1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "cds/archiveBuilder.hpp"
26 #include "cds/archiveUtils.inline.hpp"
27 #include "classfile/classLoader.hpp"
28 #include "classfile/javaClasses.inline.hpp"
29 #include "classfile/stringTable.hpp"
30 #include "classfile/vmClasses.hpp"
31 #include "classfile/vmSymbols.hpp"
32 #include "code/aotCodeCache.hpp"
33 #include "code/codeCache.hpp"
34 #include "code/compiledIC.hpp"
35 #include "code/nmethod.inline.hpp"
36 #include "code/scopeDesc.hpp"
37 #include "code/vtableStubs.hpp"
38 #include "compiler/abstractCompiler.hpp"
39 #include "compiler/compileBroker.hpp"
40 #include "compiler/disassembler.hpp"
41 #include "gc/shared/barrierSet.hpp"
42 #include "gc/shared/collectedHeap.hpp"
43 #include "interpreter/interpreter.hpp"
44 #include "interpreter/interpreterRuntime.hpp"
45 #include "jfr/jfrEvents.hpp"
46 #include "jvm.h"
47 #include "logging/log.hpp"
48 #include "memory/resourceArea.hpp"
49 #include "memory/universe.hpp"
50 #include "metaprogramming/primitiveConversions.hpp"
51 #include "oops/klass.hpp"
52 #include "oops/method.inline.hpp"
53 #include "oops/objArrayKlass.hpp"
54 #include "oops/oop.inline.hpp"
55 #include "prims/forte.hpp"
56 #include "prims/jvmtiExport.hpp"
57 #include "prims/jvmtiThreadState.hpp"
58 #include "prims/methodHandles.hpp"
59 #include "prims/nativeLookup.hpp"
60 #include "runtime/arguments.hpp"
61 #include "runtime/atomicAccess.hpp"
62 #include "runtime/basicLock.inline.hpp"
63 #include "runtime/frame.inline.hpp"
64 #include "runtime/handles.inline.hpp"
65 #include "runtime/init.hpp"
66 #include "runtime/interfaceSupport.inline.hpp"
67 #include "runtime/java.hpp"
68 #include "runtime/javaCalls.hpp"
69 #include "runtime/jniHandles.inline.hpp"
70 #include "runtime/osThread.hpp"
71 #include "runtime/perfData.inline.hpp"
72 #include "runtime/sharedRuntime.hpp"
73 #include "runtime/stackWatermarkSet.hpp"
74 #include "runtime/stubRoutines.hpp"
75 #include "runtime/synchronizer.inline.hpp"
76 #include "runtime/timerTrace.hpp"
77 #include "runtime/vframe.inline.hpp"
78 #include "runtime/vframeArray.hpp"
79 #include "runtime/vm_version.hpp"
80 #include "services/management.hpp"
81 #include "utilities/copy.hpp"
82 #include "utilities/dtrace.hpp"
83 #include "utilities/events.hpp"
84 #include "utilities/globalDefinitions.hpp"
85 #include "utilities/hashTable.hpp"
86 #include "utilities/macros.hpp"
87 #include "utilities/xmlstream.hpp"
88 #ifdef COMPILER1
89 #include "c1/c1_Runtime1.hpp"
90 #endif
91 #if INCLUDE_JFR
92 #include "jfr/jfr.inline.hpp"
93 #endif
94
95 // Shared runtime stub routines reside in their own unique blob with a
96 // single entry point
97
98
99 #define SHARED_STUB_FIELD_DEFINE(name, type) \
100 type* SharedRuntime::BLOB_FIELD_NAME(name);
101 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
102 #undef SHARED_STUB_FIELD_DEFINE
103
104 nmethod* SharedRuntime::_cont_doYield_stub;
105
106 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr;
107 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time = nullptr;
108 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time = nullptr;
109 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr;
110 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time = nullptr;
111
112 #if 0
113 // TODO tweak global stub name generation to match this
114 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
115 const char *SharedRuntime::_stub_names[] = {
116 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
117 };
118 #endif
119
120 //----------------------------generate_stubs-----------------------------------
121 void SharedRuntime::generate_initial_stubs() {
122 // Build this early so it's available for the interpreter.
123 _throw_StackOverflowError_blob =
124 generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
125 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
126 }
127
128 void SharedRuntime::generate_stubs() {
129 _wrong_method_blob =
130 generate_resolve_blob(StubId::shared_wrong_method_id,
131 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
132 _wrong_method_abstract_blob =
133 generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
134 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
135 _ic_miss_blob =
136 generate_resolve_blob(StubId::shared_ic_miss_id,
137 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
138 _resolve_opt_virtual_call_blob =
139 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
140 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
141 _resolve_virtual_call_blob =
142 generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
143 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
144 _resolve_static_call_blob =
145 generate_resolve_blob(StubId::shared_resolve_static_call_id,
146 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
147
148 _throw_delayed_StackOverflowError_blob =
149 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
150 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
151
152 _throw_AbstractMethodError_blob =
153 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
154 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
155
156 _throw_IncompatibleClassChangeError_blob =
157 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
158 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
159
160 _throw_NullPointerException_at_call_blob =
161 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
162 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
163
164 #if COMPILER2_OR_JVMCI
165 // Vectors are generated only by C2 and JVMCI.
166 bool support_wide = is_wide_vector(MaxVectorSize);
167 if (support_wide) {
168 _polling_page_vectors_safepoint_handler_blob =
169 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
170 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
171 }
172 #endif // COMPILER2_OR_JVMCI
173 _polling_page_safepoint_handler_blob =
174 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
175 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
176 _polling_page_return_handler_blob =
177 generate_handler_blob(StubId::shared_polling_page_return_handler_id,
178 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
179
180 generate_deopt_blob();
181
182 if (UsePerfData) {
183 EXCEPTION_MARK;
184 NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call");
185 NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time, SUN_CI, "resovle_virtual_call");
186 NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time, SUN_CI, "resovle_static_call");
187 NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method");
188 NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time , SUN_CI, "ic_miss");
189 if (HAS_PENDING_EXCEPTION) {
190 vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly");
191 }
192 }
193 }
194
195 void SharedRuntime::init_adapter_library() {
196 AdapterHandlerLibrary::initialize();
197 }
198
199 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) {
200 st->print(" %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us());
201 if (TraceThreadTime) {
202 st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us());
203 }
204 st->print(" / %5d events", cnt);
205 st->cr();
206 }
207
208 void SharedRuntime::print_counters_on(outputStream* st) {
209 st->print_cr("SharedRuntime:");
210 if (UsePerfData) {
211 print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr);
212 print_counter_on(st, "resolve_virtual_call:", _perf_resolve_virtual_total_time, _resolve_virtual_ctr);
213 print_counter_on(st, "resolve_static_call:", _perf_resolve_static_total_time, _resolve_static_ctr);
214 print_counter_on(st, "handle_wrong_method:", _perf_handle_wrong_method_total_time, _wrong_method_ctr);
215 print_counter_on(st, "ic_miss:", _perf_ic_miss_total_time, _ic_miss_ctr);
216
217 jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() +
218 _perf_resolve_virtual_total_time->elapsed_counter_value() +
219 _perf_resolve_static_total_time->elapsed_counter_value() +
220 _perf_handle_wrong_method_total_time->elapsed_counter_value() +
221 _perf_ic_miss_total_time->elapsed_counter_value());
222 st->print("Total: " JLONG_FORMAT_W(5) "us", total_elapsed_time_us);
223 if (TraceThreadTime) {
224 jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() +
225 _perf_resolve_virtual_total_time->thread_counter_value() +
226 _perf_resolve_static_total_time->thread_counter_value() +
227 _perf_handle_wrong_method_total_time->thread_counter_value() +
228 _perf_ic_miss_total_time->thread_counter_value());
229 st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us);
230
231 }
232 st->cr();
233 } else {
234 st->print_cr(" no data (UsePerfData is turned off)");
235 }
236 }
237
238 #if INCLUDE_JFR
239 //------------------------------generate jfr runtime stubs ------
240 void SharedRuntime::generate_jfr_stubs() {
241 ResourceMark rm;
242 const char* timer_msg = "SharedRuntime generate_jfr_stubs";
243 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
244
245 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
246 _jfr_return_lease_blob = generate_jfr_return_lease();
247 }
248
249 #endif // INCLUDE_JFR
250
251 #include <math.h>
252
253 // Implementation of SharedRuntime
254
255 // For statistics
256 uint SharedRuntime::_ic_miss_ctr = 0;
257 uint SharedRuntime::_wrong_method_ctr = 0;
258 uint SharedRuntime::_resolve_static_ctr = 0;
259 uint SharedRuntime::_resolve_virtual_ctr = 0;
260 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
261
262 #ifndef PRODUCT
263 uint SharedRuntime::_implicit_null_throws = 0;
264 uint SharedRuntime::_implicit_div0_throws = 0;
265
266 int64_t SharedRuntime::_nof_normal_calls = 0;
267 int64_t SharedRuntime::_nof_inlined_calls = 0;
268 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
269 int64_t SharedRuntime::_nof_static_calls = 0;
270 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
271 int64_t SharedRuntime::_nof_interface_calls = 0;
272 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
273
274 uint SharedRuntime::_new_instance_ctr=0;
275 uint SharedRuntime::_new_array_ctr=0;
276 uint SharedRuntime::_multi2_ctr=0;
277 uint SharedRuntime::_multi3_ctr=0;
278 uint SharedRuntime::_multi4_ctr=0;
279 uint SharedRuntime::_multi5_ctr=0;
280 uint SharedRuntime::_mon_enter_stub_ctr=0;
281 uint SharedRuntime::_mon_exit_stub_ctr=0;
282 uint SharedRuntime::_mon_enter_ctr=0;
283 uint SharedRuntime::_mon_exit_ctr=0;
284 uint SharedRuntime::_partial_subtype_ctr=0;
285 uint SharedRuntime::_jbyte_array_copy_ctr=0;
286 uint SharedRuntime::_jshort_array_copy_ctr=0;
287 uint SharedRuntime::_jint_array_copy_ctr=0;
288 uint SharedRuntime::_jlong_array_copy_ctr=0;
289 uint SharedRuntime::_oop_array_copy_ctr=0;
290 uint SharedRuntime::_checkcast_array_copy_ctr=0;
291 uint SharedRuntime::_unsafe_array_copy_ctr=0;
292 uint SharedRuntime::_generic_array_copy_ctr=0;
293 uint SharedRuntime::_slow_array_copy_ctr=0;
294 uint SharedRuntime::_find_handler_ctr=0;
295 uint SharedRuntime::_rethrow_ctr=0;
296 uint SharedRuntime::_unsafe_set_memory_ctr=0;
297
298 int SharedRuntime::_ICmiss_index = 0;
299 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
300 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
301
302
303 void SharedRuntime::trace_ic_miss(address at) {
304 for (int i = 0; i < _ICmiss_index; i++) {
305 if (_ICmiss_at[i] == at) {
306 _ICmiss_count[i]++;
307 return;
308 }
309 }
310 int index = _ICmiss_index++;
311 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
312 _ICmiss_at[index] = at;
313 _ICmiss_count[index] = 1;
314 }
315
316 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) {
317 if (ICMissHistogram) {
318 st->print_cr("IC Miss Histogram:");
319 int tot_misses = 0;
320 for (int i = 0; i < _ICmiss_index; i++) {
321 st->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
322 tot_misses += _ICmiss_count[i];
323 }
324 st->print_cr("Total IC misses: %7d", tot_misses);
325 }
326 }
327
328 #ifdef COMPILER2
329 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
330 void SharedRuntime::debug_print_value(jboolean x) {
331 tty->print_cr("boolean %d", x);
332 }
333
334 void SharedRuntime::debug_print_value(jbyte x) {
335 tty->print_cr("byte %d", x);
336 }
337
338 void SharedRuntime::debug_print_value(jshort x) {
339 tty->print_cr("short %d", x);
340 }
341
342 void SharedRuntime::debug_print_value(jchar x) {
343 tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
344 }
345
346 void SharedRuntime::debug_print_value(jint x) {
347 tty->print_cr("int %d", x);
348 }
349
350 void SharedRuntime::debug_print_value(jlong x) {
351 tty->print_cr("long " JLONG_FORMAT, x);
352 }
353
354 void SharedRuntime::debug_print_value(jfloat x) {
355 tty->print_cr("float %f", x);
356 }
357
358 void SharedRuntime::debug_print_value(jdouble x) {
359 tty->print_cr("double %lf", x);
360 }
361
362 void SharedRuntime::debug_print_value(oopDesc* x) {
363 x->print();
364 }
365 #endif // COMPILER2
366
367 #endif // PRODUCT
368
369
370 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
371 return x * y;
372 JRT_END
373
374
375 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
376 if (x == min_jlong && y == CONST64(-1)) {
377 return x;
378 } else {
379 return x / y;
380 }
381 JRT_END
382
383
384 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
385 if (x == min_jlong && y == CONST64(-1)) {
386 return 0;
387 } else {
388 return x % y;
389 }
390 JRT_END
391
392
393 #ifdef _WIN64
394 const juint float_sign_mask = 0x7FFFFFFF;
395 const juint float_infinity = 0x7F800000;
396 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
397 const julong double_infinity = CONST64(0x7FF0000000000000);
398 #endif
399
400 #if !defined(X86)
401 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
402 #ifdef _WIN64
403 // 64-bit Windows on amd64 returns the wrong values for
404 // infinity operands.
