntime::handle_wrong_method() on the slow path.
1480       //
1481       // JVM upcalls may land here as well, but there's a proper check present in
1482       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1483       // so bypassing it in c2i adapter is benign.
1484       return callee->get_c2i_no_clinit_check_entry();
1485     } else {
1486       return callee->get_c2i_entry();
1487     }
1488   }
1489 
1490   // Must be compiled to compiled path which is safe to stackwalk
1491   methodHandle callee_method;
1492   JRT_BLOCK
1493     // Force resolving of caller (if we called from compiled frame)
1494     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1495     current->set_vm_result_2(callee_method());
1496   JRT_BLOCK_END
1497   // return compiled code entry point after potential safepoints
1498   return get_resolved_entry(current, callee_method);
1499 JRT_END
1500 
1501 // Handle abstract method call
1502 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1503   // Verbose error message for AbstractMethodError.
1504   // Get the called method from the invoke bytecode.
1505   vframeStream vfst(current, true);
1506   assert(!vfst.at_end(), "Java frame must exist");
1507   methodHandle caller(current, vfst.method());
1508   Bytecode_invoke invoke(caller, vfst.bci());
1509   DEBUG_ONLY( invoke.verify(); )
1510 
1511   // Find the compiled caller frame.
1512   RegisterMap reg_map(current,
1513                       RegisterMap::UpdateMap::include,
1514                       RegisterMap::ProcessFrames::include,
1515                       RegisterMap::WalkContinuation::skip);
1516   frame stubFrame = current->last_frame();
1517   assert(stubFrame.is_runtime_frame(), "must be");
1518   frame callerFrame = stubFrame.sender(&reg_map);
1519   assert(callerFrame.is_compiled_frame(), "must be");
1520 
1521   // Install exception and return forward entry.
1522   address res = SharedRuntime::throw_AbstractMethodError_entry();
1523   JRT_BLOCK
1524     methodHandle callee(current, invoke.static_target(current));
1525     if (!callee.is_null()) {
1526       oop recv = callerFrame.retrieve_receiver(&reg_map);
1527       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1528       res = StubRoutines::forward_exception_entry();
1529       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1530     }
1531   JRT_BLOCK_END
1532   return res;
1533 JRT_END
1534 
1535 // return verified_code_entry if interp_only_mode is not set for the current thread;
1536 // otherwise return c2i entry.
1537 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1538   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1539     // In interp_only_mode we need to go to the interpreted entry
1540     // The c2i won't patch in this mode -- see fixup_callers_callsite
1541     return callee_method->get_c2i_entry();
1542   }
1543   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1544   return callee_method->verified_code_entry();
1545 }
1546 
1547 // resolve a static call and patch code
1548 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1549   methodHandle callee_method;
1550   bool enter_special = false;
1551   JRT_BLOCK
1552     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1553     current->set_vm_result_2(callee_method());
1554   JRT_BLOCK_END
1555   // return compiled code entry point after potential safepoints
1556   return get_resolved_entry(current, callee_method);
1557 JRT_END
1558 
1559 // resolve virtual call and update inline cache to monomorphic
1560 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1561   methodHandle callee_method;
1562   JRT_BLOCK
1563     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1564     current->set_vm_result_2(callee_method());
1565   JRT_BLOCK_END
1566   // return compiled code entry point after potential safepoints
1567   return get_resolved_entry(current, callee_method);
1568 JRT_END
1569 
1570 
1571 // Resolve a virtual call that can be statically bound (e.g., always
1572 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1573 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1574   methodHandle callee_method;
1575   JRT_BLOCK
1576     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1577     current->set_vm_result_2(callee_method());
1578   JRT_BLOCK_END
1579   // return compiled code entry point after potential safepoints
1580   return get_resolved_entry(current, callee_method);
1581 JRT_END
1582 
1583 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1584   JavaThread* current = THREAD;
1585   ResourceMark rm(current);
1586   CallInfo call_info;
1587   Bytecodes::Code bc;
1588 
1589   // receiver is null for static calls. An exception is thrown for null
1590   // receivers for non-static calls
1591   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1592 
1593   methodHandle callee_method(current, call_info.selected_method());
1594 
1595 #ifndef PRODUCT
1596   Atomic::inc(&_ic_miss_ctr);
1597 
1598   // Statistics & Tracing
1599   if (TraceCallFixup) {
1600     ResourceMark rm(current);
1601     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1602     callee_method->print_short_name(tty);
1603     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1604   }
1605 
1606   if (ICMissHistogram) {
1607     MutexLocker m(VMStatistic_lock);
1608     RegisterMap reg_map(current,
1609                         RegisterMap::UpdateMap::skip,
1610                         RegisterMap::ProcessFrames::include,
1611                         RegisterMap::WalkContinuation::skip);
1612     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1613     // produce statistics under the lock
1614     trace_ic_miss(f.pc());
1615   }
1616 #endif
1617 
1618   // install an event collector so that when a vtable stub is created the
1619   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1620   // event can't be posted when the stub is created as locks are held
1621   // - instead the event will be deferred until the event collector goes
1622   // out of scope.
1623   JvmtiDynamicCodeEventCollector event_collector;
1624 
1625   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1626   RegisterMap reg_map(current,
1627                       RegisterMap::UpdateMap::skip,
1628                       RegisterMap::ProcessFrames::include,
1629                       RegisterMap::WalkContinuation::skip);
1630   frame caller_frame = current->last_frame().sender(&reg_map);
1631   CodeBlob* cb = caller_frame.cb();
1632   nmethod* caller_nm = cb->as_nmethod();
1633 
1634   CompiledICLocker ml(caller_nm);
1635   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1636   inline_cache->update(&call_info, receiver()->klass());
1637 
1638   return callee_method;
1639 }
1640 
1641 //
1642 // Resets a call-site in compiled code so it will get resolved again.
1643 // This routines handles both virtual call sites, optimized virtual call
1644 // sites, and static call sites. Typically used to change a call sites
1645 // destination from compiled to interpreted.
1646 //
1647 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1648   JavaThread* current = THREAD;
1649   ResourceMark rm(current);
1650   RegisterMap reg_map(current,
1651                       RegisterMap::UpdateMap::skip,
1652                       RegisterMap::ProcessFrames::include,
1653                       RegisterMap::WalkContinuation::skip);
1654   frame stub_frame = current->last_frame();
1655   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1656   frame caller = stub_frame.sender(&reg_map);
1657 
1658   // Do nothing if the frame isn't a live compiled frame.
1659   // nmethod could be deoptimized by the time we get here
1660   // so no update to the caller is needed.
1661 
1662   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1663       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1664 
1665     address pc = caller.pc();
1666 
1667     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1668     assert(caller_nm != nullptr, "did not find caller nmethod");
1669 
1670     // Default call_addr is the location of the "basic" call.
