1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jvm.h" 46 #include "jfr/jfrEvents.hpp" 47 #include "logging/log.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "metaprogramming/primitiveConversions.hpp" 51 #include "oops/klass.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/forte.hpp" 56 #include "prims/jvmtiExport.hpp" 57 #include "prims/jvmtiThreadState.hpp" 58 #include "prims/methodHandles.hpp" 59 #include "prims/nativeLookup.hpp" 60 #include "runtime/arguments.hpp" 61 #include "runtime/atomic.hpp" 62 #include "runtime/basicLock.inline.hpp" 63 #include "runtime/frame.inline.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/init.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/java.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/jniHandles.inline.hpp" 70 #include "runtime/perfData.inline.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/stackWatermarkSet.hpp" 73 #include "runtime/stubRoutines.hpp" 74 #include "runtime/synchronizer.inline.hpp" 75 #include "runtime/timerTrace.hpp" 76 #include "runtime/vframe.inline.hpp" 77 #include "runtime/vframeArray.hpp" 78 #include "runtime/vm_version.hpp" 79 #include "services/management.hpp" 80 #include "utilities/copy.hpp" 81 #include "utilities/dtrace.hpp" 82 #include "utilities/events.hpp" 83 #include "utilities/globalDefinitions.hpp" 84 #include "utilities/resourceHash.hpp" 85 #include "utilities/macros.hpp" 86 #include "utilities/xmlstream.hpp" 87 #ifdef COMPILER1 88 #include "c1/c1_Runtime1.hpp" 89 #endif 90 #if INCLUDE_JFR 91 #include "jfr/jfr.inline.hpp" 92 #endif 93 94 // Shared runtime stub routines reside in their own unique blob with a 95 // single entry point 96 97 98 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 99 type SharedRuntime::BLOB_FIELD_NAME(name); 100 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 101 #undef SHARED_STUB_FIELD_DEFINE 102 103 nmethod* SharedRuntime::_cont_doYield_stub; 104 105 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr; 106 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time = nullptr; 107 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time = nullptr; 108 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr; 109 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time = nullptr; 110 111 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 112 const char *SharedRuntime::_stub_names[] = { 113 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 114 }; 115 116 //----------------------------generate_stubs----------------------------------- 117 void SharedRuntime::generate_initial_stubs() { 118 // Build this early so it's available for the interpreter. 119 _throw_StackOverflowError_blob = 120 generate_throw_exception(SharedStubId::throw_StackOverflowError_id, 121 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 122 } 123 124 void SharedRuntime::generate_stubs() { 125 _wrong_method_blob = 126 generate_resolve_blob(SharedStubId::wrong_method_id, 127 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 128 _wrong_method_abstract_blob = 129 generate_resolve_blob(SharedStubId::wrong_method_abstract_id, 130 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 131 _ic_miss_blob = 132 generate_resolve_blob(SharedStubId::ic_miss_id, 133 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 134 _resolve_opt_virtual_call_blob = 135 generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id, 136 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 137 _resolve_virtual_call_blob = 138 generate_resolve_blob(SharedStubId::resolve_virtual_call_id, 139 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 140 _resolve_static_call_blob = 141 generate_resolve_blob(SharedStubId::resolve_static_call_id, 142 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 143 144 _throw_delayed_StackOverflowError_blob = 145 generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id, 146 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 147 148 _throw_AbstractMethodError_blob = 149 generate_throw_exception(SharedStubId::throw_AbstractMethodError_id, 150 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 151 152 _throw_IncompatibleClassChangeError_blob = 153 generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id, 154 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 155 156 _throw_NullPointerException_at_call_blob = 157 generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id, 158 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 159 160 #if COMPILER2_OR_JVMCI 161 // Vectors are generated only by C2 and JVMCI. 162 bool support_wide = is_wide_vector(MaxVectorSize); 163 if (support_wide) { 164 _polling_page_vectors_safepoint_handler_blob = 165 generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id, 166 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 167 } 168 #endif // COMPILER2_OR_JVMCI 169 _polling_page_safepoint_handler_blob = 170 generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id, 171 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 172 _polling_page_return_handler_blob = 173 generate_handler_blob(SharedStubId::polling_page_return_handler_id, 174 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 175 176 generate_deopt_blob(); 177 178 if (UsePerfData) { 179 EXCEPTION_MARK; 180 NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call"); 181 NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time, SUN_CI, "resovle_virtual_call"); 182 NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time, SUN_CI, "resovle_static_call"); 183 NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method"); 184 NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time , SUN_CI, "ic_miss"); 185 if (HAS_PENDING_EXCEPTION) { 186 vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly"); 187 } 188 } 189 } 190 191 void SharedRuntime::init_adapter_library() { 192 AdapterHandlerLibrary::initialize(); 193 } 194 195 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) { 196 st->print(" %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us()); 197 if (TraceThreadTime) { 198 st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us()); 199 } 200 st->print(" / %5d events", cnt); 201 st->cr(); 202 } 203 204 void SharedRuntime::print_counters_on(outputStream* st) { 205 st->print_cr("SharedRuntime:"); 206 if (UsePerfData) { 207 print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr); 208 print_counter_on(st, "resolve_virtual_call:", _perf_resolve_virtual_total_time, _resolve_virtual_ctr); 209 print_counter_on(st, "resolve_static_call:", _perf_resolve_static_total_time, _resolve_static_ctr); 210 print_counter_on(st, "handle_wrong_method:", _perf_handle_wrong_method_total_time, _wrong_method_ctr); 211 print_counter_on(st, "ic_miss:", _perf_ic_miss_total_time, _ic_miss_ctr); 212 213 jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() + 214 _perf_resolve_virtual_total_time->elapsed_counter_value() + 215 _perf_resolve_static_total_time->elapsed_counter_value() + 216 _perf_handle_wrong_method_total_time->elapsed_counter_value() + 217 _perf_ic_miss_total_time->elapsed_counter_value()); 218 st->print("Total: " JLONG_FORMAT_W(5) "us", total_elapsed_time_us); 219 if (TraceThreadTime) { 220 jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() + 221 _perf_resolve_virtual_total_time->thread_counter_value() + 222 _perf_resolve_static_total_time->thread_counter_value() + 223 _perf_handle_wrong_method_total_time->thread_counter_value() + 224 _perf_ic_miss_total_time->thread_counter_value()); 225 st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us); 226 227 } 228 st->cr(); 229 } else { 230 st->print_cr(" no data (UsePerfData is turned off)"); 231 } 232 } 233 234 #if INCLUDE_JFR 235 //------------------------------generate jfr runtime stubs ------ 236 void SharedRuntime::generate_jfr_stubs() { 237 ResourceMark rm; 238 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 239 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 240 241 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 242 _jfr_return_lease_blob = generate_jfr_return_lease(); 243 } 244 245 #endif // INCLUDE_JFR 246 247 #include <math.h> 248 249 // Implementation of SharedRuntime 250 251 // For statistics 252 uint SharedRuntime::_ic_miss_ctr = 0; 253 uint SharedRuntime::_wrong_method_ctr = 0; 254 uint SharedRuntime::_resolve_static_ctr = 0; 255 uint SharedRuntime::_resolve_virtual_ctr = 0; 256 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 257 258 #ifndef PRODUCT 259 uint SharedRuntime::_implicit_null_throws = 0; 260 uint SharedRuntime::_implicit_div0_throws = 0; 261 262 int64_t SharedRuntime::_nof_normal_calls = 0; 263 int64_t SharedRuntime::_nof_inlined_calls = 0; 264 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 265 int64_t SharedRuntime::_nof_static_calls = 0; 266 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 267 int64_t SharedRuntime::_nof_interface_calls = 0; 268 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 269 270 uint SharedRuntime::_new_instance_ctr=0; 271 uint SharedRuntime::_new_array_ctr=0; 272 uint SharedRuntime::_multi2_ctr=0; 273 uint SharedRuntime::_multi3_ctr=0; 274 uint SharedRuntime::_multi4_ctr=0; 275 uint SharedRuntime::_multi5_ctr=0; 276 uint SharedRuntime::_mon_enter_stub_ctr=0; 277 uint SharedRuntime::_mon_exit_stub_ctr=0; 278 uint SharedRuntime::_mon_enter_ctr=0; 279 uint SharedRuntime::_mon_exit_ctr=0; 280 uint SharedRuntime::_partial_subtype_ctr=0; 281 uint SharedRuntime::_jbyte_array_copy_ctr=0; 282 uint SharedRuntime::_jshort_array_copy_ctr=0; 283 uint SharedRuntime::_jint_array_copy_ctr=0; 284 uint SharedRuntime::_jlong_array_copy_ctr=0; 285 uint SharedRuntime::_oop_array_copy_ctr=0; 286 uint SharedRuntime::_checkcast_array_copy_ctr=0; 287 uint SharedRuntime::_unsafe_array_copy_ctr=0; 288 uint SharedRuntime::_generic_array_copy_ctr=0; 289 uint SharedRuntime::_slow_array_copy_ctr=0; 290 uint SharedRuntime::_find_handler_ctr=0; 291 uint SharedRuntime::_rethrow_ctr=0; 292 uint SharedRuntime::_unsafe_set_memory_ctr=0; 293 294 int SharedRuntime::_ICmiss_index = 0; 295 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 296 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 297 298 299 void SharedRuntime::trace_ic_miss(address at) { 300 for (int i = 0; i < _ICmiss_index; i++) { 301 if (_ICmiss_at[i] == at) { 302 _ICmiss_count[i]++; 303 return; 304 } 305 } 306 int index = _ICmiss_index++; 307 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 308 _ICmiss_at[index] = at; 309 _ICmiss_count[index] = 1; 310 } 311 312 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) { 313 if (ICMissHistogram) { 314 st->print_cr("IC Miss Histogram:"); 315 int tot_misses = 0; 316 for (int i = 0; i < _ICmiss_index; i++) { 317 st->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 318 tot_misses += _ICmiss_count[i]; 319 } 320 st->print_cr("Total IC misses: %7d", tot_misses); 321 } 322 } 323 #endif // !PRODUCT 324 325 326 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 327 return x * y; 328 JRT_END 329 330 331 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 332 if (x == min_jlong && y == CONST64(-1)) { 333 return x; 334 } else { 335 return x / y; 336 } 337 JRT_END 338 339 340 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 341 if (x == min_jlong && y == CONST64(-1)) { 342 return 0; 343 } else { 344 return x % y; 345 } 346 JRT_END 347 348 349 #ifdef _WIN64 350 const juint float_sign_mask = 0x7FFFFFFF; 351 const juint float_infinity = 0x7F800000; 352 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 353 const julong double_infinity = CONST64(0x7FF0000000000000); 354 #endif 355 356 #if !defined(X86) 357 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 358 #ifdef _WIN64 359 // 64-bit Windows on amd64 returns the wrong values for 360 // infinity operands. 361 juint xbits = PrimitiveConversions::cast<juint>(x); 362 juint ybits = PrimitiveConversions::cast<juint>(y); 363 // x Mod Infinity == x unless x is infinity 364 if (((xbits & float_sign_mask) != float_infinity) && 365 ((ybits & float_sign_mask) == float_infinity) ) { 366 return x; 367 } 368 return ((jfloat)fmod_winx64((double)x, (double)y)); 369 #else 370 return ((jfloat)fmod((double)x,(double)y)); 371 #endif 372 JRT_END 373 374 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 375 #ifdef _WIN64 376 julong xbits = PrimitiveConversions::cast<julong>(x); 377 julong ybits = PrimitiveConversions::cast<julong>(y); 378 // x Mod Infinity == x unless x is infinity 379 if (((xbits & double_sign_mask) != double_infinity) && 380 ((ybits & double_sign_mask) == double_infinity) ) { 381 return x; 382 } 383 return ((jdouble)fmod_winx64((double)x, (double)y)); 384 #else 385 return ((jdouble)fmod((double)x,(double)y)); 386 #endif 387 JRT_END 388 #endif // !X86 389 390 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 391 return (jfloat)x; 392 JRT_END 393 394 #ifdef __SOFTFP__ 395 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 396 return x + y; 397 JRT_END 398 399 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 400 return x - y; 401 JRT_END 402 403 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 404 return x * y; 405 JRT_END 406 407 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 408 return x / y; 409 JRT_END 410 411 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 412 return x + y; 413 JRT_END 414 415 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 416 return x - y; 417 JRT_END 418 419 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 420 return x * y; 421 JRT_END 422 423 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 424 return x / y; 425 JRT_END 426 427 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 428 return (jdouble)x; 429 JRT_END 430 431 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 432 return (jdouble)x; 433 JRT_END 434 435 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 436 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 437 JRT_END 438 439 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 440 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 441 JRT_END 442 443 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 444 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 445 JRT_END 446 447 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 448 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 449 JRT_END 450 451 // Functions to return the opposite of the aeabi functions for nan. 452 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 453 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 454 JRT_END 455 456 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 457 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 458 JRT_END 459 460 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 461 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 462 JRT_END 463 464 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 465 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 466 JRT_END 467 468 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 469 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 470 JRT_END 471 472 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 473 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 474 JRT_END 475 476 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 477 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 478 JRT_END 479 480 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 481 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 482 JRT_END 483 484 // Intrinsics make gcc generate code for these. 485 float SharedRuntime::fneg(float f) { 486 return -f; 487 } 488 489 double SharedRuntime::dneg(double f) { 490 return -f; 491 } 492 493 #endif // __SOFTFP__ 494 495 #if defined(__SOFTFP__) || defined(E500V2) 496 // Intrinsics make gcc generate code for these. 