1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "cds/archiveBuilder.hpp"
26 #include "cds/archiveUtils.inline.hpp"
27 #include "classfile/classLoader.hpp"
28 #include "classfile/javaClasses.inline.hpp"
29 #include "classfile/stringTable.hpp"
30 #include "classfile/vmClasses.hpp"
31 #include "classfile/vmSymbols.hpp"
32 #include "code/aotCodeCache.hpp"
33 #include "code/codeCache.hpp"
34 #include "code/compiledIC.hpp"
35 #include "code/nmethod.inline.hpp"
36 #include "code/scopeDesc.hpp"
37 #include "code/vtableStubs.hpp"
38 #include "compiler/abstractCompiler.hpp"
39 #include "compiler/compileBroker.hpp"
40 #include "compiler/disassembler.hpp"
41 #include "gc/shared/barrierSet.hpp"
42 #include "gc/shared/collectedHeap.hpp"
43 #include "interpreter/interpreter.hpp"
44 #include "interpreter/interpreterRuntime.hpp"
45 #include "jfr/jfrEvents.hpp"
46 #include "jvm.h"
47 #include "logging/log.hpp"
48 #include "memory/resourceArea.hpp"
49 #include "memory/universe.hpp"
50 #include "metaprogramming/primitiveConversions.hpp"
51 #include "oops/klass.hpp"
52 #include "oops/method.inline.hpp"
53 #include "oops/objArrayKlass.hpp"
54 #include "oops/oop.inline.hpp"
55 #include "prims/forte.hpp"
56 #include "prims/jvmtiExport.hpp"
57 #include "prims/jvmtiThreadState.hpp"
58 #include "prims/methodHandles.hpp"
59 #include "prims/nativeLookup.hpp"
60 #include "runtime/arguments.hpp"
61 #include "runtime/atomicAccess.hpp"
62 #include "runtime/basicLock.inline.hpp"
63 #include "runtime/frame.inline.hpp"
64 #include "runtime/handles.inline.hpp"
65 #include "runtime/init.hpp"
66 #include "runtime/interfaceSupport.inline.hpp"
67 #include "runtime/java.hpp"
68 #include "runtime/javaCalls.hpp"
69 #include "runtime/jniHandles.inline.hpp"
70 #include "runtime/osThread.hpp"
71 #include "runtime/perfData.inline.hpp"
72 #include "runtime/sharedRuntime.hpp"
73 #include "runtime/stackWatermarkSet.hpp"
74 #include "runtime/stubRoutines.hpp"
75 #include "runtime/synchronizer.hpp"
76 #include "runtime/timerTrace.hpp"
77 #include "runtime/vframe.inline.hpp"
78 #include "runtime/vframeArray.hpp"
79 #include "runtime/vm_version.hpp"
80 #include "services/management.hpp"
81 #include "utilities/copy.hpp"
82 #include "utilities/dtrace.hpp"
83 #include "utilities/events.hpp"
84 #include "utilities/globalDefinitions.hpp"
85 #include "utilities/hashTable.hpp"
86 #include "utilities/macros.hpp"
87 #include "utilities/xmlstream.hpp"
88 #ifdef COMPILER1
89 #include "c1/c1_Runtime1.hpp"
90 #endif
91 #if INCLUDE_JFR
92 #include "jfr/jfr.inline.hpp"
93 #endif
94
95 // Shared runtime stub routines reside in their own unique blob with a
96 // single entry point
97
98
99 #define SHARED_STUB_FIELD_DEFINE(name, type) \
100 type* SharedRuntime::BLOB_FIELD_NAME(name);
101 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
102 #undef SHARED_STUB_FIELD_DEFINE
103
104 nmethod* SharedRuntime::_cont_doYield_stub;
105
106 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr;
107 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time = nullptr;
108 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time = nullptr;
109 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr;
110 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time = nullptr;
111
112 #if 0
113 // TODO tweak global stub name generation to match this
114 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
115 const char *SharedRuntime::_stub_names[] = {
116 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
117 };
118 #endif
119
120 //----------------------------generate_stubs-----------------------------------
121 void SharedRuntime::generate_initial_stubs() {
122 // Build this early so it's available for the interpreter.
123 _throw_StackOverflowError_blob =
124 generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
125 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
126 }
127
128 void SharedRuntime::generate_stubs() {
129 _wrong_method_blob =
130 generate_resolve_blob(StubId::shared_wrong_method_id,
131 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
132 _wrong_method_abstract_blob =
133 generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
134 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
135 _ic_miss_blob =
136 generate_resolve_blob(StubId::shared_ic_miss_id,
137 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
138 _resolve_opt_virtual_call_blob =
139 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
140 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
141 _resolve_virtual_call_blob =
142 generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
143 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
144 _resolve_static_call_blob =
145 generate_resolve_blob(StubId::shared_resolve_static_call_id,
146 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
147
148 _throw_delayed_StackOverflowError_blob =
149 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
150 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
151
152 _throw_AbstractMethodError_blob =
153 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
154 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
155
156 _throw_IncompatibleClassChangeError_blob =
157 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
158 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
159
160 _throw_NullPointerException_at_call_blob =
161 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
162 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
163
164 #if COMPILER2_OR_JVMCI
165 // Vectors are generated only by C2 and JVMCI.
166 bool support_wide = is_wide_vector(MaxVectorSize);
167 if (support_wide) {
168 _polling_page_vectors_safepoint_handler_blob =
169 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
170 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
171 }
172 #endif // COMPILER2_OR_JVMCI
173 _polling_page_safepoint_handler_blob =
174 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
175 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
176 _polling_page_return_handler_blob =
177 generate_handler_blob(StubId::shared_polling_page_return_handler_id,
178 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
179
180 generate_deopt_blob();
181
182 if (UsePerfData) {
183 EXCEPTION_MARK;
184 NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call");
185 NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time, SUN_CI, "resovle_virtual_call");
186 NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time, SUN_CI, "resovle_static_call");
187 NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method");
188 NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time , SUN_CI, "ic_miss");
189 if (HAS_PENDING_EXCEPTION) {
190 vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly");
191 }
192 }
193 }
194
195 void SharedRuntime::init_adapter_library() {
196 AdapterHandlerLibrary::initialize();
197 }
198
199 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) {
200 st->print(" %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us());
201 if (TraceThreadTime) {
202 st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us());
203 }
204 st->print(" / %5d events", cnt);
205 st->cr();
206 }
207
208 void SharedRuntime::print_counters_on(outputStream* st) {
209 st->print_cr("SharedRuntime:");
210 if (UsePerfData) {
211 print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr);
212 print_counter_on(st, "resolve_virtual_call:", _perf_resolve_virtual_total_time, _resolve_virtual_ctr);
213 print_counter_on(st, "resolve_static_call:", _perf_resolve_static_total_time, _resolve_static_ctr);
214 print_counter_on(st, "handle_wrong_method:", _perf_handle_wrong_method_total_time, _wrong_method_ctr);
215 print_counter_on(st, "ic_miss:", _perf_ic_miss_total_time, _ic_miss_ctr);
216
217 jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() +
218 _perf_resolve_virtual_total_time->elapsed_counter_value() +
219 _perf_resolve_static_total_time->elapsed_counter_value() +
220 _perf_handle_wrong_method_total_time->elapsed_counter_value() +
221 _perf_ic_miss_total_time->elapsed_counter_value());
222 st->print("Total: " JLONG_FORMAT_W(5) "us", total_elapsed_time_us);
223 if (TraceThreadTime) {
224 jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() +
225 _perf_resolve_virtual_total_time->thread_counter_value() +
226 _perf_resolve_static_total_time->thread_counter_value() +
227 _perf_handle_wrong_method_total_time->thread_counter_value() +
228 _perf_ic_miss_total_time->thread_counter_value());
229 st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us);
230
231 }
232 st->cr();
233 } else {
234 st->print_cr(" no data (UsePerfData is turned off)");
235 }
236 }
237
238 #if INCLUDE_JFR
239 //------------------------------generate jfr runtime stubs ------
240 void SharedRuntime::generate_jfr_stubs() {
241 ResourceMark rm;
242 const char* timer_msg = "SharedRuntime generate_jfr_stubs";
243 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
244
245 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
246 _jfr_return_lease_blob = generate_jfr_return_lease();
247 }
248
249 #endif // INCLUDE_JFR
250
251 #include <math.h>
252
253 // Implementation of SharedRuntime
254
255 // For statistics
256 uint SharedRuntime::_ic_miss_ctr = 0;
257 uint SharedRuntime::_wrong_method_ctr = 0;
258 uint SharedRuntime::_resolve_static_ctr = 0;
259 uint SharedRuntime::_resolve_virtual_ctr = 0;
260 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
261
262 #ifndef PRODUCT
263 uint SharedRuntime::_implicit_null_throws = 0;
264 uint SharedRuntime::_implicit_div0_throws = 0;
265
266 int64_t SharedRuntime::_nof_normal_calls = 0;
267 int64_t SharedRuntime::_nof_inlined_calls = 0;
268 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
269 int64_t SharedRuntime::_nof_static_calls = 0;
270 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
271 int64_t SharedRuntime::_nof_interface_calls = 0;
272 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
273
274 uint SharedRuntime::_new_instance_ctr=0;
275 uint SharedRuntime::_new_array_ctr=0;
276 uint SharedRuntime::_multi2_ctr=0;
277 uint SharedRuntime::_multi3_ctr=0;
278 uint SharedRuntime::_multi4_ctr=0;
279 uint SharedRuntime::_multi5_ctr=0;
280 uint SharedRuntime::_mon_enter_stub_ctr=0;
281 uint SharedRuntime::_mon_exit_stub_ctr=0;
282 uint SharedRuntime::_mon_enter_ctr=0;
283 uint SharedRuntime::_mon_exit_ctr=0;
284 uint SharedRuntime::_partial_subtype_ctr=0;
285 uint SharedRuntime::_jbyte_array_copy_ctr=0;
286 uint SharedRuntime::_jshort_array_copy_ctr=0;
287 uint SharedRuntime::_jint_array_copy_ctr=0;
288 uint SharedRuntime::_jlong_array_copy_ctr=0;
289 uint SharedRuntime::_oop_array_copy_ctr=0;
290 uint SharedRuntime::_checkcast_array_copy_ctr=0;
291 uint SharedRuntime::_unsafe_array_copy_ctr=0;
292 uint SharedRuntime::_generic_array_copy_ctr=0;
293 uint SharedRuntime::_slow_array_copy_ctr=0;
294 uint SharedRuntime::_find_handler_ctr=0;
295 uint SharedRuntime::_rethrow_ctr=0;
296 uint SharedRuntime::_unsafe_set_memory_ctr=0;
297
298 int SharedRuntime::_ICmiss_index = 0;
299 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
300 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
301
302
303 void SharedRuntime::trace_ic_miss(address at) {
304 for (int i = 0; i < _ICmiss_index; i++) {
305 if (_ICmiss_at[i] == at) {
306 _ICmiss_count[i]++;
307 return;
308 }
309 }
310 int index = _ICmiss_index++;
311 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
312 _ICmiss_at[index] = at;
313 _ICmiss_count[index] = 1;
314 }
315
316 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) {
317 if (ICMissHistogram) {
318 st->print_cr("IC Miss Histogram:");
319 int tot_misses = 0;
320 for (int i = 0; i < _ICmiss_index; i++) {
321 st->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
322 tot_misses += _ICmiss_count[i];
323 }
324 st->print_cr("Total IC misses: %7d", tot_misses);
325 }
326 }
327
328 #ifdef COMPILER2
329 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
330 void SharedRuntime::debug_print_value(jboolean x) {
331 tty->print_cr("boolean %d", x);
332 }
333
334 void SharedRuntime::debug_print_value(jbyte x) {
335 tty->print_cr("byte %d", x);
336 }
337
338 void SharedRuntime::debug_print_value(jshort x) {
339 tty->print_cr("short %d", x);
340 }
341
342 void SharedRuntime::debug_print_value(jchar x) {
343 tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
344 }
345
346 void SharedRuntime::debug_print_value(jint x) {
347 tty->print_cr("int %d", x);
348 }
349
350 void SharedRuntime::debug_print_value(jlong x) {
351 tty->print_cr("long " JLONG_FORMAT, x);
352 }
353
354 void SharedRuntime::debug_print_value(jfloat x) {
355 tty->print_cr("float %f", x);
356 }
357
358 void SharedRuntime::debug_print_value(jdouble x) {
359 tty->print_cr("double %lf", x);
360 }
361
362 void SharedRuntime::debug_print_value(oopDesc* x) {
363 x->print();
364 }
365 #endif // COMPILER2
366
367 #endif // PRODUCT
368
369
370 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
371 return x * y;
372 JRT_END
373
374
375 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
376 if (x == min_jlong && y == CONST64(-1)) {
377 return x;
378 } else {
379 return x / y;
380 }
381 JRT_END
382
383
384 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
385 if (x == min_jlong && y == CONST64(-1)) {
386 return 0;
387 } else {
388 return x % y;
389 }
390 JRT_END
391
392
393 #ifdef _WIN64
394 const juint float_sign_mask = 0x7FFFFFFF;
395 const juint float_infinity = 0x7F800000;
396 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
397 const julong double_infinity = CONST64(0x7FF0000000000000);
398 #endif
399
400 #if !defined(X86)
401 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
402 #ifdef _WIN64
403 // 64-bit Windows on amd64 returns the wrong values for
404 // infinity operands.