405 juint xbits = PrimitiveConversions::cast<juint>(x);
406 juint ybits = PrimitiveConversions::cast<juint>(y);
407 // x Mod Infinity == x unless x is infinity
408 if (((xbits & float_sign_mask) != float_infinity) &&
409 ((ybits & float_sign_mask) == float_infinity) ) {
410 return x;
411 }
412 return ((jfloat)fmod_winx64((double)x, (double)y));
413 #else
414 return ((jfloat)fmod((double)x,(double)y));
415 #endif
416 JRT_END
417
418 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
419 #ifdef _WIN64
420 julong xbits = PrimitiveConversions::cast<julong>(x);
421 julong ybits = PrimitiveConversions::cast<julong>(y);
422 // x Mod Infinity == x unless x is infinity
423 if (((xbits & double_sign_mask) != double_infinity) &&
424 ((ybits & double_sign_mask) == double_infinity) ) {
425 return x;
426 }
427 return ((jdouble)fmod_winx64((double)x, (double)y));
428 #else
429 return ((jdouble)fmod((double)x,(double)y));
430 #endif
431 JRT_END
432 #endif // !X86
433
434 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
435 return (jfloat)x;
436 JRT_END
437
438 #ifdef __SOFTFP__
439 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
440 return x + y;
441 JRT_END
442
443 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
444 return x - y;
445 JRT_END
446
447 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
448 return x * y;
449 JRT_END
450
451 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
452 return x / y;
453 JRT_END
454
455 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
456 return x + y;
457 JRT_END
458
459 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
460 return x - y;
461 JRT_END
462
463 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
464 return x * y;
465 JRT_END
466
467 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
468 return x / y;
469 JRT_END
470
471 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
472 return (jdouble)x;
473 JRT_END
474
475 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
476 return (jdouble)x;
477 JRT_END
478
479 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
480 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
481 JRT_END
482
483 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
484 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
485 JRT_END
486
487 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
488 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
489 JRT_END
490
491 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
492 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
493 JRT_END
494
495 // Functions to return the opposite of the aeabi functions for nan.
496 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
497 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
498 JRT_END
499
500 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
501 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
502 JRT_END
503
504 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
505 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
506 JRT_END
507
508 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
509 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
510 JRT_END
511
512 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
513 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
514 JRT_END
515
516 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
517 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
518 JRT_END
519
520 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
521 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
522 JRT_END
523
524 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
525 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
526 JRT_END
527
528 // Intrinsics make gcc generate code for these.
529 float SharedRuntime::fneg(float f) {
530 return -f;
531 }
532
533 double SharedRuntime::dneg(double f) {
534 return -f;
535 }
536
537 #endif // __SOFTFP__
538
539 #if defined(__SOFTFP__) || defined(E500V2)
540 // Intrinsics make gcc generate code for these.
541 double SharedRuntime::dabs(double f) {
542 return (f <= (double)0.0) ? (double)0.0 - f : f;
543 }
544
545 #endif
546
547 #if defined(__SOFTFP__)
548 double SharedRuntime::dsqrt(double f) {
549 return sqrt(f);
550 }
551 #endif
552
553 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
554 if (g_isnan(x))
555 return 0;
556 if (x >= (jfloat) max_jint)
557 return max_jint;
558 if (x <= (jfloat) min_jint)
559 return min_jint;
560 return (jint) x;
561 JRT_END
562
563
564 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
565 if (g_isnan(x))
566 return 0;
567 if (x >= (jfloat) max_jlong)
568 return max_jlong;
569 if (x <= (jfloat) min_jlong)
570 return min_jlong;
571 return (jlong) x;
572 JRT_END
573
574
575 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
576 if (g_isnan(x))
577 return 0;
578 if (x >= (jdouble) max_jint)
579 return max_jint;
580 if (x <= (jdouble) min_jint)
581 return min_jint;
582 return (jint) x;
583 JRT_END
584
585
586 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
587 if (g_isnan(x))
588 return 0;
589 if (x >= (jdouble) max_jlong)
590 return max_jlong;
591 if (x <= (jdouble) min_jlong)
592 return min_jlong;
593 return (jlong) x;
594 JRT_END
595
596
597 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
598 return (jfloat)x;
599 JRT_END
600
601
602 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
603 return (jfloat)x;
604 JRT_END
605
606
607 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
608 return (jdouble)x;
609 JRT_END
610
611
612 // Exception handling across interpreter/compiler boundaries
613 //
614 // exception_handler_for_return_address(...) returns the continuation address.
615 // The continuation address is the entry point of the exception handler of the
616 // previous frame depending on the return address.
617
618 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
619 // Note: This is called when we have unwound the frame of the callee that did
620 // throw an exception. So far, no check has been performed by the StackWatermarkSet.
621 // Notably, the stack is not walkable at this point, and hence the check must
622 // be deferred until later. Specifically, any of the handlers returned here in
623 // this function, will get dispatched to, and call deferred checks to
624 // StackWatermarkSet::after_unwind at a point where the stack is walkable.
625 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
626 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
627
628 #if INCLUDE_JVMCI
629 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
630 // and other exception handler continuations do not read it
631 current->set_exception_pc(nullptr);
632 #endif // INCLUDE_JVMCI
633
634 if (Continuation::is_return_barrier_entry(return_address)) {
635 return StubRoutines::cont_returnBarrierExc();
636 }
637
638 // The fastest case first
639 CodeBlob* blob = CodeCache::find_blob(return_address);
640 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
641 if (nm != nullptr) {
642 // native nmethods don't have exception handlers
643 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
644 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
645 if (nm->is_deopt_pc(return_address)) {
646 // If we come here because of a stack overflow, the stack may be
647 // unguarded. Reguard the stack otherwise if we return to the
648 // deopt blob and the stack bang causes a stack overflow we
649 // crash.
650 StackOverflow* overflow_state = current->stack_overflow_state();
651 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
652 if (overflow_state->reserved_stack_activation() != current->stack_base()) {
653 overflow_state->set_reserved_stack_activation(current->stack_base());
654 }
655 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
656 // The deferred StackWatermarkSet::after_unwind check will be performed in
657 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
658 return SharedRuntime::deopt_blob()->unpack_with_exception();
659 } else {
660 // The deferred StackWatermarkSet::after_unwind check will be performed in
661 // * OptoRuntime::handle_exception_C_helper for C2 code
662 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
663 return nm->exception_begin();
664 }
665 }
666
667 // Entry code
668 if (StubRoutines::returns_to_call_stub(return_address)) {
669 // The deferred StackWatermarkSet::after_unwind check will be performed in
670 // JavaCallWrapper::~JavaCallWrapper
671 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
672 return StubRoutines::catch_exception_entry();
673 }
674 if (blob != nullptr && blob->is_upcall_stub()) {
675 return StubRoutines::upcall_stub_exception_handler();
676 }
677 // Interpreted code
678 if (Interpreter::contains(return_address)) {
679 // The deferred StackWatermarkSet::after_unwind check will be performed in
680 // InterpreterRuntime::exception_handler_for_exception
681 return Interpreter::rethrow_exception_entry();
682 }
683
684 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
685 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
686
687 #ifndef PRODUCT
688 { ResourceMark rm;
689 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
690 os::print_location(tty, (intptr_t)return_address);
691 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
692 tty->print_cr("b) other problem");
693 }
694 #endif // PRODUCT
695 ShouldNotReachHere();
696 return nullptr;
697 }
698
699
700 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
701 return raw_exception_handler_for_return_address(current, return_address);
702 JRT_END
703
704
705 address SharedRuntime::get_poll_stub(address pc) {
706 address stub;
707 // Look up the code blob
708 CodeBlob *cb = CodeCache::find_blob(pc);
709
710 // Should be an nmethod
711 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
712
713 // Look up the relocation information
714 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
715 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
716
717 #ifdef ASSERT
718 if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
719 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
720 Disassembler::decode(cb);
721 fatal("Only polling locations are used for safepoint");
722 }
723 #endif
724
725 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
726 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
727 if (at_poll_return) {
728 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
729 "polling page return stub not created yet");
730 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
731 } else if (has_wide_vectors) {
732 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
733 "polling page vectors safepoint stub not created yet");
734 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
735 } else {
736 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
737 "polling page safepoint stub not created yet");
738 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
739 }
740 log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
741 INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
742 p2i(Thread::current()),
743 Thread::current()->osthread()->thread_id(),
744 p2i(pc),
745 at_poll_return ? "return" : "loop",
746 p2i(stub));
747 return stub;
748 }
749
750 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
751 if (JvmtiExport::can_post_on_exceptions()) {
752 vframeStream vfst(current, true);
753 methodHandle method = methodHandle(current, vfst.method());
754 address bcp = method()->bcp_from(vfst.bci());
755 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
756 }
757
758 #if INCLUDE_JVMCI
759 if (EnableJVMCI) {
760 vframeStream vfst(current, true);
761 methodHandle method = methodHandle(current, vfst.method());
762 int bci = vfst.bci();
763 MethodData* trap_mdo = method->method_data();
764 if (trap_mdo != nullptr) {
765 // Set exception_seen if the exceptional bytecode is an invoke
766 Bytecode_invoke call = Bytecode_invoke_check(method, bci);
767 if (call.is_valid()) {
768 ResourceMark rm(current);
769
770 // Lock to read ProfileData, and ensure lock is not broken by a safepoint
771 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
772
773 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
774 if (pdata != nullptr && pdata->is_BitData()) {
775 BitData* bit_data = (BitData*) pdata;
776 bit_data->set_exception_seen();
777 }
778 }
779 }
780 }
781 #endif
782
783 Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
784 }
785
786 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
787 Handle h_exception = Exceptions::new_exception(current, name, message);
788 throw_and_post_jvmti_exception(current, h_exception);
789 }
790
791 #if INCLUDE_JVMTI
792 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
793 assert(hide == JNI_FALSE, "must be VTMS transition finish");
794 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
795 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
796 JNIHandles::destroy_local(vthread);
797 JRT_END
798
799 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
800 assert(hide == JNI_TRUE, "must be VTMS transition start");
801 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
802 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
803 JNIHandles::destroy_local(vthread);
804 JRT_END
805
806 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
807 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
808 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
809 JNIHandles::destroy_local(vthread);
810 JRT_END
811
812 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
813 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
814 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
815 JNIHandles::destroy_local(vthread);
816 JRT_END
817 #endif // INCLUDE_JVMTI
818
819 // The interpreter code to call this tracing function is only
820 // called/generated when UL is on for redefine, class and has the right level
821 // and tags. Since obsolete methods are never compiled, we don't have
822 // to modify the compilers to generate calls to this function.
823 //
824 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
825 JavaThread* thread, Method* method))
826 if (method->is_obsolete()) {
827 // We are calling an obsolete method, but this is not necessarily
828 // an error. Our method could have been redefined just after we
829 // fetched the Method* from the constant pool.
830 ResourceMark rm;
831 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
832 }
833
834 LogStreamHandle(Trace, interpreter, bytecode) log;
835 if (log.is_enabled()) {
836 ResourceMark rm;
837 log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s",
838 p2i(thread),
839 (method->is_static() ? "static" : "virtual"),
840 method->name_and_sig_as_C_string(),
841 (method->is_native() ? " native" : ""),
842 (thread->class_being_initialized() != nullptr ? " clinit" : ""),
843 (method->method_holder()->is_initialized() ? "" : " being_initialized"));
844 }
845 return 0;
846 JRT_END
847
848 // ret_pc points into caller; we are returning caller's exception handler
849 // for given exception
850 // Note that the implementation of this method assumes it's only called when an exception has actually occured
851 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
852 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
853 assert(nm != nullptr, "must exist");
854 ResourceMark rm;
855
856 #if INCLUDE_JVMCI
857 if (nm->is_compiled_by_jvmci()) {
858 // lookup exception handler for this pc
859 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
860 ExceptionHandlerTable table(nm);
861 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
862 if (t != nullptr) {
863 return nm->code_begin() + t->pco();
864 } else {
865 return Deoptimization::deoptimize_for_missing_exception_handler(nm);
866 }
867 }
868 #endif // INCLUDE_JVMCI
869
870 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
871 // determine handler bci, if any
872 EXCEPTION_MARK;
873
874 int handler_bci = -1;
875 int scope_depth = 0;
876 if (!force_unwind) {
877 int bci = sd->bci();
878 bool recursive_exception = false;
879 do {
880 bool skip_scope_increment = false;
881 // exception handler lookup
882 Klass* ek = exception->klass();
883 methodHandle mh(THREAD, sd->method());
884 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
885 if (HAS_PENDING_EXCEPTION) {
886 recursive_exception = true;
887 // We threw an exception while trying to find the exception handler.
888 // Transfer the new exception to the exception handle which will
889 // be set into thread local storage, and do another lookup for an
890 // exception handler for this exception, this time starting at the
891 // BCI of the exception handler which caused the exception to be
892 // thrown (bugs 4307310 and 4546590). Set "exception" reference
893 // argument to ensure that the correct exception is thrown (4870175).
894 recursive_exception_occurred = true;
895 exception = Handle(THREAD, PENDING_EXCEPTION);
896 CLEAR_PENDING_EXCEPTION;
897 if (handler_bci >= 0) {
898 bci = handler_bci;
899 handler_bci = -1;
900 skip_scope_increment = true;
901 }
902 }
903 else {
904 recursive_exception = false;
905 }
906 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
907 sd = sd->sender();
908 if (sd != nullptr) {
909 bci = sd->bci();
910 }
911 ++scope_depth;
912 }
913 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
914 }
915
916 // found handling method => lookup exception handler
917 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
918
919 ExceptionHandlerTable table(nm);
920 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
921 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
922 // Allow abbreviated catch tables. The idea is to allow a method
923 // to materialize its exceptions without committing to the exact
924 // routing of exceptions. In particular this is needed for adding
925 // a synthetic handler to unlock monitors when inlining
926 // synchronized methods since the unlock path isn't represented in
927 // the bytecodes.
928 t = table.entry_for(catch_pco, -1, 0);
929 }
930
931 #ifdef COMPILER1
932 if (t == nullptr && nm->is_compiled_by_c1()) {
933 assert(nm->unwind_handler_begin() != nullptr, "");
934 return nm->unwind_handler_begin();
935 }
936 #endif
937
938 if (t == nullptr) {
939 ttyLocker ttyl;
940 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
941 tty->print_cr(" Exception:");
942 exception->print();
943 tty->cr();
944 tty->print_cr(" Compiled exception table :");
945 table.print();
946 nm->print();
947 nm->print_code();
948 guarantee(false, "missing exception handler");
949 return nullptr;
950 }
951
952 if (handler_bci != -1) { // did we find a handler in this method?
