1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jfr/jfrEvents.hpp" 46 #include "jvm.h" 47 #include "logging/log.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "metaprogramming/primitiveConversions.hpp" 51 #include "oops/klass.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/forte.hpp" 56 #include "prims/jvmtiExport.hpp" 57 #include "prims/jvmtiThreadState.hpp" 58 #include "prims/methodHandles.hpp" 59 #include "prims/nativeLookup.hpp" 60 #include "runtime/arguments.hpp" 61 #include "runtime/atomic.hpp" 62 #include "runtime/basicLock.inline.hpp" 63 #include "runtime/frame.inline.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/init.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/java.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/jniHandles.inline.hpp" 70 #include "runtime/perfData.inline.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/stackWatermarkSet.hpp" 73 #include "runtime/stubRoutines.hpp" 74 #include "runtime/synchronizer.inline.hpp" 75 #include "runtime/timerTrace.hpp" 76 #include "runtime/vframe.inline.hpp" 77 #include "runtime/vframeArray.hpp" 78 #include "runtime/vm_version.hpp" 79 #include "services/management.hpp" 80 #include "utilities/copy.hpp" 81 #include "utilities/dtrace.hpp" 82 #include "utilities/events.hpp" 83 #include "utilities/globalDefinitions.hpp" 84 #include "utilities/hashTable.hpp" 85 #include "utilities/macros.hpp" 86 #include "utilities/xmlstream.hpp" 87 #ifdef COMPILER1 88 #include "c1/c1_Runtime1.hpp" 89 #endif 90 #if INCLUDE_JFR 91 #include "jfr/jfr.inline.hpp" 92 #endif 93 94 // Shared runtime stub routines reside in their own unique blob with a 95 // single entry point 96 97 98 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 99 type* SharedRuntime::BLOB_FIELD_NAME(name); 100 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 101 #undef SHARED_STUB_FIELD_DEFINE 102 103 nmethod* SharedRuntime::_cont_doYield_stub; 104 105 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr; 106 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time = nullptr; 107 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time = nullptr; 108 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr; 109 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time = nullptr; 110 111 #if 0 112 // TODO tweak global stub name generation to match this 113 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 114 const char *SharedRuntime::_stub_names[] = { 115 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 116 }; 117 #endif 118 119 //----------------------------generate_stubs----------------------------------- 120 void SharedRuntime::generate_initial_stubs() { 121 // Build this early so it's available for the interpreter. 122 _throw_StackOverflowError_blob = 123 generate_throw_exception(StubId::shared_throw_StackOverflowError_id, 124 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 125 } 126 127 void SharedRuntime::generate_stubs() { 128 _wrong_method_blob = 129 generate_resolve_blob(StubId::shared_wrong_method_id, 130 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 131 _wrong_method_abstract_blob = 132 generate_resolve_blob(StubId::shared_wrong_method_abstract_id, 133 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 134 _ic_miss_blob = 135 generate_resolve_blob(StubId::shared_ic_miss_id, 136 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 137 _resolve_opt_virtual_call_blob = 138 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id, 139 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 140 _resolve_virtual_call_blob = 141 generate_resolve_blob(StubId::shared_resolve_virtual_call_id, 142 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 143 _resolve_static_call_blob = 144 generate_resolve_blob(StubId::shared_resolve_static_call_id, 145 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 146 147 _throw_delayed_StackOverflowError_blob = 148 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id, 149 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 150 151 _throw_AbstractMethodError_blob = 152 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id, 153 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 154 155 _throw_IncompatibleClassChangeError_blob = 156 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id, 157 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 158 159 _throw_NullPointerException_at_call_blob = 160 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id, 161 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 162 163 #if COMPILER2_OR_JVMCI 164 // Vectors are generated only by C2 and JVMCI. 165 bool support_wide = is_wide_vector(MaxVectorSize); 166 if (support_wide) { 167 _polling_page_vectors_safepoint_handler_blob = 168 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id, 169 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 170 } 171 #endif // COMPILER2_OR_JVMCI 172 _polling_page_safepoint_handler_blob = 173 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id, 174 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 175 _polling_page_return_handler_blob = 176 generate_handler_blob(StubId::shared_polling_page_return_handler_id, 177 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 178 179 generate_deopt_blob(); 180 181 if (UsePerfData) { 182 EXCEPTION_MARK; 183 NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call"); 184 NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time, SUN_CI, "resovle_virtual_call"); 185 NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time, SUN_CI, "resovle_static_call"); 186 NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method"); 187 NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time , SUN_CI, "ic_miss"); 188 if (HAS_PENDING_EXCEPTION) { 189 vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly"); 190 } 191 } 192 } 193 194 void SharedRuntime::init_adapter_library() { 195 AdapterHandlerLibrary::initialize(); 196 } 197 198 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) { 199 st->print(" %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us()); 200 if (TraceThreadTime) { 201 st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us()); 202 } 203 st->print(" / %5d events", cnt); 204 st->cr(); 205 } 206 207 void SharedRuntime::print_counters_on(outputStream* st) { 208 st->print_cr("SharedRuntime:"); 209 if (UsePerfData) { 210 print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr); 211 print_counter_on(st, "resolve_virtual_call:", _perf_resolve_virtual_total_time, _resolve_virtual_ctr); 212 print_counter_on(st, "resolve_static_call:", _perf_resolve_static_total_time, _resolve_static_ctr); 213 print_counter_on(st, "handle_wrong_method:", _perf_handle_wrong_method_total_time, _wrong_method_ctr); 214 print_counter_on(st, "ic_miss:", _perf_ic_miss_total_time, _ic_miss_ctr); 215 216 jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() + 217 _perf_resolve_virtual_total_time->elapsed_counter_value() + 218 _perf_resolve_static_total_time->elapsed_counter_value() + 219 _perf_handle_wrong_method_total_time->elapsed_counter_value() + 220 _perf_ic_miss_total_time->elapsed_counter_value()); 221 st->print("Total: " JLONG_FORMAT_W(5) "us", total_elapsed_time_us); 222 if (TraceThreadTime) { 223 jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() + 224 _perf_resolve_virtual_total_time->thread_counter_value() + 225 _perf_resolve_static_total_time->thread_counter_value() + 226 _perf_handle_wrong_method_total_time->thread_counter_value() + 227 _perf_ic_miss_total_time->thread_counter_value()); 228 st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us); 229 230 } 231 st->cr(); 232 } else { 233 st->print_cr(" no data (UsePerfData is turned off)"); 234 } 235 } 236 237 #if INCLUDE_JFR 238 //------------------------------generate jfr runtime stubs ------ 239 void SharedRuntime::generate_jfr_stubs() { 240 ResourceMark rm; 241 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 242 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 243 244 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 245 _jfr_return_lease_blob = generate_jfr_return_lease(); 246 } 247 248 #endif // INCLUDE_JFR 249 250 #include <math.h> 251 252 // Implementation of SharedRuntime 253 254 // For statistics 255 uint SharedRuntime::_ic_miss_ctr = 0; 256 uint SharedRuntime::_wrong_method_ctr = 0; 257 uint SharedRuntime::_resolve_static_ctr = 0; 258 uint SharedRuntime::_resolve_virtual_ctr = 0; 259 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 260 261 #ifndef PRODUCT 262 uint SharedRuntime::_implicit_null_throws = 0; 263 uint SharedRuntime::_implicit_div0_throws = 0; 264 265 int64_t SharedRuntime::_nof_normal_calls = 0; 266 int64_t SharedRuntime::_nof_inlined_calls = 0; 267 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 268 int64_t SharedRuntime::_nof_static_calls = 0; 269 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 270 int64_t SharedRuntime::_nof_interface_calls = 0; 271 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 272 273 uint SharedRuntime::_new_instance_ctr=0; 274 uint SharedRuntime::_new_array_ctr=0; 275 uint SharedRuntime::_multi2_ctr=0; 276 uint SharedRuntime::_multi3_ctr=0; 277 uint SharedRuntime::_multi4_ctr=0; 278 uint SharedRuntime::_multi5_ctr=0; 279 uint SharedRuntime::_mon_enter_stub_ctr=0; 280 uint SharedRuntime::_mon_exit_stub_ctr=0; 281 uint SharedRuntime::_mon_enter_ctr=0; 282 uint SharedRuntime::_mon_exit_ctr=0; 283 uint SharedRuntime::_partial_subtype_ctr=0; 284 uint SharedRuntime::_jbyte_array_copy_ctr=0; 285 uint SharedRuntime::_jshort_array_copy_ctr=0; 286 uint SharedRuntime::_jint_array_copy_ctr=0; 287 uint SharedRuntime::_jlong_array_copy_ctr=0; 288 uint SharedRuntime::_oop_array_copy_ctr=0; 289 uint SharedRuntime::_checkcast_array_copy_ctr=0; 290 uint SharedRuntime::_unsafe_array_copy_ctr=0; 291 uint SharedRuntime::_generic_array_copy_ctr=0; 292 uint SharedRuntime::_slow_array_copy_ctr=0; 293 uint SharedRuntime::_find_handler_ctr=0; 294 uint SharedRuntime::_rethrow_ctr=0; 295 uint SharedRuntime::_unsafe_set_memory_ctr=0; 296 297 int SharedRuntime::_ICmiss_index = 0; 298 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 299 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 300 301 302 void SharedRuntime::trace_ic_miss(address at) { 303 for (int i = 0; i < _ICmiss_index; i++) { 304 if (_ICmiss_at[i] == at) { 305 _ICmiss_count[i]++; 306 return; 307 } 308 } 309 int index = _ICmiss_index++; 310 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 311 _ICmiss_at[index] = at; 312 _ICmiss_count[index] = 1; 313 } 314 315 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) { 316 if (ICMissHistogram) { 317 st->print_cr("IC Miss Histogram:"); 318 int tot_misses = 0; 319 for (int i = 0; i < _ICmiss_index; i++) { 320 st->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 321 tot_misses += _ICmiss_count[i]; 322 } 323 st->print_cr("Total IC misses: %7d", tot_misses); 324 } 325 } 326 #endif // !PRODUCT 327 328 329 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 330 return x * y; 331 JRT_END 332 333 334 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 335 if (x == min_jlong && y == CONST64(-1)) { 336 return x; 337 } else { 338 return x / y; 339 } 340 JRT_END 341 342 343 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 344 if (x == min_jlong && y == CONST64(-1)) { 345 return 0; 346 } else { 347 return x % y; 348 } 349 JRT_END 350 351 352 #ifdef _WIN64 353 const juint float_sign_mask = 0x7FFFFFFF; 354 const juint float_infinity = 0x7F800000; 355 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 356 const julong double_infinity = CONST64(0x7FF0000000000000); 357 #endif 358 359 #if !defined(X86) 360 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 361 #ifdef _WIN64 362 // 64-bit Windows on amd64 returns the wrong values for 363 // infinity operands. 364 juint xbits = PrimitiveConversions::cast<juint>(x); 365 juint ybits = PrimitiveConversions::cast<juint>(y); 366 // x Mod Infinity == x unless x is infinity 367 if (((xbits & float_sign_mask) != float_infinity) && 368 ((ybits & float_sign_mask) == float_infinity) ) { 369 return x; 370 } 371 return ((jfloat)fmod_winx64((double)x, (double)y)); 372 #else 373 return ((jfloat)fmod((double)x,(double)y)); 374 #endif 375 JRT_END 376 377 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 378 #ifdef _WIN64 379 julong xbits = PrimitiveConversions::cast<julong>(x); 380 julong ybits = PrimitiveConversions::cast<julong>(y); 381 // x Mod Infinity == x unless x is infinity 382 if (((xbits & double_sign_mask) != double_infinity) && 383 ((ybits & double_sign_mask) == double_infinity) ) { 384 return x; 385 } 386 return ((jdouble)fmod_winx64((double)x, (double)y)); 387 #else 388 return ((jdouble)fmod((double)x,(double)y)); 389 #endif 390 JRT_END 391 #endif // !X86 392 393 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 394 return (jfloat)x; 395 JRT_END 396 397 #ifdef __SOFTFP__ 398 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 399 return x + y; 400 JRT_END 401 402 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 403 return x - y; 404 JRT_END 405 406 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 407 return x * y; 408 JRT_END 409 410 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 411 return x / y; 412 JRT_END 413 414 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 415 return x + y; 416 JRT_END 417 418 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 419 return x - y; 420 JRT_END 421 422 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 423 return x * y; 424 JRT_END 425 426 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 427 return x / y; 428 JRT_END 429 430 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 431 return (jdouble)x; 432 JRT_END 433 434 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 435 return (jdouble)x; 436 JRT_END 437 438 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 439 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 440 JRT_END 441 442 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 443 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 444 JRT_END 445 446 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 447 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 448 JRT_END 449 450 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 451 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 452 JRT_END 453 454 // Functions to return the opposite of the aeabi functions for nan. 455 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 456 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 457 JRT_END 458 459 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 460 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 461 JRT_END 462 463 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 464 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 465 JRT_END 466 467 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 468 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 469 JRT_END 470 471 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 472 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 473 JRT_END 474 475 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 476 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 477 JRT_END 478 479 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 480 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 481 JRT_END 482 483 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 484 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 485 JRT_END 486 487 // Intrinsics make gcc generate code for these. 