1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "cds/archiveBuilder.hpp"
26 #include "cds/archiveUtils.inline.hpp"
27 #include "classfile/classLoader.hpp"
28 #include "classfile/javaClasses.inline.hpp"
29 #include "classfile/stringTable.hpp"
30 #include "classfile/vmClasses.hpp"
31 #include "classfile/vmSymbols.hpp"
32 #include "code/aotCodeCache.hpp"
33 #include "code/codeCache.hpp"
34 #include "code/compiledIC.hpp"
35 #include "code/nmethod.inline.hpp"
36 #include "code/scopeDesc.hpp"
37 #include "code/vtableStubs.hpp"
38 #include "compiler/abstractCompiler.hpp"
39 #include "compiler/compileBroker.hpp"
40 #include "compiler/disassembler.hpp"
41 #include "gc/shared/barrierSet.hpp"
42 #include "gc/shared/collectedHeap.hpp"
43 #include "interpreter/interpreter.hpp"
44 #include "interpreter/interpreterRuntime.hpp"
45 #include "jfr/jfrEvents.hpp"
46 #include "jvm.h"
47 #include "logging/log.hpp"
48 #include "memory/resourceArea.hpp"
49 #include "memory/universe.hpp"
50 #include "metaprogramming/primitiveConversions.hpp"
51 #include "oops/klass.hpp"
52 #include "oops/method.inline.hpp"
53 #include "oops/objArrayKlass.hpp"
54 #include "oops/oop.inline.hpp"
55 #include "prims/forte.hpp"
56 #include "prims/jvmtiExport.hpp"
57 #include "prims/jvmtiThreadState.hpp"
58 #include "prims/methodHandles.hpp"
59 #include "prims/nativeLookup.hpp"
60 #include "runtime/arguments.hpp"
61 #include "runtime/atomicAccess.hpp"
62 #include "runtime/basicLock.inline.hpp"
63 #include "runtime/frame.inline.hpp"
64 #include "runtime/handles.inline.hpp"
65 #include "runtime/init.hpp"
66 #include "runtime/interfaceSupport.inline.hpp"
67 #include "runtime/java.hpp"
68 #include "runtime/javaCalls.hpp"
69 #include "runtime/jniHandles.inline.hpp"
70 #include "runtime/osThread.hpp"
71 #include "runtime/perfData.inline.hpp"
72 #include "runtime/sharedRuntime.hpp"
73 #include "runtime/stackWatermarkSet.hpp"
74 #include "runtime/stubRoutines.hpp"
75 #include "runtime/synchronizer.hpp"
76 #include "runtime/timerTrace.hpp"
77 #include "runtime/vframe.inline.hpp"
78 #include "runtime/vframeArray.hpp"
79 #include "runtime/vm_version.hpp"
80 #include "services/management.hpp"
81 #include "utilities/copy.hpp"
82 #include "utilities/dtrace.hpp"
83 #include "utilities/events.hpp"
84 #include "utilities/globalDefinitions.hpp"
85 #include "utilities/hashTable.hpp"
86 #include "utilities/macros.hpp"
87 #include "utilities/xmlstream.hpp"
88 #ifdef COMPILER1
89 #include "c1/c1_Runtime1.hpp"
90 #endif
91 #ifdef COMPILER2
92 #include "opto/runtime.hpp"
93 #endif
94 #if INCLUDE_JFR
95 #include "jfr/jfr.inline.hpp"
96 #endif
97
98 // Shared runtime stub routines reside in their own unique blob with a
99 // single entry point
100
101
102 #define SHARED_STUB_FIELD_DEFINE(name, type) \
103 type* SharedRuntime::BLOB_FIELD_NAME(name);
104 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
105 #undef SHARED_STUB_FIELD_DEFINE
106
107 nmethod* SharedRuntime::_cont_doYield_stub;
108
109 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr;
110 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time = nullptr;
111 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time = nullptr;
112 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr;
113 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time = nullptr;
114
115 #if 0
116 // TODO tweak global stub name generation to match this
117 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
118 const char *SharedRuntime::_stub_names[] = {
119 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
120 };
121 #endif
122
123 //----------------------------generate_stubs-----------------------------------
124 void SharedRuntime::generate_initial_stubs() {
125 // Build this early so it's available for the interpreter.
126 _throw_StackOverflowError_blob =
127 generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
128 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
129 }
130
131 void SharedRuntime::generate_stubs() {
132 _wrong_method_blob =
133 generate_resolve_blob(StubId::shared_wrong_method_id,
134 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
135 _wrong_method_abstract_blob =
136 generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
137 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
138 _ic_miss_blob =
139 generate_resolve_blob(StubId::shared_ic_miss_id,
140 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
141 _resolve_opt_virtual_call_blob =
142 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
143 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
144 _resolve_virtual_call_blob =
145 generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
146 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
147 _resolve_static_call_blob =
148 generate_resolve_blob(StubId::shared_resolve_static_call_id,
149 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
150
151 _throw_delayed_StackOverflowError_blob =
152 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
153 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
154
155 _throw_AbstractMethodError_blob =
156 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
157 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
158
159 _throw_IncompatibleClassChangeError_blob =
160 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
161 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
162
163 _throw_NullPointerException_at_call_blob =
164 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
165 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
166
167 #if COMPILER2_OR_JVMCI
168 // Vectors are generated only by C2 and JVMCI.
169 bool support_wide = is_wide_vector(MaxVectorSize);
170 if (support_wide) {
171 _polling_page_vectors_safepoint_handler_blob =
172 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
173 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
174 }
175 #endif // COMPILER2_OR_JVMCI
176 _polling_page_safepoint_handler_blob =
177 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
178 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
179 _polling_page_return_handler_blob =
180 generate_handler_blob(StubId::shared_polling_page_return_handler_id,
181 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
182
183 generate_deopt_blob();
184
185 if (UsePerfData) {
186 EXCEPTION_MARK;
187 NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call");
188 NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time, SUN_CI, "resovle_virtual_call");
189 NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time, SUN_CI, "resovle_static_call");
190 NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method");
191 NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time , SUN_CI, "ic_miss");
192 if (HAS_PENDING_EXCEPTION) {
193 vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly");
194 }
195 }
196 }
197
198 void SharedRuntime::init_adapter_library() {
199 AdapterHandlerLibrary::initialize();
200 }
201
202 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) {
203 st->print(" %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us());
204 if (TraceThreadTime) {
205 st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us());
206 }
207 st->print(" / %5d events", cnt);
208 st->cr();
209 }
210
211 void SharedRuntime::print_counters_on(outputStream* st) {
212 st->print_cr("SharedRuntime:");
213 if (UsePerfData) {
214 print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr);
215 print_counter_on(st, "resolve_virtual_call:", _perf_resolve_virtual_total_time, _resolve_virtual_ctr);
216 print_counter_on(st, "resolve_static_call:", _perf_resolve_static_total_time, _resolve_static_ctr);
217 print_counter_on(st, "handle_wrong_method:", _perf_handle_wrong_method_total_time, _wrong_method_ctr);
218 print_counter_on(st, "ic_miss:", _perf_ic_miss_total_time, _ic_miss_ctr);
219
220 jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() +
221 _perf_resolve_virtual_total_time->elapsed_counter_value() +
222 _perf_resolve_static_total_time->elapsed_counter_value() +
223 _perf_handle_wrong_method_total_time->elapsed_counter_value() +
224 _perf_ic_miss_total_time->elapsed_counter_value());
225 st->print("Total: " JLONG_FORMAT_W(5) "us", total_elapsed_time_us);
226 if (TraceThreadTime) {
227 jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() +
228 _perf_resolve_virtual_total_time->thread_counter_value() +
229 _perf_resolve_static_total_time->thread_counter_value() +
230 _perf_handle_wrong_method_total_time->thread_counter_value() +
231 _perf_ic_miss_total_time->thread_counter_value());
232 st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us);
233
234 }
235 st->cr();
236 } else {
237 st->print_cr(" no data (UsePerfData is turned off)");
238 }
239 }
240
241 #if INCLUDE_JFR
242 //------------------------------generate jfr runtime stubs ------
243 void SharedRuntime::generate_jfr_stubs() {
244 ResourceMark rm;
245 const char* timer_msg = "SharedRuntime generate_jfr_stubs";
246 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
247
248 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
249 _jfr_return_lease_blob = generate_jfr_return_lease();
250 }
251
252 #endif // INCLUDE_JFR
253
254 #include <math.h>
255
256 // Implementation of SharedRuntime
257
258 // For statistics
259 uint SharedRuntime::_ic_miss_ctr = 0;
260 uint SharedRuntime::_wrong_method_ctr = 0;
261 uint SharedRuntime::_resolve_static_ctr = 0;
262 uint SharedRuntime::_resolve_virtual_ctr = 0;
263 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
264
265 #ifndef PRODUCT
266 uint SharedRuntime::_implicit_null_throws = 0;
267 uint SharedRuntime::_implicit_div0_throws = 0;
268
269 int64_t SharedRuntime::_nof_normal_calls = 0;
270 int64_t SharedRuntime::_nof_inlined_calls = 0;
271 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
272 int64_t SharedRuntime::_nof_static_calls = 0;
273 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
274 int64_t SharedRuntime::_nof_interface_calls = 0;
275 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
276
277 uint SharedRuntime::_new_instance_ctr=0;
278 uint SharedRuntime::_new_array_ctr=0;
279 uint SharedRuntime::_multi2_ctr=0;
280 uint SharedRuntime::_multi3_ctr=0;
281 uint SharedRuntime::_multi4_ctr=0;
282 uint SharedRuntime::_multi5_ctr=0;
283 uint SharedRuntime::_mon_enter_stub_ctr=0;
284 uint SharedRuntime::_mon_exit_stub_ctr=0;
285 uint SharedRuntime::_mon_enter_ctr=0;
286 uint SharedRuntime::_mon_exit_ctr=0;
287 uint SharedRuntime::_partial_subtype_ctr=0;
288 uint SharedRuntime::_jbyte_array_copy_ctr=0;
289 uint SharedRuntime::_jshort_array_copy_ctr=0;
290 uint SharedRuntime::_jint_array_copy_ctr=0;
291 uint SharedRuntime::_jlong_array_copy_ctr=0;
292 uint SharedRuntime::_oop_array_copy_ctr=0;
293 uint SharedRuntime::_checkcast_array_copy_ctr=0;
294 uint SharedRuntime::_unsafe_array_copy_ctr=0;
295 uint SharedRuntime::_generic_array_copy_ctr=0;
296 uint SharedRuntime::_slow_array_copy_ctr=0;
297 uint SharedRuntime::_find_handler_ctr=0;
298 uint SharedRuntime::_rethrow_ctr=0;
299 uint SharedRuntime::_unsafe_set_memory_ctr=0;
300
301 int SharedRuntime::_ICmiss_index = 0;
302 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
303 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
304
305
306 void SharedRuntime::trace_ic_miss(address at) {
307 for (int i = 0; i < _ICmiss_index; i++) {
308 if (_ICmiss_at[i] == at) {
309 _ICmiss_count[i]++;
310 return;
311 }
312 }
313 int index = _ICmiss_index++;
314 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
315 _ICmiss_at[index] = at;
316 _ICmiss_count[index] = 1;
317 }
318
319 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) {
320 if (ICMissHistogram) {
321 st->print_cr("IC Miss Histogram:");
322 int tot_misses = 0;
323 for (int i = 0; i < _ICmiss_index; i++) {
324 st->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
325 tot_misses += _ICmiss_count[i];
326 }
327 st->print_cr("Total IC misses: %7d", tot_misses);
328 }
329 }
330
331 #ifdef COMPILER2
332 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
333 void SharedRuntime::debug_print_value(jboolean x) {
334 tty->print_cr("boolean %d", x);
335 }
336
337 void SharedRuntime::debug_print_value(jbyte x) {
338 tty->print_cr("byte %d", x);
339 }
340
341 void SharedRuntime::debug_print_value(jshort x) {
342 tty->print_cr("short %d", x);
343 }
344
345 void SharedRuntime::debug_print_value(jchar x) {
346 tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
347 }
348
349 void SharedRuntime::debug_print_value(jint x) {
350 tty->print_cr("int %d", x);
351 }
352
353 void SharedRuntime::debug_print_value(jlong x) {
354 tty->print_cr("long " JLONG_FORMAT, x);
355 }
356
357 void SharedRuntime::debug_print_value(jfloat x) {
358 tty->print_cr("float %f", x);
359 }
360
361 void SharedRuntime::debug_print_value(jdouble x) {
362 tty->print_cr("double %lf", x);
363 }
364
365 void SharedRuntime::debug_print_value(oopDesc* x) {
366 x->print();
367 }
368 #endif // COMPILER2
369
370 #endif // PRODUCT
371
372
373 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
374 return x * y;
375 JRT_END
376
377
378 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
379 if (x == min_jlong && y == CONST64(-1)) {
380 return x;
381 } else {
382 return x / y;
383 }
384 JRT_END
385
386
387 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
388 if (x == min_jlong && y == CONST64(-1)) {
389 return 0;
390 } else {
391 return x % y;
392 }
393 JRT_END
394
395
396 #ifdef _WIN64
397 const juint float_sign_mask = 0x7FFFFFFF;
398 const juint float_infinity = 0x7F800000;
399 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
400 const julong double_infinity = CONST64(0x7FF0000000000000);
401 #endif
402
403 #if !defined(X86)
404 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
405 #ifdef _WIN64
406 // 64-bit Windows on amd64 returns the wrong values for
407 // infinity operands.