1671     // Determine the address of the call we a reresolving. With
1672     // Inline Caches we will always find a recognizable call.
1673     // With Inline Caches disabled we may or may not find a
1674     // recognizable call. We will always find a call for static
1675     // calls and for optimized virtual calls. For vanilla virtual
1676     // calls it depends on the state of the UseInlineCaches switch.
1677     //
1678     // With Inline Caches disabled we can get here for a virtual call
1679     // for two reasons:
1680     //   1 - calling an abstract method. The vtable for abstract methods
1681     //       will run us thru handle_wrong_method and we will eventually
1682     //       end up in the interpreter to throw the ame.
1683     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1684     //       call and between the time we fetch the entry address and
1685     //       we jump to it the target gets deoptimized. Similar to 1
1686     //       we will wind up in the interprter (thru a c2i with c2).
1687     //
1688     CompiledICLocker ml(caller_nm);
1689     address call_addr = caller_nm->call_instruction_address(pc);
1690 
1691     if (call_addr != nullptr) {
1692       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1693       // bytes back in the instruction stream so we must also check for reloc info.
1694       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1695       bool ret = iter.next(); // Get item
1696       if (ret) {
1697         switch (iter.type()) {
1698           case relocInfo::static_call_type:
1699           case relocInfo::opt_virtual_call_type: {
1700             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1701             cdc->set_to_clean();
1702             break;
1703           }
1704 
1705           case relocInfo::virtual_call_type: {
1706             // compiled, dispatched call (which used to call an interpreted method)
1707             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1708             inline_cache->set_to_clean();
1709             break;
1710           }
1711           default:
1712             break;
1713         }
1714       }
1715     }
1716   }
1717 
1718   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1719 
1720 
1721 #ifndef PRODUCT
1722   Atomic::inc(&_wrong_method_ctr);
1723 
1724   if (TraceCallFixup) {
1725     ResourceMark rm(current);
1726     tty->print("handle_wrong_method reresolving call to");
1727     callee_method->print_short_name(tty);
1728     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1729   }
1730 #endif
1731 
1732   return callee_method;
1733 }
1734 
1735 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1736   // The faulting unsafe accesses should be changed to throw the error
1737   // synchronously instead. Meanwhile the faulting instruction will be
1738   // skipped over (effectively turning it into a no-op) and an
1739   // asynchronous exception will be raised which the thread will
1740   // handle at a later point. If the instruction is a load it will
1741   // return garbage.
1742 
1743   // Request an async exception.
1744   thread->set_pending_unsafe_access_error();
1745 
1746   // Return address of next instruction to execute.
1747   return next_pc;
1748 }
1749 
1750 #ifdef ASSERT
1751 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1752                                                                 const BasicType* sig_bt,
1753                                                                 const VMRegPair* regs) {
1754   ResourceMark rm;
1755   const int total_args_passed = method->size_of_parameters();
1756   const VMRegPair*    regs_with_member_name = regs;
1757         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1758 
1759   const int member_arg_pos = total_args_passed - 1;
1760   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1761   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1762 
1763   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1764 
1765   for (int i = 0; i < member_arg_pos; i++) {
1766     VMReg a =    regs_with_member_name[i].first();
1767     VMReg b = regs_without_member_name[i].first();
1768     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1769   }
1770   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1771 }
1772 #endif
1773 
1774 // ---------------------------------------------------------------------------
1775 // We are calling the interpreter via a c2i. Normally this would mean that
1776 // we were called by a compiled method. However we could have lost a race
1777 // where we went int -> i2c -> c2i and so the caller could in fact be
1778 // interpreted. If the caller is compiled we attempt to patch the caller
1779 // so he no longer calls into the interpreter.
1780 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1781   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1782 
1783   // It's possible that deoptimization can occur at a call site which hasn't
1784   // been resolved yet, in which case this function will be called from
1785   // an nmethod that has been patched for deopt and we can ignore the
1786   // request for a fixup.
1787   // Also it is possible that we lost a race in that from_compiled_entry
1788   // is now back to the i2c in that case we don't need to patch and if
1789   // we did we'd leap into space because the callsite needs to use
1790   // "to interpreter" stub in order to load up the Method*. Don't
1791   // ask me how I know this...
1792 
1793   // Result from nmethod::is_unloading is not stable across safepoints.
1794   NoSafepointVerifier nsv;
1795 
1796   nmethod* callee = method->code();
1797   if (callee == nullptr) {
1798     return;
1799   }
1800 
1801   // write lock needed because we might patch call site by set_to_clean()
1802   // and is_unloading() can modify nmethod's state
1803   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1804 
1805   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1806   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1807     return;
1808   }
1809 
1810   // The check above makes sure this is an nmethod.
1811   nmethod* caller = cb->as_nmethod();
1812 
1813   // Get the return PC for the passed caller PC.
1814   address return_pc = caller_pc + frame::pc_return_offset;
1815 
1816   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1817     return;
1818   }
1819 
1820   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1821   CompiledICLocker ic_locker(caller);
1822   ResourceMark rm;
1823 
1824   // If we got here through a static call or opt_virtual call, then we know where the
1825   // call address would be; let's peek at it
1826   address callsite_addr = (address)nativeCall_before(return_pc);
1827   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1828   if (!iter.next()) {
1829     // No reloc entry found; not a static or optimized virtual call
1830     return;
1831   }
1832 
1833   relocInfo::relocType type = iter.reloc()->type();
1834   if (type != relocInfo::static_call_type &&
1835       type != relocInfo::opt_virtual_call_type) {
1836     return;
1837   }
1838 
1839   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1840   callsite->set_to_clean();
1841 JRT_END
1842 
1843 
1844 // same as JVM_Arraycopy, but called directly from compiled code
1845 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1846                                                 oopDesc* dest, jint dest_pos,
1847                                                 jint length,
1848                                                 JavaThread* current)) {
1849 #ifndef PRODUCT
1850   _slow_array_copy_ctr++;
1851 #endif
1852   // Check if we have null pointers
1853   if (src == nullptr || dest == nullptr) {
1854     THROW(vmSymbols::java_lang_NullPointerException());
1855   }
1856   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1857   // even though the copy_array API also performs dynamic checks to ensure
1858   // that src and dest are truly arrays (and are conformable).
1859   // The copy_array mechanism is awkward and could be removed, but
1860   // the compilers don't call this function except as a last resort,
1861   // so it probably doesn't matter.
1862   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1863                                         (arrayOopDesc*)dest, dest_pos,
1864                                         length, current);
1865 }
1866 JRT_END
1867 
1868 // The caller of generate_class_cast_message() (or one of its callers)
1869 // must use a ResourceMark in order to correctly free the result.