488 float SharedRuntime::fneg(float f) { 489 return -f; 490 } 491 492 double SharedRuntime::dneg(double f) { 493 return -f; 494 } 495 496 #endif // __SOFTFP__ 497 498 #if defined(__SOFTFP__) || defined(E500V2) 499 // Intrinsics make gcc generate code for these. 500 double SharedRuntime::dabs(double f) { 501 return (f <= (double)0.0) ? (double)0.0 - f : f; 502 } 503 504 #endif 505 506 #if defined(__SOFTFP__) 507 double SharedRuntime::dsqrt(double f) { 508 return sqrt(f); 509 } 510 #endif 511 512 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 513 if (g_isnan(x)) 514 return 0; 515 if (x >= (jfloat) max_jint) 516 return max_jint; 517 if (x <= (jfloat) min_jint) 518 return min_jint; 519 return (jint) x; 520 JRT_END 521 522 523 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 524 if (g_isnan(x)) 525 return 0; 526 if (x >= (jfloat) max_jlong) 527 return max_jlong; 528 if (x <= (jfloat) min_jlong) 529 return min_jlong; 530 return (jlong) x; 531 JRT_END 532 533 534 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 535 if (g_isnan(x)) 536 return 0; 537 if (x >= (jdouble) max_jint) 538 return max_jint; 539 if (x <= (jdouble) min_jint) 540 return min_jint; 541 return (jint) x; 542 JRT_END 543 544 545 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 546 if (g_isnan(x)) 547 return 0; 548 if (x >= (jdouble) max_jlong) 549 return max_jlong; 550 if (x <= (jdouble) min_jlong) 551 return min_jlong; 552 return (jlong) x; 553 JRT_END 554 555 556 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 557 return (jfloat)x; 558 JRT_END 559 560 561 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 562 return (jfloat)x; 563 JRT_END 564 565 566 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 567 return (jdouble)x; 568 JRT_END 569 570 571 // Exception handling across interpreter/compiler boundaries 572 // 573 // exception_handler_for_return_address(...) returns the continuation address. 574 // The continuation address is the entry point of the exception handler of the 575 // previous frame depending on the return address. 576 577 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 578 // Note: This is called when we have unwound the frame of the callee that did 579 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 580 // Notably, the stack is not walkable at this point, and hence the check must 581 // be deferred until later. Specifically, any of the handlers returned here in 582 // this function, will get dispatched to, and call deferred checks to 583 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 584 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 585 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 586 587 // Reset method handle flag. 588 current->set_is_method_handle_return(false); 589 590 #if INCLUDE_JVMCI 591 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 592 // and other exception handler continuations do not read it 593 current->set_exception_pc(nullptr); 594 #endif // INCLUDE_JVMCI 595 596 if (Continuation::is_return_barrier_entry(return_address)) { 597 return StubRoutines::cont_returnBarrierExc(); 598 } 599 600 // The fastest case first 601 CodeBlob* blob = CodeCache::find_blob(return_address); 602 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 603 if (nm != nullptr) { 604 // Set flag if return address is a method handle call site. 605 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 606 // native nmethods don't have exception handlers 607 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 608 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 609 if (nm->is_deopt_pc(return_address)) { 610 // If we come here because of a stack overflow, the stack may be 611 // unguarded. Reguard the stack otherwise if we return to the 612 // deopt blob and the stack bang causes a stack overflow we 613 // crash. 614 StackOverflow* overflow_state = current->stack_overflow_state(); 615 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 616 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 617 overflow_state->set_reserved_stack_activation(current->stack_base()); 618 } 619 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 620 // The deferred StackWatermarkSet::after_unwind check will be performed in 621 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 622 return SharedRuntime::deopt_blob()->unpack_with_exception(); 623 } else { 624 // The deferred StackWatermarkSet::after_unwind check will be performed in 625 // * OptoRuntime::handle_exception_C_helper for C2 code 626 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 627 return nm->exception_begin(); 628 } 629 } 630 631 // Entry code 632 if (StubRoutines::returns_to_call_stub(return_address)) { 633 // The deferred StackWatermarkSet::after_unwind check will be performed in 634 // JavaCallWrapper::~JavaCallWrapper 635 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before"); 636 return StubRoutines::catch_exception_entry(); 637 } 638 if (blob != nullptr && blob->is_upcall_stub()) { 639 return StubRoutines::upcall_stub_exception_handler(); 640 } 641 // Interpreted code 642 if (Interpreter::contains(return_address)) { 643 // The deferred StackWatermarkSet::after_unwind check will be performed in 644 // InterpreterRuntime::exception_handler_for_exception 645 return Interpreter::rethrow_exception_entry(); 646 } 647 648 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 649 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 650 651 #ifndef PRODUCT 652 { ResourceMark rm; 653 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 654 os::print_location(tty, (intptr_t)return_address); 655 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 656 tty->print_cr("b) other problem"); 657 } 658 #endif // PRODUCT 659 ShouldNotReachHere(); 660 return nullptr; 661 } 662 663 664 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 665 return raw_exception_handler_for_return_address(current, return_address); 666 JRT_END 667 668 669 address SharedRuntime::get_poll_stub(address pc) { 670 address stub; 671 // Look up the code blob 672 CodeBlob *cb = CodeCache::find_blob(pc); 673 674 // Should be an nmethod 675 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 676 677 // Look up the relocation information 678 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 679 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 680 681 #ifdef ASSERT 682 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 683 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 684 Disassembler::decode(cb); 685 fatal("Only polling locations are used for safepoint"); 686 } 687 #endif 688 689 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 690 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 691 if (at_poll_return) { 692 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 693 "polling page return stub not created yet"); 694 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 695 } else if (has_wide_vectors) { 696 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 697 "polling page vectors safepoint stub not created yet"); 698 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 699 } else { 700 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 701 "polling page safepoint stub not created yet"); 702 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 703 } 704 log_debug(safepoint)("... found polling page %s exception at pc = " 705 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 706 at_poll_return ? "return" : "loop", 707 (intptr_t)pc, (intptr_t)stub); 708 return stub; 709 } 710 711 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 712 if (JvmtiExport::can_post_on_exceptions()) { 713 vframeStream vfst(current, true); 714 methodHandle method = methodHandle(current, vfst.method()); 715 address bcp = method()->bcp_from(vfst.bci()); 716 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 717 } 718 719 #if INCLUDE_JVMCI 720 if (EnableJVMCI) { 721 vframeStream vfst(current, true); 722 methodHandle method = methodHandle(current, vfst.method()); 723 int bci = vfst.bci(); 724 MethodData* trap_mdo = method->method_data(); 725 if (trap_mdo != nullptr) { 726 // Set exception_seen if the exceptional bytecode is an invoke 727 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 728 if (call.is_valid()) { 729 ResourceMark rm(current); 730 731 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 732 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 733 734 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 735 if (pdata != nullptr && pdata->is_BitData()) { 736 BitData* bit_data = (BitData*) pdata; 737 bit_data->set_exception_seen(); 738 } 739 } 740 } 741 } 742 #endif 743 744 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 745 } 746 747 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 748 Handle h_exception = Exceptions::new_exception(current, name, message); 749 throw_and_post_jvmti_exception(current, h_exception); 750 } 751 752 #if INCLUDE_JVMTI 753 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 754 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 755 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 756 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 757 JNIHandles::destroy_local(vthread); 758 JRT_END 759 760 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 761 assert(hide == JNI_TRUE, "must be VTMS transition start"); 762 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 763 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 764 JNIHandles::destroy_local(vthread); 765 JRT_END 766 767 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 768 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 769 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 770 JNIHandles::destroy_local(vthread); 771 JRT_END 772 773 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 774 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 775 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 776 JNIHandles::destroy_local(vthread); 777 JRT_END 778 #endif // INCLUDE_JVMTI 779 780 // The interpreter code to call this tracing function is only 781 // called/generated when UL is on for redefine, class and has the right level 782 // and tags. Since obsolete methods are never compiled, we don't have 783 // to modify the compilers to generate calls to this function. 784 // 785 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 786 JavaThread* thread, Method* method)) 787 if (method->is_obsolete()) { 788 // We are calling an obsolete method, but this is not necessarily 789 // an error. Our method could have been redefined just after we 790 // fetched the Method* from the constant pool. 791 ResourceMark rm; 792 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 793 } 794 795 LogStreamHandle(Trace, interpreter, bytecode) log; 796 if (log.is_enabled()) { 797 ResourceMark rm; 798 log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s", 799 p2i(thread), 800 (method->is_static() ? "static" : "virtual"), 801 method->name_and_sig_as_C_string(), 802 (method->is_native() ? " native" : ""), 803 (thread->class_being_initialized() != nullptr ? " clinit" : ""), 804 (method->method_holder()->is_initialized() ? "" : " being_initialized")); 805 } 806 return 0; 807 JRT_END 808 809 // ret_pc points into caller; we are returning caller's exception handler 810 // for given exception 811 // Note that the implementation of this method assumes it's only called when an exception has actually occured 812 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 813 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 814 assert(nm != nullptr, "must exist"); 815 ResourceMark rm; 816 817 #if INCLUDE_JVMCI 818 if (nm->is_compiled_by_jvmci()) { 819 // lookup exception handler for this pc 820 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 821 ExceptionHandlerTable table(nm); 822 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 823 if (t != nullptr) { 824 return nm->code_begin() + t->pco(); 825 } else { 826 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 827 } 828 } 829 #endif // INCLUDE_JVMCI 830 831 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 832 // determine handler bci, if any 833 EXCEPTION_MARK; 834 835 int handler_bci = -1; 836 int scope_depth = 0; 837 if (!force_unwind) { 838 int bci = sd->bci(); 839 bool recursive_exception = false; 840 do { 841 bool skip_scope_increment = false; 842 // exception handler lookup 843 Klass* ek = exception->klass(); 844 methodHandle mh(THREAD, sd->method()); 845 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 846 if (HAS_PENDING_EXCEPTION) { 847 recursive_exception = true; 848 // We threw an exception while trying to find the exception handler. 