405 juint xbits = PrimitiveConversions::cast<juint>(x);
406 juint ybits = PrimitiveConversions::cast<juint>(y);
407 // x Mod Infinity == x unless x is infinity
408 if (((xbits & float_sign_mask) != float_infinity) &&
409 ((ybits & float_sign_mask) == float_infinity) ) {
410 return x;
411 }
412 return ((jfloat)fmod_winx64((double)x, (double)y));
413 #else
414 return ((jfloat)fmod((double)x,(double)y));
415 #endif
416 JRT_END
417
418 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
419 #ifdef _WIN64
420 julong xbits = PrimitiveConversions::cast<julong>(x);
421 julong ybits = PrimitiveConversions::cast<julong>(y);
422 // x Mod Infinity == x unless x is infinity
423 if (((xbits & double_sign_mask) != double_infinity) &&
424 ((ybits & double_sign_mask) == double_infinity) ) {
425 return x;
426 }
427 return ((jdouble)fmod_winx64((double)x, (double)y));
428 #else
429 return ((jdouble)fmod((double)x,(double)y));
430 #endif
431 JRT_END
432 #endif // !X86
433
434 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
435 return (jfloat)x;
436 JRT_END
437
438 #ifdef __SOFTFP__
439 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
440 return x + y;
441 JRT_END
442
443 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
444 return x - y;
445 JRT_END
446
447 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
448 return x * y;
449 JRT_END
450
451 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
452 return x / y;
453 JRT_END
454
455 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
456 return x + y;
457 JRT_END
458
459 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
460 return x - y;
461 JRT_END
462
463 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
464 return x * y;
465 JRT_END
466
467 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
468 return x / y;
469 JRT_END
470
471 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
472 return (jdouble)x;
473 JRT_END
474
475 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
476 return (jdouble)x;
477 JRT_END
478
479 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
480 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
481 JRT_END
482
483 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
484 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
485 JRT_END
486
487 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
488 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
489 JRT_END
490
491 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
492 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
493 JRT_END
494
495 // Functions to return the opposite of the aeabi functions for nan.
496 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
497 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
498 JRT_END
499
500 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
501 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
502 JRT_END
503
504 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
505 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
506 JRT_END
507
508 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
509 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
510 JRT_END
511
512 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
513 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
514 JRT_END
515
516 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
517 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
518 JRT_END
519
520 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
521 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
522 JRT_END
523
524 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
525 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
526 JRT_END
527
528 // Intrinsics make gcc generate code for these.
529 float SharedRuntime::fneg(float f) {
530 return -f;
531 }
532
533 double SharedRuntime::dneg(double f) {
534 return -f;
535 }
536
537 #endif // __SOFTFP__
538
539 #if defined(__SOFTFP__) || defined(E500V2)
540 // Intrinsics make gcc generate code for these.
541 double SharedRuntime::dabs(double f) {
542 return (f <= (double)0.0) ? (double)0.0 - f : f;
543 }
544
545 #endif
546
547 #if defined(__SOFTFP__)
548 double SharedRuntime::dsqrt(double f) {
549 return sqrt(f);
550 }
551 #endif
552
553 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
554 if (g_isnan(x))
555 return 0;
556 if (x >= (jfloat) max_jint)
557 return max_jint;
558 if (x <= (jfloat) min_jint)
559 return min_jint;
560 return (jint) x;
561 JRT_END
562
563
564 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
565 if (g_isnan(x))
566 return 0;
567 if (x >= (jfloat) max_jlong)
568 return max_jlong;
569 if (x <= (jfloat) min_jlong)
570 return min_jlong;
571 return (jlong) x;
572 JRT_END
573
574
575 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
576 if (g_isnan(x))
577 return 0;
578 if (x >= (jdouble) max_jint)
579 return max_jint;
580 if (x <= (jdouble) min_jint)
581 return min_jint;
582 return (jint) x;
583 JRT_END
584
585
586 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
587 if (g_isnan(x))
588 return 0;
589 if (x >= (jdouble) max_jlong)
590 return max_jlong;
591 if (x <= (jdouble) min_jlong)
592 return min_jlong;
593 return (jlong) x;
594 JRT_END
595
596
597 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
598 return (jfloat)x;
599 JRT_END
600
601
602 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
603 return (jfloat)x;
604 JRT_END
605
606
607 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
608 return (jdouble)x;
609 JRT_END
610
611
612 // Exception handling across interpreter/compiler boundaries
613 //
614 // exception_handler_for_return_address(...) returns the continuation address.
615 // The continuation address is the entry point of the exception handler of the
616 // previous frame depending on the return address.
617
618 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
619 // Note: This is called when we have unwound the frame of the callee that did
620 // throw an exception. So far, no check has been performed by the StackWatermarkSet.
621 // Notably, the stack is not walkable at this point, and hence the check must
622 // be deferred until later. Specifically, any of the handlers returned here in
623 // this function, will get dispatched to, and call deferred checks to
624 // StackWatermarkSet::after_unwind at a point where the stack is walkable.
625 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
626 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
627
628 #if INCLUDE_JVMCI
629 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
630 // and other exception handler continuations do not read it
631 current->set_exception_pc(nullptr);
632 #endif // INCLUDE_JVMCI
633
634 if (Continuation::is_return_barrier_entry(return_address)) {
635 return StubRoutines::cont_returnBarrierExc();
636 }
637
638 // The fastest case first
639 CodeBlob* blob = CodeCache::find_blob(return_address);
640 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
641 if (nm != nullptr) {
642 // native nmethods don't have exception handlers
643 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
644 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
645 if (nm->is_deopt_pc(return_address)) {
646 // If we come here because of a stack overflow, the stack may be
647 // unguarded. Reguard the stack otherwise if we return to the
648 // deopt blob and the stack bang causes a stack overflow we
649 // crash.
650 StackOverflow* overflow_state = current->stack_overflow_state();
651 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
652 if (overflow_state->reserved_stack_activation() != current->stack_base()) {
653 overflow_state->set_reserved_stack_activation(current->stack_base());
654 }
655 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
656 // The deferred StackWatermarkSet::after_unwind check will be performed in
657 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
658 return SharedRuntime::deopt_blob()->unpack_with_exception();
659 } else {
660 // The deferred StackWatermarkSet::after_unwind check will be performed in
661 // * OptoRuntime::handle_exception_C_helper for C2 code
662 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
663 return nm->exception_begin();
664 }
665 }
666
667 // Entry code
668 if (StubRoutines::returns_to_call_stub(return_address)) {
669 // The deferred StackWatermarkSet::after_unwind check will be performed in
670 // JavaCallWrapper::~JavaCallWrapper
671 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
672 return StubRoutines::catch_exception_entry();
673 }
674 if (blob != nullptr && blob->is_upcall_stub()) {
675 return StubRoutines::upcall_stub_exception_handler();
676 }
677 // Interpreted code
678 if (Interpreter::contains(return_address)) {
679 // The deferred StackWatermarkSet::after_unwind check will be performed in
680 // InterpreterRuntime::exception_handler_for_exception
681 return Interpreter::rethrow_exception_entry();
682 }
683
684 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
685 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
686
687 #ifndef PRODUCT
688 { ResourceMark rm;
689 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
690 os::print_location(tty, (intptr_t)return_address);
691 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
692 tty->print_cr("b) other problem");
693 }
694 #endif // PRODUCT
695 ShouldNotReachHere();
696 return nullptr;
697 }
698
699
700 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
701 return raw_exception_handler_for_return_address(current, return_address);
702 JRT_END
703
704
705 address SharedRuntime::get_poll_stub(address pc) {
706 address stub;
707 // Look up the code blob
708 CodeBlob *cb = CodeCache::find_blob(pc);
709
710 // Should be an nmethod
711 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
712
713 // Look up the relocation information
714 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
715 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
716
717 #ifdef ASSERT
718 if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
719 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
720 Disassembler::decode(cb);
721 fatal("Only polling locations are used for safepoint");
722 }
723 #endif
724
725 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
726 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
727 if (at_poll_return) {
728 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
729 "polling page return stub not created yet");
730 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
731 } else if (has_wide_vectors) {
732 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
733 "polling page vectors safepoint stub not created yet");
734 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
735 } else {
736 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
737 "polling page safepoint stub not created yet");
738 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
739 }
740 log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
741 INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
742 p2i(Thread::current()),
743 Thread::current()->osthread()->thread_id(),
744 p2i(pc),
745 at_poll_return ? "return" : "loop",
746 p2i(stub));
747 return stub;
748 }
749
750 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
751 if (JvmtiExport::can_post_on_exceptions()) {
752 vframeStream vfst(current, true);
753 methodHandle method = methodHandle(current, vfst.method());
754 address bcp = method()->bcp_from(vfst.bci());
755 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
756 }
757
758 #if INCLUDE_JVMCI
759 if (EnableJVMCI) {
760 vframeStream vfst(current, true);
761 methodHandle method = methodHandle(current, vfst.method());
762 int bci = vfst.bci();
763 MethodData* trap_mdo = method->method_data();
764 if (trap_mdo != nullptr) {
765 // Set exception_seen if the exceptional bytecode is an invoke
766 Bytecode_invoke call = Bytecode_invoke_check(method, bci);
767 if (call.is_valid()) {
768 ResourceMark rm(current);
769
770 // Lock to read ProfileData, and ensure lock is not broken by a safepoint
771 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
772
773 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
774 if (pdata != nullptr && pdata->is_BitData()) {
775 BitData* bit_data = (BitData*) pdata;
776 bit_data->set_exception_seen();
777 }
778 }
779 }
780 }
781 #endif
782
783 Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
784 }
785
786 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
787 Handle h_exception = Exceptions::new_exception(current, name, message);
788 throw_and_post_jvmti_exception(current, h_exception);
789 }
790
791 #if INCLUDE_JVMTI
792 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
793 assert(hide == JNI_FALSE, "must be VTMS transition finish");
794 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
795 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
796 JNIHandles::destroy_local(vthread);
797 JRT_END
798
799 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
800 assert(hide == JNI_TRUE, "must be VTMS transition start");
801 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
802 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
803 JNIHandles::destroy_local(vthread);
804 JRT_END
805
806 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
807 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
808 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
809 JNIHandles::destroy_local(vthread);
810 JRT_END
811
812 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
813 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
814 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
815 JNIHandles::destroy_local(vthread);
816 JRT_END
817 #endif // INCLUDE_JVMTI
818
819 // The interpreter code to call this tracing function is only
820 // called/generated when UL is on for redefine, class and has the right level
821 // and tags. Since obsolete methods are never compiled, we don't have
822 // to modify the compilers to generate calls to this function.
823 //
824 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
825 JavaThread* thread, Method* method))
826 if (method->is_obsolete()) {
827 // We are calling an obsolete method, but this is not necessarily
828 // an error. Our method could have been redefined just after we
829 // fetched the Method* from the constant pool.
830 ResourceMark rm;
831 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
832 }
833
834 LogStreamHandle(Trace, interpreter, bytecode) log;
835 if (log.is_enabled()) {
836 ResourceMark rm;
837 log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s",
838 p2i(thread),
839 (method->is_static() ? "static" : "virtual"),
840 method->name_and_sig_as_C_string(),
841 (method->is_native() ? " native" : ""),
842 (thread->class_being_initialized() != nullptr ? " clinit" : ""),
843 (method->method_holder()->is_initialized() ? "" : " being_initialized"));
844 }
845 return 0;
846 JRT_END
847
848 // ret_pc points into caller; we are returning caller's exception handler
849 // for given exception
850 // Note that the implementation of this method assumes it's only called when an exception has actually occured
851 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
852 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
853 assert(nm != nullptr, "must exist");
854 ResourceMark rm;
855
856 #if INCLUDE_JVMCI
857 if (nm->is_compiled_by_jvmci()) {
858 // lookup exception handler for this pc
859 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
860 ExceptionHandlerTable table(nm);
861 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
862 if (t != nullptr) {
863 return nm->code_begin() + t->pco();
864 } else {
865 bool make_not_entrant = true;
866 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
867 }
868 }
869 #endif // INCLUDE_JVMCI
870
871 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
872 // determine handler bci, if any
873 EXCEPTION_MARK;
874
875 int handler_bci = -1;
876 int scope_depth = 0;
877 if (!force_unwind) {
878 int bci = sd->bci();
879 bool recursive_exception = false;
880 do {
881 bool skip_scope_increment = false;
882 // exception handler lookup
883 Klass* ek = exception->klass();
884 methodHandle mh(THREAD, sd->method());
885 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
886 if (HAS_PENDING_EXCEPTION) {
887 recursive_exception = true;
888 // We threw an exception while trying to find the exception handler.
889 // Transfer the new exception to the exception handle which will
890 // be set into thread local storage, and do another lookup for an
891 // exception handler for this exception, this time starting at the
892 // BCI of the exception handler which caused the exception to be
893 // thrown (bugs 4307310 and 4546590). Set "exception" reference
894 // argument to ensure that the correct exception is thrown (4870175).
895 recursive_exception_occurred = true;
896 exception = Handle(THREAD, PENDING_EXCEPTION);
897 CLEAR_PENDING_EXCEPTION;
898 if (handler_bci >= 0) {
899 bci = handler_bci;
900 handler_bci = -1;
901 skip_scope_increment = true;
902 }
903 }
904 else {
905 recursive_exception = false;
906 }
907 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
908 sd = sd->sender();
909 if (sd != nullptr) {
910 bci = sd->bci();
911 }
912 ++scope_depth;
913 }
914 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
915 }
916
917 // found handling method => lookup exception handler
918 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
919
920 ExceptionHandlerTable table(nm);
921 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
922
923 // If the compiler did not anticipate a recursive exception, resulting in an exception
924 // thrown from the catch bci, then the compiled exception handler might be missing.
925 // This is rare. Just deoptimize and let the interpreter handle it.
926 if (t == nullptr && recursive_exception_occurred) {
927 bool make_not_entrant = false;
928 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
929 }
930
931 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
932 // Allow abbreviated catch tables. The idea is to allow a method
933 // to materialize its exceptions without committing to the exact
934 // routing of exceptions. In particular this is needed for adding
935 // a synthetic handler to unlock monitors when inlining
936 // synchronized methods since the unlock path isn't represented in
937 // the bytecodes.
938 t = table.entry_for(catch_pco, -1, 0);
939 }
940
941 #ifdef COMPILER1
942 if (t == nullptr && nm->is_compiled_by_c1()) {
943 assert(nm->unwind_handler_begin() != nullptr, "");
944 return nm->unwind_handler_begin();
945 }
946 #endif
947
948 if (t == nullptr) {
949 ttyLocker ttyl;
950 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
951 tty->print_cr(" Exception:");
952 exception->print();
953 tty->cr();
954 tty->print_cr(" Compiled exception table :");
955 table.print();
956 nm->print();
957 nm->print_code();
958 guarantee(false, "missing exception handler");
959 return nullptr;
960 }
961
962 if (handler_bci != -1) { // did we find a handler in this method?