1870 char* SharedRuntime::generate_class_cast_message(
1871     JavaThread* thread, Klass* caster_klass) {
1872 
1873   // Get target class name from the checkcast instruction
1874   vframeStream vfst(thread, true);
1875   assert(!vfst.at_end(), "Java frame must exist");
1876   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1877   constantPoolHandle cpool(thread, vfst.method()->constants());
1878   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1879   Symbol* target_klass_name = nullptr;
1880   if (target_klass == nullptr) {
1881     // This klass should be resolved, but just in case, get the name in the klass slot.
1882     target_klass_name = cpool->klass_name_at(cc.index());
1883   }
1884   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1885 }
1886 
1887 
1888 // The caller of generate_class_cast_message() (or one of its callers)
1889 // must use a ResourceMark in order to correctly free the result.
1890 char* SharedRuntime::generate_class_cast_message(
1891     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1892   const char* caster_name = caster_klass->external_name();
1893 
1894   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
1895   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
1896                                                    target_klass->external_name();
1897 
1898   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1899 
1900   const char* caster_klass_description = "";
1901   const char* target_klass_description = "";
1902   const char* klass_separator = "";
1903   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
1904     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1905   } else {
1906     caster_klass_description = caster_klass->class_in_module_of_loader();
1907     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
1908     klass_separator = (target_klass != nullptr) ? "; " : "";
1909   }
1910 
1911   // add 3 for parenthesis and preceding space
1912   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1913 
1914   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1915   if (message == nullptr) {
1916     // Shouldn't happen, but don't cause even more problems if it does
1917     message = const_cast<char*>(caster_klass->external_name());
1918   } else {
1919     jio_snprintf(message,
1920                  msglen,
1921                  "class %s cannot be cast to class %s (%s%s%s)",
1922                  caster_name,
1923                  target_name,
1924                  caster_klass_description,
1925                  klass_separator,
1926                  target_klass_description
1927                  );
1928   }
1929   return message;
1930 }
1931 
1932 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1933   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
1934 JRT_END
1935 
1936 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1937   if (!SafepointSynchronize::is_synchronizing()) {
1938     // Only try quick_enter() if we're not trying to reach a safepoint
1939     // so that the calling thread reaches the safepoint more quickly.
1940     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
1941       return;
1942     }
1943   }
1944   // NO_ASYNC required because an async exception on the state transition destructor
1945   // would leave you with the lock held and it would never be released.
1946   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1947   // and the model is that an exception implies the method failed.
1948   JRT_BLOCK_NO_ASYNC
1949   Handle h_obj(THREAD, obj);
1950   ObjectSynchronizer::enter(h_obj, lock, current);
1951   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1952   JRT_BLOCK_END
1953 }
1954 
1955 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1956 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
1957   SharedRuntime::monitor_enter_helper(obj, lock, current);
1958 JRT_END
1959 
1960 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1961   assert(JavaThread::current() == current, "invariant");
1962   // Exit must be non-blocking, and therefore no exceptions can be thrown.
1963   ExceptionMark em(current);
1964 
1965   // Check if C2_MacroAssembler::fast_unlock() or
1966   // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated
1967   // monitor before going slow path.  Since there is no safepoint
1968   // polling when calling into the VM, we can be sure that the monitor
1969   // hasn't been deallocated.
1970   ObjectMonitor* m = current->unlocked_inflated_monitor();
1971   if (m != nullptr) {
1972     assert(!m->has_owner(current), "must be");
1973     current->clear_unlocked_inflated_monitor();
1974 
1975     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
1976     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
1977       // Some other thread acquired the lock (or the monitor was
1978       // deflated). Either way we are done.
1979       current->dec_held_monitor_count();
1980       return;
1981     }
1982   }
1983 
1984   // The object could become unlocked through a JNI call, which we have no other checks for.
1985   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
1986   if (obj->is_unlocked()) {
1987     if (CheckJNICalls) {
1988       fatal("Object has been unlocked by JNI");
1989     }
1990     return;
1991   }
1992   ObjectSynchronizer::exit(obj, lock, current);
1993 }
1994 
1995 // Handles the uncommon cases of monitor unlocking in compiled code
1996 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
1997   assert(current == JavaThread::current(), "pre-condition");
1998   SharedRuntime::monitor_exit_helper(obj, lock, current);
1999 JRT_END
2000 
2001 // This is only called when CheckJNICalls is true, and only
2002 // for virtual thread termination.
2003 JRT_LEAF(void,  SharedRuntime::log_jni_monitor_still_held())
2004   assert(CheckJNICalls, "Only call this when checking JNI usage");
2005   if (log_is_enabled(Debug, jni)) {
2006     JavaThread* current = JavaThread::current();
2007     int64_t vthread_id = java_lang_Thread::thread_id(current->vthread());
2008     int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj());
2009     log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT
2010                    ") exiting with Objects still locked by JNI MonitorEnter.",
2011                    vthread_id, carrier_id);
2012   }
2013 JRT_END
2014 
2015 #ifndef PRODUCT
2016 
2017 void SharedRuntime::print_statistics() {
2018   ttyLocker ttyl;
2019   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2020 
2021   SharedRuntime::print_ic_miss_histogram();
2022 
2023   // Dump the JRT_ENTRY counters
2024   if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
2025   if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
2026   if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2027   if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2028   if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2029   if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2030 
2031   tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2032   tty->print_cr("%5u wrong method", _wrong_method_ctr);
2033   tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2034   tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2035   tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2036 
2037   if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2038   if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2039   if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2040   if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2041   if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2042   if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2043   if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2044   if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
2045   if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2046   if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2047   if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2048   if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2049   if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2050   if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2051   if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
2052   if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
2053   if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2054 
2055   AdapterHandlerLibrary::print_statistics();
2056 
2057   if (xtty != nullptr)  xtty->tail("statistics");
2058 }
2059 
2060 inline double percent(int64_t x, int64_t y) {
2061   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2062 }
2063 
2064 class MethodArityHistogram {
2065  public:
2066   enum { MAX_ARITY = 256 };
2067  private:
2068   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2069   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2070   static uint64_t _total_compiled_calls;
2071   static uint64_t _max_compiled_calls_per_method;
2072   static int _max_arity;                       // max. arity seen
2073   static int _max_size;                        // max. arg size seen
2074 
2075   static void add_method_to_histogram(nmethod* nm) {
2076     Method* method = (nm == nullptr) ? nullptr : nm->method();
2077     if (method != nullptr) {
2078       ArgumentCount args(method->signature());
2079       int arity   = args.size() + (method->is_static() ? 0 : 1);
2080       int argsize = method->size_of_parameters();
2081       arity   = MIN2(arity, MAX_ARITY-1);
2082       argsize = MIN2(argsize, MAX_ARITY-1);
2083       uint64_t count = (uint64_t)method->compiled_invocation_count();