849 // Transfer the new exception to the exception handle which will 850 // be set into thread local storage, and do another lookup for an 851 // exception handler for this exception, this time starting at the 852 // BCI of the exception handler which caused the exception to be 853 // thrown (bugs 4307310 and 4546590). Set "exception" reference 854 // argument to ensure that the correct exception is thrown (4870175). 855 recursive_exception_occurred = true; 856 exception = Handle(THREAD, PENDING_EXCEPTION); 857 CLEAR_PENDING_EXCEPTION; 858 if (handler_bci >= 0) { 859 bci = handler_bci; 860 handler_bci = -1; 861 skip_scope_increment = true; 862 } 863 } 864 else { 865 recursive_exception = false; 866 } 867 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 868 sd = sd->sender(); 869 if (sd != nullptr) { 870 bci = sd->bci(); 871 } 872 ++scope_depth; 873 } 874 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 875 } 876 877 // found handling method => lookup exception handler 878 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 879 880 ExceptionHandlerTable table(nm); 881 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 882 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 883 // Allow abbreviated catch tables. The idea is to allow a method 884 // to materialize its exceptions without committing to the exact 885 // routing of exceptions. In particular this is needed for adding 886 // a synthetic handler to unlock monitors when inlining 887 // synchronized methods since the unlock path isn't represented in 888 // the bytecodes. 889 t = table.entry_for(catch_pco, -1, 0); 890 } 891 892 #ifdef COMPILER1 893 if (t == nullptr && nm->is_compiled_by_c1()) { 894 assert(nm->unwind_handler_begin() != nullptr, ""); 895 return nm->unwind_handler_begin(); 896 } 897 #endif 898 899 if (t == nullptr) { 900 ttyLocker ttyl; 901 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 902 tty->print_cr(" Exception:"); 903 exception->print(); 904 tty->cr(); 905 tty->print_cr(" Compiled exception table :"); 906 table.print(); 907 nm->print(); 908 nm->print_code(); 909 guarantee(false, "missing exception handler"); 910 return nullptr; 911 } 912 913 if (handler_bci != -1) { // did we find a handler in this method? 914 sd->method()->set_exception_handler_entered(handler_bci); // profile 915 } 916 return nm->code_begin() + t->pco(); 917 } 918 919 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 920 // These errors occur only at call sites 921 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 922 JRT_END 923 924 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 925 // These errors occur only at call sites 926 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 927 JRT_END 928 929 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 930 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 931 JRT_END 932 933 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 934 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 935 JRT_END 936 937 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 938 // This entry point is effectively only used for NullPointerExceptions which occur at inline 939 // cache sites (when the callee activation is not yet set up) so we are at a call site 940 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 941 JRT_END 942 943 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 944 throw_StackOverflowError_common(current, false); 945 JRT_END 946 947 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 948 throw_StackOverflowError_common(current, true); 949 JRT_END 950 951 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 952 // We avoid using the normal exception construction in this case because 953 // it performs an upcall to Java, and we're already out of stack space. 954 JavaThread* THREAD = current; // For exception macros. 955 Klass* k = vmClasses::StackOverflowError_klass(); 956 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 957 if (delayed) { 958 java_lang_Throwable::set_message(exception_oop, 959 Universe::delayed_stack_overflow_error_message()); 960 } 961 Handle exception (current, exception_oop); 962 if (StackTraceInThrowable) { 963 java_lang_Throwable::fill_in_stack_trace(exception); 964 } 965 // Remove the ScopedValue bindings in case we got a 966 // StackOverflowError while we were trying to remove ScopedValue 967 // bindings. 968 current->clear_scopedValueBindings(); 969 // Increment counter for hs_err file reporting 970 Atomic::inc(&Exceptions::_stack_overflow_errors); 971 throw_and_post_jvmti_exception(current, exception); 972 } 973 974 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 975 address pc, 976 ImplicitExceptionKind exception_kind) 977 { 978 address target_pc = nullptr; 979 980 if (Interpreter::contains(pc)) { 981 switch (exception_kind) { 982 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 983 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 984 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 985 default: ShouldNotReachHere(); 986 } 987 } else { 988 switch (exception_kind) { 989 case STACK_OVERFLOW: { 990 // Stack overflow only occurs upon frame setup; the callee is 991 // going to be unwound. Dispatch to a shared runtime stub 992 // which will cause the StackOverflowError to be fabricated 993 // and processed. 994 // Stack overflow should never occur during deoptimization: 995 // the compiled method bangs the stack by as much as the 996 // interpreter would need in case of a deoptimization. The 997 // deoptimization blob and uncommon trap blob bang the stack 998 // in a debug VM to verify the correctness of the compiled 999 // method stack banging. 1000 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 1001 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 1002 return SharedRuntime::throw_StackOverflowError_entry(); 1003 } 1004 1005 case IMPLICIT_NULL: { 1006 if (VtableStubs::contains(pc)) { 1007 // We haven't yet entered the callee frame. Fabricate an 1008 // exception and begin dispatching it in the caller. Since 1009 // the caller was at a call site, it's safe to destroy all 1010 // caller-saved registers, as these entry points do. 1011 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 1012 1013 // If vt_stub is null, then return null to signal handler to report the SEGV error. 1014 if (vt_stub == nullptr) return nullptr; 1015 1016 if (vt_stub->is_abstract_method_error(pc)) { 1017 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 1018 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 1019 // Instead of throwing the abstract method error here directly, we re-resolve 1020 // and will throw the AbstractMethodError during resolve. As a result, we'll 1021 // get a more detailed error message. 1022 return SharedRuntime::get_handle_wrong_method_stub(); 1023 } else { 1024 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 1025 // Assert that the signal comes from the expected location in stub code. 1026 assert(vt_stub->is_null_pointer_exception(pc), 1027 "obtained signal from unexpected location in stub code"); 1028 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1029 } 1030 } else { 1031 CodeBlob* cb = CodeCache::find_blob(pc); 1032 1033 // If code blob is null, then return null to signal handler to report the SEGV error. 1034 if (cb == nullptr) return nullptr; 1035 1036 // Exception happened in CodeCache. Must be either: 1037 // 1. Inline-cache check in C2I handler blob, 1038 // 2. Inline-cache check in nmethod, or 1039 // 3. Implicit null exception in nmethod 1040 1041 if (!cb->is_nmethod()) { 1042 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 1043 if (!is_in_blob) { 1044 // Allow normal crash reporting to handle this 1045 return nullptr; 1046 } 1047 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 1048 // There is no handler here, so we will simply unwind. 1049 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1050 } 1051 1052 // Otherwise, it's a compiled method. Consult its exception handlers. 1053 nmethod* nm = cb->as_nmethod(); 1054 if (nm->inlinecache_check_contains(pc)) { 1055 // exception happened inside inline-cache check code 1056 // => the nmethod is not yet active (i.e., the frame 1057 // is not set up yet) => use return address pushed by 1058 // caller => don't push another return address 1059 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 1060 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1061 } 1062 1063 if (nm->method()->is_method_handle_intrinsic()) { 1064 // exception happened inside MH dispatch code, similar to a vtable stub 1065 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 1066 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1067 } 1068 1069 #ifndef PRODUCT 1070 _implicit_null_throws++; 1071 #endif 1072 target_pc = nm->continuation_for_implicit_null_exception(pc); 1073 // If there's an unexpected fault, target_pc might be null, 1074 // in which case we want to fall through into the normal 1075 // error handling code. 1076 } 1077 1078 break; // fall through 1079 } 1080 1081 1082 case IMPLICIT_DIVIDE_BY_ZERO: { 1083 nmethod* nm = CodeCache::find_nmethod(pc); 1084 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1085 #ifndef PRODUCT 1086 _implicit_div0_throws++; 1087 #endif 1088 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1089 // If there's an unexpected fault, target_pc might be null, 1090 // in which case we want to fall through into the normal 1091 // error handling code. 1092 break; // fall through 1093 } 1094 1095 default: ShouldNotReachHere(); 1096 } 1097 1098 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1099 1100 if (exception_kind == IMPLICIT_NULL) { 1101 #ifndef PRODUCT 1102 // for AbortVMOnException flag 1103 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1104 #endif //PRODUCT 1105 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1106 } else { 1107 #ifndef PRODUCT 1108 // for AbortVMOnException flag 1109 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1110 #endif //PRODUCT 1111 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1112 } 1113 return target_pc; 1114 } 1115 1116 ShouldNotReachHere(); 1117 return nullptr; 1118 } 1119 1120 1121 /** 1122 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1123 * installed in the native function entry of all native Java methods before 1124 * they get linked to their actual native methods. 1125 * 1126 * \note 1127 * This method actually never gets called! The reason is because 1128 * the interpreter's native entries call NativeLookup::lookup() which 1129 * throws the exception when the lookup fails. The exception is then 1130 * caught and forwarded on the return from NativeLookup::lookup() call 1131 * before the call to the native function. This might change in the future. 1132 */ 1133 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1134 { 1135 // We return a bad value here to make sure that the exception is 1136 // forwarded before we look at the return value. 1137 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1138 } 1139 JNI_END 1140 1141 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1142 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1143 } 1144 1145 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1146 #if INCLUDE_JVMCI 1147 if (!obj->klass()->has_finalizer()) { 1148 return; 1149 } 1150 #endif // INCLUDE_JVMCI 1151 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1152 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1153 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1154 JRT_END 1155 1156 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1157 assert(thread != nullptr, "No thread"); 1158 if (thread == nullptr) { 1159 return 0; 1160 } 1161 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1162 "current cannot touch oops after its GC barrier is detached."); 1163 oop obj = thread->threadObj(); 1164 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1165 } 1166 1167 /** 1168 * This function ought to be a void function, but cannot be because 1169 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1170 * 6254741. Once that is fixed we can remove the dummy return value. 