1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoader.hpp" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/nmethod.inline.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/abstractCompiler.hpp" 37 #include "compiler/compileBroker.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.inline.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/interpreterRuntime.hpp" 44 #include "jvm.h" 45 #include "jfr/jfrEvents.hpp" 46 #include "logging/log.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "memory/universe.hpp" 49 #include "metaprogramming/primitiveConversions.hpp" 50 #include "oops/klass.hpp" 51 #include "oops/method.inline.hpp" 52 #include "oops/objArrayKlass.hpp" 53 #include "oops/oop.inline.hpp" 54 #include "prims/forte.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "prims/jvmtiThreadState.hpp" 57 #include "prims/methodHandles.hpp" 58 #include "prims/nativeLookup.hpp" 59 #include "runtime/arguments.hpp" 60 #include "runtime/atomic.hpp" 61 #include "runtime/basicLock.inline.hpp" 62 #include "runtime/frame.inline.hpp" 63 #include "runtime/handles.inline.hpp" 64 #include "runtime/init.hpp" 65 #include "runtime/interfaceSupport.inline.hpp" 66 #include "runtime/java.hpp" 67 #include "runtime/javaCalls.hpp" 68 #include "runtime/jniHandles.inline.hpp" 69 #include "runtime/perfData.inline.hpp" 70 #include "runtime/sharedRuntime.hpp" 71 #include "runtime/stackWatermarkSet.hpp" 72 #include "runtime/stubRoutines.hpp" 73 #include "runtime/synchronizer.inline.hpp" 74 #include "runtime/timerTrace.hpp" 75 #include "runtime/vframe.inline.hpp" 76 #include "runtime/vframeArray.hpp" 77 #include "runtime/vm_version.hpp" 78 #include "services/management.hpp" 79 #include "utilities/copy.hpp" 80 #include "utilities/dtrace.hpp" 81 #include "utilities/events.hpp" 82 #include "utilities/globalDefinitions.hpp" 83 #include "utilities/resourceHash.hpp" 84 #include "utilities/macros.hpp" 85 #include "utilities/xmlstream.hpp" 86 #ifdef COMPILER1 87 #include "c1/c1_Runtime1.hpp" 88 #endif 89 #if INCLUDE_JFR 90 #include "jfr/jfr.hpp" 91 #endif 92 93 // Shared runtime stub routines reside in their own unique blob with a 94 // single entry point 95 96 RuntimeStub* SharedRuntime::_wrong_method_blob; 97 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 98 RuntimeStub* SharedRuntime::_ic_miss_blob; 99 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 100 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 101 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 102 103 DeoptimizationBlob* SharedRuntime::_deopt_blob; 104 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 105 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 106 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 107 108 RuntimeStub* SharedRuntime::_throw_AbstractMethodError_blob; 109 RuntimeStub* SharedRuntime::_throw_IncompatibleClassChangeError_blob; 110 RuntimeStub* SharedRuntime::_throw_NullPointerException_at_call_blob; 111 RuntimeStub* SharedRuntime::_throw_StackOverflowError_blob; 112 RuntimeStub* SharedRuntime::_throw_delayed_StackOverflowError_blob; 113 114 #if INCLUDE_JFR 115 RuntimeStub* SharedRuntime::_jfr_write_checkpoint_blob = nullptr; 116 RuntimeStub* SharedRuntime::_jfr_return_lease_blob = nullptr; 117 #endif 118 119 nmethod* SharedRuntime::_cont_doYield_stub; 120 121 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr; 122 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time = nullptr; 123 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time = nullptr; 124 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr; 125 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time = nullptr; 126 127 //----------------------------generate_stubs----------------------------------- 128 void SharedRuntime::generate_initial_stubs() { 129 // Build this early so it's available for the interpreter. 130 _throw_StackOverflowError_blob = 131 generate_throw_exception("StackOverflowError throw_exception", 132 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 133 } 134 135 void SharedRuntime::generate_stubs() { 136 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 137 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 138 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 139 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 140 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 141 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 142 143 _throw_delayed_StackOverflowError_blob = 144 generate_throw_exception("delayed StackOverflowError throw_exception", 145 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 146 147 _throw_AbstractMethodError_blob = 148 generate_throw_exception("AbstractMethodError throw_exception", 149 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 150 151 _throw_IncompatibleClassChangeError_blob = 152 generate_throw_exception("IncompatibleClassChangeError throw_exception", 153 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 154 155 _throw_NullPointerException_at_call_blob = 156 generate_throw_exception("NullPointerException at call throw_exception", 157 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 158 159 AdapterHandlerLibrary::initialize(); 160 161 #if COMPILER2_OR_JVMCI 162 // Vectors are generated only by C2 and JVMCI. 163 bool support_wide = is_wide_vector(MaxVectorSize); 164 if (support_wide) { 165 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 166 } 167 #endif // COMPILER2_OR_JVMCI 168 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 169 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 170 171 generate_deopt_blob(); 172 173 if (UsePerfData) { 174 EXCEPTION_MARK; 175 NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call"); 176 NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time, SUN_CI, "resovle_virtual_call"); 177 NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time, SUN_CI, "resovle_static_call"); 178 NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method"); 179 NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time , SUN_CI, "ic_miss"); 180 if (HAS_PENDING_EXCEPTION) { 181 vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly"); 182 } 183 } 184 } 185 186 void SharedRuntime::print_counters_on(outputStream* st) { 187 st->print_cr("SharedRuntime:"); 188 if (UsePerfData) { 189 st->print_cr(" resolve_opt_virtual_call: " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) / %5d events", 190 _perf_resolve_opt_virtual_total_time->elapsed_counter_value_us(), 191 _perf_resolve_opt_virtual_total_time->thread_counter_value_us(), 192 _resolve_opt_virtual_ctr); 193 st->print_cr(" resolve_virtual_call: " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) / %5d events", 194 _perf_resolve_virtual_total_time->elapsed_counter_value_us(), 195 _perf_resolve_virtual_total_time->thread_counter_value_us(), 196 _resolve_virtual_ctr); 197 st->print_cr(" resolve_static_call: " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) / %5d events", 198 _perf_resolve_static_total_time->elapsed_counter_value_us(), 199 _perf_resolve_static_total_time->thread_counter_value_us(), 200 _resolve_static_ctr); 201 st->print_cr(" handle_wrong_method: " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) / %5d events", 202 _perf_handle_wrong_method_total_time->elapsed_counter_value_us(), 203 _perf_handle_wrong_method_total_time->thread_counter_value_us(), 204 _wrong_method_ctr); 205 st->print_cr(" ic_miss: " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) / %5d events", 206 _perf_ic_miss_total_time->elapsed_counter_value_us(), 207 _perf_ic_miss_total_time->thread_counter_value_us(), 208 _ic_miss_ctr); 209 210 jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() + 211 _perf_resolve_virtual_total_time->elapsed_counter_value() + 212 _perf_resolve_static_total_time->elapsed_counter_value() + 213 _perf_handle_wrong_method_total_time->elapsed_counter_value() + 214 _perf_ic_miss_total_time->elapsed_counter_value()); 215 jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() + 216 _perf_resolve_virtual_total_time->thread_counter_value() + 217 _perf_resolve_static_total_time->thread_counter_value() + 218 _perf_handle_wrong_method_total_time->thread_counter_value() + 219 _perf_ic_miss_total_time->thread_counter_value()); 220 st->print_cr("Total: " JLONG_FORMAT_W(5) "us (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_elapsed_time_us, total_thread_time_us); 221 } else { 222 st->print_cr(" no data (UsePerfData is turned off)"); 223 } 224 } 225 226 #if INCLUDE_JFR 227 //------------------------------generate jfr runtime stubs ------ 228 void SharedRuntime::generate_jfr_stubs() { 229 ResourceMark rm; 230 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 231 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 232 233 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 234 _jfr_return_lease_blob = generate_jfr_return_lease(); 235 } 236 237 #endif // INCLUDE_JFR 238 239 #include <math.h> 240 241 // Implementation of SharedRuntime 242 243 // For statistics 244 uint SharedRuntime::_ic_miss_ctr = 0; 245 uint SharedRuntime::_wrong_method_ctr = 0; 246 uint SharedRuntime::_resolve_static_ctr = 0; 247 uint SharedRuntime::_resolve_virtual_ctr = 0; 248 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 249 250 #ifndef PRODUCT 251 uint SharedRuntime::_implicit_null_throws = 0; 252 uint SharedRuntime::_implicit_div0_throws = 0; 253 254 int64_t SharedRuntime::_nof_normal_calls = 0; 255 int64_t SharedRuntime::_nof_inlined_calls = 0; 256 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 257 int64_t SharedRuntime::_nof_static_calls = 0; 258 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 259 int64_t SharedRuntime::_nof_interface_calls = 0; 260 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 261 262 uint SharedRuntime::_new_instance_ctr=0; 263 uint SharedRuntime::_new_array_ctr=0; 264 uint SharedRuntime::_multi2_ctr=0; 265 uint SharedRuntime::_multi3_ctr=0; 266 uint SharedRuntime::_multi4_ctr=0; 267 uint SharedRuntime::_multi5_ctr=0; 268 uint SharedRuntime::_mon_enter_stub_ctr=0; 269 uint SharedRuntime::_mon_exit_stub_ctr=0; 270 uint SharedRuntime::_mon_enter_ctr=0; 271 uint SharedRuntime::_mon_exit_ctr=0; 272 uint SharedRuntime::_partial_subtype_ctr=0; 273 uint SharedRuntime::_jbyte_array_copy_ctr=0; 274 uint SharedRuntime::_jshort_array_copy_ctr=0; 275 uint SharedRuntime::_jint_array_copy_ctr=0; 276 uint SharedRuntime::_jlong_array_copy_ctr=0; 277 uint SharedRuntime::_oop_array_copy_ctr=0; 278 uint SharedRuntime::_checkcast_array_copy_ctr=0; 279 uint SharedRuntime::_unsafe_array_copy_ctr=0; 280 uint SharedRuntime::_generic_array_copy_ctr=0; 281 uint SharedRuntime::_slow_array_copy_ctr=0; 282 uint SharedRuntime::_find_handler_ctr=0; 283 uint SharedRuntime::_rethrow_ctr=0; 284 uint SharedRuntime::_unsafe_set_memory_ctr=0; 285 286 int SharedRuntime::_ICmiss_index = 0; 287 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 288 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 289 290 291 void SharedRuntime::trace_ic_miss(address at) { 292 for (int i = 0; i < _ICmiss_index; i++) { 293 if (_ICmiss_at[i] == at) { 294 _ICmiss_count[i]++; 295 return; 296 } 297 } 298 int index = _ICmiss_index++; 299 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 300 _ICmiss_at[index] = at; 301 _ICmiss_count[index] = 1; 302 } 303 304 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) { 305 if (ICMissHistogram) { 306 st->print_cr("IC Miss Histogram:"); 307 int tot_misses = 0; 308 for (int i = 0; i < _ICmiss_index; i++) { 309 st->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 310 tot_misses += _ICmiss_count[i]; 311 } 312 st->print_cr("Total IC misses: %7d", tot_misses); 313 } 314 } 315 #endif // !PRODUCT 316 317 318 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 319 return x * y; 320 JRT_END 321 322 323 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 324 if (x == min_jlong && y == CONST64(-1)) { 325 return x; 326 } else { 327 return x / y; 328 } 329 JRT_END 330 331 332 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 333 if (x == min_jlong && y == CONST64(-1)) { 334 return 0; 335 } else { 336 return x % y; 337 } 338 JRT_END 339 340 341 #ifdef _WIN64 342 const juint float_sign_mask = 0x7FFFFFFF; 343 const juint float_infinity = 0x7F800000; 344 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 345 const julong double_infinity = CONST64(0x7FF0000000000000); 346 #endif 347 348 #if !defined(X86) 349 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 350 #ifdef _WIN64 351 // 64-bit Windows on amd64 returns the wrong values for 352 // infinity operands. 353 juint xbits = PrimitiveConversions::cast<juint>(x); 354 juint ybits = PrimitiveConversions::cast<juint>(y); 355 // x Mod Infinity == x unless x is infinity 356 if (((xbits & float_sign_mask) != float_infinity) && 357 ((ybits & float_sign_mask) == float_infinity) ) { 358 return x; 359 } 360 return ((jfloat)fmod_winx64((double)x, (double)y)); 361 #else 362 return ((jfloat)fmod((double)x,(double)y)); 363 #endif 364 JRT_END 365 366 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 367 #ifdef _WIN64 368 julong xbits = PrimitiveConversions::cast<julong>(x); 369 julong ybits = PrimitiveConversions::cast<julong>(y); 370 // x Mod Infinity == x unless x is infinity 371 if (((xbits & double_sign_mask) != double_infinity) && 372 ((ybits & double_sign_mask) == double_infinity) ) { 373 return x; 374 } 375 return ((jdouble)fmod_winx64((double)x, (double)y)); 376 #else 377 return ((jdouble)fmod((double)x,(double)y)); 378 #endif 379 JRT_END 380 #endif // !X86 381 382 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 383 return (jfloat)x; 384 JRT_END 385 386 #ifdef __SOFTFP__ 387 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 388 return x + y; 389 JRT_END 390 391 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 392 return x - y; 393 JRT_END 394 395 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 396 return x * y; 397 JRT_END 398 399 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 400 return x / y; 401 JRT_END 402 403 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 404 return x + y; 405 JRT_END 406 407 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 408 return x - y; 409 JRT_END 410 411 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 412 return x * y; 413 JRT_END 414 415 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 416 return x / y; 417 JRT_END 418 419 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 420 return (jdouble)x; 421 JRT_END 422 423 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 424 return (jdouble)x; 425 JRT_END 426 427 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 428 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 429 JRT_END 430 431 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 432 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 433 JRT_END 434 435 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 436 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 437 JRT_END 438 439 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 440 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 441 JRT_END 442 443 // Functions to return the opposite of the aeabi functions for nan. 444 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 445 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 446 JRT_END 447 448 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 449 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 450 JRT_END 451 452 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 453 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 454 JRT_END 455 456 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 457 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 458 JRT_END 459 460 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 461 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 462 JRT_END 463 464 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 465 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 466 JRT_END 467 468 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 469 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 470 JRT_END 471 472 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 473 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 474 JRT_END 475 476 // Intrinsics make gcc generate code for these. 