953 sd->method()->set_exception_handler_entered(handler_bci); // profile
954 }
955 return nm->code_begin() + t->pco();
956 }
957
958 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
959 // These errors occur only at call sites
960 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
961 JRT_END
962
963 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
964 // These errors occur only at call sites
965 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
966 JRT_END
967
968 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
969 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
970 JRT_END
971
972 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
973 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
974 JRT_END
975
976 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
977 // This entry point is effectively only used for NullPointerExceptions which occur at inline
978 // cache sites (when the callee activation is not yet set up) so we are at a call site
979 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
980 JRT_END
981
982 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
983 throw_StackOverflowError_common(current, false);
984 JRT_END
985
986 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
987 throw_StackOverflowError_common(current, true);
988 JRT_END
989
990 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
991 // We avoid using the normal exception construction in this case because
992 // it performs an upcall to Java, and we're already out of stack space.
993 JavaThread* THREAD = current; // For exception macros.
994 InstanceKlass* k = vmClasses::StackOverflowError_klass();
995 oop exception_oop = k->allocate_instance(CHECK);
996 if (delayed) {
997 java_lang_Throwable::set_message(exception_oop,
998 Universe::delayed_stack_overflow_error_message());
999 }
1000 Handle exception (current, exception_oop);
1001 if (StackTraceInThrowable) {
1002 java_lang_Throwable::fill_in_stack_trace(exception);
1003 }
1004 // Remove the ScopedValue bindings in case we got a
1005 // StackOverflowError while we were trying to remove ScopedValue
1006 // bindings.
1007 current->clear_scopedValueBindings();
1008 // Increment counter for hs_err file reporting
1009 AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
1010 throw_and_post_jvmti_exception(current, exception);
1011 }
1012
1013 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
1014 address pc,
1015 ImplicitExceptionKind exception_kind)
1016 {
1017 address target_pc = nullptr;
1018
1019 if (Interpreter::contains(pc)) {
1020 switch (exception_kind) {
1021 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
1022 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
1023 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
1024 default: ShouldNotReachHere();
1025 }
1026 } else {
1027 switch (exception_kind) {
1028 case STACK_OVERFLOW: {
1029 // Stack overflow only occurs upon frame setup; the callee is
1030 // going to be unwound. Dispatch to a shared runtime stub
1031 // which will cause the StackOverflowError to be fabricated
1032 // and processed.
1033 // Stack overflow should never occur during deoptimization:
1034 // the compiled method bangs the stack by as much as the
1035 // interpreter would need in case of a deoptimization. The
1036 // deoptimization blob and uncommon trap blob bang the stack
1037 // in a debug VM to verify the correctness of the compiled
1038 // method stack banging.
1039 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
1040 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
1041 return SharedRuntime::throw_StackOverflowError_entry();
1042 }
1043
1044 case IMPLICIT_NULL: {
1045 if (VtableStubs::contains(pc)) {
1046 // We haven't yet entered the callee frame. Fabricate an
1047 // exception and begin dispatching it in the caller. Since
1048 // the caller was at a call site, it's safe to destroy all
1049 // caller-saved registers, as these entry points do.
1050 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
1051
1052 // If vt_stub is null, then return null to signal handler to report the SEGV error.
1053 if (vt_stub == nullptr) return nullptr;
1054
1055 if (vt_stub->is_abstract_method_error(pc)) {
1056 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
1057 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
1058 // Instead of throwing the abstract method error here directly, we re-resolve
1059 // and will throw the AbstractMethodError during resolve. As a result, we'll
1060 // get a more detailed error message.
1061 return SharedRuntime::get_handle_wrong_method_stub();
1062 } else {
1063 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
1064 // Assert that the signal comes from the expected location in stub code.
1065 assert(vt_stub->is_null_pointer_exception(pc),
1066 "obtained signal from unexpected location in stub code");
1067 return SharedRuntime::throw_NullPointerException_at_call_entry();
1068 }
1069 } else {
1070 CodeBlob* cb = CodeCache::find_blob(pc);
1071
1072 // If code blob is null, then return null to signal handler to report the SEGV error.
1073 if (cb == nullptr) return nullptr;
1074
1075 // Exception happened in CodeCache. Must be either:
1076 // 1. Inline-cache check in C2I handler blob,
1077 // 2. Inline-cache check in nmethod, or
1078 // 3. Implicit null exception in nmethod
1079
1080 if (!cb->is_nmethod()) {
1081 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1082 if (!is_in_blob) {
1083 // Allow normal crash reporting to handle this
1084 return nullptr;
1085 }
1086 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1087 // There is no handler here, so we will simply unwind.
1088 return SharedRuntime::throw_NullPointerException_at_call_entry();
1089 }
1090
1091 // Otherwise, it's a compiled method. Consult its exception handlers.
1092 nmethod* nm = cb->as_nmethod();
1093 if (nm->inlinecache_check_contains(pc)) {
1094 // exception happened inside inline-cache check code
1095 // => the nmethod is not yet active (i.e., the frame
1096 // is not set up yet) => use return address pushed by
1097 // caller => don't push another return address
1098 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1099 return SharedRuntime::throw_NullPointerException_at_call_entry();
1100 }
1101
1102 if (nm->method()->is_method_handle_intrinsic()) {
1103 // exception happened inside MH dispatch code, similar to a vtable stub
1104 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1105 return SharedRuntime::throw_NullPointerException_at_call_entry();
1106 }
1107
1108 #ifndef PRODUCT
1109 _implicit_null_throws++;
1110 #endif
1111 target_pc = nm->continuation_for_implicit_null_exception(pc);
1112 // If there's an unexpected fault, target_pc might be null,
1113 // in which case we want to fall through into the normal
1114 // error handling code.
1115 }
1116
1117 break; // fall through
1118 }
1119
1120
1121 case IMPLICIT_DIVIDE_BY_ZERO: {
1122 nmethod* nm = CodeCache::find_nmethod(pc);
1123 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1124 #ifndef PRODUCT
1125 _implicit_div0_throws++;
1126 #endif
1127 target_pc = nm->continuation_for_implicit_div0_exception(pc);
1128 // If there's an unexpected fault, target_pc might be null,
1129 // in which case we want to fall through into the normal
1130 // error handling code.
1131 break; // fall through
1132 }
1133
1134 default: ShouldNotReachHere();
1135 }
1136
1137 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1138
1139 if (exception_kind == IMPLICIT_NULL) {
1140 #ifndef PRODUCT
1141 // for AbortVMOnException flag
1142 Exceptions::debug_check_abort("java.lang.NullPointerException");
1143 #endif //PRODUCT
1144 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1145 } else {
1146 #ifndef PRODUCT
1147 // for AbortVMOnException flag
1148 Exceptions::debug_check_abort("java.lang.ArithmeticException");
1149 #endif //PRODUCT
1150 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1151 }
1152 return target_pc;
1153 }
1154
1155 ShouldNotReachHere();
1156 return nullptr;
1157 }
1158
1159
1160 /**
1161 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is
1162 * installed in the native function entry of all native Java methods before
1163 * they get linked to their actual native methods.
1164 *
1165 * \note
1166 * This method actually never gets called! The reason is because
1167 * the interpreter's native entries call NativeLookup::lookup() which
1168 * throws the exception when the lookup fails. The exception is then
1169 * caught and forwarded on the return from NativeLookup::lookup() call
1170 * before the call to the native function. This might change in the future.
1171 */
1172 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1173 {
1174 // We return a bad value here to make sure that the exception is
1175 // forwarded before we look at the return value.
1176 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1177 }
1178 JNI_END
1179
1180 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1181 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1182 }
1183
1184 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1185 #if INCLUDE_JVMCI
1186 if (!obj->klass()->has_finalizer()) {
1187 return;
1188 }
1189 #endif // INCLUDE_JVMCI
1190 assert(oopDesc::is_oop(obj), "must be a valid oop");
1191 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1192 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1193 JRT_END
1194
1195 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1196 assert(thread != nullptr, "No thread");
1197 if (thread == nullptr) {
1198 return 0;
1199 }
1200 guarantee(Thread::current() != thread || thread->is_oop_safe(),
1201 "current cannot touch oops after its GC barrier is detached.");
1202 oop obj = thread->threadObj();
1203 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1204 }
1205
1206 /**
1207 * This function ought to be a void function, but cannot be because
1208 * it gets turned into a tail-call on sparc, which runs into dtrace bug
1209 * 6254741. Once that is fixed we can remove the dummy return value.
1210 */
1211 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1212 return dtrace_object_alloc(JavaThread::current(), o, o->size());
1213 }
1214
1215 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1216 return dtrace_object_alloc(thread, o, o->size());
1217 }
1218
1219 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1220 assert(DTraceAllocProbes, "wrong call");
1221 Klass* klass = o->klass();
1222 Symbol* name = klass->name();
1223 HOTSPOT_OBJECT_ALLOC(
1224 get_java_tid(thread),
1225 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1226 return 0;
1227 }
1228
1229 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1230 JavaThread* current, Method* method))
1231 assert(current == JavaThread::current(), "pre-condition");
1232
1233 assert(DTraceMethodProbes, "wrong call");
1234 Symbol* kname = method->klass_name();
1235 Symbol* name = method->name();
1236 Symbol* sig = method->signature();
1237 HOTSPOT_METHOD_ENTRY(
1238 get_java_tid(current),
1239 (char *) kname->bytes(), kname->utf8_length(),
1240 (char *) name->bytes(), name->utf8_length(),
1241 (char *) sig->bytes(), sig->utf8_length());
1242 return 0;
1243 JRT_END
1244
1245 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1246 JavaThread* current, Method* method))
1247 assert(current == JavaThread::current(), "pre-condition");
1248 assert(DTraceMethodProbes, "wrong call");
1249 Symbol* kname = method->klass_name();
1250 Symbol* name = method->name();
1251 Symbol* sig = method->signature();
1252 HOTSPOT_METHOD_RETURN(
1253 get_java_tid(current),
1254 (char *) kname->bytes(), kname->utf8_length(),
1255 (char *) name->bytes(), name->utf8_length(),
1256 (char *) sig->bytes(), sig->utf8_length());
1257 return 0;
1258 JRT_END
1259
1260
1261 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1262 // for a call current in progress, i.e., arguments has been pushed on stack
1263 // put callee has not been invoked yet. Used by: resolve virtual/static,
1264 // vtable updates, etc. Caller frame must be compiled.
1265 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1266 JavaThread* current = THREAD;
1267 ResourceMark rm(current);
1268
1269 // last java frame on stack (which includes native call frames)
1270 vframeStream vfst(current, true); // Do not skip and javaCalls
1271
1272 return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1273 }
1274
1275 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1276 nmethod* caller = vfst.nm();
1277
1278 address pc = vfst.frame_pc();
1279 { // Get call instruction under lock because another thread may be busy patching it.
1280 CompiledICLocker ic_locker(caller);
1281 return caller->attached_method_before_pc(pc);
1282 }
1283 return nullptr;
1284 }
1285
1286 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1287 // for a call current in progress, i.e., arguments has been pushed on stack
1288 // but callee has not been invoked yet. Caller frame must be compiled.
1289 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1290 CallInfo& callinfo, TRAPS) {
1291 Handle receiver;
1292 Handle nullHandle; // create a handy null handle for exception returns
1293 JavaThread* current = THREAD;
1294
1295 assert(!vfst.at_end(), "Java frame must exist");
1296
1297 // Find caller and bci from vframe
1298 methodHandle caller(current, vfst.method());
1299 int bci = vfst.bci();
1300
1301 if (caller->is_continuation_enter_intrinsic()) {
1302 bc = Bytecodes::_invokestatic;
1303 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1304 return receiver;
1305 }
1306
1307 Bytecode_invoke bytecode(caller, bci);
1308 int bytecode_index = bytecode.index();
1309 bc = bytecode.invoke_code();
1310
1311 methodHandle attached_method(current, extract_attached_method(vfst));
1312 if (attached_method.not_null()) {
1313 Method* callee = bytecode.static_target(CHECK_NH);
1314 vmIntrinsics::ID id = callee->intrinsic_id();
1315 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1316 // it attaches statically resolved method to the call site.
1317 if (MethodHandles::is_signature_polymorphic(id) &&
1318 MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1319 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1320
1321 // Adjust invocation mode according to the attached method.
1322 switch (bc) {
1323 case Bytecodes::_invokevirtual:
1324 if (attached_method->method_holder()->is_interface()) {
1325 bc = Bytecodes::_invokeinterface;
1326 }
1327 break;
1328 case Bytecodes::_invokeinterface:
1329 if (!attached_method->method_holder()->is_interface()) {
1330 bc = Bytecodes::_invokevirtual;
1331 }
1332 break;
1333 case Bytecodes::_invokehandle:
1334 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1335 bc = attached_method->is_static() ? Bytecodes::_invokestatic
1336 : Bytecodes::_invokevirtual;
1337 }
1338 break;
1339 default:
1340 break;
1341 }
1342 }
1343 }
1344
1345 assert(bc != Bytecodes::_illegal, "not initialized");
1346
1347 bool has_receiver = bc != Bytecodes::_invokestatic &&
1348 bc != Bytecodes::_invokedynamic &&
1349 bc != Bytecodes::_invokehandle;
1350
1351 // Find receiver for non-static call
1352 if (has_receiver) {
1353 // This register map must be update since we need to find the receiver for
1354 // compiled frames. The receiver might be in a register.
1355 RegisterMap reg_map2(current,
1356 RegisterMap::UpdateMap::include,
1357 RegisterMap::ProcessFrames::include,
1358 RegisterMap::WalkContinuation::skip);
1359 frame stubFrame = current->last_frame();
1360 // Caller-frame is a compiled frame
1361 frame callerFrame = stubFrame.sender(®_map2);
1362
1363 if (attached_method.is_null()) {
1364 Method* callee = bytecode.static_target(CHECK_NH);
1365 if (callee == nullptr) {
1366 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1367 }
1368 }
1369
1370 // Retrieve from a compiled argument list
1371 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2));
1372 assert(oopDesc::is_oop_or_null(receiver()), "");
1373
1374 if (receiver.is_null()) {
1375 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1376 }
1377 }
1378
1379 // Resolve method
1380 if (attached_method.not_null()) {
1381 // Parameterized by attached method.
1382 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1383 } else {
1384 // Parameterized by bytecode.