408 juint xbits = PrimitiveConversions::cast<juint>(x);
409 juint ybits = PrimitiveConversions::cast<juint>(y);
410 // x Mod Infinity == x unless x is infinity
411 if (((xbits & float_sign_mask) != float_infinity) &&
412 ((ybits & float_sign_mask) == float_infinity) ) {
413 return x;
414 }
415 return ((jfloat)fmod_winx64((double)x, (double)y));
416 #else
417 return ((jfloat)fmod((double)x,(double)y));
418 #endif
419 JRT_END
420
421 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
422 #ifdef _WIN64
423 julong xbits = PrimitiveConversions::cast<julong>(x);
424 julong ybits = PrimitiveConversions::cast<julong>(y);
425 // x Mod Infinity == x unless x is infinity
426 if (((xbits & double_sign_mask) != double_infinity) &&
427 ((ybits & double_sign_mask) == double_infinity) ) {
428 return x;
429 }
430 return ((jdouble)fmod_winx64((double)x, (double)y));
431 #else
432 return ((jdouble)fmod((double)x,(double)y));
433 #endif
434 JRT_END
435 #endif // !X86
436
437 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
438 return (jfloat)x;
439 JRT_END
440
441 #ifdef __SOFTFP__
442 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
443 return x + y;
444 JRT_END
445
446 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
447 return x - y;
448 JRT_END
449
450 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
451 return x * y;
452 JRT_END
453
454 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
455 return x / y;
456 JRT_END
457
458 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
459 return x + y;
460 JRT_END
461
462 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
463 return x - y;
464 JRT_END
465
466 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
467 return x * y;
468 JRT_END
469
470 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
471 return x / y;
472 JRT_END
473
474 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
475 return (jdouble)x;
476 JRT_END
477
478 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
479 return (jdouble)x;
480 JRT_END
481
482 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
483 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
484 JRT_END
485
486 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
487 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
488 JRT_END
489
490 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
491 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
492 JRT_END
493
494 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
495 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
496 JRT_END
497
498 // Functions to return the opposite of the aeabi functions for nan.
499 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
500 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
501 JRT_END
502
503 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
504 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
505 JRT_END
506
507 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
508 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
509 JRT_END
510
511 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
512 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
513 JRT_END
514
515 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
516 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
517 JRT_END
518
519 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
520 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
521 JRT_END
522
523 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
524 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
525 JRT_END
526
527 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
528 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
529 JRT_END
530
531 // Intrinsics make gcc generate code for these.
532 float SharedRuntime::fneg(float f) {
533 return -f;
534 }
535
536 double SharedRuntime::dneg(double f) {
537 return -f;
538 }
539
540 #endif // __SOFTFP__
541
542 #if defined(__SOFTFP__) || defined(E500V2)
543 // Intrinsics make gcc generate code for these.
544 double SharedRuntime::dabs(double f) {
545 return (f <= (double)0.0) ? (double)0.0 - f : f;
546 }
547
548 #endif
549
550 #if defined(__SOFTFP__)
551 double SharedRuntime::dsqrt(double f) {
552 return sqrt(f);
553 }
554 #endif
555
556 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
557 if (g_isnan(x))
558 return 0;
559 if (x >= (jfloat) max_jint)
560 return max_jint;
561 if (x <= (jfloat) min_jint)
562 return min_jint;
563 return (jint) x;
564 JRT_END
565
566
567 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
568 if (g_isnan(x))
569 return 0;
570 if (x >= (jfloat) max_jlong)
571 return max_jlong;
572 if (x <= (jfloat) min_jlong)
573 return min_jlong;
574 return (jlong) x;
575 JRT_END
576
577
578 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
579 if (g_isnan(x))
580 return 0;
581 if (x >= (jdouble) max_jint)
582 return max_jint;
583 if (x <= (jdouble) min_jint)
584 return min_jint;
585 return (jint) x;
586 JRT_END
587
588
589 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
590 if (g_isnan(x))
591 return 0;
592 if (x >= (jdouble) max_jlong)
593 return max_jlong;
594 if (x <= (jdouble) min_jlong)
595 return min_jlong;
596 return (jlong) x;
597 JRT_END
598
599
600 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
601 return (jfloat)x;
602 JRT_END
603
604
605 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
606 return (jfloat)x;
607 JRT_END
608
609
610 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
611 return (jdouble)x;
612 JRT_END
613
614
615 // Exception handling across interpreter/compiler boundaries
616 //
617 // exception_handler_for_return_address(...) returns the continuation address.
618 // The continuation address is the entry point of the exception handler of the
619 // previous frame depending on the return address.
620
621 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
622 // Note: This is called when we have unwound the frame of the callee that did
623 // throw an exception. So far, no check has been performed by the StackWatermarkSet.
624 // Notably, the stack is not walkable at this point, and hence the check must
625 // be deferred until later. Specifically, any of the handlers returned here in
626 // this function, will get dispatched to, and call deferred checks to
627 // StackWatermarkSet::after_unwind at a point where the stack is walkable.
628 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
629 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
630
631 #if INCLUDE_JVMCI
632 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
633 // and other exception handler continuations do not read it
634 current->set_exception_pc(nullptr);
635 #endif // INCLUDE_JVMCI
636
637 if (Continuation::is_return_barrier_entry(return_address)) {
638 return StubRoutines::cont_returnBarrierExc();
639 }
640
641 // The fastest case first
642 CodeBlob* blob = CodeCache::find_blob(return_address);
643 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
644 if (nm != nullptr) {
645 // native nmethods don't have exception handlers
646 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
647 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
648 if (nm->is_deopt_pc(return_address)) {
649 // If we come here because of a stack overflow, the stack may be
650 // unguarded. Reguard the stack otherwise if we return to the
651 // deopt blob and the stack bang causes a stack overflow we
652 // crash.
653 StackOverflow* overflow_state = current->stack_overflow_state();
654 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
655 if (overflow_state->reserved_stack_activation() != current->stack_base()) {
656 overflow_state->set_reserved_stack_activation(current->stack_base());
657 }
658 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
659 // The deferred StackWatermarkSet::after_unwind check will be performed in
660 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
661 return SharedRuntime::deopt_blob()->unpack_with_exception();
662 } else {
663 // The deferred StackWatermarkSet::after_unwind check will be performed in
664 // * OptoRuntime::handle_exception_C_helper for C2 code
665 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
666 #ifdef COMPILER2
667 if (nm->compiler_type() == compiler_c2) {
668 return OptoRuntime::exception_blob()->entry_point();
669 }
670 #endif // COMPILER2
671 return nm->exception_begin();
672 }
673 }
674
675 // Entry code
676 if (StubRoutines::returns_to_call_stub(return_address)) {
677 // The deferred StackWatermarkSet::after_unwind check will be performed in
678 // JavaCallWrapper::~JavaCallWrapper
679 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
680 return StubRoutines::catch_exception_entry();
681 }
682 if (blob != nullptr && blob->is_upcall_stub()) {
683 return StubRoutines::upcall_stub_exception_handler();
684 }
685 // Interpreted code
686 if (Interpreter::contains(return_address)) {
687 // The deferred StackWatermarkSet::after_unwind check will be performed in
688 // InterpreterRuntime::exception_handler_for_exception
689 return Interpreter::rethrow_exception_entry();
690 }
691
692 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
693 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
694
695 #ifndef PRODUCT
696 { ResourceMark rm;
697 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
698 os::print_location(tty, (intptr_t)return_address);
699 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
700 tty->print_cr("b) other problem");
701 }
702 #endif // PRODUCT
703 ShouldNotReachHere();
704 return nullptr;
705 }
706
707
708 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
709 return raw_exception_handler_for_return_address(current, return_address);
710 JRT_END
711
712
713 address SharedRuntime::get_poll_stub(address pc) {
714 address stub;
715 // Look up the code blob
716 CodeBlob *cb = CodeCache::find_blob(pc);
717
718 // Should be an nmethod
719 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
720
721 // Look up the relocation information
722 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
723 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
724
725 #ifdef ASSERT
726 if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
727 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
728 Disassembler::decode(cb);
729 fatal("Only polling locations are used for safepoint");
730 }
731 #endif
732
733 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
734 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
735 if (at_poll_return) {
736 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
737 "polling page return stub not created yet");
738 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
739 } else if (has_wide_vectors) {
740 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
741 "polling page vectors safepoint stub not created yet");
742 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
743 } else {
744 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
745 "polling page safepoint stub not created yet");
746 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
747 }
748 log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
749 INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
750 p2i(Thread::current()),
751 Thread::current()->osthread()->thread_id(),
752 p2i(pc),
753 at_poll_return ? "return" : "loop",
754 p2i(stub));
755 return stub;
756 }
757
758 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
759 if (JvmtiExport::can_post_on_exceptions()) {
760 vframeStream vfst(current, true);
761 methodHandle method = methodHandle(current, vfst.method());
762 address bcp = method()->bcp_from(vfst.bci());
763 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
764 }
765
766 #if INCLUDE_JVMCI
767 if (EnableJVMCI) {
768 vframeStream vfst(current, true);
769 methodHandle method = methodHandle(current, vfst.method());
770 int bci = vfst.bci();
771 MethodData* trap_mdo = method->method_data();
772 if (trap_mdo != nullptr) {
773 // Set exception_seen if the exceptional bytecode is an invoke
774 Bytecode_invoke call = Bytecode_invoke_check(method, bci);
775 if (call.is_valid()) {
776 ResourceMark rm(current);
777
778 // Lock to read ProfileData, and ensure lock is not broken by a safepoint
779 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
780
781 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
782 if (pdata != nullptr && pdata->is_BitData()) {
783 BitData* bit_data = (BitData*) pdata;
784 bit_data->set_exception_seen();
785 }
786 }
787 }
788 }
789 #endif
790
791 Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
792 }
793
794 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
795 Handle h_exception = Exceptions::new_exception(current, name, message);
796 throw_and_post_jvmti_exception(current, h_exception);
797 }
798
799 // The interpreter code to call this tracing function is only
800 // called/generated when UL is on for redefine, class and has the right level
801 // and tags. Since obsolete methods are never compiled, we don't have
802 // to modify the compilers to generate calls to this function.
803 //
804 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
805 JavaThread* thread, Method* method))
806 if (method->is_obsolete()) {
807 // We are calling an obsolete method, but this is not necessarily
808 // an error. Our method could have been redefined just after we
809 // fetched the Method* from the constant pool.
810 ResourceMark rm;
811 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
812 }
813
814 LogStreamHandle(Trace, interpreter, bytecode) log;
815 if (log.is_enabled()) {
816 ResourceMark rm;
817 log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s",
818 p2i(thread),
819 (method->is_static() ? "static" : "virtual"),
820 method->name_and_sig_as_C_string(),
821 (method->is_native() ? " native" : ""),
822 (thread->class_being_initialized() != nullptr ? " clinit" : ""),
823 (method->method_holder()->is_initialized() ? "" : " being_initialized"));
824 }
825 return 0;
826 JRT_END
827
828 // ret_pc points into caller; we are returning caller's exception handler
829 // for given exception
830 // Note that the implementation of this method assumes it's only called when an exception has actually occured
831 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
832 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
833 assert(nm != nullptr, "must exist");
834 ResourceMark rm;
835
836 #if INCLUDE_JVMCI
837 if (nm->is_compiled_by_jvmci()) {
838 // lookup exception handler for this pc
839 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
840 ExceptionHandlerTable table(nm);
841 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
842 if (t != nullptr) {
843 return nm->code_begin() + t->pco();
844 } else {
845 bool make_not_entrant = true;
846 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
847 }
848 }
849 #endif // INCLUDE_JVMCI
850
851 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
852 // determine handler bci, if any
853 EXCEPTION_MARK;
854
855 Handle orig_exception(THREAD, exception());
856
857 int handler_bci = -1;
858 int scope_depth = 0;
859 if (!force_unwind) {
860 int bci = sd->bci();
861 bool recursive_exception = false;
862 do {
863 bool skip_scope_increment = false;
864 // exception handler lookup
865 Klass* ek = exception->klass();
866 methodHandle mh(THREAD, sd->method());
867 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
868 if (HAS_PENDING_EXCEPTION) {
869 recursive_exception = true;
870 // We threw an exception while trying to find the exception handler.
871 // Transfer the new exception to the exception handle which will
872 // be set into thread local storage, and do another lookup for an
873 // exception handler for this exception, this time starting at the
874 // BCI of the exception handler which caused the exception to be
875 // thrown (bugs 4307310 and 4546590). Set "exception" reference
876 // argument to ensure that the correct exception is thrown (4870175).
877 recursive_exception_occurred = true;
878 exception.replace(PENDING_EXCEPTION);
879 CLEAR_PENDING_EXCEPTION;
880 if (handler_bci >= 0) {
881 bci = handler_bci;
882 handler_bci = -1;
883 skip_scope_increment = true;
884 }
885 }
886 else {
887 recursive_exception = false;
888 }
889 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
890 sd = sd->sender();
891 if (sd != nullptr) {
892 bci = sd->bci();
893 }
894 ++scope_depth;
895 }
896 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
897 }
898
899 // found handling method => lookup exception handler
900 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
901
902 ExceptionHandlerTable table(nm);
903 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
904
905 // If the compiler did not anticipate a recursive exception, resulting in an exception
906 // thrown from the catch bci, then the compiled exception handler might be missing.
907 // This is rare. Just deoptimize and let the interpreter rethrow the original
908 // exception at the original bci.
909 if (t == nullptr && recursive_exception_occurred) {
910 exception.replace(orig_exception()); // restore original exception
911 bool make_not_entrant = false;
912 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
913 }
914
915 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
916 // Allow abbreviated catch tables. The idea is to allow a method
917 // to materialize its exceptions without committing to the exact
918 // routing of exceptions. In particular this is needed for adding
919 // a synthetic handler to unlock monitors when inlining
920 // synchronized methods since the unlock path isn't represented in
921 // the bytecodes.
922 t = table.entry_for(catch_pco, -1, 0);
923 }
924
925 #ifdef COMPILER1
926 if (t == nullptr && nm->is_compiled_by_c1()) {
927 assert(nm->unwind_handler_begin() != nullptr, "");
928 return nm->unwind_handler_begin();
929 }
930 #endif
931
932 if (t == nullptr) {
933 ttyLocker ttyl;
934 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
935 tty->print_cr(" Exception:");
936 exception->print();
937 tty->cr();
938 tty->print_cr(" Compiled exception table :");
939 table.print();
940 nm->print();
941 nm->print_code();
942 guarantee(false, "missing exception handler");
943 return nullptr;
944 }
945
946 if (handler_bci != -1) { // did we find a handler in this method?