477 float SharedRuntime::fneg(float f) { 478 return -f; 479 } 480 481 double SharedRuntime::dneg(double f) { 482 return -f; 483 } 484 485 #endif // __SOFTFP__ 486 487 #if defined(__SOFTFP__) || defined(E500V2) 488 // Intrinsics make gcc generate code for these. 489 double SharedRuntime::dabs(double f) { 490 return (f <= (double)0.0) ? (double)0.0 - f : f; 491 } 492 493 #endif 494 495 #if defined(__SOFTFP__) || defined(PPC) 496 double SharedRuntime::dsqrt(double f) { 497 return sqrt(f); 498 } 499 #endif 500 501 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 502 if (g_isnan(x)) 503 return 0; 504 if (x >= (jfloat) max_jint) 505 return max_jint; 506 if (x <= (jfloat) min_jint) 507 return min_jint; 508 return (jint) x; 509 JRT_END 510 511 512 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 513 if (g_isnan(x)) 514 return 0; 515 if (x >= (jfloat) max_jlong) 516 return max_jlong; 517 if (x <= (jfloat) min_jlong) 518 return min_jlong; 519 return (jlong) x; 520 JRT_END 521 522 523 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 524 if (g_isnan(x)) 525 return 0; 526 if (x >= (jdouble) max_jint) 527 return max_jint; 528 if (x <= (jdouble) min_jint) 529 return min_jint; 530 return (jint) x; 531 JRT_END 532 533 534 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 535 if (g_isnan(x)) 536 return 0; 537 if (x >= (jdouble) max_jlong) 538 return max_jlong; 539 if (x <= (jdouble) min_jlong) 540 return min_jlong; 541 return (jlong) x; 542 JRT_END 543 544 545 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 546 return (jfloat)x; 547 JRT_END 548 549 550 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 551 return (jfloat)x; 552 JRT_END 553 554 555 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 556 return (jdouble)x; 557 JRT_END 558 559 560 // Exception handling across interpreter/compiler boundaries 561 // 562 // exception_handler_for_return_address(...) returns the continuation address. 563 // The continuation address is the entry point of the exception handler of the 564 // previous frame depending on the return address. 565 566 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 567 // Note: This is called when we have unwound the frame of the callee that did 568 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 569 // Notably, the stack is not walkable at this point, and hence the check must 570 // be deferred until later. Specifically, any of the handlers returned here in 571 // this function, will get dispatched to, and call deferred checks to 572 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 573 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 574 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 575 576 // Reset method handle flag. 577 current->set_is_method_handle_return(false); 578 579 #if INCLUDE_JVMCI 580 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 581 // and other exception handler continuations do not read it 582 current->set_exception_pc(nullptr); 583 #endif // INCLUDE_JVMCI 584 585 if (Continuation::is_return_barrier_entry(return_address)) { 586 return StubRoutines::cont_returnBarrierExc(); 587 } 588 589 // The fastest case first 590 CodeBlob* blob = CodeCache::find_blob(return_address); 591 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 592 if (nm != nullptr) { 593 // Set flag if return address is a method handle call site. 594 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 595 // native nmethods don't have exception handlers 596 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 597 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 598 if (nm->is_deopt_pc(return_address)) { 599 // If we come here because of a stack overflow, the stack may be 600 // unguarded. Reguard the stack otherwise if we return to the 601 // deopt blob and the stack bang causes a stack overflow we 602 // crash. 603 StackOverflow* overflow_state = current->stack_overflow_state(); 604 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 605 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 606 overflow_state->set_reserved_stack_activation(current->stack_base()); 607 } 608 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 609 // The deferred StackWatermarkSet::after_unwind check will be performed in 610 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 611 return SharedRuntime::deopt_blob()->unpack_with_exception(); 612 } else { 613 // The deferred StackWatermarkSet::after_unwind check will be performed in 614 // * OptoRuntime::handle_exception_C_helper for C2 code 615 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 616 return nm->exception_begin(); 617 } 618 } 619 620 // Entry code 621 if (StubRoutines::returns_to_call_stub(return_address)) { 622 // The deferred StackWatermarkSet::after_unwind check will be performed in 623 // JavaCallWrapper::~JavaCallWrapper 624 return StubRoutines::catch_exception_entry(); 625 } 626 if (blob != nullptr && blob->is_upcall_stub()) { 627 return StubRoutines::upcall_stub_exception_handler(); 628 } 629 // Interpreted code 630 if (Interpreter::contains(return_address)) { 631 // The deferred StackWatermarkSet::after_unwind check will be performed in 632 // InterpreterRuntime::exception_handler_for_exception 633 return Interpreter::rethrow_exception_entry(); 634 } 635 636 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 637 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 638 639 #ifndef PRODUCT 640 { ResourceMark rm; 641 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 642 os::print_location(tty, (intptr_t)return_address); 643 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 644 tty->print_cr("b) other problem"); 645 } 646 #endif // PRODUCT 647 ShouldNotReachHere(); 648 return nullptr; 649 } 650 651 652 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 653 return raw_exception_handler_for_return_address(current, return_address); 654 JRT_END 655 656 657 address SharedRuntime::get_poll_stub(address pc) { 658 address stub; 659 // Look up the code blob 660 CodeBlob *cb = CodeCache::find_blob(pc); 661 662 // Should be an nmethod 663 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 664 665 // Look up the relocation information 666 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 667 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 668 669 #ifdef ASSERT 670 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 671 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 672 Disassembler::decode(cb); 673 fatal("Only polling locations are used for safepoint"); 674 } 675 #endif 676 677 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 678 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 679 if (at_poll_return) { 680 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 681 "polling page return stub not created yet"); 682 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 683 } else if (has_wide_vectors) { 684 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 685 "polling page vectors safepoint stub not created yet"); 686 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 687 } else { 688 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 689 "polling page safepoint stub not created yet"); 690 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 691 } 692 log_debug(safepoint)("... found polling page %s exception at pc = " 693 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 694 at_poll_return ? "return" : "loop", 695 (intptr_t)pc, (intptr_t)stub); 696 return stub; 697 } 698 699 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 700 if (JvmtiExport::can_post_on_exceptions()) { 701 vframeStream vfst(current, true); 702 methodHandle method = methodHandle(current, vfst.method()); 703 address bcp = method()->bcp_from(vfst.bci()); 704 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 705 } 706 707 #if INCLUDE_JVMCI 708 if (EnableJVMCI && UseJVMCICompiler) { 709 vframeStream vfst(current, true); 710 methodHandle method = methodHandle(current, vfst.method()); 711 int bci = vfst.bci(); 712 MethodData* trap_mdo = method->method_data(); 713 if (trap_mdo != nullptr) { 714 // Set exception_seen if the exceptional bytecode is an invoke 715 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 716 if (call.is_valid()) { 717 ResourceMark rm(current); 718 719 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 720 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 721 722 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 723 if (pdata != nullptr && pdata->is_BitData()) { 724 BitData* bit_data = (BitData*) pdata; 725 bit_data->set_exception_seen(); 726 } 727 } 728 } 729 } 730 #endif 731 732 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 733 } 734 735 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 736 Handle h_exception = Exceptions::new_exception(current, name, message); 737 throw_and_post_jvmti_exception(current, h_exception); 738 } 739 740 #if INCLUDE_JVMTI 741 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 742 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 743 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 744 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 745 JNIHandles::destroy_local(vthread); 746 JRT_END 747 748 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 749 assert(hide == JNI_TRUE, "must be VTMS transition start"); 750 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 751 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 752 JNIHandles::destroy_local(vthread); 753 JRT_END 754 755 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 756 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 757 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 758 JNIHandles::destroy_local(vthread); 759 JRT_END 760 761 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 762 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 763 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 764 JNIHandles::destroy_local(vthread); 765 JRT_END 766 #endif // INCLUDE_JVMTI 767 768 // The interpreter code to call this tracing function is only 769 // called/generated when UL is on for redefine, class and has the right level 770 // and tags. Since obsolete methods are never compiled, we don't have 771 // to modify the compilers to generate calls to this function. 772 // 773 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 774 JavaThread* thread, Method* method)) 775 if (method->is_obsolete()) { 776 // We are calling an obsolete method, but this is not necessarily 777 // an error. Our method could have been redefined just after we 778 // fetched the Method* from the constant pool. 779 ResourceMark rm; 780 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 781 } 782 783 LogStreamHandle(Trace, interpreter, bytecode) log; 784 if (log.is_enabled()) { 785 ResourceMark rm; 786 log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s", 787 p2i(thread), 788 (method->is_static() ? "static" : "virtual"), 789 method->name_and_sig_as_C_string(), 790 (method->is_native() ? " native" : ""), 791 (thread->class_being_initialized() != nullptr ? " clinit" : ""), 792 (method->method_holder()->is_initialized() ? "" : " being_initialized")); 793 } 794 return 0; 795 JRT_END 796 797 // ret_pc points into caller; we are returning caller's exception handler 798 // for given exception 799 // Note that the implementation of this method assumes it's only called when an exception has actually occured 800 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 801 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 802 assert(nm != nullptr, "must exist"); 803 ResourceMark rm; 804 805 #if INCLUDE_JVMCI 806 if (nm->is_compiled_by_jvmci()) { 807 // lookup exception handler for this pc 808 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 809 ExceptionHandlerTable table(nm); 810 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 811 if (t != nullptr) { 812 return nm->code_begin() + t->pco(); 813 } else { 814 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 815 } 816 } 817 #endif // INCLUDE_JVMCI 818 819 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 820 // determine handler bci, if any 821 EXCEPTION_MARK; 822 823 int handler_bci = -1; 824 int scope_depth = 0; 825 if (!force_unwind) { 826 int bci = sd->bci(); 827 bool recursive_exception = false; 828 do { 829 bool skip_scope_increment = false; 830 // exception handler lookup 831 Klass* ek = exception->klass(); 832 methodHandle mh(THREAD, sd->method()); 833 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 834 if (HAS_PENDING_EXCEPTION) { 835 recursive_exception = true; 836 // We threw an exception while trying to find the exception handler. 837 // Transfer the new exception to the exception handle which will 838 // be set into thread local storage, and do another lookup for an 839 // exception handler for this exception, this time starting at the 840 // BCI of the exception handler which caused the exception to be 841 // thrown (bugs 4307310 and 4546590). Set "exception" reference 842 // argument to ensure that the correct exception is thrown (4870175). 