2084       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2085       _total_compiled_calls    += count;
2086       _arity_histogram[arity]  += count;
2087       _size_histogram[argsize] += count;
2088       _max_arity = MAX2(_max_arity, arity);
2089       _max_size  = MAX2(_max_size, argsize);
2090     }
2091   }
2092 
2093   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2094     const int N = MIN2(9, n);
2095     double sum = 0;
2096     double weighted_sum = 0;
2097     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2098     if (sum >= 1) { // prevent divide by zero or divide overflow
2099       double rest = sum;
2100       double percent = sum / 100;
2101       for (int i = 0; i <= N; i++) {
2102         rest -= (double)histo[i];
2103         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2104       }
2105       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2106       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2107       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2108       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2109     } else {
2110       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2111     }
2112   }
2113 
2114   void print_histogram() {
2115     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2116     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2117     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2118     print_histogram_helper(_max_size, _size_histogram, "size");
2119     tty->cr();
2120   }
2121 
2122  public:
2123   MethodArityHistogram() {
2124     // Take the Compile_lock to protect against changes in the CodeBlob structures
2125     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2126     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2127     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2128     _max_arity = _max_size = 0;
2129     _total_compiled_calls = 0;
2130     _max_compiled_calls_per_method = 0;
2131     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2132     CodeCache::nmethods_do(add_method_to_histogram);
2133     print_histogram();
2134   }
2135 };
2136 
2137 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2138 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2139 uint64_t MethodArityHistogram::_total_compiled_calls;
2140 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2141 int MethodArityHistogram::_max_arity;
2142 int MethodArityHistogram::_max_size;
2143 
2144 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2145   tty->print_cr("Calls from compiled code:");
2146   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2147   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2148   int64_t mono_i = _nof_interface_calls;
2149   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2150   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2151   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2152   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2153   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2154   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2155   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2156   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2157   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2158   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2159   tty->cr();
2160   tty->print_cr("Note 1: counter updates are not MT-safe.");
2161   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2162   tty->print_cr("        %% in nested categories are relative to their category");
2163   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2164   tty->cr();
2165 
2166   MethodArityHistogram h;
2167 }
2168 #endif
2169 
2170 #ifndef PRODUCT
2171 static int _lookups; // number of calls to lookup
2172 static int _equals;  // number of buckets checked with matching hash
2173 static int _hits;    // number of successful lookups
2174 static int _compact; // number of equals calls with compact signature
2175 #endif
2176 
2177 // A simple wrapper class around the calling convention information
2178 // that allows sharing of adapters for the same calling convention.
2179 class AdapterFingerPrint : public CHeapObj<mtCode> {
2180  private:
2181   enum {
2182     _basic_type_bits = 4,
2183     _basic_type_mask = right_n_bits(_basic_type_bits),
2184     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2185     _compact_int_count = 3
2186   };
2187   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2188   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2189 
2190   union {
2191     int  _compact[_compact_int_count];
2192     int* _fingerprint;
2193   } _value;
2194   int _length; // A negative length indicates the fingerprint is in the compact form,
2195                // Otherwise _value._fingerprint is the array.
2196 
2197   // Remap BasicTypes that are handled equivalently by the adapters.
2198   // These are correct for the current system but someday it might be
2199   // necessary to make this mapping platform dependent.
2200   static int adapter_encoding(BasicType in) {
2201     switch (in) {
2202       case T_BOOLEAN:
2203       case T_BYTE:
2204       case T_SHORT:
2205       case T_CHAR:
2206         // There are all promoted to T_INT in the calling convention
2207         return T_INT;
2208 
2209       case T_OBJECT:
2210       case T_ARRAY:
2211         // In other words, we assume that any register good enough for
2212         // an int or long is good enough for a managed pointer.
2213 #ifdef _LP64
2214         return T_LONG;
2215 #else
2216         return T_INT;
2217 #endif
2218 
2219       case T_INT:
2220       case T_LONG:
2221       case T_FLOAT:
2222       case T_DOUBLE:
2223       case T_VOID:
2224         return in;
2225 
2226       default:
2227         ShouldNotReachHere();
2228         return T_CONFLICT;
2229     }
2230   }
2231 
2232  public:
2233   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2234     // The fingerprint is based on the BasicType signature encoded
2235     // into an array of ints with eight entries per int.
2236     int* ptr;
2237     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2238     if (len <= _compact_int_count) {
2239       assert(_compact_int_count == 3, "else change next line");
2240       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2241       // Storing the signature encoded as signed chars hits about 98%
2242       // of the time.
2243       _length = -len;
2244       ptr = _value._compact;
2245     } else {
2246       _length = len;
2247       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2248       ptr = _value._fingerprint;
2249     }
2250 
2251     // Now pack the BasicTypes with 8 per int
2252     int sig_index = 0;
2253     for (int index = 0; index < len; index++) {
2254       int value = 0;
2255       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2256         int bt = adapter_encoding(sig_bt[sig_index++]);
2257         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2258         value = (value << _basic_type_bits) | bt;
2259       }
2260       ptr[index] = value;
2261     }
2262   }
2263 
2264   ~AdapterFingerPrint() {
2265     if (_length > 0) {
2266       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2267     }
2268   }
2269 
2270   int value(int index) {
2271     if (_length < 0) {
2272       return _value._compact[index];
2273     }
2274     return _value._fingerprint[index];
2275   }
2276   int length() {
2277     if (_length < 0) return -_length;
2278     return _length;
2279   }
2280 
2281   bool is_compact() {
2282     return _length <= 0;
2283   }
2284 
2285   unsigned int compute_hash() {
2286     int hash = 0;
2287     for (int i = 0; i < length(); i++) {
2288       int v = value(i);
2289       hash = (hash << 8) ^ v ^ (hash >> 5);
2290     }
2291     return (unsigned int)hash;
2292   }
2293 
2294   const char* as_string() {
2295     stringStream st;
2296     st.print("0x");
2297     for (int i = 0; i < length(); i++) {
2298       st.print("%x", value(i));
2299     }
2300     return st.as_string();
2301   }
2302 
2303 #ifndef PRODUCT
2304   // Reconstitutes the basic type arguments from the fingerprint,
2305   // producing strings like LIJDF
2306   const char* as_basic_args_string() {
2307     stringStream st;
2308     bool long_prev = false;
2309     for (int i = 0; i < length(); i++) {
2310       unsigned val = (unsigned)value(i);
2311       // args are packed so that first/lower arguments are in the highest
2312       // bits of each int value, so iterate from highest to the lowest
2313       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2314         unsigned v = (val >> j) & _basic_type_mask;
2315         if (v == 0) {
2316           assert(i == length() - 1, "Only expect zeroes in the last word");
2317           continue;
2318         }
2319         if (long_prev) {
2320           long_prev = false;
2321           if (v == T_VOID) {
2322             st.print("J");
2323           } else {
2324             st.print("L");
2325           }
2326         }
2327         switch (v) {
2328           case T_INT:    st.print("I");    break;
2329           case T_LONG:   long_prev = true; break;
2330           case T_FLOAT:  st.print("F");    break;
2331           case T_DOUBLE: st.print("D");    break;
2332           case T_VOID:   break;
2333           default: ShouldNotReachHere();
2334         }
2335       }
2336     }
2337     if (long_prev) {
2338       st.print("L");
2339     }
2340     return st.as_string();
2341   }
2342 #endif // !product
2343 