963 sd->method()->set_exception_handler_entered(handler_bci); // profile
964 }
965 return nm->code_begin() + t->pco();
966 }
967
968 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
969 // These errors occur only at call sites
970 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
971 JRT_END
972
973 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
974 // These errors occur only at call sites
975 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
976 JRT_END
977
978 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
979 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
980 JRT_END
981
982 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
983 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
984 JRT_END
985
986 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
987 // This entry point is effectively only used for NullPointerExceptions which occur at inline
988 // cache sites (when the callee activation is not yet set up) so we are at a call site
989 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
990 JRT_END
991
992 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
993 throw_StackOverflowError_common(current, false);
994 JRT_END
995
996 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
997 throw_StackOverflowError_common(current, true);
998 JRT_END
999
1000 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
1001 // We avoid using the normal exception construction in this case because
1002 // it performs an upcall to Java, and we're already out of stack space.
1003 JavaThread* THREAD = current; // For exception macros.
1004 InstanceKlass* k = vmClasses::StackOverflowError_klass();
1005 oop exception_oop = k->allocate_instance(CHECK);
1006 if (delayed) {
1007 java_lang_Throwable::set_message(exception_oop,
1008 Universe::delayed_stack_overflow_error_message());
1009 }
1010 Handle exception (current, exception_oop);
1011 if (StackTraceInThrowable) {
1012 java_lang_Throwable::fill_in_stack_trace(exception);
1013 }
1014 // Remove the ScopedValue bindings in case we got a
1015 // StackOverflowError while we were trying to remove ScopedValue
1016 // bindings.
1017 current->clear_scopedValueBindings();
1018 // Increment counter for hs_err file reporting
1019 AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
1020 throw_and_post_jvmti_exception(current, exception);
1021 }
1022
1023 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
1024 address pc,
1025 ImplicitExceptionKind exception_kind)
1026 {
1027 address target_pc = nullptr;
1028
1029 if (Interpreter::contains(pc)) {
1030 switch (exception_kind) {
1031 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
1032 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
1033 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
1034 default: ShouldNotReachHere();
1035 }
1036 } else {
1037 switch (exception_kind) {
1038 case STACK_OVERFLOW: {
1039 // Stack overflow only occurs upon frame setup; the callee is
1040 // going to be unwound. Dispatch to a shared runtime stub
1041 // which will cause the StackOverflowError to be fabricated
1042 // and processed.
1043 // Stack overflow should never occur during deoptimization:
1044 // the compiled method bangs the stack by as much as the
1045 // interpreter would need in case of a deoptimization. The
1046 // deoptimization blob and uncommon trap blob bang the stack
1047 // in a debug VM to verify the correctness of the compiled
1048 // method stack banging.
1049 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
1050 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
1051 return SharedRuntime::throw_StackOverflowError_entry();
1052 }
1053
1054 case IMPLICIT_NULL: {
1055 if (VtableStubs::contains(pc)) {
1056 // We haven't yet entered the callee frame. Fabricate an
1057 // exception and begin dispatching it in the caller. Since
1058 // the caller was at a call site, it's safe to destroy all
1059 // caller-saved registers, as these entry points do.
1060 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
1061
1062 // If vt_stub is null, then return null to signal handler to report the SEGV error.
1063 if (vt_stub == nullptr) return nullptr;
1064
1065 if (vt_stub->is_abstract_method_error(pc)) {
1066 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
1067 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
1068 // Instead of throwing the abstract method error here directly, we re-resolve
1069 // and will throw the AbstractMethodError during resolve. As a result, we'll
1070 // get a more detailed error message.
1071 return SharedRuntime::get_handle_wrong_method_stub();
1072 } else {
1073 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
1074 // Assert that the signal comes from the expected location in stub code.
1075 assert(vt_stub->is_null_pointer_exception(pc),
1076 "obtained signal from unexpected location in stub code");
1077 return SharedRuntime::throw_NullPointerException_at_call_entry();
1078 }
1079 } else {
1080 CodeBlob* cb = CodeCache::find_blob(pc);
1081
1082 // If code blob is null, then return null to signal handler to report the SEGV error.
1083 if (cb == nullptr) return nullptr;
1084
1085 // Exception happened in CodeCache. Must be either:
1086 // 1. Inline-cache check in C2I handler blob,
1087 // 2. Inline-cache check in nmethod, or
1088 // 3. Implicit null exception in nmethod
1089
1090 if (!cb->is_nmethod()) {
1091 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1092 if (!is_in_blob) {
1093 // Allow normal crash reporting to handle this
1094 return nullptr;
1095 }
1096 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1097 // There is no handler here, so we will simply unwind.
1098 return SharedRuntime::throw_NullPointerException_at_call_entry();
1099 }
1100
1101 // Otherwise, it's a compiled method. Consult its exception handlers.
1102 nmethod* nm = cb->as_nmethod();
1103 if (nm->inlinecache_check_contains(pc)) {
1104 // exception happened inside inline-cache check code
1105 // => the nmethod is not yet active (i.e., the frame
1106 // is not set up yet) => use return address pushed by
1107 // caller => don't push another return address
1108 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1109 return SharedRuntime::throw_NullPointerException_at_call_entry();
1110 }
1111
1112 if (nm->method()->is_method_handle_intrinsic()) {
1113 // exception happened inside MH dispatch code, similar to a vtable stub
1114 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1115 return SharedRuntime::throw_NullPointerException_at_call_entry();
1116 }
1117
1118 #ifndef PRODUCT
1119 _implicit_null_throws++;
1120 #endif
1121 target_pc = nm->continuation_for_implicit_null_exception(pc);
1122 // If there's an unexpected fault, target_pc might be null,
1123 // in which case we want to fall through into the normal
1124 // error handling code.
1125 }
1126
1127 break; // fall through
1128 }
1129
1130
1131 case IMPLICIT_DIVIDE_BY_ZERO: {
1132 nmethod* nm = CodeCache::find_nmethod(pc);
1133 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1134 #ifndef PRODUCT
1135 _implicit_div0_throws++;
1136 #endif
1137 target_pc = nm->continuation_for_implicit_div0_exception(pc);
1138 // If there's an unexpected fault, target_pc might be null,
1139 // in which case we want to fall through into the normal
1140 // error handling code.
1141 break; // fall through
1142 }
1143
1144 default: ShouldNotReachHere();
1145 }
1146
1147 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1148
1149 if (exception_kind == IMPLICIT_NULL) {
1150 #ifndef PRODUCT
1151 // for AbortVMOnException flag
1152 Exceptions::debug_check_abort("java.lang.NullPointerException");
1153 #endif //PRODUCT
1154 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1155 } else {
1156 #ifndef PRODUCT
1157 // for AbortVMOnException flag
1158 Exceptions::debug_check_abort("java.lang.ArithmeticException");
1159 #endif //PRODUCT
1160 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1161 }
1162 return target_pc;
1163 }
1164
1165 ShouldNotReachHere();
1166 return nullptr;
1167 }
1168
1169
1170 /**
1171 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is
1172 * installed in the native function entry of all native Java methods before
1173 * they get linked to their actual native methods.
1174 *
1175 * \note
1176 * This method actually never gets called! The reason is because
1177 * the interpreter's native entries call NativeLookup::lookup() which
1178 * throws the exception when the lookup fails. The exception is then
1179 * caught and forwarded on the return from NativeLookup::lookup() call
1180 * before the call to the native function. This might change in the future.
1181 */
1182 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1183 {
1184 // We return a bad value here to make sure that the exception is
1185 // forwarded before we look at the return value.
1186 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1187 }
1188 JNI_END
1189
1190 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1191 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1192 }
1193
1194 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1195 #if INCLUDE_JVMCI
1196 if (!obj->klass()->has_finalizer()) {
1197 return;
1198 }
1199 #endif // INCLUDE_JVMCI
1200 assert(oopDesc::is_oop(obj), "must be a valid oop");
1201 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1202 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1203 JRT_END
1204
1205 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1206 assert(thread != nullptr, "No thread");
1207 if (thread == nullptr) {
1208 return 0;
1209 }
1210 guarantee(Thread::current() != thread || thread->is_oop_safe(),
1211 "current cannot touch oops after its GC barrier is detached.");
1212 oop obj = thread->threadObj();
1213 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1214 }
1215
1216 /**
1217 * This function ought to be a void function, but cannot be because
1218 * it gets turned into a tail-call on sparc, which runs into dtrace bug
1219 * 6254741. Once that is fixed we can remove the dummy return value.
1220 */
1221 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1222 return dtrace_object_alloc(JavaThread::current(), o, o->size());
1223 }
1224
1225 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1226 return dtrace_object_alloc(thread, o, o->size());
1227 }
1228
1229 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1230 assert(DTraceAllocProbes, "wrong call");
1231 Klass* klass = o->klass();
1232 Symbol* name = klass->name();
1233 HOTSPOT_OBJECT_ALLOC(
1234 get_java_tid(thread),
1235 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1236 return 0;
1237 }
1238
1239 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1240 JavaThread* current, Method* method))
1241 assert(current == JavaThread::current(), "pre-condition");
1242
1243 assert(DTraceMethodProbes, "wrong call");
1244 Symbol* kname = method->klass_name();
1245 Symbol* name = method->name();
1246 Symbol* sig = method->signature();
1247 HOTSPOT_METHOD_ENTRY(
1248 get_java_tid(current),
1249 (char *) kname->bytes(), kname->utf8_length(),
1250 (char *) name->bytes(), name->utf8_length(),
1251 (char *) sig->bytes(), sig->utf8_length());
1252 return 0;
1253 JRT_END
1254
1255 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1256 JavaThread* current, Method* method))
1257 assert(current == JavaThread::current(), "pre-condition");
1258 assert(DTraceMethodProbes, "wrong call");
1259 Symbol* kname = method->klass_name();
1260 Symbol* name = method->name();
1261 Symbol* sig = method->signature();
1262 HOTSPOT_METHOD_RETURN(
1263 get_java_tid(current),
1264 (char *) kname->bytes(), kname->utf8_length(),
1265 (char *) name->bytes(), name->utf8_length(),
1266 (char *) sig->bytes(), sig->utf8_length());
1267 return 0;
1268 JRT_END
1269
1270
1271 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1272 // for a call current in progress, i.e., arguments has been pushed on stack
1273 // put callee has not been invoked yet. Used by: resolve virtual/static,
1274 // vtable updates, etc. Caller frame must be compiled.
1275 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1276 JavaThread* current = THREAD;
1277 ResourceMark rm(current);
1278
1279 // last java frame on stack (which includes native call frames)
1280 vframeStream vfst(current, true); // Do not skip and javaCalls
1281
1282 return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1283 }
1284
1285 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1286 nmethod* caller = vfst.nm();
1287
1288 address pc = vfst.frame_pc();
1289 { // Get call instruction under lock because another thread may be busy patching it.
1290 CompiledICLocker ic_locker(caller);
1291 return caller->attached_method_before_pc(pc);
1292 }
1293 return nullptr;
1294 }
1295
1296 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1297 // for a call current in progress, i.e., arguments has been pushed on stack
1298 // but callee has not been invoked yet. Caller frame must be compiled.
1299 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1300 CallInfo& callinfo, TRAPS) {
1301 Handle receiver;
1302 Handle nullHandle; // create a handy null handle for exception returns
1303 JavaThread* current = THREAD;
1304
1305 assert(!vfst.at_end(), "Java frame must exist");
1306
1307 // Find caller and bci from vframe
1308 methodHandle caller(current, vfst.method());
1309 int bci = vfst.bci();
1310
1311 if (caller->is_continuation_enter_intrinsic()) {
1312 bc = Bytecodes::_invokestatic;
1313 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1314 return receiver;
1315 }
1316
1317 Bytecode_invoke bytecode(caller, bci);
1318 int bytecode_index = bytecode.index();
1319 bc = bytecode.invoke_code();
1320
1321 methodHandle attached_method(current, extract_attached_method(vfst));
1322 if (attached_method.not_null()) {
1323 Method* callee = bytecode.static_target(CHECK_NH);
1324 vmIntrinsics::ID id = callee->intrinsic_id();
1325 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1326 // it attaches statically resolved method to the call site.
1327 if (MethodHandles::is_signature_polymorphic(id) &&
1328 MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1329 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1330
1331 // Adjust invocation mode according to the attached method.
1332 switch (bc) {
1333 case Bytecodes::_invokevirtual:
1334 if (attached_method->method_holder()->is_interface()) {
1335 bc = Bytecodes::_invokeinterface;
1336 }
1337 break;
1338 case Bytecodes::_invokeinterface:
1339 if (!attached_method->method_holder()->is_interface()) {
1340 bc = Bytecodes::_invokevirtual;
1341 }
1342 break;
1343 case Bytecodes::_invokehandle:
1344 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1345 bc = attached_method->is_static() ? Bytecodes::_invokestatic
1346 : Bytecodes::_invokevirtual;
1347 }
1348 break;
1349 default:
1350 break;
1351 }
1352 }
1353 }
1354
1355 assert(bc != Bytecodes::_illegal, "not initialized");
1356
1357 bool has_receiver = bc != Bytecodes::_invokestatic &&
1358 bc != Bytecodes::_invokedynamic &&
1359 bc != Bytecodes::_invokehandle;
1360
1361 // Find receiver for non-static call
1362 if (has_receiver) {
1363 // This register map must be update since we need to find the receiver for
1364 // compiled frames. The receiver might be in a register.
1365 RegisterMap reg_map2(current,
1366 RegisterMap::UpdateMap::include,
1367 RegisterMap::ProcessFrames::include,
1368 RegisterMap::WalkContinuation::skip);
1369 frame stubFrame = current->last_frame();
1370 // Caller-frame is a compiled frame
1371 frame callerFrame = stubFrame.sender(®_map2);
1372
1373 if (attached_method.is_null()) {
1374 Method* callee = bytecode.static_target(CHECK_NH);
1375 if (callee == nullptr) {
1376 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1377 }
1378 }
1379
1380 // Retrieve from a compiled argument list
1381 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2));
1382 assert(oopDesc::is_oop_or_null(receiver()), "");
1383
1384 if (receiver.is_null()) {
1385 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1386 }
1387 }
1388
1389 // Resolve method
1390 if (attached_method.not_null()) {
1391 // Parameterized by attached method.
1392 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1393 } else {
1394 // Parameterized by bytecode.