843 recursive_exception_occurred = true; 844 exception = Handle(THREAD, PENDING_EXCEPTION); 845 CLEAR_PENDING_EXCEPTION; 846 if (handler_bci >= 0) { 847 bci = handler_bci; 848 handler_bci = -1; 849 skip_scope_increment = true; 850 } 851 } 852 else { 853 recursive_exception = false; 854 } 855 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 856 sd = sd->sender(); 857 if (sd != nullptr) { 858 bci = sd->bci(); 859 } 860 ++scope_depth; 861 } 862 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 863 } 864 865 // found handling method => lookup exception handler 866 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 867 868 ExceptionHandlerTable table(nm); 869 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 870 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 871 // Allow abbreviated catch tables. The idea is to allow a method 872 // to materialize its exceptions without committing to the exact 873 // routing of exceptions. In particular this is needed for adding 874 // a synthetic handler to unlock monitors when inlining 875 // synchronized methods since the unlock path isn't represented in 876 // the bytecodes. 877 t = table.entry_for(catch_pco, -1, 0); 878 } 879 880 #ifdef COMPILER1 881 if (t == nullptr && nm->is_compiled_by_c1()) { 882 assert(nm->unwind_handler_begin() != nullptr, ""); 883 return nm->unwind_handler_begin(); 884 } 885 #endif 886 887 if (t == nullptr) { 888 ttyLocker ttyl; 889 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 890 tty->print_cr(" Exception:"); 891 exception->print(); 892 tty->cr(); 893 tty->print_cr(" Compiled exception table :"); 894 table.print(); 895 nm->print(); 896 nm->print_code(); 897 guarantee(false, "missing exception handler"); 898 return nullptr; 899 } 900 901 if (handler_bci != -1) { // did we find a handler in this method? 902 sd->method()->set_exception_handler_entered(handler_bci); // profile 903 } 904 return nm->code_begin() + t->pco(); 905 } 906 907 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 908 // These errors occur only at call sites 909 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 910 JRT_END 911 912 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 913 // These errors occur only at call sites 914 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 915 JRT_END 916 917 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 918 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 919 JRT_END 920 921 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 922 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 923 JRT_END 924 925 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 926 // This entry point is effectively only used for NullPointerExceptions which occur at inline 927 // cache sites (when the callee activation is not yet set up) so we are at a call site 928 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 929 JRT_END 930 931 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 932 throw_StackOverflowError_common(current, false); 933 JRT_END 934 935 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 936 throw_StackOverflowError_common(current, true); 937 JRT_END 938 939 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 940 // We avoid using the normal exception construction in this case because 941 // it performs an upcall to Java, and we're already out of stack space. 942 JavaThread* THREAD = current; // For exception macros. 943 Klass* k = vmClasses::StackOverflowError_klass(); 944 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 945 if (delayed) { 946 java_lang_Throwable::set_message(exception_oop, 947 Universe::delayed_stack_overflow_error_message()); 948 } 949 Handle exception (current, exception_oop); 950 if (StackTraceInThrowable) { 951 java_lang_Throwable::fill_in_stack_trace(exception); 952 } 953 // Remove the ScopedValue bindings in case we got a 954 // StackOverflowError while we were trying to remove ScopedValue 955 // bindings. 956 current->clear_scopedValueBindings(); 957 // Increment counter for hs_err file reporting 958 Atomic::inc(&Exceptions::_stack_overflow_errors); 959 throw_and_post_jvmti_exception(current, exception); 960 } 961 962 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 963 address pc, 964 ImplicitExceptionKind exception_kind) 965 { 966 address target_pc = nullptr; 967 968 if (Interpreter::contains(pc)) { 969 switch (exception_kind) { 970 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 971 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 972 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 973 default: ShouldNotReachHere(); 974 } 975 } else { 976 switch (exception_kind) { 977 case STACK_OVERFLOW: { 978 // Stack overflow only occurs upon frame setup; the callee is 979 // going to be unwound. Dispatch to a shared runtime stub 980 // which will cause the StackOverflowError to be fabricated 981 // and processed. 982 // Stack overflow should never occur during deoptimization: 983 // the compiled method bangs the stack by as much as the 984 // interpreter would need in case of a deoptimization. The 985 // deoptimization blob and uncommon trap blob bang the stack 986 // in a debug VM to verify the correctness of the compiled 987 // method stack banging. 988 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 989 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 990 return SharedRuntime::throw_StackOverflowError_entry(); 991 } 992 993 case IMPLICIT_NULL: { 994 if (VtableStubs::contains(pc)) { 995 // We haven't yet entered the callee frame. Fabricate an 996 // exception and begin dispatching it in the caller. Since 997 // the caller was at a call site, it's safe to destroy all 998 // caller-saved registers, as these entry points do. 999 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 1000 1001 // If vt_stub is null, then return null to signal handler to report the SEGV error. 1002 if (vt_stub == nullptr) return nullptr; 1003 1004 if (vt_stub->is_abstract_method_error(pc)) { 1005 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 1006 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 1007 // Instead of throwing the abstract method error here directly, we re-resolve 1008 // and will throw the AbstractMethodError during resolve. As a result, we'll 1009 // get a more detailed error message. 1010 return SharedRuntime::get_handle_wrong_method_stub(); 1011 } else { 1012 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 1013 // Assert that the signal comes from the expected location in stub code. 1014 assert(vt_stub->is_null_pointer_exception(pc), 1015 "obtained signal from unexpected location in stub code"); 1016 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1017 } 1018 } else { 1019 CodeBlob* cb = CodeCache::find_blob(pc); 1020 1021 // If code blob is null, then return null to signal handler to report the SEGV error. 1022 if (cb == nullptr) return nullptr; 1023 1024 // Exception happened in CodeCache. Must be either: 1025 // 1. Inline-cache check in C2I handler blob, 1026 // 2. Inline-cache check in nmethod, or 1027 // 3. Implicit null exception in nmethod 1028 1029 if (!cb->is_nmethod()) { 1030 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 1031 if (!is_in_blob) { 1032 // Allow normal crash reporting to handle this 1033 return nullptr; 1034 } 1035 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 1036 // There is no handler here, so we will simply unwind. 1037 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1038 } 1039 1040 // Otherwise, it's a compiled method. Consult its exception handlers. 1041 nmethod* nm = cb->as_nmethod(); 1042 if (nm->inlinecache_check_contains(pc)) { 1043 // exception happened inside inline-cache check code 1044 // => the nmethod is not yet active (i.e., the frame 1045 // is not set up yet) => use return address pushed by 1046 // caller => don't push another return address 1047 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 1048 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1049 } 1050 1051 if (nm->method()->is_method_handle_intrinsic()) { 1052 // exception happened inside MH dispatch code, similar to a vtable stub 1053 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 1054 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1055 } 1056 1057 #ifndef PRODUCT 1058 _implicit_null_throws++; 1059 #endif 1060 target_pc = nm->continuation_for_implicit_null_exception(pc); 1061 // If there's an unexpected fault, target_pc might be null, 1062 // in which case we want to fall through into the normal 1063 // error handling code. 1064 } 1065 1066 break; // fall through 1067 } 1068 1069 1070 case IMPLICIT_DIVIDE_BY_ZERO: { 1071 nmethod* nm = CodeCache::find_nmethod(pc); 1072 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1073 #ifndef PRODUCT 1074 _implicit_div0_throws++; 1075 #endif 1076 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1077 // If there's an unexpected fault, target_pc might be null, 1078 // in which case we want to fall through into the normal 1079 // error handling code. 1080 break; // fall through 1081 } 1082 1083 default: ShouldNotReachHere(); 1084 } 1085 1086 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1087 1088 if (exception_kind == IMPLICIT_NULL) { 1089 #ifndef PRODUCT 1090 // for AbortVMOnException flag 1091 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1092 #endif //PRODUCT 1093 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1094 } else { 1095 #ifndef PRODUCT 1096 // for AbortVMOnException flag 1097 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1098 #endif //PRODUCT 1099 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1100 } 1101 return target_pc; 1102 } 1103 1104 ShouldNotReachHere(); 1105 return nullptr; 1106 } 1107 1108 1109 /** 1110 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1111 * installed in the native function entry of all native Java methods before 1112 * they get linked to their actual native methods. 1113 * 1114 * \note 1115 * This method actually never gets called! The reason is because 1116 * the interpreter's native entries call NativeLookup::lookup() which 1117 * throws the exception when the lookup fails. The exception is then 1118 * caught and forwarded on the return from NativeLookup::lookup() call 1119 * before the call to the native function. This might change in the future. 1120 */ 1121 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1122 { 1123 // We return a bad value here to make sure that the exception is 1124 // forwarded before we look at the return value. 1125 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1126 } 1127 JNI_END 1128 1129 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1130 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1131 } 1132 1133 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1134 #if INCLUDE_JVMCI 1135 if (!obj->klass()->has_finalizer()) { 1136 return; 1137 } 1138 #endif // INCLUDE_JVMCI 1139 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1140 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1141 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1142 JRT_END 1143 1144 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1145 assert(thread != nullptr, "No thread"); 1146 if (thread == nullptr) { 1147 return 0; 1148 } 1149 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1150 "current cannot touch oops after its GC barrier is detached."); 1151 oop obj = thread->threadObj(); 1152 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1153 } 1154 1155 /** 1156 * This function ought to be a void function, but cannot be because 1157 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1158 * 6254741. Once that is fixed we can remove the dummy return value. 1159 */ 1160 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1161 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1162 } 1163 1164 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1165 return dtrace_object_alloc(thread, o, o->size()); 1166 } 1167 1168 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1169 assert(DTraceAllocProbes, "wrong call"); 1170 Klass* klass = o->klass(); 1171 Symbol* name = klass->name(); 1172 HOTSPOT_OBJECT_ALLOC( 1173 get_java_tid(thread), 1174 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1175 return 0; 1176 } 1177 1178 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1179 JavaThread* current, Method* method)) 1180 assert(current == JavaThread::current(), "pre-condition"); 1181 1182 assert(DTraceMethodProbes, "wrong call"); 1183 Symbol* kname = method->klass_name(); 1184 Symbol* name = method->name(); 1185 Symbol* sig = method->signature(); 1186 HOTSPOT_METHOD_ENTRY( 1187 get_java_tid(current), 1188 (char *) kname->bytes(), kname->utf8_length(), 1189 (char *) name->bytes(), name->utf8_length(), 1190 (char *) sig->bytes(), sig->utf8_length()); 1191 return 0; 1192 JRT_END 1193 1194 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1195 JavaThread* current, Method* method)) 1196 assert(current == JavaThread::current(), "pre-condition"); 1197 assert(DTraceMethodProbes, "wrong call"); 1198 Symbol* kname = method->klass_name(); 1199 Symbol* name = method->name(); 1200 Symbol* sig = method->signature(); 1201 HOTSPOT_METHOD_RETURN( 1202 get_java_tid(current), 1203 (char *) kname->bytes(), kname->utf8_length(), 1204 (char *) name->bytes(), name->utf8_length(), 1205 (char *) sig->bytes(), sig->utf8_length()); 1206 return 0; 1207 JRT_END 1208 1209 1210 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1211 // for a call current in progress, i.e., arguments has been pushed on stack 1212 // put callee has not been invoked yet. Used by: resolve virtual/static, 1213 // vtable updates, etc. Caller frame must be compiled. 1214 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1215 JavaThread* current = THREAD; 1216 ResourceMark rm(current); 1217 1218 // last java frame on stack (which includes native call frames) 1219 vframeStream vfst(current, true); // Do not skip and javaCalls 1220 1221 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1222 } 1223 1224 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1225 nmethod* caller = vfst.nm(); 1226 1227 address pc = vfst.frame_pc(); 1228 { // Get call instruction under lock because another thread may be busy patching it. 1229 CompiledICLocker ic_locker(caller); 1230 return caller->attached_method_before_pc(pc); 1231 } 1232 return nullptr; 1233 } 1234 1235 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1236 // for a call current in progress, i.e., arguments has been pushed on stack 1237 // but callee has not been invoked yet. Caller frame must be compiled. 