1171 */ 1172 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1173 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1174 } 1175 1176 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1177 return dtrace_object_alloc(thread, o, o->size()); 1178 } 1179 1180 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1181 assert(DTraceAllocProbes, "wrong call"); 1182 Klass* klass = o->klass(); 1183 Symbol* name = klass->name(); 1184 HOTSPOT_OBJECT_ALLOC( 1185 get_java_tid(thread), 1186 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1187 return 0; 1188 } 1189 1190 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1191 JavaThread* current, Method* method)) 1192 assert(current == JavaThread::current(), "pre-condition"); 1193 1194 assert(DTraceMethodProbes, "wrong call"); 1195 Symbol* kname = method->klass_name(); 1196 Symbol* name = method->name(); 1197 Symbol* sig = method->signature(); 1198 HOTSPOT_METHOD_ENTRY( 1199 get_java_tid(current), 1200 (char *) kname->bytes(), kname->utf8_length(), 1201 (char *) name->bytes(), name->utf8_length(), 1202 (char *) sig->bytes(), sig->utf8_length()); 1203 return 0; 1204 JRT_END 1205 1206 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1207 JavaThread* current, Method* method)) 1208 assert(current == JavaThread::current(), "pre-condition"); 1209 assert(DTraceMethodProbes, "wrong call"); 1210 Symbol* kname = method->klass_name(); 1211 Symbol* name = method->name(); 1212 Symbol* sig = method->signature(); 1213 HOTSPOT_METHOD_RETURN( 1214 get_java_tid(current), 1215 (char *) kname->bytes(), kname->utf8_length(), 1216 (char *) name->bytes(), name->utf8_length(), 1217 (char *) sig->bytes(), sig->utf8_length()); 1218 return 0; 1219 JRT_END 1220 1221 1222 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1223 // for a call current in progress, i.e., arguments has been pushed on stack 1224 // put callee has not been invoked yet. Used by: resolve virtual/static, 1225 // vtable updates, etc. Caller frame must be compiled. 1226 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1227 JavaThread* current = THREAD; 1228 ResourceMark rm(current); 1229 1230 // last java frame on stack (which includes native call frames) 1231 vframeStream vfst(current, true); // Do not skip and javaCalls 1232 1233 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1234 } 1235 1236 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1237 nmethod* caller = vfst.nm(); 1238 1239 address pc = vfst.frame_pc(); 1240 { // Get call instruction under lock because another thread may be busy patching it. 1241 CompiledICLocker ic_locker(caller); 1242 return caller->attached_method_before_pc(pc); 1243 } 1244 return nullptr; 1245 } 1246 1247 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1248 // for a call current in progress, i.e., arguments has been pushed on stack 1249 // but callee has not been invoked yet. Caller frame must be compiled. 1250 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1251 CallInfo& callinfo, TRAPS) { 1252 Handle receiver; 1253 Handle nullHandle; // create a handy null handle for exception returns 1254 JavaThread* current = THREAD; 1255 1256 assert(!vfst.at_end(), "Java frame must exist"); 1257 1258 // Find caller and bci from vframe 1259 methodHandle caller(current, vfst.method()); 1260 int bci = vfst.bci(); 1261 1262 if (caller->is_continuation_enter_intrinsic()) { 1263 bc = Bytecodes::_invokestatic; 1264 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1265 return receiver; 1266 } 1267 1268 Bytecode_invoke bytecode(caller, bci); 1269 int bytecode_index = bytecode.index(); 1270 bc = bytecode.invoke_code(); 1271 1272 methodHandle attached_method(current, extract_attached_method(vfst)); 1273 if (attached_method.not_null()) { 1274 Method* callee = bytecode.static_target(CHECK_NH); 1275 vmIntrinsics::ID id = callee->intrinsic_id(); 1276 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1277 // it attaches statically resolved method to the call site. 1278 if (MethodHandles::is_signature_polymorphic(id) && 1279 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1280 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1281 1282 // Adjust invocation mode according to the attached method. 1283 switch (bc) { 1284 case Bytecodes::_invokevirtual: 1285 if (attached_method->method_holder()->is_interface()) { 1286 bc = Bytecodes::_invokeinterface; 1287 } 1288 break; 1289 case Bytecodes::_invokeinterface: 1290 if (!attached_method->method_holder()->is_interface()) { 1291 bc = Bytecodes::_invokevirtual; 1292 } 1293 break; 1294 case Bytecodes::_invokehandle: 1295 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1296 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1297 : Bytecodes::_invokevirtual; 1298 } 1299 break; 1300 default: 1301 break; 1302 } 1303 } 1304 } 1305 1306 assert(bc != Bytecodes::_illegal, "not initialized"); 1307 1308 bool has_receiver = bc != Bytecodes::_invokestatic && 1309 bc != Bytecodes::_invokedynamic && 1310 bc != Bytecodes::_invokehandle; 1311 1312 // Find receiver for non-static call 1313 if (has_receiver) { 1314 // This register map must be update since we need to find the receiver for 1315 // compiled frames. The receiver might be in a register. 1316 RegisterMap reg_map2(current, 1317 RegisterMap::UpdateMap::include, 1318 RegisterMap::ProcessFrames::include, 1319 RegisterMap::WalkContinuation::skip); 1320 frame stubFrame = current->last_frame(); 1321 // Caller-frame is a compiled frame 1322 frame callerFrame = stubFrame.sender(®_map2); 1323 1324 if (attached_method.is_null()) { 1325 Method* callee = bytecode.static_target(CHECK_NH); 1326 if (callee == nullptr) { 1327 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1328 } 1329 } 1330 1331 // Retrieve from a compiled argument list 1332 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1333 assert(oopDesc::is_oop_or_null(receiver()), ""); 1334 1335 if (receiver.is_null()) { 1336 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1337 } 1338 } 1339 1340 // Resolve method 1341 if (attached_method.not_null()) { 1342 // Parameterized by attached method. 1343 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1344 } else { 1345 // Parameterized by bytecode. 1346 constantPoolHandle constants(current, caller->constants()); 1347 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1348 } 1349 1350 #ifdef ASSERT 1351 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1352 if (has_receiver) { 1353 assert(receiver.not_null(), "should have thrown exception"); 1354 Klass* receiver_klass = receiver->klass(); 1355 Klass* rk = nullptr; 1356 if (attached_method.not_null()) { 1357 // In case there's resolved method attached, use its holder during the check. 1358 rk = attached_method->method_holder(); 1359 } else { 1360 // Klass is already loaded. 1361 constantPoolHandle constants(current, caller->constants()); 1362 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1363 } 1364 Klass* static_receiver_klass = rk; 1365 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1366 "actual receiver must be subclass of static receiver klass"); 1367 if (receiver_klass->is_instance_klass()) { 1368 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1369 tty->print_cr("ERROR: Klass not yet initialized!!"); 1370 receiver_klass->print(); 1371 } 1372 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1373 } 1374 } 1375 #endif 1376 1377 return receiver; 1378 } 1379 1380 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1381 JavaThread* current = THREAD; 1382 ResourceMark rm(current); 1383 // We need first to check if any Java activations (compiled, interpreted) 1384 // exist on the stack since last JavaCall. If not, we need 1385 // to get the target method from the JavaCall wrapper. 1386 vframeStream vfst(current, true); // Do not skip any javaCalls 1387 methodHandle callee_method; 1388 if (vfst.at_end()) { 1389 // No Java frames were found on stack since we did the JavaCall. 1390 // Hence the stack can only contain an entry_frame. We need to 1391 // find the target method from the stub frame. 1392 RegisterMap reg_map(current, 1393 RegisterMap::UpdateMap::skip, 1394 RegisterMap::ProcessFrames::include, 1395 RegisterMap::WalkContinuation::skip); 1396 frame fr = current->last_frame(); 1397 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1398 fr = fr.sender(®_map); 1399 assert(fr.is_entry_frame(), "must be"); 1400 // fr is now pointing to the entry frame. 1401 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1402 } else { 1403 Bytecodes::Code bc; 1404 CallInfo callinfo; 1405 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1406 callee_method = methodHandle(current, callinfo.selected_method()); 1407 } 1408 assert(callee_method()->is_method(), "must be"); 1409 return callee_method; 1410 } 1411 1412 // Resolves a call. 1413 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1414 JavaThread* current = THREAD; 1415 ResourceMark rm(current); 1416 RegisterMap cbl_map(current, 1417 RegisterMap::UpdateMap::skip, 1418 RegisterMap::ProcessFrames::include, 1419 RegisterMap::WalkContinuation::skip); 1420 frame caller_frame = current->last_frame().sender(&cbl_map); 1421 1422 CodeBlob* caller_cb = caller_frame.cb(); 1423 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1424 nmethod* caller_nm = caller_cb->as_nmethod(); 1425 1426 // determine call info & receiver 1427 // note: a) receiver is null for static calls 1428 // b) an exception is thrown if receiver is null for non-static calls 1429 CallInfo call_info; 1430 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1431 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1432 1433 NoSafepointVerifier nsv; 1434 1435 methodHandle callee_method(current, call_info.selected_method()); 1436 1437 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1438 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1439 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1440 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1441 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1442 1443 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1444 1445 // tracing/debugging/statistics 1446 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1447 (is_virtual) ? (&_resolve_virtual_ctr) : 1448 (&_resolve_static_ctr); 1449 Atomic::inc(addr); 1450 1451 #ifndef PRODUCT 1452 if (TraceCallFixup) { 1453 ResourceMark rm(current); 1454 tty->print("resolving %s%s (%s) call to", 1455 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1456 Bytecodes::name(invoke_code)); 1457 callee_method->print_short_name(tty); 1458 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1459 p2i(caller_frame.pc()), p2i(callee_method->code())); 1460 } 1461 #endif 1462 1463 if (invoke_code == Bytecodes::_invokestatic) { 1464 assert(callee_method->method_holder()->is_initialized() || 1465 callee_method->method_holder()->is_reentrant_initialization(current), 1466 "invalid class initialization state for invoke_static"); 1467 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1468 // In order to keep class initialization check, do not patch call 1469 // site for static call when the class is not fully initialized. 1470 // Proper check is enforced by call site re-resolution on every invocation. 1471 // 1472 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1473 // explicit class initialization check is put in nmethod entry (VEP). 1474 assert(callee_method->method_holder()->is_linked(), "must be"); 1475 return callee_method; 1476 } 1477 } 1478 1479 1480 // JSR 292 key invariant: 1481 // If the resolved method is a MethodHandle invoke target, the call 1482 // site must be a MethodHandle call site, because the lambda form might tail-call 1483 // leaving the stack in a state unknown to either caller or callee 1484 1485 // Compute entry points. The computation of the entry points is independent of 1486 // patching the call. 1487 1488 // Make sure the callee nmethod does not get deoptimized and removed before 1489 // we are done patching the code. 1490 1491 1492 CompiledICLocker ml(caller_nm); 1493 if (is_virtual && !is_optimized) { 1494 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1495 inline_cache->update(&call_info, receiver->klass()); 1496 } else { 1497 // Callsite is a direct call - set it to the destination method 1498 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1499 callsite->set(callee_method); 1500 } 1501 1502 return callee_method; 1503 } 1504 1505 // Inline caches exist only in compiled code 1506 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1507 PerfTraceTime timer(_perf_ic_miss_total_time); 1508 1509 #ifdef ASSERT 1510 RegisterMap reg_map(current, 1511 RegisterMap::UpdateMap::skip, 1512 RegisterMap::ProcessFrames::include, 1513 RegisterMap::WalkContinuation::skip); 1514 frame stub_frame = current->last_frame(); 1515 assert(stub_frame.is_runtime_frame(), "sanity check"); 1516 frame caller_frame = stub_frame.sender(®_map); 1517 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1518 #endif /* ASSERT */ 1519 1520 methodHandle callee_method; 1521 JRT_BLOCK 1522 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1523 // Return Method* through TLS 1524 current->set_vm_result_metadata(callee_method()); 1525 JRT_BLOCK_END 1526 // return compiled code entry point after potential safepoints 1527 return get_resolved_entry(current, callee_method); 1528 JRT_END 1529 1530 1531 // Handle call site that has been made non-entrant 1532 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1533 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1534 1535 // 6243940 We might end up in here if the callee is deoptimized 1536 // as we race to call it. We don't want to take a safepoint if 1537 // the caller was interpreted because the caller frame will look 1538 // interpreted to the stack walkers and arguments are now 1539 // "compiled" so it is much better to make this transition 1540 // invisible to the stack walking code. The i2c path will 1541 // place the callee method in the callee_target. It is stashed 1542 // there because if we try and find the callee by normal means a 1543 // safepoint is possible and have trouble gc'ing the compiled args. 1544 RegisterMap reg_map(current, 1545 RegisterMap::UpdateMap::skip, 1546 RegisterMap::ProcessFrames::include, 1547 RegisterMap::WalkContinuation::skip); 1548 frame stub_frame = current->last_frame(); 1549 assert(stub_frame.is_runtime_frame(), "sanity check"); 1550 frame caller_frame = stub_frame.sender(®_map); 1551 1552 if (caller_frame.is_interpreted_frame() || 1553 caller_frame.is_entry_frame() || 1554 caller_frame.is_upcall_stub_frame()) { 1555 Method* callee = current->callee_target(); 1556 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1557 current->set_vm_result_metadata(callee); 1558 current->set_callee_target(nullptr); 1559 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1560 // Bypass class initialization checks in c2i when caller is in native. 