1385 constantPoolHandle constants(current, caller->constants());
1386 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1387 }
1388
1389 #ifdef ASSERT
1390 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1391 if (has_receiver) {
1392 assert(receiver.not_null(), "should have thrown exception");
1393 Klass* receiver_klass = receiver->klass();
1394 Klass* rk = nullptr;
1395 if (attached_method.not_null()) {
1396 // In case there's resolved method attached, use its holder during the check.
1397 rk = attached_method->method_holder();
1398 } else {
1399 // Klass is already loaded.
1400 constantPoolHandle constants(current, caller->constants());
1401 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1402 }
1403 Klass* static_receiver_klass = rk;
1404 assert(receiver_klass->is_subtype_of(static_receiver_klass),
1405 "actual receiver must be subclass of static receiver klass");
1406 if (receiver_klass->is_instance_klass()) {
1407 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1408 tty->print_cr("ERROR: Klass not yet initialized!!");
1409 receiver_klass->print();
1410 }
1411 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1412 }
1413 }
1414 #endif
1415
1416 return receiver;
1417 }
1418
1419 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1420 JavaThread* current = THREAD;
1421 ResourceMark rm(current);
1422 // We need first to check if any Java activations (compiled, interpreted)
1423 // exist on the stack since last JavaCall. If not, we need
1424 // to get the target method from the JavaCall wrapper.
1425 vframeStream vfst(current, true); // Do not skip any javaCalls
1426 methodHandle callee_method;
1427 if (vfst.at_end()) {
1428 // No Java frames were found on stack since we did the JavaCall.
1429 // Hence the stack can only contain an entry_frame. We need to
1430 // find the target method from the stub frame.
1431 RegisterMap reg_map(current,
1432 RegisterMap::UpdateMap::skip,
1433 RegisterMap::ProcessFrames::include,
1434 RegisterMap::WalkContinuation::skip);
1435 frame fr = current->last_frame();
1436 assert(fr.is_runtime_frame(), "must be a runtimeStub");
1437 fr = fr.sender(®_map);
1438 assert(fr.is_entry_frame(), "must be");
1439 // fr is now pointing to the entry frame.
1440 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1441 } else {
1442 Bytecodes::Code bc;
1443 CallInfo callinfo;
1444 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1445 callee_method = methodHandle(current, callinfo.selected_method());
1446 }
1447 assert(callee_method()->is_method(), "must be");
1448 return callee_method;
1449 }
1450
1451 // Resolves a call.
1452 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1453 JavaThread* current = THREAD;
1454 ResourceMark rm(current);
1455 RegisterMap cbl_map(current,
1456 RegisterMap::UpdateMap::skip,
1457 RegisterMap::ProcessFrames::include,
1458 RegisterMap::WalkContinuation::skip);
1459 frame caller_frame = current->last_frame().sender(&cbl_map);
1460
1461 CodeBlob* caller_cb = caller_frame.cb();
1462 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1463 nmethod* caller_nm = caller_cb->as_nmethod();
1464
1465 // determine call info & receiver
1466 // note: a) receiver is null for static calls
1467 // b) an exception is thrown if receiver is null for non-static calls
1468 CallInfo call_info;
1469 Bytecodes::Code invoke_code = Bytecodes::_illegal;
1470 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1471
1472 NoSafepointVerifier nsv;
1473
1474 methodHandle callee_method(current, call_info.selected_method());
1475
1476 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1477 (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1478 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1479 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1480 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1481
1482 assert(!caller_nm->is_unloading(), "It should not be unloading");
1483
1484 // tracing/debugging/statistics
1485 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1486 (is_virtual) ? (&_resolve_virtual_ctr) :
1487 (&_resolve_static_ctr);
1488 AtomicAccess::inc(addr);
1489
1490 #ifndef PRODUCT
1491 if (TraceCallFixup) {
1492 ResourceMark rm(current);
1493 tty->print("resolving %s%s (%s) call to",
1494 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1495 Bytecodes::name(invoke_code));
1496 callee_method->print_short_name(tty);
1497 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1498 p2i(caller_frame.pc()), p2i(callee_method->code()));
1499 }
1500 #endif
1501
1502 if (invoke_code == Bytecodes::_invokestatic) {
1503 assert(callee_method->method_holder()->is_initialized() ||
1504 callee_method->method_holder()->is_reentrant_initialization(current),
1505 "invalid class initialization state for invoke_static");
1506 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1507 // In order to keep class initialization check, do not patch call
1508 // site for static call when the class is not fully initialized.
1509 // Proper check is enforced by call site re-resolution on every invocation.
1510 //
1511 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1512 // explicit class initialization check is put in nmethod entry (VEP).
1513 assert(callee_method->method_holder()->is_linked(), "must be");
1514 return callee_method;
1515 }
1516 }
1517
1518
1519 // JSR 292 key invariant:
1520 // If the resolved method is a MethodHandle invoke target, the call
1521 // site must be a MethodHandle call site, because the lambda form might tail-call
1522 // leaving the stack in a state unknown to either caller or callee
1523
1524 // Compute entry points. The computation of the entry points is independent of
1525 // patching the call.
1526
1527 // Make sure the callee nmethod does not get deoptimized and removed before
1528 // we are done patching the code.
1529
1530
1531 CompiledICLocker ml(caller_nm);
1532 if (is_virtual && !is_optimized) {
1533 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1534 inline_cache->update(&call_info, receiver->klass());
1535 } else {
1536 // Callsite is a direct call - set it to the destination method
1537 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1538 callsite->set(callee_method);
1539 }
1540
1541 return callee_method;
1542 }
1543
1544 // Inline caches exist only in compiled code
1545 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1546 PerfTraceTime timer(_perf_ic_miss_total_time);
1547
1548 #ifdef ASSERT
1549 RegisterMap reg_map(current,
1550 RegisterMap::UpdateMap::skip,
1551 RegisterMap::ProcessFrames::include,
1552 RegisterMap::WalkContinuation::skip);
1553 frame stub_frame = current->last_frame();
1554 assert(stub_frame.is_runtime_frame(), "sanity check");
1555 frame caller_frame = stub_frame.sender(®_map);
1556 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1557 #endif /* ASSERT */
1558
1559 methodHandle callee_method;
1560 JRT_BLOCK
1561 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1562 // Return Method* through TLS
1563 current->set_vm_result_metadata(callee_method());
1564 JRT_BLOCK_END
1565 // return compiled code entry point after potential safepoints
1566 return get_resolved_entry(current, callee_method);
1567 JRT_END
1568
1569
1570 // Handle call site that has been made non-entrant
1571 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1572 PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1573
1574 // 6243940 We might end up in here if the callee is deoptimized
1575 // as we race to call it. We don't want to take a safepoint if
1576 // the caller was interpreted because the caller frame will look
1577 // interpreted to the stack walkers and arguments are now
1578 // "compiled" so it is much better to make this transition
1579 // invisible to the stack walking code. The i2c path will
1580 // place the callee method in the callee_target. It is stashed
1581 // there because if we try and find the callee by normal means a
1582 // safepoint is possible and have trouble gc'ing the compiled args.
1583 RegisterMap reg_map(current,
1584 RegisterMap::UpdateMap::skip,
1585 RegisterMap::ProcessFrames::include,
1586 RegisterMap::WalkContinuation::skip);
1587 frame stub_frame = current->last_frame();
1588 assert(stub_frame.is_runtime_frame(), "sanity check");
1589 frame caller_frame = stub_frame.sender(®_map);
1590
1591 if (caller_frame.is_interpreted_frame() ||
1592 caller_frame.is_entry_frame() ||
1593 caller_frame.is_upcall_stub_frame()) {
1594 Method* callee = current->callee_target();
1595 guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1596 current->set_vm_result_metadata(callee);
1597 current->set_callee_target(nullptr);
1598 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1599 // Bypass class initialization checks in c2i when caller is in native.
1600 // JNI calls to static methods don't have class initialization checks.
1601 // Fast class initialization checks are present in c2i adapters and call into
1602 // SharedRuntime::handle_wrong_method() on the slow path.
1603 //
1604 // JVM upcalls may land here as well, but there's a proper check present in
1605 // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1606 // so bypassing it in c2i adapter is benign.
1607 return callee->get_c2i_no_clinit_check_entry();
1608 } else {
1609 return callee->get_c2i_entry();
1610 }
1611 }
1612
1613 // Must be compiled to compiled path which is safe to stackwalk
1614 methodHandle callee_method;
1615 JRT_BLOCK
1616 // Force resolving of caller (if we called from compiled frame)
1617 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1618 current->set_vm_result_metadata(callee_method());
1619 JRT_BLOCK_END
1620 // return compiled code entry point after potential safepoints
1621 return get_resolved_entry(current, callee_method);
1622 JRT_END
1623
1624 // Handle abstract method call
1625 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1626 PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1627
1628 // Verbose error message for AbstractMethodError.
1629 // Get the called method from the invoke bytecode.
1630 vframeStream vfst(current, true);
1631 assert(!vfst.at_end(), "Java frame must exist");
1632 methodHandle caller(current, vfst.method());
1633 Bytecode_invoke invoke(caller, vfst.bci());
1634 DEBUG_ONLY( invoke.verify(); )
1635
1636 // Find the compiled caller frame.
1637 RegisterMap reg_map(current,
1638 RegisterMap::UpdateMap::include,
1639 RegisterMap::ProcessFrames::include,
1640 RegisterMap::WalkContinuation::skip);
1641 frame stubFrame = current->last_frame();
1642 assert(stubFrame.is_runtime_frame(), "must be");
1643 frame callerFrame = stubFrame.sender(®_map);
1644 assert(callerFrame.is_compiled_frame(), "must be");
1645
1646 // Install exception and return forward entry.
1647 address res = SharedRuntime::throw_AbstractMethodError_entry();
1648 JRT_BLOCK
1649 methodHandle callee(current, invoke.static_target(current));
1650 if (!callee.is_null()) {
1651 oop recv = callerFrame.retrieve_receiver(®_map);
1652 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1653 res = StubRoutines::forward_exception_entry();
1654 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1655 }
1656 JRT_BLOCK_END
1657 return res;
1658 JRT_END
1659
1660 // return verified_code_entry if interp_only_mode is not set for the current thread;
1661 // otherwise return c2i entry.
1662 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1663 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1664 // In interp_only_mode we need to go to the interpreted entry
1665 // The c2i won't patch in this mode -- see fixup_callers_callsite
1666 return callee_method->get_c2i_entry();
1667 }
1668 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1669 return callee_method->verified_code_entry();
1670 }
1671
1672 // resolve a static call and patch code
1673 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1674 PerfTraceTime timer(_perf_resolve_static_total_time);
1675
1676 methodHandle callee_method;
1677 bool enter_special = false;
1678 JRT_BLOCK
1679 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1680 current->set_vm_result_metadata(callee_method());
1681 JRT_BLOCK_END
1682 // return compiled code entry point after potential safepoints
1683 return get_resolved_entry(current, callee_method);
1684 JRT_END
1685
1686 // resolve virtual call and update inline cache to monomorphic
1687 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1688 PerfTraceTime timer(_perf_resolve_virtual_total_time);
1689
1690 methodHandle callee_method;
1691 JRT_BLOCK
1692 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1693 current->set_vm_result_metadata(callee_method());
1694 JRT_BLOCK_END
1695 // return compiled code entry point after potential safepoints
1696 return get_resolved_entry(current, callee_method);
1697 JRT_END
1698
1699
1700 // Resolve a virtual call that can be statically bound (e.g., always
1701 // monomorphic, so it has no inline cache). Patch code to resolved target.
1702 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1703 PerfTraceTime timer(_perf_resolve_opt_virtual_total_time);
1704
1705 methodHandle callee_method;
1706 JRT_BLOCK
1707 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1708 current->set_vm_result_metadata(callee_method());
1709 JRT_BLOCK_END
1710 // return compiled code entry point after potential safepoints
1711 return get_resolved_entry(current, callee_method);
1712 JRT_END
1713
1714 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1715 JavaThread* current = THREAD;
1716 ResourceMark rm(current);
1717 CallInfo call_info;
1718 Bytecodes::Code bc;
1719
1720 // receiver is null for static calls. An exception is thrown for null
1721 // receivers for non-static calls
1722 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1723
1724 methodHandle callee_method(current, call_info.selected_method());
1725
1726 AtomicAccess::inc(&_ic_miss_ctr);
1727
1728 #ifndef PRODUCT
1729 // Statistics & Tracing
1730 if (TraceCallFixup) {
1731 ResourceMark rm(current);
1732 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1733 callee_method->print_short_name(tty);
1734 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1735 }
1736
1737 if (ICMissHistogram) {
1738 MutexLocker m(VMStatistic_lock);
1739 RegisterMap reg_map(current,
1740 RegisterMap::UpdateMap::skip,
1741 RegisterMap::ProcessFrames::include,
1742 RegisterMap::WalkContinuation::skip);
1743 frame f = current->last_frame().real_sender(®_map);// skip runtime stub
1744 // produce statistics under the lock
1745 trace_ic_miss(f.pc());
1746 }
1747 #endif
1748
1749 // install an event collector so that when a vtable stub is created the
1750 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1751 // event can't be posted when the stub is created as locks are held
1752 // - instead the event will be deferred until the event collector goes
1753 // out of scope.
1754 JvmtiDynamicCodeEventCollector event_collector;
1755
1756 // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1757 RegisterMap reg_map(current,
1758 RegisterMap::UpdateMap::skip,
1759 RegisterMap::ProcessFrames::include,
1760 RegisterMap::WalkContinuation::skip);
1761 frame caller_frame = current->last_frame().sender(®_map);
1762 CodeBlob* cb = caller_frame.cb();
1763 nmethod* caller_nm = cb->as_nmethod();
1764
1765 CompiledICLocker ml(caller_nm);
1766 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1767 inline_cache->update(&call_info, receiver()->klass());
1768
1769 return callee_method;
1770 }
1771
1772 //
1773 // Resets a call-site in compiled code so it will get resolved again.
1774 // This routines handles both virtual call sites, optimized virtual call
1775 // sites, and static call sites. Typically used to change a call sites
1776 // destination from compiled to interpreted.