1238 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1239 CallInfo& callinfo, TRAPS) { 1240 Handle receiver; 1241 Handle nullHandle; // create a handy null handle for exception returns 1242 JavaThread* current = THREAD; 1243 1244 assert(!vfst.at_end(), "Java frame must exist"); 1245 1246 // Find caller and bci from vframe 1247 methodHandle caller(current, vfst.method()); 1248 int bci = vfst.bci(); 1249 1250 if (caller->is_continuation_enter_intrinsic()) { 1251 bc = Bytecodes::_invokestatic; 1252 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1253 return receiver; 1254 } 1255 1256 Bytecode_invoke bytecode(caller, bci); 1257 int bytecode_index = bytecode.index(); 1258 bc = bytecode.invoke_code(); 1259 1260 methodHandle attached_method(current, extract_attached_method(vfst)); 1261 if (attached_method.not_null()) { 1262 Method* callee = bytecode.static_target(CHECK_NH); 1263 vmIntrinsics::ID id = callee->intrinsic_id(); 1264 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1265 // it attaches statically resolved method to the call site. 1266 if (MethodHandles::is_signature_polymorphic(id) && 1267 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1268 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1269 1270 // Adjust invocation mode according to the attached method. 1271 switch (bc) { 1272 case Bytecodes::_invokevirtual: 1273 if (attached_method->method_holder()->is_interface()) { 1274 bc = Bytecodes::_invokeinterface; 1275 } 1276 break; 1277 case Bytecodes::_invokeinterface: 1278 if (!attached_method->method_holder()->is_interface()) { 1279 bc = Bytecodes::_invokevirtual; 1280 } 1281 break; 1282 case Bytecodes::_invokehandle: 1283 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1284 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1285 : Bytecodes::_invokevirtual; 1286 } 1287 break; 1288 default: 1289 break; 1290 } 1291 } 1292 } 1293 1294 assert(bc != Bytecodes::_illegal, "not initialized"); 1295 1296 bool has_receiver = bc != Bytecodes::_invokestatic && 1297 bc != Bytecodes::_invokedynamic && 1298 bc != Bytecodes::_invokehandle; 1299 1300 // Find receiver for non-static call 1301 if (has_receiver) { 1302 // This register map must be update since we need to find the receiver for 1303 // compiled frames. The receiver might be in a register. 1304 RegisterMap reg_map2(current, 1305 RegisterMap::UpdateMap::include, 1306 RegisterMap::ProcessFrames::include, 1307 RegisterMap::WalkContinuation::skip); 1308 frame stubFrame = current->last_frame(); 1309 // Caller-frame is a compiled frame 1310 frame callerFrame = stubFrame.sender(®_map2); 1311 1312 if (attached_method.is_null()) { 1313 Method* callee = bytecode.static_target(CHECK_NH); 1314 if (callee == nullptr) { 1315 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1316 } 1317 } 1318 1319 // Retrieve from a compiled argument list 1320 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1321 assert(oopDesc::is_oop_or_null(receiver()), ""); 1322 1323 if (receiver.is_null()) { 1324 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1325 } 1326 } 1327 1328 // Resolve method 1329 if (attached_method.not_null()) { 1330 // Parameterized by attached method. 1331 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1332 } else { 1333 // Parameterized by bytecode. 1334 constantPoolHandle constants(current, caller->constants()); 1335 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1336 } 1337 1338 #ifdef ASSERT 1339 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1340 if (has_receiver) { 1341 assert(receiver.not_null(), "should have thrown exception"); 1342 Klass* receiver_klass = receiver->klass(); 1343 Klass* rk = nullptr; 1344 if (attached_method.not_null()) { 1345 // In case there's resolved method attached, use its holder during the check. 1346 rk = attached_method->method_holder(); 1347 } else { 1348 // Klass is already loaded. 1349 constantPoolHandle constants(current, caller->constants()); 1350 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1351 } 1352 Klass* static_receiver_klass = rk; 1353 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1354 "actual receiver must be subclass of static receiver klass"); 1355 if (receiver_klass->is_instance_klass()) { 1356 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1357 tty->print_cr("ERROR: Klass not yet initialized!!"); 1358 receiver_klass->print(); 1359 } 1360 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1361 } 1362 } 1363 #endif 1364 1365 return receiver; 1366 } 1367 1368 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1369 JavaThread* current = THREAD; 1370 ResourceMark rm(current); 1371 // We need first to check if any Java activations (compiled, interpreted) 1372 // exist on the stack since last JavaCall. If not, we need 1373 // to get the target method from the JavaCall wrapper. 1374 vframeStream vfst(current, true); // Do not skip any javaCalls 1375 methodHandle callee_method; 1376 if (vfst.at_end()) { 1377 // No Java frames were found on stack since we did the JavaCall. 1378 // Hence the stack can only contain an entry_frame. We need to 1379 // find the target method from the stub frame. 1380 RegisterMap reg_map(current, 1381 RegisterMap::UpdateMap::skip, 1382 RegisterMap::ProcessFrames::include, 1383 RegisterMap::WalkContinuation::skip); 1384 frame fr = current->last_frame(); 1385 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1386 fr = fr.sender(®_map); 1387 assert(fr.is_entry_frame(), "must be"); 1388 // fr is now pointing to the entry frame. 1389 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1390 } else { 1391 Bytecodes::Code bc; 1392 CallInfo callinfo; 1393 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1394 callee_method = methodHandle(current, callinfo.selected_method()); 1395 } 1396 assert(callee_method()->is_method(), "must be"); 1397 return callee_method; 1398 } 1399 1400 // Resolves a call. 1401 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1402 JavaThread* current = THREAD; 1403 ResourceMark rm(current); 1404 RegisterMap cbl_map(current, 1405 RegisterMap::UpdateMap::skip, 1406 RegisterMap::ProcessFrames::include, 1407 RegisterMap::WalkContinuation::skip); 1408 frame caller_frame = current->last_frame().sender(&cbl_map); 1409 1410 CodeBlob* caller_cb = caller_frame.cb(); 1411 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1412 nmethod* caller_nm = caller_cb->as_nmethod(); 1413 1414 // determine call info & receiver 1415 // note: a) receiver is null for static calls 1416 // b) an exception is thrown if receiver is null for non-static calls 1417 CallInfo call_info; 1418 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1419 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1420 1421 NoSafepointVerifier nsv; 1422 1423 methodHandle callee_method(current, call_info.selected_method()); 1424 1425 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1426 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1427 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1428 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1429 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1430 1431 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1432 1433 // tracing/debugging/statistics 1434 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1435 (is_virtual) ? (&_resolve_virtual_ctr) : 1436 (&_resolve_static_ctr); 1437 Atomic::inc(addr); 1438 1439 #ifndef PRODUCT 1440 if (TraceCallFixup) { 1441 ResourceMark rm(current); 1442 tty->print("resolving %s%s (%s) call to", 1443 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1444 Bytecodes::name(invoke_code)); 1445 callee_method->print_short_name(tty); 1446 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1447 p2i(caller_frame.pc()), p2i(callee_method->code())); 1448 } 1449 #endif 1450 1451 if (invoke_code == Bytecodes::_invokestatic) { 1452 assert(callee_method->method_holder()->is_initialized() || 1453 callee_method->method_holder()->is_reentrant_initialization(current), 1454 "invalid class initialization state for invoke_static"); 1455 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1456 // In order to keep class initialization check, do not patch call 1457 // site for static call when the class is not fully initialized. 1458 // Proper check is enforced by call site re-resolution on every invocation. 1459 // 1460 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1461 // explicit class initialization check is put in nmethod entry (VEP). 1462 assert(callee_method->method_holder()->is_linked(), "must be"); 1463 return callee_method; 1464 } 1465 } 1466 1467 1468 // JSR 292 key invariant: 1469 // If the resolved method is a MethodHandle invoke target, the call 1470 // site must be a MethodHandle call site, because the lambda form might tail-call 1471 // leaving the stack in a state unknown to either caller or callee 1472 1473 // Compute entry points. The computation of the entry points is independent of 1474 // patching the call. 1475 1476 // Make sure the callee nmethod does not get deoptimized and removed before 1477 // we are done patching the code. 1478 1479 1480 CompiledICLocker ml(caller_nm); 1481 if (is_virtual && !is_optimized) { 1482 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1483 inline_cache->update(&call_info, receiver->klass()); 1484 } else { 1485 // Callsite is a direct call - set it to the destination method 1486 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1487 callsite->set(callee_method); 1488 } 1489 1490 return callee_method; 1491 } 1492 1493 // Inline caches exist only in compiled code 1494 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1495 PerfTraceTime timer(_perf_ic_miss_total_time); 1496 1497 #ifdef ASSERT 1498 RegisterMap reg_map(current, 1499 RegisterMap::UpdateMap::skip, 1500 RegisterMap::ProcessFrames::include, 1501 RegisterMap::WalkContinuation::skip); 1502 frame stub_frame = current->last_frame(); 1503 assert(stub_frame.is_runtime_frame(), "sanity check"); 1504 frame caller_frame = stub_frame.sender(®_map); 1505 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1506 #endif /* ASSERT */ 1507 1508 methodHandle callee_method; 1509 JRT_BLOCK 1510 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1511 // Return Method* through TLS 1512 current->set_vm_result_2(callee_method()); 1513 JRT_BLOCK_END 1514 // return compiled code entry point after potential safepoints 1515 return get_resolved_entry(current, callee_method); 1516 JRT_END 1517 1518 1519 // Handle call site that has been made non-entrant 1520 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1521 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1522 1523 // 6243940 We might end up in here if the callee is deoptimized 1524 // as we race to call it. We don't want to take a safepoint if 1525 // the caller was interpreted because the caller frame will look 1526 // interpreted to the stack walkers and arguments are now 1527 // "compiled" so it is much better to make this transition 1528 // invisible to the stack walking code. The i2c path will 1529 // place the callee method in the callee_target. It is stashed 1530 // there because if we try and find the callee by normal means a 1531 // safepoint is possible and have trouble gc'ing the compiled args. 1532 RegisterMap reg_map(current, 1533 RegisterMap::UpdateMap::skip, 1534 RegisterMap::ProcessFrames::include, 1535 RegisterMap::WalkContinuation::skip); 1536 frame stub_frame = current->last_frame(); 1537 assert(stub_frame.is_runtime_frame(), "sanity check"); 1538 frame caller_frame = stub_frame.sender(®_map); 1539 1540 if (caller_frame.is_interpreted_frame() || 1541 caller_frame.is_entry_frame() || 1542 caller_frame.is_upcall_stub_frame()) { 1543 Method* callee = current->callee_target(); 1544 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1545 current->set_vm_result_2(callee); 1546 current->set_callee_target(nullptr); 1547 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1548 // Bypass class initialization checks in c2i when caller is in native. 1549 // JNI calls to static methods don't have class initialization checks. 1550 // Fast class initialization checks are present in c2i adapters and call into 1551 // SharedRuntime::handle_wrong_method() on the slow path. 1552 // 1553 // JVM upcalls may land here as well, but there's a proper check present in 1554 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1555 // so bypassing it in c2i adapter is benign. 1556 return callee->get_c2i_no_clinit_check_entry(); 1557 } else { 1558 return callee->get_c2i_entry(); 1559 } 1560 } 1561 1562 // Must be compiled to compiled path which is safe to stackwalk 1563 methodHandle callee_method; 1564 JRT_BLOCK 1565 // Force resolving of caller (if we called from compiled frame) 1566 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1567 current->set_vm_result_2(callee_method()); 1568 JRT_BLOCK_END 1569 // return compiled code entry point after potential safepoints 1570 return get_resolved_entry(current, callee_method); 1571 JRT_END 1572 1573 // Handle abstract method call 1574 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1575 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1576 1577 // Verbose error message for AbstractMethodError. 1578 // Get the called method from the invoke bytecode. 1579 vframeStream vfst(current, true); 1580 assert(!vfst.at_end(), "Java frame must exist"); 1581 methodHandle caller(current, vfst.method()); 1582 Bytecode_invoke invoke(caller, vfst.bci()); 1583 DEBUG_ONLY( invoke.verify(); ) 1584 1585 // Find the compiled caller frame. 1586 RegisterMap reg_map(current, 1587 RegisterMap::UpdateMap::include, 1588 RegisterMap::ProcessFrames::include, 1589 RegisterMap::WalkContinuation::skip); 1590 frame stubFrame = current->last_frame(); 1591 assert(stubFrame.is_runtime_frame(), "must be"); 1592 frame callerFrame = stubFrame.sender(®_map); 1593 assert(callerFrame.is_compiled_frame(), "must be"); 1594 1595 // Install exception and return forward entry. 1596 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1597 JRT_BLOCK 1598 methodHandle callee(current, invoke.static_target(current)); 1599 if (!callee.is_null()) { 1600 oop recv = callerFrame.retrieve_receiver(®_map); 1601 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1602 res = StubRoutines::forward_exception_entry(); 1603 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1604 } 1605 JRT_BLOCK_END 1606 return res; 1607 JRT_END 1608 1609 // return verified_code_entry if interp_only_mode is not set for the current thread; 1610 // otherwise return c2i entry. 