947 sd->method()->set_exception_handler_entered(handler_bci); // profile
948 }
949 return nm->code_begin() + t->pco();
950 }
951
952 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
953 // These errors occur only at call sites
954 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
955 JRT_END
956
957 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
958 // These errors occur only at call sites
959 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
960 JRT_END
961
962 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
963 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
964 JRT_END
965
966 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
967 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
968 JRT_END
969
970 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
971 // This entry point is effectively only used for NullPointerExceptions which occur at inline
972 // cache sites (when the callee activation is not yet set up) so we are at a call site
973 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
974 JRT_END
975
976 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
977 throw_StackOverflowError_common(current, false);
978 JRT_END
979
980 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
981 throw_StackOverflowError_common(current, true);
982 JRT_END
983
984 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
985 // We avoid using the normal exception construction in this case because
986 // it performs an upcall to Java, and we're already out of stack space.
987 JavaThread* THREAD = current; // For exception macros.
988 InstanceKlass* k = vmClasses::StackOverflowError_klass();
989 oop exception_oop = k->allocate_instance(CHECK);
990 if (delayed) {
991 java_lang_Throwable::set_message(exception_oop,
992 Universe::delayed_stack_overflow_error_message());
993 }
994 Handle exception (current, exception_oop);
995 if (StackTraceInThrowable) {
996 java_lang_Throwable::fill_in_stack_trace(exception);
997 }
998 // Remove the ScopedValue bindings in case we got a
999 // StackOverflowError while we were trying to remove ScopedValue
1000 // bindings.
1001 current->clear_scopedValueBindings();
1002 // Increment counter for hs_err file reporting
1003 AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
1004 throw_and_post_jvmti_exception(current, exception);
1005 }
1006
1007 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
1008 address pc,
1009 ImplicitExceptionKind exception_kind)
1010 {
1011 address target_pc = nullptr;
1012
1013 if (Interpreter::contains(pc)) {
1014 switch (exception_kind) {
1015 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
1016 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
1017 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
1018 default: ShouldNotReachHere();
1019 }
1020 } else {
1021 switch (exception_kind) {
1022 case STACK_OVERFLOW: {
1023 // Stack overflow only occurs upon frame setup; the callee is
1024 // going to be unwound. Dispatch to a shared runtime stub
1025 // which will cause the StackOverflowError to be fabricated
1026 // and processed.
1027 // Stack overflow should never occur during deoptimization:
1028 // the compiled method bangs the stack by as much as the
1029 // interpreter would need in case of a deoptimization. The
1030 // deoptimization blob and uncommon trap blob bang the stack
1031 // in a debug VM to verify the correctness of the compiled
1032 // method stack banging.
1033 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
1034 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
1035 return SharedRuntime::throw_StackOverflowError_entry();
1036 }
1037
1038 case IMPLICIT_NULL: {
1039 if (VtableStubs::contains(pc)) {
1040 // We haven't yet entered the callee frame. Fabricate an
1041 // exception and begin dispatching it in the caller. Since
1042 // the caller was at a call site, it's safe to destroy all
1043 // caller-saved registers, as these entry points do.
1044 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
1045
1046 // If vt_stub is null, then return null to signal handler to report the SEGV error.
1047 if (vt_stub == nullptr) return nullptr;
1048
1049 if (vt_stub->is_abstract_method_error(pc)) {
1050 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
1051 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
1052 // Instead of throwing the abstract method error here directly, we re-resolve
1053 // and will throw the AbstractMethodError during resolve. As a result, we'll
1054 // get a more detailed error message.
1055 return SharedRuntime::get_handle_wrong_method_stub();
1056 } else {
1057 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
1058 // Assert that the signal comes from the expected location in stub code.
1059 assert(vt_stub->is_null_pointer_exception(pc),
1060 "obtained signal from unexpected location in stub code");
1061 return SharedRuntime::throw_NullPointerException_at_call_entry();
1062 }
1063 } else {
1064 CodeBlob* cb = CodeCache::find_blob(pc);
1065
1066 // If code blob is null, then return null to signal handler to report the SEGV error.
1067 if (cb == nullptr) return nullptr;
1068
1069 // Exception happened in CodeCache. Must be either:
1070 // 1. Inline-cache check in C2I handler blob,
1071 // 2. Inline-cache check in nmethod, or
1072 // 3. Implicit null exception in nmethod
1073
1074 if (!cb->is_nmethod()) {
1075 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1076 if (!is_in_blob) {
1077 // Allow normal crash reporting to handle this
1078 return nullptr;
1079 }
1080 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1081 // There is no handler here, so we will simply unwind.
1082 return SharedRuntime::throw_NullPointerException_at_call_entry();
1083 }
1084
1085 // Otherwise, it's a compiled method. Consult its exception handlers.
1086 nmethod* nm = cb->as_nmethod();
1087 if (nm->inlinecache_check_contains(pc)) {
1088 // exception happened inside inline-cache check code
1089 // => the nmethod is not yet active (i.e., the frame
1090 // is not set up yet) => use return address pushed by
1091 // caller => don't push another return address
1092 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1093 return SharedRuntime::throw_NullPointerException_at_call_entry();
1094 }
1095
1096 if (nm->method()->is_method_handle_intrinsic()) {
1097 // exception happened inside MH dispatch code, similar to a vtable stub
1098 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1099 return SharedRuntime::throw_NullPointerException_at_call_entry();
1100 }
1101
1102 #ifndef PRODUCT
1103 _implicit_null_throws++;
1104 #endif
1105 target_pc = nm->continuation_for_implicit_null_exception(pc);
1106 // If there's an unexpected fault, target_pc might be null,
1107 // in which case we want to fall through into the normal
1108 // error handling code.
1109 }
1110
1111 break; // fall through
1112 }
1113
1114
1115 case IMPLICIT_DIVIDE_BY_ZERO: {
1116 nmethod* nm = CodeCache::find_nmethod(pc);
1117 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1118 #ifndef PRODUCT
1119 _implicit_div0_throws++;
1120 #endif
1121 target_pc = nm->continuation_for_implicit_div0_exception(pc);
1122 // If there's an unexpected fault, target_pc might be null,
1123 // in which case we want to fall through into the normal
1124 // error handling code.
1125 break; // fall through
1126 }
1127
1128 default: ShouldNotReachHere();
1129 }
1130
1131 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1132
1133 if (exception_kind == IMPLICIT_NULL) {
1134 #ifndef PRODUCT
1135 // for AbortVMOnException flag
1136 Exceptions::debug_check_abort("java.lang.NullPointerException");
1137 #endif //PRODUCT
1138 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1139 } else {
1140 #ifndef PRODUCT
1141 // for AbortVMOnException flag
1142 Exceptions::debug_check_abort("java.lang.ArithmeticException");
1143 #endif //PRODUCT
1144 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1145 }
1146 return target_pc;
1147 }
1148
1149 ShouldNotReachHere();
1150 return nullptr;
1151 }
1152
1153
1154 /**
1155 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is
1156 * installed in the native function entry of all native Java methods before
1157 * they get linked to their actual native methods.
1158 *
1159 * \note
1160 * This method actually never gets called! The reason is because
1161 * the interpreter's native entries call NativeLookup::lookup() which
1162 * throws the exception when the lookup fails. The exception is then
1163 * caught and forwarded on the return from NativeLookup::lookup() call
1164 * before the call to the native function. This might change in the future.
1165 */
1166 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1167 {
1168 // We return a bad value here to make sure that the exception is
1169 // forwarded before we look at the return value.
1170 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1171 }
1172 JNI_END
1173
1174 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1175 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1176 }
1177
1178 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1179 #if INCLUDE_JVMCI
1180 if (!obj->klass()->has_finalizer()) {
1181 return;
1182 }
1183 #endif // INCLUDE_JVMCI
1184 assert(oopDesc::is_oop(obj), "must be a valid oop");
1185 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1186 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1187 JRT_END
1188
1189 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1190 assert(thread != nullptr, "No thread");
1191 if (thread == nullptr) {
1192 return 0;
1193 }
1194 guarantee(Thread::current() != thread || thread->is_oop_safe(),
1195 "current cannot touch oops after its GC barrier is detached.");
1196 oop obj = thread->threadObj();
1197 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1198 }
1199
1200 /**
1201 * This function ought to be a void function, but cannot be because
1202 * it gets turned into a tail-call on sparc, which runs into dtrace bug
1203 * 6254741. Once that is fixed we can remove the dummy return value.
1204 */
1205 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1206 return dtrace_object_alloc(JavaThread::current(), o, o->size());
1207 }
1208
1209 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1210 return dtrace_object_alloc(thread, o, o->size());
1211 }
1212
1213 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1214 assert(DTraceAllocProbes, "wrong call");
1215 Klass* klass = o->klass();
1216 Symbol* name = klass->name();
1217 HOTSPOT_OBJECT_ALLOC(
1218 get_java_tid(thread),
1219 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1220 return 0;
1221 }
1222
1223 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1224 JavaThread* current, Method* method))
1225 assert(current == JavaThread::current(), "pre-condition");
1226
1227 assert(DTraceMethodProbes, "wrong call");
1228 Symbol* kname = method->klass_name();
1229 Symbol* name = method->name();
1230 Symbol* sig = method->signature();
1231 HOTSPOT_METHOD_ENTRY(
1232 get_java_tid(current),
1233 (char *) kname->bytes(), kname->utf8_length(),
1234 (char *) name->bytes(), name->utf8_length(),
1235 (char *) sig->bytes(), sig->utf8_length());
1236 return 0;
1237 JRT_END
1238
1239 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1240 JavaThread* current, Method* method))
1241 assert(current == JavaThread::current(), "pre-condition");
1242 assert(DTraceMethodProbes, "wrong call");
1243 Symbol* kname = method->klass_name();
1244 Symbol* name = method->name();
1245 Symbol* sig = method->signature();
1246 HOTSPOT_METHOD_RETURN(
1247 get_java_tid(current),
1248 (char *) kname->bytes(), kname->utf8_length(),
1249 (char *) name->bytes(), name->utf8_length(),
1250 (char *) sig->bytes(), sig->utf8_length());
1251 return 0;
1252 JRT_END
1253
1254
1255 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1256 // for a call current in progress, i.e., arguments has been pushed on stack
1257 // put callee has not been invoked yet. Used by: resolve virtual/static,
1258 // vtable updates, etc. Caller frame must be compiled.
1259 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1260 JavaThread* current = THREAD;
1261 ResourceMark rm(current);
1262
1263 // last java frame on stack (which includes native call frames)
1264 vframeStream vfst(current, true); // Do not skip and javaCalls
1265
1266 return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1267 }
1268
1269 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1270 nmethod* caller = vfst.nm();
1271
1272 address pc = vfst.frame_pc();
1273 { // Get call instruction under lock because another thread may be busy patching it.
1274 CompiledICLocker ic_locker(caller);
1275 return caller->attached_method_before_pc(pc);
1276 }
1277 return nullptr;
1278 }
1279
1280 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1281 // for a call current in progress, i.e., arguments has been pushed on stack
1282 // but callee has not been invoked yet. Caller frame must be compiled.
1283 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1284 CallInfo& callinfo, TRAPS) {
1285 Handle receiver;
1286 Handle nullHandle; // create a handy null handle for exception returns
1287 JavaThread* current = THREAD;
1288
1289 assert(!vfst.at_end(), "Java frame must exist");
1290
1291 // Find caller and bci from vframe
1292 methodHandle caller(current, vfst.method());
1293 int bci = vfst.bci();
1294
1295 if (caller->is_continuation_enter_intrinsic()) {
1296 bc = Bytecodes::_invokestatic;
1297 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1298 return receiver;
1299 }
1300
1301 Bytecode_invoke bytecode(caller, bci);
1302 int bytecode_index = bytecode.index();
1303 bc = bytecode.invoke_code();
1304
1305 methodHandle attached_method(current, extract_attached_method(vfst));
1306 if (attached_method.not_null()) {
1307 Method* callee = bytecode.static_target(CHECK_NH);
1308 vmIntrinsics::ID id = callee->intrinsic_id();
1309 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1310 // it attaches statically resolved method to the call site.
1311 if (MethodHandles::is_signature_polymorphic(id) &&
1312 MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1313 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1314
1315 // Adjust invocation mode according to the attached method.
1316 switch (bc) {
1317 case Bytecodes::_invokevirtual:
1318 if (attached_method->method_holder()->is_interface()) {
1319 bc = Bytecodes::_invokeinterface;
1320 }
1321 break;
1322 case Bytecodes::_invokeinterface:
1323 if (!attached_method->method_holder()->is_interface()) {
1324 bc = Bytecodes::_invokevirtual;
1325 }
1326 break;
1327 case Bytecodes::_invokehandle:
1328 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1329 bc = attached_method->is_static() ? Bytecodes::_invokestatic
1330 : Bytecodes::_invokevirtual;
1331 }
1332 break;
1333 default:
1334 break;
1335 }
1336 }
1337 }
1338
1339 assert(bc != Bytecodes::_illegal, "not initialized");
1340
1341 bool has_receiver = bc != Bytecodes::_invokestatic &&
1342 bc != Bytecodes::_invokedynamic &&
1343 bc != Bytecodes::_invokehandle;
1344
1345 // Find receiver for non-static call
1346 if (has_receiver) {
1347 // This register map must be update since we need to find the receiver for
1348 // compiled frames. The receiver might be in a register.
1349 RegisterMap reg_map2(current,
1350 RegisterMap::UpdateMap::include,
1351 RegisterMap::ProcessFrames::include,
1352 RegisterMap::WalkContinuation::skip);
1353 frame stubFrame = current->last_frame();
1354 // Caller-frame is a compiled frame
1355 frame callerFrame = stubFrame.sender(®_map2);
1356
1357 if (attached_method.is_null()) {
1358 Method* callee = bytecode.static_target(CHECK_NH);
1359 if (callee == nullptr) {
1360 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1361 }
1362 }
1363
1364 // Retrieve from a compiled argument list
1365 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2));
1366 assert(oopDesc::is_oop_or_null(receiver()), "");
1367
1368 if (receiver.is_null()) {
1369 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1370 }
1371 }
1372
1373 // Resolve method
1374 if (attached_method.not_null()) {
1375 // Parameterized by attached method.
1376 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1377 } else {
1378 // Parameterized by bytecode.