1777 //
1778 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1779 JavaThread* current = THREAD;
1780 ResourceMark rm(current);
1781 RegisterMap reg_map(current,
1782 RegisterMap::UpdateMap::skip,
1783 RegisterMap::ProcessFrames::include,
1784 RegisterMap::WalkContinuation::skip);
1785 frame stub_frame = current->last_frame();
1786 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1787 frame caller = stub_frame.sender(®_map);
1788
1789 // Do nothing if the frame isn't a live compiled frame.
1790 // nmethod could be deoptimized by the time we get here
1791 // so no update to the caller is needed.
1792
1793 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1794 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1795
1796 address pc = caller.pc();
1797
1798 nmethod* caller_nm = CodeCache::find_nmethod(pc);
1799 assert(caller_nm != nullptr, "did not find caller nmethod");
1800
1801 // Default call_addr is the location of the "basic" call.
1802 // Determine the address of the call we a reresolving. With
1803 // Inline Caches we will always find a recognizable call.
1804 // With Inline Caches disabled we may or may not find a
1805 // recognizable call. We will always find a call for static
1806 // calls and for optimized virtual calls. For vanilla virtual
1807 // calls it depends on the state of the UseInlineCaches switch.
1808 //
1809 // With Inline Caches disabled we can get here for a virtual call
1810 // for two reasons:
1811 // 1 - calling an abstract method. The vtable for abstract methods
1812 // will run us thru handle_wrong_method and we will eventually
1813 // end up in the interpreter to throw the ame.
1814 // 2 - a racing deoptimization. We could be doing a vanilla vtable
1815 // call and between the time we fetch the entry address and
1816 // we jump to it the target gets deoptimized. Similar to 1
1817 // we will wind up in the interprter (thru a c2i with c2).
1818 //
1819 CompiledICLocker ml(caller_nm);
1820 address call_addr = caller_nm->call_instruction_address(pc);
1821
1822 if (call_addr != nullptr) {
1823 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1824 // bytes back in the instruction stream so we must also check for reloc info.
1825 RelocIterator iter(caller_nm, call_addr, call_addr+1);
1826 bool ret = iter.next(); // Get item
1827 if (ret) {
1828 switch (iter.type()) {
1829 case relocInfo::static_call_type:
1830 case relocInfo::opt_virtual_call_type: {
1831 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1832 cdc->set_to_clean();
1833 break;
1834 }
1835
1836 case relocInfo::virtual_call_type: {
1837 // compiled, dispatched call (which used to call an interpreted method)
1838 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1839 inline_cache->set_to_clean();
1840 break;
1841 }
1842 default:
1843 break;
1844 }
1845 }
1846 }
1847 }
1848
1849 methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1850
1851 AtomicAccess::inc(&_wrong_method_ctr);
1852
1853 #ifndef PRODUCT
1854 if (TraceCallFixup) {
1855 ResourceMark rm(current);
1856 tty->print("handle_wrong_method reresolving call to");
1857 callee_method->print_short_name(tty);
1858 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1859 }
1860 #endif
1861
1862 return callee_method;
1863 }
1864
1865 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1866 // The faulting unsafe accesses should be changed to throw the error
1867 // synchronously instead. Meanwhile the faulting instruction will be
1868 // skipped over (effectively turning it into a no-op) and an
1869 // asynchronous exception will be raised which the thread will
1870 // handle at a later point. If the instruction is a load it will
1871 // return garbage.
1872
1873 // Request an async exception.
1874 thread->set_pending_unsafe_access_error();
1875
1876 // Return address of next instruction to execute.
1877 return next_pc;
1878 }
1879
1880 #ifdef ASSERT
1881 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1882 const BasicType* sig_bt,
1883 const VMRegPair* regs) {
1884 ResourceMark rm;
1885 const int total_args_passed = method->size_of_parameters();
1886 const VMRegPair* regs_with_member_name = regs;
1887 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1888
1889 const int member_arg_pos = total_args_passed - 1;
1890 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1891 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1892
1893 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1894
1895 for (int i = 0; i < member_arg_pos; i++) {
1896 VMReg a = regs_with_member_name[i].first();
1897 VMReg b = regs_without_member_name[i].first();
1898 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1899 }
1900 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1901 }
1902 #endif
1903
1904 // ---------------------------------------------------------------------------
1905 // We are calling the interpreter via a c2i. Normally this would mean that
1906 // we were called by a compiled method. However we could have lost a race
1907 // where we went int -> i2c -> c2i and so the caller could in fact be
1908 // interpreted. If the caller is compiled we attempt to patch the caller
1909 // so he no longer calls into the interpreter.
1910 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1911 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1912
1913 // It's possible that deoptimization can occur at a call site which hasn't
1914 // been resolved yet, in which case this function will be called from
1915 // an nmethod that has been patched for deopt and we can ignore the
1916 // request for a fixup.
1917 // Also it is possible that we lost a race in that from_compiled_entry
1918 // is now back to the i2c in that case we don't need to patch and if
1919 // we did we'd leap into space because the callsite needs to use
1920 // "to interpreter" stub in order to load up the Method*. Don't
1921 // ask me how I know this...
1922
1923 // Result from nmethod::is_unloading is not stable across safepoints.
1924 NoSafepointVerifier nsv;
1925
1926 nmethod* callee = method->code();
1927 if (callee == nullptr) {
1928 return;
1929 }
1930
1931 // write lock needed because we might patch call site by set_to_clean()
1932 // and is_unloading() can modify nmethod's state
1933 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1934
1935 CodeBlob* cb = CodeCache::find_blob(caller_pc);
1936 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1937 return;
1938 }
1939
1940 // The check above makes sure this is an nmethod.
1941 nmethod* caller = cb->as_nmethod();
1942
1943 // Get the return PC for the passed caller PC.
1944 address return_pc = caller_pc + frame::pc_return_offset;
1945
1946 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1947 return;
1948 }
1949
1950 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1951 CompiledICLocker ic_locker(caller);
1952 ResourceMark rm;
1953
1954 // If we got here through a static call or opt_virtual call, then we know where the
1955 // call address would be; let's peek at it
1956 address callsite_addr = (address)nativeCall_before(return_pc);
1957 RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1958 if (!iter.next()) {
1959 // No reloc entry found; not a static or optimized virtual call
1960 return;
1961 }
1962
1963 relocInfo::relocType type = iter.reloc()->type();
1964 if (type != relocInfo::static_call_type &&
1965 type != relocInfo::opt_virtual_call_type) {
1966 return;
1967 }
1968
1969 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1970 callsite->set_to_clean();
1971 JRT_END
1972
1973
1974 // same as JVM_Arraycopy, but called directly from compiled code
1975 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
1976 oopDesc* dest, jint dest_pos,
1977 jint length,
1978 JavaThread* current)) {
1979 #ifndef PRODUCT
1980 _slow_array_copy_ctr++;
1981 #endif
1982 // Check if we have null pointers
1983 if (src == nullptr || dest == nullptr) {
1984 THROW(vmSymbols::java_lang_NullPointerException());
1985 }
1986 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
1987 // even though the copy_array API also performs dynamic checks to ensure
1988 // that src and dest are truly arrays (and are conformable).
1989 // The copy_array mechanism is awkward and could be removed, but
1990 // the compilers don't call this function except as a last resort,
1991 // so it probably doesn't matter.
1992 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1993 (arrayOopDesc*)dest, dest_pos,
1994 length, current);
1995 }
1996 JRT_END
1997
1998 // The caller of generate_class_cast_message() (or one of its callers)
1999 // must use a ResourceMark in order to correctly free the result.
2000 char* SharedRuntime::generate_class_cast_message(
2001 JavaThread* thread, Klass* caster_klass) {
2002
2003 // Get target class name from the checkcast instruction
2004 vframeStream vfst(thread, true);
2005 assert(!vfst.at_end(), "Java frame must exist");
2006 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2007 constantPoolHandle cpool(thread, vfst.method()->constants());
2008 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2009 Symbol* target_klass_name = nullptr;
2010 if (target_klass == nullptr) {
2011 // This klass should be resolved, but just in case, get the name in the klass slot.
2012 target_klass_name = cpool->klass_name_at(cc.index());
2013 }
2014 return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2015 }
2016
2017
2018 // The caller of generate_class_cast_message() (or one of its callers)
2019 // must use a ResourceMark in order to correctly free the result.
2020 char* SharedRuntime::generate_class_cast_message(
2021 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2022 const char* caster_name = caster_klass->external_name();
2023
2024 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
2025 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
2026 target_klass->external_name();
2027
2028 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2029
2030 const char* caster_klass_description = "";
2031 const char* target_klass_description = "";
2032 const char* klass_separator = "";
2033 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
2034 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2035 } else {
2036 caster_klass_description = caster_klass->class_in_module_of_loader();
2037 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
2038 klass_separator = (target_klass != nullptr) ? "; " : "";
2039 }
2040
2041 // add 3 for parenthesis and preceding space
2042 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2043
2044 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2045 if (message == nullptr) {
2046 // Shouldn't happen, but don't cause even more problems if it does
2047 message = const_cast<char*>(caster_klass->external_name());
2048 } else {
2049 jio_snprintf(message,
2050 msglen,
2051 "class %s cannot be cast to class %s (%s%s%s)",
2052 caster_name,
2053 target_name,
2054 caster_klass_description,
2055 klass_separator,
2056 target_klass_description
2057 );
2058 }
2059 return message;
2060 }
2061
2062 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2063 (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2064 JRT_END
2065
2066 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2067 if (!SafepointSynchronize::is_synchronizing()) {
2068 // Only try quick_enter() if we're not trying to reach a safepoint
2069 // so that the calling thread reaches the safepoint more quickly.
2070 if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
2071 return;
2072 }
2073 }
2074 // NO_ASYNC required because an async exception on the state transition destructor
2075 // would leave you with the lock held and it would never be released.
2076 // The normal monitorenter NullPointerException is thrown without acquiring a lock
2077 // and the model is that an exception implies the method failed.
2078 JRT_BLOCK_NO_ASYNC
2079 Handle h_obj(THREAD, obj);
2080 ObjectSynchronizer::enter(h_obj, lock, current);
2081 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2082 JRT_BLOCK_END
2083 }
2084
2085 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2086 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2087 SharedRuntime::monitor_enter_helper(obj, lock, current);
2088 JRT_END
2089
2090 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2091 assert(JavaThread::current() == current, "invariant");
2092 // Exit must be non-blocking, and therefore no exceptions can be thrown.
2093 ExceptionMark em(current);
2094
2095 // Check if C2_MacroAssembler::fast_unlock() or
2096 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated
2097 // monitor before going slow path. Since there is no safepoint
2098 // polling when calling into the VM, we can be sure that the monitor
2099 // hasn't been deallocated.
2100 ObjectMonitor* m = current->unlocked_inflated_monitor();
2101 if (m != nullptr) {
2102 assert(!m->has_owner(current), "must be");
2103 current->clear_unlocked_inflated_monitor();
2104
2105 // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2106 if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2107 // Some other thread acquired the lock (or the monitor was
2108 // deflated). Either way we are done.
2109 return;
2110 }
2111 }
2112
2113 // The object could become unlocked through a JNI call, which we have no other checks for.
2114 // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2115 if (obj->is_unlocked()) {
2116 if (CheckJNICalls) {
2117 fatal("Object has been unlocked by JNI");
2118 }
2119 return;
2120 }
2121 ObjectSynchronizer::exit(obj, lock, current);
2122 }
2123
2124 // Handles the uncommon cases of monitor unlocking in compiled code
2125 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2126 assert(current == JavaThread::current(), "pre-condition");
2127 SharedRuntime::monitor_exit_helper(obj, lock, current);
2128 JRT_END
2129
2130 #ifndef PRODUCT
2131
2132 void SharedRuntime::print_statistics() {
2133 ttyLocker ttyl;
2134 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'");
2135
2136 SharedRuntime::print_ic_miss_histogram_on(tty);
2137 SharedRuntime::print_counters_on(tty);
2138 AdapterHandlerLibrary::print_statistics_on(tty);
2139
2140 if (xtty != nullptr) xtty->tail("statistics");
2141 }
2142
2143 //void SharedRuntime::print_counters_on(outputStream* st) {
2144 // // Dump the JRT_ENTRY counters
2145 // if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr);
2146 // if (_new_array_ctr) st->print_cr("%5u new array requires GC", _new_array_ctr);
2147 // if (_multi2_ctr) st->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2148 // if (_multi3_ctr) st->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2149 // if (_multi4_ctr) st->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2150 // if (_multi5_ctr) st->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2151 //
2152 // st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2153 // st->print_cr("%5u wrong method", _wrong_method_ctr);
2154 // st->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2155 // st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2156 // st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2157 //
2158 // if (_mon_enter_stub_ctr) st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2159 // if (_mon_exit_stub_ctr) st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2160 // if (_mon_enter_ctr) st->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2161 // if (_mon_exit_ctr) st->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2162 // if (_partial_subtype_ctr) st->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2163 // if (_jbyte_array_copy_ctr) st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2164 // if (_jshort_array_copy_ctr) st->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2165 // if (_jint_array_copy_ctr) st->print_cr("%5u int array copies", _jint_array_copy_ctr);
2166 // if (_jlong_array_copy_ctr) st->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2167 // if (_oop_array_copy_ctr) st->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2168 // if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2169 // if (_unsafe_array_copy_ctr) st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2170 // if (_generic_array_copy_ctr) st->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2171 // if (_slow_array_copy_ctr) st->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2172 // if (_find_handler_ctr) st->print_cr("%5u find exception handler", _find_handler_ctr);
2173 // if (_rethrow_ctr) st->print_cr("%5u rethrow handler", _rethrow_ctr);
2174 // if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2175 //}
2176
2177 inline double percent(int64_t x, int64_t y) {
2178 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2179 }
2180
2181 class MethodArityHistogram {
2182 public:
2183 enum { MAX_ARITY = 256 };
2184 private:
2185 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2186 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words
2187 static uint64_t _total_compiled_calls;
2188 static uint64_t _max_compiled_calls_per_method;
2189 static int _max_arity; // max. arity seen
2190 static int _max_size; // max. arg size seen
2191
2192 static void add_method_to_histogram(nmethod* nm) {
2193 Method* method = (nm == nullptr) ? nullptr : nm->method();
2194 if (method != nullptr) {
2195 ArgumentCount args(method->signature());
2196 int arity = args.size() + (method->is_static() ? 0 : 1);
2197 int argsize = method->size_of_parameters();
2198 arity = MIN2(arity, MAX_ARITY-1);
2199 argsize = MIN2(argsize, MAX_ARITY-1);
2200 uint64_t count = (uint64_t)method->compiled_invocation_count();
2201 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2202 _total_compiled_calls += count;
2203 _arity_histogram[arity] += count;
2204 _size_histogram[argsize] += count;
2205 _max_arity = MAX2(_max_arity, arity);
2206 _max_size = MAX2(_max_size, argsize);
2207 }
2208 }
2209
2210 void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2211 const int N = MIN2(9, n);
2212 double sum = 0;
2213 double weighted_sum = 0;
2214 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2215 if (sum >= 1) { // prevent divide by zero or divide overflow
2216 double rest = sum;
2217 double percent = sum / 100;
2218 for (int i = 0; i <= N; i++) {
2219 rest -= (double)histo[i];
2220 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2221 }
2222 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2223 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2224 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2225 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2226 } else {
2227 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2228 }
2229 }
2230
2231 void print_histogram() {
2232 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2233 print_histogram_helper(_max_arity, _arity_histogram, "arity");
2234 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2235 print_histogram_helper(_max_size, _size_histogram, "size");
2236 tty->cr();
2237 }
2238
2239 public:
2240 MethodArityHistogram() {
2241 // Take the Compile_lock to protect against changes in the CodeBlob structures
2242 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2243 // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2244 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2245 _max_arity = _max_size = 0;
2246 _total_compiled_calls = 0;
2247 _max_compiled_calls_per_method = 0;
2248 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2249 CodeCache::nmethods_do(add_method_to_histogram);
2250 print_histogram();
2251 }
2252 };
2253
2254 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2255 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2256 uint64_t MethodArityHistogram::_total_compiled_calls;
2257 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2258 int MethodArityHistogram::_max_arity;
2259 int MethodArityHistogram::_max_size;
2260
2261 void SharedRuntime::print_call_statistics_on(outputStream* st) {
2262 tty->print_cr("Calls from compiled code:");
2263 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2264 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2265 int64_t mono_i = _nof_interface_calls;
2266 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total);
2267 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
2268 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2269 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
2270 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2271 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
2272 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2273 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
2274 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2275 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2276 tty->cr();
2277 tty->print_cr("Note 1: counter updates are not MT-safe.");
2278 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2279 tty->print_cr(" %% in nested categories are relative to their category");
2280 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
2281 tty->cr();
2282
2283 MethodArityHistogram h;
2284 }
2285 #endif
2286
2287 #ifndef PRODUCT
2288 static int _lookups; // number of calls to lookup
2289 static int _equals; // number of buckets checked with matching hash
2290 static int _archived_hits; // number of successful lookups in archived table
2291 static int _runtime_hits; // number of successful lookups in runtime table
2292 #endif
2293
2294 // A simple wrapper class around the calling convention information
2295 // that allows sharing of adapters for the same calling convention.