497 double SharedRuntime::dabs(double f) { 498 return (f <= (double)0.0) ? (double)0.0 - f : f; 499 } 500 501 #endif 502 503 #if defined(__SOFTFP__) 504 double SharedRuntime::dsqrt(double f) { 505 return sqrt(f); 506 } 507 #endif 508 509 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 510 if (g_isnan(x)) 511 return 0; 512 if (x >= (jfloat) max_jint) 513 return max_jint; 514 if (x <= (jfloat) min_jint) 515 return min_jint; 516 return (jint) x; 517 JRT_END 518 519 520 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 521 if (g_isnan(x)) 522 return 0; 523 if (x >= (jfloat) max_jlong) 524 return max_jlong; 525 if (x <= (jfloat) min_jlong) 526 return min_jlong; 527 return (jlong) x; 528 JRT_END 529 530 531 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 532 if (g_isnan(x)) 533 return 0; 534 if (x >= (jdouble) max_jint) 535 return max_jint; 536 if (x <= (jdouble) min_jint) 537 return min_jint; 538 return (jint) x; 539 JRT_END 540 541 542 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 543 if (g_isnan(x)) 544 return 0; 545 if (x >= (jdouble) max_jlong) 546 return max_jlong; 547 if (x <= (jdouble) min_jlong) 548 return min_jlong; 549 return (jlong) x; 550 JRT_END 551 552 553 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 554 return (jfloat)x; 555 JRT_END 556 557 558 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 559 return (jfloat)x; 560 JRT_END 561 562 563 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 564 return (jdouble)x; 565 JRT_END 566 567 568 // Exception handling across interpreter/compiler boundaries 569 // 570 // exception_handler_for_return_address(...) returns the continuation address. 571 // The continuation address is the entry point of the exception handler of the 572 // previous frame depending on the return address. 573 574 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 575 // Note: This is called when we have unwound the frame of the callee that did 576 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 577 // Notably, the stack is not walkable at this point, and hence the check must 578 // be deferred until later. Specifically, any of the handlers returned here in 579 // this function, will get dispatched to, and call deferred checks to 580 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 581 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 582 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 583 584 // Reset method handle flag. 585 current->set_is_method_handle_return(false); 586 587 #if INCLUDE_JVMCI 588 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 589 // and other exception handler continuations do not read it 590 current->set_exception_pc(nullptr); 591 #endif // INCLUDE_JVMCI 592 593 if (Continuation::is_return_barrier_entry(return_address)) { 594 return StubRoutines::cont_returnBarrierExc(); 595 } 596 597 // The fastest case first 598 CodeBlob* blob = CodeCache::find_blob(return_address); 599 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 600 if (nm != nullptr) { 601 // Set flag if return address is a method handle call site. 602 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 603 // native nmethods don't have exception handlers 604 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 605 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 606 if (nm->is_deopt_pc(return_address)) { 607 // If we come here because of a stack overflow, the stack may be 608 // unguarded. Reguard the stack otherwise if we return to the 609 // deopt blob and the stack bang causes a stack overflow we 610 // crash. 611 StackOverflow* overflow_state = current->stack_overflow_state(); 612 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 613 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 614 overflow_state->set_reserved_stack_activation(current->stack_base()); 615 } 616 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 617 // The deferred StackWatermarkSet::after_unwind check will be performed in 618 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 619 return SharedRuntime::deopt_blob()->unpack_with_exception(); 620 } else { 621 // The deferred StackWatermarkSet::after_unwind check will be performed in 622 // * OptoRuntime::handle_exception_C_helper for C2 code 623 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 624 return nm->exception_begin(); 625 } 626 } 627 628 // Entry code 629 if (StubRoutines::returns_to_call_stub(return_address)) { 630 // The deferred StackWatermarkSet::after_unwind check will be performed in 631 // JavaCallWrapper::~JavaCallWrapper 632 return StubRoutines::catch_exception_entry(); 633 } 634 if (blob != nullptr && blob->is_upcall_stub()) { 635 return StubRoutines::upcall_stub_exception_handler(); 636 } 637 // Interpreted code 638 if (Interpreter::contains(return_address)) { 639 // The deferred StackWatermarkSet::after_unwind check will be performed in 640 // InterpreterRuntime::exception_handler_for_exception 641 return Interpreter::rethrow_exception_entry(); 642 } 643 644 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 645 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 646 647 #ifndef PRODUCT 648 { ResourceMark rm; 649 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 650 os::print_location(tty, (intptr_t)return_address); 651 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 652 tty->print_cr("b) other problem"); 653 } 654 #endif // PRODUCT 655 ShouldNotReachHere(); 656 return nullptr; 657 } 658 659 660 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 661 return raw_exception_handler_for_return_address(current, return_address); 662 JRT_END 663 664 665 address SharedRuntime::get_poll_stub(address pc) { 666 address stub; 667 // Look up the code blob 668 CodeBlob *cb = CodeCache::find_blob(pc); 669 670 // Should be an nmethod 671 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 672 673 // Look up the relocation information 674 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 675 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 676 677 #ifdef ASSERT 678 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 679 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 680 Disassembler::decode(cb); 681 fatal("Only polling locations are used for safepoint"); 682 } 683 #endif 684 685 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 686 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 687 if (at_poll_return) { 688 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 689 "polling page return stub not created yet"); 690 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 691 } else if (has_wide_vectors) { 692 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 693 "polling page vectors safepoint stub not created yet"); 694 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 695 } else { 696 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 697 "polling page safepoint stub not created yet"); 698 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 699 } 700 log_debug(safepoint)("... found polling page %s exception at pc = " 701 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 702 at_poll_return ? "return" : "loop", 703 (intptr_t)pc, (intptr_t)stub); 704 return stub; 705 } 706 707 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 708 if (JvmtiExport::can_post_on_exceptions()) { 709 vframeStream vfst(current, true); 710 methodHandle method = methodHandle(current, vfst.method()); 711 address bcp = method()->bcp_from(vfst.bci()); 712 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 713 } 714 715 #if INCLUDE_JVMCI 716 if (EnableJVMCI) { 717 vframeStream vfst(current, true); 718 methodHandle method = methodHandle(current, vfst.method()); 719 int bci = vfst.bci(); 720 MethodData* trap_mdo = method->method_data(); 721 if (trap_mdo != nullptr) { 722 // Set exception_seen if the exceptional bytecode is an invoke 723 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 724 if (call.is_valid()) { 725 ResourceMark rm(current); 726 727 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 728 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 729 730 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 731 if (pdata != nullptr && pdata->is_BitData()) { 732 BitData* bit_data = (BitData*) pdata; 733 bit_data->set_exception_seen(); 734 } 735 } 736 } 737 } 738 #endif 739 740 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 741 } 742 743 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 744 Handle h_exception = Exceptions::new_exception(current, name, message); 745 throw_and_post_jvmti_exception(current, h_exception); 746 } 747 748 #if INCLUDE_JVMTI 749 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 750 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 751 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 752 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 753 JNIHandles::destroy_local(vthread); 754 JRT_END 755 756 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 757 assert(hide == JNI_TRUE, "must be VTMS transition start"); 758 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 759 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 760 JNIHandles::destroy_local(vthread); 761 JRT_END 762 763 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 764 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 765 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 766 JNIHandles::destroy_local(vthread); 767 JRT_END 768 769 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 770 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 771 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 772 JNIHandles::destroy_local(vthread); 773 JRT_END 774 #endif // INCLUDE_JVMTI 775 776 // The interpreter code to call this tracing function is only 777 // called/generated when UL is on for redefine, class and has the right level 778 // and tags. Since obsolete methods are never compiled, we don't have 779 // to modify the compilers to generate calls to this function. 780 // 781 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 782 JavaThread* thread, Method* method)) 783 if (method->is_obsolete()) { 784 // We are calling an obsolete method, but this is not necessarily 785 // an error. Our method could have been redefined just after we 786 // fetched the Method* from the constant pool. 787 ResourceMark rm; 788 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 789 } 790 791 LogStreamHandle(Trace, interpreter, bytecode) log; 792 if (log.is_enabled()) { 793 ResourceMark rm; 794 log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s", 795 p2i(thread), 796 (method->is_static() ? "static" : "virtual"), 797 method->name_and_sig_as_C_string(), 798 (method->is_native() ? " native" : ""), 799 (thread->class_being_initialized() != nullptr ? " clinit" : ""), 800 (method->method_holder()->is_initialized() ? "" : " being_initialized")); 801 } 802 return 0; 803 JRT_END 804 805 // ret_pc points into caller; we are returning caller's exception handler 806 // for given exception 807 // Note that the implementation of this method assumes it's only called when an exception has actually occured 808 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 809 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 810 assert(nm != nullptr, "must exist"); 811 ResourceMark rm; 812 813 #if INCLUDE_JVMCI 814 if (nm->is_compiled_by_jvmci()) { 815 // lookup exception handler for this pc 816 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 817 ExceptionHandlerTable table(nm); 818 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 819 if (t != nullptr) { 820 return nm->code_begin() + t->pco(); 821 } else { 822 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 823 } 824 } 825 #endif // INCLUDE_JVMCI 826 827 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 828 // determine handler bci, if any 829 EXCEPTION_MARK; 830 831 int handler_bci = -1; 832 int scope_depth = 0; 833 if (!force_unwind) { 834 int bci = sd->bci(); 835 bool recursive_exception = false; 836 do { 837 bool skip_scope_increment = false; 838 // exception handler lookup 839 Klass* ek = exception->klass(); 840 methodHandle mh(THREAD, sd->method()); 841 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 842 if (HAS_PENDING_EXCEPTION) { 843 recursive_exception = true; 844 // We threw an exception while trying to find the exception handler. 845 // Transfer the new exception to the exception handle which will 846 // be set into thread local storage, and do another lookup for an 847 // exception handler for this exception, this time starting at the 848 // BCI of the exception handler which caused the exception to be 849 // thrown (bugs 4307310 and 4546590). Set "exception" reference 850 // argument to ensure that the correct exception is thrown (4870175). 851 recursive_exception_occurred = true; 852 exception = Handle(THREAD, PENDING_EXCEPTION); 853 CLEAR_PENDING_EXCEPTION; 854 if (handler_bci >= 0) { 855 bci = handler_bci; 856 handler_bci = -1; 857 skip_scope_increment = true; 858 } 859 } 860 else { 861 recursive_exception = false; 862 } 863 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 864 sd = sd->sender(); 865 if (sd != nullptr) { 866 bci = sd->bci(); 867 } 868 ++scope_depth; 869 } 870 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 871 } 872 873 // found handling method => lookup exception handler 874 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 875 876 ExceptionHandlerTable table(nm); 877 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 878 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 879 // Allow abbreviated catch tables. The idea is to allow a method 880 // to materialize its exceptions without committing to the exact 881 // routing of exceptions. In particular this is needed for adding 882 // a synthetic handler to unlock monitors when inlining 883 // synchronized methods since the unlock path isn't represented in 884 // the bytecodes. 885 t = table.entry_for(catch_pco, -1, 0); 886 } 887 888 #ifdef COMPILER1 889 if (t == nullptr && nm->is_compiled_by_c1()) { 890 assert(nm->unwind_handler_begin() != nullptr, ""); 891 return nm->unwind_handler_begin(); 892 } 893 #endif 894 895 if (t == nullptr) { 896 ttyLocker ttyl; 897 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 898 tty->print_cr(" Exception:"); 899 exception->print(); 900 tty->cr(); 901 tty->print_cr(" Compiled exception table :"); 902 table.print(); 903 nm->print(); 904 nm->print_code(); 905 guarantee(false, "missing exception handler"); 906 return nullptr; 907 } 908 909 if (handler_bci != -1) { // did we find a handler in this method? 910 sd->method()->set_exception_handler_entered(handler_bci); // profile 911 } 912 return nm->code_begin() + t->pco(); 913 } 914 915 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 916 // These errors occur only at call sites 917 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 918 JRT_END 919 920 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 921 // These errors occur only at call sites 922 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 923 JRT_END 924 925 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 926 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 927 JRT_END 928 929 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 930 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 931 JRT_END 932 933 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 934 // This entry point is effectively only used for NullPointerExceptions which occur at inline 935 // cache sites (when the callee activation is not yet set up) so we are at a call site 936 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 937 JRT_END 938 939 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 940 throw_StackOverflowError_common(current, false); 941 JRT_END 942 943 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 944 throw_StackOverflowError_common(current, true); 945 JRT_END 946 947 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 948 // We avoid using the normal exception construction in this case because 949 // it performs an upcall to Java, and we're already out of stack space. 950 JavaThread* THREAD = current; // For exception macros. 951 Klass* k = vmClasses::StackOverflowError_klass(); 952 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 953 if (delayed) { 954 java_lang_Throwable::set_message(exception_oop, 955 Universe::delayed_stack_overflow_error_message()); 956 } 957 Handle exception (current, exception_oop); 958 if (StackTraceInThrowable) { 959 java_lang_Throwable::fill_in_stack_trace(exception); 960 } 961 // Remove the ScopedValue bindings in case we got a 962 // StackOverflowError while we were trying to remove ScopedValue 963 // bindings. 