1379 constantPoolHandle constants(current, caller->constants());
1380 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1381 }
1382
1383 #ifdef ASSERT
1384 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1385 if (has_receiver) {
1386 assert(receiver.not_null(), "should have thrown exception");
1387 Klass* receiver_klass = receiver->klass();
1388 Klass* rk = nullptr;
1389 if (attached_method.not_null()) {
1390 // In case there's resolved method attached, use its holder during the check.
1391 rk = attached_method->method_holder();
1392 } else {
1393 // Klass is already loaded.
1394 constantPoolHandle constants(current, caller->constants());
1395 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1396 }
1397 Klass* static_receiver_klass = rk;
1398 assert(receiver_klass->is_subtype_of(static_receiver_klass),
1399 "actual receiver must be subclass of static receiver klass");
1400 if (receiver_klass->is_instance_klass()) {
1401 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1402 tty->print_cr("ERROR: Klass not yet initialized!!");
1403 receiver_klass->print();
1404 }
1405 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1406 }
1407 }
1408 #endif
1409
1410 return receiver;
1411 }
1412
1413 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1414 JavaThread* current = THREAD;
1415 ResourceMark rm(current);
1416 // We need first to check if any Java activations (compiled, interpreted)
1417 // exist on the stack since last JavaCall. If not, we need
1418 // to get the target method from the JavaCall wrapper.
1419 vframeStream vfst(current, true); // Do not skip any javaCalls
1420 methodHandle callee_method;
1421 if (vfst.at_end()) {
1422 // No Java frames were found on stack since we did the JavaCall.
1423 // Hence the stack can only contain an entry_frame. We need to
1424 // find the target method from the stub frame.
1425 RegisterMap reg_map(current,
1426 RegisterMap::UpdateMap::skip,
1427 RegisterMap::ProcessFrames::include,
1428 RegisterMap::WalkContinuation::skip);
1429 frame fr = current->last_frame();
1430 assert(fr.is_runtime_frame(), "must be a runtimeStub");
1431 fr = fr.sender(®_map);
1432 assert(fr.is_entry_frame(), "must be");
1433 // fr is now pointing to the entry frame.
1434 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1435 } else {
1436 Bytecodes::Code bc;
1437 CallInfo callinfo;
1438 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1439 callee_method = methodHandle(current, callinfo.selected_method());
1440 }
1441 assert(callee_method()->is_method(), "must be");
1442 return callee_method;
1443 }
1444
1445 // Resolves a call.
1446 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1447 JavaThread* current = THREAD;
1448 ResourceMark rm(current);
1449 RegisterMap cbl_map(current,
1450 RegisterMap::UpdateMap::skip,
1451 RegisterMap::ProcessFrames::include,
1452 RegisterMap::WalkContinuation::skip);
1453 frame caller_frame = current->last_frame().sender(&cbl_map);
1454
1455 CodeBlob* caller_cb = caller_frame.cb();
1456 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1457 nmethod* caller_nm = caller_cb->as_nmethod();
1458
1459 // determine call info & receiver
1460 // note: a) receiver is null for static calls
1461 // b) an exception is thrown if receiver is null for non-static calls
1462 CallInfo call_info;
1463 Bytecodes::Code invoke_code = Bytecodes::_illegal;
1464 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1465
1466 NoSafepointVerifier nsv;
1467
1468 methodHandle callee_method(current, call_info.selected_method());
1469
1470 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1471 (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1472 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1473 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1474 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1475
1476 assert(!caller_nm->is_unloading(), "It should not be unloading");
1477
1478 // tracing/debugging/statistics
1479 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1480 (is_virtual) ? (&_resolve_virtual_ctr) :
1481 (&_resolve_static_ctr);
1482 AtomicAccess::inc(addr);
1483
1484 #ifndef PRODUCT
1485 if (TraceCallFixup) {
1486 ResourceMark rm(current);
1487 tty->print("resolving %s%s (%s) call to",
1488 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1489 Bytecodes::name(invoke_code));
1490 callee_method->print_short_name(tty);
1491 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1492 p2i(caller_frame.pc()), p2i(callee_method->code()));
1493 }
1494 #endif
1495
1496 if (invoke_code == Bytecodes::_invokestatic) {
1497 assert(callee_method->method_holder()->is_initialized() ||
1498 callee_method->method_holder()->is_reentrant_initialization(current),
1499 "invalid class initialization state for invoke_static");
1500 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1501 // In order to keep class initialization check, do not patch call
1502 // site for static call when the class is not fully initialized.
1503 // Proper check is enforced by call site re-resolution on every invocation.
1504 //
1505 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1506 // explicit class initialization check is put in nmethod entry (VEP).
1507 assert(callee_method->method_holder()->is_linked(), "must be");
1508 return callee_method;
1509 }
1510 }
1511
1512
1513 // JSR 292 key invariant:
1514 // If the resolved method is a MethodHandle invoke target, the call
1515 // site must be a MethodHandle call site, because the lambda form might tail-call
1516 // leaving the stack in a state unknown to either caller or callee
1517
1518 // Compute entry points. The computation of the entry points is independent of
1519 // patching the call.
1520
1521 // Make sure the callee nmethod does not get deoptimized and removed before
1522 // we are done patching the code.
1523
1524
1525 CompiledICLocker ml(caller_nm);
1526 if (is_virtual && !is_optimized) {
1527 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1528 inline_cache->update(&call_info, receiver->klass());
1529 } else {
1530 // Callsite is a direct call - set it to the destination method
1531 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1532 callsite->set(callee_method);
1533 }
1534
1535 return callee_method;
1536 }
1537
1538 // Inline caches exist only in compiled code
1539 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1540 PerfTraceTime timer(_perf_ic_miss_total_time);
1541
1542 #ifdef ASSERT
1543 RegisterMap reg_map(current,
1544 RegisterMap::UpdateMap::skip,
1545 RegisterMap::ProcessFrames::include,
1546 RegisterMap::WalkContinuation::skip);
1547 frame stub_frame = current->last_frame();
1548 assert(stub_frame.is_runtime_frame(), "sanity check");
1549 frame caller_frame = stub_frame.sender(®_map);
1550 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1551 #endif /* ASSERT */
1552
1553 methodHandle callee_method;
1554 JRT_BLOCK
1555 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1556 // Return Method* through TLS
1557 current->set_vm_result_metadata(callee_method());
1558 JRT_BLOCK_END
1559 // return compiled code entry point after potential safepoints
1560 return get_resolved_entry(current, callee_method);
1561 JRT_END
1562
1563
1564 // Handle call site that has been made non-entrant
1565 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1566 PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1567
1568 // 6243940 We might end up in here if the callee is deoptimized
1569 // as we race to call it. We don't want to take a safepoint if
1570 // the caller was interpreted because the caller frame will look
1571 // interpreted to the stack walkers and arguments are now
1572 // "compiled" so it is much better to make this transition
1573 // invisible to the stack walking code. The i2c path will
1574 // place the callee method in the callee_target. It is stashed
1575 // there because if we try and find the callee by normal means a
1576 // safepoint is possible and have trouble gc'ing the compiled args.
1577 RegisterMap reg_map(current,
1578 RegisterMap::UpdateMap::skip,
1579 RegisterMap::ProcessFrames::include,
1580 RegisterMap::WalkContinuation::skip);
1581 frame stub_frame = current->last_frame();
1582 assert(stub_frame.is_runtime_frame(), "sanity check");
1583 frame caller_frame = stub_frame.sender(®_map);
1584
1585 if (caller_frame.is_interpreted_frame() ||
1586 caller_frame.is_entry_frame() ||
1587 caller_frame.is_upcall_stub_frame()) {
1588 Method* callee = current->callee_target();
1589 guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1590 current->set_vm_result_metadata(callee);
1591 current->set_callee_target(nullptr);
1592 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1593 // Bypass class initialization checks in c2i when caller is in native.
1594 // JNI calls to static methods don't have class initialization checks.
1595 // Fast class initialization checks are present in c2i adapters and call into
1596 // SharedRuntime::handle_wrong_method() on the slow path.
1597 //
1598 // JVM upcalls may land here as well, but there's a proper check present in
1599 // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1600 // so bypassing it in c2i adapter is benign.
1601 return callee->get_c2i_no_clinit_check_entry();
1602 } else {
1603 return callee->get_c2i_entry();
1604 }
1605 }
1606
1607 // Must be compiled to compiled path which is safe to stackwalk
1608 methodHandle callee_method;
1609 JRT_BLOCK
1610 // Force resolving of caller (if we called from compiled frame)
1611 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1612 current->set_vm_result_metadata(callee_method());
1613 JRT_BLOCK_END
1614 // return compiled code entry point after potential safepoints
1615 return get_resolved_entry(current, callee_method);
1616 JRT_END
1617
1618 // Handle abstract method call
1619 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1620 PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1621
1622 // Verbose error message for AbstractMethodError.
1623 // Get the called method from the invoke bytecode.
1624 vframeStream vfst(current, true);
1625 assert(!vfst.at_end(), "Java frame must exist");
1626 methodHandle caller(current, vfst.method());
1627 Bytecode_invoke invoke(caller, vfst.bci());
1628 DEBUG_ONLY( invoke.verify(); )
1629
1630 // Find the compiled caller frame.
1631 RegisterMap reg_map(current,
1632 RegisterMap::UpdateMap::include,
1633 RegisterMap::ProcessFrames::include,
1634 RegisterMap::WalkContinuation::skip);
1635 frame stubFrame = current->last_frame();
1636 assert(stubFrame.is_runtime_frame(), "must be");
1637 frame callerFrame = stubFrame.sender(®_map);
1638 assert(callerFrame.is_compiled_frame(), "must be");
1639
1640 // Install exception and return forward entry.
1641 address res = SharedRuntime::throw_AbstractMethodError_entry();
1642 JRT_BLOCK
1643 methodHandle callee(current, invoke.static_target(current));
1644 if (!callee.is_null()) {
1645 oop recv = callerFrame.retrieve_receiver(®_map);
1646 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1647 res = StubRoutines::forward_exception_entry();
1648 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1649 }
1650 JRT_BLOCK_END
1651 return res;
1652 JRT_END
1653
1654 // return verified_code_entry if interp_only_mode is not set for the current thread;
1655 // otherwise return c2i entry.
1656 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1657 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1658 // In interp_only_mode we need to go to the interpreted entry
1659 // The c2i won't patch in this mode -- see fixup_callers_callsite
1660 return callee_method->get_c2i_entry();
1661 }
1662 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1663 return callee_method->verified_code_entry();
1664 }
1665
1666 // resolve a static call and patch code
1667 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1668 PerfTraceTime timer(_perf_resolve_static_total_time);
1669
1670 methodHandle callee_method;
1671 bool enter_special = false;
1672 JRT_BLOCK
1673 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1674 current->set_vm_result_metadata(callee_method());
1675 JRT_BLOCK_END
1676 // return compiled code entry point after potential safepoints
1677 return get_resolved_entry(current, callee_method);
1678 JRT_END
1679
1680 // resolve virtual call and update inline cache to monomorphic
1681 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1682 PerfTraceTime timer(_perf_resolve_virtual_total_time);
1683
1684 methodHandle callee_method;
1685 JRT_BLOCK
1686 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1687 current->set_vm_result_metadata(callee_method());
1688 JRT_BLOCK_END
1689 // return compiled code entry point after potential safepoints
1690 return get_resolved_entry(current, callee_method);
1691 JRT_END
1692
1693
1694 // Resolve a virtual call that can be statically bound (e.g., always
1695 // monomorphic, so it has no inline cache). Patch code to resolved target.
1696 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1697 PerfTraceTime timer(_perf_resolve_opt_virtual_total_time);
1698
1699 methodHandle callee_method;
1700 JRT_BLOCK
1701 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1702 current->set_vm_result_metadata(callee_method());
1703 JRT_BLOCK_END
1704 // return compiled code entry point after potential safepoints
1705 return get_resolved_entry(current, callee_method);
1706 JRT_END
1707
1708 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1709 JavaThread* current = THREAD;
1710 ResourceMark rm(current);
1711 CallInfo call_info;
1712 Bytecodes::Code bc;
1713
1714 // receiver is null for static calls. An exception is thrown for null
1715 // receivers for non-static calls
1716 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1717
1718 methodHandle callee_method(current, call_info.selected_method());
1719
1720 AtomicAccess::inc(&_ic_miss_ctr);
1721
1722 #ifndef PRODUCT
1723 // Statistics & Tracing
1724 if (TraceCallFixup) {
1725 ResourceMark rm(current);
1726 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1727 callee_method->print_short_name(tty);
1728 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1729 }
1730
1731 if (ICMissHistogram) {
1732 MutexLocker m(VMStatistic_lock);
1733 RegisterMap reg_map(current,
1734 RegisterMap::UpdateMap::skip,
1735 RegisterMap::ProcessFrames::include,
1736 RegisterMap::WalkContinuation::skip);
1737 frame f = current->last_frame().real_sender(®_map);// skip runtime stub
1738 // produce statistics under the lock
1739 trace_ic_miss(f.pc());
1740 }
1741 #endif
1742
1743 // install an event collector so that when a vtable stub is created the
1744 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1745 // event can't be posted when the stub is created as locks are held
1746 // - instead the event will be deferred until the event collector goes
1747 // out of scope.
1748 JvmtiDynamicCodeEventCollector event_collector;
1749
1750 // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1751 RegisterMap reg_map(current,
1752 RegisterMap::UpdateMap::skip,
1753 RegisterMap::ProcessFrames::include,
1754 RegisterMap::WalkContinuation::skip);
1755 frame caller_frame = current->last_frame().sender(®_map);
1756 CodeBlob* cb = caller_frame.cb();
1757 nmethod* caller_nm = cb->as_nmethod();
1758
1759 CompiledICLocker ml(caller_nm);
1760 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1761 inline_cache->update(&call_info, receiver()->klass());
1762
1763 return callee_method;
1764 }
1765
1766 //
1767 // Resets a call-site in compiled code so it will get resolved again.
1768 // This routines handles both virtual call sites, optimized virtual call
1769 // sites, and static call sites. Typically used to change a call sites
1770 // destination from compiled to interpreted.