2296 class AdapterFingerPrint : public MetaspaceObj {
2297 private:
2298 enum {
2299 _basic_type_bits = 4,
2300 _basic_type_mask = right_n_bits(_basic_type_bits),
2301 _basic_types_per_int = BitsPerInt / _basic_type_bits,
2302 };
2303 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
2304 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2305
2306 int _length;
2307
2308 static int data_offset() { return sizeof(AdapterFingerPrint); }
2309 int* data_pointer() {
2310 return (int*)((address)this + data_offset());
2311 }
2312
2313 // Private construtor. Use allocate() to get an instance.
2314 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2315 int* data = data_pointer();
2316 // Pack the BasicTypes with 8 per int
2317 assert(len == length(total_args_passed), "sanity");
2318 _length = len;
2319 int sig_index = 0;
2320 for (int index = 0; index < _length; index++) {
2321 int value = 0;
2322 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2323 int bt = adapter_encoding(sig_bt[sig_index++]);
2324 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2325 value = (value << _basic_type_bits) | bt;
2326 }
2327 data[index] = value;
2328 }
2329 }
2330
2331 // Call deallocate instead
2332 ~AdapterFingerPrint() {
2333 ShouldNotCallThis();
2334 }
2335
2336 static int length(int total_args) {
2337 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2338 }
2339
2340 static int compute_size_in_words(int len) {
2341 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2342 }
2343
2344 // Remap BasicTypes that are handled equivalently by the adapters.
2345 // These are correct for the current system but someday it might be
2346 // necessary to make this mapping platform dependent.
2347 static int adapter_encoding(BasicType in) {
2348 switch (in) {
2349 case T_BOOLEAN:
2350 case T_BYTE:
2351 case T_SHORT:
2352 case T_CHAR:
2353 // There are all promoted to T_INT in the calling convention
2354 return T_INT;
2355
2356 case T_OBJECT:
2357 case T_ARRAY:
2358 // In other words, we assume that any register good enough for
2359 // an int or long is good enough for a managed pointer.
2360 #ifdef _LP64
2361 return T_LONG;
2362 #else
2363 return T_INT;
2364 #endif
2365
2366 case T_INT:
2367 case T_LONG:
2368 case T_FLOAT:
2369 case T_DOUBLE:
2370 case T_VOID:
2371 return in;
2372
2373 default:
2374 ShouldNotReachHere();
2375 return T_CONFLICT;
2376 }
2377 }
2378
2379 void* operator new(size_t size, size_t fp_size) throw() {
2380 assert(fp_size >= size, "sanity check");
2381 void* p = AllocateHeap(fp_size, mtCode);
2382 memset(p, 0, fp_size);
2383 return p;
2384 }
2385
2386 template<typename Function>
2387 void iterate_args(Function function) {
2388 for (int i = 0; i < length(); i++) {
2389 unsigned val = (unsigned)value(i);
2390 // args are packed so that first/lower arguments are in the highest
2391 // bits of each int value, so iterate from highest to the lowest
2392 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2393 unsigned v = (val >> j) & _basic_type_mask;
2394 if (v == 0) {
2395 continue;
2396 }
2397 function(v);
2398 }
2399 }
2400 }
2401
2402 public:
2403 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2404 int len = length(total_args_passed);
2405 int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2406 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2407 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2408 return afp;
2409 }
2410
2411 static void deallocate(AdapterFingerPrint* fp) {
2412 FreeHeap(fp);
2413 }
2414
2415 int value(int index) {
2416 int* data = data_pointer();
2417 return data[index];
2418 }
2419
2420 int length() {
2421 return _length;
2422 }
2423
2424 unsigned int compute_hash() {
2425 int hash = 0;
2426 for (int i = 0; i < length(); i++) {
2427 int v = value(i);
2428 //Add arithmetic operation to the hash, like +3 to improve hashing
2429 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2430 }
2431 return (unsigned int)hash;
2432 }
2433
2434 const char* as_string() {
2435 stringStream st;
2436 st.print("0x");
2437 for (int i = 0; i < length(); i++) {
2438 st.print("%x", value(i));
2439 }
2440 return st.as_string();
2441 }
2442
2443 const char* as_basic_args_string() {
2444 stringStream st;
2445 bool long_prev = false;
2446 iterate_args([&] (int arg) {
2447 if (long_prev) {
2448 long_prev = false;
2449 if (arg == T_VOID) {
2450 st.print("J");
2451 } else {
2452 st.print("L");
2453 }
2454 }
2455 switch (arg) {
2456 case T_INT: st.print("I"); break;
2457 case T_LONG: long_prev = true; break;
2458 case T_FLOAT: st.print("F"); break;
2459 case T_DOUBLE: st.print("D"); break;
2460 case T_VOID: break;
2461 default: ShouldNotReachHere();
2462 }
2463 });
2464 if (long_prev) {
2465 st.print("L");
2466 }
2467 return st.as_string();
2468 }
2469
2470 BasicType* as_basic_type(int& nargs) {
2471 nargs = 0;
2472 GrowableArray<BasicType> btarray;
2473 bool long_prev = false;
2474
2475 iterate_args([&] (int arg) {
2476 if (long_prev) {
2477 long_prev = false;
2478 if (arg == T_VOID) {
2479 btarray.append(T_LONG);
2480 } else {
2481 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2482 }
2483 }
2484 switch (arg) {
2485 case T_INT: // fallthrough
2486 case T_FLOAT: // fallthrough
2487 case T_DOUBLE:
2488 case T_VOID:
2489 btarray.append((BasicType)arg);
2490 break;
2491 case T_LONG:
2492 long_prev = true;
2493 break;
2494 default: ShouldNotReachHere();
2495 }
2496 });
2497
2498 if (long_prev) {
2499 btarray.append(T_OBJECT);
2500 }
2501
2502 nargs = btarray.length();
2503 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2504 int index = 0;
2505 GrowableArrayIterator<BasicType> iter = btarray.begin();
2506 while (iter != btarray.end()) {
2507 sig_bt[index++] = *iter;
2508 ++iter;
2509 }
2510 assert(index == btarray.length(), "sanity check");
2511 #ifdef ASSERT
2512 {
2513 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2514 assert(this->equals(compare_fp), "sanity check");
2515 AdapterFingerPrint::deallocate(compare_fp);
2516 }
2517 #endif
2518 return sig_bt;
2519 }
2520
2521 bool equals(AdapterFingerPrint* other) {
2522 if (other->_length != _length) {
2523 return false;
2524 } else {
2525 for (int i = 0; i < _length; i++) {
2526 if (value(i) != other->value(i)) {
2527 return false;
2528 }
2529 }
2530 }
2531 return true;
2532 }
2533
2534 // methods required by virtue of being a MetaspaceObj
2535 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2536 int size() const { return compute_size_in_words(_length); }
2537 MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2538
2539 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2540 NOT_PRODUCT(_equals++);
2541 return fp1->equals(fp2);
2542 }
2543
2544 static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2545 return fp->compute_hash();
2546 }
2547 };
2548
2549 #if INCLUDE_CDS
2550 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2551 return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2552 }
2553
2554 class ArchivedAdapterTable : public OffsetCompactHashtable<
2555 AdapterFingerPrint*,
2556 AdapterHandlerEntry*,
2557 adapter_fp_equals_compact_hashtable_entry> {};
2558 #endif // INCLUDE_CDS
2559
2560 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2561 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2562 AnyObj::C_HEAP, mtCode,
2563 AdapterFingerPrint::compute_hash,
2564 AdapterFingerPrint::equals>;
2565 static AdapterHandlerTable* _adapter_handler_table;
2566 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2567
2568 // Find a entry with the same fingerprint if it exists
2569 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2570 NOT_PRODUCT(_lookups++);
2571 assert_lock_strong(AdapterHandlerLibrary_lock);
2572 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2573 AdapterHandlerEntry* entry = nullptr;
2574 #if INCLUDE_CDS
2575 // if we are building the archive then the archived adapter table is
2576 // not valid and we need to use the ones added to the runtime table
2577 if (AOTCodeCache::is_using_adapter()) {
2578 // Search archived table first. It is read-only table so can be searched without lock
2579 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2580 #ifndef PRODUCT
2581 if (entry != nullptr) {
2582 _archived_hits++;
2583 }
2584 #endif
2585 }
2586 #endif // INCLUDE_CDS
2587 if (entry == nullptr) {
2588 assert_lock_strong(AdapterHandlerLibrary_lock);
2589 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2590 if (entry_p != nullptr) {
2591 entry = *entry_p;
2592 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2593 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2594 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2595 #ifndef PRODUCT
2596 _runtime_hits++;
2597 #endif
2598 }
2599 }
2600 AdapterFingerPrint::deallocate(fp);
2601 return entry;
2602 }
2603
2604 #ifndef PRODUCT
2605 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) {
2606 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2607 return sizeof(*key) + sizeof(*a);
2608 };
2609 TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2610 ts.print(st, "AdapterHandlerTable");
2611 st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2612 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2613 int total_hits = _archived_hits + _runtime_hits;
2614 st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2615 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2616 }
2617 #endif // !PRODUCT
2618
2619 // ---------------------------------------------------------------------------
2620 // Implementation of AdapterHandlerLibrary
2621 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2622 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2623 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2624 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2625 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2626 #if INCLUDE_CDS
2627 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2628 #endif // INCLUDE_CDS
2629 static const int AdapterHandlerLibrary_size = 16*K;
2630 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2631 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2632
2633 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2634 assert(_buffer != nullptr, "should be initialized");
2635 return _buffer;
2636 }
2637
2638 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2639 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2640 AdapterBlob* adapter_blob = entry->adapter_blob();
2641 char blob_id[256];
2642 jio_snprintf(blob_id,
2643 sizeof(blob_id),
2644 "%s(%s)",
2645 adapter_blob->name(),
2646 entry->fingerprint()->as_string());
2647 if (Forte::is_enabled()) {
2648 Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2649 }
2650
2651 if (JvmtiExport::should_post_dynamic_code_generated()) {
2652 JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2653 }
2654 }
2655 }
2656
2657 void AdapterHandlerLibrary::initialize() {
2658 {
2659 ResourceMark rm;
2660 _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2661 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2662 }
2663
2664 #if INCLUDE_CDS
2665 // Link adapters in AOT Cache to their code in AOT Code Cache
2666 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2667 link_aot_adapters();
2668 lookup_simple_adapters();
2669 return;
2670 }
2671 #endif // INCLUDE_CDS
2672
2673 ResourceMark rm;
2674 {
2675 MutexLocker mu(AdapterHandlerLibrary_lock);
2676
2677 _no_arg_handler = create_adapter(0, nullptr);
2678
2679 BasicType obj_args[] = { T_OBJECT };
2680 _obj_arg_handler = create_adapter(1, obj_args);
2681
2682 BasicType int_args[] = { T_INT };
2683 _int_arg_handler = create_adapter(1, int_args);
2684
2685 BasicType obj_int_args[] = { T_OBJECT, T_INT };
2686 _obj_int_arg_handler = create_adapter(2, obj_int_args);
2687
2688 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2689 _obj_obj_arg_handler = create_adapter(2, obj_obj_args);
2690
2691 // we should always get an entry back but we don't have any
2692 // associated blob on Zero
2693 assert(_no_arg_handler != nullptr &&
2694 _obj_arg_handler != nullptr &&
2695 _int_arg_handler != nullptr &&
2696 _obj_int_arg_handler != nullptr &&
2697 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2698 }
2699
2700 // Outside of the lock
2701 #ifndef ZERO
2702 // no blobs to register when we are on Zero
2703 post_adapter_creation(_no_arg_handler);
2704 post_adapter_creation(_obj_arg_handler);
2705 post_adapter_creation(_int_arg_handler);
2706 post_adapter_creation(_obj_int_arg_handler);
2707 post_adapter_creation(_obj_obj_arg_handler);
2708 #endif // ZERO
2709 }
2710
2711 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2712 uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2713 assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2714 return AdapterHandlerEntry::allocate(id, fingerprint);
2715 }
2716
2717 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2718 int total_args_passed = method->size_of_parameters(); // All args on stack
2719 if (total_args_passed == 0) {
2720 return _no_arg_handler;
2721 } else if (total_args_passed == 1) {
2722 if (!method->is_static()) {
2723 return _obj_arg_handler;
2724 }
2725 switch (method->signature()->char_at(1)) {
2726 case JVM_SIGNATURE_CLASS:
2727 case JVM_SIGNATURE_ARRAY:
2728 return _obj_arg_handler;
2729 case JVM_SIGNATURE_INT:
2730 case JVM_SIGNATURE_BOOLEAN:
2731 case JVM_SIGNATURE_CHAR:
2732 case JVM_SIGNATURE_BYTE:
2733 case JVM_SIGNATURE_SHORT:
2734 return _int_arg_handler;
2735 }
2736 } else if (total_args_passed == 2 &&
2737 !method->is_static()) {
2738 switch (method->signature()->char_at(1)) {
2739 case JVM_SIGNATURE_CLASS:
2740 case JVM_SIGNATURE_ARRAY:
2741 return _obj_obj_arg_handler;
2742 case JVM_SIGNATURE_INT:
2743 case JVM_SIGNATURE_BOOLEAN:
2744 case JVM_SIGNATURE_CHAR:
2745 case JVM_SIGNATURE_BYTE:
2746 case JVM_SIGNATURE_SHORT:
2747 return _obj_int_arg_handler;
2748 }
2749 }
2750 return nullptr;
2751 }
2752
2753 class AdapterSignatureIterator : public SignatureIterator {
2754 private:
2755 BasicType stack_sig_bt[16];
2756 BasicType* sig_bt;
2757 int index;
2758
2759 public:
2760 AdapterSignatureIterator(Symbol* signature,
2761 fingerprint_t fingerprint,
2762 bool is_static,
2763 int total_args_passed) :
2764 SignatureIterator(signature, fingerprint),
2765 index(0)
2766 {
2767 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2768 if (!is_static) { // Pass in receiver first
2769 sig_bt[index++] = T_OBJECT;
2770 }
2771 do_parameters_on(this);
2772 }
2773
2774 BasicType* basic_types() {
2775 return sig_bt;
2776 }
2777
2778 #ifdef ASSERT
2779 int slots() {
2780 return index;
2781 }
2782 #endif
2783
2784 private:
2785
2786 friend class SignatureIterator; // so do_parameters_on can call do_type
2787 void do_type(BasicType type) {
2788 sig_bt[index++] = type;
2789 if (type == T_LONG || type == T_DOUBLE) {
2790 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2791 }
2792 }
2793 };
2794
2795
2796 const char* AdapterHandlerEntry::_entry_names[] = {
2797 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2798 };
2799
2800 #ifdef ASSERT
2801 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2802 // we can only check for the same code if there is any
2803 #ifndef ZERO
2804 AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true);
2805 assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
2806 assert(comparison_entry->compare_code(cached_entry), "code must match");
2807 // Release the one just created
2808 AdapterHandlerEntry::deallocate(comparison_entry);
2809 # endif // ZERO
2810 }
2811 #endif /* ASSERT*/
2812
2813 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2814 assert(!method->is_abstract(), "abstract methods do not have adapters");
2815 // Use customized signature handler. Need to lock around updates to
2816 // the _adapter_handler_table (it is not safe for concurrent readers
2817 // and a single writer: this could be fixed if it becomes a
2818 // problem).