964 current->clear_scopedValueBindings(); 965 // Increment counter for hs_err file reporting 966 Atomic::inc(&Exceptions::_stack_overflow_errors); 967 throw_and_post_jvmti_exception(current, exception); 968 } 969 970 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 971 address pc, 972 ImplicitExceptionKind exception_kind) 973 { 974 address target_pc = nullptr; 975 976 if (Interpreter::contains(pc)) { 977 switch (exception_kind) { 978 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 979 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 980 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 981 default: ShouldNotReachHere(); 982 } 983 } else { 984 switch (exception_kind) { 985 case STACK_OVERFLOW: { 986 // Stack overflow only occurs upon frame setup; the callee is 987 // going to be unwound. Dispatch to a shared runtime stub 988 // which will cause the StackOverflowError to be fabricated 989 // and processed. 990 // Stack overflow should never occur during deoptimization: 991 // the compiled method bangs the stack by as much as the 992 // interpreter would need in case of a deoptimization. The 993 // deoptimization blob and uncommon trap blob bang the stack 994 // in a debug VM to verify the correctness of the compiled 995 // method stack banging. 996 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 997 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 998 return SharedRuntime::throw_StackOverflowError_entry(); 999 } 1000 1001 case IMPLICIT_NULL: { 1002 if (VtableStubs::contains(pc)) { 1003 // We haven't yet entered the callee frame. Fabricate an 1004 // exception and begin dispatching it in the caller. Since 1005 // the caller was at a call site, it's safe to destroy all 1006 // caller-saved registers, as these entry points do. 1007 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 1008 1009 // If vt_stub is null, then return null to signal handler to report the SEGV error. 1010 if (vt_stub == nullptr) return nullptr; 1011 1012 if (vt_stub->is_abstract_method_error(pc)) { 1013 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 1014 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 1015 // Instead of throwing the abstract method error here directly, we re-resolve 1016 // and will throw the AbstractMethodError during resolve. As a result, we'll 1017 // get a more detailed error message. 1018 return SharedRuntime::get_handle_wrong_method_stub(); 1019 } else { 1020 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 1021 // Assert that the signal comes from the expected location in stub code. 1022 assert(vt_stub->is_null_pointer_exception(pc), 1023 "obtained signal from unexpected location in stub code"); 1024 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1025 } 1026 } else { 1027 CodeBlob* cb = CodeCache::find_blob(pc); 1028 1029 // If code blob is null, then return null to signal handler to report the SEGV error. 1030 if (cb == nullptr) return nullptr; 1031 1032 // Exception happened in CodeCache. Must be either: 1033 // 1. Inline-cache check in C2I handler blob, 1034 // 2. Inline-cache check in nmethod, or 1035 // 3. Implicit null exception in nmethod 1036 1037 if (!cb->is_nmethod()) { 1038 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 1039 if (!is_in_blob) { 1040 // Allow normal crash reporting to handle this 1041 return nullptr; 1042 } 1043 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 1044 // There is no handler here, so we will simply unwind. 1045 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1046 } 1047 1048 // Otherwise, it's a compiled method. Consult its exception handlers. 1049 nmethod* nm = cb->as_nmethod(); 1050 if (nm->inlinecache_check_contains(pc)) { 1051 // exception happened inside inline-cache check code 1052 // => the nmethod is not yet active (i.e., the frame 1053 // is not set up yet) => use return address pushed by 1054 // caller => don't push another return address 1055 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 1056 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1057 } 1058 1059 if (nm->method()->is_method_handle_intrinsic()) { 1060 // exception happened inside MH dispatch code, similar to a vtable stub 1061 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 1062 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1063 } 1064 1065 #ifndef PRODUCT 1066 _implicit_null_throws++; 1067 #endif 1068 target_pc = nm->continuation_for_implicit_null_exception(pc); 1069 // If there's an unexpected fault, target_pc might be null, 1070 // in which case we want to fall through into the normal 1071 // error handling code. 1072 } 1073 1074 break; // fall through 1075 } 1076 1077 1078 case IMPLICIT_DIVIDE_BY_ZERO: { 1079 nmethod* nm = CodeCache::find_nmethod(pc); 1080 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1081 #ifndef PRODUCT 1082 _implicit_div0_throws++; 1083 #endif 1084 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1085 // If there's an unexpected fault, target_pc might be null, 1086 // in which case we want to fall through into the normal 1087 // error handling code. 1088 break; // fall through 1089 } 1090 1091 default: ShouldNotReachHere(); 1092 } 1093 1094 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1095 1096 if (exception_kind == IMPLICIT_NULL) { 1097 #ifndef PRODUCT 1098 // for AbortVMOnException flag 1099 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1100 #endif //PRODUCT 1101 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1102 } else { 1103 #ifndef PRODUCT 1104 // for AbortVMOnException flag 1105 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1106 #endif //PRODUCT 1107 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1108 } 1109 return target_pc; 1110 } 1111 1112 ShouldNotReachHere(); 1113 return nullptr; 1114 } 1115 1116 1117 /** 1118 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1119 * installed in the native function entry of all native Java methods before 1120 * they get linked to their actual native methods. 1121 * 1122 * \note 1123 * This method actually never gets called! The reason is because 1124 * the interpreter's native entries call NativeLookup::lookup() which 1125 * throws the exception when the lookup fails. The exception is then 1126 * caught and forwarded on the return from NativeLookup::lookup() call 1127 * before the call to the native function. This might change in the future. 1128 */ 1129 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1130 { 1131 // We return a bad value here to make sure that the exception is 1132 // forwarded before we look at the return value. 1133 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1134 } 1135 JNI_END 1136 1137 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1138 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1139 } 1140 1141 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1142 #if INCLUDE_JVMCI 1143 if (!obj->klass()->has_finalizer()) { 1144 return; 1145 } 1146 #endif // INCLUDE_JVMCI 1147 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1148 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1149 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1150 JRT_END 1151 1152 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1153 assert(thread != nullptr, "No thread"); 1154 if (thread == nullptr) { 1155 return 0; 1156 } 1157 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1158 "current cannot touch oops after its GC barrier is detached."); 1159 oop obj = thread->threadObj(); 1160 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1161 } 1162 1163 /** 1164 * This function ought to be a void function, but cannot be because 1165 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1166 * 6254741. Once that is fixed we can remove the dummy return value. 1167 */ 1168 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1169 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1170 } 1171 1172 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1173 return dtrace_object_alloc(thread, o, o->size()); 1174 } 1175 1176 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1177 assert(DTraceAllocProbes, "wrong call"); 1178 Klass* klass = o->klass(); 1179 Symbol* name = klass->name(); 1180 HOTSPOT_OBJECT_ALLOC( 1181 get_java_tid(thread), 1182 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1183 return 0; 1184 } 1185 1186 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1187 JavaThread* current, Method* method)) 1188 assert(current == JavaThread::current(), "pre-condition"); 1189 1190 assert(DTraceMethodProbes, "wrong call"); 1191 Symbol* kname = method->klass_name(); 1192 Symbol* name = method->name(); 1193 Symbol* sig = method->signature(); 1194 HOTSPOT_METHOD_ENTRY( 1195 get_java_tid(current), 1196 (char *) kname->bytes(), kname->utf8_length(), 1197 (char *) name->bytes(), name->utf8_length(), 1198 (char *) sig->bytes(), sig->utf8_length()); 1199 return 0; 1200 JRT_END 1201 1202 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1203 JavaThread* current, Method* method)) 1204 assert(current == JavaThread::current(), "pre-condition"); 1205 assert(DTraceMethodProbes, "wrong call"); 1206 Symbol* kname = method->klass_name(); 1207 Symbol* name = method->name(); 1208 Symbol* sig = method->signature(); 1209 HOTSPOT_METHOD_RETURN( 1210 get_java_tid(current), 1211 (char *) kname->bytes(), kname->utf8_length(), 1212 (char *) name->bytes(), name->utf8_length(), 1213 (char *) sig->bytes(), sig->utf8_length()); 1214 return 0; 1215 JRT_END 1216 1217 1218 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1219 // for a call current in progress, i.e., arguments has been pushed on stack 1220 // put callee has not been invoked yet. Used by: resolve virtual/static, 1221 // vtable updates, etc. Caller frame must be compiled. 1222 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1223 JavaThread* current = THREAD; 1224 ResourceMark rm(current); 1225 1226 // last java frame on stack (which includes native call frames) 1227 vframeStream vfst(current, true); // Do not skip and javaCalls 1228 1229 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1230 } 1231 1232 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1233 nmethod* caller = vfst.nm(); 1234 1235 address pc = vfst.frame_pc(); 1236 { // Get call instruction under lock because another thread may be busy patching it. 1237 CompiledICLocker ic_locker(caller); 1238 return caller->attached_method_before_pc(pc); 1239 } 1240 return nullptr; 1241 } 1242 1243 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1244 // for a call current in progress, i.e., arguments has been pushed on stack 1245 // but callee has not been invoked yet. Caller frame must be compiled. 1246 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1247 CallInfo& callinfo, TRAPS) { 1248 Handle receiver; 1249 Handle nullHandle; // create a handy null handle for exception returns 1250 JavaThread* current = THREAD; 1251 1252 assert(!vfst.at_end(), "Java frame must exist"); 1253 1254 // Find caller and bci from vframe 1255 methodHandle caller(current, vfst.method()); 1256 int bci = vfst.bci(); 1257 1258 if (caller->is_continuation_enter_intrinsic()) { 1259 bc = Bytecodes::_invokestatic; 1260 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1261 return receiver; 1262 } 1263 1264 Bytecode_invoke bytecode(caller, bci); 1265 int bytecode_index = bytecode.index(); 1266 bc = bytecode.invoke_code(); 1267 1268 methodHandle attached_method(current, extract_attached_method(vfst)); 1269 if (attached_method.not_null()) { 1270 Method* callee = bytecode.static_target(CHECK_NH); 1271 vmIntrinsics::ID id = callee->intrinsic_id(); 1272 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1273 // it attaches statically resolved method to the call site. 1274 if (MethodHandles::is_signature_polymorphic(id) && 1275 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1276 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1277 1278 // Adjust invocation mode according to the attached method. 1279 switch (bc) { 1280 case Bytecodes::_invokevirtual: 1281 if (attached_method->method_holder()->is_interface()) { 1282 bc = Bytecodes::_invokeinterface; 1283 } 1284 break; 1285 case Bytecodes::_invokeinterface: 1286 if (!attached_method->method_holder()->is_interface()) { 1287 bc = Bytecodes::_invokevirtual; 1288 } 1289 break; 1290 case Bytecodes::_invokehandle: 1291 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1292 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1293 : Bytecodes::_invokevirtual; 1294 } 1295 break; 1296 default: 1297 break; 1298 } 1299 } 1300 } 1301 1302 assert(bc != Bytecodes::_illegal, "not initialized"); 1303 1304 bool has_receiver = bc != Bytecodes::_invokestatic && 1305 bc != Bytecodes::_invokedynamic && 1306 bc != Bytecodes::_invokehandle; 1307 1308 // Find receiver for non-static call 1309 if (has_receiver) { 1310 // This register map must be update since we need to find the receiver for 1311 // compiled frames. The receiver might be in a register. 1312 RegisterMap reg_map2(current, 1313 RegisterMap::UpdateMap::include, 1314 RegisterMap::ProcessFrames::include, 1315 RegisterMap::WalkContinuation::skip); 1316 frame stubFrame = current->last_frame(); 1317 // Caller-frame is a compiled frame 1318 frame callerFrame = stubFrame.sender(®_map2); 1319 1320 if (attached_method.is_null()) { 1321 Method* callee = bytecode.static_target(CHECK_NH); 1322 if (callee == nullptr) { 1323 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1324 } 1325 } 1326 1327 // Retrieve from a compiled argument list 1328 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1329 assert(oopDesc::is_oop_or_null(receiver()), ""); 1330 1331 if (receiver.is_null()) { 1332 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1333 } 1334 } 1335 1336 // Resolve method 1337 if (attached_method.not_null()) { 1338 // Parameterized by attached method. 1339 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1340 } else { 1341 // Parameterized by bytecode. 1342 constantPoolHandle constants(current, caller->constants()); 1343 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1344 } 1345 1346 #ifdef ASSERT 1347 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1348 if (has_receiver) { 1349 assert(receiver.not_null(), "should have thrown exception"); 1350 Klass* receiver_klass = receiver->klass(); 1351 Klass* rk = nullptr; 1352 if (attached_method.not_null()) { 1353 // In case there's resolved method attached, use its holder during the check. 1354 rk = attached_method->method_holder(); 1355 } else { 1356 // Klass is already loaded. 1357 constantPoolHandle constants(current, caller->constants()); 1358 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1359 } 1360 Klass* static_receiver_klass = rk; 1361 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1362 "actual receiver must be subclass of static receiver klass"); 1363 if (receiver_klass->is_instance_klass()) { 1364 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1365 tty->print_cr("ERROR: Klass not yet initialized!!"); 1366 receiver_klass->print(); 1367 } 1368 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1369 } 1370 } 1371 #endif 1372 1373 return receiver; 1374 } 1375 1376 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1377 JavaThread* current = THREAD; 1378 ResourceMark rm(current); 1379 // We need first to check if any Java activations (compiled, interpreted) 1380 // exist on the stack since last JavaCall. If not, we need 1381 // to get the target method from the JavaCall wrapper. 1382 vframeStream vfst(current, true); // Do not skip any javaCalls 1383 methodHandle callee_method; 1384 if (vfst.at_end()) { 1385 // No Java frames were found on stack since we did the JavaCall. 1386 // Hence the stack can only contain an entry_frame. We need to 1387 // find the target method from the stub frame. 1388 RegisterMap reg_map(current, 1389 RegisterMap::UpdateMap::skip, 1390 RegisterMap::ProcessFrames::include, 1391 RegisterMap::WalkContinuation::skip); 1392 frame fr = current->last_frame(); 1393 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1394 fr = fr.sender(®_map); 1395 assert(fr.is_entry_frame(), "must be"); 1396 // fr is now pointing to the entry frame. 