1395 constantPoolHandle constants(current, caller->constants());
1396 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1397 }
1398
1399 #ifdef ASSERT
1400 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1401 if (has_receiver) {
1402 assert(receiver.not_null(), "should have thrown exception");
1403 Klass* receiver_klass = receiver->klass();
1404 Klass* rk = nullptr;
1405 if (attached_method.not_null()) {
1406 // In case there's resolved method attached, use its holder during the check.
1407 rk = attached_method->method_holder();
1408 } else {
1409 // Klass is already loaded.
1410 constantPoolHandle constants(current, caller->constants());
1411 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1412 }
1413 Klass* static_receiver_klass = rk;
1414 assert(receiver_klass->is_subtype_of(static_receiver_klass),
1415 "actual receiver must be subclass of static receiver klass");
1416 if (receiver_klass->is_instance_klass()) {
1417 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1418 tty->print_cr("ERROR: Klass not yet initialized!!");
1419 receiver_klass->print();
1420 }
1421 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1422 }
1423 }
1424 #endif
1425
1426 return receiver;
1427 }
1428
1429 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1430 JavaThread* current = THREAD;
1431 ResourceMark rm(current);
1432 // We need first to check if any Java activations (compiled, interpreted)
1433 // exist on the stack since last JavaCall. If not, we need
1434 // to get the target method from the JavaCall wrapper.
1435 vframeStream vfst(current, true); // Do not skip any javaCalls
1436 methodHandle callee_method;
1437 if (vfst.at_end()) {
1438 // No Java frames were found on stack since we did the JavaCall.
1439 // Hence the stack can only contain an entry_frame. We need to
1440 // find the target method from the stub frame.
1441 RegisterMap reg_map(current,
1442 RegisterMap::UpdateMap::skip,
1443 RegisterMap::ProcessFrames::include,
1444 RegisterMap::WalkContinuation::skip);
1445 frame fr = current->last_frame();
1446 assert(fr.is_runtime_frame(), "must be a runtimeStub");
1447 fr = fr.sender(®_map);
1448 assert(fr.is_entry_frame(), "must be");
1449 // fr is now pointing to the entry frame.
1450 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1451 } else {
1452 Bytecodes::Code bc;
1453 CallInfo callinfo;
1454 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1455 callee_method = methodHandle(current, callinfo.selected_method());
1456 }
1457 assert(callee_method()->is_method(), "must be");
1458 return callee_method;
1459 }
1460
1461 // Resolves a call.
1462 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1463 JavaThread* current = THREAD;
1464 ResourceMark rm(current);
1465 RegisterMap cbl_map(current,
1466 RegisterMap::UpdateMap::skip,
1467 RegisterMap::ProcessFrames::include,
1468 RegisterMap::WalkContinuation::skip);
1469 frame caller_frame = current->last_frame().sender(&cbl_map);
1470
1471 CodeBlob* caller_cb = caller_frame.cb();
1472 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1473 nmethod* caller_nm = caller_cb->as_nmethod();
1474
1475 // determine call info & receiver
1476 // note: a) receiver is null for static calls
1477 // b) an exception is thrown if receiver is null for non-static calls
1478 CallInfo call_info;
1479 Bytecodes::Code invoke_code = Bytecodes::_illegal;
1480 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1481
1482 NoSafepointVerifier nsv;
1483
1484 methodHandle callee_method(current, call_info.selected_method());
1485
1486 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1487 (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1488 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1489 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1490 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1491
1492 assert(!caller_nm->is_unloading(), "It should not be unloading");
1493
1494 // tracing/debugging/statistics
1495 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1496 (is_virtual) ? (&_resolve_virtual_ctr) :
1497 (&_resolve_static_ctr);
1498 AtomicAccess::inc(addr);
1499
1500 #ifndef PRODUCT
1501 if (TraceCallFixup) {
1502 ResourceMark rm(current);
1503 tty->print("resolving %s%s (%s) call to",
1504 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1505 Bytecodes::name(invoke_code));
1506 callee_method->print_short_name(tty);
1507 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1508 p2i(caller_frame.pc()), p2i(callee_method->code()));
1509 }
1510 #endif
1511
1512 if (invoke_code == Bytecodes::_invokestatic) {
1513 assert(callee_method->method_holder()->is_initialized() ||
1514 callee_method->method_holder()->is_reentrant_initialization(current),
1515 "invalid class initialization state for invoke_static");
1516 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1517 // In order to keep class initialization check, do not patch call
1518 // site for static call when the class is not fully initialized.
1519 // Proper check is enforced by call site re-resolution on every invocation.
1520 //
1521 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1522 // explicit class initialization check is put in nmethod entry (VEP).
1523 assert(callee_method->method_holder()->is_linked(), "must be");
1524 return callee_method;
1525 }
1526 }
1527
1528
1529 // JSR 292 key invariant:
1530 // If the resolved method is a MethodHandle invoke target, the call
1531 // site must be a MethodHandle call site, because the lambda form might tail-call
1532 // leaving the stack in a state unknown to either caller or callee
1533
1534 // Compute entry points. The computation of the entry points is independent of
1535 // patching the call.
1536
1537 // Make sure the callee nmethod does not get deoptimized and removed before
1538 // we are done patching the code.
1539
1540
1541 CompiledICLocker ml(caller_nm);
1542 if (is_virtual && !is_optimized) {
1543 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1544 inline_cache->update(&call_info, receiver->klass());
1545 } else {
1546 // Callsite is a direct call - set it to the destination method
1547 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1548 callsite->set(callee_method);
1549 }
1550
1551 return callee_method;
1552 }
1553
1554 // Inline caches exist only in compiled code
1555 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1556 PerfTraceTime timer(_perf_ic_miss_total_time);
1557
1558 #ifdef ASSERT
1559 RegisterMap reg_map(current,
1560 RegisterMap::UpdateMap::skip,
1561 RegisterMap::ProcessFrames::include,
1562 RegisterMap::WalkContinuation::skip);
1563 frame stub_frame = current->last_frame();
1564 assert(stub_frame.is_runtime_frame(), "sanity check");
1565 frame caller_frame = stub_frame.sender(®_map);
1566 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1567 #endif /* ASSERT */
1568
1569 methodHandle callee_method;
1570 JRT_BLOCK
1571 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1572 // Return Method* through TLS
1573 current->set_vm_result_metadata(callee_method());
1574 JRT_BLOCK_END
1575 // return compiled code entry point after potential safepoints
1576 return get_resolved_entry(current, callee_method);
1577 JRT_END
1578
1579
1580 // Handle call site that has been made non-entrant
1581 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1582 PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1583
1584 // 6243940 We might end up in here if the callee is deoptimized
1585 // as we race to call it. We don't want to take a safepoint if
1586 // the caller was interpreted because the caller frame will look
1587 // interpreted to the stack walkers and arguments are now
1588 // "compiled" so it is much better to make this transition
1589 // invisible to the stack walking code. The i2c path will
1590 // place the callee method in the callee_target. It is stashed
1591 // there because if we try and find the callee by normal means a
1592 // safepoint is possible and have trouble gc'ing the compiled args.
1593 RegisterMap reg_map(current,
1594 RegisterMap::UpdateMap::skip,
1595 RegisterMap::ProcessFrames::include,
1596 RegisterMap::WalkContinuation::skip);
1597 frame stub_frame = current->last_frame();
1598 assert(stub_frame.is_runtime_frame(), "sanity check");
1599 frame caller_frame = stub_frame.sender(®_map);
1600
1601 if (caller_frame.is_interpreted_frame() ||
1602 caller_frame.is_entry_frame() ||
1603 caller_frame.is_upcall_stub_frame()) {
1604 Method* callee = current->callee_target();
1605 guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1606 current->set_vm_result_metadata(callee);
1607 current->set_callee_target(nullptr);
1608 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1609 // Bypass class initialization checks in c2i when caller is in native.
1610 // JNI calls to static methods don't have class initialization checks.
1611 // Fast class initialization checks are present in c2i adapters and call into
1612 // SharedRuntime::handle_wrong_method() on the slow path.
1613 //
1614 // JVM upcalls may land here as well, but there's a proper check present in
1615 // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1616 // so bypassing it in c2i adapter is benign.
1617 return callee->get_c2i_no_clinit_check_entry();
1618 } else {
1619 return callee->get_c2i_entry();
1620 }
1621 }
1622
1623 // Must be compiled to compiled path which is safe to stackwalk
1624 methodHandle callee_method;
1625 JRT_BLOCK
1626 // Force resolving of caller (if we called from compiled frame)
1627 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1628 current->set_vm_result_metadata(callee_method());
1629 JRT_BLOCK_END
1630 // return compiled code entry point after potential safepoints
1631 return get_resolved_entry(current, callee_method);
1632 JRT_END
1633
1634 // Handle abstract method call
1635 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1636 PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1637
1638 // Verbose error message for AbstractMethodError.
1639 // Get the called method from the invoke bytecode.
1640 vframeStream vfst(current, true);
1641 assert(!vfst.at_end(), "Java frame must exist");
1642 methodHandle caller(current, vfst.method());
1643 Bytecode_invoke invoke(caller, vfst.bci());
1644 DEBUG_ONLY( invoke.verify(); )
1645
1646 // Find the compiled caller frame.
1647 RegisterMap reg_map(current,
1648 RegisterMap::UpdateMap::include,
1649 RegisterMap::ProcessFrames::include,
1650 RegisterMap::WalkContinuation::skip);
1651 frame stubFrame = current->last_frame();
1652 assert(stubFrame.is_runtime_frame(), "must be");
1653 frame callerFrame = stubFrame.sender(®_map);
1654 assert(callerFrame.is_compiled_frame(), "must be");
1655
1656 // Install exception and return forward entry.
1657 address res = SharedRuntime::throw_AbstractMethodError_entry();
1658 JRT_BLOCK
1659 methodHandle callee(current, invoke.static_target(current));
1660 if (!callee.is_null()) {
1661 oop recv = callerFrame.retrieve_receiver(®_map);
1662 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1663 res = StubRoutines::forward_exception_entry();
1664 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1665 }
1666 JRT_BLOCK_END
1667 return res;
1668 JRT_END
1669
1670 // return verified_code_entry if interp_only_mode is not set for the current thread;
1671 // otherwise return c2i entry.
1672 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1673 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1674 // In interp_only_mode we need to go to the interpreted entry
1675 // The c2i won't patch in this mode -- see fixup_callers_callsite
1676 return callee_method->get_c2i_entry();
1677 }
1678 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1679 return callee_method->verified_code_entry();
1680 }
1681
1682 // resolve a static call and patch code
1683 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1684 PerfTraceTime timer(_perf_resolve_static_total_time);
1685
1686 methodHandle callee_method;
1687 bool enter_special = false;
1688 JRT_BLOCK
1689 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1690 current->set_vm_result_metadata(callee_method());
1691 JRT_BLOCK_END
1692 // return compiled code entry point after potential safepoints
1693 return get_resolved_entry(current, callee_method);
1694 JRT_END
1695
1696 // resolve virtual call and update inline cache to monomorphic
1697 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1698 PerfTraceTime timer(_perf_resolve_virtual_total_time);
1699
1700 methodHandle callee_method;
1701 JRT_BLOCK
1702 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1703 current->set_vm_result_metadata(callee_method());
1704 JRT_BLOCK_END
1705 // return compiled code entry point after potential safepoints
1706 return get_resolved_entry(current, callee_method);
1707 JRT_END
1708
1709
1710 // Resolve a virtual call that can be statically bound (e.g., always
1711 // monomorphic, so it has no inline cache). Patch code to resolved target.
1712 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1713 PerfTraceTime timer(_perf_resolve_opt_virtual_total_time);
1714
1715 methodHandle callee_method;
1716 JRT_BLOCK
1717 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1718 current->set_vm_result_metadata(callee_method());
1719 JRT_BLOCK_END
1720 // return compiled code entry point after potential safepoints
1721 return get_resolved_entry(current, callee_method);
1722 JRT_END
1723
1724 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1725 JavaThread* current = THREAD;
1726 ResourceMark rm(current);
1727 CallInfo call_info;
1728 Bytecodes::Code bc;
1729
1730 // receiver is null for static calls. An exception is thrown for null
1731 // receivers for non-static calls
1732 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1733
1734 methodHandle callee_method(current, call_info.selected_method());
1735
1736 AtomicAccess::inc(&_ic_miss_ctr);
1737
1738 #ifndef PRODUCT
1739 // Statistics & Tracing
1740 if (TraceCallFixup) {
1741 ResourceMark rm(current);
1742 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1743 callee_method->print_short_name(tty);
1744 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1745 }
1746
1747 if (ICMissHistogram) {
1748 MutexLocker m(VMStatistic_lock);
1749 RegisterMap reg_map(current,
1750 RegisterMap::UpdateMap::skip,
1751 RegisterMap::ProcessFrames::include,
1752 RegisterMap::WalkContinuation::skip);
1753 frame f = current->last_frame().real_sender(®_map);// skip runtime stub
1754 // produce statistics under the lock
1755 trace_ic_miss(f.pc());
1756 }
1757 #endif
1758
1759 // install an event collector so that when a vtable stub is created the
1760 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1761 // event can't be posted when the stub is created as locks are held
1762 // - instead the event will be deferred until the event collector goes
1763 // out of scope.
1764 JvmtiDynamicCodeEventCollector event_collector;
1765
1766 // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1767 RegisterMap reg_map(current,
1768 RegisterMap::UpdateMap::skip,
1769 RegisterMap::ProcessFrames::include,
1770 RegisterMap::WalkContinuation::skip);
1771 frame caller_frame = current->last_frame().sender(®_map);
1772 CodeBlob* cb = caller_frame.cb();
1773 nmethod* caller_nm = cb->as_nmethod();
1774
1775 CompiledICLocker ml(caller_nm);
1776 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1777 inline_cache->update(&call_info, receiver()->klass());
1778
1779 return callee_method;
1780 }
1781
1782 //
1783 // Resets a call-site in compiled code so it will get resolved again.
1784 // This routines handles both virtual call sites, optimized virtual call
1785 // sites, and static call sites. Typically used to change a call sites
1786 // destination from compiled to interpreted.