2344   bool equals(AdapterFingerPrint* other) {
2345     if (other->_length != _length) {
2346       return false;
2347     }
2348     if (_length < 0) {
2349       assert(_compact_int_count == 3, "else change next line");
2350       return _value._compact[0] == other->_value._compact[0] &&
2351              _value._compact[1] == other->_value._compact[1] &&
2352              _value._compact[2] == other->_value._compact[2];
2353     } else {
2354       for (int i = 0; i < _length; i++) {
2355         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2356           return false;
2357         }
2358       }
2359     }
2360     return true;
2361   }
2362 
2363   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2364     NOT_PRODUCT(_equals++);
2365     return fp1->equals(fp2);
2366   }
2367 
2368   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2369     return fp->compute_hash();
2370   }
2371 };
2372 
2373 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2374 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2375                   AnyObj::C_HEAP, mtCode,
2376                   AdapterFingerPrint::compute_hash,
2377                   AdapterFingerPrint::equals>;
2378 static AdapterHandlerTable* _adapter_handler_table;
2379 
2380 // Find a entry with the same fingerprint if it exists
2381 static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2382   NOT_PRODUCT(_lookups++);
2383   assert_lock_strong(AdapterHandlerLibrary_lock);
2384   AdapterFingerPrint fp(total_args_passed, sig_bt);
2385   AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp);
2386   if (entry != nullptr) {
2387 #ifndef PRODUCT
2388     if (fp.is_compact()) _compact++;
2389     _hits++;
2390 #endif
2391     return *entry;
2392   }
2393   return nullptr;
2394 }
2395 
2396 #ifndef PRODUCT
2397 static void print_table_statistics() {
2398   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2399     return sizeof(*key) + sizeof(*a);
2400   };
2401   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2402   ts.print(tty, "AdapterHandlerTable");
2403   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2404                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2405   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d",
2406                 _lookups, _equals, _hits, _compact);
2407 }
2408 #endif
2409 
2410 // ---------------------------------------------------------------------------
2411 // Implementation of AdapterHandlerLibrary
2412 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr;
2413 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2414 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2415 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2416 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2417 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2418 const int AdapterHandlerLibrary_size = 16*K;
2419 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2420 
2421 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2422   return _buffer;
2423 }
2424 
2425 static void post_adapter_creation(const AdapterBlob* new_adapter,
2426                                   const AdapterHandlerEntry* entry) {
2427   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2428     char blob_id[256];
2429     jio_snprintf(blob_id,
2430                  sizeof(blob_id),
2431                  "%s(%s)",
2432                  new_adapter->name(),
2433                  entry->fingerprint()->as_string());
2434     if (Forte::is_enabled()) {
2435       Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2436     }
2437 
2438     if (JvmtiExport::should_post_dynamic_code_generated()) {
2439       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2440     }
2441   }
2442 }
2443 
2444 void AdapterHandlerLibrary::initialize() {
2445   ResourceMark rm;
2446   AdapterBlob* no_arg_blob = nullptr;
2447   AdapterBlob* int_arg_blob = nullptr;
2448   AdapterBlob* obj_arg_blob = nullptr;
2449   AdapterBlob* obj_int_arg_blob = nullptr;
2450   AdapterBlob* obj_obj_arg_blob = nullptr;
2451   {
2452     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2453     MutexLocker mu(AdapterHandlerLibrary_lock);
2454 
2455     // Create a special handler for abstract methods.  Abstract methods
2456     // are never compiled so an i2c entry is somewhat meaningless, but
2457     // throw AbstractMethodError just in case.
2458     // Pass wrong_method_abstract for the c2i transitions to return
2459     // AbstractMethodError for invalid invocations.
2460     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2461     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, nullptr),
2462                                                                 SharedRuntime::throw_AbstractMethodError_entry(),
2463                                                                 wrong_method_abstract, wrong_method_abstract);
2464 
2465     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2466     _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr, true);
2467 
2468     BasicType obj_args[] = { T_OBJECT };
2469     _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true);
2470 
2471     BasicType int_args[] = { T_INT };
2472     _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true);
2473 
2474     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2475     _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true);
2476 
2477     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2478     _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true);
2479 
2480     assert(no_arg_blob != nullptr &&
2481           obj_arg_blob != nullptr &&
2482           int_arg_blob != nullptr &&
2483           obj_int_arg_blob != nullptr &&
2484           obj_obj_arg_blob != nullptr, "Initial adapters must be properly created");
2485   }
2486 
2487   // Outside of the lock
2488   post_adapter_creation(no_arg_blob, _no_arg_handler);
2489   post_adapter_creation(obj_arg_blob, _obj_arg_handler);
2490   post_adapter_creation(int_arg_blob, _int_arg_handler);
2491   post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
2492   post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
2493 }
2494 
2495 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2496                                                       address i2c_entry,
2497                                                       address c2i_entry,
2498                                                       address c2i_unverified_entry,
2499                                                       address c2i_no_clinit_check_entry) {
2500   // Insert an entry into the table
2501   return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry,
2502                                  c2i_no_clinit_check_entry);
2503 }
2504 
2505 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2506   if (method->is_abstract()) {
2507     return _abstract_method_handler;
2508   }
2509   int total_args_passed = method->size_of_parameters(); // All args on stack
2510   if (total_args_passed == 0) {
2511     return _no_arg_handler;
2512   } else if (total_args_passed == 1) {
2513     if (!method->is_static()) {
2514       return _obj_arg_handler;
2515     }
2516     switch (method->signature()->char_at(1)) {
2517       case JVM_SIGNATURE_CLASS:
2518       case JVM_SIGNATURE_ARRAY:
2519         return _obj_arg_handler;
2520       case JVM_SIGNATURE_INT:
2521       case JVM_SIGNATURE_BOOLEAN:
2522       case JVM_SIGNATURE_CHAR:
2523       case JVM_SIGNATURE_BYTE:
2524       case JVM_SIGNATURE_SHORT:
2525         return _int_arg_handler;
2526     }
2527   } else if (total_args_passed == 2 &&
2528              !method->is_static()) {
2529     switch (method->signature()->char_at(1)) {
2530       case JVM_SIGNATURE_CLASS:
2531       case JVM_SIGNATURE_ARRAY:
2532         return _obj_obj_arg_handler;
2533       case JVM_SIGNATURE_INT:
2534       case JVM_SIGNATURE_BOOLEAN:
2535       case JVM_SIGNATURE_CHAR:
2536       case JVM_SIGNATURE_BYTE:
2537       case JVM_SIGNATURE_SHORT:
2538         return _obj_int_arg_handler;
2539     }
2540   }
2541   return nullptr;
2542 }
2543 
2544 class AdapterSignatureIterator : public SignatureIterator {
2545  private:
2546   BasicType stack_sig_bt[16];
2547   BasicType* sig_bt;
2548   int index;
2549 
2550  public:
2551   AdapterSignatureIterator(Symbol* signature,
2552                            fingerprint_t fingerprint,
2553                            bool is_static,
2554                            int total_args_passed) :
2555     SignatureIterator(signature, fingerprint),
2556     index(0)
2557   {
2558     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2559     if (!is_static) { // Pass in receiver first
2560       sig_bt[index++] = T_OBJECT;
2561     }
2562     do_parameters_on(this);
2563   }
2564 
2565   BasicType* basic_types() {
2566     return sig_bt;
2567   }
2568 
2569 #ifdef ASSERT
2570   int slots() {
2571     return index;
2572   }
2573 #endif
2574 
2575  private:
2576 
2577   friend class SignatureIterator;  // so do_parameters_on can call do_type
2578   void do_type(BasicType type) {
2579     sig_bt[index++] = type;
2580     if (type == T_LONG || type == T_DOUBLE) {
2581       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2582     }
2583   }
2584 };
2585 
2586 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2587   // Use customized signature handler.  Need to lock around updates to
2588   // the _adapter_handler_table (it is not safe for concurrent readers
2589   // and a single writer: this could be fixed if it becomes a
2590   // problem).