1397 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1398 } else { 1399 Bytecodes::Code bc; 1400 CallInfo callinfo; 1401 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1402 callee_method = methodHandle(current, callinfo.selected_method()); 1403 } 1404 assert(callee_method()->is_method(), "must be"); 1405 return callee_method; 1406 } 1407 1408 // Resolves a call. 1409 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1410 JavaThread* current = THREAD; 1411 ResourceMark rm(current); 1412 RegisterMap cbl_map(current, 1413 RegisterMap::UpdateMap::skip, 1414 RegisterMap::ProcessFrames::include, 1415 RegisterMap::WalkContinuation::skip); 1416 frame caller_frame = current->last_frame().sender(&cbl_map); 1417 1418 CodeBlob* caller_cb = caller_frame.cb(); 1419 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1420 nmethod* caller_nm = caller_cb->as_nmethod(); 1421 1422 // determine call info & receiver 1423 // note: a) receiver is null for static calls 1424 // b) an exception is thrown if receiver is null for non-static calls 1425 CallInfo call_info; 1426 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1427 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1428 1429 NoSafepointVerifier nsv; 1430 1431 methodHandle callee_method(current, call_info.selected_method()); 1432 1433 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1434 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1435 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1436 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1437 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1438 1439 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1440 1441 // tracing/debugging/statistics 1442 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1443 (is_virtual) ? (&_resolve_virtual_ctr) : 1444 (&_resolve_static_ctr); 1445 Atomic::inc(addr); 1446 1447 #ifndef PRODUCT 1448 if (TraceCallFixup) { 1449 ResourceMark rm(current); 1450 tty->print("resolving %s%s (%s) call to", 1451 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1452 Bytecodes::name(invoke_code)); 1453 callee_method->print_short_name(tty); 1454 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1455 p2i(caller_frame.pc()), p2i(callee_method->code())); 1456 } 1457 #endif 1458 1459 if (invoke_code == Bytecodes::_invokestatic) { 1460 assert(callee_method->method_holder()->is_initialized() || 1461 callee_method->method_holder()->is_reentrant_initialization(current), 1462 "invalid class initialization state for invoke_static"); 1463 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1464 // In order to keep class initialization check, do not patch call 1465 // site for static call when the class is not fully initialized. 1466 // Proper check is enforced by call site re-resolution on every invocation. 1467 // 1468 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1469 // explicit class initialization check is put in nmethod entry (VEP). 1470 assert(callee_method->method_holder()->is_linked(), "must be"); 1471 return callee_method; 1472 } 1473 } 1474 1475 1476 // JSR 292 key invariant: 1477 // If the resolved method is a MethodHandle invoke target, the call 1478 // site must be a MethodHandle call site, because the lambda form might tail-call 1479 // leaving the stack in a state unknown to either caller or callee 1480 1481 // Compute entry points. The computation of the entry points is independent of 1482 // patching the call. 1483 1484 // Make sure the callee nmethod does not get deoptimized and removed before 1485 // we are done patching the code. 1486 1487 1488 CompiledICLocker ml(caller_nm); 1489 if (is_virtual && !is_optimized) { 1490 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1491 inline_cache->update(&call_info, receiver->klass()); 1492 } else { 1493 // Callsite is a direct call - set it to the destination method 1494 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1495 callsite->set(callee_method); 1496 } 1497 1498 return callee_method; 1499 } 1500 1501 // Inline caches exist only in compiled code 1502 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1503 PerfTraceTime timer(_perf_ic_miss_total_time); 1504 1505 #ifdef ASSERT 1506 RegisterMap reg_map(current, 1507 RegisterMap::UpdateMap::skip, 1508 RegisterMap::ProcessFrames::include, 1509 RegisterMap::WalkContinuation::skip); 1510 frame stub_frame = current->last_frame(); 1511 assert(stub_frame.is_runtime_frame(), "sanity check"); 1512 frame caller_frame = stub_frame.sender(®_map); 1513 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1514 #endif /* ASSERT */ 1515 1516 methodHandle callee_method; 1517 JRT_BLOCK 1518 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1519 // Return Method* through TLS 1520 current->set_vm_result_metadata(callee_method()); 1521 JRT_BLOCK_END 1522 // return compiled code entry point after potential safepoints 1523 return get_resolved_entry(current, callee_method); 1524 JRT_END 1525 1526 1527 // Handle call site that has been made non-entrant 1528 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1529 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1530 1531 // 6243940 We might end up in here if the callee is deoptimized 1532 // as we race to call it. We don't want to take a safepoint if 1533 // the caller was interpreted because the caller frame will look 1534 // interpreted to the stack walkers and arguments are now 1535 // "compiled" so it is much better to make this transition 1536 // invisible to the stack walking code. The i2c path will 1537 // place the callee method in the callee_target. It is stashed 1538 // there because if we try and find the callee by normal means a 1539 // safepoint is possible and have trouble gc'ing the compiled args. 1540 RegisterMap reg_map(current, 1541 RegisterMap::UpdateMap::skip, 1542 RegisterMap::ProcessFrames::include, 1543 RegisterMap::WalkContinuation::skip); 1544 frame stub_frame = current->last_frame(); 1545 assert(stub_frame.is_runtime_frame(), "sanity check"); 1546 frame caller_frame = stub_frame.sender(®_map); 1547 1548 if (caller_frame.is_interpreted_frame() || 1549 caller_frame.is_entry_frame() || 1550 caller_frame.is_upcall_stub_frame()) { 1551 Method* callee = current->callee_target(); 1552 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1553 current->set_vm_result_metadata(callee); 1554 current->set_callee_target(nullptr); 1555 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1556 // Bypass class initialization checks in c2i when caller is in native. 1557 // JNI calls to static methods don't have class initialization checks. 1558 // Fast class initialization checks are present in c2i adapters and call into 1559 // SharedRuntime::handle_wrong_method() on the slow path. 1560 // 1561 // JVM upcalls may land here as well, but there's a proper check present in 1562 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1563 // so bypassing it in c2i adapter is benign. 1564 return callee->get_c2i_no_clinit_check_entry(); 1565 } else { 1566 return callee->get_c2i_entry(); 1567 } 1568 } 1569 1570 // Must be compiled to compiled path which is safe to stackwalk 1571 methodHandle callee_method; 1572 JRT_BLOCK 1573 // Force resolving of caller (if we called from compiled frame) 1574 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1575 current->set_vm_result_metadata(callee_method()); 1576 JRT_BLOCK_END 1577 // return compiled code entry point after potential safepoints 1578 return get_resolved_entry(current, callee_method); 1579 JRT_END 1580 1581 // Handle abstract method call 1582 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1583 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1584 1585 // Verbose error message for AbstractMethodError. 1586 // Get the called method from the invoke bytecode. 1587 vframeStream vfst(current, true); 1588 assert(!vfst.at_end(), "Java frame must exist"); 1589 methodHandle caller(current, vfst.method()); 1590 Bytecode_invoke invoke(caller, vfst.bci()); 1591 DEBUG_ONLY( invoke.verify(); ) 1592 1593 // Find the compiled caller frame. 1594 RegisterMap reg_map(current, 1595 RegisterMap::UpdateMap::include, 1596 RegisterMap::ProcessFrames::include, 1597 RegisterMap::WalkContinuation::skip); 1598 frame stubFrame = current->last_frame(); 1599 assert(stubFrame.is_runtime_frame(), "must be"); 1600 frame callerFrame = stubFrame.sender(®_map); 1601 assert(callerFrame.is_compiled_frame(), "must be"); 1602 1603 // Install exception and return forward entry. 1604 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1605 JRT_BLOCK 1606 methodHandle callee(current, invoke.static_target(current)); 1607 if (!callee.is_null()) { 1608 oop recv = callerFrame.retrieve_receiver(®_map); 1609 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1610 res = StubRoutines::forward_exception_entry(); 1611 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1612 } 1613 JRT_BLOCK_END 1614 return res; 1615 JRT_END 1616 1617 // return verified_code_entry if interp_only_mode is not set for the current thread; 1618 // otherwise return c2i entry. 1619 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1620 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1621 // In interp_only_mode we need to go to the interpreted entry 1622 // The c2i won't patch in this mode -- see fixup_callers_callsite 1623 return callee_method->get_c2i_entry(); 1624 } 1625 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1626 return callee_method->verified_code_entry(); 1627 } 1628 1629 // resolve a static call and patch code 1630 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1631 PerfTraceTime timer(_perf_resolve_static_total_time); 1632 1633 methodHandle callee_method; 1634 bool enter_special = false; 1635 JRT_BLOCK 1636 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1637 current->set_vm_result_metadata(callee_method()); 1638 JRT_BLOCK_END 1639 // return compiled code entry point after potential safepoints 1640 return get_resolved_entry(current, callee_method); 1641 JRT_END 1642 1643 // resolve virtual call and update inline cache to monomorphic 1644 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1645 PerfTraceTime timer(_perf_resolve_virtual_total_time); 1646 1647 methodHandle callee_method; 1648 JRT_BLOCK 1649 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1650 current->set_vm_result_metadata(callee_method()); 1651 JRT_BLOCK_END 1652 // return compiled code entry point after potential safepoints 1653 return get_resolved_entry(current, callee_method); 1654 JRT_END 1655 1656 1657 // Resolve a virtual call that can be statically bound (e.g., always 1658 // monomorphic, so it has no inline cache). Patch code to resolved target. 1659 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1660 PerfTraceTime timer(_perf_resolve_opt_virtual_total_time); 1661 1662 methodHandle callee_method; 1663 JRT_BLOCK 1664 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1665 current->set_vm_result_metadata(callee_method()); 1666 JRT_BLOCK_END 1667 // return compiled code entry point after potential safepoints 1668 return get_resolved_entry(current, callee_method); 1669 JRT_END 1670 1671 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1672 JavaThread* current = THREAD; 1673 ResourceMark rm(current); 1674 CallInfo call_info; 1675 Bytecodes::Code bc; 1676 1677 // receiver is null for static calls. An exception is thrown for null 1678 // receivers for non-static calls 1679 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1680 1681 methodHandle callee_method(current, call_info.selected_method()); 1682 1683 Atomic::inc(&_ic_miss_ctr); 1684 1685 #ifndef PRODUCT 1686 // Statistics & Tracing 1687 if (TraceCallFixup) { 1688 ResourceMark rm(current); 1689 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1690 callee_method->print_short_name(tty); 1691 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1692 } 1693 1694 if (ICMissHistogram) { 1695 MutexLocker m(VMStatistic_lock); 1696 RegisterMap reg_map(current, 1697 RegisterMap::UpdateMap::skip, 1698 RegisterMap::ProcessFrames::include, 1699 RegisterMap::WalkContinuation::skip); 1700 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1701 // produce statistics under the lock 1702 trace_ic_miss(f.pc()); 1703 } 1704 #endif 1705 1706 // install an event collector so that when a vtable stub is created the 1707 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1708 // event can't be posted when the stub is created as locks are held 1709 // - instead the event will be deferred until the event collector goes 1710 // out of scope. 1711 JvmtiDynamicCodeEventCollector event_collector; 1712 1713 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1714 RegisterMap reg_map(current, 1715 RegisterMap::UpdateMap::skip, 1716 RegisterMap::ProcessFrames::include, 1717 RegisterMap::WalkContinuation::skip); 1718 frame caller_frame = current->last_frame().sender(®_map); 1719 CodeBlob* cb = caller_frame.cb(); 1720 nmethod* caller_nm = cb->as_nmethod(); 1721 1722 CompiledICLocker ml(caller_nm); 1723 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1724 inline_cache->update(&call_info, receiver()->klass()); 1725 1726 return callee_method; 1727 } 1728 1729 // 1730 // Resets a call-site in compiled code so it will get resolved again. 1731 // This routines handles both virtual call sites, optimized virtual call 1732 // sites, and static call sites. Typically used to change a call sites 1733 // destination from compiled to interpreted. 1734 // 1735 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1736 JavaThread* current = THREAD; 1737 ResourceMark rm(current); 1738 RegisterMap reg_map(current, 1739 RegisterMap::UpdateMap::skip, 1740 RegisterMap::ProcessFrames::include, 1741 RegisterMap::WalkContinuation::skip); 1742 frame stub_frame = current->last_frame(); 1743 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1744 frame caller = stub_frame.sender(®_map); 1745 1746 // Do nothing if the frame isn't a live compiled frame. 1747 // nmethod could be deoptimized by the time we get here 1748 // so no update to the caller is needed. 1749 1750 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1751 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1752 1753 address pc = caller.pc(); 1754 1755 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1756 assert(caller_nm != nullptr, "did not find caller nmethod"); 1757 1758 // Default call_addr is the location of the "basic" call. 1759 // Determine the address of the call we a reresolving. With 1760 // Inline Caches we will always find a recognizable call. 1761 // With Inline Caches disabled we may or may not find a 1762 // recognizable call. We will always find a call for static 1763 // calls and for optimized virtual calls. For vanilla virtual 1764 // calls it depends on the state of the UseInlineCaches switch. 1765 // 1766 // With Inline Caches disabled we can get here for a virtual call 1767 // for two reasons: 1768 // 1 - calling an abstract method. The vtable for abstract methods 1769 // will run us thru handle_wrong_method and we will eventually 1770 // end up in the interpreter to throw the ame. 1771 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1772 // call and between the time we fetch the entry address and 1773 // we jump to it the target gets deoptimized. Similar to 1 1774 // we will wind up in the interprter (thru a c2i with c2). 