1771 //
1772 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1773 JavaThread* current = THREAD;
1774 ResourceMark rm(current);
1775 RegisterMap reg_map(current,
1776 RegisterMap::UpdateMap::skip,
1777 RegisterMap::ProcessFrames::include,
1778 RegisterMap::WalkContinuation::skip);
1779 frame stub_frame = current->last_frame();
1780 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1781 frame caller = stub_frame.sender(®_map);
1782
1783 // Do nothing if the frame isn't a live compiled frame.
1784 // nmethod could be deoptimized by the time we get here
1785 // so no update to the caller is needed.
1786
1787 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1788 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1789
1790 address pc = caller.pc();
1791
1792 nmethod* caller_nm = CodeCache::find_nmethod(pc);
1793 assert(caller_nm != nullptr, "did not find caller nmethod");
1794
1795 // Default call_addr is the location of the "basic" call.
1796 // Determine the address of the call we a reresolving. With
1797 // Inline Caches we will always find a recognizable call.
1798 // With Inline Caches disabled we may or may not find a
1799 // recognizable call. We will always find a call for static
1800 // calls and for optimized virtual calls. For vanilla virtual
1801 // calls it depends on the state of the UseInlineCaches switch.
1802 //
1803 // With Inline Caches disabled we can get here for a virtual call
1804 // for two reasons:
1805 // 1 - calling an abstract method. The vtable for abstract methods
1806 // will run us thru handle_wrong_method and we will eventually
1807 // end up in the interpreter to throw the ame.
1808 // 2 - a racing deoptimization. We could be doing a vanilla vtable
1809 // call and between the time we fetch the entry address and
1810 // we jump to it the target gets deoptimized. Similar to 1
1811 // we will wind up in the interprter (thru a c2i with c2).
1812 //
1813 CompiledICLocker ml(caller_nm);
1814 address call_addr = caller_nm->call_instruction_address(pc);
1815
1816 if (call_addr != nullptr) {
1817 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1818 // bytes back in the instruction stream so we must also check for reloc info.
1819 RelocIterator iter(caller_nm, call_addr, call_addr+1);
1820 bool ret = iter.next(); // Get item
1821 if (ret) {
1822 switch (iter.type()) {
1823 case relocInfo::static_call_type:
1824 case relocInfo::opt_virtual_call_type: {
1825 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1826 cdc->set_to_clean();
1827 break;
1828 }
1829
1830 case relocInfo::virtual_call_type: {
1831 // compiled, dispatched call (which used to call an interpreted method)
1832 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1833 inline_cache->set_to_clean();
1834 break;
1835 }
1836 default:
1837 break;
1838 }
1839 }
1840 }
1841 }
1842
1843 methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1844
1845 AtomicAccess::inc(&_wrong_method_ctr);
1846
1847 #ifndef PRODUCT
1848 if (TraceCallFixup) {
1849 ResourceMark rm(current);
1850 tty->print("handle_wrong_method reresolving call to");
1851 callee_method->print_short_name(tty);
1852 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1853 }
1854 #endif
1855
1856 return callee_method;
1857 }
1858
1859 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1860 // The faulting unsafe accesses should be changed to throw the error
1861 // synchronously instead. Meanwhile the faulting instruction will be
1862 // skipped over (effectively turning it into a no-op) and an
1863 // asynchronous exception will be raised which the thread will
1864 // handle at a later point. If the instruction is a load it will
1865 // return garbage.
1866
1867 // Request an async exception.
1868 thread->set_pending_unsafe_access_error();
1869
1870 // Return address of next instruction to execute.
1871 return next_pc;
1872 }
1873
1874 #ifdef ASSERT
1875 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1876 const BasicType* sig_bt,
1877 const VMRegPair* regs) {
1878 ResourceMark rm;
1879 const int total_args_passed = method->size_of_parameters();
1880 const VMRegPair* regs_with_member_name = regs;
1881 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1882
1883 const int member_arg_pos = total_args_passed - 1;
1884 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1885 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1886
1887 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1888
1889 for (int i = 0; i < member_arg_pos; i++) {
1890 VMReg a = regs_with_member_name[i].first();
1891 VMReg b = regs_without_member_name[i].first();
1892 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1893 }
1894 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1895 }
1896 #endif
1897
1898 // ---------------------------------------------------------------------------
1899 // We are calling the interpreter via a c2i. Normally this would mean that
1900 // we were called by a compiled method. However we could have lost a race
1901 // where we went int -> i2c -> c2i and so the caller could in fact be
1902 // interpreted. If the caller is compiled we attempt to patch the caller
1903 // so he no longer calls into the interpreter.
1904 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1905 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1906
1907 // It's possible that deoptimization can occur at a call site which hasn't
1908 // been resolved yet, in which case this function will be called from
1909 // an nmethod that has been patched for deopt and we can ignore the
1910 // request for a fixup.
1911 // Also it is possible that we lost a race in that from_compiled_entry
1912 // is now back to the i2c in that case we don't need to patch and if
1913 // we did we'd leap into space because the callsite needs to use
1914 // "to interpreter" stub in order to load up the Method*. Don't
1915 // ask me how I know this...
1916
1917 // Result from nmethod::is_unloading is not stable across safepoints.
1918 NoSafepointVerifier nsv;
1919
1920 nmethod* callee = method->code();
1921 if (callee == nullptr) {
1922 return;
1923 }
1924
1925 // write lock needed because we might patch call site by set_to_clean()
1926 // and is_unloading() can modify nmethod's state
1927 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1928
1929 CodeBlob* cb = CodeCache::find_blob(caller_pc);
1930 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1931 return;
1932 }
1933
1934 // The check above makes sure this is an nmethod.
1935 nmethod* caller = cb->as_nmethod();
1936
1937 // Get the return PC for the passed caller PC.
1938 address return_pc = caller_pc + frame::pc_return_offset;
1939
1940 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1941 return;
1942 }
1943
1944 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1945 CompiledICLocker ic_locker(caller);
1946 ResourceMark rm;
1947
1948 // If we got here through a static call or opt_virtual call, then we know where the
1949 // call address would be; let's peek at it
1950 address callsite_addr = (address)nativeCall_before(return_pc);
1951 RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1952 if (!iter.next()) {
1953 // No reloc entry found; not a static or optimized virtual call
1954 return;
1955 }
1956
1957 relocInfo::relocType type = iter.reloc()->type();
1958 if (type != relocInfo::static_call_type &&
1959 type != relocInfo::opt_virtual_call_type) {
1960 return;
1961 }
1962
1963 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1964 callsite->set_to_clean();
1965 JRT_END
1966
1967
1968 // same as JVM_Arraycopy, but called directly from compiled code
1969 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
1970 oopDesc* dest, jint dest_pos,
1971 jint length,
1972 JavaThread* current)) {
1973 #ifndef PRODUCT
1974 _slow_array_copy_ctr++;
1975 #endif
1976 // Check if we have null pointers
1977 if (src == nullptr || dest == nullptr) {
1978 THROW(vmSymbols::java_lang_NullPointerException());
1979 }
1980 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
1981 // even though the copy_array API also performs dynamic checks to ensure
1982 // that src and dest are truly arrays (and are conformable).
1983 // The copy_array mechanism is awkward and could be removed, but
1984 // the compilers don't call this function except as a last resort,
1985 // so it probably doesn't matter.
1986 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1987 (arrayOopDesc*)dest, dest_pos,
1988 length, current);
1989 }
1990 JRT_END
1991
1992 // The caller of generate_class_cast_message() (or one of its callers)
1993 // must use a ResourceMark in order to correctly free the result.
1994 char* SharedRuntime::generate_class_cast_message(
1995 JavaThread* thread, Klass* caster_klass) {
1996
1997 // Get target class name from the checkcast instruction
1998 vframeStream vfst(thread, true);
1999 assert(!vfst.at_end(), "Java frame must exist");
2000 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2001 constantPoolHandle cpool(thread, vfst.method()->constants());
2002 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2003 Symbol* target_klass_name = nullptr;
2004 if (target_klass == nullptr) {
2005 // This klass should be resolved, but just in case, get the name in the klass slot.
2006 target_klass_name = cpool->klass_name_at(cc.index());
2007 }
2008 return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2009 }
2010
2011
2012 // The caller of generate_class_cast_message() (or one of its callers)
2013 // must use a ResourceMark in order to correctly free the result.
2014 char* SharedRuntime::generate_class_cast_message(
2015 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2016 const char* caster_name = caster_klass->external_name();
2017
2018 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
2019 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
2020 target_klass->external_name();
2021
2022 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2023
2024 const char* caster_klass_description = "";
2025 const char* target_klass_description = "";
2026 const char* klass_separator = "";
2027 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
2028 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2029 } else {
2030 caster_klass_description = caster_klass->class_in_module_of_loader();
2031 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
2032 klass_separator = (target_klass != nullptr) ? "; " : "";
2033 }
2034
2035 // add 3 for parenthesis and preceding space
2036 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2037
2038 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2039 if (message == nullptr) {
2040 // Shouldn't happen, but don't cause even more problems if it does
2041 message = const_cast<char*>(caster_klass->external_name());
2042 } else {
2043 jio_snprintf(message,
2044 msglen,
2045 "class %s cannot be cast to class %s (%s%s%s)",
2046 caster_name,
2047 target_name,
2048 caster_klass_description,
2049 klass_separator,
2050 target_klass_description
2051 );
2052 }
2053 return message;
2054 }
2055
2056 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2057 (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2058 JRT_END
2059
2060 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2061 if (!SafepointSynchronize::is_synchronizing()) {
2062 // Only try quick_enter() if we're not trying to reach a safepoint
2063 // so that the calling thread reaches the safepoint more quickly.
2064 if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
2065 return;
2066 }
2067 }
2068 // NO_ASYNC required because an async exception on the state transition destructor
2069 // would leave you with the lock held and it would never be released.
2070 // The normal monitorenter NullPointerException is thrown without acquiring a lock
2071 // and the model is that an exception implies the method failed.
2072 JRT_BLOCK_NO_ASYNC
2073 Handle h_obj(THREAD, obj);
2074 ObjectSynchronizer::enter(h_obj, lock, current);
2075 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2076 JRT_BLOCK_END
2077 }
2078
2079 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2080 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2081 SharedRuntime::monitor_enter_helper(obj, lock, current);
2082 JRT_END
2083
2084 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2085 assert(JavaThread::current() == current, "invariant");
2086 // Exit must be non-blocking, and therefore no exceptions can be thrown.
2087 ExceptionMark em(current);
2088
2089 // Check if C2_MacroAssembler::fast_unlock() or
2090 // C2_MacroAssembler::fast_unlock() unlocked an inflated
2091 // monitor before going slow path. Since there is no safepoint
2092 // polling when calling into the VM, we can be sure that the monitor
2093 // hasn't been deallocated.
2094 ObjectMonitor* m = current->unlocked_inflated_monitor();
2095 if (m != nullptr) {
2096 assert(!m->has_owner(current), "must be");
2097 current->clear_unlocked_inflated_monitor();
2098
2099 // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2100 if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2101 // Some other thread acquired the lock (or the monitor was
2102 // deflated). Either way we are done.
2103 return;
2104 }
2105 }
2106
2107 // The object could become unlocked through a JNI call, which we have no other checks for.