1787 //
1788 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1789 JavaThread* current = THREAD;
1790 ResourceMark rm(current);
1791 RegisterMap reg_map(current,
1792 RegisterMap::UpdateMap::skip,
1793 RegisterMap::ProcessFrames::include,
1794 RegisterMap::WalkContinuation::skip);
1795 frame stub_frame = current->last_frame();
1796 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1797 frame caller = stub_frame.sender(®_map);
1798
1799 // Do nothing if the frame isn't a live compiled frame.
1800 // nmethod could be deoptimized by the time we get here
1801 // so no update to the caller is needed.
1802
1803 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1804 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1805
1806 address pc = caller.pc();
1807
1808 nmethod* caller_nm = CodeCache::find_nmethod(pc);
1809 assert(caller_nm != nullptr, "did not find caller nmethod");
1810
1811 // Default call_addr is the location of the "basic" call.
1812 // Determine the address of the call we a reresolving. With
1813 // Inline Caches we will always find a recognizable call.
1814 // With Inline Caches disabled we may or may not find a
1815 // recognizable call. We will always find a call for static
1816 // calls and for optimized virtual calls. For vanilla virtual
1817 // calls it depends on the state of the UseInlineCaches switch.
1818 //
1819 // With Inline Caches disabled we can get here for a virtual call
1820 // for two reasons:
1821 // 1 - calling an abstract method. The vtable for abstract methods
1822 // will run us thru handle_wrong_method and we will eventually
1823 // end up in the interpreter to throw the ame.
1824 // 2 - a racing deoptimization. We could be doing a vanilla vtable
1825 // call and between the time we fetch the entry address and
1826 // we jump to it the target gets deoptimized. Similar to 1
1827 // we will wind up in the interprter (thru a c2i with c2).
1828 //
1829 CompiledICLocker ml(caller_nm);
1830 address call_addr = caller_nm->call_instruction_address(pc);
1831
1832 if (call_addr != nullptr) {
1833 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1834 // bytes back in the instruction stream so we must also check for reloc info.
1835 RelocIterator iter(caller_nm, call_addr, call_addr+1);
1836 bool ret = iter.next(); // Get item
1837 if (ret) {
1838 switch (iter.type()) {
1839 case relocInfo::static_call_type:
1840 case relocInfo::opt_virtual_call_type: {
1841 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1842 cdc->set_to_clean();
1843 break;
1844 }
1845
1846 case relocInfo::virtual_call_type: {
1847 // compiled, dispatched call (which used to call an interpreted method)
1848 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1849 inline_cache->set_to_clean();
1850 break;
1851 }
1852 default:
1853 break;
1854 }
1855 }
1856 }
1857 }
1858
1859 methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1860
1861 AtomicAccess::inc(&_wrong_method_ctr);
1862
1863 #ifndef PRODUCT
1864 if (TraceCallFixup) {
1865 ResourceMark rm(current);
1866 tty->print("handle_wrong_method reresolving call to");
1867 callee_method->print_short_name(tty);
1868 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1869 }
1870 #endif
1871
1872 return callee_method;
1873 }
1874
1875 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1876 // The faulting unsafe accesses should be changed to throw the error
1877 // synchronously instead. Meanwhile the faulting instruction will be
1878 // skipped over (effectively turning it into a no-op) and an
1879 // asynchronous exception will be raised which the thread will
1880 // handle at a later point. If the instruction is a load it will
1881 // return garbage.
1882
1883 // Request an async exception.
1884 thread->set_pending_unsafe_access_error();
1885
1886 // Return address of next instruction to execute.
1887 return next_pc;
1888 }
1889
1890 #ifdef ASSERT
1891 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1892 const BasicType* sig_bt,
1893 const VMRegPair* regs) {
1894 ResourceMark rm;
1895 const int total_args_passed = method->size_of_parameters();
1896 const VMRegPair* regs_with_member_name = regs;
1897 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1898
1899 const int member_arg_pos = total_args_passed - 1;
1900 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1901 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1902
1903 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1904
1905 for (int i = 0; i < member_arg_pos; i++) {
1906 VMReg a = regs_with_member_name[i].first();
1907 VMReg b = regs_without_member_name[i].first();
1908 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1909 }
1910 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1911 }
1912 #endif
1913
1914 // ---------------------------------------------------------------------------
1915 // We are calling the interpreter via a c2i. Normally this would mean that
1916 // we were called by a compiled method. However we could have lost a race
1917 // where we went int -> i2c -> c2i and so the caller could in fact be
1918 // interpreted. If the caller is compiled we attempt to patch the caller
1919 // so he no longer calls into the interpreter.
1920 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1921 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1922
1923 // It's possible that deoptimization can occur at a call site which hasn't
1924 // been resolved yet, in which case this function will be called from
1925 // an nmethod that has been patched for deopt and we can ignore the
1926 // request for a fixup.
1927 // Also it is possible that we lost a race in that from_compiled_entry
1928 // is now back to the i2c in that case we don't need to patch and if
1929 // we did we'd leap into space because the callsite needs to use
1930 // "to interpreter" stub in order to load up the Method*. Don't
1931 // ask me how I know this...
1932
1933 // Result from nmethod::is_unloading is not stable across safepoints.
1934 NoSafepointVerifier nsv;
1935
1936 nmethod* callee = method->code();
1937 if (callee == nullptr) {
1938 return;
1939 }
1940
1941 // write lock needed because we might patch call site by set_to_clean()
1942 // and is_unloading() can modify nmethod's state
1943 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1944
1945 CodeBlob* cb = CodeCache::find_blob(caller_pc);
1946 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1947 return;
1948 }
1949
1950 // The check above makes sure this is an nmethod.
1951 nmethod* caller = cb->as_nmethod();
1952
1953 // Get the return PC for the passed caller PC.
1954 address return_pc = caller_pc + frame::pc_return_offset;
1955
1956 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1957 return;
1958 }
1959
1960 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1961 CompiledICLocker ic_locker(caller);
1962 ResourceMark rm;
1963
1964 // If we got here through a static call or opt_virtual call, then we know where the
1965 // call address would be; let's peek at it
1966 address callsite_addr = (address)nativeCall_before(return_pc);
1967 RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1968 if (!iter.next()) {
1969 // No reloc entry found; not a static or optimized virtual call
1970 return;
1971 }
1972
1973 relocInfo::relocType type = iter.reloc()->type();
1974 if (type != relocInfo::static_call_type &&
1975 type != relocInfo::opt_virtual_call_type) {
1976 return;
1977 }
1978
1979 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1980 callsite->set_to_clean();
1981 JRT_END
1982
1983
1984 // same as JVM_Arraycopy, but called directly from compiled code
1985 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
1986 oopDesc* dest, jint dest_pos,
1987 jint length,
1988 JavaThread* current)) {
1989 #ifndef PRODUCT
1990 _slow_array_copy_ctr++;
1991 #endif
1992 // Check if we have null pointers
1993 if (src == nullptr || dest == nullptr) {
1994 THROW(vmSymbols::java_lang_NullPointerException());
1995 }
1996 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
1997 // even though the copy_array API also performs dynamic checks to ensure
1998 // that src and dest are truly arrays (and are conformable).
1999 // The copy_array mechanism is awkward and could be removed, but
2000 // the compilers don't call this function except as a last resort,
2001 // so it probably doesn't matter.
2002 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2003 (arrayOopDesc*)dest, dest_pos,
2004 length, current);
2005 }
2006 JRT_END
2007
2008 // The caller of generate_class_cast_message() (or one of its callers)
2009 // must use a ResourceMark in order to correctly free the result.
2010 char* SharedRuntime::generate_class_cast_message(
2011 JavaThread* thread, Klass* caster_klass) {
2012
2013 // Get target class name from the checkcast instruction
2014 vframeStream vfst(thread, true);
2015 assert(!vfst.at_end(), "Java frame must exist");
2016 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2017 constantPoolHandle cpool(thread, vfst.method()->constants());
2018 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2019 Symbol* target_klass_name = nullptr;
2020 if (target_klass == nullptr) {
2021 // This klass should be resolved, but just in case, get the name in the klass slot.
2022 target_klass_name = cpool->klass_name_at(cc.index());
2023 }
2024 return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2025 }
2026
2027
2028 // The caller of generate_class_cast_message() (or one of its callers)
2029 // must use a ResourceMark in order to correctly free the result.
2030 char* SharedRuntime::generate_class_cast_message(
2031 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2032 const char* caster_name = caster_klass->external_name();
2033
2034 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
2035 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
2036 target_klass->external_name();
2037
2038 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2039
2040 const char* caster_klass_description = "";
2041 const char* target_klass_description = "";
2042 const char* klass_separator = "";
2043 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
2044 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2045 } else {
2046 caster_klass_description = caster_klass->class_in_module_of_loader();
2047 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
2048 klass_separator = (target_klass != nullptr) ? "; " : "";
2049 }
2050
2051 // add 3 for parenthesis and preceding space
2052 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2053
2054 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2055 if (message == nullptr) {
2056 // Shouldn't happen, but don't cause even more problems if it does
2057 message = const_cast<char*>(caster_klass->external_name());
2058 } else {
2059 jio_snprintf(message,
2060 msglen,
2061 "class %s cannot be cast to class %s (%s%s%s)",
2062 caster_name,
2063 target_name,
2064 caster_klass_description,
2065 klass_separator,
2066 target_klass_description
2067 );
2068 }
2069 return message;
2070 }
2071
2072 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2073 (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2074 JRT_END
2075
2076 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2077 if (!SafepointSynchronize::is_synchronizing()) {
2078 // Only try quick_enter() if we're not trying to reach a safepoint
2079 // so that the calling thread reaches the safepoint more quickly.
2080 if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
2081 return;
2082 }
2083 }
2084 // NO_ASYNC required because an async exception on the state transition destructor
2085 // would leave you with the lock held and it would never be released.
2086 // The normal monitorenter NullPointerException is thrown without acquiring a lock
2087 // and the model is that an exception implies the method failed.
2088 JRT_BLOCK_NO_ASYNC
2089 Handle h_obj(THREAD, obj);
2090 ObjectSynchronizer::enter(h_obj, lock, current);
2091 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2092 JRT_BLOCK_END
2093 }
2094
2095 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2096 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2097 SharedRuntime::monitor_enter_helper(obj, lock, current);
2098 JRT_END
2099
2100 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2101 assert(JavaThread::current() == current, "invariant");
2102 // Exit must be non-blocking, and therefore no exceptions can be thrown.
2103 ExceptionMark em(current);
2104
2105 // Check if C2_MacroAssembler::fast_unlock() or
2106 // C2_MacroAssembler::fast_unlock() unlocked an inflated
2107 // monitor before going slow path. Since there is no safepoint
2108 // polling when calling into the VM, we can be sure that the monitor
2109 // hasn't been deallocated.
2110 ObjectMonitor* m = current->unlocked_inflated_monitor();
2111 if (m != nullptr) {
2112 assert(!m->has_owner(current), "must be");
2113 current->clear_unlocked_inflated_monitor();
2114
2115 // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2116 if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2117 // Some other thread acquired the lock (or the monitor was
2118 // deflated). Either way we are done.
2119 return;
2120 }
2121 }
2122
2123 // The object could become unlocked through a JNI call, which we have no other checks for.
2124 // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2125 if (obj->is_unlocked()) {
2126 if (CheckJNICalls) {
2127 fatal("Object has been unlocked by JNI");
2128 }
2129 return;
2130 }
2131 ObjectSynchronizer::exit(obj, lock, current);
2132 }
2133
2134 // Handles the uncommon cases of monitor unlocking in compiled code
2135 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2136 assert(current == JavaThread::current(), "pre-condition");
2137 SharedRuntime::monitor_exit_helper(obj, lock, current);
2138 JRT_END
2139
2140 #ifndef PRODUCT
2141
2142 void SharedRuntime::print_statistics() {
2143 ttyLocker ttyl;
2144 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'");
2145
2146 SharedRuntime::print_ic_miss_histogram_on(tty);
2147 SharedRuntime::print_counters_on(tty);
2148 AdapterHandlerLibrary::print_statistics_on(tty);
2149
2150 if (xtty != nullptr) xtty->tail("statistics");
2151 }
2152
2153 //void SharedRuntime::print_counters_on(outputStream* st) {
2154 // // Dump the JRT_ENTRY counters
2155 // if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr);
2156 // if (_new_array_ctr) st->print_cr("%5u new array requires GC", _new_array_ctr);
2157 // if (_multi2_ctr) st->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2158 // if (_multi3_ctr) st->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2159 // if (_multi4_ctr) st->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2160 // if (_multi5_ctr) st->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2161 //
2162 // st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2163 // st->print_cr("%5u wrong method", _wrong_method_ctr);
2164 // st->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2165 // st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2166 // st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2167 //
2168 // if (_mon_enter_stub_ctr) st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2169 // if (_mon_exit_stub_ctr) st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2170 // if (_mon_enter_ctr) st->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2171 // if (_mon_exit_ctr) st->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2172 // if (_partial_subtype_ctr) st->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2173 // if (_jbyte_array_copy_ctr) st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2174 // if (_jshort_array_copy_ctr) st->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2175 // if (_jint_array_copy_ctr) st->print_cr("%5u int array copies", _jint_array_copy_ctr);
2176 // if (_jlong_array_copy_ctr) st->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2177 // if (_oop_array_copy_ctr) st->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2178 // if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2179 // if (_unsafe_array_copy_ctr) st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2180 // if (_generic_array_copy_ctr) st->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2181 // if (_slow_array_copy_ctr) st->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2182 // if (_find_handler_ctr) st->print_cr("%5u find exception handler", _find_handler_ctr);
2183 // if (_rethrow_ctr) st->print_cr("%5u rethrow handler", _rethrow_ctr);
2184 // if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2185 //}
2186
2187 inline double percent(int64_t x, int64_t y) {
2188 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2189 }
2190
2191 class MethodArityHistogram {
2192 public:
2193 enum { MAX_ARITY = 256 };
2194 private:
2195 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2196 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words
2197 static uint64_t _total_compiled_calls;
2198 static uint64_t _max_compiled_calls_per_method;
2199 static int _max_arity; // max. arity seen
2200 static int _max_size; // max. arg size seen
2201
2202 static void add_method_to_histogram(nmethod* nm) {
2203 Method* method = (nm == nullptr) ? nullptr : nm->method();
2204 if (method != nullptr) {
2205 ArgumentCount args(method->signature());
2206 int arity = args.size() + (method->is_static() ? 0 : 1);
2207 int argsize = method->size_of_parameters();
2208 arity = MIN2(arity, MAX_ARITY-1);
2209 argsize = MIN2(argsize, MAX_ARITY-1);
2210 uint64_t count = (uint64_t)method->compiled_invocation_count();
2211 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2212 _total_compiled_calls += count;
2213 _arity_histogram[arity] += count;
2214 _size_histogram[argsize] += count;
2215 _max_arity = MAX2(_max_arity, arity);
2216 _max_size = MAX2(_max_size, argsize);
2217 }
2218 }
2219
2220 void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2221 const int N = MIN2(9, n);
2222 double sum = 0;
2223 double weighted_sum = 0;
2224 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2225 if (sum >= 1) { // prevent divide by zero or divide overflow
2226 double rest = sum;
2227 double percent = sum / 100;
2228 for (int i = 0; i <= N; i++) {
2229 rest -= (double)histo[i];
2230 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2231 }
2232 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2233 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2234 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2235 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2236 } else {
2237 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2238 }
2239 }
2240
2241 void print_histogram() {
2242 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2243 print_histogram_helper(_max_arity, _arity_histogram, "arity");
2244 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2245 print_histogram_helper(_max_size, _size_histogram, "size");
2246 tty->cr();
2247 }
2248
2249 public:
2250 MethodArityHistogram() {
2251 // Take the Compile_lock to protect against changes in the CodeBlob structures
2252 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2253 // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2254 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2255 _max_arity = _max_size = 0;
2256 _total_compiled_calls = 0;
2257 _max_compiled_calls_per_method = 0;
2258 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2259 CodeCache::nmethods_do(add_method_to_histogram);
2260 print_histogram();
2261 }
2262 };
2263
2264 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2265 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2266 uint64_t MethodArityHistogram::_total_compiled_calls;
2267 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2268 int MethodArityHistogram::_max_arity;
2269 int MethodArityHistogram::_max_size;
2270
2271 void SharedRuntime::print_call_statistics_on(outputStream* st) {
2272 tty->print_cr("Calls from compiled code:");
2273 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2274 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2275 int64_t mono_i = _nof_interface_calls;
2276 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total);
2277 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
2278 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2279 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
2280 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2281 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
2282 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2283 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
2284 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2285 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2286 tty->cr();
2287 tty->print_cr("Note 1: counter updates are not MT-safe.");
2288 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2289 tty->print_cr(" %% in nested categories are relative to their category");
2290 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
2291 tty->cr();
2292
2293 MethodArityHistogram h;
2294 }
2295 #endif
2296
2297 #ifndef PRODUCT
2298 static int _lookups; // number of calls to lookup
2299 static int _equals; // number of buckets checked with matching hash
2300 static int _archived_hits; // number of successful lookups in archived table
2301 static int _runtime_hits; // number of successful lookups in runtime table
2302 #endif
2303
2304 // A simple wrapper class around the calling convention information
2305 // that allows sharing of adapters for the same calling convention.