1561 // JNI calls to static methods don't have class initialization checks. 1562 // Fast class initialization checks are present in c2i adapters and call into 1563 // SharedRuntime::handle_wrong_method() on the slow path. 1564 // 1565 // JVM upcalls may land here as well, but there's a proper check present in 1566 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1567 // so bypassing it in c2i adapter is benign. 1568 return callee->get_c2i_no_clinit_check_entry(); 1569 } else { 1570 return callee->get_c2i_entry(); 1571 } 1572 } 1573 1574 // Must be compiled to compiled path which is safe to stackwalk 1575 methodHandle callee_method; 1576 JRT_BLOCK 1577 // Force resolving of caller (if we called from compiled frame) 1578 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1579 current->set_vm_result_metadata(callee_method()); 1580 JRT_BLOCK_END 1581 // return compiled code entry point after potential safepoints 1582 return get_resolved_entry(current, callee_method); 1583 JRT_END 1584 1585 // Handle abstract method call 1586 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1587 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1588 1589 // Verbose error message for AbstractMethodError. 1590 // Get the called method from the invoke bytecode. 1591 vframeStream vfst(current, true); 1592 assert(!vfst.at_end(), "Java frame must exist"); 1593 methodHandle caller(current, vfst.method()); 1594 Bytecode_invoke invoke(caller, vfst.bci()); 1595 DEBUG_ONLY( invoke.verify(); ) 1596 1597 // Find the compiled caller frame. 1598 RegisterMap reg_map(current, 1599 RegisterMap::UpdateMap::include, 1600 RegisterMap::ProcessFrames::include, 1601 RegisterMap::WalkContinuation::skip); 1602 frame stubFrame = current->last_frame(); 1603 assert(stubFrame.is_runtime_frame(), "must be"); 1604 frame callerFrame = stubFrame.sender(®_map); 1605 assert(callerFrame.is_compiled_frame(), "must be"); 1606 1607 // Install exception and return forward entry. 1608 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1609 JRT_BLOCK 1610 methodHandle callee(current, invoke.static_target(current)); 1611 if (!callee.is_null()) { 1612 oop recv = callerFrame.retrieve_receiver(®_map); 1613 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1614 res = StubRoutines::forward_exception_entry(); 1615 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1616 } 1617 JRT_BLOCK_END 1618 return res; 1619 JRT_END 1620 1621 // return verified_code_entry if interp_only_mode is not set for the current thread; 1622 // otherwise return c2i entry. 1623 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1624 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1625 // In interp_only_mode we need to go to the interpreted entry 1626 // The c2i won't patch in this mode -- see fixup_callers_callsite 1627 return callee_method->get_c2i_entry(); 1628 } 1629 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1630 return callee_method->verified_code_entry(); 1631 } 1632 1633 // resolve a static call and patch code 1634 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1635 PerfTraceTime timer(_perf_resolve_static_total_time); 1636 1637 methodHandle callee_method; 1638 bool enter_special = false; 1639 JRT_BLOCK 1640 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1641 current->set_vm_result_metadata(callee_method()); 1642 JRT_BLOCK_END 1643 // return compiled code entry point after potential safepoints 1644 return get_resolved_entry(current, callee_method); 1645 JRT_END 1646 1647 // resolve virtual call and update inline cache to monomorphic 1648 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1649 PerfTraceTime timer(_perf_resolve_virtual_total_time); 1650 1651 methodHandle callee_method; 1652 JRT_BLOCK 1653 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1654 current->set_vm_result_metadata(callee_method()); 1655 JRT_BLOCK_END 1656 // return compiled code entry point after potential safepoints 1657 return get_resolved_entry(current, callee_method); 1658 JRT_END 1659 1660 1661 // Resolve a virtual call that can be statically bound (e.g., always 1662 // monomorphic, so it has no inline cache). Patch code to resolved target. 1663 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1664 PerfTraceTime timer(_perf_resolve_opt_virtual_total_time); 1665 1666 methodHandle callee_method; 1667 JRT_BLOCK 1668 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1669 current->set_vm_result_metadata(callee_method()); 1670 JRT_BLOCK_END 1671 // return compiled code entry point after potential safepoints 1672 return get_resolved_entry(current, callee_method); 1673 JRT_END 1674 1675 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1676 JavaThread* current = THREAD; 1677 ResourceMark rm(current); 1678 CallInfo call_info; 1679 Bytecodes::Code bc; 1680 1681 // receiver is null for static calls. An exception is thrown for null 1682 // receivers for non-static calls 1683 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1684 1685 methodHandle callee_method(current, call_info.selected_method()); 1686 1687 Atomic::inc(&_ic_miss_ctr); 1688 1689 #ifndef PRODUCT 1690 // Statistics & Tracing 1691 if (TraceCallFixup) { 1692 ResourceMark rm(current); 1693 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1694 callee_method->print_short_name(tty); 1695 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1696 } 1697 1698 if (ICMissHistogram) { 1699 MutexLocker m(VMStatistic_lock); 1700 RegisterMap reg_map(current, 1701 RegisterMap::UpdateMap::skip, 1702 RegisterMap::ProcessFrames::include, 1703 RegisterMap::WalkContinuation::skip); 1704 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1705 // produce statistics under the lock 1706 trace_ic_miss(f.pc()); 1707 } 1708 #endif 1709 1710 // install an event collector so that when a vtable stub is created the 1711 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1712 // event can't be posted when the stub is created as locks are held 1713 // - instead the event will be deferred until the event collector goes 1714 // out of scope. 1715 JvmtiDynamicCodeEventCollector event_collector; 1716 1717 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1718 RegisterMap reg_map(current, 1719 RegisterMap::UpdateMap::skip, 1720 RegisterMap::ProcessFrames::include, 1721 RegisterMap::WalkContinuation::skip); 1722 frame caller_frame = current->last_frame().sender(®_map); 1723 CodeBlob* cb = caller_frame.cb(); 1724 nmethod* caller_nm = cb->as_nmethod(); 1725 1726 CompiledICLocker ml(caller_nm); 1727 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1728 inline_cache->update(&call_info, receiver()->klass()); 1729 1730 return callee_method; 1731 } 1732 1733 // 1734 // Resets a call-site in compiled code so it will get resolved again. 1735 // This routines handles both virtual call sites, optimized virtual call 1736 // sites, and static call sites. Typically used to change a call sites 1737 // destination from compiled to interpreted. 1738 // 1739 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1740 JavaThread* current = THREAD; 1741 ResourceMark rm(current); 1742 RegisterMap reg_map(current, 1743 RegisterMap::UpdateMap::skip, 1744 RegisterMap::ProcessFrames::include, 1745 RegisterMap::WalkContinuation::skip); 1746 frame stub_frame = current->last_frame(); 1747 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1748 frame caller = stub_frame.sender(®_map); 1749 1750 // Do nothing if the frame isn't a live compiled frame. 1751 // nmethod could be deoptimized by the time we get here 1752 // so no update to the caller is needed. 1753 1754 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1755 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1756 1757 address pc = caller.pc(); 1758 1759 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1760 assert(caller_nm != nullptr, "did not find caller nmethod"); 1761 1762 // Default call_addr is the location of the "basic" call. 1763 // Determine the address of the call we a reresolving. With 1764 // Inline Caches we will always find a recognizable call. 1765 // With Inline Caches disabled we may or may not find a 1766 // recognizable call. We will always find a call for static 1767 // calls and for optimized virtual calls. For vanilla virtual 1768 // calls it depends on the state of the UseInlineCaches switch. 1769 // 1770 // With Inline Caches disabled we can get here for a virtual call 1771 // for two reasons: 1772 // 1 - calling an abstract method. The vtable for abstract methods 1773 // will run us thru handle_wrong_method and we will eventually 1774 // end up in the interpreter to throw the ame. 1775 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1776 // call and between the time we fetch the entry address and 1777 // we jump to it the target gets deoptimized. Similar to 1 1778 // we will wind up in the interprter (thru a c2i with c2). 1779 // 1780 CompiledICLocker ml(caller_nm); 1781 address call_addr = caller_nm->call_instruction_address(pc); 1782 1783 if (call_addr != nullptr) { 1784 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1785 // bytes back in the instruction stream so we must also check for reloc info. 1786 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1787 bool ret = iter.next(); // Get item 1788 if (ret) { 1789 switch (iter.type()) { 1790 case relocInfo::static_call_type: 1791 case relocInfo::opt_virtual_call_type: { 1792 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1793 cdc->set_to_clean(); 1794 break; 1795 } 1796 1797 case relocInfo::virtual_call_type: { 1798 // compiled, dispatched call (which used to call an interpreted method) 1799 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1800 inline_cache->set_to_clean(); 1801 break; 1802 } 1803 default: 1804 break; 1805 } 1806 } 1807 } 1808 } 1809 1810 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1811 1812 Atomic::inc(&_wrong_method_ctr); 1813 1814 #ifndef PRODUCT 1815 if (TraceCallFixup) { 1816 ResourceMark rm(current); 1817 tty->print("handle_wrong_method reresolving call to"); 1818 callee_method->print_short_name(tty); 1819 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1820 } 1821 #endif 1822 1823 return callee_method; 1824 } 1825 1826 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1827 // The faulting unsafe accesses should be changed to throw the error 1828 // synchronously instead. Meanwhile the faulting instruction will be 1829 // skipped over (effectively turning it into a no-op) and an 1830 // asynchronous exception will be raised which the thread will 1831 // handle at a later point. If the instruction is a load it will 1832 // return garbage. 1833 1834 // Request an async exception. 1835 thread->set_pending_unsafe_access_error(); 1836 1837 // Return address of next instruction to execute. 1838 return next_pc; 1839 } 1840 1841 #ifdef ASSERT 1842 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1843 const BasicType* sig_bt, 1844 const VMRegPair* regs) { 1845 ResourceMark rm; 1846 const int total_args_passed = method->size_of_parameters(); 1847 const VMRegPair* regs_with_member_name = regs; 1848 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1849 1850 const int member_arg_pos = total_args_passed - 1; 1851 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1852 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1853 1854 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1855 1856 for (int i = 0; i < member_arg_pos; i++) { 1857 VMReg a = regs_with_member_name[i].first(); 1858 VMReg b = regs_without_member_name[i].first(); 1859 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1860 } 1861 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1862 } 1863 #endif 1864 1865 // --------------------------------------------------------------------------- 1866 // We are calling the interpreter via a c2i. Normally this would mean that 1867 // we were called by a compiled method. However we could have lost a race 1868 // where we went int -> i2c -> c2i and so the caller could in fact be 1869 // interpreted. If the caller is compiled we attempt to patch the caller 1870 // so he no longer calls into the interpreter. 1871 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1872 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1873 1874 // It's possible that deoptimization can occur at a call site which hasn't 1875 // been resolved yet, in which case this function will be called from 1876 // an nmethod that has been patched for deopt and we can ignore the 1877 // request for a fixup. 1878 // Also it is possible that we lost a race in that from_compiled_entry 1879 // is now back to the i2c in that case we don't need to patch and if 1880 // we did we'd leap into space because the callsite needs to use 1881 // "to interpreter" stub in order to load up the Method*. Don't 1882 // ask me how I know this... 1883 1884 // Result from nmethod::is_unloading is not stable across safepoints. 1885 NoSafepointVerifier nsv; 1886 1887 nmethod* callee = method->code(); 1888 if (callee == nullptr) { 1889 return; 1890 } 1891 1892 // write lock needed because we might patch call site by set_to_clean() 1893 // and is_unloading() can modify nmethod's state 1894 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1895 1896 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1897 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1898 return; 1899 } 1900 1901 // The check above makes sure this is an nmethod. 