1775 // 1776 CompiledICLocker ml(caller_nm); 1777 address call_addr = caller_nm->call_instruction_address(pc); 1778 1779 if (call_addr != nullptr) { 1780 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1781 // bytes back in the instruction stream so we must also check for reloc info. 1782 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1783 bool ret = iter.next(); // Get item 1784 if (ret) { 1785 switch (iter.type()) { 1786 case relocInfo::static_call_type: 1787 case relocInfo::opt_virtual_call_type: { 1788 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1789 cdc->set_to_clean(); 1790 break; 1791 } 1792 1793 case relocInfo::virtual_call_type: { 1794 // compiled, dispatched call (which used to call an interpreted method) 1795 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1796 inline_cache->set_to_clean(); 1797 break; 1798 } 1799 default: 1800 break; 1801 } 1802 } 1803 } 1804 } 1805 1806 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1807 1808 Atomic::inc(&_wrong_method_ctr); 1809 1810 #ifndef PRODUCT 1811 if (TraceCallFixup) { 1812 ResourceMark rm(current); 1813 tty->print("handle_wrong_method reresolving call to"); 1814 callee_method->print_short_name(tty); 1815 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1816 } 1817 #endif 1818 1819 return callee_method; 1820 } 1821 1822 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1823 // The faulting unsafe accesses should be changed to throw the error 1824 // synchronously instead. Meanwhile the faulting instruction will be 1825 // skipped over (effectively turning it into a no-op) and an 1826 // asynchronous exception will be raised which the thread will 1827 // handle at a later point. If the instruction is a load it will 1828 // return garbage. 1829 1830 // Request an async exception. 1831 thread->set_pending_unsafe_access_error(); 1832 1833 // Return address of next instruction to execute. 1834 return next_pc; 1835 } 1836 1837 #ifdef ASSERT 1838 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1839 const BasicType* sig_bt, 1840 const VMRegPair* regs) { 1841 ResourceMark rm; 1842 const int total_args_passed = method->size_of_parameters(); 1843 const VMRegPair* regs_with_member_name = regs; 1844 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1845 1846 const int member_arg_pos = total_args_passed - 1; 1847 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1848 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1849 1850 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1851 1852 for (int i = 0; i < member_arg_pos; i++) { 1853 VMReg a = regs_with_member_name[i].first(); 1854 VMReg b = regs_without_member_name[i].first(); 1855 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1856 } 1857 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1858 } 1859 #endif 1860 1861 // --------------------------------------------------------------------------- 1862 // We are calling the interpreter via a c2i. Normally this would mean that 1863 // we were called by a compiled method. However we could have lost a race 1864 // where we went int -> i2c -> c2i and so the caller could in fact be 1865 // interpreted. If the caller is compiled we attempt to patch the caller 1866 // so he no longer calls into the interpreter. 1867 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1868 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1869 1870 // It's possible that deoptimization can occur at a call site which hasn't 1871 // been resolved yet, in which case this function will be called from 1872 // an nmethod that has been patched for deopt and we can ignore the 1873 // request for a fixup. 1874 // Also it is possible that we lost a race in that from_compiled_entry 1875 // is now back to the i2c in that case we don't need to patch and if 1876 // we did we'd leap into space because the callsite needs to use 1877 // "to interpreter" stub in order to load up the Method*. Don't 1878 // ask me how I know this... 1879 1880 // Result from nmethod::is_unloading is not stable across safepoints. 1881 NoSafepointVerifier nsv; 1882 1883 nmethod* callee = method->code(); 1884 if (callee == nullptr) { 1885 return; 1886 } 1887 1888 // write lock needed because we might patch call site by set_to_clean() 1889 // and is_unloading() can modify nmethod's state 1890 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1891 1892 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1893 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1894 return; 1895 } 1896 1897 // The check above makes sure this is an nmethod. 1898 nmethod* caller = cb->as_nmethod(); 1899 1900 // Get the return PC for the passed caller PC. 1901 address return_pc = caller_pc + frame::pc_return_offset; 1902 1903 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1904 return; 1905 } 1906 1907 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1908 CompiledICLocker ic_locker(caller); 1909 ResourceMark rm; 1910 1911 // If we got here through a static call or opt_virtual call, then we know where the 1912 // call address would be; let's peek at it 1913 address callsite_addr = (address)nativeCall_before(return_pc); 1914 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1915 if (!iter.next()) { 1916 // No reloc entry found; not a static or optimized virtual call 1917 return; 1918 } 1919 1920 relocInfo::relocType type = iter.reloc()->type(); 1921 if (type != relocInfo::static_call_type && 1922 type != relocInfo::opt_virtual_call_type) { 1923 return; 1924 } 1925 1926 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1927 callsite->set_to_clean(); 1928 JRT_END 1929 1930 1931 // same as JVM_Arraycopy, but called directly from compiled code 1932 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1933 oopDesc* dest, jint dest_pos, 1934 jint length, 1935 JavaThread* current)) { 1936 #ifndef PRODUCT 1937 _slow_array_copy_ctr++; 1938 #endif 1939 // Check if we have null pointers 1940 if (src == nullptr || dest == nullptr) { 1941 THROW(vmSymbols::java_lang_NullPointerException()); 1942 } 1943 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1944 // even though the copy_array API also performs dynamic checks to ensure 1945 // that src and dest are truly arrays (and are conformable). 1946 // The copy_array mechanism is awkward and could be removed, but 1947 // the compilers don't call this function except as a last resort, 1948 // so it probably doesn't matter. 1949 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1950 (arrayOopDesc*)dest, dest_pos, 1951 length, current); 1952 } 1953 JRT_END 1954 1955 // The caller of generate_class_cast_message() (or one of its callers) 1956 // must use a ResourceMark in order to correctly free the result. 1957 char* SharedRuntime::generate_class_cast_message( 1958 JavaThread* thread, Klass* caster_klass) { 1959 1960 // Get target class name from the checkcast instruction 1961 vframeStream vfst(thread, true); 1962 assert(!vfst.at_end(), "Java frame must exist"); 1963 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1964 constantPoolHandle cpool(thread, vfst.method()->constants()); 1965 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1966 Symbol* target_klass_name = nullptr; 1967 if (target_klass == nullptr) { 1968 // This klass should be resolved, but just in case, get the name in the klass slot. 1969 target_klass_name = cpool->klass_name_at(cc.index()); 1970 } 1971 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1972 } 1973 1974 1975 // The caller of generate_class_cast_message() (or one of its callers) 1976 // must use a ResourceMark in order to correctly free the result. 1977 char* SharedRuntime::generate_class_cast_message( 1978 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1979 const char* caster_name = caster_klass->external_name(); 1980 1981 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1982 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1983 target_klass->external_name(); 1984 1985 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1986 1987 const char* caster_klass_description = ""; 1988 const char* target_klass_description = ""; 1989 const char* klass_separator = ""; 1990 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1991 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1992 } else { 1993 caster_klass_description = caster_klass->class_in_module_of_loader(); 1994 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1995 klass_separator = (target_klass != nullptr) ? "; " : ""; 1996 } 1997 1998 // add 3 for parenthesis and preceding space 1999 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 2000 2001 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2002 if (message == nullptr) { 2003 // Shouldn't happen, but don't cause even more problems if it does 2004 message = const_cast<char*>(caster_klass->external_name()); 2005 } else { 2006 jio_snprintf(message, 2007 msglen, 2008 "class %s cannot be cast to class %s (%s%s%s)", 2009 caster_name, 2010 target_name, 2011 caster_klass_description, 2012 klass_separator, 2013 target_klass_description 2014 ); 2015 } 2016 return message; 2017 } 2018 2019 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2020 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2021 JRT_END 2022 2023 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2024 if (!SafepointSynchronize::is_synchronizing()) { 2025 // Only try quick_enter() if we're not trying to reach a safepoint 2026 // so that the calling thread reaches the safepoint more quickly. 2027 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 2028 return; 2029 } 2030 } 2031 // NO_ASYNC required because an async exception on the state transition destructor 2032 // would leave you with the lock held and it would never be released. 2033 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2034 // and the model is that an exception implies the method failed. 2035 JRT_BLOCK_NO_ASYNC 2036 Handle h_obj(THREAD, obj); 2037 ObjectSynchronizer::enter(h_obj, lock, current); 2038 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2039 JRT_BLOCK_END 2040 } 2041 2042 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2043 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2044 SharedRuntime::monitor_enter_helper(obj, lock, current); 2045 JRT_END 2046 2047 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2048 assert(JavaThread::current() == current, "invariant"); 2049 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2050 ExceptionMark em(current); 2051 2052 // Check if C2_MacroAssembler::fast_unlock() or 2053 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 2054 // monitor before going slow path. Since there is no safepoint 2055 // polling when calling into the VM, we can be sure that the monitor 2056 // hasn't been deallocated. 2057 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2058 if (m != nullptr) { 2059 assert(!m->has_owner(current), "must be"); 2060 current->clear_unlocked_inflated_monitor(); 2061 2062 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2063 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2064 // Some other thread acquired the lock (or the monitor was 2065 // deflated). Either way we are done. 2066 current->dec_held_monitor_count(); 2067 return; 2068 } 2069 } 2070 2071 // The object could become unlocked through a JNI call, which we have no other checks for. 2072 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2073 if (obj->is_unlocked()) { 2074 if (CheckJNICalls) { 2075 fatal("Object has been unlocked by JNI"); 2076 } 2077 return; 2078 } 2079 ObjectSynchronizer::exit(obj, lock, current); 2080 } 2081 2082 // Handles the uncommon cases of monitor unlocking in compiled code 2083 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2084 assert(current == JavaThread::current(), "pre-condition"); 2085 SharedRuntime::monitor_exit_helper(obj, lock, current); 2086 JRT_END 2087 2088 // This is only called when CheckJNICalls is true, and only 2089 // for virtual thread termination. 2090 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2091 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2092 if (log_is_enabled(Debug, jni)) { 2093 JavaThread* current = JavaThread::current(); 2094 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2095 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2096 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2097 ") exiting with Objects still locked by JNI MonitorEnter.", 2098 vthread_id, carrier_id); 2099 } 2100 JRT_END 2101 2102 #ifndef PRODUCT 2103 2104 void SharedRuntime::print_statistics() { 2105 ttyLocker ttyl; 2106 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2107 2108 SharedRuntime::print_ic_miss_histogram_on(tty); 2109 SharedRuntime::print_counters_on(tty); 2110 AdapterHandlerLibrary::print_statistics_on(tty); 2111 2112 if (xtty != nullptr) xtty->tail("statistics"); 2113 } 2114 2115 //void SharedRuntime::print_counters_on(outputStream* st) { 2116 // // Dump the JRT_ENTRY counters 2117 // if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr); 2118 // if (_new_array_ctr) st->print_cr("%5u new array requires GC", _new_array_ctr); 2119 // if (_multi2_ctr) st->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2120 // if (_multi3_ctr) st->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2121 // if (_multi4_ctr) st->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2122 // if (_multi5_ctr) st->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2123 // 2124 // st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2125 // st->print_cr("%5u wrong method", _wrong_method_ctr); 2126 // st->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2127 // st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2128 // st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2129 // 2130 // if (_mon_enter_stub_ctr) st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2131 // if (_mon_exit_stub_ctr) st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2132 // if (_mon_enter_ctr) st->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2133 // if (_mon_exit_ctr) st->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2134 // if (_partial_subtype_ctr) st->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2135 // if (_jbyte_array_copy_ctr) st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2136 // if (_jshort_array_copy_ctr) st->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2137 // if (_jint_array_copy_ctr) st->print_cr("%5u int array copies", _jint_array_copy_ctr); 2138 // if (_jlong_array_copy_ctr) st->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2139 // if (_oop_array_copy_ctr) st->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2140 // if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2141 // if (_unsafe_array_copy_ctr) st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2142 // if (_generic_array_copy_ctr) st->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2143 // if (_slow_array_copy_ctr) st->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2144 // if (_find_handler_ctr) st->print_cr("%5u find exception handler", _find_handler_ctr); 2145 // if (_rethrow_ctr) st->print_cr("%5u rethrow handler", _rethrow_ctr); 2146 // if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2147 //} 2148 2149 inline double percent(int64_t x, int64_t y) { 2150 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2151 } 2152 2153 class MethodArityHistogram { 2154 public: 2155 enum { MAX_ARITY = 256 }; 2156 private: 2157 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2158 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2159 static uint64_t _total_compiled_calls; 2160 static uint64_t _max_compiled_calls_per_method; 2161 static int _max_arity; // max. arity seen 2162 static int _max_size; // max. arg size seen 2163 2164 static void add_method_to_histogram(nmethod* nm) { 2165 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2166 if (method != nullptr) { 2167 ArgumentCount args(method->signature()); 2168 int arity = args.size() + (method->is_static() ? 