2591 
2592   // Fast-path for trivial adapters
2593   AdapterHandlerEntry* entry = get_simple_adapter(method);
2594   if (entry != nullptr) {
2595     return entry;
2596   }
2597 
2598   ResourceMark rm;
2599   AdapterBlob* new_adapter = nullptr;
2600 
2601   // Fill in the signature array, for the calling-convention call.
2602   int total_args_passed = method->size_of_parameters(); // All args on stack
2603 
2604   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2605                               method->is_static(), total_args_passed);
2606   assert(si.slots() == total_args_passed, "");
2607   BasicType* sig_bt = si.basic_types();
2608   {
2609     MutexLocker mu(AdapterHandlerLibrary_lock);
2610 
2611     // Lookup method signature's fingerprint
2612     entry = lookup(total_args_passed, sig_bt);
2613 
2614     if (entry != nullptr) {
2615 #ifdef ASSERT
2616       if (VerifyAdapterSharing) {
2617         AdapterBlob* comparison_blob = nullptr;
2618         AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false);
2619         assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison");
2620         assert(comparison_entry->compare_code(entry), "code must match");
2621         // Release the one just created and return the original
2622         delete comparison_entry;
2623       }
2624 #endif
2625       return entry;
2626     }
2627 
2628     entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true);
2629   }
2630 
2631   // Outside of the lock
2632   if (new_adapter != nullptr) {
2633     post_adapter_creation(new_adapter, entry);
2634   }
2635   return entry;
2636 }
2637 
2638 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter,
2639                                                            int total_args_passed,
2640                                                            BasicType* sig_bt,
2641                                                            bool allocate_code_blob) {
2642   if (log_is_enabled(Info, perf, class, link)) {
2643     ClassLoader::perf_method_adapters_count()->inc();
2644   }
2645 
2646   // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result,
2647   // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior
2648   // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated
2649   // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs.
2650   bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr;
2651 
2652   VMRegPair stack_regs[16];
2653   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2654 
2655   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2656   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2657   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2658   CodeBuffer buffer(buf);
2659   short buffer_locs[20];
2660   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2661                                           sizeof(buffer_locs)/sizeof(relocInfo));
2662 
2663   // Make a C heap allocated version of the fingerprint to store in the adapter
2664   AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2665   MacroAssembler _masm(&buffer);
2666   AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2667                                                 total_args_passed,
2668                                                 comp_args_on_stack,
2669                                                 sig_bt,
2670                                                 regs,
2671                                                 fingerprint);
2672 
2673 #ifdef ASSERT
2674   if (VerifyAdapterSharing) {
2675     entry->save_code(buf->code_begin(), buffer.insts_size());
2676     if (!allocate_code_blob) {
2677       return entry;
2678     }
2679   }
2680 #endif
2681 
2682   new_adapter = AdapterBlob::create(&buffer);
2683   NOT_PRODUCT(int insts_size = buffer.insts_size());
2684   if (new_adapter == nullptr) {
2685     // CodeCache is full, disable compilation
2686     // Ought to log this but compile log is only per compile thread
2687     // and we're some non descript Java thread.
2688     return nullptr;
2689   }
2690   entry->relocate(new_adapter->content_begin());
2691 #ifndef PRODUCT
2692   // debugging support
2693   if (PrintAdapterHandlers || PrintStubCode) {
2694     ttyLocker ttyl;
2695     entry->print_adapter_on(tty);
2696     tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2697                   _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(),
2698                   fingerprint->as_string(), insts_size);
2699     tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry()));
2700     if (Verbose || PrintStubCode) {
2701       address first_pc = entry->base_address();
2702       if (first_pc != nullptr) {
2703         Disassembler::decode(first_pc, first_pc + insts_size, tty
2704                              NOT_PRODUCT(COMMA &new_adapter->asm_remarks()));
2705         tty->cr();
2706       }
2707     }
2708   }
2709 #endif
2710 
2711   // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2712   // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2713   if (contains_all_checks || !VerifyAdapterCalls) {
2714     assert_lock_strong(AdapterHandlerLibrary_lock);
2715     _adapter_handler_table->put(fingerprint, entry);
2716   }
2717   return entry;
2718 }
2719 
2720 address AdapterHandlerEntry::base_address() {
2721   address base = _i2c_entry;
2722   if (base == nullptr)  base = _c2i_entry;
2723   assert(base <= _c2i_entry || _c2i_entry == nullptr, "");
2724   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, "");
2725   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, "");
2726   return base;
2727 }
2728 
2729 void AdapterHandlerEntry::relocate(address new_base) {
2730   address old_base = base_address();
2731   assert(old_base != nullptr, "");
2732   ptrdiff_t delta = new_base - old_base;
2733   if (_i2c_entry != nullptr)
2734     _i2c_entry += delta;
2735   if (_c2i_entry != nullptr)
2736     _c2i_entry += delta;
2737   if (_c2i_unverified_entry != nullptr)
2738     _c2i_unverified_entry += delta;
2739   if (_c2i_no_clinit_check_entry != nullptr)
2740     _c2i_no_clinit_check_entry += delta;
2741   assert(base_address() == new_base, "");
2742 }
2743 
2744 
2745 AdapterHandlerEntry::~AdapterHandlerEntry() {
2746   delete _fingerprint;
2747 #ifdef ASSERT
2748   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2749 #endif
2750 }
2751 
2752 
2753 #ifdef ASSERT
2754 // Capture the code before relocation so that it can be compared
2755 // against other versions.  If the code is captured after relocation
2756 // then relative instructions won't be equivalent.