2306 class AdapterFingerPrint : public MetaspaceObj {
2307 private:
2308 enum {
2309 _basic_type_bits = 4,
2310 _basic_type_mask = right_n_bits(_basic_type_bits),
2311 _basic_types_per_int = BitsPerInt / _basic_type_bits,
2312 };
2313 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
2314 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2315
2316 int _length;
2317
2318 static int data_offset() { return sizeof(AdapterFingerPrint); }
2319 int* data_pointer() {
2320 return (int*)((address)this + data_offset());
2321 }
2322
2323 // Private construtor. Use allocate() to get an instance.
2324 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2325 int* data = data_pointer();
2326 // Pack the BasicTypes with 8 per int
2327 assert(len == length(total_args_passed), "sanity");
2328 _length = len;
2329 int sig_index = 0;
2330 for (int index = 0; index < _length; index++) {
2331 int value = 0;
2332 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2333 int bt = adapter_encoding(sig_bt[sig_index++]);
2334 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2335 value = (value << _basic_type_bits) | bt;
2336 }
2337 data[index] = value;
2338 }
2339 }
2340
2341 // Call deallocate instead
2342 ~AdapterFingerPrint() {
2343 ShouldNotCallThis();
2344 }
2345
2346 static int length(int total_args) {
2347 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2348 }
2349
2350 static int compute_size_in_words(int len) {
2351 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2352 }
2353
2354 // Remap BasicTypes that are handled equivalently by the adapters.
2355 // These are correct for the current system but someday it might be
2356 // necessary to make this mapping platform dependent.
2357 static int adapter_encoding(BasicType in) {
2358 switch (in) {
2359 case T_BOOLEAN:
2360 case T_BYTE:
2361 case T_SHORT:
2362 case T_CHAR:
2363 // There are all promoted to T_INT in the calling convention
2364 return T_INT;
2365
2366 case T_OBJECT:
2367 case T_ARRAY:
2368 // In other words, we assume that any register good enough for
2369 // an int or long is good enough for a managed pointer.
2370 #ifdef _LP64
2371 return T_LONG;
2372 #else
2373 return T_INT;
2374 #endif
2375
2376 case T_INT:
2377 case T_LONG:
2378 case T_FLOAT:
2379 case T_DOUBLE:
2380 case T_VOID:
2381 return in;
2382
2383 default:
2384 ShouldNotReachHere();
2385 return T_CONFLICT;
2386 }
2387 }
2388
2389 void* operator new(size_t size, size_t fp_size) throw() {
2390 assert(fp_size >= size, "sanity check");
2391 void* p = AllocateHeap(fp_size, mtCode);
2392 memset(p, 0, fp_size);
2393 return p;
2394 }
2395
2396 template<typename Function>
2397 void iterate_args(Function function) {
2398 for (int i = 0; i < length(); i++) {
2399 unsigned val = (unsigned)value(i);
2400 // args are packed so that first/lower arguments are in the highest
2401 // bits of each int value, so iterate from highest to the lowest
2402 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2403 unsigned v = (val >> j) & _basic_type_mask;
2404 if (v == 0) {
2405 continue;
2406 }
2407 function(v);
2408 }
2409 }
2410 }
2411
2412 public:
2413 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2414 int len = length(total_args_passed);
2415 int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2416 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2417 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2418 return afp;
2419 }
2420
2421 static void deallocate(AdapterFingerPrint* fp) {
2422 FreeHeap(fp);
2423 }
2424
2425 int value(int index) {
2426 int* data = data_pointer();
2427 return data[index];
2428 }
2429
2430 int length() {
2431 return _length;
2432 }
2433
2434 unsigned int compute_hash() {
2435 int hash = 0;
2436 for (int i = 0; i < length(); i++) {
2437 int v = value(i);
2438 //Add arithmetic operation to the hash, like +3 to improve hashing
2439 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2440 }
2441 return (unsigned int)hash;
2442 }
2443
2444 const char* as_string() {
2445 stringStream st;
2446 st.print("0x");
2447 for (int i = 0; i < length(); i++) {
2448 st.print("%x", value(i));
2449 }
2450 return st.as_string();
2451 }
2452
2453 const char* as_basic_args_string() {
2454 stringStream st;
2455 bool long_prev = false;
2456 iterate_args([&] (int arg) {
2457 if (long_prev) {
2458 long_prev = false;
2459 if (arg == T_VOID) {
2460 st.print("J");
2461 } else {
2462 st.print("L");
2463 }
2464 }
2465 switch (arg) {
2466 case T_INT: st.print("I"); break;
2467 case T_LONG: long_prev = true; break;
2468 case T_FLOAT: st.print("F"); break;
2469 case T_DOUBLE: st.print("D"); break;
2470 case T_VOID: break;
2471 default: ShouldNotReachHere();
2472 }
2473 });
2474 if (long_prev) {
2475 st.print("L");
2476 }
2477 return st.as_string();
2478 }
2479
2480 BasicType* as_basic_type(int& nargs) {
2481 nargs = 0;
2482 GrowableArray<BasicType> btarray;
2483 bool long_prev = false;
2484
2485 iterate_args([&] (int arg) {
2486 if (long_prev) {
2487 long_prev = false;
2488 if (arg == T_VOID) {
2489 btarray.append(T_LONG);
2490 } else {
2491 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2492 }
2493 }
2494 switch (arg) {
2495 case T_INT: // fallthrough
2496 case T_FLOAT: // fallthrough
2497 case T_DOUBLE:
2498 case T_VOID:
2499 btarray.append((BasicType)arg);
2500 break;
2501 case T_LONG:
2502 long_prev = true;
2503 break;
2504 default: ShouldNotReachHere();
2505 }
2506 });
2507
2508 if (long_prev) {
2509 btarray.append(T_OBJECT);
2510 }
2511
2512 nargs = btarray.length();
2513 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2514 int index = 0;
2515 GrowableArrayIterator<BasicType> iter = btarray.begin();
2516 while (iter != btarray.end()) {
2517 sig_bt[index++] = *iter;
2518 ++iter;
2519 }
2520 assert(index == btarray.length(), "sanity check");
2521 #ifdef ASSERT
2522 {
2523 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2524 assert(this->equals(compare_fp), "sanity check");
2525 AdapterFingerPrint::deallocate(compare_fp);
2526 }
2527 #endif
2528 return sig_bt;
2529 }
2530
2531 bool equals(AdapterFingerPrint* other) {
2532 if (other->_length != _length) {
2533 return false;
2534 } else {
2535 for (int i = 0; i < _length; i++) {
2536 if (value(i) != other->value(i)) {
2537 return false;
2538 }
2539 }
2540 }
2541 return true;
2542 }
2543
2544 // methods required by virtue of being a MetaspaceObj
2545 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2546 int size() const { return compute_size_in_words(_length); }
2547 MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2548
2549 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2550 NOT_PRODUCT(_equals++);
2551 return fp1->equals(fp2);
2552 }
2553
2554 static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2555 return fp->compute_hash();
2556 }
2557 };
2558
2559 #if INCLUDE_CDS
2560 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2561 return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2562 }
2563
2564 class ArchivedAdapterTable : public OffsetCompactHashtable<
2565 AdapterFingerPrint*,
2566 AdapterHandlerEntry*,
2567 adapter_fp_equals_compact_hashtable_entry> {};
2568 #endif // INCLUDE_CDS
2569
2570 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2571 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2572 AnyObj::C_HEAP, mtCode,
2573 AdapterFingerPrint::compute_hash,
2574 AdapterFingerPrint::equals>;
2575 static AdapterHandlerTable* _adapter_handler_table;
2576 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2577
2578 // Find a entry with the same fingerprint if it exists
2579 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2580 NOT_PRODUCT(_lookups++);
2581 assert_lock_strong(AdapterHandlerLibrary_lock);
2582 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2583 AdapterHandlerEntry* entry = nullptr;
2584 #if INCLUDE_CDS
2585 // if we are building the archive then the archived adapter table is
2586 // not valid and we need to use the ones added to the runtime table
2587 if (AOTCodeCache::is_using_adapter()) {
2588 // Search archived table first. It is read-only table so can be searched without lock
2589 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2590 #ifndef PRODUCT
2591 if (entry != nullptr) {
2592 _archived_hits++;
2593 }
2594 #endif
2595 }
2596 #endif // INCLUDE_CDS
2597 if (entry == nullptr) {
2598 assert_lock_strong(AdapterHandlerLibrary_lock);
2599 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2600 if (entry_p != nullptr) {
2601 entry = *entry_p;
2602 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2603 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2604 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2605 #ifndef PRODUCT
2606 _runtime_hits++;
2607 #endif
2608 }
2609 }
2610 AdapterFingerPrint::deallocate(fp);
2611 return entry;
2612 }
2613
2614 #ifndef PRODUCT
2615 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) {
2616 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2617 return sizeof(*key) + sizeof(*a);
2618 };
2619 TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2620 ts.print(st, "AdapterHandlerTable");
2621 st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2622 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2623 int total_hits = _archived_hits + _runtime_hits;
2624 st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2625 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2626 }
2627 #endif // !PRODUCT
2628
2629 // ---------------------------------------------------------------------------
2630 // Implementation of AdapterHandlerLibrary
2631 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2632 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2633 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2634 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2635 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2636 #if INCLUDE_CDS
2637 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2638 #endif // INCLUDE_CDS
2639 static const int AdapterHandlerLibrary_size = 16*K;
2640 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2641 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2642
2643 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2644 assert(_buffer != nullptr, "should be initialized");
2645 return _buffer;
2646 }
2647
2648 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2649 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2650 AdapterBlob* adapter_blob = entry->adapter_blob();
2651 char blob_id[256];
2652 jio_snprintf(blob_id,
2653 sizeof(blob_id),
2654 "%s(%s)",
2655 adapter_blob->name(),
2656 entry->fingerprint()->as_string());
2657 if (Forte::is_enabled()) {
2658 Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2659 }
2660
2661 if (JvmtiExport::should_post_dynamic_code_generated()) {
2662 JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2663 }
2664 }
2665 }
2666
2667 void AdapterHandlerLibrary::initialize() {
2668 {
2669 ResourceMark rm;
2670 _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2671 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2672 }
2673
2674 #if INCLUDE_CDS
2675 // Link adapters in AOT Cache to their code in AOT Code Cache
2676 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2677 link_aot_adapters();
2678 lookup_simple_adapters();
2679 return;
2680 }
2681 #endif // INCLUDE_CDS
2682
2683 ResourceMark rm;
2684 {
2685 MutexLocker mu(AdapterHandlerLibrary_lock);
2686
2687 _no_arg_handler = create_adapter(0, nullptr);
2688
2689 BasicType obj_args[] = { T_OBJECT };
2690 _obj_arg_handler = create_adapter(1, obj_args);
2691
2692 BasicType int_args[] = { T_INT };
2693 _int_arg_handler = create_adapter(1, int_args);
2694
2695 BasicType obj_int_args[] = { T_OBJECT, T_INT };
2696 _obj_int_arg_handler = create_adapter(2, obj_int_args);
2697
2698 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2699 _obj_obj_arg_handler = create_adapter(2, obj_obj_args);
2700
2701 // we should always get an entry back but we don't have any
2702 // associated blob on Zero
2703 assert(_no_arg_handler != nullptr &&
2704 _obj_arg_handler != nullptr &&
2705 _int_arg_handler != nullptr &&
2706 _obj_int_arg_handler != nullptr &&
2707 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2708 }
2709
2710 // Outside of the lock
2711 #ifndef ZERO
2712 // no blobs to register when we are on Zero
2713 post_adapter_creation(_no_arg_handler);
2714 post_adapter_creation(_obj_arg_handler);
2715 post_adapter_creation(_int_arg_handler);
2716 post_adapter_creation(_obj_int_arg_handler);
2717 post_adapter_creation(_obj_obj_arg_handler);
2718 #endif // ZERO
2719 }
2720
2721 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2722 uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2723 assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2724 return AdapterHandlerEntry::allocate(id, fingerprint);
2725 }
2726
2727 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2728 int total_args_passed = method->size_of_parameters(); // All args on stack
2729 if (total_args_passed == 0) {
2730 return _no_arg_handler;
2731 } else if (total_args_passed == 1) {
2732 if (!method->is_static()) {
2733 return _obj_arg_handler;
2734 }
2735 switch (method->signature()->char_at(1)) {
2736 case JVM_SIGNATURE_CLASS:
2737 case JVM_SIGNATURE_ARRAY:
2738 return _obj_arg_handler;
2739 case JVM_SIGNATURE_INT:
2740 case JVM_SIGNATURE_BOOLEAN:
2741 case JVM_SIGNATURE_CHAR:
2742 case JVM_SIGNATURE_BYTE:
2743 case JVM_SIGNATURE_SHORT:
2744 return _int_arg_handler;
2745 }
2746 } else if (total_args_passed == 2 &&
2747 !method->is_static()) {
2748 switch (method->signature()->char_at(1)) {
2749 case JVM_SIGNATURE_CLASS:
2750 case JVM_SIGNATURE_ARRAY:
2751 return _obj_obj_arg_handler;
2752 case JVM_SIGNATURE_INT:
2753 case JVM_SIGNATURE_BOOLEAN:
2754 case JVM_SIGNATURE_CHAR:
2755 case JVM_SIGNATURE_BYTE:
2756 case JVM_SIGNATURE_SHORT:
2757 return _obj_int_arg_handler;
2758 }
2759 }
2760 return nullptr;
2761 }
2762
2763 class AdapterSignatureIterator : public SignatureIterator {
2764 private:
2765 BasicType stack_sig_bt[16];
2766 BasicType* sig_bt;
2767 int index;
2768
2769 public:
2770 AdapterSignatureIterator(Symbol* signature,
2771 fingerprint_t fingerprint,
2772 bool is_static,
2773 int total_args_passed) :
2774 SignatureIterator(signature, fingerprint),
2775 index(0)
2776 {
2777 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2778 if (!is_static) { // Pass in receiver first
2779 sig_bt[index++] = T_OBJECT;
2780 }
2781 do_parameters_on(this);
2782 }
2783
2784 BasicType* basic_types() {
2785 return sig_bt;
2786 }
2787
2788 #ifdef ASSERT
2789 int slots() {
2790 return index;
2791 }
2792 #endif
2793
2794 private:
2795
2796 friend class SignatureIterator; // so do_parameters_on can call do_type
2797 void do_type(BasicType type) {
2798 sig_bt[index++] = type;
2799 if (type == T_LONG || type == T_DOUBLE) {
2800 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2801 }
2802 }
2803 };
2804
2805
2806 const char* AdapterHandlerEntry::_entry_names[] = {
2807 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2808 };
2809
2810 #ifdef ASSERT
2811 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2812 // we can only check for the same code if there is any
2813 #ifndef ZERO
2814 AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true);
2815 assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
2816 assert(comparison_entry->compare_code(cached_entry), "code must match");
2817 // Release the one just created
2818 AdapterHandlerEntry::deallocate(comparison_entry);
2819 # endif // ZERO
2820 }
2821 #endif /* ASSERT*/
2822
2823 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2824 assert(!method->is_abstract(), "abstract methods do not have adapters");
2825 // Use customized signature handler. Need to lock around updates to
2826 // the _adapter_handler_table (it is not safe for concurrent readers
2827 // and a single writer: this could be fixed if it becomes a
2828 // problem).