2819
2820 // Fast-path for trivial adapters
2821 AdapterHandlerEntry* entry = get_simple_adapter(method);
2822 if (entry != nullptr) {
2823 return entry;
2824 }
2825
2826 ResourceMark rm;
2827 bool new_entry = false;
2828
2829 // Fill in the signature array, for the calling-convention call.
2830 int total_args_passed = method->size_of_parameters(); // All args on stack
2831
2832 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2833 method->is_static(), total_args_passed);
2834 assert(si.slots() == total_args_passed, "");
2835 BasicType* sig_bt = si.basic_types();
2836 {
2837 MutexLocker mu(AdapterHandlerLibrary_lock);
2838
2839 // Lookup method signature's fingerprint
2840 entry = lookup(total_args_passed, sig_bt);
2841
2842 if (entry != nullptr) {
2843 #ifndef ZERO
2844 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2845 #endif
2846 #ifdef ASSERT
2847 if (!entry->in_aot_cache() && VerifyAdapterSharing) {
2848 verify_adapter_sharing(total_args_passed, sig_bt, entry);
2849 }
2850 #endif
2851 } else {
2852 entry = create_adapter(total_args_passed, sig_bt);
2853 if (entry != nullptr) {
2854 new_entry = true;
2855 }
2856 }
2857 }
2858
2859 // Outside of the lock
2860 if (new_entry) {
2861 post_adapter_creation(entry);
2862 }
2863 return entry;
2864 }
2865
2866 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2867 ResourceMark rm;
2868 const char* name = AdapterHandlerLibrary::name(handler);
2869 const uint32_t id = AdapterHandlerLibrary::id(handler);
2870
2871 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
2872 if (blob != nullptr) {
2873 handler->set_adapter_blob(blob->as_adapter_blob());
2874 }
2875 }
2876
2877 #ifndef PRODUCT
2878 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
2879 ttyLocker ttyl;
2880 ResourceMark rm;
2881 int insts_size;
2882 // on Zero the blob may be null
2883 handler->print_adapter_on(tty);
2884 AdapterBlob* adapter_blob = handler->adapter_blob();
2885 if (adapter_blob == nullptr) {
2886 return;
2887 }
2888 insts_size = adapter_blob->code_size();
2889 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2890 handler->fingerprint()->as_basic_args_string(),
2891 handler->fingerprint()->as_string(), insts_size);
2892 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2893 if (Verbose || PrintStubCode) {
2894 address first_pc = adapter_blob->content_begin();
2895 if (first_pc != nullptr) {
2896 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2897 st->cr();
2898 }
2899 }
2900 }
2901 #endif // PRODUCT
2902
2903 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
2904 int entry_offset[AdapterBlob::ENTRY_COUNT]) {
2905 entry_offset[AdapterBlob::I2C] = 0;
2906 entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
2907 entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
2908 if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
2909 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
2910 } else {
2911 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
2912 }
2913 }
2914
2915 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
2916 int total_args_passed,
2917 BasicType* sig_bt,
2918 bool is_transient) {
2919 if (log_is_enabled(Info, perf, class, link)) {
2920 ClassLoader::perf_method_adapters_count()->inc();
2921 }
2922
2923 #ifndef ZERO
2924 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2925 CodeBuffer buffer(buf);
2926 short buffer_locs[20];
2927 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2928 sizeof(buffer_locs)/sizeof(relocInfo));
2929 MacroAssembler masm(&buffer);
2930 VMRegPair stack_regs[16];
2931 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2932
2933 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2934 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2935 address entry_address[AdapterBlob::ENTRY_COUNT];
2936 SharedRuntime::generate_i2c2i_adapters(&masm,
2937 total_args_passed,
2938 comp_args_on_stack,
2939 sig_bt,
2940 regs,
2941 entry_address);
2942 // On zero there is no code to save and no need to create a blob and
2943 // or relocate the handler.
2944 int entry_offset[AdapterBlob::ENTRY_COUNT];
2945 address_to_offset(entry_address, entry_offset);
2946 #ifdef ASSERT
2947 if (VerifyAdapterSharing) {
2948 handler->save_code(buf->code_begin(), buffer.insts_size());
2949 if (is_transient) {
2950 return true;
2951 }
2952 }
2953 #endif
2954 AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset);
2955 if (adapter_blob == nullptr) {
2956 // CodeCache is full, disable compilation
2957 // Ought to log this but compile log is only per compile thread
2958 // and we're some non descript Java thread.
2959 return false;
2960 }
2961 handler->set_adapter_blob(adapter_blob);
2962 if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2963 // try to save generated code
2964 const char* name = AdapterHandlerLibrary::name(handler);
2965 const uint32_t id = AdapterHandlerLibrary::id(handler);
2966 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
2967 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2968 }
2969 #endif // ZERO
2970
2971 #ifndef PRODUCT
2972 // debugging support
2973 if (PrintAdapterHandlers || PrintStubCode) {
2974 print_adapter_handler_info(tty, handler);
2975 }
2976 #endif
2977
2978 return true;
2979 }
2980
2981 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed,
2982 BasicType* sig_bt,
2983 bool is_transient) {
2984 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2985 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2986 if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) {
2987 AdapterHandlerEntry::deallocate(handler);
2988 return nullptr;
2989 }
2990 if (!is_transient) {
2991 assert_lock_strong(AdapterHandlerLibrary_lock);
2992 _adapter_handler_table->put(fp, handler);
2993 }
2994 return handler;
2995 }
2996
2997 #if INCLUDE_CDS
2998 void AdapterHandlerEntry::remove_unshareable_info() {
2999 #ifdef ASSERT
3000 _saved_code = nullptr;
3001 _saved_code_length = 0;
3002 #endif // ASSERT
3003 _adapter_blob = nullptr;
3004 _linked = false;
3005 }
3006
3007 class CopyAdapterTableToArchive : StackObj {
3008 private:
3009 CompactHashtableWriter* _writer;
3010 ArchiveBuilder* _builder;
3011 public:
3012 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
3013 _builder(ArchiveBuilder::current())
3014 {}
3015
3016 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
3017 LogStreamHandle(Trace, aot) lsh;
3018 if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
3019 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
3020 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
3021 assert(buffered_fp != nullptr,"sanity check");
3022 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
3023 assert(buffered_entry != nullptr,"sanity check");
3024
3025 uint hash = fp->compute_hash();
3026 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
3027 _writer->add(hash, delta);
3028 if (lsh.is_enabled()) {
3029 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
3030 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
3031 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
3032 }
3033 } else {
3034 if (lsh.is_enabled()) {
3035 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
3036 }
3037 }
3038 return true;
3039 }
3040 };
3041
3042 void AdapterHandlerLibrary::dump_aot_adapter_table() {
3043 CompactHashtableStats stats;
3044 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
3045 CopyAdapterTableToArchive copy(&writer);
3046 _adapter_handler_table->iterate(©);
3047 writer.dump(&_aot_adapter_handler_table, "archived adapter table");
3048 }
3049
3050 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
3051 _aot_adapter_handler_table.serialize_header(soc);
3052 }
3053
3054 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
3055 #ifdef ASSERT
3056 if (TestAOTAdapterLinkFailure) {
3057 return;
3058 }
3059 #endif
3060 lookup_aot_cache(handler);
3061 #ifndef PRODUCT
3062 // debugging support
3063 if (PrintAdapterHandlers || PrintStubCode) {
3064 print_adapter_handler_info(tty, handler);
3065 }
3066 #endif
3067 }
3068
3069 // This method is used during production run to link archived adapters (stored in AOT Cache)
3070 // to their code in AOT Code Cache
3071 void AdapterHandlerEntry::link() {
3072 ResourceMark rm;
3073 assert(_fingerprint != nullptr, "_fingerprint must not be null");
3074 bool generate_code = false;
3075 // Generate code only if AOTCodeCache is not available, or
3076 // caching adapters is disabled, or we fail to link
3077 // the AdapterHandlerEntry to its code in the AOTCodeCache
3078 if (AOTCodeCache::is_using_adapter()) {
3079 AdapterHandlerLibrary::link_aot_adapter_handler(this);
3080 // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
3081 if (_adapter_blob == nullptr) {
3082 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
3083 generate_code = true;
3084 }
3085 } else {
3086 generate_code = true;
3087 }
3088 if (generate_code) {
3089 int nargs;
3090 BasicType* bt = _fingerprint->as_basic_type(nargs);
3091 if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) {
3092 // Don't throw exceptions during VM initialization because java.lang.* classes
3093 // might not have been initialized, causing problems when constructing the
3094 // Java exception object.
3095 vm_exit_during_initialization("Out of space in CodeCache for adapters");
3096 }
3097 }
3098 if (_adapter_blob != nullptr) {
3099 post_adapter_creation(this);
3100 }
3101 assert(_linked, "AdapterHandlerEntry must now be linked");
3102 }
3103
3104 void AdapterHandlerLibrary::link_aot_adapters() {
3105 uint max_id = 0;
3106 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3107 /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3108 * That implies adapter ids of the adapters in the cache may not be contiguous.