2757 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2758   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2759   _saved_code_length = length;
2760   memcpy(_saved_code, buffer, length);
2761 }
2762 
2763 
2764 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
2765   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
2766 
2767   if (other->_saved_code_length != _saved_code_length) {
2768     return false;
2769   }
2770 
2771   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
2772 }
2773 #endif
2774 
2775 
2776 /**
2777  * Create a native wrapper for this native method.  The wrapper converts the
2778  * Java-compiled calling convention to the native convention, handles
2779  * arguments, and transitions to native.  On return from the native we transition
2780  * back to java blocking if a safepoint is in progress.
2781  */
2782 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2783   ResourceMark rm;
2784   nmethod* nm = nullptr;
2785 
2786   // Check if memory should be freed before allocation
2787   CodeCache::gc_on_allocation();
2788 
2789   assert(method->is_native(), "must be native");
2790   assert(method->is_special_native_intrinsic() ||
2791          method->has_native_function(), "must have something valid to call!");
2792 
2793   {
2794     // Perform the work while holding the lock, but perform any printing outside the lock
2795     MutexLocker mu(AdapterHandlerLibrary_lock);
2796     // See if somebody beat us to it
2797     if (method->code() != nullptr) {
2798       return;
2799     }
2800 
2801     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2802     assert(compile_id > 0, "Must generate native wrapper");
2803 
2804 
2805     ResourceMark rm;
2806     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2807     if (buf != nullptr) {
2808       CodeBuffer buffer(buf);
2809 
2810       if (method->is_continuation_enter_intrinsic()) {
2811         buffer.initialize_stubs_size(192);
2812       }
2813 
2814       struct { double data[20]; } locs_buf;
2815       struct { double data[20]; } stubs_locs_buf;
2816       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2817 #if defined(AARCH64) || defined(PPC64)
2818       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
2819       // in the constant pool to ensure ordering between the barrier and oops
2820       // accesses. For native_wrappers we need a constant.
2821       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
2822       // static java call that is resolved in the runtime.
2823       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
2824         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
2825       }
2826 #endif
2827       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
2828       MacroAssembler _masm(&buffer);
2829 
2830       // Fill in the signature array, for the calling-convention call.
2831       const int total_args_passed = method->size_of_parameters();
2832 
2833       VMRegPair stack_regs[16];
2834       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2835 
2836       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2837                               method->is_static(), total_args_passed);
2838       BasicType* sig_bt = si.basic_types();
2839       assert(si.slots() == total_args_passed, "");
2840       BasicType ret_type = si.return_type();
2841 
2842       // Now get the compiled-Java arguments layout.
2843       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2844 
2845       // Generate the compiled-to-native wrapper code
2846       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2847 
2848       if (nm != nullptr) {
2849         {
2850           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2851           if (nm->make_in_use()) {
2852             method->set_code(method, nm);
2853           }
2854         }
2855 
2856         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
2857         if (directive->PrintAssemblyOption) {
2858           nm->print_code();
2859         }
2860         DirectivesStack::release(directive);
2861       }
2862     }
2863   } // Unlock AdapterHandlerLibrary_lock
2864 
2865 
2866   // Install the generated code.
2867   if (nm != nullptr) {
2868     const char *msg = method->is_static() ? "(static)" : "";
2869     CompileTask::print_ul(nm, msg);
2870     if (PrintCompilation) {
2871       ttyLocker ttyl;
2872       CompileTask::print(tty, nm, msg);
2873     }
2874     nm->post_compiled_method_load_event();
2875   }
2876 }
2877 
2878 // -------------------------------------------------------------------------
2879 // Java-Java calling convention
2880 // (what you use when Java calls Java)
2881 
2882 //------------------------------name_for_receiver----------------------------------
2883 // For a given signature, return the VMReg for parameter 0.
2884 VMReg SharedRuntime::name_for_receiver() {
2885   VMRegPair regs;
2886   BasicType sig_bt = T_OBJECT;
2887   (void) java_calling_convention(&sig_bt, &regs, 1);
2888   // Return argument 0 register.  In the LP64 build pointers
2889   // take 2 registers, but the VM wants only the 'main' name.
2890   return regs.first();
2891 }
2892 
2893 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2894   // This method is returning a data structure allocating as a
2895   // ResourceObject, so do not put any ResourceMarks in here.
2896 
2897   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2898   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2899   int cnt = 0;
2900   if (has_receiver) {
2901     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2902   }
2903 
2904   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
2905     BasicType type = ss.type();
2906     sig_bt[cnt++] = type;
2907     if (is_double_word_type(type))
2908       sig_bt[cnt++] = T_VOID;
2909   }
2910 
2911   if (has_appendix) {
2912     sig_bt[cnt++] = T_OBJECT;
2913   }
2914 
2915   assert(cnt < 256, "grow table size");
2916 
2917   int comp_args_on_stack;
2918   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
2919 
2920   // the calling convention doesn't count out_preserve_stack_slots so
2921   // we must add that in to get "true" stack offsets.
2922 
2923   if (comp_args_on_stack) {
2924     for (int i = 0; i < cnt; i++) {
2925       VMReg reg1 = regs[i].first();
2926       if (reg1->is_stack()) {
2927         // Yuck
2928         reg1 = reg1->bias(out_preserve_stack_slots());
2929       }
2930       VMReg reg2 = regs[i].second();
2931       if (reg2->is_stack()) {
2932         // Yuck
2933         reg2 = reg2->bias(out_preserve_stack_slots());
2934       }
2935       regs[i].set_pair(reg2, reg1);
2936     }
2937   }
2938 
2939   // results
2940   *arg_size = cnt;
2941   return regs;
2942 }
2943 
2944 // OSR Migration Code
2945 //
2946 // This code is used convert interpreter frames into compiled frames.  It is
2947 // called from very start of a compiled OSR nmethod.  A temp array is
2948 // allocated to hold the interesting bits of the interpreter frame.  All
2949 // active locks are inflated to allow them to move.  The displaced headers and
2950 // active interpreter locals are copied into the temp buffer.  Then we return
2951 // back to the compiled code.  The compiled code then pops the current
2952 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2953 // copies the interpreter locals and displaced headers where it wants.
2954 // Finally it calls back to free the temp buffer.