2108 // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2109 if (obj->is_unlocked()) {
2110 if (CheckJNICalls) {
2111 fatal("Object has been unlocked by JNI");
2112 }
2113 return;
2114 }
2115 ObjectSynchronizer::exit(obj, lock, current);
2116 }
2117
2118 // Handles the uncommon cases of monitor unlocking in compiled code
2119 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2120 assert(current == JavaThread::current(), "pre-condition");
2121 SharedRuntime::monitor_exit_helper(obj, lock, current);
2122 JRT_END
2123
2124 #ifndef PRODUCT
2125
2126 void SharedRuntime::print_statistics() {
2127 ttyLocker ttyl;
2128 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'");
2129
2130 SharedRuntime::print_ic_miss_histogram_on(tty);
2131 SharedRuntime::print_counters_on(tty);
2132 AdapterHandlerLibrary::print_statistics_on(tty);
2133
2134 if (xtty != nullptr) xtty->tail("statistics");
2135 }
2136
2137 //void SharedRuntime::print_counters_on(outputStream* st) {
2138 // // Dump the JRT_ENTRY counters
2139 // if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr);
2140 // if (_new_array_ctr) st->print_cr("%5u new array requires GC", _new_array_ctr);
2141 // if (_multi2_ctr) st->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2142 // if (_multi3_ctr) st->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2143 // if (_multi4_ctr) st->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2144 // if (_multi5_ctr) st->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2145 //
2146 // st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2147 // st->print_cr("%5u wrong method", _wrong_method_ctr);
2148 // st->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2149 // st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2150 // st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2151 //
2152 // if (_mon_enter_stub_ctr) st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2153 // if (_mon_exit_stub_ctr) st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2154 // if (_mon_enter_ctr) st->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2155 // if (_mon_exit_ctr) st->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2156 // if (_partial_subtype_ctr) st->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2157 // if (_jbyte_array_copy_ctr) st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2158 // if (_jshort_array_copy_ctr) st->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2159 // if (_jint_array_copy_ctr) st->print_cr("%5u int array copies", _jint_array_copy_ctr);
2160 // if (_jlong_array_copy_ctr) st->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2161 // if (_oop_array_copy_ctr) st->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2162 // if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2163 // if (_unsafe_array_copy_ctr) st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2164 // if (_generic_array_copy_ctr) st->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2165 // if (_slow_array_copy_ctr) st->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2166 // if (_find_handler_ctr) st->print_cr("%5u find exception handler", _find_handler_ctr);
2167 // if (_rethrow_ctr) st->print_cr("%5u rethrow handler", _rethrow_ctr);
2168 // if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2169 //}
2170
2171 inline double percent(int64_t x, int64_t y) {
2172 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2173 }
2174
2175 class MethodArityHistogram {
2176 public:
2177 enum { MAX_ARITY = 256 };
2178 private:
2179 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2180 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words
2181 static uint64_t _total_compiled_calls;
2182 static uint64_t _max_compiled_calls_per_method;
2183 static int _max_arity; // max. arity seen
2184 static int _max_size; // max. arg size seen
2185
2186 static void add_method_to_histogram(nmethod* nm) {
2187 Method* method = (nm == nullptr) ? nullptr : nm->method();
2188 if (method != nullptr) {
2189 ArgumentCount args(method->signature());
2190 int arity = args.size() + (method->is_static() ? 0 : 1);
2191 int argsize = method->size_of_parameters();
2192 arity = MIN2(arity, MAX_ARITY-1);
2193 argsize = MIN2(argsize, MAX_ARITY-1);
2194 uint64_t count = (uint64_t)method->compiled_invocation_count();
2195 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2196 _total_compiled_calls += count;
2197 _arity_histogram[arity] += count;
2198 _size_histogram[argsize] += count;
2199 _max_arity = MAX2(_max_arity, arity);
2200 _max_size = MAX2(_max_size, argsize);
2201 }
2202 }
2203
2204 void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2205 const int N = MIN2(9, n);
2206 double sum = 0;
2207 double weighted_sum = 0;
2208 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2209 if (sum >= 1) { // prevent divide by zero or divide overflow
2210 double rest = sum;
2211 double percent = sum / 100;
2212 for (int i = 0; i <= N; i++) {
2213 rest -= (double)histo[i];
2214 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2215 }
2216 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2217 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2218 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2219 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2220 } else {
2221 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2222 }
2223 }
2224
2225 void print_histogram() {
2226 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2227 print_histogram_helper(_max_arity, _arity_histogram, "arity");
2228 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2229 print_histogram_helper(_max_size, _size_histogram, "size");
2230 tty->cr();
2231 }
2232
2233 public:
2234 MethodArityHistogram() {
2235 // Take the Compile_lock to protect against changes in the CodeBlob structures
2236 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2237 // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2238 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2239 _max_arity = _max_size = 0;
2240 _total_compiled_calls = 0;
2241 _max_compiled_calls_per_method = 0;
2242 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2243 CodeCache::nmethods_do(add_method_to_histogram);
2244 print_histogram();
2245 }
2246 };
2247
2248 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2249 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2250 uint64_t MethodArityHistogram::_total_compiled_calls;
2251 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2252 int MethodArityHistogram::_max_arity;
2253 int MethodArityHistogram::_max_size;
2254
2255 void SharedRuntime::print_call_statistics_on(outputStream* st) {
2256 tty->print_cr("Calls from compiled code:");
2257 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2258 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2259 int64_t mono_i = _nof_interface_calls;
2260 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total);
2261 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
2262 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2263 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
2264 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2265 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
2266 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2267 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
2268 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2269 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2270 tty->cr();
2271 tty->print_cr("Note 1: counter updates are not MT-safe.");
2272 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2273 tty->print_cr(" %% in nested categories are relative to their category");
2274 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
2275 tty->cr();
2276
2277 MethodArityHistogram h;
2278 }
2279 #endif
2280
2281 #ifndef PRODUCT
2282 static int _lookups; // number of calls to lookup
2283 static int _equals; // number of buckets checked with matching hash
2284 static int _archived_hits; // number of successful lookups in archived table
2285 static int _runtime_hits; // number of successful lookups in runtime table
2286 #endif
2287
2288 // A simple wrapper class around the calling convention information
2289 // that allows sharing of adapters for the same calling convention.
2290 class AdapterFingerPrint : public MetaspaceObj {
2291 private:
2292 enum {
2293 _basic_type_bits = 4,
2294 _basic_type_mask = right_n_bits(_basic_type_bits),
2295 _basic_types_per_int = BitsPerInt / _basic_type_bits,
2296 };
2297 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
2298 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2299
2300 int _length;
2301
2302 static int data_offset() { return sizeof(AdapterFingerPrint); }
2303 int* data_pointer() {
2304 return (int*)((address)this + data_offset());
2305 }
2306
2307 // Private construtor. Use allocate() to get an instance.
2308 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2309 int* data = data_pointer();
2310 // Pack the BasicTypes with 8 per int
2311 assert(len == length(total_args_passed), "sanity");
2312 _length = len;
2313 int sig_index = 0;
2314 for (int index = 0; index < _length; index++) {
2315 int value = 0;
2316 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2317 int bt = adapter_encoding(sig_bt[sig_index++]);
2318 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2319 value = (value << _basic_type_bits) | bt;
2320 }
2321 data[index] = value;
2322 }
2323 }
2324
2325 // Call deallocate instead
2326 ~AdapterFingerPrint() {
2327 ShouldNotCallThis();
2328 }
2329
2330 static int length(int total_args) {
2331 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2332 }
2333
2334 static int compute_size_in_words(int len) {
2335 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2336 }
2337
2338 // Remap BasicTypes that are handled equivalently by the adapters.
2339 // These are correct for the current system but someday it might be
2340 // necessary to make this mapping platform dependent.
2341 static int adapter_encoding(BasicType in) {
2342 switch (in) {
2343 case T_BOOLEAN:
2344 case T_BYTE:
2345 case T_SHORT:
2346 case T_CHAR:
2347 // There are all promoted to T_INT in the calling convention
2348 return T_INT;
2349
2350 case T_OBJECT:
2351 case T_ARRAY:
2352 // In other words, we assume that any register good enough for
2353 // an int or long is good enough for a managed pointer.
2354 #ifdef _LP64
2355 return T_LONG;
2356 #else
2357 return T_INT;
2358 #endif
2359
2360 case T_INT:
2361 case T_LONG:
2362 case T_FLOAT:
2363 case T_DOUBLE:
2364 case T_VOID:
2365 return in;
2366
2367 default:
2368 ShouldNotReachHere();
2369 return T_CONFLICT;
2370 }
2371 }
2372
2373 void* operator new(size_t size, size_t fp_size) throw() {
2374 assert(fp_size >= size, "sanity check");
2375 void* p = AllocateHeap(fp_size, mtCode);
2376 memset(p, 0, fp_size);
2377 return p;
2378 }
2379
2380 template<typename Function>
2381 void iterate_args(Function function) {
2382 for (int i = 0; i < length(); i++) {
2383 unsigned val = (unsigned)value(i);
2384 // args are packed so that first/lower arguments are in the highest
2385 // bits of each int value, so iterate from highest to the lowest
2386 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2387 unsigned v = (val >> j) & _basic_type_mask;
2388 if (v == 0) {
2389 continue;
2390 }
2391 function(v);
2392 }
2393 }
2394 }
2395
2396 public:
2397 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2398 int len = length(total_args_passed);
2399 int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2400 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2401 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2402 return afp;
2403 }
2404
2405 static void deallocate(AdapterFingerPrint* fp) {
2406 FreeHeap(fp);
2407 }
2408
2409 int value(int index) {
2410 int* data = data_pointer();
2411 return data[index];
2412 }
2413
2414 int length() {
2415 return _length;
2416 }
2417
2418 unsigned int compute_hash() {
2419 int hash = 0;
2420 for (int i = 0; i < length(); i++) {
2421 int v = value(i);
2422 //Add arithmetic operation to the hash, like +3 to improve hashing
2423 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2424 }
2425 return (unsigned int)hash;
2426 }
2427
2428 const char* as_string() {
2429 stringStream st;
2430 st.print("0x");
2431 for (int i = 0; i < length(); i++) {
2432 st.print("%x", value(i));
2433 }
2434 return st.as_string();
2435 }
2436
2437 const char* as_basic_args_string() {
2438 stringStream st;
2439 bool long_prev = false;
2440 iterate_args([&] (int arg) {
2441 if (long_prev) {
2442 long_prev = false;
2443 if (arg == T_VOID) {
2444 st.print("J");
2445 } else {
2446 st.print("L");
2447 }
2448 }
2449 switch (arg) {
2450 case T_INT: st.print("I"); break;
2451 case T_LONG: long_prev = true; break;
2452 case T_FLOAT: st.print("F"); break;
2453 case T_DOUBLE: st.print("D"); break;
2454 case T_VOID: break;
2455 default: ShouldNotReachHere();
2456 }
2457 });
2458 if (long_prev) {
2459 st.print("L");
2460 }
2461 return st.as_string();
2462 }
2463
2464 BasicType* as_basic_type(int& nargs) {
2465 nargs = 0;
2466 GrowableArray<BasicType> btarray;
2467 bool long_prev = false;
2468
2469 iterate_args([&] (int arg) {
2470 if (long_prev) {
2471 long_prev = false;
2472 if (arg == T_VOID) {
2473 btarray.append(T_LONG);
2474 } else {
2475 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2476 }
2477 }
2478 switch (arg) {
2479 case T_INT: // fallthrough
2480 case T_FLOAT: // fallthrough
2481 case T_DOUBLE:
2482 case T_VOID:
2483 btarray.append((BasicType)arg);
2484 break;
2485 case T_LONG:
2486 long_prev = true;
2487 break;
2488 default: ShouldNotReachHere();
2489 }
2490 });
2491
2492 if (long_prev) {
2493 btarray.append(T_OBJECT);
2494 }
2495
2496 nargs = btarray.length();
2497 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2498 int index = 0;
2499 GrowableArrayIterator<BasicType> iter = btarray.begin();
2500 while (iter != btarray.end()) {
2501 sig_bt[index++] = *iter;
2502 ++iter;
2503 }
2504 assert(index == btarray.length(), "sanity check");
2505 #ifdef ASSERT
2506 {
2507 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2508 assert(this->equals(compare_fp), "sanity check");
2509 AdapterFingerPrint::deallocate(compare_fp);
2510 }
2511 #endif
2512 return sig_bt;
2513 }
2514
2515 bool equals(AdapterFingerPrint* other) {
2516 if (other->_length != _length) {
2517 return false;
2518 } else {
2519 for (int i = 0; i < _length; i++) {
2520 if (value(i) != other->value(i)) {
2521 return false;
2522 }
2523 }
2524 }
2525 return true;
2526 }
2527
2528 // methods required by virtue of being a MetaspaceObj
2529 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2530 int size() const { return compute_size_in_words(_length); }
2531 MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2532
2533 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2534 NOT_PRODUCT(_equals++);
2535 return fp1->equals(fp2);
2536 }
2537
2538 static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2539 return fp->compute_hash();
2540 }
2541 };
2542
2543 #if INCLUDE_CDS
2544 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2545 return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2546 }
2547
2548 class ArchivedAdapterTable : public OffsetCompactHashtable<
2549 AdapterFingerPrint*,
2550 AdapterHandlerEntry*,
2551 adapter_fp_equals_compact_hashtable_entry> {};
2552 #endif // INCLUDE_CDS
2553
2554 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2555 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2556 AnyObj::C_HEAP, mtCode,
2557 AdapterFingerPrint::compute_hash,
2558 AdapterFingerPrint::equals>;
2559 static AdapterHandlerTable* _adapter_handler_table;
2560 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2561
2562 // Find a entry with the same fingerprint if it exists
2563 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2564 NOT_PRODUCT(_lookups++);
2565 assert_lock_strong(AdapterHandlerLibrary_lock);
2566 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2567 AdapterHandlerEntry* entry = nullptr;
2568 #if INCLUDE_CDS
2569 // if we are building the archive then the archived adapter table is
2570 // not valid and we need to use the ones added to the runtime table
2571 if (AOTCodeCache::is_using_adapter()) {
2572 // Search archived table first. It is read-only table so can be searched without lock
2573 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2574 #ifndef PRODUCT
2575 if (entry != nullptr) {
2576 _archived_hits++;
2577 }
2578 #endif
2579 }
2580 #endif // INCLUDE_CDS
2581 if (entry == nullptr) {
2582 assert_lock_strong(AdapterHandlerLibrary_lock);
2583 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2584 if (entry_p != nullptr) {
2585 entry = *entry_p;
2586 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2587 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2588 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2589 #ifndef PRODUCT
2590 _runtime_hits++;
2591 #endif