0 : 1); 2169 int argsize = method->size_of_parameters(); 2170 arity = MIN2(arity, MAX_ARITY-1); 2171 argsize = MIN2(argsize, MAX_ARITY-1); 2172 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2173 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2174 _total_compiled_calls += count; 2175 _arity_histogram[arity] += count; 2176 _size_histogram[argsize] += count; 2177 _max_arity = MAX2(_max_arity, arity); 2178 _max_size = MAX2(_max_size, argsize); 2179 } 2180 } 2181 2182 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2183 const int N = MIN2(9, n); 2184 double sum = 0; 2185 double weighted_sum = 0; 2186 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2187 if (sum >= 1) { // prevent divide by zero or divide overflow 2188 double rest = sum; 2189 double percent = sum / 100; 2190 for (int i = 0; i <= N; i++) { 2191 rest -= (double)histo[i]; 2192 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2193 } 2194 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2195 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2196 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2197 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2198 } else { 2199 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2200 } 2201 } 2202 2203 void print_histogram() { 2204 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2205 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2206 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2207 print_histogram_helper(_max_size, _size_histogram, "size"); 2208 tty->cr(); 2209 } 2210 2211 public: 2212 MethodArityHistogram() { 2213 // Take the Compile_lock to protect against changes in the CodeBlob structures 2214 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2215 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2216 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2217 _max_arity = _max_size = 0; 2218 _total_compiled_calls = 0; 2219 _max_compiled_calls_per_method = 0; 2220 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2221 CodeCache::nmethods_do(add_method_to_histogram); 2222 print_histogram(); 2223 } 2224 }; 2225 2226 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2227 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2228 uint64_t MethodArityHistogram::_total_compiled_calls; 2229 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2230 int MethodArityHistogram::_max_arity; 2231 int MethodArityHistogram::_max_size; 2232 2233 void SharedRuntime::print_call_statistics_on(outputStream* st) { 2234 tty->print_cr("Calls from compiled code:"); 2235 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2236 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2237 int64_t mono_i = _nof_interface_calls; 2238 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2239 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2240 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2241 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2242 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2243 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2244 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2245 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2246 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2247 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2248 tty->cr(); 2249 tty->print_cr("Note 1: counter updates are not MT-safe."); 2250 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2251 tty->print_cr(" %% in nested categories are relative to their category"); 2252 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2253 tty->cr(); 2254 2255 MethodArityHistogram h; 2256 } 2257 #endif 2258 2259 #ifndef PRODUCT 2260 static int _lookups; // number of calls to lookup 2261 static int _equals; // number of buckets checked with matching hash 2262 static int _archived_hits; // number of successful lookups in archived table 2263 static int _runtime_hits; // number of successful lookups in runtime table 2264 #endif 2265 2266 // A simple wrapper class around the calling convention information 2267 // that allows sharing of adapters for the same calling convention. 2268 class AdapterFingerPrint : public MetaspaceObj { 2269 private: 2270 enum { 2271 _basic_type_bits = 4, 2272 _basic_type_mask = right_n_bits(_basic_type_bits), 2273 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2274 }; 2275 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2276 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2277 2278 int _length; 2279 2280 static int data_offset() { return sizeof(AdapterFingerPrint); } 2281 int* data_pointer() { 2282 return (int*)((address)this + data_offset()); 2283 } 2284 2285 // Private construtor. Use allocate() to get an instance. 2286 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2287 int* data = data_pointer(); 2288 // Pack the BasicTypes with 8 per int 2289 _length = length(total_args_passed); 2290 int sig_index = 0; 2291 for (int index = 0; index < _length; index++) { 2292 int value = 0; 2293 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2294 int bt = adapter_encoding(sig_bt[sig_index++]); 2295 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2296 value = (value << _basic_type_bits) | bt; 2297 } 2298 data[index] = value; 2299 } 2300 } 2301 2302 // Call deallocate instead 2303 ~AdapterFingerPrint() { 2304 FreeHeap(this); 2305 } 2306 2307 static int length(int total_args) { 2308 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int; 2309 } 2310 2311 static int compute_size(int total_args_passed, BasicType* sig_bt) { 2312 int len = length(total_args_passed); 2313 return sizeof(AdapterFingerPrint) + (len * sizeof(int)); 2314 } 2315 2316 // Remap BasicTypes that are handled equivalently by the adapters. 2317 // These are correct for the current system but someday it might be 2318 // necessary to make this mapping platform dependent. 2319 static int adapter_encoding(BasicType in) { 2320 switch (in) { 2321 case T_BOOLEAN: 2322 case T_BYTE: 2323 case T_SHORT: 2324 case T_CHAR: 2325 // There are all promoted to T_INT in the calling convention 2326 return T_INT; 2327 2328 case T_OBJECT: 2329 case T_ARRAY: 2330 // In other words, we assume that any register good enough for 2331 // an int or long is good enough for a managed pointer. 2332 #ifdef _LP64 2333 return T_LONG; 2334 #else 2335 return T_INT; 2336 #endif 2337 2338 case T_INT: 2339 case T_LONG: 2340 case T_FLOAT: 2341 case T_DOUBLE: 2342 case T_VOID: 2343 return in; 2344 2345 default: 2346 ShouldNotReachHere(); 2347 return T_CONFLICT; 2348 } 2349 } 2350 2351 void* operator new(size_t size, size_t fp_size) throw() { 2352 assert(fp_size >= size, "sanity check"); 2353 void* p = AllocateHeap(fp_size, mtCode); 2354 memset(p, 0, fp_size); 2355 return p; 2356 } 2357 2358 template<typename Function> 2359 void iterate_args(Function function) { 2360 for (int i = 0; i < length(); i++) { 2361 unsigned val = (unsigned)value(i); 2362 // args are packed so that first/lower arguments are in the highest 2363 // bits of each int value, so iterate from highest to the lowest 2364 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2365 unsigned v = (val >> j) & _basic_type_mask; 2366 if (v == 0) { 2367 continue; 2368 } 2369 function(v); 2370 } 2371 } 2372 } 2373 2374 public: 2375 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) { 2376 int size_in_bytes = compute_size(total_args_passed, sig_bt); 2377 return new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt); 2378 } 2379 2380 static void deallocate(AdapterFingerPrint* fp) { 2381 fp->~AdapterFingerPrint(); 2382 } 2383 2384 int value(int index) { 2385 int* data = data_pointer(); 2386 return data[index]; 2387 } 2388 2389 int length() { 2390 return _length; 2391 } 2392 2393 unsigned int compute_hash() { 2394 int hash = 0; 2395 for (int i = 0; i < length(); i++) { 2396 int v = value(i); 2397 //Add arithmetic operation to the hash, like +3 to improve hashing 2398 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2399 } 2400 return (unsigned int)hash; 2401 } 2402 2403 const char* as_string() { 2404 stringStream st; 2405 st.print("0x"); 2406 for (int i = 0; i < length(); i++) { 2407 st.print("%x", value(i)); 2408 } 2409 return st.as_string(); 2410 } 2411 2412 const char* as_basic_args_string() { 2413 stringStream st; 2414 bool long_prev = false; 2415 iterate_args([&] (int arg) { 2416 if (long_prev) { 2417 long_prev = false; 2418 if (arg == T_VOID) { 2419 st.print("J"); 2420 } else { 2421 st.print("L"); 2422 } 2423 } 2424 switch (arg) { 2425 case T_INT: st.print("I"); break; 2426 case T_LONG: long_prev = true; break; 2427 case T_FLOAT: st.print("F"); break; 2428 case T_DOUBLE: st.print("D"); break; 2429 case T_VOID: break; 2430 default: ShouldNotReachHere(); 2431 } 2432 }); 2433 if (long_prev) { 2434 st.print("L"); 2435 } 2436 return st.as_string(); 2437 } 2438 2439 BasicType* as_basic_type(int& nargs) { 2440 nargs = 0; 2441 GrowableArray<BasicType> btarray; 2442 bool long_prev = false; 2443 2444 iterate_args([&] (int arg) { 2445 if (long_prev) { 2446 long_prev = false; 2447 if (arg == T_VOID) { 2448 btarray.append(T_LONG); 2449 } else { 2450 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter 2451 } 2452 } 2453 switch (arg) { 2454 case T_INT: // fallthrough 2455 case T_FLOAT: // fallthrough 2456 case T_DOUBLE: 2457 case T_VOID: 2458 btarray.append((BasicType)arg); 2459 break; 2460 case T_LONG: 2461 long_prev = true; 2462 break; 2463 default: ShouldNotReachHere(); 2464 } 2465 }); 2466 2467 if (long_prev) { 2468 btarray.append(T_OBJECT); 2469 } 2470 2471 nargs = btarray.length(); 2472 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs); 2473 int index = 0; 2474 GrowableArrayIterator<BasicType> iter = btarray.begin(); 2475 while (iter != btarray.end()) { 2476 sig_bt[index++] = *iter; 2477 ++iter; 2478 } 2479 assert(index == btarray.length(), "sanity check"); 2480 #ifdef ASSERT 2481 { 2482 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt); 2483 assert(this->equals(compare_fp), "sanity check"); 2484 AdapterFingerPrint::deallocate(compare_fp); 2485 } 2486 #endif 2487 return sig_bt; 2488 } 2489 2490 bool equals(AdapterFingerPrint* other) { 2491 if (other->_length != _length) { 2492 return false; 2493 } else { 2494 for (int i = 0; i < _length; i++) { 2495 if (value(i) != other->value(i)) { 2496 return false; 2497 } 2498 } 2499 } 2500 return true; 2501 } 2502 2503 // methods required by virtue of being a MetaspaceObj 2504 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2505 int size() const { return (int)heap_word_size(sizeof(AdapterFingerPrint) + (_length * sizeof(int))); } 2506 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2507 2508 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2509 NOT_PRODUCT(_equals++); 2510 return fp1->equals(fp2); 2511 } 2512 2513 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2514 return fp->compute_hash(); 2515 } 2516 }; 2517 2518 #if INCLUDE_CDS 2519 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2520 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2521 } 2522 2523 class ArchivedAdapterTable : public OffsetCompactHashtable< 2524 AdapterFingerPrint*, 2525 AdapterHandlerEntry*, 2526 adapter_fp_equals_compact_hashtable_entry> {}; 2527 #endif // INCLUDE_CDS 2528 2529 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2530 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2531 AnyObj::C_HEAP, mtCode, 2532 AdapterFingerPrint::compute_hash, 2533 AdapterFingerPrint::equals>; 2534 static AdapterHandlerTable* _adapter_handler_table; 2535 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2536 2537 // Find a entry with the same fingerprint if it exists 2538 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) { 2539 NOT_PRODUCT(_lookups++); 2540 assert_lock_strong(AdapterHandlerLibrary_lock); 2541 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2542 AdapterHandlerEntry* entry = nullptr; 2543 #if INCLUDE_CDS 2544 // if we are building the archive then the archived adapter table is 2545 // not valid and we need to use the ones added to the runtime table 2546 if (AOTCodeCache::is_using_adapter()) { 2547 // Search archived table first. It is read-only table so can be searched without lock 2548 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2549 #ifndef PRODUCT 2550 if (entry != nullptr) { 2551 _archived_hits++; 2552 } 2553 #endif 2554 } 2555 #endif // INCLUDE_CDS 2556 if (entry == nullptr) { 2557 assert_lock_strong(AdapterHandlerLibrary_lock); 2558 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2559 if (entry_p != nullptr) { 2560 entry = *entry_p; 2561 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2562 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2563 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2564 #ifndef PRODUCT 2565 _runtime_hits++; 2566 #endif 2567 } 2568 } 2569 AdapterFingerPrint::deallocate(fp); 2570 return entry; 2571 } 2572 2573 #ifndef PRODUCT 2574 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) { 2575 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2576 return sizeof(*key) + sizeof(*a); 2577 }; 2578 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2579 ts.print(st, "AdapterHandlerTable"); 2580 st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2581 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2582 int total_hits = _archived_hits + _runtime_hits; 2583 st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)", 2584 _lookups, _equals, total_hits, _archived_hits, _runtime_hits); 2585 } 2586 #endif // !PRODUCT 2587 2588 // --------------------------------------------------------------------------- 2589 // Implementation of AdapterHandlerLibrary 2590 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2591 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2592 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2593 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2594 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2595 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2596 #if INCLUDE_CDS 2597 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2598 #endif // INCLUDE_CDS 2599 static const int AdapterHandlerLibrary_size = 16*K; 2600 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2601 2602 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2603 assert(_buffer != nullptr, "should be initialized"); 2604 return _buffer; 2605 } 2606 2607 static void post_adapter_creation(const AdapterBlob* new_adapter, 2608 const AdapterHandlerEntry* entry) { 2609 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2610 char blob_id[256]; 2611 jio_snprintf(blob_id, 2612 sizeof(blob_id), 2613 "%s(%s)", 2614 new_adapter->name(), 2615 entry->fingerprint()->as_string()); 2616 if (Forte::is_enabled()) { 2617 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2618 } 2619 2620 if (JvmtiExport::should_post_dynamic_code_generated()) { 2621 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2622 } 2623 } 2624 } 2625 2626 void AdapterHandlerLibrary::create_abstract_method_handler() { 2627 assert_lock_strong(AdapterHandlerLibrary_lock); 2628 // Create a special handler for abstract methods. Abstract methods 2629 // are never compiled so an i2c entry is somewhat meaningless, but 2630 // throw AbstractMethodError just in case. 2631 // Pass wrong_method_abstract for the c2i transitions to return 2632 // AbstractMethodError for invalid invocations. 