2955 //
2956 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2957 
2958 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
2959   assert(current == JavaThread::current(), "pre-condition");
2960 
2961   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
2962   // frame. The stack watermark code below ensures that the interpreted frame is processed
2963   // before it gets unwound. This is helpful as the size of the compiled frame could be
2964   // larger than the interpreted frame, which could result in the new frame not being
2965   // processed correctly.
2966   StackWatermarkSet::before_unwind(current);
2967 
2968   //
2969   // This code is dependent on the memory layout of the interpreter local
2970   // array and the monitors. On all of our platforms the layout is identical
2971   // so this code is shared. If some platform lays the their arrays out
2972   // differently then this code could move to platform specific code or
2973   // the code here could be modified to copy items one at a time using
2974   // frame accessor methods and be platform independent.
2975 
2976   frame fr = current->last_frame();
2977   assert(fr.is_interpreted_frame(), "");
2978   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2979 
2980   // Figure out how many monitors are active.
2981   int active_monitor_count = 0;
2982   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2983        kptr < fr.interpreter_frame_monitor_begin();
2984        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2985     if (kptr->obj() != nullptr) active_monitor_count++;
2986   }
2987 
2988   // QQQ we could place number of active monitors in the array so that compiled code
2989   // could double check it.
2990 
2991   Method* moop = fr.interpreter_frame_method();
2992   int max_locals = moop->max_locals();
2993   // Allocate temp buffer, 1 word per local & 2 per active monitor
2994   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
2995   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2996 
2997   // Copy the locals.  Order is preserved so that loading of longs works.
2998   // Since there's no GC I can copy the oops blindly.
2999   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3000   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3001                        (HeapWord*)&buf[0],
3002                        max_locals);
3003 
3004   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3005   int i = max_locals;
3006   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3007        kptr2 < fr.interpreter_frame_monitor_begin();
3008        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3009     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3010       BasicLock *lock = kptr2->lock();
3011       if (LockingMode == LM_LEGACY) {
3012         // Inflate so the object's header no longer refers to the BasicLock.
3013         if (lock->displaced_header().is_unlocked()) {
3014           // The object is locked and the resulting ObjectMonitor* will also be
3015           // locked so it can't be async deflated until ownership is dropped.
3016           // See the big comment in basicLock.cpp: BasicLock::move_to().
3017           ObjectSynchronizer::inflate_helper(kptr2->obj());
3018         }
3019         // Now the displaced header is free to move because the
3020         // object's header no longer refers to it.
3021         buf[i] = (intptr_t)lock->displaced_header().value();
3022       } else if (UseObjectMonitorTable) {
3023         buf[i] = (intptr_t)lock->object_monitor_cache();
3024       }
3025 #ifdef ASSERT
3026       else {
3027         buf[i] = badDispHeaderOSR;
3028       }
3029 #endif
3030       i++;
3031       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3032     }
3033   }
3034   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3035 
3036   RegisterMap map(current,
3037                   RegisterMap::UpdateMap::skip,
3038                   RegisterMap::ProcessFrames::include,
3039                   RegisterMap::WalkContinuation::skip);
3040   frame sender = fr.sender(&map);
3041   if (sender.is_interpreted_frame()) {
3042     current->push_cont_fastpath(sender.sp());
3043   }
3044 
3045   return buf;
3046 JRT_END
3047 
3048 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3049   FREE_C_HEAP_ARRAY(intptr_t, buf);
3050 JRT_END
3051 
3052 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3053   bool found = false;
3054   auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3055     return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3056   };
3057   assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3058   _adapter_handler_table->iterate(findblob);
3059   return found;
3060 }
3061 
3062 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3063   bool found = false;
3064   auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3065     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3066       found = true;
3067       st->print("Adapter for signature: ");
3068       a->print_adapter_on(st);
3069       return true;
3070     } else {
3071       return false; // keep looking
3072     }
3073   };
3074   assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3075   _adapter_handler_table->iterate(findblob);
3076   assert(found, "Should have found handler");
3077 }
3078 
3079 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3080   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3081   if (get_i2c_entry() != nullptr) {
3082     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3083   }
3084   if (get_c2i_entry() != nullptr) {
3085     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3086   }
3087   if (get_c2i_unverified_entry() != nullptr) {
3088     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3089   }
3090   if (get_c2i_no_clinit_check_entry() != nullptr) {
3091     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3092   }
3093   st->cr();
3094 }
3095 
3096 #ifndef PRODUCT
3097 
3098 void AdapterHandlerLibrary::print_statistics() {
3099   print_table_statistics();
3100 }
3101 
3102 #endif /* PRODUCT */
3103 
3104 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3105   assert(current == JavaThread::current(), "pre-condition");
3106   StackOverflow* overflow_state = current->stack_overflow_state();
3107   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3108   overflow_state->set_reserved_stack_activation(current->stack_base());
3109 JRT_END
3110 
3111 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3112   ResourceMark rm(current);
3113   frame activation;
3114   nmethod* nm = nullptr;
3115   int count = 1;
3116 
3117   assert(fr.is_java_frame(), "Must start on Java frame");
3118 
3119   RegisterMap map(JavaThread::current(),
3120                   RegisterMap::UpdateMap::skip,
3121                   RegisterMap::ProcessFrames::skip,
3122                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3123   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3124     if (!fr.is_java_frame()) {
3125       continue;
3126     }
3127 
3128     Method* method = nullptr;
3129     bool found = false;
3130     if (fr.is_interpreted_frame()) {
3131       method = fr.interpreter_frame_method();
3132       if (method != nullptr && method->has_reserved_stack_access()) {
3133         found = true;
3134       }
3135     } else {
3136       CodeBlob* cb = fr.cb();
3137       if (cb != nullptr && cb->is_nmethod()) {
3138         nm = cb->as_nmethod();
3139         method = nm->method();
3140         // scope_desc_near() must be used, instead of scope_desc_at() because on
3141         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3142         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3143           method = sd->method();
3144           if (method != nullptr && method->has_reserved_stack_access()) {
3145             found = true;
3146           }
3147         }
3148       }
3149     }
3150     if (found) {
3151       activation = fr;
3152       warning("Potentially dangerous stack overflow in "
3153               "ReservedStackAccess annotated method %s [%d]",
3154               method->name_and_sig_as_C_string(), count++);
3155       EventReservedStackActivation event;
3156       if (event.should_commit()) {
3157         event.set_method(method);
3158         event.commit();
3159       }
3160     }
3161   }
3162   return activation;
3163 }
3164 
3165 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3166   // After any safepoint, just before going back to compiled code,
3167   // we inform the GC that we will be doing initializing writes to
3168   // this object in the future without emitting card-marks, so
3169   // GC may take any compensating steps.
3170 
3171   oop new_obj = current->vm_result();
3172   if (new_obj == nullptr) return;
3173 
3174   BarrierSet *bs = BarrierSet::barrier_set();
3175   bs->on_slowpath_allocation_exit(current, new_obj);
3176 }