3109 * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3110 * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3111 * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3112 */
3113 _aot_adapter_handler_table.iterate([&](AdapterHandlerEntry* entry) {
3114 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3115 entry->link();
3116 max_id = MAX2(max_id, entry->id());
3117 });
3118 // Set adapter id to the maximum id found in the AOTCache
3119 assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3120 _id_counter = max_id;
3121 }
3122
3123 // This method is called during production run to lookup simple adapters
3124 // in the archived adapter handler table
3125 void AdapterHandlerLibrary::lookup_simple_adapters() {
3126 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3127
3128 MutexLocker mu(AdapterHandlerLibrary_lock);
3129 _no_arg_handler = lookup(0, nullptr);
3130
3131 BasicType obj_args[] = { T_OBJECT };
3132 _obj_arg_handler = lookup(1, obj_args);
3133
3134 BasicType int_args[] = { T_INT };
3135 _int_arg_handler = lookup(1, int_args);
3136
3137 BasicType obj_int_args[] = { T_OBJECT, T_INT };
3138 _obj_int_arg_handler = lookup(2, obj_int_args);
3139
3140 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3141 _obj_obj_arg_handler = lookup(2, obj_obj_args);
3142
3143 assert(_no_arg_handler != nullptr &&
3144 _obj_arg_handler != nullptr &&
3145 _int_arg_handler != nullptr &&
3146 _obj_int_arg_handler != nullptr &&
3147 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3148 assert(_no_arg_handler->is_linked() &&
3149 _obj_arg_handler->is_linked() &&
3150 _int_arg_handler->is_linked() &&
3151 _obj_int_arg_handler->is_linked() &&
3152 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3153 }
3154 #endif // INCLUDE_CDS
3155
3156 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3157 LogStreamHandle(Trace, aot) lsh;
3158 if (lsh.is_enabled()) {
3159 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3160 lsh.cr();
3161 }
3162 it->push(&_fingerprint);
3163 }
3164
3165 AdapterHandlerEntry::~AdapterHandlerEntry() {
3166 if (_fingerprint != nullptr) {
3167 AdapterFingerPrint::deallocate(_fingerprint);
3168 _fingerprint = nullptr;
3169 }
3170 #ifdef ASSERT
3171 FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3172 #endif
3173 FreeHeap(this);
3174 }
3175
3176
3177 #ifdef ASSERT
3178 // Capture the code before relocation so that it can be compared
3179 // against other versions. If the code is captured after relocation
3180 // then relative instructions won't be equivalent.
3181 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3182 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3183 _saved_code_length = length;
3184 memcpy(_saved_code, buffer, length);
3185 }
3186
3187
3188 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3189 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3190
3191 if (other->_saved_code_length != _saved_code_length) {
3192 return false;
3193 }
3194
3195 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3196 }
3197 #endif
3198
3199
3200 /**
3201 * Create a native wrapper for this native method. The wrapper converts the
3202 * Java-compiled calling convention to the native convention, handles
3203 * arguments, and transitions to native. On return from the native we transition
3204 * back to java blocking if a safepoint is in progress.
3205 */
3206 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3207 ResourceMark rm;
3208 nmethod* nm = nullptr;
3209
3210 // Check if memory should be freed before allocation
3211 CodeCache::gc_on_allocation();
3212
3213 assert(method->is_native(), "must be native");
3214 assert(method->is_special_native_intrinsic() ||
3215 method->has_native_function(), "must have something valid to call!");
3216
3217 {
3218 // Perform the work while holding the lock, but perform any printing outside the lock
3219 MutexLocker mu(AdapterHandlerLibrary_lock);
3220 // See if somebody beat us to it
3221 if (method->code() != nullptr) {
3222 return;
3223 }
3224
3225 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3226 assert(compile_id > 0, "Must generate native wrapper");
3227
3228
3229 ResourceMark rm;
3230 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3231 if (buf != nullptr) {
3232 CodeBuffer buffer(buf);
3233
3234 if (method->is_continuation_enter_intrinsic()) {
3235 buffer.initialize_stubs_size(192);
3236 }
3237
3238 struct { double data[20]; } locs_buf;
3239 struct { double data[20]; } stubs_locs_buf;
3240 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3241 #if defined(AARCH64) || defined(PPC64)
3242 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3243 // in the constant pool to ensure ordering between the barrier and oops
3244 // accesses. For native_wrappers we need a constant.
3245 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3246 // static java call that is resolved in the runtime.
3247 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3248 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3249 }
3250 #endif
3251 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3252 MacroAssembler _masm(&buffer);
3253
3254 // Fill in the signature array, for the calling-convention call.
3255 const int total_args_passed = method->size_of_parameters();
3256
3257 VMRegPair stack_regs[16];
3258 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3259
3260 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3261 method->is_static(), total_args_passed);
3262 BasicType* sig_bt = si.basic_types();
3263 assert(si.slots() == total_args_passed, "");
3264 BasicType ret_type = si.return_type();
3265
3266 // Now get the compiled-Java arguments layout.
3267 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3268
3269 // Generate the compiled-to-native wrapper code
3270 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3271
3272 if (nm != nullptr) {
3273 {
3274 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3275 if (nm->make_in_use()) {
3276 method->set_code(method, nm);
3277 }
3278 }
3279
3280 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3281 if (directive->PrintAssemblyOption) {
3282 nm->print_code();
3283 }
3284 DirectivesStack::release(directive);
3285 }
3286 }
3287 } // Unlock AdapterHandlerLibrary_lock
3288
3289
3290 // Install the generated code.
3291 if (nm != nullptr) {
3292 const char *msg = method->is_static() ? "(static)" : "";
3293 CompileTask::print_ul(nm, msg);
3294 if (PrintCompilation) {
3295 ttyLocker ttyl;
3296 CompileTask::print(tty, nm, msg);
3297 }
3298 nm->post_compiled_method_load_event();
3299 }
3300 }
3301
3302 // -------------------------------------------------------------------------
3303 // Java-Java calling convention
3304 // (what you use when Java calls Java)
3305
3306 //------------------------------name_for_receiver----------------------------------
3307 // For a given signature, return the VMReg for parameter 0.
3308 VMReg SharedRuntime::name_for_receiver() {
3309 VMRegPair regs;
3310 BasicType sig_bt = T_OBJECT;
3311 (void) java_calling_convention(&sig_bt, ®s, 1);
3312 // Return argument 0 register. In the LP64 build pointers
3313 // take 2 registers, but the VM wants only the 'main' name.
3314 return regs.first();
3315 }
3316
3317 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3318 // This method is returning a data structure allocating as a
3319 // ResourceObject, so do not put any ResourceMarks in here.
3320
3321 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3322 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3323 int cnt = 0;
3324 if (has_receiver) {
3325 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3326 }
3327
3328 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3329 BasicType type = ss.type();
3330 sig_bt[cnt++] = type;
3331 if (is_double_word_type(type))
3332 sig_bt[cnt++] = T_VOID;
3333 }
3334
3335 if (has_appendix) {
3336 sig_bt[cnt++] = T_OBJECT;
3337 }
3338
3339 assert(cnt < 256, "grow table size");
3340
3341 int comp_args_on_stack;
3342 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3343
3344 // the calling convention doesn't count out_preserve_stack_slots so
3345 // we must add that in to get "true" stack offsets.
3346
3347 if (comp_args_on_stack) {
3348 for (int i = 0; i < cnt; i++) {
3349 VMReg reg1 = regs[i].first();
3350 if (reg1->is_stack()) {
3351 // Yuck
3352 reg1 = reg1->bias(out_preserve_stack_slots());
3353 }
3354 VMReg reg2 = regs[i].second();
3355 if (reg2->is_stack()) {
3356 // Yuck
3357 reg2 = reg2->bias(out_preserve_stack_slots());
3358 }
3359 regs[i].set_pair(reg2, reg1);
3360 }
3361 }
3362
3363 // results
3364 *arg_size = cnt;
3365 return regs;
3366 }
3367
3368 // OSR Migration Code
3369 //
3370 // This code is used convert interpreter frames into compiled frames. It is
3371 // called from very start of a compiled OSR nmethod. A temp array is
3372 // allocated to hold the interesting bits of the interpreter frame. All
3373 // active locks are inflated to allow them to move. The displaced headers and
3374 // active interpreter locals are copied into the temp buffer. Then we return
3375 // back to the compiled code. The compiled code then pops the current
3376 // interpreter frame off the stack and pushes a new compiled frame. Then it
3377 // copies the interpreter locals and displaced headers where it wants.
3378 // Finally it calls back to free the temp buffer.
3379 //
3380 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3381
3382 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3383 assert(current == JavaThread::current(), "pre-condition");
3384 JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3385 // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3386 // frame. The stack watermark code below ensures that the interpreted frame is processed
3387 // before it gets unwound. This is helpful as the size of the compiled frame could be
3388 // larger than the interpreted frame, which could result in the new frame not being
3389 // processed correctly.
3390 StackWatermarkSet::before_unwind(current);
3391
3392 //
3393 // This code is dependent on the memory layout of the interpreter local
3394 // array and the monitors. On all of our platforms the layout is identical
3395 // so this code is shared. If some platform lays the their arrays out
3396 // differently then this code could move to platform specific code or
3397 // the code here could be modified to copy items one at a time using
3398 // frame accessor methods and be platform independent.
3399
3400 frame fr = current->last_frame();
3401 assert(fr.is_interpreted_frame(), "");
3402 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3403
3404 // Figure out how many monitors are active.
3405 int active_monitor_count = 0;
3406 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3407 kptr < fr.interpreter_frame_monitor_begin();
3408 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3409 if (kptr->obj() != nullptr) active_monitor_count++;
3410 }
3411
3412 // QQQ we could place number of active monitors in the array so that compiled code
3413 // could double check it.
3414
3415 Method* moop = fr.interpreter_frame_method();
3416 int max_locals = moop->max_locals();
3417 // Allocate temp buffer, 1 word per local & 2 per active monitor
3418 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3419 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3420
3421 // Copy the locals. Order is preserved so that loading of longs works.
3422 // Since there's no GC I can copy the oops blindly.
3423 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3424 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3425 (HeapWord*)&buf[0],
3426 max_locals);
3427
3428 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
3429 int i = max_locals;
3430 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3431 kptr2 < fr.interpreter_frame_monitor_begin();
3432 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3433 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array
3434 BasicLock *lock = kptr2->lock();
3435 if (UseObjectMonitorTable) {
3436 buf[i] = (intptr_t)lock->object_monitor_cache();
3437 }
3438 #ifdef ASSERT
3439 else {
3440 buf[i] = badDispHeaderOSR;
3441 }
3442 #endif
3443 i++;
3444 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3445 }
3446 }
3447 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3448
3449 RegisterMap map(current,
3450 RegisterMap::UpdateMap::skip,
3451 RegisterMap::ProcessFrames::include,
3452 RegisterMap::WalkContinuation::skip);
3453 frame sender = fr.sender(&map);
3454 if (sender.is_interpreted_frame()) {
3455 current->push_cont_fastpath(sender.sp());
3456 }
3457
3458 return buf;
3459 JRT_END
3460
3461 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3462 FREE_C_HEAP_ARRAY(intptr_t, buf);
3463 JRT_END
3464
3465 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3466 bool found = false;
3467 #if INCLUDE_CDS
3468 if (AOTCodeCache::is_using_adapter()) {
3469 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3470 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry())));
3471 };
3472 _aot_adapter_handler_table.iterate(findblob_archived_table);
3473 }
3474 #endif // INCLUDE_CDS
3475 if (!found) {
3476 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3477 return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3478 };
3479 assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3480 _adapter_handler_table->iterate(findblob_runtime_table);
3481 }
3482 return found;
3483 }
3484
3485 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3486 return handler->fingerprint()->as_basic_args_string();
3487 }
3488
3489 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3490 return handler->id();
3491 }
3492
3493 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3494 bool found = false;
3495 #if INCLUDE_CDS
3496 if (AOTCodeCache::is_using_adapter()) {
3497 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3498 if (b == CodeCache::find_blob(handler->get_i2c_entry())) {
3499 found = true;
3500 st->print("Adapter for signature: ");
3501 handler->print_adapter_on(st);
3502 return true;
3503 } else {
3504 return false; // keep looking
3505 }
3506 };
3507 _aot_adapter_handler_table.iterate(findblob_archived_table);
3508 }
3509 #endif // INCLUDE_CDS
3510 if (!found) {
3511 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3512 if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3513 found = true;
3514 st->print("Adapter for signature: ");
3515 a->print_adapter_on(st);
3516 return true;
3517 } else {
3518 return false; // keep looking
3519 }
3520 };
3521 assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3522 _adapter_handler_table->iterate(findblob_runtime_table);
3523 }
3524 assert(found, "Should have found handler");
3525 }
3526
3527 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3528 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3529 if (adapter_blob() != nullptr) {
3530 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3531 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3532 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3533 if (get_c2i_no_clinit_check_entry() != nullptr) {
3534 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3535 }
3536 }
3537 st->cr();
3538 }
3539
3540 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3541 assert(current == JavaThread::current(), "pre-condition");
3542 StackOverflow* overflow_state = current->stack_overflow_state();
3543 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3544 overflow_state->set_reserved_stack_activation(current->stack_base());
3545 JRT_END
3546
3547 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3548 ResourceMark rm(current);
3549 frame activation;
3550 nmethod* nm = nullptr;
3551 int count = 1;
3552
3553 assert(fr.is_java_frame(), "Must start on Java frame");
3554
3555 RegisterMap map(JavaThread::current(),
3556 RegisterMap::UpdateMap::skip,
3557 RegisterMap::ProcessFrames::skip,
3558 RegisterMap::WalkContinuation::skip); // don't walk continuations
3559 for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3560 if (!fr.is_java_frame()) {
3561 continue;
3562 }
3563
3564 Method* method = nullptr;
3565 bool found = false;
3566 if (fr.is_interpreted_frame()) {
3567 method = fr.interpreter_frame_method();
3568 if (method != nullptr && method->has_reserved_stack_access()) {
3569 found = true;
3570 }
3571 } else {
3572 CodeBlob* cb = fr.cb();
3573 if (cb != nullptr && cb->is_nmethod()) {
3574 nm = cb->as_nmethod();
3575 method = nm->method();
3576 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3577 method = sd->method();
3578 if (method != nullptr && method->has_reserved_stack_access()) {
3579 found = true;
3580 }
3581 }
3582 }
3583 }
3584 if (found) {
3585 activation = fr;
3586 warning("Potentially dangerous stack overflow in "
3587 "ReservedStackAccess annotated method %s [%d]",
3588 method->name_and_sig_as_C_string(), count++);
3589 EventReservedStackActivation event;
3590 if (event.should_commit()) {
3591 event.set_method(method);
3592 event.commit();
3593 }
3594 }
3595 }
3596 return activation;
3597 }
3598
3599 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3600 // After any safepoint, just before going back to compiled code,
3601 // we inform the GC that we will be doing initializing writes to
3602 // this object in the future without emitting card-marks, so
3603 // GC may take any compensating steps.
3604
3605 oop new_obj = current->vm_result_oop();
3606 if (new_obj == nullptr) return;
3607
3608 BarrierSet *bs = BarrierSet::barrier_set();
3609 bs->on_slowpath_allocation_exit(current, new_obj);
3610 }