2829
2830 // Fast-path for trivial adapters
2831 AdapterHandlerEntry* entry = get_simple_adapter(method);
2832 if (entry != nullptr) {
2833 return entry;
2834 }
2835
2836 ResourceMark rm;
2837 bool new_entry = false;
2838
2839 // Fill in the signature array, for the calling-convention call.
2840 int total_args_passed = method->size_of_parameters(); // All args on stack
2841
2842 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2843 method->is_static(), total_args_passed);
2844 assert(si.slots() == total_args_passed, "");
2845 BasicType* sig_bt = si.basic_types();
2846 {
2847 MutexLocker mu(AdapterHandlerLibrary_lock);
2848
2849 // Lookup method signature's fingerprint
2850 entry = lookup(total_args_passed, sig_bt);
2851
2852 if (entry != nullptr) {
2853 #ifndef ZERO
2854 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2855 #endif
2856 #ifdef ASSERT
2857 if (!entry->in_aot_cache() && VerifyAdapterSharing) {
2858 verify_adapter_sharing(total_args_passed, sig_bt, entry);
2859 }
2860 #endif
2861 } else {
2862 entry = create_adapter(total_args_passed, sig_bt);
2863 if (entry != nullptr) {
2864 new_entry = true;
2865 }
2866 }
2867 }
2868
2869 // Outside of the lock
2870 if (new_entry) {
2871 post_adapter_creation(entry);
2872 }
2873 return entry;
2874 }
2875
2876 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2877 ResourceMark rm;
2878 const char* name = AdapterHandlerLibrary::name(handler);
2879 const uint32_t id = AdapterHandlerLibrary::id(handler);
2880
2881 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
2882 if (blob != nullptr) {
2883 handler->set_adapter_blob(blob->as_adapter_blob());
2884 }
2885 }
2886
2887 #ifndef PRODUCT
2888 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
2889 ttyLocker ttyl;
2890 ResourceMark rm;
2891 int insts_size;
2892 // on Zero the blob may be null
2893 handler->print_adapter_on(tty);
2894 AdapterBlob* adapter_blob = handler->adapter_blob();
2895 if (adapter_blob == nullptr) {
2896 return;
2897 }
2898 insts_size = adapter_blob->code_size();
2899 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2900 handler->fingerprint()->as_basic_args_string(),
2901 handler->fingerprint()->as_string(), insts_size);
2902 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2903 if (Verbose || PrintStubCode) {
2904 address first_pc = adapter_blob->content_begin();
2905 if (first_pc != nullptr) {
2906 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2907 st->cr();
2908 }
2909 }
2910 }
2911 #endif // PRODUCT
2912
2913 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
2914 int entry_offset[AdapterBlob::ENTRY_COUNT]) {
2915 entry_offset[AdapterBlob::I2C] = 0;
2916 entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
2917 entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
2918 if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
2919 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
2920 } else {
2921 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
2922 }
2923 }
2924
2925 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
2926 int total_args_passed,
2927 BasicType* sig_bt,
2928 bool is_transient) {
2929 if (log_is_enabled(Info, perf, class, link)) {
2930 ClassLoader::perf_method_adapters_count()->inc();
2931 }
2932
2933 #ifndef ZERO
2934 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2935 CodeBuffer buffer(buf);
2936 short buffer_locs[20];
2937 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2938 sizeof(buffer_locs)/sizeof(relocInfo));
2939 MacroAssembler masm(&buffer);
2940 VMRegPair stack_regs[16];
2941 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2942
2943 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2944 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2945 address entry_address[AdapterBlob::ENTRY_COUNT];
2946 SharedRuntime::generate_i2c2i_adapters(&masm,
2947 total_args_passed,
2948 comp_args_on_stack,
2949 sig_bt,
2950 regs,
2951 entry_address);
2952 // On zero there is no code to save and no need to create a blob and
2953 // or relocate the handler.
2954 int entry_offset[AdapterBlob::ENTRY_COUNT];
2955 address_to_offset(entry_address, entry_offset);
2956 #ifdef ASSERT
2957 if (VerifyAdapterSharing) {
2958 handler->save_code(buf->code_begin(), buffer.insts_size());
2959 if (is_transient) {
2960 return true;
2961 }
2962 }
2963 #endif
2964 AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset);
2965 if (adapter_blob == nullptr) {
2966 // CodeCache is full, disable compilation
2967 // Ought to log this but compile log is only per compile thread
2968 // and we're some non descript Java thread.
2969 return false;
2970 }
2971 handler->set_adapter_blob(adapter_blob);
2972 if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2973 // try to save generated code
2974 const char* name = AdapterHandlerLibrary::name(handler);
2975 const uint32_t id = AdapterHandlerLibrary::id(handler);
2976 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
2977 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2978 }
2979 #endif // ZERO
2980
2981 #ifndef PRODUCT
2982 // debugging support
2983 if (PrintAdapterHandlers || PrintStubCode) {
2984 print_adapter_handler_info(tty, handler);
2985 }
2986 #endif
2987
2988 return true;
2989 }
2990
2991 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed,
2992 BasicType* sig_bt,
2993 bool is_transient) {
2994 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2995 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2996 if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) {
2997 AdapterHandlerEntry::deallocate(handler);
2998 return nullptr;
2999 }
3000 if (!is_transient) {
3001 assert_lock_strong(AdapterHandlerLibrary_lock);
3002 _adapter_handler_table->put(fp, handler);
3003 }
3004 return handler;
3005 }
3006
3007 #if INCLUDE_CDS
3008 void AdapterHandlerEntry::remove_unshareable_info() {
3009 #ifdef ASSERT
3010 _saved_code = nullptr;
3011 _saved_code_length = 0;
3012 #endif // ASSERT
3013 _adapter_blob = nullptr;
3014 _linked = false;
3015 }
3016
3017 class CopyAdapterTableToArchive : StackObj {
3018 private:
3019 CompactHashtableWriter* _writer;
3020 ArchiveBuilder* _builder;
3021 public:
3022 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
3023 _builder(ArchiveBuilder::current())
3024 {}
3025
3026 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
3027 LogStreamHandle(Trace, aot) lsh;
3028 if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
3029 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
3030 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
3031 assert(buffered_fp != nullptr,"sanity check");
3032 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
3033 assert(buffered_entry != nullptr,"sanity check");
3034
3035 uint hash = fp->compute_hash();
3036 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
3037 _writer->add(hash, delta);
3038 if (lsh.is_enabled()) {
3039 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
3040 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
3041 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
3042 }
3043 } else {
3044 if (lsh.is_enabled()) {
3045 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
3046 }
3047 }
3048 return true;
3049 }
3050 };
3051
3052 void AdapterHandlerLibrary::dump_aot_adapter_table() {
3053 CompactHashtableStats stats;
3054 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
3055 CopyAdapterTableToArchive copy(&writer);
3056 _adapter_handler_table->iterate(©);
3057 writer.dump(&_aot_adapter_handler_table, "archived adapter table");
3058 }
3059
3060 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
3061 _aot_adapter_handler_table.serialize_header(soc);
3062 }
3063
3064 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
3065 #ifdef ASSERT
3066 if (TestAOTAdapterLinkFailure) {
3067 return;
3068 }
3069 #endif
3070 lookup_aot_cache(handler);
3071 #ifndef PRODUCT
3072 // debugging support
3073 if (PrintAdapterHandlers || PrintStubCode) {
3074 print_adapter_handler_info(tty, handler);
3075 }
3076 #endif
3077 }
3078
3079 // This method is used during production run to link archived adapters (stored in AOT Cache)
3080 // to their code in AOT Code Cache
3081 void AdapterHandlerEntry::link() {
3082 ResourceMark rm;
3083 assert(_fingerprint != nullptr, "_fingerprint must not be null");
3084 bool generate_code = false;
3085 // Generate code only if AOTCodeCache is not available, or
3086 // caching adapters is disabled, or we fail to link
3087 // the AdapterHandlerEntry to its code in the AOTCodeCache
3088 if (AOTCodeCache::is_using_adapter()) {
3089 AdapterHandlerLibrary::link_aot_adapter_handler(this);
3090 // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
3091 if (_adapter_blob == nullptr) {
3092 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
3093 generate_code = true;
3094 }
3095 } else {
3096 generate_code = true;
3097 }
3098 if (generate_code) {
3099 int nargs;
3100 BasicType* bt = _fingerprint->as_basic_type(nargs);
3101 if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) {
3102 // Don't throw exceptions during VM initialization because java.lang.* classes
3103 // might not have been initialized, causing problems when constructing the
3104 // Java exception object.
3105 vm_exit_during_initialization("Out of space in CodeCache for adapters");
3106 }
3107 }
3108 if (_adapter_blob != nullptr) {
3109 post_adapter_creation(this);
3110 }
3111 assert(_linked, "AdapterHandlerEntry must now be linked");
3112 }
3113
3114 void AdapterHandlerLibrary::link_aot_adapters() {
3115 uint max_id = 0;
3116 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3117 /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3118 * That implies adapter ids of the adapters in the cache may not be contiguous.