2592 }
2593 }
2594 AdapterFingerPrint::deallocate(fp);
2595 return entry;
2596 }
2597
2598 #ifndef PRODUCT
2599 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) {
2600 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2601 return sizeof(*key) + sizeof(*a);
2602 };
2603 TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2604 ts.print(st, "AdapterHandlerTable");
2605 st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2606 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2607 int total_hits = _archived_hits + _runtime_hits;
2608 st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2609 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2610 }
2611 #endif // !PRODUCT
2612
2613 // ---------------------------------------------------------------------------
2614 // Implementation of AdapterHandlerLibrary
2615 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2616 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2617 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2618 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2619 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2620 #if INCLUDE_CDS
2621 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2622 #endif // INCLUDE_CDS
2623 static const int AdapterHandlerLibrary_size = 16*K;
2624 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2625 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2626
2627 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2628 assert(_buffer != nullptr, "should be initialized");
2629 return _buffer;
2630 }
2631
2632 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2633 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2634 AdapterBlob* adapter_blob = entry->adapter_blob();
2635 char blob_id[256];
2636 jio_snprintf(blob_id,
2637 sizeof(blob_id),
2638 "%s(%s)",
2639 adapter_blob->name(),
2640 entry->fingerprint()->as_string());
2641 if (Forte::is_enabled()) {
2642 Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2643 }
2644
2645 if (JvmtiExport::should_post_dynamic_code_generated()) {
2646 JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2647 }
2648 }
2649 }
2650
2651 void AdapterHandlerLibrary::initialize() {
2652 {
2653 ResourceMark rm;
2654 _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2655 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2656 }
2657
2658 #if INCLUDE_CDS
2659 // Link adapters in AOT Cache to their code in AOT Code Cache
2660 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2661 link_aot_adapters();
2662 lookup_simple_adapters();
2663 return;
2664 }
2665 #endif // INCLUDE_CDS
2666
2667 ResourceMark rm;
2668 {
2669 MutexLocker mu(AdapterHandlerLibrary_lock);
2670
2671 _no_arg_handler = create_adapter(0, nullptr);
2672
2673 BasicType obj_args[] = { T_OBJECT };
2674 _obj_arg_handler = create_adapter(1, obj_args);
2675
2676 BasicType int_args[] = { T_INT };
2677 _int_arg_handler = create_adapter(1, int_args);
2678
2679 BasicType obj_int_args[] = { T_OBJECT, T_INT };
2680 _obj_int_arg_handler = create_adapter(2, obj_int_args);
2681
2682 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2683 _obj_obj_arg_handler = create_adapter(2, obj_obj_args);
2684
2685 // we should always get an entry back but we don't have any
2686 // associated blob on Zero
2687 assert(_no_arg_handler != nullptr &&
2688 _obj_arg_handler != nullptr &&
2689 _int_arg_handler != nullptr &&
2690 _obj_int_arg_handler != nullptr &&
2691 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2692 }
2693
2694 // Outside of the lock
2695 #ifndef ZERO
2696 // no blobs to register when we are on Zero
2697 post_adapter_creation(_no_arg_handler);
2698 post_adapter_creation(_obj_arg_handler);
2699 post_adapter_creation(_int_arg_handler);
2700 post_adapter_creation(_obj_int_arg_handler);
2701 post_adapter_creation(_obj_obj_arg_handler);
2702 #endif // ZERO
2703 }
2704
2705 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2706 uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2707 assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2708 return AdapterHandlerEntry::allocate(id, fingerprint);
2709 }
2710
2711 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2712 int total_args_passed = method->size_of_parameters(); // All args on stack
2713 if (total_args_passed == 0) {
2714 return _no_arg_handler;
2715 } else if (total_args_passed == 1) {
2716 if (!method->is_static()) {
2717 return _obj_arg_handler;
2718 }
2719 switch (method->signature()->char_at(1)) {
2720 case JVM_SIGNATURE_CLASS:
2721 case JVM_SIGNATURE_ARRAY:
2722 return _obj_arg_handler;
2723 case JVM_SIGNATURE_INT:
2724 case JVM_SIGNATURE_BOOLEAN:
2725 case JVM_SIGNATURE_CHAR:
2726 case JVM_SIGNATURE_BYTE:
2727 case JVM_SIGNATURE_SHORT:
2728 return _int_arg_handler;
2729 }
2730 } else if (total_args_passed == 2 &&
2731 !method->is_static()) {
2732 switch (method->signature()->char_at(1)) {
2733 case JVM_SIGNATURE_CLASS:
2734 case JVM_SIGNATURE_ARRAY:
2735 return _obj_obj_arg_handler;
2736 case JVM_SIGNATURE_INT:
2737 case JVM_SIGNATURE_BOOLEAN:
2738 case JVM_SIGNATURE_CHAR:
2739 case JVM_SIGNATURE_BYTE:
2740 case JVM_SIGNATURE_SHORT:
2741 return _obj_int_arg_handler;
2742 }
2743 }
2744 return nullptr;
2745 }
2746
2747 class AdapterSignatureIterator : public SignatureIterator {
2748 private:
2749 BasicType stack_sig_bt[16];
2750 BasicType* sig_bt;
2751 int index;
2752
2753 public:
2754 AdapterSignatureIterator(Symbol* signature,
2755 fingerprint_t fingerprint,
2756 bool is_static,
2757 int total_args_passed) :
2758 SignatureIterator(signature, fingerprint),
2759 index(0)
2760 {
2761 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2762 if (!is_static) { // Pass in receiver first
2763 sig_bt[index++] = T_OBJECT;
2764 }
2765 do_parameters_on(this);
2766 }
2767
2768 BasicType* basic_types() {
2769 return sig_bt;
2770 }
2771
2772 #ifdef ASSERT
2773 int slots() {
2774 return index;
2775 }
2776 #endif
2777
2778 private:
2779
2780 friend class SignatureIterator; // so do_parameters_on can call do_type
2781 void do_type(BasicType type) {
2782 sig_bt[index++] = type;
2783 if (type == T_LONG || type == T_DOUBLE) {
2784 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2785 }
2786 }
2787 };
2788
2789
2790 const char* AdapterHandlerEntry::_entry_names[] = {
2791 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2792 };
2793
2794 #ifdef ASSERT
2795 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2796 // we can only check for the same code if there is any
2797 #ifndef ZERO
2798 AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true);
2799 assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
2800 assert(comparison_entry->compare_code(cached_entry), "code must match");
2801 // Release the one just created
2802 AdapterHandlerEntry::deallocate(comparison_entry);
2803 # endif // ZERO
2804 }
2805 #endif /* ASSERT*/
2806
2807 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2808 assert(!method->is_abstract(), "abstract methods do not have adapters");
2809 // Use customized signature handler. Need to lock around updates to
2810 // the _adapter_handler_table (it is not safe for concurrent readers
2811 // and a single writer: this could be fixed if it becomes a
2812 // problem).
2813
2814 // Fast-path for trivial adapters
2815 AdapterHandlerEntry* entry = get_simple_adapter(method);
2816 if (entry != nullptr) {
2817 return entry;
2818 }
2819
2820 ResourceMark rm;
2821 bool new_entry = false;
2822
2823 // Fill in the signature array, for the calling-convention call.
2824 int total_args_passed = method->size_of_parameters(); // All args on stack
2825
2826 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2827 method->is_static(), total_args_passed);
2828 assert(si.slots() == total_args_passed, "");
2829 BasicType* sig_bt = si.basic_types();
2830 {
2831 MutexLocker mu(AdapterHandlerLibrary_lock);
2832
2833 // Lookup method signature's fingerprint
2834 entry = lookup(total_args_passed, sig_bt);
2835
2836 if (entry != nullptr) {
2837 #ifndef ZERO
2838 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2839 #endif
2840 #ifdef ASSERT
2841 if (!entry->in_aot_cache() && VerifyAdapterSharing) {
2842 verify_adapter_sharing(total_args_passed, sig_bt, entry);
2843 }
2844 #endif
2845 } else {
2846 entry = create_adapter(total_args_passed, sig_bt);
2847 if (entry != nullptr) {
2848 new_entry = true;
2849 }
2850 }
2851 }
2852
2853 // Outside of the lock
2854 if (new_entry) {
2855 post_adapter_creation(entry);
2856 }
2857 return entry;
2858 }
2859
2860 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2861 ResourceMark rm;
2862 const char* name = AdapterHandlerLibrary::name(handler);
2863 const uint32_t id = AdapterHandlerLibrary::id(handler);
2864
2865 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
2866 if (blob != nullptr) {
2867 handler->set_adapter_blob(blob->as_adapter_blob());
2868 }
2869 }
2870
2871 #ifndef PRODUCT
2872 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
2873 ttyLocker ttyl;
2874 ResourceMark rm;
2875 int insts_size;
2876 // on Zero the blob may be null
2877 handler->print_adapter_on(tty);
2878 AdapterBlob* adapter_blob = handler->adapter_blob();
2879 if (adapter_blob == nullptr) {
2880 return;
2881 }
2882 insts_size = adapter_blob->code_size();
2883 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2884 handler->fingerprint()->as_basic_args_string(),
2885 handler->fingerprint()->as_string(), insts_size);
2886 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2887 if (Verbose || PrintStubCode) {
2888 address first_pc = adapter_blob->content_begin();
2889 if (first_pc != nullptr) {
2890 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2891 st->cr();
2892 }
2893 }
2894 }
2895 #endif // PRODUCT
2896
2897 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
2898 int entry_offset[AdapterBlob::ENTRY_COUNT]) {
2899 entry_offset[AdapterBlob::I2C] = 0;
2900 entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
2901 entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
2902 if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
2903 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
2904 } else {
2905 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
2906 }
2907 }
2908
2909 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
2910 int total_args_passed,
2911 BasicType* sig_bt,
2912 bool is_transient) {
2913 if (log_is_enabled(Info, perf, class, link)) {
2914 ClassLoader::perf_method_adapters_count()->inc();
2915 }
2916
2917 #ifndef ZERO
2918 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2919 CodeBuffer buffer(buf);
2920 short buffer_locs[20];
2921 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2922 sizeof(buffer_locs)/sizeof(relocInfo));
2923 MacroAssembler masm(&buffer);
2924 VMRegPair stack_regs[16];
2925 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2926
2927 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2928 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2929 address entry_address[AdapterBlob::ENTRY_COUNT];
2930 SharedRuntime::generate_i2c2i_adapters(&masm,
2931 total_args_passed,
2932 comp_args_on_stack,
2933 sig_bt,
2934 regs,
2935 entry_address);
2936 // On zero there is no code to save and no need to create a blob and
2937 // or relocate the handler.
2938 int entry_offset[AdapterBlob::ENTRY_COUNT];
2939 address_to_offset(entry_address, entry_offset);
2940 #ifdef ASSERT
2941 if (VerifyAdapterSharing) {
2942 handler->save_code(buf->code_begin(), buffer.insts_size());
2943 if (is_transient) {
2944 return true;
2945 }
2946 }
2947 #endif
2948 AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset);
2949 if (adapter_blob == nullptr) {
2950 // CodeCache is full, disable compilation
2951 // Ought to log this but compile log is only per compile thread
2952 // and we're some non descript Java thread.
2953 return false;
2954 }
2955 handler->set_adapter_blob(adapter_blob);
2956 if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2957 // try to save generated code
2958 const char* name = AdapterHandlerLibrary::name(handler);
2959 const uint32_t id = AdapterHandlerLibrary::id(handler);
2960 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
2961 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2962 }
2963 #endif // ZERO
2964
2965 #ifndef PRODUCT
2966 // debugging support
2967 if (PrintAdapterHandlers || PrintStubCode) {
2968 print_adapter_handler_info(tty, handler);
2969 }
2970 #endif
2971
2972 return true;
2973 }
2974
2975 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed,
2976 BasicType* sig_bt,
2977 bool is_transient) {
2978 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2979 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2980 if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) {
2981 AdapterHandlerEntry::deallocate(handler);
2982 return nullptr;
2983 }
2984 if (!is_transient) {
2985 assert_lock_strong(AdapterHandlerLibrary_lock);
2986 _adapter_handler_table->put(fp, handler);
2987 }
2988 return handler;
2989 }
2990
2991 #if INCLUDE_CDS
2992 void AdapterHandlerEntry::remove_unshareable_info() {
2993 #ifdef ASSERT
2994 _saved_code = nullptr;
2995 _saved_code_length = 0;
2996 #endif // ASSERT
2997 _adapter_blob = nullptr;
2998 _linked = false;
2999 }
3000
3001 class CopyAdapterTableToArchive : StackObj {
3002 private:
3003 CompactHashtableWriter* _writer;
3004 ArchiveBuilder* _builder;
3005 public:
3006 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
3007 _builder(ArchiveBuilder::current())
3008 {}
3009
3010 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
3011 LogStreamHandle(Trace, aot) lsh;
3012 if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
3013 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
3014 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
3015 assert(buffered_fp != nullptr,"sanity check");
3016 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
3017 assert(buffered_entry != nullptr,"sanity check");
3018
3019 uint hash = fp->compute_hash();
3020 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
3021 _writer->add(hash, delta);
3022 if (lsh.is_enabled()) {
3023 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
3024 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
3025 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
3026 }
3027 } else {
3028 if (lsh.is_enabled()) {
3029 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
3030 }
3031 }
3032 return true;
3033 }
3034 };
3035
3036 void AdapterHandlerLibrary::dump_aot_adapter_table() {
3037 CompactHashtableStats stats;
3038 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
3039 CopyAdapterTableToArchive copy(&writer);
3040 _adapter_handler_table->iterate(©);
3041 writer.dump(&_aot_adapter_handler_table, "archived adapter table");
3042 }
3043
3044 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
3045 _aot_adapter_handler_table.serialize_header(soc);
3046 }
3047
3048 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
3049 #ifdef ASSERT
3050 if (TestAOTAdapterLinkFailure) {
3051 return;
3052 }
3053 #endif
3054 lookup_aot_cache(handler);
3055 #ifndef PRODUCT
3056 // debugging support
3057 if (PrintAdapterHandlers || PrintStubCode) {
3058 print_adapter_handler_info(tty, handler);
3059 }
3060 #endif
3061 }
3062
3063 // This method is used during production run to link archived adapters (stored in AOT Cache)
3064 // to their code in AOT Code Cache
3065 void AdapterHandlerEntry::link() {
3066 ResourceMark rm;
3067 assert(_fingerprint != nullptr, "_fingerprint must not be null");
3068 bool generate_code = false;
3069 // Generate code only if AOTCodeCache is not available, or
3070 // caching adapters is disabled, or we fail to link
3071 // the AdapterHandlerEntry to its code in the AOTCodeCache
3072 if (AOTCodeCache::is_using_adapter()) {
3073 AdapterHandlerLibrary::link_aot_adapter_handler(this);
3074 // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
3075 if (_adapter_blob == nullptr) {
3076 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
3077 generate_code = true;
3078 }
3079 } else {
3080 generate_code = true;
3081 }
3082 if (generate_code) {
3083 int nargs;
3084 BasicType* bt = _fingerprint->as_basic_type(nargs);
3085 if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) {
3086 // Don't throw exceptions during VM initialization because java.lang.* classes
3087 // might not have been initialized, causing problems when constructing the
3088 // Java exception object.
3089 vm_exit_during_initialization("Out of space in CodeCache for adapters");
3090 }
3091 }
3092 if (_adapter_blob != nullptr) {
3093 post_adapter_creation(this);
3094 }
3095 assert(_linked, "AdapterHandlerEntry must now be linked");
3096 }
3097
3098 void AdapterHandlerLibrary::link_aot_adapters() {
3099 uint max_id = 0;
3100 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3101 /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3102 * That implies adapter ids of the adapters in the cache may not be contiguous.