2633 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2634 _abstract_method_handler = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(0, nullptr)); 2635 _abstract_method_handler->set_entry_points(SharedRuntime::throw_AbstractMethodError_entry(), 2636 wrong_method_abstract, 2637 wrong_method_abstract, 2638 nullptr); 2639 } 2640 2641 void AdapterHandlerLibrary::initialize() { 2642 { 2643 ResourceMark rm; 2644 MutexLocker mu(AdapterHandlerLibrary_lock); 2645 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2646 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2647 create_abstract_method_handler(); 2648 } 2649 2650 #if INCLUDE_CDS 2651 // Link adapters in AOT Cache to their code in AOT Code Cache 2652 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) { 2653 link_aot_adapters(); 2654 lookup_simple_adapters(); 2655 return; 2656 } 2657 #endif // INCLUDE_CDS 2658 2659 ResourceMark rm; 2660 AdapterBlob* no_arg_blob = nullptr; 2661 AdapterBlob* int_arg_blob = nullptr; 2662 AdapterBlob* obj_arg_blob = nullptr; 2663 AdapterBlob* obj_int_arg_blob = nullptr; 2664 AdapterBlob* obj_obj_arg_blob = nullptr; 2665 { 2666 MutexLocker mu(AdapterHandlerLibrary_lock); 2667 2668 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr); 2669 2670 BasicType obj_args[] = { T_OBJECT }; 2671 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args); 2672 2673 BasicType int_args[] = { T_INT }; 2674 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args); 2675 2676 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2677 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args); 2678 2679 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2680 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args); 2681 2682 assert(no_arg_blob != nullptr && 2683 obj_arg_blob != nullptr && 2684 int_arg_blob != nullptr && 2685 obj_int_arg_blob != nullptr && 2686 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2687 } 2688 2689 // Outside of the lock 2690 post_adapter_creation(no_arg_blob, _no_arg_handler); 2691 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2692 post_adapter_creation(int_arg_blob, _int_arg_handler); 2693 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2694 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2695 } 2696 2697 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2698 return AdapterHandlerEntry::allocate(fingerprint); 2699 } 2700 2701 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2702 if (method->is_abstract()) { 2703 return _abstract_method_handler; 2704 } 2705 int total_args_passed = method->size_of_parameters(); // All args on stack 2706 if (total_args_passed == 0) { 2707 return _no_arg_handler; 2708 } else if (total_args_passed == 1) { 2709 if (!method->is_static()) { 2710 return _obj_arg_handler; 2711 } 2712 switch (method->signature()->char_at(1)) { 2713 case JVM_SIGNATURE_CLASS: 2714 case JVM_SIGNATURE_ARRAY: 2715 return _obj_arg_handler; 2716 case JVM_SIGNATURE_INT: 2717 case JVM_SIGNATURE_BOOLEAN: 2718 case JVM_SIGNATURE_CHAR: 2719 case JVM_SIGNATURE_BYTE: 2720 case JVM_SIGNATURE_SHORT: 2721 return _int_arg_handler; 2722 } 2723 } else if (total_args_passed == 2 && 2724 !method->is_static()) { 2725 switch (method->signature()->char_at(1)) { 2726 case JVM_SIGNATURE_CLASS: 2727 case JVM_SIGNATURE_ARRAY: 2728 return _obj_obj_arg_handler; 2729 case JVM_SIGNATURE_INT: 2730 case JVM_SIGNATURE_BOOLEAN: 2731 case JVM_SIGNATURE_CHAR: 2732 case JVM_SIGNATURE_BYTE: 2733 case JVM_SIGNATURE_SHORT: 2734 return _obj_int_arg_handler; 2735 } 2736 } 2737 return nullptr; 2738 } 2739 2740 class AdapterSignatureIterator : public SignatureIterator { 2741 private: 2742 BasicType stack_sig_bt[16]; 2743 BasicType* sig_bt; 2744 int index; 2745 2746 public: 2747 AdapterSignatureIterator(Symbol* signature, 2748 fingerprint_t fingerprint, 2749 bool is_static, 2750 int total_args_passed) : 2751 SignatureIterator(signature, fingerprint), 2752 index(0) 2753 { 2754 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2755 if (!is_static) { // Pass in receiver first 2756 sig_bt[index++] = T_OBJECT; 2757 } 2758 do_parameters_on(this); 2759 } 2760 2761 BasicType* basic_types() { 2762 return sig_bt; 2763 } 2764 2765 #ifdef ASSERT 2766 int slots() { 2767 return index; 2768 } 2769 #endif 2770 2771 private: 2772 2773 friend class SignatureIterator; // so do_parameters_on can call do_type 2774 void do_type(BasicType type) { 2775 sig_bt[index++] = type; 2776 if (type == T_LONG || type == T_DOUBLE) { 2777 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2778 } 2779 } 2780 }; 2781 2782 2783 const char* AdapterHandlerEntry::_entry_names[] = { 2784 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 2785 }; 2786 2787 #ifdef ASSERT 2788 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) { 2789 AdapterBlob* comparison_blob = nullptr; 2790 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, true); 2791 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2792 assert(comparison_entry->compare_code(cached_entry), "code must match"); 2793 // Release the one just created 2794 AdapterHandlerEntry::deallocate(comparison_entry); 2795 } 2796 #endif /* ASSERT*/ 2797 2798 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2799 // Use customized signature handler. Need to lock around updates to 2800 // the _adapter_handler_table (it is not safe for concurrent readers 2801 // and a single writer: this could be fixed if it becomes a 2802 // problem). 2803 2804 // Fast-path for trivial adapters 2805 AdapterHandlerEntry* entry = get_simple_adapter(method); 2806 if (entry != nullptr) { 2807 return entry; 2808 } 2809 2810 ResourceMark rm; 2811 AdapterBlob* adapter_blob = nullptr; 2812 2813 // Fill in the signature array, for the calling-convention call. 2814 int total_args_passed = method->size_of_parameters(); // All args on stack 2815 2816 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2817 method->is_static(), total_args_passed); 2818 assert(si.slots() == total_args_passed, ""); 2819 BasicType* sig_bt = si.basic_types(); 2820 { 2821 MutexLocker mu(AdapterHandlerLibrary_lock); 2822 2823 // Lookup method signature's fingerprint 2824 entry = lookup(total_args_passed, sig_bt); 2825 2826 if (entry != nullptr) { 2827 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 2828 #ifdef ASSERT 2829 if (!entry->is_shared() && VerifyAdapterSharing) { 2830 verify_adapter_sharing(total_args_passed, sig_bt, entry); 2831 } 2832 #endif 2833 } else { 2834 entry = create_adapter(adapter_blob, total_args_passed, sig_bt); 2835 } 2836 } 2837 2838 // Outside of the lock 2839 if (adapter_blob != nullptr) { 2840 post_adapter_creation(adapter_blob, entry); 2841 } 2842 return entry; 2843 } 2844 2845 AdapterBlob* AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 2846 ResourceMark rm; 2847 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2848 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2849 int offsets[AdapterHandlerEntry::ENTRIES_COUNT]; 2850 2851 AdapterBlob* adapter_blob = nullptr; 2852 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, offsets); 2853 if (blob != nullptr) { 2854 adapter_blob = blob->as_adapter_blob(); 2855 address i2c_entry = adapter_blob->content_begin(); 2856 assert(offsets[0] == 0, "sanity check"); 2857 handler->set_entry_points(i2c_entry, i2c_entry + offsets[1], i2c_entry + offsets[2], i2c_entry + offsets[3]); 2858 } 2859 return adapter_blob; 2860 } 2861 2862 #ifndef PRODUCT 2863 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) { 2864 ttyLocker ttyl; 2865 ResourceMark rm; 2866 int insts_size = adapter_blob->code_size(); 2867 handler->print_adapter_on(tty); 2868 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 2869 handler->fingerprint()->as_basic_args_string(), 2870 handler->fingerprint()->as_string(), insts_size); 2871 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 2872 if (Verbose || PrintStubCode) { 2873 address first_pc = handler->base_address(); 2874 if (first_pc != nullptr) { 2875 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 2876 st->cr(); 2877 } 2878 } 2879 } 2880 #endif // PRODUCT 2881 2882 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob, 2883 AdapterHandlerEntry* handler, 2884 int total_args_passed, 2885 BasicType* sig_bt, 2886 bool is_transient) { 2887 if (log_is_enabled(Info, perf, class, link)) { 2888 ClassLoader::perf_method_adapters_count()->inc(); 2889 } 2890 2891 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2892 CodeBuffer buffer(buf); 2893 short buffer_locs[20]; 2894 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2895 sizeof(buffer_locs)/sizeof(relocInfo)); 2896 MacroAssembler masm(&buffer); 2897 VMRegPair stack_regs[16]; 2898 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2899 2900 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2901 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2902 SharedRuntime::generate_i2c2i_adapters(&masm, 2903 total_args_passed, 2904 comp_args_on_stack, 2905 sig_bt, 2906 regs, 2907 handler); 2908 #ifdef ASSERT 2909 if (VerifyAdapterSharing) { 2910 handler->save_code(buf->code_begin(), buffer.insts_size()); 2911 if (is_transient) { 2912 return true; 2913 } 2914 } 2915 #endif 2916 2917 adapter_blob = AdapterBlob::create(&buffer); 2918 if (adapter_blob == nullptr) { 2919 // CodeCache is full, disable compilation 2920 // Ought to log this but compile log is only per compile thread 2921 // and we're some non descript Java thread. 2922 return false; 2923 } 2924 if (!is_transient && AOTCodeCache::is_dumping_adapter()) { 2925 // try to save generated code 2926 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2927 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2928 int entry_offset[AdapterHandlerEntry::ENTRIES_COUNT]; 2929 assert(AdapterHandlerEntry::ENTRIES_COUNT == 4, "sanity"); 2930 address i2c_entry = handler->get_i2c_entry(); 2931 entry_offset[0] = 0; // i2c_entry offset 2932 entry_offset[1] = handler->get_c2i_entry() - i2c_entry; 2933 entry_offset[2] = handler->get_c2i_unverified_entry() - i2c_entry; 2934 entry_offset[3] = handler->get_c2i_no_clinit_check_entry() - i2c_entry; 2935 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name, AdapterHandlerEntry::ENTRIES_COUNT, entry_offset); 2936 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled"); 2937 } 2938 handler->relocate(adapter_blob->content_begin()); 2939 #ifndef PRODUCT 2940 // debugging support 2941 if (PrintAdapterHandlers || PrintStubCode) { 2942 print_adapter_handler_info(tty, handler, adapter_blob); 2943 } 2944 #endif 2945 return true; 2946 } 2947 2948 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob, 2949 int total_args_passed, 2950 BasicType* sig_bt, 2951 bool is_transient) { 2952 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2953 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 2954 if (!generate_adapter_code(adapter_blob, handler, total_args_passed, sig_bt, is_transient)) { 2955 AdapterHandlerEntry::deallocate(handler); 2956 return nullptr; 2957 } 2958 if (!is_transient) { 2959 assert_lock_strong(AdapterHandlerLibrary_lock); 2960 _adapter_handler_table->put(fp, handler); 2961 } 2962 return handler; 2963 } 2964 2965 #if INCLUDE_CDS 2966 void AdapterHandlerEntry::remove_unshareable_info() { 2967 #ifdef ASSERT 2968 _saved_code = nullptr; 2969 _saved_code_length = 0; 2970 #endif // ASSERT 2971 set_entry_points(nullptr, nullptr, nullptr, nullptr, false); 2972 } 2973 2974 class CopyAdapterTableToArchive : StackObj { 2975 private: 2976 CompactHashtableWriter* _writer; 2977 ArchiveBuilder* _builder; 2978 public: 2979 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 2980 _builder(ArchiveBuilder::current()) 2981 {} 2982 2983 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 2984 LogStreamHandle(Trace, aot) lsh; 2985 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 2986 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 2987 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 2988 assert(buffered_fp != nullptr,"sanity check"); 2989 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 2990 assert(buffered_entry != nullptr,"sanity check"); 2991 2992 uint hash = fp->compute_hash(); 2993 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 2994 _writer->add(hash, delta); 2995 if (lsh.is_enabled()) { 2996 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 2997 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 2998 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 2999 } 3000 } else { 3001 if (lsh.is_enabled()) { 3002 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 3003 } 3004 } 3005 return true; 3006 } 3007 }; 3008 3009 void AdapterHandlerLibrary::dump_aot_adapter_table() { 3010 CompactHashtableStats stats; 3011 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 3012 CopyAdapterTableToArchive copy(&writer); 3013 _adapter_handler_table->iterate(©); 3014 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 3015 } 3016 3017 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 3018 _aot_adapter_handler_table.serialize_header(soc); 3019 } 3020 3021 AdapterBlob* AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 3022 #ifdef ASSERT 3023 if (TestAOTAdapterLinkFailure) { 3024 return nullptr; 3025 } 3026 #endif 3027 AdapterBlob* blob = lookup_aot_cache(handler); 3028 #ifndef PRODUCT 3029 // debugging support 3030 if ((blob != nullptr) && (PrintAdapterHandlers || PrintStubCode)) { 3031 print_adapter_handler_info(tty, handler, blob); 3032 } 3033 #endif 3034 return blob; 3035 } 3036 3037 // This method is used during production run to link archived adapters (stored in AOT Cache) 3038 // to their code in AOT Code Cache 3039 void AdapterHandlerEntry::link() { 3040 AdapterBlob* adapter_blob = nullptr; 3041 ResourceMark rm; 3042 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 3043 bool generate_code = false; 3044 // Generate code only if AOTCodeCache is not available, or 3045 // caching adapters is disabled, or we fail to link 3046 // the AdapterHandlerEntry to its code in the AOTCodeCache 3047 if (AOTCodeCache::is_using_adapter()) { 3048 adapter_blob = AdapterHandlerLibrary::link_aot_adapter_handler(this); 3049 if (adapter_blob == nullptr) { 3050 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 3051 generate_code = true; 3052 } 3053 } else { 3054 generate_code = true; 3055 } 3056 if (generate_code) { 3057 int nargs; 3058 BasicType* bt = _fingerprint->as_basic_type(nargs); 3059 if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, nargs, bt, /* is_transient */ false)) { 3060 // Don't throw exceptions during VM initialization because java.lang.* classes 3061 // might not have been initialized, causing problems when constructing the 3062 // Java exception object. 3063 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 3064 } 3065 } 3066 // Outside of the lock 3067 if (adapter_blob != nullptr) { 3068 post_adapter_creation(adapter_blob, this); 3069 } 3070 assert(_linked, "AdapterHandlerEntry must now be linked"); 3071 } 3072 3073 void AdapterHandlerLibrary::link_aot_adapters() { 3074 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available"); 3075 _aot_adapter_handler_table.iterate([](AdapterHandlerEntry* entry) { 3076 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 3077 entry->link(); 3078 }); 3079 } 3080 3081 // This method is called during production run to lookup simple adapters 3082 // in the archived adapter handler table 3083 void AdapterHandlerLibrary::lookup_simple_adapters() { 3084 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 3085 3086 MutexLocker mu(AdapterHandlerLibrary_lock); 3087 _no_arg_handler = lookup(0, nullptr); 3088 3089 BasicType obj_args[] = { T_OBJECT }; 3090 _obj_arg_handler = lookup(1, obj_args); 3091 3092 BasicType int_args[] = { T_INT }; 3093 _int_arg_handler = lookup(1, int_args); 3094 3095 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 3096 _obj_int_arg_handler = lookup(2, obj_int_args); 3097 3098 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 3099 _obj_obj_arg_handler = lookup(2, obj_obj_args); 3100 3101 assert(_no_arg_handler != nullptr && 3102 _obj_arg_handler != nullptr && 3103 _int_arg_handler != nullptr && 3104 _obj_int_arg_handler != nullptr && 3105 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3106 assert(_no_arg_handler->is_linked() && 3107 _obj_arg_handler->is_linked() && 3108 _int_arg_handler->is_linked() && 3109 _obj_int_arg_handler->is_linked() && 3110 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3111 } 3112 #endif // INCLUDE_CDS 3113 3114 address AdapterHandlerEntry::base_address() { 3115 address base = _i2c_entry; 3116 if (base == nullptr) base = _c2i_entry; 3117 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3118 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3119 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3120 return base; 3121 } 3122 3123 void AdapterHandlerEntry::relocate(address new_base) { 3124 address old_base = base_address(); 3125 assert(old_base != nullptr, ""); 3126 ptrdiff_t delta = new_base - old_base; 3127 if (_i2c_entry != nullptr) 3128 _i2c_entry += delta; 3129 if (_c2i_entry != nullptr) 3130 _c2i_entry += delta; 3131 if (_c2i_unverified_entry != nullptr) 3132 _c2i_unverified_entry += delta; 3133 if (_c2i_no_clinit_check_entry != nullptr) 3134 _c2i_no_clinit_check_entry += delta; 3135 assert(base_address() == new_base, ""); 3136 } 3137 3138 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3139 LogStreamHandle(Trace, aot) lsh; 3140 if (lsh.is_enabled()) { 3141 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3142 lsh.cr(); 3143 } 3144 it->push(&_fingerprint); 3145 } 3146 3147 AdapterHandlerEntry::~AdapterHandlerEntry() { 3148 if (_fingerprint != nullptr) { 3149 AdapterFingerPrint::deallocate(_fingerprint); 3150 _fingerprint = nullptr; 3151 } 3152 #ifdef ASSERT 3153 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3154 #endif 3155 FreeHeap(this); 3156 } 3157 3158 3159 #ifdef ASSERT 3160 // Capture the code before relocation so that it can be compared 3161 // against other versions. If the code is captured after relocation 3162 // then relative instructions won't be equivalent. 