1902 nmethod* caller = cb->as_nmethod(); 1903 1904 // Get the return PC for the passed caller PC. 1905 address return_pc = caller_pc + frame::pc_return_offset; 1906 1907 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1908 return; 1909 } 1910 1911 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1912 CompiledICLocker ic_locker(caller); 1913 ResourceMark rm; 1914 1915 // If we got here through a static call or opt_virtual call, then we know where the 1916 // call address would be; let's peek at it 1917 address callsite_addr = (address)nativeCall_before(return_pc); 1918 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1919 if (!iter.next()) { 1920 // No reloc entry found; not a static or optimized virtual call 1921 return; 1922 } 1923 1924 relocInfo::relocType type = iter.reloc()->type(); 1925 if (type != relocInfo::static_call_type && 1926 type != relocInfo::opt_virtual_call_type) { 1927 return; 1928 } 1929 1930 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1931 callsite->set_to_clean(); 1932 JRT_END 1933 1934 1935 // same as JVM_Arraycopy, but called directly from compiled code 1936 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1937 oopDesc* dest, jint dest_pos, 1938 jint length, 1939 JavaThread* current)) { 1940 #ifndef PRODUCT 1941 _slow_array_copy_ctr++; 1942 #endif 1943 // Check if we have null pointers 1944 if (src == nullptr || dest == nullptr) { 1945 THROW(vmSymbols::java_lang_NullPointerException()); 1946 } 1947 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1948 // even though the copy_array API also performs dynamic checks to ensure 1949 // that src and dest are truly arrays (and are conformable). 1950 // The copy_array mechanism is awkward and could be removed, but 1951 // the compilers don't call this function except as a last resort, 1952 // so it probably doesn't matter. 1953 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1954 (arrayOopDesc*)dest, dest_pos, 1955 length, current); 1956 } 1957 JRT_END 1958 1959 // The caller of generate_class_cast_message() (or one of its callers) 1960 // must use a ResourceMark in order to correctly free the result. 1961 char* SharedRuntime::generate_class_cast_message( 1962 JavaThread* thread, Klass* caster_klass) { 1963 1964 // Get target class name from the checkcast instruction 1965 vframeStream vfst(thread, true); 1966 assert(!vfst.at_end(), "Java frame must exist"); 1967 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1968 constantPoolHandle cpool(thread, vfst.method()->constants()); 1969 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1970 Symbol* target_klass_name = nullptr; 1971 if (target_klass == nullptr) { 1972 // This klass should be resolved, but just in case, get the name in the klass slot. 1973 target_klass_name = cpool->klass_name_at(cc.index()); 1974 } 1975 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1976 } 1977 1978 1979 // The caller of generate_class_cast_message() (or one of its callers) 1980 // must use a ResourceMark in order to correctly free the result. 1981 char* SharedRuntime::generate_class_cast_message( 1982 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1983 const char* caster_name = caster_klass->external_name(); 1984 1985 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1986 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1987 target_klass->external_name(); 1988 1989 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1990 1991 const char* caster_klass_description = ""; 1992 const char* target_klass_description = ""; 1993 const char* klass_separator = ""; 1994 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1995 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1996 } else { 1997 caster_klass_description = caster_klass->class_in_module_of_loader(); 1998 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1999 klass_separator = (target_klass != nullptr) ? "; " : ""; 2000 } 2001 2002 // add 3 for parenthesis and preceding space 2003 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 2004 2005 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2006 if (message == nullptr) { 2007 // Shouldn't happen, but don't cause even more problems if it does 2008 message = const_cast<char*>(caster_klass->external_name()); 2009 } else { 2010 jio_snprintf(message, 2011 msglen, 2012 "class %s cannot be cast to class %s (%s%s%s)", 2013 caster_name, 2014 target_name, 2015 caster_klass_description, 2016 klass_separator, 2017 target_klass_description 2018 ); 2019 } 2020 return message; 2021 } 2022 2023 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2024 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2025 JRT_END 2026 2027 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2028 if (!SafepointSynchronize::is_synchronizing()) { 2029 // Only try quick_enter() if we're not trying to reach a safepoint 2030 // so that the calling thread reaches the safepoint more quickly. 2031 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 2032 return; 2033 } 2034 } 2035 // NO_ASYNC required because an async exception on the state transition destructor 2036 // would leave you with the lock held and it would never be released. 2037 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2038 // and the model is that an exception implies the method failed. 2039 JRT_BLOCK_NO_ASYNC 2040 Handle h_obj(THREAD, obj); 2041 ObjectSynchronizer::enter(h_obj, lock, current); 2042 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2043 JRT_BLOCK_END 2044 } 2045 2046 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2047 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2048 SharedRuntime::monitor_enter_helper(obj, lock, current); 2049 JRT_END 2050 2051 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2052 assert(JavaThread::current() == current, "invariant"); 2053 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2054 ExceptionMark em(current); 2055 2056 // Check if C2_MacroAssembler::fast_unlock() or 2057 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 2058 // monitor before going slow path. Since there is no safepoint 2059 // polling when calling into the VM, we can be sure that the monitor 2060 // hasn't been deallocated. 2061 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2062 if (m != nullptr) { 2063 assert(!m->has_owner(current), "must be"); 2064 current->clear_unlocked_inflated_monitor(); 2065 2066 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2067 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2068 // Some other thread acquired the lock (or the monitor was 2069 // deflated). Either way we are done. 2070 current->dec_held_monitor_count(); 2071 return; 2072 } 2073 } 2074 2075 // The object could become unlocked through a JNI call, which we have no other checks for. 2076 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2077 if (obj->is_unlocked()) { 2078 if (CheckJNICalls) { 2079 fatal("Object has been unlocked by JNI"); 2080 } 2081 return; 2082 } 2083 ObjectSynchronizer::exit(obj, lock, current); 2084 } 2085 2086 // Handles the uncommon cases of monitor unlocking in compiled code 2087 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2088 assert(current == JavaThread::current(), "pre-condition"); 2089 SharedRuntime::monitor_exit_helper(obj, lock, current); 2090 JRT_END 2091 2092 // This is only called when CheckJNICalls is true, and only 2093 // for virtual thread termination. 2094 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2095 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2096 if (log_is_enabled(Debug, jni)) { 2097 JavaThread* current = JavaThread::current(); 2098 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2099 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2100 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2101 ") exiting with Objects still locked by JNI MonitorEnter.", 2102 vthread_id, carrier_id); 2103 } 2104 JRT_END 2105 2106 #ifndef PRODUCT 2107 2108 void SharedRuntime::print_statistics() { 2109 ttyLocker ttyl; 2110 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2111 2112 SharedRuntime::print_ic_miss_histogram_on(tty); 2113 SharedRuntime::print_counters_on(tty); 2114 AdapterHandlerLibrary::print_statistics_on(tty); 2115 2116 if (xtty != nullptr) xtty->tail("statistics"); 2117 } 2118 2119 //void SharedRuntime::print_counters_on(outputStream* st) { 2120 // // Dump the JRT_ENTRY counters 2121 // if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr); 2122 // if (_new_array_ctr) st->print_cr("%5u new array requires GC", _new_array_ctr); 2123 // if (_multi2_ctr) st->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2124 // if (_multi3_ctr) st->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2125 // if (_multi4_ctr) st->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2126 // if (_multi5_ctr) st->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2127 // 2128 // st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2129 // st->print_cr("%5u wrong method", _wrong_method_ctr); 2130 // st->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2131 // st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2132 // st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2133 // 2134 // if (_mon_enter_stub_ctr) st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2135 // if (_mon_exit_stub_ctr) st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2136 // if (_mon_enter_ctr) st->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2137 // if (_mon_exit_ctr) st->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2138 // if (_partial_subtype_ctr) st->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2139 // if (_jbyte_array_copy_ctr) st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2140 // if (_jshort_array_copy_ctr) st->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2141 // if (_jint_array_copy_ctr) st->print_cr("%5u int array copies", _jint_array_copy_ctr); 2142 // if (_jlong_array_copy_ctr) st->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2143 // if (_oop_array_copy_ctr) st->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2144 // if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2145 // if (_unsafe_array_copy_ctr) st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2146 // if (_generic_array_copy_ctr) st->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2147 // if (_slow_array_copy_ctr) st->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2148 // if (_find_handler_ctr) st->print_cr("%5u find exception handler", _find_handler_ctr); 2149 // if (_rethrow_ctr) st->print_cr("%5u rethrow handler", _rethrow_ctr); 2150 // if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2151 //} 2152 2153 inline double percent(int64_t x, int64_t y) { 2154 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2155 } 2156 2157 class MethodArityHistogram { 2158 public: 2159 enum { MAX_ARITY = 256 }; 2160 private: 2161 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2162 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2163 static uint64_t _total_compiled_calls; 2164 static uint64_t _max_compiled_calls_per_method; 2165 static int _max_arity; // max. arity seen 2166 static int _max_size; // max. arg size seen 2167 2168 static void add_method_to_histogram(nmethod* nm) { 2169 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2170 if (method != nullptr) { 2171 ArgumentCount args(method->signature()); 2172 int arity = args.size() + (method->is_static() ? 0 : 1); 2173 int argsize = method->size_of_parameters(); 2174 arity = MIN2(arity, MAX_ARITY-1); 2175 argsize = MIN2(argsize, MAX_ARITY-1); 2176 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2177 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2178 _total_compiled_calls += count; 2179 _arity_histogram[arity] += count; 2180 _size_histogram[argsize] += count; 2181 _max_arity = MAX2(_max_arity, arity); 2182 _max_size = MAX2(_max_size, argsize); 2183 } 2184 } 2185 2186 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2187 const int N = MIN2(9, n); 2188 double sum = 0; 2189 double weighted_sum = 0; 2190 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2191 if (sum >= 1) { // prevent divide by zero or divide overflow 2192 double rest = sum; 2193 double percent = sum / 100; 2194 for (int i = 0; i <= N; i++) { 2195 rest -= (double)histo[i]; 2196 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2197 } 2198 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2199 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2200 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2201 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2202 } else { 2203 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2204 } 2205 } 2206 2207 void print_histogram() { 2208 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2209 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2210 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2211 print_histogram_helper(_max_size, _size_histogram, "size"); 2212 tty->cr(); 2213 } 2214 2215 public: 2216 MethodArityHistogram() { 2217 // Take the Compile_lock to protect against changes in the CodeBlob structures 2218 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2219 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2220 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2221 _max_arity = _max_size = 0; 2222 _total_compiled_calls = 0; 2223 _max_compiled_calls_per_method = 0; 2224 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2225 CodeCache::nmethods_do(add_method_to_histogram); 2226 print_histogram(); 2227 } 2228 }; 2229 2230 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2231 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2232 uint64_t MethodArityHistogram::_total_compiled_calls; 2233 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2234 int MethodArityHistogram::_max_arity; 2235 int MethodArityHistogram::_max_size; 2236 2237 void SharedRuntime::print_call_statistics_on(outputStream* st) { 2238 tty->print_cr("Calls from compiled code:"); 2239 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2240 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2241 int64_t mono_i = _nof_interface_calls; 2242 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2243 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2244 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2245 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2246 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2247 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2248 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2249 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2250 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2251 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2252 tty->cr(); 2253 tty->print_cr("Note 1: counter updates are not MT-safe."); 2254 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2255 tty->print_cr(" %% in nested categories are relative to their category"); 2256 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2257 tty->cr(); 2258 2259 MethodArityHistogram h; 2260 } 2261 #endif 2262 2263 #ifndef PRODUCT 2264 static int _lookups; // number of calls to lookup 2265 static int _equals; // number of buckets checked with matching hash 2266 static int _archived_hits; // number of successful lookups in archived table 2267 static int _runtime_hits; // number of successful lookups in runtime table 2268 #endif 2269 2270 // A simple wrapper class around the calling convention information 2271 // that allows sharing of adapters for the same calling convention. 