3103 * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3104 * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3105 * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3106 */
3107 _aot_adapter_handler_table.iterate_all([&](AdapterHandlerEntry* entry) {
3108 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3109 entry->link();
3110 max_id = MAX2(max_id, entry->id());
3111 });
3112 // Set adapter id to the maximum id found in the AOTCache
3113 assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3114 _id_counter = max_id;
3115 }
3116
3117 // This method is called during production run to lookup simple adapters
3118 // in the archived adapter handler table
3119 void AdapterHandlerLibrary::lookup_simple_adapters() {
3120 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3121
3122 MutexLocker mu(AdapterHandlerLibrary_lock);
3123 _no_arg_handler = lookup(0, nullptr);
3124
3125 BasicType obj_args[] = { T_OBJECT };
3126 _obj_arg_handler = lookup(1, obj_args);
3127
3128 BasicType int_args[] = { T_INT };
3129 _int_arg_handler = lookup(1, int_args);
3130
3131 BasicType obj_int_args[] = { T_OBJECT, T_INT };
3132 _obj_int_arg_handler = lookup(2, obj_int_args);
3133
3134 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3135 _obj_obj_arg_handler = lookup(2, obj_obj_args);
3136
3137 assert(_no_arg_handler != nullptr &&
3138 _obj_arg_handler != nullptr &&
3139 _int_arg_handler != nullptr &&
3140 _obj_int_arg_handler != nullptr &&
3141 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3142 assert(_no_arg_handler->is_linked() &&
3143 _obj_arg_handler->is_linked() &&
3144 _int_arg_handler->is_linked() &&
3145 _obj_int_arg_handler->is_linked() &&
3146 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3147 }
3148 #endif // INCLUDE_CDS
3149
3150 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3151 LogStreamHandle(Trace, aot) lsh;
3152 if (lsh.is_enabled()) {
3153 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3154 lsh.cr();
3155 }
3156 it->push(&_fingerprint);
3157 }
3158
3159 AdapterHandlerEntry::~AdapterHandlerEntry() {
3160 if (_fingerprint != nullptr) {
3161 AdapterFingerPrint::deallocate(_fingerprint);
3162 _fingerprint = nullptr;
3163 }
3164 #ifdef ASSERT
3165 FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3166 #endif
3167 FreeHeap(this);
3168 }
3169
3170
3171 #ifdef ASSERT
3172 // Capture the code before relocation so that it can be compared
3173 // against other versions. If the code is captured after relocation
3174 // then relative instructions won't be equivalent.
3175 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3176 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3177 _saved_code_length = length;
3178 memcpy(_saved_code, buffer, length);
3179 }
3180
3181
3182 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3183 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3184
3185 if (other->_saved_code_length != _saved_code_length) {
3186 return false;
3187 }
3188
3189 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3190 }
3191 #endif
3192
3193
3194 /**
3195 * Create a native wrapper for this native method. The wrapper converts the
3196 * Java-compiled calling convention to the native convention, handles
3197 * arguments, and transitions to native. On return from the native we transition
3198 * back to java blocking if a safepoint is in progress.
3199 */
3200 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3201 ResourceMark rm;
3202 nmethod* nm = nullptr;
3203
3204 // Check if memory should be freed before allocation
3205 CodeCache::gc_on_allocation();
3206
3207 assert(method->is_native(), "must be native");
3208 assert(method->is_special_native_intrinsic() ||
3209 method->has_native_function(), "must have something valid to call!");
3210
3211 {
3212 // Perform the work while holding the lock, but perform any printing outside the lock
3213 MutexLocker mu(AdapterHandlerLibrary_lock);
3214 // See if somebody beat us to it
3215 if (method->code() != nullptr) {
3216 return;
3217 }
3218
3219 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3220 assert(compile_id > 0, "Must generate native wrapper");
3221
3222
3223 ResourceMark rm;
3224 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3225 if (buf != nullptr) {
3226 CodeBuffer buffer(buf);
3227
3228 if (method->is_continuation_enter_intrinsic()) {
3229 buffer.initialize_stubs_size(192);
3230 }
3231
3232 struct { double data[20]; } locs_buf;
3233 struct { double data[20]; } stubs_locs_buf;
3234 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3235 #if defined(AARCH64) || defined(PPC64)
3236 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3237 // in the constant pool to ensure ordering between the barrier and oops
3238 // accesses. For native_wrappers we need a constant.
3239 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3240 // static java call that is resolved in the runtime.
3241 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3242 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3243 }
3244 #endif
3245 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3246 MacroAssembler _masm(&buffer);
3247
3248 // Fill in the signature array, for the calling-convention call.
3249 const int total_args_passed = method->size_of_parameters();
3250
3251 VMRegPair stack_regs[16];
3252 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3253
3254 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3255 method->is_static(), total_args_passed);
3256 BasicType* sig_bt = si.basic_types();
3257 assert(si.slots() == total_args_passed, "");
3258 BasicType ret_type = si.return_type();
3259
3260 // Now get the compiled-Java arguments layout.
3261 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3262
3263 // Generate the compiled-to-native wrapper code
3264 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3265
3266 if (nm != nullptr) {
3267 {
3268 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3269 if (nm->make_in_use()) {
3270 method->set_code(method, nm);
3271 }
3272 }
3273
3274 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3275 if (directive->PrintAssemblyOption) {
3276 nm->print_code();
3277 }
3278 DirectivesStack::release(directive);
3279 }
3280 }
3281 } // Unlock AdapterHandlerLibrary_lock
3282
3283
3284 // Install the generated code.
3285 if (nm != nullptr) {
3286 const char *msg = method->is_static() ? "(static)" : "";
3287 CompileTask::print_ul(nm, msg);
3288 if (PrintCompilation) {
3289 ttyLocker ttyl;
3290 CompileTask::print(tty, nm, msg);
3291 }
3292 nm->post_compiled_method_load_event();
3293 }
3294 }
3295
3296 // -------------------------------------------------------------------------
3297 // Java-Java calling convention
3298 // (what you use when Java calls Java)
3299
3300 //------------------------------name_for_receiver----------------------------------
3301 // For a given signature, return the VMReg for parameter 0.
3302 VMReg SharedRuntime::name_for_receiver() {
3303 VMRegPair regs;
3304 BasicType sig_bt = T_OBJECT;
3305 (void) java_calling_convention(&sig_bt, ®s, 1);
3306 // Return argument 0 register. In the LP64 build pointers
3307 // take 2 registers, but the VM wants only the 'main' name.
3308 return regs.first();
3309 }
3310
3311 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3312 // This method is returning a data structure allocating as a
3313 // ResourceObject, so do not put any ResourceMarks in here.
3314
3315 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3316 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3317 int cnt = 0;
3318 if (has_receiver) {
3319 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3320 }
3321
3322 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3323 BasicType type = ss.type();
3324 sig_bt[cnt++] = type;
3325 if (is_double_word_type(type))
3326 sig_bt[cnt++] = T_VOID;
3327 }
3328
3329 if (has_appendix) {
3330 sig_bt[cnt++] = T_OBJECT;
3331 }
3332
3333 assert(cnt < 256, "grow table size");
3334
3335 int comp_args_on_stack;
3336 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3337
3338 // the calling convention doesn't count out_preserve_stack_slots so
3339 // we must add that in to get "true" stack offsets.
3340
3341 if (comp_args_on_stack) {
3342 for (int i = 0; i < cnt; i++) {
3343 VMReg reg1 = regs[i].first();
3344 if (reg1->is_stack()) {
3345 // Yuck
3346 reg1 = reg1->bias(out_preserve_stack_slots());
3347 }
3348 VMReg reg2 = regs[i].second();
3349 if (reg2->is_stack()) {
3350 // Yuck
3351 reg2 = reg2->bias(out_preserve_stack_slots());
3352 }
3353 regs[i].set_pair(reg2, reg1);
3354 }
3355 }
3356
3357 // results
3358 *arg_size = cnt;
3359 return regs;
3360 }
3361
3362 // OSR Migration Code
3363 //
3364 // This code is used convert interpreter frames into compiled frames. It is
3365 // called from very start of a compiled OSR nmethod. A temp array is
3366 // allocated to hold the interesting bits of the interpreter frame. All
3367 // active locks are inflated to allow them to move. The displaced headers and
3368 // active interpreter locals are copied into the temp buffer. Then we return
3369 // back to the compiled code. The compiled code then pops the current
3370 // interpreter frame off the stack and pushes a new compiled frame. Then it
3371 // copies the interpreter locals and displaced headers where it wants.
3372 // Finally it calls back to free the temp buffer.
3373 //
3374 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3375
3376 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3377 assert(current == JavaThread::current(), "pre-condition");
3378 JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3379 // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3380 // frame. The stack watermark code below ensures that the interpreted frame is processed
3381 // before it gets unwound. This is helpful as the size of the compiled frame could be
3382 // larger than the interpreted frame, which could result in the new frame not being
3383 // processed correctly.
3384 StackWatermarkSet::before_unwind(current);
3385
3386 //
3387 // This code is dependent on the memory layout of the interpreter local
3388 // array and the monitors. On all of our platforms the layout is identical
3389 // so this code is shared. If some platform lays the their arrays out
3390 // differently then this code could move to platform specific code or
3391 // the code here could be modified to copy items one at a time using
3392 // frame accessor methods and be platform independent.
3393
3394 frame fr = current->last_frame();
3395 assert(fr.is_interpreted_frame(), "");
3396 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3397
3398 // Figure out how many monitors are active.
3399 int active_monitor_count = 0;
3400 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3401 kptr < fr.interpreter_frame_monitor_begin();
3402 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3403 if (kptr->obj() != nullptr) active_monitor_count++;
3404 }
3405
3406 // QQQ we could place number of active monitors in the array so that compiled code
3407 // could double check it.
3408
3409 Method* moop = fr.interpreter_frame_method();
3410 int max_locals = moop->max_locals();
3411 // Allocate temp buffer, 1 word per local & 2 per active monitor
3412 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3413 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3414
3415 // Copy the locals. Order is preserved so that loading of longs works.
3416 // Since there's no GC I can copy the oops blindly.
3417 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3418 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3419 (HeapWord*)&buf[0],
3420 max_locals);
3421
3422 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
3423 int i = max_locals;
3424 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3425 kptr2 < fr.interpreter_frame_monitor_begin();
3426 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3427 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array
3428 BasicLock *lock = kptr2->lock();
3429 if (UseObjectMonitorTable) {
3430 buf[i] = (intptr_t)lock->object_monitor_cache();
3431 }
3432 #ifdef ASSERT
3433 else {
3434 buf[i] = badDispHeaderOSR;
3435 }
3436 #endif
3437 i++;
3438 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3439 }
3440 }
3441 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3442
3443 RegisterMap map(current,
3444 RegisterMap::UpdateMap::skip,
3445 RegisterMap::ProcessFrames::include,
3446 RegisterMap::WalkContinuation::skip);
3447 frame sender = fr.sender(&map);
3448 if (sender.is_interpreted_frame()) {
3449 current->push_cont_fastpath(sender.unextended_sp());
3450 }
3451
3452 return buf;
3453 JRT_END
3454
3455 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3456 FREE_C_HEAP_ARRAY(intptr_t, buf);
3457 JRT_END
3458
3459 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3460 return handler->fingerprint()->as_basic_args_string();
3461 }
3462
3463 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3464 return handler->id();
3465 }
3466
3467 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3468 bool found = false;
3469 #if INCLUDE_CDS
3470 if (AOTCodeCache::is_using_adapter()) {
3471 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3472 if (b == handler->adapter_blob()) {
3473 found = true;
3474 st->print("Adapter for signature: ");
3475 handler->print_adapter_on(st);
3476 return false; // abort iteration
3477 } else {
3478 return true; // keep looking
3479 }
3480 };
3481 _aot_adapter_handler_table.iterate(findblob_archived_table);
3482 }
3483 #endif // INCLUDE_CDS
3484 if (!found) {
3485 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* handler) {
3486 if (b == handler->adapter_blob()) {
3487 found = true;
3488 st->print("Adapter for signature: ");
3489 handler->print_adapter_on(st);
3490 return false; // abort iteration
3491 } else {
3492 return true; // keep looking
3493 }
3494 };
3495 assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3496 _adapter_handler_table->iterate(findblob_runtime_table);
3497 }
3498 assert(found, "Should have found handler");
3499 }
3500
3501 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3502 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3503 if (adapter_blob() != nullptr) {
3504 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3505 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3506 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3507 if (get_c2i_no_clinit_check_entry() != nullptr) {
3508 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3509 }
3510 }
3511 st->cr();
3512 }
3513
3514 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3515 assert(current == JavaThread::current(), "pre-condition");
3516 StackOverflow* overflow_state = current->stack_overflow_state();
3517 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3518 overflow_state->set_reserved_stack_activation(current->stack_base());
3519 JRT_END
3520
3521 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3522 ResourceMark rm(current);
3523 frame activation;
3524 nmethod* nm = nullptr;
3525 int count = 1;
3526
3527 assert(fr.is_java_frame(), "Must start on Java frame");
3528
3529 RegisterMap map(JavaThread::current(),
3530 RegisterMap::UpdateMap::skip,
3531 RegisterMap::ProcessFrames::skip,
3532 RegisterMap::WalkContinuation::skip); // don't walk continuations
3533 for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3534 if (!fr.is_java_frame()) {
3535 continue;
3536 }
3537
3538 Method* method = nullptr;
3539 bool found = false;
3540 if (fr.is_interpreted_frame()) {
3541 method = fr.interpreter_frame_method();
3542 if (method != nullptr && method->has_reserved_stack_access()) {
3543 found = true;
3544 }
3545 } else {
3546 CodeBlob* cb = fr.cb();
3547 if (cb != nullptr && cb->is_nmethod()) {
3548 nm = cb->as_nmethod();
3549 method = nm->method();
3550 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3551 method = sd->method();
3552 if (method != nullptr && method->has_reserved_stack_access()) {
3553 found = true;
3554 }
3555 }
3556 }
3557 }
3558 if (found) {
3559 activation = fr;
3560 warning("Potentially dangerous stack overflow in "
3561 "ReservedStackAccess annotated method %s [%d]",
3562 method->name_and_sig_as_C_string(), count++);
3563 EventReservedStackActivation event;
3564 if (event.should_commit()) {
3565 event.set_method(method);
3566 event.commit();
3567 }
3568 }
3569 }
3570 return activation;
3571 }
3572
3573 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3574 // After any safepoint, just before going back to compiled code,
3575 // we inform the GC that we will be doing initializing writes to
3576 // this object in the future without emitting card-marks, so
3577 // GC may take any compensating steps.
3578
3579 oop new_obj = current->vm_result_oop();
3580 if (new_obj == nullptr) return;
3581
3582 BarrierSet *bs = BarrierSet::barrier_set();
3583 bs->on_slowpath_allocation_exit(current, new_obj);
3584 }