3163 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3164 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3165 _saved_code_length = length; 3166 memcpy(_saved_code, buffer, length); 3167 } 3168 3169 3170 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3171 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3172 3173 if (other->_saved_code_length != _saved_code_length) { 3174 return false; 3175 } 3176 3177 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3178 } 3179 #endif 3180 3181 3182 /** 3183 * Create a native wrapper for this native method. The wrapper converts the 3184 * Java-compiled calling convention to the native convention, handles 3185 * arguments, and transitions to native. On return from the native we transition 3186 * back to java blocking if a safepoint is in progress. 3187 */ 3188 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3189 ResourceMark rm; 3190 nmethod* nm = nullptr; 3191 3192 // Check if memory should be freed before allocation 3193 CodeCache::gc_on_allocation(); 3194 3195 assert(method->is_native(), "must be native"); 3196 assert(method->is_special_native_intrinsic() || 3197 method->has_native_function(), "must have something valid to call!"); 3198 3199 { 3200 // Perform the work while holding the lock, but perform any printing outside the lock 3201 MutexLocker mu(AdapterHandlerLibrary_lock); 3202 // See if somebody beat us to it 3203 if (method->code() != nullptr) { 3204 return; 3205 } 3206 3207 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3208 assert(compile_id > 0, "Must generate native wrapper"); 3209 3210 3211 ResourceMark rm; 3212 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3213 if (buf != nullptr) { 3214 CodeBuffer buffer(buf); 3215 3216 if (method->is_continuation_enter_intrinsic()) { 3217 buffer.initialize_stubs_size(192); 3218 } 3219 3220 struct { double data[20]; } locs_buf; 3221 struct { double data[20]; } stubs_locs_buf; 3222 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3223 #if defined(AARCH64) || defined(PPC64) 3224 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3225 // in the constant pool to ensure ordering between the barrier and oops 3226 // accesses. For native_wrappers we need a constant. 3227 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3228 // static java call that is resolved in the runtime. 3229 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3230 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3231 } 3232 #endif 3233 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3234 MacroAssembler _masm(&buffer); 3235 3236 // Fill in the signature array, for the calling-convention call. 3237 const int total_args_passed = method->size_of_parameters(); 3238 3239 VMRegPair stack_regs[16]; 3240 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3241 3242 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3243 method->is_static(), total_args_passed); 3244 BasicType* sig_bt = si.basic_types(); 3245 assert(si.slots() == total_args_passed, ""); 3246 BasicType ret_type = si.return_type(); 3247 3248 // Now get the compiled-Java arguments layout. 3249 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3250 3251 // Generate the compiled-to-native wrapper code 3252 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3253 3254 if (nm != nullptr) { 3255 { 3256 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3257 if (nm->make_in_use()) { 3258 method->set_code(method, nm); 3259 } 3260 } 3261 3262 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3263 if (directive->PrintAssemblyOption) { 3264 nm->print_code(); 3265 } 3266 DirectivesStack::release(directive); 3267 } 3268 } 3269 } // Unlock AdapterHandlerLibrary_lock 3270 3271 3272 // Install the generated code. 3273 if (nm != nullptr) { 3274 const char *msg = method->is_static() ? "(static)" : ""; 3275 CompileTask::print_ul(nm, msg); 3276 if (PrintCompilation) { 3277 ttyLocker ttyl; 3278 CompileTask::print(tty, nm, msg); 3279 } 3280 nm->post_compiled_method_load_event(); 3281 } 3282 } 3283 3284 // ------------------------------------------------------------------------- 3285 // Java-Java calling convention 3286 // (what you use when Java calls Java) 3287 3288 //------------------------------name_for_receiver---------------------------------- 3289 // For a given signature, return the VMReg for parameter 0. 3290 VMReg SharedRuntime::name_for_receiver() { 3291 VMRegPair regs; 3292 BasicType sig_bt = T_OBJECT; 3293 (void) java_calling_convention(&sig_bt, ®s, 1); 3294 // Return argument 0 register. In the LP64 build pointers 3295 // take 2 registers, but the VM wants only the 'main' name. 3296 return regs.first(); 3297 } 3298 3299 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3300 // This method is returning a data structure allocating as a 3301 // ResourceObject, so do not put any ResourceMarks in here. 3302 3303 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3304 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3305 int cnt = 0; 3306 if (has_receiver) { 3307 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3308 } 3309 3310 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3311 BasicType type = ss.type(); 3312 sig_bt[cnt++] = type; 3313 if (is_double_word_type(type)) 3314 sig_bt[cnt++] = T_VOID; 3315 } 3316 3317 if (has_appendix) { 3318 sig_bt[cnt++] = T_OBJECT; 3319 } 3320 3321 assert(cnt < 256, "grow table size"); 3322 3323 int comp_args_on_stack; 3324 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3325 3326 // the calling convention doesn't count out_preserve_stack_slots so 3327 // we must add that in to get "true" stack offsets. 3328 3329 if (comp_args_on_stack) { 3330 for (int i = 0; i < cnt; i++) { 3331 VMReg reg1 = regs[i].first(); 3332 if (reg1->is_stack()) { 3333 // Yuck 3334 reg1 = reg1->bias(out_preserve_stack_slots()); 3335 } 3336 VMReg reg2 = regs[i].second(); 3337 if (reg2->is_stack()) { 3338 // Yuck 3339 reg2 = reg2->bias(out_preserve_stack_slots()); 3340 } 3341 regs[i].set_pair(reg2, reg1); 3342 } 3343 } 3344 3345 // results 3346 *arg_size = cnt; 3347 return regs; 3348 } 3349 3350 // OSR Migration Code 3351 // 3352 // This code is used convert interpreter frames into compiled frames. It is 3353 // called from very start of a compiled OSR nmethod. A temp array is 3354 // allocated to hold the interesting bits of the interpreter frame. All 3355 // active locks are inflated to allow them to move. The displaced headers and 3356 // active interpreter locals are copied into the temp buffer. Then we return 3357 // back to the compiled code. The compiled code then pops the current 3358 // interpreter frame off the stack and pushes a new compiled frame. Then it 3359 // copies the interpreter locals and displaced headers where it wants. 3360 // Finally it calls back to free the temp buffer. 3361 // 3362 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3363 3364 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3365 assert(current == JavaThread::current(), "pre-condition"); 3366 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 3367 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3368 // frame. The stack watermark code below ensures that the interpreted frame is processed 3369 // before it gets unwound. This is helpful as the size of the compiled frame could be 3370 // larger than the interpreted frame, which could result in the new frame not being 3371 // processed correctly. 3372 StackWatermarkSet::before_unwind(current); 3373 3374 // 3375 // This code is dependent on the memory layout of the interpreter local 3376 // array and the monitors. On all of our platforms the layout is identical 3377 // so this code is shared. If some platform lays the their arrays out 3378 // differently then this code could move to platform specific code or 3379 // the code here could be modified to copy items one at a time using 3380 // frame accessor methods and be platform independent. 3381 3382 frame fr = current->last_frame(); 3383 assert(fr.is_interpreted_frame(), ""); 3384 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3385 3386 // Figure out how many monitors are active. 3387 int active_monitor_count = 0; 3388 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3389 kptr < fr.interpreter_frame_monitor_begin(); 3390 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3391 if (kptr->obj() != nullptr) active_monitor_count++; 3392 } 3393 3394 // QQQ we could place number of active monitors in the array so that compiled code 3395 // could double check it. 3396 3397 Method* moop = fr.interpreter_frame_method(); 3398 int max_locals = moop->max_locals(); 3399 // Allocate temp buffer, 1 word per local & 2 per active monitor 3400 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3401 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3402 3403 // Copy the locals. Order is preserved so that loading of longs works. 3404 // Since there's no GC I can copy the oops blindly. 3405 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3406 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3407 (HeapWord*)&buf[0], 3408 max_locals); 3409 3410 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3411 int i = max_locals; 3412 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3413 kptr2 < fr.interpreter_frame_monitor_begin(); 3414 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3415 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3416 BasicLock *lock = kptr2->lock(); 3417 if (LockingMode == LM_LEGACY) { 3418 // Inflate so the object's header no longer refers to the BasicLock. 3419 if (lock->displaced_header().is_unlocked()) { 3420 // The object is locked and the resulting ObjectMonitor* will also be 3421 // locked so it can't be async deflated until ownership is dropped. 3422 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3423 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3424 } 3425 // Now the displaced header is free to move because the 3426 // object's header no longer refers to it. 3427 buf[i] = (intptr_t)lock->displaced_header().value(); 3428 } else if (UseObjectMonitorTable) { 3429 buf[i] = (intptr_t)lock->object_monitor_cache(); 3430 } 3431 #ifdef ASSERT 3432 else { 3433 buf[i] = badDispHeaderOSR; 3434 } 3435 #endif 3436 i++; 3437 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3438 } 3439 } 3440 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3441 3442 RegisterMap map(current, 3443 RegisterMap::UpdateMap::skip, 3444 RegisterMap::ProcessFrames::include, 3445 RegisterMap::WalkContinuation::skip); 3446 frame sender = fr.sender(&map); 3447 if (sender.is_interpreted_frame()) { 3448 current->push_cont_fastpath(sender.sp()); 3449 } 3450 3451 return buf; 3452 JRT_END 3453 3454 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3455 FREE_C_HEAP_ARRAY(intptr_t, buf); 3456 JRT_END 3457 3458 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3459 bool found = false; 3460 #if INCLUDE_CDS 3461 if (AOTCodeCache::is_using_adapter()) { 3462 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3463 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); 3464 }; 3465 _aot_adapter_handler_table.iterate(findblob_archived_table); 3466 } 3467 #endif // INCLUDE_CDS 3468 if (!found) { 3469 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3470 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3471 }; 3472 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3473 _adapter_handler_table->iterate(findblob_runtime_table); 3474 } 3475 return found; 3476 } 3477 3478 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) { 3479 return fingerprint->as_basic_args_string(); 3480 } 3481 3482 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) { 3483 unsigned int hash = fingerprint->compute_hash(); 3484 return hash; 3485 } 3486 3487 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3488 bool found = false; 3489 #if INCLUDE_CDS 3490 if (AOTCodeCache::is_using_adapter()) { 3491 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3492 if (b == CodeCache::find_blob(handler->get_i2c_entry())) { 3493 found = true; 3494 st->print("Adapter for signature: "); 3495 handler->print_adapter_on(st); 3496 return true; 3497 } else { 3498 return false; // keep looking 3499 } 3500 }; 3501 _aot_adapter_handler_table.iterate(findblob_archived_table); 3502 } 3503 #endif // INCLUDE_CDS 3504 if (!found) { 3505 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3506 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3507 found = true; 3508 st->print("Adapter for signature: "); 3509 a->print_adapter_on(st); 3510 return true; 3511 } else { 3512 return false; // keep looking 3513 } 3514 }; 3515 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3516 _adapter_handler_table->iterate(findblob_runtime_table); 3517 } 3518 assert(found, "Should have found handler"); 3519 } 3520 3521 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3522 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3523 if (get_i2c_entry() != nullptr) { 3524 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3525 } 3526 if (get_c2i_entry() != nullptr) { 3527 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3528 } 3529 if (get_c2i_unverified_entry() != nullptr) { 3530 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3531 } 3532 if (get_c2i_no_clinit_check_entry() != nullptr) { 3533 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3534 } 3535 st->cr(); 3536 } 3537 3538 bool AdapterHandlerLibrary::is_abstract_method_adapter(AdapterHandlerEntry* entry) { 3539 if (entry == _abstract_method_handler) { 3540 return true; 3541 } 3542 return false; 3543 } 3544 3545 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3546 assert(current == JavaThread::current(), "pre-condition"); 3547 StackOverflow* overflow_state = current->stack_overflow_state(); 3548 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3549 overflow_state->set_reserved_stack_activation(current->stack_base()); 3550 JRT_END 3551 3552 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3553 ResourceMark rm(current); 3554 frame activation; 3555 nmethod* nm = nullptr; 3556 int count = 1; 3557 3558 assert(fr.is_java_frame(), "Must start on Java frame"); 3559 3560 RegisterMap map(JavaThread::current(), 3561 RegisterMap::UpdateMap::skip, 3562 RegisterMap::ProcessFrames::skip, 3563 RegisterMap::WalkContinuation::skip); // don't walk continuations 3564 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3565 if (!fr.is_java_frame()) { 3566 continue; 3567 } 3568 3569 Method* method = nullptr; 3570 bool found = false; 3571 if (fr.is_interpreted_frame()) { 3572 method = fr.interpreter_frame_method(); 3573 if (method != nullptr && method->has_reserved_stack_access()) { 3574 found = true; 3575 } 3576 } else { 3577 CodeBlob* cb = fr.cb(); 3578 if (cb != nullptr && cb->is_nmethod()) { 3579 nm = cb->as_nmethod(); 3580 method = nm->method(); 3581 // scope_desc_near() must be used, instead of scope_desc_at() because on 3582 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3583 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3584 method = sd->method(); 3585 if (method != nullptr && method->has_reserved_stack_access()) { 3586 found = true; 3587 } 3588 } 3589 } 3590 } 3591 if (found) { 3592 activation = fr; 3593 warning("Potentially dangerous stack overflow in " 3594 "ReservedStackAccess annotated method %s [%d]", 3595 method->name_and_sig_as_C_string(), count++); 3596 EventReservedStackActivation event; 3597 if (event.should_commit()) { 3598 event.set_method(method); 3599 event.commit(); 3600 } 3601 } 3602 } 3603 return activation; 3604 } 3605 3606 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3607 // After any safepoint, just before going back to compiled code, 3608 // we inform the GC that we will be doing initializing writes to 3609 // this object in the future without emitting card-marks, so 3610 // GC may take any compensating steps. 3611 3612 oop new_obj = current->vm_result_oop(); 3613 if (new_obj == nullptr) return; 3614 3615 BarrierSet *bs = BarrierSet::barrier_set(); 3616 bs->on_slowpath_allocation_exit(current, new_obj); 3617 }