2272 class AdapterFingerPrint : public MetaspaceObj { 2273 private: 2274 enum { 2275 _basic_type_bits = 4, 2276 _basic_type_mask = right_n_bits(_basic_type_bits), 2277 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2278 }; 2279 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2280 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2281 2282 int _length; 2283 2284 static int data_offset() { return sizeof(AdapterFingerPrint); } 2285 int* data_pointer() { 2286 return (int*)((address)this + data_offset()); 2287 } 2288 2289 // Private construtor. Use allocate() to get an instance. 2290 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) { 2291 int* data = data_pointer(); 2292 // Pack the BasicTypes with 8 per int 2293 assert(len == length(total_args_passed), "sanity"); 2294 _length = len; 2295 int sig_index = 0; 2296 for (int index = 0; index < _length; index++) { 2297 int value = 0; 2298 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2299 int bt = adapter_encoding(sig_bt[sig_index++]); 2300 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2301 value = (value << _basic_type_bits) | bt; 2302 } 2303 data[index] = value; 2304 } 2305 } 2306 2307 // Call deallocate instead 2308 ~AdapterFingerPrint() { 2309 ShouldNotCallThis(); 2310 } 2311 2312 static int length(int total_args) { 2313 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int; 2314 } 2315 2316 static int compute_size_in_words(int len) { 2317 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int))); 2318 } 2319 2320 // Remap BasicTypes that are handled equivalently by the adapters. 2321 // These are correct for the current system but someday it might be 2322 // necessary to make this mapping platform dependent. 2323 static int adapter_encoding(BasicType in) { 2324 switch (in) { 2325 case T_BOOLEAN: 2326 case T_BYTE: 2327 case T_SHORT: 2328 case T_CHAR: 2329 // There are all promoted to T_INT in the calling convention 2330 return T_INT; 2331 2332 case T_OBJECT: 2333 case T_ARRAY: 2334 // In other words, we assume that any register good enough for 2335 // an int or long is good enough for a managed pointer. 2336 #ifdef _LP64 2337 return T_LONG; 2338 #else 2339 return T_INT; 2340 #endif 2341 2342 case T_INT: 2343 case T_LONG: 2344 case T_FLOAT: 2345 case T_DOUBLE: 2346 case T_VOID: 2347 return in; 2348 2349 default: 2350 ShouldNotReachHere(); 2351 return T_CONFLICT; 2352 } 2353 } 2354 2355 void* operator new(size_t size, size_t fp_size) throw() { 2356 assert(fp_size >= size, "sanity check"); 2357 void* p = AllocateHeap(fp_size, mtCode); 2358 memset(p, 0, fp_size); 2359 return p; 2360 } 2361 2362 template<typename Function> 2363 void iterate_args(Function function) { 2364 for (int i = 0; i < length(); i++) { 2365 unsigned val = (unsigned)value(i); 2366 // args are packed so that first/lower arguments are in the highest 2367 // bits of each int value, so iterate from highest to the lowest 2368 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2369 unsigned v = (val >> j) & _basic_type_mask; 2370 if (v == 0) { 2371 continue; 2372 } 2373 function(v); 2374 } 2375 } 2376 } 2377 2378 public: 2379 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) { 2380 int len = length(total_args_passed); 2381 int size_in_bytes = BytesPerWord * compute_size_in_words(len); 2382 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len); 2383 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match"); 2384 return afp; 2385 } 2386 2387 static void deallocate(AdapterFingerPrint* fp) { 2388 FreeHeap(fp); 2389 } 2390 2391 int value(int index) { 2392 int* data = data_pointer(); 2393 return data[index]; 2394 } 2395 2396 int length() { 2397 return _length; 2398 } 2399 2400 unsigned int compute_hash() { 2401 int hash = 0; 2402 for (int i = 0; i < length(); i++) { 2403 int v = value(i); 2404 //Add arithmetic operation to the hash, like +3 to improve hashing 2405 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2406 } 2407 return (unsigned int)hash; 2408 } 2409 2410 const char* as_string() { 2411 stringStream st; 2412 st.print("0x"); 2413 for (int i = 0; i < length(); i++) { 2414 st.print("%x", value(i)); 2415 } 2416 return st.as_string(); 2417 } 2418 2419 const char* as_basic_args_string() { 2420 stringStream st; 2421 bool long_prev = false; 2422 iterate_args([&] (int arg) { 2423 if (long_prev) { 2424 long_prev = false; 2425 if (arg == T_VOID) { 2426 st.print("J"); 2427 } else { 2428 st.print("L"); 2429 } 2430 } 2431 switch (arg) { 2432 case T_INT: st.print("I"); break; 2433 case T_LONG: long_prev = true; break; 2434 case T_FLOAT: st.print("F"); break; 2435 case T_DOUBLE: st.print("D"); break; 2436 case T_VOID: break; 2437 default: ShouldNotReachHere(); 2438 } 2439 }); 2440 if (long_prev) { 2441 st.print("L"); 2442 } 2443 return st.as_string(); 2444 } 2445 2446 BasicType* as_basic_type(int& nargs) { 2447 nargs = 0; 2448 GrowableArray<BasicType> btarray; 2449 bool long_prev = false; 2450 2451 iterate_args([&] (int arg) { 2452 if (long_prev) { 2453 long_prev = false; 2454 if (arg == T_VOID) { 2455 btarray.append(T_LONG); 2456 } else { 2457 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter 2458 } 2459 } 2460 switch (arg) { 2461 case T_INT: // fallthrough 2462 case T_FLOAT: // fallthrough 2463 case T_DOUBLE: 2464 case T_VOID: 2465 btarray.append((BasicType)arg); 2466 break; 2467 case T_LONG: 2468 long_prev = true; 2469 break; 2470 default: ShouldNotReachHere(); 2471 } 2472 }); 2473 2474 if (long_prev) { 2475 btarray.append(T_OBJECT); 2476 } 2477 2478 nargs = btarray.length(); 2479 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs); 2480 int index = 0; 2481 GrowableArrayIterator<BasicType> iter = btarray.begin(); 2482 while (iter != btarray.end()) { 2483 sig_bt[index++] = *iter; 2484 ++iter; 2485 } 2486 assert(index == btarray.length(), "sanity check"); 2487 #ifdef ASSERT 2488 { 2489 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt); 2490 assert(this->equals(compare_fp), "sanity check"); 2491 AdapterFingerPrint::deallocate(compare_fp); 2492 } 2493 #endif 2494 return sig_bt; 2495 } 2496 2497 bool equals(AdapterFingerPrint* other) { 2498 if (other->_length != _length) { 2499 return false; 2500 } else { 2501 for (int i = 0; i < _length; i++) { 2502 if (value(i) != other->value(i)) { 2503 return false; 2504 } 2505 } 2506 } 2507 return true; 2508 } 2509 2510 // methods required by virtue of being a MetaspaceObj 2511 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2512 int size() const { return compute_size_in_words(_length); } 2513 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2514 2515 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2516 NOT_PRODUCT(_equals++); 2517 return fp1->equals(fp2); 2518 } 2519 2520 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2521 return fp->compute_hash(); 2522 } 2523 }; 2524 2525 #if INCLUDE_CDS 2526 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2527 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2528 } 2529 2530 class ArchivedAdapterTable : public OffsetCompactHashtable< 2531 AdapterFingerPrint*, 2532 AdapterHandlerEntry*, 2533 adapter_fp_equals_compact_hashtable_entry> {}; 2534 #endif // INCLUDE_CDS 2535 2536 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2537 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2538 AnyObj::C_HEAP, mtCode, 2539 AdapterFingerPrint::compute_hash, 2540 AdapterFingerPrint::equals>; 2541 static AdapterHandlerTable* _adapter_handler_table; 2542 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2543 2544 // Find a entry with the same fingerprint if it exists 2545 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) { 2546 NOT_PRODUCT(_lookups++); 2547 assert_lock_strong(AdapterHandlerLibrary_lock); 2548 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2549 AdapterHandlerEntry* entry = nullptr; 2550 #if INCLUDE_CDS 2551 // if we are building the archive then the archived adapter table is 2552 // not valid and we need to use the ones added to the runtime table 2553 if (AOTCodeCache::is_using_adapter()) { 2554 // Search archived table first. It is read-only table so can be searched without lock 2555 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2556 #ifndef PRODUCT 2557 if (entry != nullptr) { 2558 _archived_hits++; 2559 } 2560 #endif 2561 } 2562 #endif // INCLUDE_CDS 2563 if (entry == nullptr) { 2564 assert_lock_strong(AdapterHandlerLibrary_lock); 2565 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2566 if (entry_p != nullptr) { 2567 entry = *entry_p; 2568 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2569 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2570 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2571 #ifndef PRODUCT 2572 _runtime_hits++; 2573 #endif 2574 } 2575 } 2576 AdapterFingerPrint::deallocate(fp); 2577 return entry; 2578 } 2579 2580 #ifndef PRODUCT 2581 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) { 2582 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2583 return sizeof(*key) + sizeof(*a); 2584 }; 2585 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2586 ts.print(st, "AdapterHandlerTable"); 2587 st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2588 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2589 int total_hits = _archived_hits + _runtime_hits; 2590 st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)", 2591 _lookups, _equals, total_hits, _archived_hits, _runtime_hits); 2592 } 2593 #endif // !PRODUCT 2594 2595 // --------------------------------------------------------------------------- 2596 // Implementation of AdapterHandlerLibrary 2597 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2598 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2599 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2600 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2601 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2602 #if INCLUDE_CDS 2603 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2604 #endif // INCLUDE_CDS 2605 static const int AdapterHandlerLibrary_size = 16*K; 2606 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2607 2608 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2609 assert(_buffer != nullptr, "should be initialized"); 2610 return _buffer; 2611 } 2612 2613 static void post_adapter_creation(const AdapterBlob* new_adapter, 2614 const AdapterHandlerEntry* entry) { 2615 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2616 char blob_id[256]; 2617 jio_snprintf(blob_id, 2618 sizeof(blob_id), 2619 "%s(%s)", 2620 new_adapter->name(), 2621 entry->fingerprint()->as_string()); 2622 if (Forte::is_enabled()) { 2623 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2624 } 2625 2626 if (JvmtiExport::should_post_dynamic_code_generated()) { 2627 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2628 } 2629 } 2630 } 2631 2632 void AdapterHandlerLibrary::initialize() { 2633 { 2634 ResourceMark rm; 2635 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2636 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2637 } 2638 2639 #if INCLUDE_CDS 2640 // Link adapters in AOT Cache to their code in AOT Code Cache 2641 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) { 2642 link_aot_adapters(); 2643 lookup_simple_adapters(); 2644 return; 2645 } 2646 #endif // INCLUDE_CDS 2647 2648 ResourceMark rm; 2649 AdapterBlob* no_arg_blob = nullptr; 2650 AdapterBlob* int_arg_blob = nullptr; 2651 AdapterBlob* obj_arg_blob = nullptr; 2652 AdapterBlob* obj_int_arg_blob = nullptr; 2653 AdapterBlob* obj_obj_arg_blob = nullptr; 2654 { 2655 MutexLocker mu(AdapterHandlerLibrary_lock); 2656 2657 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr); 2658 2659 BasicType obj_args[] = { T_OBJECT }; 2660 