3119 * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3120 * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3121 * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3122 */
3123 _aot_adapter_handler_table.iterate([&](AdapterHandlerEntry* entry) {
3124 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3125 entry->link();
3126 max_id = MAX2(max_id, entry->id());
3127 });
3128 // Set adapter id to the maximum id found in the AOTCache
3129 assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3130 _id_counter = max_id;
3131 }
3132
3133 // This method is called during production run to lookup simple adapters
3134 // in the archived adapter handler table
3135 void AdapterHandlerLibrary::lookup_simple_adapters() {
3136 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3137
3138 MutexLocker mu(AdapterHandlerLibrary_lock);
3139 _no_arg_handler = lookup(0, nullptr);
3140
3141 BasicType obj_args[] = { T_OBJECT };
3142 _obj_arg_handler = lookup(1, obj_args);
3143
3144 BasicType int_args[] = { T_INT };
3145 _int_arg_handler = lookup(1, int_args);
3146
3147 BasicType obj_int_args[] = { T_OBJECT, T_INT };
3148 _obj_int_arg_handler = lookup(2, obj_int_args);
3149
3150 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3151 _obj_obj_arg_handler = lookup(2, obj_obj_args);
3152
3153 assert(_no_arg_handler != nullptr &&
3154 _obj_arg_handler != nullptr &&
3155 _int_arg_handler != nullptr &&
3156 _obj_int_arg_handler != nullptr &&
3157 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3158 assert(_no_arg_handler->is_linked() &&
3159 _obj_arg_handler->is_linked() &&
3160 _int_arg_handler->is_linked() &&
3161 _obj_int_arg_handler->is_linked() &&
3162 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3163 }
3164 #endif // INCLUDE_CDS
3165
3166 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3167 LogStreamHandle(Trace, aot) lsh;
3168 if (lsh.is_enabled()) {
3169 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3170 lsh.cr();
3171 }
3172 it->push(&_fingerprint);
3173 }
3174
3175 AdapterHandlerEntry::~AdapterHandlerEntry() {
3176 if (_fingerprint != nullptr) {
3177 AdapterFingerPrint::deallocate(_fingerprint);
3178 _fingerprint = nullptr;
3179 }
3180 #ifdef ASSERT
3181 FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3182 #endif
3183 FreeHeap(this);
3184 }
3185
3186
3187 #ifdef ASSERT
3188 // Capture the code before relocation so that it can be compared
3189 // against other versions. If the code is captured after relocation
3190 // then relative instructions won't be equivalent.
3191 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3192 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3193 _saved_code_length = length;
3194 memcpy(_saved_code, buffer, length);
3195 }
3196
3197
3198 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3199 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3200
3201 if (other->_saved_code_length != _saved_code_length) {
3202 return false;
3203 }
3204
3205 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3206 }
3207 #endif
3208
3209
3210 /**
3211 * Create a native wrapper for this native method. The wrapper converts the
3212 * Java-compiled calling convention to the native convention, handles
3213 * arguments, and transitions to native. On return from the native we transition
3214 * back to java blocking if a safepoint is in progress.
3215 */
3216 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3217 ResourceMark rm;
3218 nmethod* nm = nullptr;
3219
3220 // Check if memory should be freed before allocation
3221 CodeCache::gc_on_allocation();
3222
3223 assert(method->is_native(), "must be native");
3224 assert(method->is_special_native_intrinsic() ||
3225 method->has_native_function(), "must have something valid to call!");
3226
3227 {
3228 // Perform the work while holding the lock, but perform any printing outside the lock
3229 MutexLocker mu(AdapterHandlerLibrary_lock);
3230 // See if somebody beat us to it
3231 if (method->code() != nullptr) {
3232 return;
3233 }
3234
3235 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3236 assert(compile_id > 0, "Must generate native wrapper");
3237
3238
3239 ResourceMark rm;
3240 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3241 if (buf != nullptr) {
3242 CodeBuffer buffer(buf);
3243
3244 if (method->is_continuation_enter_intrinsic()) {
3245 buffer.initialize_stubs_size(192);
3246 }
3247
3248 struct { double data[20]; } locs_buf;
3249 struct { double data[20]; } stubs_locs_buf;
3250 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3251 #if defined(AARCH64) || defined(PPC64)
3252 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3253 // in the constant pool to ensure ordering between the barrier and oops
3254 // accesses. For native_wrappers we need a constant.
3255 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3256 // static java call that is resolved in the runtime.
3257 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3258 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3259 }
3260 #endif
3261 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3262 MacroAssembler _masm(&buffer);
3263
3264 // Fill in the signature array, for the calling-convention call.
3265 const int total_args_passed = method->size_of_parameters();
3266
3267 VMRegPair stack_regs[16];
3268 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3269
3270 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3271 method->is_static(), total_args_passed);
3272 BasicType* sig_bt = si.basic_types();
3273 assert(si.slots() == total_args_passed, "");
3274 BasicType ret_type = si.return_type();
3275
3276 // Now get the compiled-Java arguments layout.
3277 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3278
3279 // Generate the compiled-to-native wrapper code
3280 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3281
3282 if (nm != nullptr) {
3283 {
3284 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3285 if (nm->make_in_use()) {
3286 method->set_code(method, nm);
3287 }
3288 }
3289
3290 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3291 if (directive->PrintAssemblyOption) {
3292 nm->print_code();
3293 }
3294 DirectivesStack::release(directive);
3295 }
3296 }
3297 } // Unlock AdapterHandlerLibrary_lock
3298
3299
3300 // Install the generated code.
3301 if (nm != nullptr) {
3302 const char *msg = method->is_static() ? "(static)" : "";
3303 CompileTask::print_ul(nm, msg);
3304 if (PrintCompilation) {
3305 ttyLocker ttyl;
3306 CompileTask::print(tty, nm, msg);
3307 }
3308 nm->post_compiled_method_load_event();
3309 }
3310 }
3311
3312 // -------------------------------------------------------------------------
3313 // Java-Java calling convention
3314 // (what you use when Java calls Java)
3315
3316 //------------------------------name_for_receiver----------------------------------
3317 // For a given signature, return the VMReg for parameter 0.
3318 VMReg SharedRuntime::name_for_receiver() {
3319 VMRegPair regs;
3320 BasicType sig_bt = T_OBJECT;
3321 (void) java_calling_convention(&sig_bt, ®s, 1);
3322 // Return argument 0 register. In the LP64 build pointers
3323 // take 2 registers, but the VM wants only the 'main' name.
3324 return regs.first();
3325 }
3326
3327 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3328 // This method is returning a data structure allocating as a
3329 // ResourceObject, so do not put any ResourceMarks in here.
3330
3331 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3332 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3333 int cnt = 0;
3334 if (has_receiver) {
3335 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3336 }
3337
3338 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3339 BasicType type = ss.type();
3340 sig_bt[cnt++] = type;
3341 if (is_double_word_type(type))
3342 sig_bt[cnt++] = T_VOID;
3343 }
3344
3345 if (has_appendix) {
3346 sig_bt[cnt++] = T_OBJECT;
3347 }
3348
3349 assert(cnt < 256, "grow table size");
3350
3351 int comp_args_on_stack;
3352 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3353
3354 // the calling convention doesn't count out_preserve_stack_slots so
3355 // we must add that in to get "true" stack offsets.
3356
3357 if (comp_args_on_stack) {
3358 for (int i = 0; i < cnt; i++) {
3359 VMReg reg1 = regs[i].first();
3360 if (reg1->is_stack()) {
3361 // Yuck
3362 reg1 = reg1->bias(out_preserve_stack_slots());
3363 }
3364 VMReg reg2 = regs[i].second();
3365 if (reg2->is_stack()) {
3366 // Yuck
3367 reg2 = reg2->bias(out_preserve_stack_slots());
3368 }
3369 regs[i].set_pair(reg2, reg1);
3370 }
3371 }
3372
3373 // results
3374 *arg_size = cnt;
3375 return regs;
3376 }
3377
3378 // OSR Migration Code
3379 //
3380 // This code is used convert interpreter frames into compiled frames. It is
3381 // called from very start of a compiled OSR nmethod. A temp array is
3382 // allocated to hold the interesting bits of the interpreter frame. All
3383 // active locks are inflated to allow them to move. The displaced headers and
3384 // active interpreter locals are copied into the temp buffer. Then we return
3385 // back to the compiled code. The compiled code then pops the current
3386 // interpreter frame off the stack and pushes a new compiled frame. Then it
3387 // copies the interpreter locals and displaced headers where it wants.
3388 // Finally it calls back to free the temp buffer.
3389 //
3390 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3391
3392 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3393 assert(current == JavaThread::current(), "pre-condition");
3394 JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3395 // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3396 // frame. The stack watermark code below ensures that the interpreted frame is processed
3397 // before it gets unwound. This is helpful as the size of the compiled frame could be
3398 // larger than the interpreted frame, which could result in the new frame not being
3399 // processed correctly.
3400 StackWatermarkSet::before_unwind(current);
3401
3402 //
3403 // This code is dependent on the memory layout of the interpreter local
3404 // array and the monitors. On all of our platforms the layout is identical
3405 // so this code is shared. If some platform lays the their arrays out
3406 // differently then this code could move to platform specific code or
3407 // the code here could be modified to copy items one at a time using
3408 // frame accessor methods and be platform independent.
3409
3410 frame fr = current->last_frame();
3411 assert(fr.is_interpreted_frame(), "");
3412 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3413
3414 // Figure out how many monitors are active.
3415 int active_monitor_count = 0;
3416 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3417 kptr < fr.interpreter_frame_monitor_begin();
3418 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3419 if (kptr->obj() != nullptr) active_monitor_count++;
3420 }
3421
3422 // QQQ we could place number of active monitors in the array so that compiled code
3423 // could double check it.
3424
3425 Method* moop = fr.interpreter_frame_method();
3426 int max_locals = moop->max_locals();
3427 // Allocate temp buffer, 1 word per local & 2 per active monitor
3428 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3429 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3430
3431 // Copy the locals. Order is preserved so that loading of longs works.
3432 // Since there's no GC I can copy the oops blindly.
3433 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3434 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3435 (HeapWord*)&buf[0],
3436 max_locals);
3437
3438 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
3439 int i = max_locals;
3440 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3441 kptr2 < fr.interpreter_frame_monitor_begin();
3442 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3443 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array
3444 BasicLock *lock = kptr2->lock();
3445 if (UseObjectMonitorTable) {
3446 buf[i] = (intptr_t)lock->object_monitor_cache();
3447 }
3448 #ifdef ASSERT
3449 else {
3450 buf[i] = badDispHeaderOSR;
3451 }
3452 #endif
3453 i++;
3454 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3455 }
3456 }
3457 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3458
3459 RegisterMap map(current,
3460 RegisterMap::UpdateMap::skip,
3461 RegisterMap::ProcessFrames::include,
3462 RegisterMap::WalkContinuation::skip);
3463 frame sender = fr.sender(&map);
3464 if (sender.is_interpreted_frame()) {
3465 current->push_cont_fastpath(sender.sp());
3466 }
3467
3468 return buf;
3469 JRT_END
3470
3471 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3472 FREE_C_HEAP_ARRAY(intptr_t, buf);
3473 JRT_END
3474
3475 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3476 bool found = false;
3477 #if INCLUDE_CDS
3478 if (AOTCodeCache::is_using_adapter()) {
3479 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3480 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry())));
3481 };
3482 _aot_adapter_handler_table.iterate(findblob_archived_table);
3483 }
3484 #endif // INCLUDE_CDS
3485 if (!found) {
3486 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3487 return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3488 };
3489 assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3490 _adapter_handler_table->iterate(findblob_runtime_table);
3491 }
3492 return found;
3493 }
3494
3495 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3496 return handler->fingerprint()->as_basic_args_string();
3497 }
3498
3499 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3500 return handler->id();
3501 }
3502
3503 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3504 bool found = false;
3505 #if INCLUDE_CDS
3506 if (AOTCodeCache::is_using_adapter()) {
3507 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3508 if (b == CodeCache::find_blob(handler->get_i2c_entry())) {
3509 found = true;
3510 st->print("Adapter for signature: ");
3511 handler->print_adapter_on(st);
3512 return true;
3513 } else {
3514 return false; // keep looking
3515 }
3516 };
3517 _aot_adapter_handler_table.iterate(findblob_archived_table);
3518 }
3519 #endif // INCLUDE_CDS
3520 if (!found) {
3521 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3522 if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3523 found = true;
3524 st->print("Adapter for signature: ");
3525 a->print_adapter_on(st);
3526 return true;
3527 } else {
3528 return false; // keep looking
3529 }
3530 };
3531 assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3532 _adapter_handler_table->iterate(findblob_runtime_table);
3533 }
3534 assert(found, "Should have found handler");
3535 }
3536
3537 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3538 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3539 if (adapter_blob() != nullptr) {
3540 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3541 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3542 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3543 if (get_c2i_no_clinit_check_entry() != nullptr) {
3544 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3545 }
3546 }
3547 st->cr();
3548 }
3549
3550 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3551 assert(current == JavaThread::current(), "pre-condition");
3552 StackOverflow* overflow_state = current->stack_overflow_state();
3553 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3554 overflow_state->set_reserved_stack_activation(current->stack_base());
3555 JRT_END
3556
3557 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3558 ResourceMark rm(current);
3559 frame activation;
3560 nmethod* nm = nullptr;
3561 int count = 1;
3562
3563 assert(fr.is_java_frame(), "Must start on Java frame");
3564
3565 RegisterMap map(JavaThread::current(),
3566 RegisterMap::UpdateMap::skip,
3567 RegisterMap::ProcessFrames::skip,
3568 RegisterMap::WalkContinuation::skip); // don't walk continuations
3569 for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3570 if (!fr.is_java_frame()) {
3571 continue;
3572 }
3573
3574 Method* method = nullptr;
3575 bool found = false;
3576 if (fr.is_interpreted_frame()) {
3577 method = fr.interpreter_frame_method();
3578 if (method != nullptr && method->has_reserved_stack_access()) {
3579 found = true;
3580 }
3581 } else {
3582 CodeBlob* cb = fr.cb();
3583 if (cb != nullptr && cb->is_nmethod()) {
3584 nm = cb->as_nmethod();
3585 method = nm->method();
3586 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3587 method = sd->method();
3588 if (method != nullptr && method->has_reserved_stack_access()) {
3589 found = true;
3590 }
3591 }
3592 }
3593 }
3594 if (found) {
3595 activation = fr;
3596 warning("Potentially dangerous stack overflow in "
3597 "ReservedStackAccess annotated method %s [%d]",
3598 method->name_and_sig_as_C_string(), count++);
3599 EventReservedStackActivation event;
3600 if (event.should_commit()) {
3601 event.set_method(method);
3602 event.commit();
3603 }
3604 }
3605 }
3606 return activation;
3607 }
3608
3609 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3610 // After any safepoint, just before going back to compiled code,
3611 // we inform the GC that we will be doing initializing writes to
3612 // this object in the future without emitting card-marks, so
3613 // GC may take any compensating steps.
3614
3615 oop new_obj = current->vm_result_oop();
3616 if (new_obj == nullptr) return;
3617
3618 BarrierSet *bs = BarrierSet::barrier_set();
3619 bs->on_slowpath_allocation_exit(current, new_obj);
3620 }