1611 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1612 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1613 // In interp_only_mode we need to go to the interpreted entry 1614 // The c2i won't patch in this mode -- see fixup_callers_callsite 1615 return callee_method->get_c2i_entry(); 1616 } 1617 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1618 return callee_method->verified_code_entry(); 1619 } 1620 1621 // resolve a static call and patch code 1622 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1623 PerfTraceTime timer(_perf_resolve_static_total_time); 1624 1625 methodHandle callee_method; 1626 bool enter_special = false; 1627 JRT_BLOCK 1628 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1629 current->set_vm_result_2(callee_method()); 1630 JRT_BLOCK_END 1631 // return compiled code entry point after potential safepoints 1632 return get_resolved_entry(current, callee_method); 1633 JRT_END 1634 1635 // resolve virtual call and update inline cache to monomorphic 1636 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1637 PerfTraceTime timer(_perf_resolve_virtual_total_time); 1638 1639 methodHandle callee_method; 1640 JRT_BLOCK 1641 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1642 current->set_vm_result_2(callee_method()); 1643 JRT_BLOCK_END 1644 // return compiled code entry point after potential safepoints 1645 return get_resolved_entry(current, callee_method); 1646 JRT_END 1647 1648 1649 // Resolve a virtual call that can be statically bound (e.g., always 1650 // monomorphic, so it has no inline cache). Patch code to resolved target. 1651 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1652 PerfTraceTime timer(_perf_resolve_opt_virtual_total_time); 1653 1654 methodHandle callee_method; 1655 JRT_BLOCK 1656 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1657 current->set_vm_result_2(callee_method()); 1658 JRT_BLOCK_END 1659 // return compiled code entry point after potential safepoints 1660 return get_resolved_entry(current, callee_method); 1661 JRT_END 1662 1663 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1664 JavaThread* current = THREAD; 1665 ResourceMark rm(current); 1666 CallInfo call_info; 1667 Bytecodes::Code bc; 1668 1669 // receiver is null for static calls. An exception is thrown for null 1670 // receivers for non-static calls 1671 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1672 1673 methodHandle callee_method(current, call_info.selected_method()); 1674 1675 Atomic::inc(&_ic_miss_ctr); 1676 1677 #ifndef PRODUCT 1678 // Statistics & Tracing 1679 if (TraceCallFixup) { 1680 ResourceMark rm(current); 1681 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1682 callee_method->print_short_name(tty); 1683 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1684 } 1685 1686 if (ICMissHistogram) { 1687 MutexLocker m(VMStatistic_lock); 1688 RegisterMap reg_map(current, 1689 RegisterMap::UpdateMap::skip, 1690 RegisterMap::ProcessFrames::include, 1691 RegisterMap::WalkContinuation::skip); 1692 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1693 // produce statistics under the lock 1694 trace_ic_miss(f.pc()); 1695 } 1696 #endif 1697 1698 // install an event collector so that when a vtable stub is created the 1699 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1700 // event can't be posted when the stub is created as locks are held 1701 // - instead the event will be deferred until the event collector goes 1702 // out of scope. 1703 JvmtiDynamicCodeEventCollector event_collector; 1704 1705 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1706 RegisterMap reg_map(current, 1707 RegisterMap::UpdateMap::skip, 1708 RegisterMap::ProcessFrames::include, 1709 RegisterMap::WalkContinuation::skip); 1710 frame caller_frame = current->last_frame().sender(®_map); 1711 CodeBlob* cb = caller_frame.cb(); 1712 nmethod* caller_nm = cb->as_nmethod(); 1713 1714 CompiledICLocker ml(caller_nm); 1715 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1716 inline_cache->update(&call_info, receiver()->klass()); 1717 1718 return callee_method; 1719 } 1720 1721 // 1722 // Resets a call-site in compiled code so it will get resolved again. 1723 // This routines handles both virtual call sites, optimized virtual call 1724 // sites, and static call sites. Typically used to change a call sites 1725 // destination from compiled to interpreted. 1726 // 1727 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1728 JavaThread* current = THREAD; 1729 ResourceMark rm(current); 1730 RegisterMap reg_map(current, 1731 RegisterMap::UpdateMap::skip, 1732 RegisterMap::ProcessFrames::include, 1733 RegisterMap::WalkContinuation::skip); 1734 frame stub_frame = current->last_frame(); 1735 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1736 frame caller = stub_frame.sender(®_map); 1737 1738 // Do nothing if the frame isn't a live compiled frame. 1739 // nmethod could be deoptimized by the time we get here 1740 // so no update to the caller is needed. 1741 1742 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1743 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1744 1745 address pc = caller.pc(); 1746 1747 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1748 assert(caller_nm != nullptr, "did not find caller nmethod"); 1749 1750 // Default call_addr is the location of the "basic" call. 1751 // Determine the address of the call we a reresolving. With 1752 // Inline Caches we will always find a recognizable call. 1753 // With Inline Caches disabled we may or may not find a 1754 // recognizable call. We will always find a call for static 1755 // calls and for optimized virtual calls. For vanilla virtual 1756 // calls it depends on the state of the UseInlineCaches switch. 1757 // 1758 // With Inline Caches disabled we can get here for a virtual call 1759 // for two reasons: 1760 // 1 - calling an abstract method. The vtable for abstract methods 1761 // will run us thru handle_wrong_method and we will eventually 1762 // end up in the interpreter to throw the ame. 1763 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1764 // call and between the time we fetch the entry address and 1765 // we jump to it the target gets deoptimized. Similar to 1 1766 // we will wind up in the interprter (thru a c2i with c2). 1767 // 1768 CompiledICLocker ml(caller_nm); 1769 address call_addr = caller_nm->call_instruction_address(pc); 1770 1771 if (call_addr != nullptr) { 1772 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1773 // bytes back in the instruction stream so we must also check for reloc info. 1774 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1775 bool ret = iter.next(); // Get item 1776 if (ret) { 1777 switch (iter.type()) { 1778 case relocInfo::static_call_type: 1779 case relocInfo::opt_virtual_call_type: { 1780 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1781 cdc->set_to_clean(); 1782 break; 1783 } 1784 1785 case relocInfo::virtual_call_type: { 1786 // compiled, dispatched call (which used to call an interpreted method) 1787 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1788 inline_cache->set_to_clean(); 1789 break; 1790 } 1791 default: 1792 break; 1793 } 1794 } 1795 } 1796 } 1797 1798 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1799 1800 Atomic::inc(&_wrong_method_ctr); 1801 1802 #ifndef PRODUCT 1803 if (TraceCallFixup) { 1804 ResourceMark rm(current); 1805 tty->print("handle_wrong_method reresolving call to"); 1806 callee_method->print_short_name(tty); 1807 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1808 } 1809 #endif 1810 1811 return callee_method; 1812 } 1813 1814 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1815 // The faulting unsafe accesses should be changed to throw the error 1816 // synchronously instead. Meanwhile the faulting instruction will be 1817 // skipped over (effectively turning it into a no-op) and an 1818 // asynchronous exception will be raised which the thread will 1819 // handle at a later point. If the instruction is a load it will 1820 // return garbage. 1821 1822 // Request an async exception. 1823 thread->set_pending_unsafe_access_error(); 1824 1825 // Return address of next instruction to execute. 1826 return next_pc; 1827 } 1828 1829 #ifdef ASSERT 1830 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1831 const BasicType* sig_bt, 1832 const VMRegPair* regs) { 1833 ResourceMark rm; 1834 const int total_args_passed = method->size_of_parameters(); 1835 const VMRegPair* regs_with_member_name = regs; 1836 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1837 1838 const int member_arg_pos = total_args_passed - 1; 1839 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1840 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1841 1842 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1843 1844 for (int i = 0; i < member_arg_pos; i++) { 1845 VMReg a = regs_with_member_name[i].first(); 1846 VMReg b = regs_without_member_name[i].first(); 1847 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1848 } 1849 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1850 } 1851 #endif 1852 1853 // --------------------------------------------------------------------------- 1854 // We are calling the interpreter via a c2i. Normally this would mean that 1855 // we were called by a compiled method. However we could have lost a race 1856 // where we went int -> i2c -> c2i and so the caller could in fact be 1857 // interpreted. If the caller is compiled we attempt to patch the caller 1858 // so he no longer calls into the interpreter. 1859 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1860 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1861 1862 // It's possible that deoptimization can occur at a call site which hasn't 1863 // been resolved yet, in which case this function will be called from 1864 // an nmethod that has been patched for deopt and we can ignore the 1865 // request for a fixup. 1866 // Also it is possible that we lost a race in that from_compiled_entry 1867 // is now back to the i2c in that case we don't need to patch and if 1868 // we did we'd leap into space because the callsite needs to use 1869 // "to interpreter" stub in order to load up the Method*. Don't 1870 // ask me how I know this... 1871 1872 // Result from nmethod::is_unloading is not stable across safepoints. 1873 NoSafepointVerifier nsv; 1874 1875 nmethod* callee = method->code(); 1876 if (callee == nullptr) { 1877 return; 1878 } 1879 1880 // write lock needed because we might patch call site by set_to_clean() 1881 // and is_unloading() can modify nmethod's state 1882 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1883 1884 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1885 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1886 return; 1887 } 1888 1889 // The check above makes sure this is an nmethod. 1890 nmethod* caller = cb->as_nmethod(); 1891 1892 // Get the return PC for the passed caller PC. 1893 address return_pc = caller_pc + frame::pc_return_offset; 1894 1895 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1896 return; 1897 } 1898 1899 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1900 CompiledICLocker ic_locker(caller); 1901 ResourceMark rm; 1902 1903 // If we got here through a static call or opt_virtual call, then we know where the 1904 // call address would be; let's peek at it 1905 address callsite_addr = (address)nativeCall_before(return_pc); 1906 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1907 if (!iter.next()) { 1908 // No reloc entry found; not a static or optimized virtual call 1909 return; 1910 } 1911 1912 relocInfo::relocType type = iter.reloc()->type(); 1913 if (type != relocInfo::static_call_type && 1914 type != relocInfo::opt_virtual_call_type) { 1915 return; 1916 } 1917 1918 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1919 callsite->set_to_clean(); 1920 JRT_END 1921 1922 1923 // same as JVM_Arraycopy, but called directly from compiled code 1924 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1925 oopDesc* dest, jint dest_pos, 1926 jint length, 1927 JavaThread* current)) { 1928 #ifndef PRODUCT 1929 _slow_array_copy_ctr++; 1930 #endif 1931 // Check if we have null pointers 1932 if (src == nullptr || dest == nullptr) { 1933 THROW(vmSymbols::java_lang_NullPointerException()); 1934 } 1935 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1936 // even though the copy_array API also performs dynamic checks to ensure 1937 // that src and dest are truly arrays (and are conformable). 1938 // The copy_array mechanism is awkward and could be removed, but 1939 // the compilers don't call this function except as a last resort, 1940 // so it probably doesn't matter. 1941 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1942 (arrayOopDesc*)dest, dest_pos, 1943 length, current); 1944 } 1945 JRT_END 1946 1947 // The caller of generate_class_cast_message() (or one of its callers) 1948 // must use a ResourceMark in order to correctly free the result. 1949 char* SharedRuntime::generate_class_cast_message( 1950 JavaThread* thread, Klass* caster_klass) { 1951 1952 // Get target class name from the checkcast instruction 1953 vframeStream vfst(thread, true); 1954 assert(!vfst.at_end(), "Java frame must exist"); 1955 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1956 constantPoolHandle cpool(thread, vfst.method()->constants()); 1957 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1958 Symbol* target_klass_name = nullptr; 1959 if (target_klass == nullptr) { 1960 // This klass should be resolved, but just in case, get the name in the klass slot. 1961 target_klass_name = cpool->klass_name_at(cc.index()); 1962 } 1963 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1964 } 1965 1966 1967 // The caller of generate_class_cast_message() (or one of its callers) 1968 // must use a ResourceMark in order to correctly free the result. 1969 char* SharedRuntime::generate_class_cast_message( 1970 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1971 const char* caster_name = caster_klass->external_name(); 1972 1973 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1974 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1975 target_klass->external_name(); 1976 1977 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1978 1979 const char* caster_klass_description = ""; 1980 const char* target_klass_description = ""; 1981 const char* klass_separator = ""; 1982 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1983 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1984 } else { 1985 caster_klass_description = caster_klass->class_in_module_of_loader(); 1986 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1987 klass_separator = (target_klass != nullptr) ? "; " : ""; 1988 } 1989 1990 // add 3 for parenthesis and preceding space 1991 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1992 1993 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1994 if (message == nullptr) { 1995 // Shouldn't happen, but don't cause even more problems if it does 1996 message = const_cast<char*>(caster_klass->external_name()); 1997 } else { 1998 jio_snprintf(message, 1999 msglen, 2000 "class %s cannot be cast to class %s (%s%s%s)", 2001 caster_name, 2002 target_name, 2003 caster_klass_description, 2004 klass_separator, 2005 target_klass_description 2006 ); 2007 } 2008 return message; 2009 } 2010 2011 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2012 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2013 JRT_END 2014 2015 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2016 if (!SafepointSynchronize::is_synchronizing()) { 2017 // Only try quick_enter() if we're not trying to reach a safepoint 2018 // so that the calling thread reaches the safepoint more quickly. 2019 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 2020 return; 2021 } 2022 } 2023 // NO_ASYNC required because an async exception on the state transition destructor 2024 // would leave you with the lock held and it would never be released. 2025 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2026 // and the model is that an exception implies the method failed. 2027 JRT_BLOCK_NO_ASYNC 2028 Handle h_obj(THREAD, obj); 2029 ObjectSynchronizer::enter(h_obj, lock, current); 2030 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2031 JRT_BLOCK_END 2032 } 2033 2034 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2035 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2036 SharedRuntime::monitor_enter_helper(obj, lock, current); 2037 JRT_END 2038 2039 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2040 assert(JavaThread::current() == current, "invariant"); 2041 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2042 ExceptionMark em(current); 2043 // The object could become unlocked through a JNI call, which we have no other checks for. 2044 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2045 if (obj->is_unlocked()) { 2046 if (CheckJNICalls) { 2047 fatal("Object has been unlocked by JNI"); 2048 } 2049 return; 2050 } 2051 ObjectSynchronizer::exit(obj, lock, current); 2052 } 2053 2054 // Handles the uncommon cases of monitor unlocking in compiled code 2055 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2056 assert(current == JavaThread::current(), "pre-condition"); 2057 SharedRuntime::monitor_exit_helper(obj, lock, current); 2058 JRT_END 2059 2060 // This is only called when CheckJNICalls is true, and only 2061 // for virtual thread termination. 2062 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2063 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2064 if (log_is_enabled(Debug, jni)) { 2065 JavaThread* current = JavaThread::current(); 2066 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2067 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2068 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2069 ") exiting with Objects still locked by JNI MonitorEnter.", 2070 vthread_id, carrier_id); 2071 } 2072 JRT_END 2073 2074 #ifndef PRODUCT 2075 2076 void SharedRuntime::print_statistics() { 2077 ttyLocker ttyl; 2078 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2079 2080 SharedRuntime::print_ic_miss_histogram_on(tty); 2081 SharedRuntime::print_counters_on(tty); 2082 AdapterHandlerLibrary::print_statistics_on(tty); 2083 2084 if (xtty != nullptr) xtty->tail("statistics"); 2085 } 2086 2087 //void SharedRuntime::print_counters_on(outputStream* st) { 2088 // // Dump the JRT_ENTRY counters 2089 // if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr); 2090 // if (_new_array_ctr) st->print_cr("%5u new array requires GC", _new_array_ctr); 2091 // if (_multi2_ctr) st->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2092 // if (_multi3_ctr) st->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2093 // if (_multi4_ctr) st->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2094 // if (_multi5_ctr) st->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2095 // 2096 // st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2097 // st->print_cr("%5u wrong method", _wrong_method_ctr); 2098 // st->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2099 // st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2100 // st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2101 // 2102 // if (_mon_enter_stub_ctr) st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2103 // if (_mon_exit_stub_ctr) st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2104 // if (_mon_enter_ctr) st->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2105 // if (_mon_exit_ctr) st->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2106 // if (_partial_subtype_ctr) st->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2107 // if (_jbyte_array_copy_ctr) st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2108 // if (_jshort_array_copy_ctr) st->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2109 // if (_jint_array_copy_ctr) st->print_cr("%5u int array copies", _jint_array_copy_ctr); 2110 // if (_jlong_array_copy_ctr) st->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2111 // if (_oop_array_copy_ctr) st->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2112 // if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2113 // if (_unsafe_array_copy_ctr) st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2114 // if (_generic_array_copy_ctr) st->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2115 // if (_slow_array_copy_ctr) st->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2116 // if (_find_handler_ctr) st->print_cr("%5u find exception handler", _find_handler_ctr); 2117 // if (_rethrow_ctr) st->print_cr("%5u rethrow handler", _rethrow_ctr); 2118 // if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2119 //} 2120 2121 inline double percent(int64_t x, int64_t y) { 2122 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2123 } 2124 2125 class MethodArityHistogram { 2126 public: 2127 enum { MAX_ARITY = 256 }; 2128 private: 2129 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2130 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2131 static uint64_t _total_compiled_calls; 2132 static uint64_t _max_compiled_calls_per_method; 2133 static int _max_arity; // max. arity seen 2134 static int _max_size; // max. arg size seen 2135 2136 static void add_method_to_histogram(nmethod* nm) { 2137 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2138 if (method != nullptr) { 2139 ArgumentCount args(method->signature()); 2140 int arity = args.size() + (method->is_static() ? 0 : 1); 2141 int argsize = method->size_of_parameters(); 2142 arity = MIN2(arity, MAX_ARITY-1); 2143 argsize = MIN2(argsize, MAX_ARITY-1); 2144 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2145 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2146 _total_compiled_calls += count; 2147 _arity_histogram[arity] += count; 2148 _size_histogram[argsize] += count; 2149 _max_arity = MAX2(_max_arity, arity); 2150 _max_size = MAX2(_max_size, argsize); 2151 } 2152 } 2153 2154 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2155 const int N = MIN2(9, n); 2156 double sum = 0; 2157 double weighted_sum = 0; 2158 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2159 if (sum >= 1) { // prevent divide by zero or divide overflow 2160 double rest = sum; 2161 double percent = sum / 100; 2162 for (int i = 0; i <= N; i++) { 2163 rest -= (double)histo[i]; 2164 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2165 } 2166 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2167 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2168 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2169 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2170 } else { 2171 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2172 } 2173 } 2174 2175 void print_histogram() { 2176 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2177 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2178 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2179 print_histogram_helper(_max_size, _size_histogram, "size"); 2180 tty->cr(); 2181 } 2182 2183 public: 2184 MethodArityHistogram() { 2185 // Take the Compile_lock to protect against changes in the CodeBlob structures 2186 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2187 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2188 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2189 _max_arity = _max_size = 0; 2190 _total_compiled_calls = 0; 2191 _max_compiled_calls_per_method = 0; 2192 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2193 CodeCache::nmethods_do(add_method_to_histogram); 2194 print_histogram(); 2195 } 2196 }; 2197 2198 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2199 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2200 uint64_t MethodArityHistogram::_total_compiled_calls; 2201 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2202 int MethodArityHistogram::_max_arity; 2203 int MethodArityHistogram::_max_size; 2204 2205 void SharedRuntime::print_call_statistics_on(outputStream* st) { 2206 tty->print_cr("Calls from compiled code:"); 2207 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2208 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2209 int64_t mono_i = _nof_interface_calls; 2210 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2211 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2212 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2213 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2214 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2215 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2216 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2217 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2218 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2219 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2220 tty->cr(); 2221 tty->print_cr("Note 1: counter updates are not MT-safe."); 2222 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2223 tty->print_cr(" %% in nested categories are relative to their category"); 2224 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2225 tty->cr(); 2226 2227 MethodArityHistogram h; 2228 } 2229 #endif 2230 2231 #ifndef PRODUCT 2232 static int _lookups; // number of calls to lookup 2233 static int _equals; // number of buckets checked with matching hash 2234 static int _hits; // number of successful lookups 2235 static int _compact; // number of equals calls with compact signature 2236 #endif 2237 2238 // A simple wrapper class around the calling convention information 2239 // that allows sharing of adapters for the same calling convention. 2240 class AdapterFingerPrint : public CHeapObj<mtCode> { 2241 private: 2242 enum { 2243 _basic_type_bits = 4, 2244 _basic_type_mask = right_n_bits(_basic_type_bits), 2245 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2246 _compact_int_count = 3 2247 }; 2248 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2249 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2250 2251 union { 2252 int _compact[_compact_int_count]; 2253 int* _fingerprint; 2254 } _value; 2255 int _length; // A negative length indicates the fingerprint is in the compact form, 2256 // Otherwise _value._fingerprint is the array. 2257 2258 // Remap BasicTypes that are handled equivalently by the adapters. 2259 // These are correct for the current system but someday it might be 2260 // necessary to make this mapping platform dependent. 2261 static int adapter_encoding(BasicType in) { 2262 switch (in) { 2263 case T_BOOLEAN: 2264 case T_BYTE: 2265 case T_SHORT: 2266 case T_CHAR: 2267 // There are all promoted to T_INT in the calling convention 2268 return T_INT; 2269 2270 case T_OBJECT: 2271 case T_ARRAY: 2272 // In other words, we assume that any register good enough for 2273 // an int or long is good enough for a managed pointer. 2274 #ifdef _LP64 2275 return T_LONG; 2276 #else 2277 return T_INT; 2278 #endif 2279 2280 case T_INT: 2281 case T_LONG: 2282 case T_FLOAT: 2283 case T_DOUBLE: 2284 case T_VOID: 2285 return in; 2286 2287 default: 2288 ShouldNotReachHere(); 2289 return T_CONFLICT; 2290 } 2291 } 2292 2293 public: 2294 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2295 // The fingerprint is based on the BasicType signature encoded 2296 // into an array of ints with eight entries per int. 2297 int* ptr; 2298 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2299 if (len <= _compact_int_count) { 2300 assert(_compact_int_count == 3, "else change next line"); 2301 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2302 // Storing the signature encoded as signed chars hits about 98% 2303 // of the time. 2304 _length = -len; 2305 ptr = _value._compact; 2306 } else { 2307 _length = len; 2308 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2309 ptr = _value._fingerprint; 2310 } 2311 2312 // Now pack the BasicTypes with 8 per int 2313 int sig_index = 0; 2314 for (int index = 0; index < len; index++) { 2315 int value = 0; 2316 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2317 int bt = adapter_encoding(sig_bt[sig_index++]); 2318 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2319 value = (value << _basic_type_bits) | bt; 2320 } 2321 ptr[index] = value; 2322 } 2323 } 2324 2325 ~AdapterFingerPrint() { 2326 if (_length > 0) { 2327 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2328 } 2329 } 2330 2331 int value(int index) { 2332 if (_length < 0) { 2333 return _value._compact[index]; 2334 } 2335 return _value._fingerprint[index]; 2336 } 2337 int length() { 2338 if (_length < 0) return -_length; 2339 return _length; 2340 } 2341 2342 bool is_compact() { 2343 return _length <= 0; 2344 } 2345 2346 unsigned int compute_hash() { 2347 int hash = 0; 2348 for (int i = 0; i < length(); i++) { 2349 int v = value(i); 2350 hash = (hash << 8) ^ v ^ (hash >> 5); 2351 } 2352 return (unsigned int)hash; 2353 } 2354 2355 const char* as_string() { 2356 stringStream st; 2357 st.print("0x"); 2358 for (int i = 0; i < length(); i++) { 2359 st.print("%x", value(i)); 2360 } 2361 return st.as_string(); 2362 } 2363 2364 #ifndef PRODUCT 2365 // Reconstitutes the basic type arguments from the fingerprint, 2366 // producing strings like LIJDF 2367 const char* as_basic_args_string() { 2368 stringStream st; 2369 bool long_prev = false; 2370 for (int i = 0; i < length(); i++) { 2371 unsigned val = (unsigned)value(i); 2372 // args are packed so that first/lower arguments are in the highest 2373 // bits of each int value, so iterate from highest to the lowest 2374 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2375 unsigned v = (val >> j) & _basic_type_mask; 2376 if (v == 0) { 2377 assert(i == length() - 1, "Only expect zeroes in the last word"); 2378 continue; 2379 } 2380 if (long_prev) { 2381 long_prev = false; 2382 if (v == T_VOID) { 2383 st.print("J"); 2384 } else { 2385 st.print("L"); 2386 } 2387 } 2388 switch (v) { 2389 case T_INT: st.print("I"); break; 2390 case T_LONG: long_prev = true; break; 2391 case T_FLOAT: st.print("F"); break; 2392 case T_DOUBLE: st.print("D"); break; 2393 case T_VOID: break; 2394 default: ShouldNotReachHere(); 2395 } 2396 } 2397 } 2398 if (long_prev) { 2399 st.print("L"); 2400 } 2401 return st.as_string(); 2402 } 2403 #endif // !product 2404 2405 bool equals(AdapterFingerPrint* other) { 2406 if (other->_length != _length) { 2407 return false; 2408 } 2409 if (_length < 0) { 2410 assert(_compact_int_count == 3, "else change next line"); 2411 return _value._compact[0] == other->_value._compact[0] && 2412 _value._compact[1] == other->_value._compact[1] && 2413 _value._compact[2] == other->_value._compact[2]; 2414 } else { 2415 for (int i = 0; i < _length; i++) { 2416 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2417 return false; 2418 } 2419 } 2420 } 2421 return true; 2422 } 2423 2424 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2425 NOT_PRODUCT(_equals++); 2426 return fp1->equals(fp2); 2427 } 2428 2429 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2430 return fp->compute_hash(); 2431 } 2432 }; 2433 2434 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2435 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2436 AnyObj::C_HEAP, mtCode, 2437 AdapterFingerPrint::compute_hash, 2438 AdapterFingerPrint::equals>; 2439 static AdapterHandlerTable* _adapter_handler_table; 2440 2441 // Find a entry with the same fingerprint if it exists 2442 static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2443 NOT_PRODUCT(_lookups++); 2444 assert_lock_strong(AdapterHandlerLibrary_lock); 2445 AdapterFingerPrint fp(total_args_passed, sig_bt); 2446 AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp); 2447 if (entry != nullptr) { 2448 #ifndef PRODUCT 2449 if (fp.is_compact()) _compact++; 2450 _hits++; 2451 #endif 2452 return *entry; 2453 } 2454 return nullptr; 2455 } 2456 2457 #ifndef PRODUCT 2458 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) { 2459 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2460 return sizeof(*key) + sizeof(*a); 2461 }; 2462 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2463 ts.print(st, "AdapterHandlerTable"); 2464 st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2465 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2466 st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d", 2467 _lookups, _equals, _hits, _compact); 2468 } 2469 #endif // !PRODUCT 2470 2471 // --------------------------------------------------------------------------- 2472 // Implementation of AdapterHandlerLibrary 2473 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2474 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2475 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2476 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2477 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2478 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2479 const int AdapterHandlerLibrary_size = 16*K; 2480 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2481 2482 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2483 return _buffer; 2484 } 2485 2486 static void post_adapter_creation(const AdapterBlob* new_adapter, 2487 const AdapterHandlerEntry* entry) { 2488 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2489 char blob_id[256]; 2490 jio_snprintf(blob_id, 2491 sizeof(blob_id), 2492 "%s(%s)", 2493 new_adapter->name(), 2494 entry->fingerprint()->as_string()); 2495 if (Forte::is_enabled()) { 2496 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2497 } 2498 2499 if (JvmtiExport::should_post_dynamic_code_generated()) { 2500 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2501 } 2502 } 2503 } 2504 2505 void AdapterHandlerLibrary::initialize() { 2506 ResourceMark rm; 2507 AdapterBlob* no_arg_blob = nullptr; 2508 AdapterBlob* int_arg_blob = nullptr; 2509 AdapterBlob* obj_arg_blob = nullptr; 2510 AdapterBlob* obj_int_arg_blob = nullptr; 2511 AdapterBlob* obj_obj_arg_blob = nullptr; 2512 { 2513 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2514 MutexLocker mu(AdapterHandlerLibrary_lock); 2515 2516 // Create a special handler for abstract methods. Abstract methods 2517 // are never compiled so an i2c entry is somewhat meaningless, but 2518 // throw AbstractMethodError just in case. 2519 // Pass wrong_method_abstract for the c2i transitions to return 2520 // AbstractMethodError for invalid invocations. 2521 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2522 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, nullptr), 2523 SharedRuntime::throw_AbstractMethodError_entry(), 2524 wrong_method_abstract, wrong_method_abstract); 2525 2526 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2527 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr, true); 2528 2529 BasicType obj_args[] = { T_OBJECT }; 2530 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true); 2531 2532 BasicType int_args[] = { T_INT }; 2533 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true); 2534 2535 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2536 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true); 2537 2538 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2539 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true); 2540 2541 assert(no_arg_blob != nullptr && 2542 obj_arg_blob != nullptr && 2543 int_arg_blob != nullptr && 2544 obj_int_arg_blob != nullptr && 2545 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2546 } 2547 2548 // Outside of the lock 2549 post_adapter_creation(no_arg_blob, _no_arg_handler); 2550 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2551 post_adapter_creation(int_arg_blob, _int_arg_handler); 2552 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2553 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2554 } 2555 2556 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2557 address i2c_entry, 2558 address c2i_entry, 2559 address c2i_unverified_entry, 2560 address c2i_no_clinit_check_entry) { 2561 // Insert an entry into the table 2562 return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, 2563 c2i_no_clinit_check_entry); 2564 } 2565 2566 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2567 if (method->is_abstract()) { 2568 return _abstract_method_handler; 2569 } 2570 int total_args_passed = method->size_of_parameters(); // All args on stack 2571 if (total_args_passed == 0) { 2572 return _no_arg_handler; 2573 } else if (total_args_passed == 1) { 2574 if (!method->is_static()) { 2575 return _obj_arg_handler; 2576 } 2577 switch (method->signature()->char_at(1)) { 2578 case JVM_SIGNATURE_CLASS: 2579 case JVM_SIGNATURE_ARRAY: 2580 return _obj_arg_handler; 2581 case JVM_SIGNATURE_INT: 2582 case JVM_SIGNATURE_BOOLEAN: 2583 case JVM_SIGNATURE_CHAR: 2584 case JVM_SIGNATURE_BYTE: 2585 case JVM_SIGNATURE_SHORT: 2586 return _int_arg_handler; 2587 } 2588 } else if (total_args_passed == 2 && 2589 !method->is_static()) { 2590 switch (method->signature()->char_at(1)) { 2591 case JVM_SIGNATURE_CLASS: 2592 case JVM_SIGNATURE_ARRAY: 2593 return _obj_obj_arg_handler; 2594 case JVM_SIGNATURE_INT: 2595 case JVM_SIGNATURE_BOOLEAN: 2596 case JVM_SIGNATURE_CHAR: 2597 case JVM_SIGNATURE_BYTE: 2598 case JVM_SIGNATURE_SHORT: 2599 return _obj_int_arg_handler; 2600 } 2601 } 2602 return nullptr; 2603 } 2604 2605 class AdapterSignatureIterator : public SignatureIterator { 2606 private: 2607 BasicType stack_sig_bt[16]; 2608 BasicType* sig_bt; 2609 int index; 2610 2611 public: 2612 AdapterSignatureIterator(Symbol* signature, 2613 fingerprint_t fingerprint, 2614 bool is_static, 2615 int total_args_passed) : 2616 SignatureIterator(signature, fingerprint), 2617 index(0) 2618 { 2619 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2620 if (!is_static) { // Pass in receiver first 2621 sig_bt[index++] = T_OBJECT; 2622 } 2623 do_parameters_on(this); 2624 } 2625 2626 BasicType* basic_types() { 2627 return sig_bt; 2628 } 2629 2630 #ifdef ASSERT 2631 int slots() { 2632 return index; 2633 } 2634 #endif 2635 2636 private: 2637 2638 friend class SignatureIterator; // so do_parameters_on can call do_type 2639 void do_type(BasicType type) { 2640 sig_bt[index++] = type; 2641 if (type == T_LONG || type == T_DOUBLE) { 2642 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2643 } 2644 } 2645 }; 2646 2647 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2648 // Use customized signature handler. Need to lock around updates to 2649 // the _adapter_handler_table (it is not safe for concurrent readers 2650 // and a single writer: this could be fixed if it becomes a 2651 // problem). 2652 2653 // Fast-path for trivial adapters 2654 AdapterHandlerEntry* entry = get_simple_adapter(method); 2655 if (entry != nullptr) { 2656 return entry; 2657 } 2658 2659 ResourceMark rm; 2660 AdapterBlob* new_adapter = nullptr; 2661 2662 // Fill in the signature array, for the calling-convention call. 2663 int total_args_passed = method->size_of_parameters(); // All args on stack 2664 2665 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2666 method->is_static(), total_args_passed); 2667 assert(si.slots() == total_args_passed, ""); 2668 BasicType* sig_bt = si.basic_types(); 2669 { 2670 MutexLocker mu(AdapterHandlerLibrary_lock); 2671 2672 // Lookup method signature's fingerprint 2673 entry = lookup(total_args_passed, sig_bt); 2674 2675 if (entry != nullptr) { 2676 #ifdef ASSERT 2677 if (VerifyAdapterSharing) { 2678 AdapterBlob* comparison_blob = nullptr; 2679 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false); 2680 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2681 assert(comparison_entry->compare_code(entry), "code must match"); 2682 // Release the one just created and return the original 2683 delete comparison_entry; 2684 } 2685 #endif 2686 return entry; 2687 } 2688 2689 entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true); 2690 } 2691 2692 // Outside of the lock 2693 if (new_adapter != nullptr) { 2694 post_adapter_creation(new_adapter, entry); 2695 } 2696 return entry; 2697 } 2698 2699 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter, 2700 int total_args_passed, 2701 BasicType* sig_bt, 2702 bool allocate_code_blob) { 2703 if (log_is_enabled(Info, perf, class, link)) { 2704 ClassLoader::perf_method_adapters_count()->inc(); 2705 } 2706 2707 // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result, 2708 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior 2709 // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated 2710 // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs. 2711 bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr; 2712 2713 VMRegPair stack_regs[16]; 2714 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2715 2716 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2717 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2718 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2719 CodeBuffer buffer(buf); 2720 short buffer_locs[20]; 2721 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2722 sizeof(buffer_locs)/sizeof(relocInfo)); 2723 2724 // Make a C heap allocated version of the fingerprint to store in the adapter 2725 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2726 MacroAssembler _masm(&buffer); 2727 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2728 total_args_passed, 2729 comp_args_on_stack, 2730 sig_bt, 2731 regs, 2732 fingerprint); 2733 2734 #ifdef ASSERT 2735 if (VerifyAdapterSharing) { 2736 entry->save_code(buf->code_begin(), buffer.insts_size()); 2737 if (!allocate_code_blob) { 2738 return entry; 2739 } 2740 } 2741 #endif 2742 2743 new_adapter = AdapterBlob::create(&buffer); 2744 NOT_PRODUCT(int insts_size = buffer.insts_size()); 2745 if (new_adapter == nullptr) { 2746 // CodeCache is full, disable compilation 2747 // Ought to log this but compile log is only per compile thread 2748 // and we're some non descript Java thread. 2749 return nullptr; 2750 } 2751 entry->relocate(new_adapter->content_begin()); 2752 #ifndef PRODUCT 2753 // debugging support 2754 if (PrintAdapterHandlers || PrintStubCode) { 2755 ttyLocker ttyl; 2756 entry->print_adapter_on(tty); 2757 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 2758 _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(), 2759 fingerprint->as_string(), insts_size); 2760 tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry())); 2761 if (Verbose || PrintStubCode) { 2762 address first_pc = entry->base_address(); 2763 if (first_pc != nullptr) { 2764 Disassembler::decode(first_pc, first_pc + insts_size, tty 2765 NOT_PRODUCT(COMMA &new_adapter->asm_remarks())); 2766 tty->cr(); 2767 } 2768 } 2769 } 2770 #endif 2771 2772 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2773 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2774 if (contains_all_checks || !VerifyAdapterCalls) { 2775 assert_lock_strong(AdapterHandlerLibrary_lock); 2776 _adapter_handler_table->put(fingerprint, entry); 2777 } 2778 return entry; 2779 } 2780 2781 address AdapterHandlerEntry::base_address() { 2782 address base = _i2c_entry; 2783 if (base == nullptr) base = _c2i_entry; 2784 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 2785 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 2786 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 2787 return base; 2788 } 2789 2790 void AdapterHandlerEntry::relocate(address new_base) { 2791 address old_base = base_address(); 2792 assert(old_base != nullptr, ""); 2793 ptrdiff_t delta = new_base - old_base; 2794 if (_i2c_entry != nullptr) 2795 _i2c_entry += delta; 2796 if (_c2i_entry != nullptr) 2797 _c2i_entry += delta; 2798 if (_c2i_unverified_entry != nullptr) 2799 _c2i_unverified_entry += delta; 2800 if (_c2i_no_clinit_check_entry != nullptr) 2801 _c2i_no_clinit_check_entry += delta; 2802 assert(base_address() == new_base, ""); 2803 } 2804 2805 2806 AdapterHandlerEntry::~AdapterHandlerEntry() { 2807 delete _fingerprint; 2808 #ifdef ASSERT 2809 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2810 #endif 2811 } 2812 2813 2814 #ifdef ASSERT 2815 // Capture the code before relocation so that it can be compared 2816 // against other versions. If the code is captured after relocation 2817 // then relative instructions won't be equivalent. 2818 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 2819 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 2820 _saved_code_length = length; 2821 memcpy(_saved_code, buffer, length); 2822 } 2823 2824 2825 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 2826 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 2827 2828 if (other->_saved_code_length != _saved_code_length) { 2829 return false; 2830 } 2831 2832 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 2833 } 2834 #endif 2835 2836 2837 /** 2838 * Create a native wrapper for this native method. The wrapper converts the 2839 * Java-compiled calling convention to the native convention, handles 2840 * arguments, and transitions to native. On return from the native we transition 2841 * back to java blocking if a safepoint is in progress. 2842 */ 2843 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 2844 ResourceMark rm; 2845 nmethod* nm = nullptr; 2846 2847 // Check if memory should be freed before allocation 2848 CodeCache::gc_on_allocation(); 2849 2850 assert(method->is_native(), "must be native"); 2851 assert(method->is_special_native_intrinsic() || 2852 method->has_native_function(), "must have something valid to call!"); 2853 2854 { 2855 // Perform the work while holding the lock, but perform any printing outside the lock 2856 MutexLocker mu(AdapterHandlerLibrary_lock); 2857 // See if somebody beat us to it 2858 if (method->code() != nullptr) { 2859 return; 2860 } 2861 2862 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 2863 assert(compile_id > 0, "Must generate native wrapper"); 2864 2865 2866 ResourceMark rm; 2867 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2868 if (buf != nullptr) { 2869 CodeBuffer buffer(buf); 2870 2871 if (method->is_continuation_enter_intrinsic()) { 2872 buffer.initialize_stubs_size(192); 2873 } 2874 2875 struct { double data[20]; } locs_buf; 2876 struct { double data[20]; } stubs_locs_buf; 2877 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2878 #if defined(AARCH64) || defined(PPC64) 2879 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 2880 // in the constant pool to ensure ordering between the barrier and oops 2881 // accesses. For native_wrappers we need a constant. 2882 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 2883 // static java call that is resolved in the runtime. 2884 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 2885 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 2886 } 2887 #endif 2888 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 2889 MacroAssembler _masm(&buffer); 2890 2891 // Fill in the signature array, for the calling-convention call. 2892 const int total_args_passed = method->size_of_parameters(); 2893 2894 VMRegPair stack_regs[16]; 2895 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2896 2897 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2898 method->is_static(), total_args_passed); 2899 BasicType* sig_bt = si.basic_types(); 2900 assert(si.slots() == total_args_passed, ""); 2901 BasicType ret_type = si.return_type(); 2902 2903 // Now get the compiled-Java arguments layout. 2904 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2905 2906 // Generate the compiled-to-native wrapper code 2907 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 2908 2909 if (nm != nullptr) { 2910 { 2911 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2912 if (nm->make_in_use()) { 2913 method->set_code(method, nm); 2914 } 2915 } 2916 2917 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 2918 if (directive->PrintAssemblyOption) { 2919 nm->print_code(); 2920 } 2921 DirectivesStack::release(directive); 2922 } 2923 } 2924 } // Unlock AdapterHandlerLibrary_lock 2925 2926 2927 // Install the generated code. 2928 if (nm != nullptr) { 2929 const char *msg = method->is_static() ? "(static)" : ""; 2930 CompileTask::print_ul(nm, msg); 2931 if (PrintCompilation) { 2932 ttyLocker ttyl; 2933 CompileTask::print(tty, nm, msg); 2934 } 2935 nm->post_compiled_method_load_event(); 2936 } 2937 } 2938 2939 // ------------------------------------------------------------------------- 2940 // Java-Java calling convention 2941 // (what you use when Java calls Java) 2942 2943 //------------------------------name_for_receiver---------------------------------- 2944 // For a given signature, return the VMReg for parameter 0. 2945 VMReg SharedRuntime::name_for_receiver() { 2946 VMRegPair regs; 2947 BasicType sig_bt = T_OBJECT; 2948 (void) java_calling_convention(&sig_bt, ®s, 1); 2949 // Return argument 0 register. In the LP64 build pointers 2950 // take 2 registers, but the VM wants only the 'main' name. 2951 return regs.first(); 2952 } 2953 2954 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 2955 // This method is returning a data structure allocating as a 2956 // ResourceObject, so do not put any ResourceMarks in here. 2957 2958 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 2959 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 2960 int cnt = 0; 2961 if (has_receiver) { 2962 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 2963 } 2964 2965 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 2966 BasicType type = ss.type(); 2967 sig_bt[cnt++] = type; 2968 if (is_double_word_type(type)) 2969 sig_bt[cnt++] = T_VOID; 2970 } 2971 2972 if (has_appendix) { 2973 sig_bt[cnt++] = T_OBJECT; 2974 } 2975 2976 assert(cnt < 256, "grow table size"); 2977 2978 int comp_args_on_stack; 2979 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 2980 2981 // the calling convention doesn't count out_preserve_stack_slots so 2982 // we must add that in to get "true" stack offsets. 2983 2984 if (comp_args_on_stack) { 2985 for (int i = 0; i < cnt; i++) { 2986 VMReg reg1 = regs[i].first(); 2987 if (reg1->is_stack()) { 2988 // Yuck 2989 reg1 = reg1->bias(out_preserve_stack_slots()); 2990 } 2991 VMReg reg2 = regs[i].second(); 2992 if (reg2->is_stack()) { 2993 // Yuck 2994 reg2 = reg2->bias(out_preserve_stack_slots()); 2995 } 2996 regs[i].set_pair(reg2, reg1); 2997 } 2998 } 2999 3000 // results 3001 *arg_size = cnt; 3002 return regs; 3003 } 3004 3005 // OSR Migration Code 3006 // 3007 // This code is used convert interpreter frames into compiled frames. It is 3008 // called from very start of a compiled OSR nmethod. A temp array is 3009 // allocated to hold the interesting bits of the interpreter frame. All 3010 // active locks are inflated to allow them to move. The displaced headers and 3011 // active interpreter locals are copied into the temp buffer. Then we return 3012 // back to the compiled code. The compiled code then pops the current 3013 // interpreter frame off the stack and pushes a new compiled frame. Then it 3014 // copies the interpreter locals and displaced headers where it wants. 3015 // Finally it calls back to free the temp buffer. 3016 // 3017 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3018 3019 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3020 assert(current == JavaThread::current(), "pre-condition"); 3021 3022 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3023 // frame. The stack watermark code below ensures that the interpreted frame is processed 3024 // before it gets unwound. This is helpful as the size of the compiled frame could be 3025 // larger than the interpreted frame, which could result in the new frame not being 3026 // processed correctly. 3027 StackWatermarkSet::before_unwind(current); 3028 3029 // 3030 // This code is dependent on the memory layout of the interpreter local 3031 // array and the monitors. On all of our platforms the layout is identical 3032 // so this code is shared. If some platform lays the their arrays out 3033 // differently then this code could move to platform specific code or 3034 // the code here could be modified to copy items one at a time using 3035 // frame accessor methods and be platform independent. 3036 3037 frame fr = current->last_frame(); 3038 assert(fr.is_interpreted_frame(), ""); 3039 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3040 3041 // Figure out how many monitors are active. 3042 int active_monitor_count = 0; 3043 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3044 kptr < fr.interpreter_frame_monitor_begin(); 3045 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3046 if (kptr->obj() != nullptr) active_monitor_count++; 3047 } 3048 3049 // QQQ we could place number of active monitors in the array so that compiled code 3050 // could double check it. 3051 3052 Method* moop = fr.interpreter_frame_method(); 3053 int max_locals = moop->max_locals(); 3054 // Allocate temp buffer, 1 word per local & 2 per active monitor 3055 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3056 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3057 3058 // Copy the locals. Order is preserved so that loading of longs works. 3059 // Since there's no GC I can copy the oops blindly. 3060 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3061 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3062 (HeapWord*)&buf[0], 3063 max_locals); 3064 3065 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3066 int i = max_locals; 3067 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3068 kptr2 < fr.interpreter_frame_monitor_begin(); 3069 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3070 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3071 BasicLock *lock = kptr2->lock(); 3072 if (LockingMode == LM_LEGACY) { 3073 // Inflate so the object's header no longer refers to the BasicLock. 3074 if (lock->displaced_header().is_unlocked()) { 3075 // The object is locked and the resulting ObjectMonitor* will also be 3076 // locked so it can't be async deflated until ownership is dropped. 3077 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3078 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3079 } 3080 // Now the displaced header is free to move because the 3081 // object's header no longer refers to it. 3082 buf[i] = (intptr_t)lock->displaced_header().value(); 3083 } else if (UseObjectMonitorTable) { 3084 buf[i] = (intptr_t)lock->object_monitor_cache(); 3085 } 3086 #ifdef ASSERT 3087 else { 3088 buf[i] = badDispHeaderOSR; 3089 } 3090 #endif 3091 i++; 3092 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3093 } 3094 } 3095 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3096 3097 RegisterMap map(current, 3098 RegisterMap::UpdateMap::skip, 3099 RegisterMap::ProcessFrames::include, 3100 RegisterMap::WalkContinuation::skip); 3101 frame sender = fr.sender(&map); 3102 if (sender.is_interpreted_frame()) { 3103 current->push_cont_fastpath(sender.sp()); 3104 } 3105 3106 return buf; 3107 JRT_END 3108 3109 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3110 FREE_C_HEAP_ARRAY(intptr_t, buf); 3111 JRT_END 3112 3113 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3114 bool found = false; 3115 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3116 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3117 }; 3118 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3119 _adapter_handler_table->iterate(findblob); 3120 return found; 3121 } 3122 3123 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3124 bool found = false; 3125 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3126 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3127 found = true; 3128 st->print("Adapter for signature: "); 3129 a->print_adapter_on(st); 3130 return true; 3131 } else { 3132 return false; // keep looking 3133 } 3134 }; 3135 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3136 _adapter_handler_table->iterate(findblob); 3137 assert(found, "Should have found handler"); 3138 } 3139 3140 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3141 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3142 if (get_i2c_entry() != nullptr) { 3143 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3144 } 3145 if (get_c2i_entry() != nullptr) { 3146 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3147 } 3148 if (get_c2i_unverified_entry() != nullptr) { 3149 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3150 } 3151 if (get_c2i_no_clinit_check_entry() != nullptr) { 3152 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3153 } 3154 st->cr(); 3155 } 3156 3157 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3158 assert(current == JavaThread::current(), "pre-condition"); 3159 StackOverflow* overflow_state = current->stack_overflow_state(); 3160 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3161 overflow_state->set_reserved_stack_activation(current->stack_base()); 3162 JRT_END 3163 3164 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3165 ResourceMark rm(current); 3166 frame activation; 3167 nmethod* nm = nullptr; 3168 int count = 1; 3169 3170 assert(fr.is_java_frame(), "Must start on Java frame"); 3171 3172 RegisterMap map(JavaThread::current(), 3173 RegisterMap::UpdateMap::skip, 3174 RegisterMap::ProcessFrames::skip, 3175 RegisterMap::WalkContinuation::skip); // don't walk continuations 3176 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3177 if (!fr.is_java_frame()) { 3178 continue; 3179 } 3180 3181 Method* method = nullptr; 3182 bool found = false; 3183 if (fr.is_interpreted_frame()) { 3184 method = fr.interpreter_frame_method(); 3185 if (method != nullptr && method->has_reserved_stack_access()) { 3186 found = true; 3187 } 3188 } else { 3189 CodeBlob* cb = fr.cb(); 3190 if (cb != nullptr && cb->is_nmethod()) { 3191 nm = cb->as_nmethod(); 3192 method = nm->method(); 3193 // scope_desc_near() must be used, instead of scope_desc_at() because on 3194 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3195 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3196 method = sd->method(); 3197 if (method != nullptr && method->has_reserved_stack_access()) { 3198 found = true; 3199 } 3200 } 3201 } 3202 } 3203 if (found) { 3204 activation = fr; 3205 warning("Potentially dangerous stack overflow in " 3206 "ReservedStackAccess annotated method %s [%d]", 3207 method->name_and_sig_as_C_string(), count++); 3208 EventReservedStackActivation event; 3209 if (event.should_commit()) { 3210 event.set_method(method); 3211 event.commit(); 3212 } 3213 } 3214 } 3215 return activation; 3216 } 3217 3218 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3219 // After any safepoint, just before going back to compiled code, 3220 // we inform the GC that we will be doing initializing writes to 3221 // this object in the future without emitting card-marks, so 3222 // GC may take any compensating steps. 3223 3224 oop new_obj = current->vm_result(); 3225 if (new_obj == nullptr) return; 3226 3227 BarrierSet *bs = BarrierSet::barrier_set(); 3228 bs->on_slowpath_allocation_exit(current, new_obj); 3229 }