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args); 2661 2662 BasicType int_args[] = { T_INT }; 2663 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args); 2664 2665 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2666 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args); 2667 2668 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2669 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args); 2670 2671 // we should always get an entry back but we don't have any 2672 // associated blob on Zero 2673 assert(_no_arg_handler != nullptr && 2674 _obj_arg_handler != nullptr && 2675 _int_arg_handler != nullptr && 2676 _obj_int_arg_handler != nullptr && 2677 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created"); 2678 } 2679 2680 // Outside of the lock 2681 #ifndef ZERO 2682 // no blobs to register when we are on Zero 2683 post_adapter_creation(no_arg_blob, _no_arg_handler); 2684 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2685 post_adapter_creation(int_arg_blob, _int_arg_handler); 2686 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2687 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2688 #endif // ZERO 2689 } 2690 2691 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2692 return AdapterHandlerEntry::allocate(fingerprint); 2693 } 2694 2695 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2696 int total_args_passed = method->size_of_parameters(); // All args on stack 2697 if (total_args_passed == 0) { 2698 return _no_arg_handler; 2699 } else if (total_args_passed == 1) { 2700 if (!method->is_static()) { 2701 return _obj_arg_handler; 2702 } 2703 switch (method->signature()->char_at(1)) { 2704 case JVM_SIGNATURE_CLASS: 2705 case JVM_SIGNATURE_ARRAY: 2706 return _obj_arg_handler; 2707 case JVM_SIGNATURE_INT: 2708 case JVM_SIGNATURE_BOOLEAN: 2709 case JVM_SIGNATURE_CHAR: 2710 case JVM_SIGNATURE_BYTE: 2711 case JVM_SIGNATURE_SHORT: 2712 return _int_arg_handler; 2713 } 2714 } else if (total_args_passed == 2 && 2715 !method->is_static()) { 2716 switch (method->signature()->char_at(1)) { 2717 case JVM_SIGNATURE_CLASS: 2718 case JVM_SIGNATURE_ARRAY: 2719 return _obj_obj_arg_handler; 2720 case JVM_SIGNATURE_INT: 2721 case JVM_SIGNATURE_BOOLEAN: 2722 case JVM_SIGNATURE_CHAR: 2723 case JVM_SIGNATURE_BYTE: 2724 case JVM_SIGNATURE_SHORT: 2725 return _obj_int_arg_handler; 2726 } 2727 } 2728 return nullptr; 2729 } 2730 2731 class AdapterSignatureIterator : public SignatureIterator { 2732 private: 2733 BasicType stack_sig_bt[16]; 2734 BasicType* sig_bt; 2735 int index; 2736 2737 public: 2738 AdapterSignatureIterator(Symbol* signature, 2739 fingerprint_t fingerprint, 2740 bool is_static, 2741 int total_args_passed) : 2742 SignatureIterator(signature, fingerprint), 2743 index(0) 2744 { 2745 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2746 if (!is_static) { // Pass in receiver first 2747 sig_bt[index++] = T_OBJECT; 2748 } 2749 do_parameters_on(this); 2750 } 2751 2752 BasicType* basic_types() { 2753 return sig_bt; 2754 } 2755 2756 #ifdef ASSERT 2757 int slots() { 2758 return index; 2759 } 2760 #endif 2761 2762 private: 2763 2764 friend class SignatureIterator; // so do_parameters_on can call do_type 2765 void do_type(BasicType type) { 2766 sig_bt[index++] = type; 2767 if (type == T_LONG || type == T_DOUBLE) { 2768 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2769 } 2770 } 2771 }; 2772 2773 2774 const char* AdapterHandlerEntry::_entry_names[] = { 2775 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 2776 }; 2777 2778 #ifdef ASSERT 2779 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) { 2780 // we can only check for the same code if there is any 2781 #ifndef ZERO 2782 AdapterBlob* comparison_blob = nullptr; 2783 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, true); 2784 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2785 assert(comparison_entry->compare_code(cached_entry), "code must match"); 2786 // Release the one just created 2787 AdapterHandlerEntry::deallocate(comparison_entry); 2788 # endif // ZERO 2789 } 2790 #endif /* ASSERT*/ 2791 2792 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2793 assert(!method->is_abstract(), "abstract methods do not have adapters"); 2794 // Use customized signature handler. Need to lock around updates to 2795 // the _adapter_handler_table (it is not safe for concurrent readers 2796 // and a single writer: this could be fixed if it becomes a 2797 // problem). 2798 2799 // Fast-path for trivial adapters 2800 AdapterHandlerEntry* entry = get_simple_adapter(method); 2801 if (entry != nullptr) { 2802 return entry; 2803 } 2804 2805 ResourceMark rm; 2806 AdapterBlob* adapter_blob = nullptr; 2807 2808 // Fill in the signature array, for the calling-convention call. 2809 int total_args_passed = method->size_of_parameters(); // All args on stack 2810 2811 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2812 method->is_static(), total_args_passed); 2813 assert(si.slots() == total_args_passed, ""); 2814 BasicType* sig_bt = si.basic_types(); 2815 { 2816 MutexLocker mu(AdapterHandlerLibrary_lock); 2817 2818 // Lookup method signature's fingerprint 2819 entry = lookup(total_args_passed, sig_bt); 2820 2821 if (entry != nullptr) { 2822 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 2823 #ifdef ASSERT 2824 if (!entry->in_aot_cache() && VerifyAdapterSharing) { 2825 verify_adapter_sharing(total_args_passed, sig_bt, entry); 2826 } 2827 #endif 2828 } else { 2829 entry = create_adapter(adapter_blob, total_args_passed, sig_bt); 2830 } 2831 } 2832 2833 // Outside of the lock 2834 if (adapter_blob != nullptr) { 2835 post_adapter_creation(adapter_blob, entry); 2836 } 2837 return entry; 2838 } 2839 2840 AdapterBlob* AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 2841 ResourceMark rm; 2842 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2843 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2844 int offsets[AdapterBlob::ENTRY_COUNT]; 2845 2846 AdapterBlob* adapter_blob = nullptr; 2847 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name); 2848 if (blob != nullptr) { 2849 adapter_blob = blob->as_adapter_blob(); 2850 adapter_blob->get_offsets(offsets); 2851 address i2c_entry = adapter_blob->content_begin(); 2852 assert(offsets[0] == 0, "sanity check"); 2853 handler->set_entry_points( 2854 i2c_entry, 2855 (offsets[1] != -1) ? (i2c_entry + offsets[1]) : nullptr, 2856 (offsets[2] != -1) ? (i2c_entry + offsets[2]) : nullptr, 2857 (offsets[3] != -1) ? (i2c_entry + offsets[3]) : nullptr 2858 ); 2859 } 2860 return adapter_blob; 2861 } 2862 2863 #ifndef PRODUCT 2864 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) { 2865 ttyLocker ttyl; 2866 ResourceMark rm; 2867 int insts_size; 2868 // on Zero the blob may be null 2869 handler->print_adapter_on(tty); 2870 if (adapter_blob == nullptr) { 2871 return; 2872 } 2873 insts_size = adapter_blob->code_size(); 2874 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 2875 handler->fingerprint()->as_basic_args_string(), 2876 handler->fingerprint()->as_string(), insts_size); 2877 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 2878 if (Verbose || PrintStubCode) { 2879 address first_pc = handler->base_address(); 2880 if (first_pc != nullptr) { 2881 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 2882 st->cr(); 2883 } 2884 } 2885 } 2886 #endif // PRODUCT 2887 2888 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob, 2889 AdapterHandlerEntry* handler, 2890 int total_args_passed, 2891 BasicType* sig_bt, 2892 bool is_transient) { 2893 if (log_is_enabled(Info, perf, class, link)) { 2894 ClassLoader::perf_method_adapters_count()->inc(); 2895 } 2896 2897 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2898 CodeBuffer buffer(buf); 2899 short buffer_locs[20]; 2900 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2901 sizeof(buffer_locs)/sizeof(relocInfo)); 2902 MacroAssembler masm(&buffer); 2903 VMRegPair stack_regs[16]; 2904 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2905 2906 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2907 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2908 SharedRuntime::generate_i2c2i_adapters(&masm, 2909 total_args_passed, 2910 comp_args_on_stack, 2911 sig_bt, 2912 regs, 2913 handler); 2914 #ifdef ZERO 2915 // On zero there is no code to save and no need to create a blob and 2916 // or relocate the handler. 2917 adapter_blob = nullptr; 2918 #else 2919 #ifdef ASSERT 2920 if (VerifyAdapterSharing) { 2921 handler->save_code(buf->code_begin(), buffer.insts_size()); 2922 if (is_transient) { 2923 return true; 2924 } 2925 } 2926 #endif 2927 2928 int entry_offset[AdapterBlob::ENTRY_COUNT]; 2929 assert(AdapterBlob::ENTRY_COUNT == 4, "sanity"); 2930 address i2c_entry = handler->get_i2c_entry(); 2931 entry_offset[0] = 0; // i2c_entry offset 2932 entry_offset[1] = (handler->get_c2i_entry() != nullptr) ? 2933 (handler->get_c2i_entry() - i2c_entry) : -1; 2934 entry_offset[2] = (handler->get_c2i_unverified_entry() != nullptr) ? 2935 (handler->get_c2i_unverified_entry() - i2c_entry) : -1; 2936 entry_offset[3] = (handler->get_c2i_no_clinit_check_entry() != nullptr) ? 2937 (handler->get_c2i_no_clinit_check_entry() - i2c_entry) : -1; 2938 2939 adapter_blob = AdapterBlob::create(&buffer, entry_offset); 2940 if (adapter_blob == nullptr) { 2941 // CodeCache is full, disable compilation 2942 // Ought to log this but compile log is only per compile thread 2943 // and we're some non descript Java thread. 2944 return false; 2945 } 2946 if (!is_transient && AOTCodeCache::is_dumping_adapter()) { 2947 // try to save generated code 2948 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2949 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2950 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name); 2951 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled"); 2952 } 2953 handler->relocate(adapter_blob->content_begin()); 2954 #endif // ZERO 2955 2956 #ifndef PRODUCT 2957 // debugging support 2958 if (PrintAdapterHandlers || PrintStubCode) { 2959 print_adapter_handler_info(tty, handler, adapter_blob); 2960 } 2961 #endif 2962 2963 return true; 2964 } 2965 2966 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob, 2967 int total_args_passed, 2968 BasicType* sig_bt, 2969 bool is_transient) { 2970 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2971 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 2972 if (!generate_adapter_code(adapter_blob, handler, total_args_passed, sig_bt, is_transient)) { 2973 AdapterHandlerEntry::deallocate(handler); 2974 return nullptr; 2975 } 2976 if (!is_transient) { 2977 assert_lock_strong(AdapterHandlerLibrary_lock); 2978 _adapter_handler_table->put(fp, handler); 2979 } 2980 return handler; 2981 } 2982 2983 #if INCLUDE_CDS 2984 void AdapterHandlerEntry::remove_unshareable_info() { 2985 #ifdef ASSERT 2986 _saved_code = nullptr; 2987 _saved_code_length = 0; 2988 #endif // ASSERT 2989 set_entry_points(nullptr, nullptr, nullptr, nullptr, false); 2990 } 2991 2992 class CopyAdapterTableToArchive : StackObj { 2993 private: 2994 CompactHashtableWriter* _writer; 2995 ArchiveBuilder* _builder; 2996 public: 2997 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 2998 _builder(ArchiveBuilder::current()) 2999 {} 3000 3001 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 3002 LogStreamHandle(Trace, aot) lsh; 3003 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 3004 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 3005 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 3006 assert(buffered_fp != nullptr,"sanity check"); 3007 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 3008 assert(buffered_entry != nullptr,"sanity check"); 3009 3010 uint hash = fp->compute_hash(); 3011 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 3012 _writer->add(hash, delta); 3013 if (lsh.is_enabled()) { 3014 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 3015 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 3016 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 3017 } 3018 } else { 3019 if (lsh.is_enabled()) { 3020 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 3021 } 3022 } 3023 return true; 3024 } 3025 }; 3026 3027 void AdapterHandlerLibrary::dump_aot_adapter_table() { 3028 CompactHashtableStats stats; 3029 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 3030 CopyAdapterTableToArchive copy(&writer); 3031 _adapter_handler_table->iterate(©); 3032 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 3033 } 3034 3035 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 3036 _aot_adapter_handler_table.serialize_header(soc); 3037 } 3038 3039 AdapterBlob* AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 3040 #ifdef ASSERT 3041 if (TestAOTAdapterLinkFailure) { 3042 return nullptr; 3043 } 3044 #endif 3045 AdapterBlob* blob = lookup_aot_cache(handler); 3046 #ifndef PRODUCT 3047 // debugging support 3048 if ((blob != nullptr) && (PrintAdapterHandlers || PrintStubCode)) { 3049 print_adapter_handler_info(tty, handler, blob); 3050 } 3051 #endif 3052 return blob; 3053 } 3054 3055 // This method is used during production run to link archived adapters (stored in AOT Cache) 3056 // to their code in AOT Code Cache 3057 void AdapterHandlerEntry::link() { 3058 AdapterBlob* adapter_blob = nullptr; 3059 ResourceMark rm; 3060 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 3061 bool generate_code = false; 3062 // Generate code only if AOTCodeCache is not available, or 3063 // caching adapters is disabled, or we fail to link 3064 // the AdapterHandlerEntry to its code in the AOTCodeCache 3065 if (AOTCodeCache::is_using_adapter()) { 3066 adapter_blob = AdapterHandlerLibrary::link_aot_adapter_handler(this); 3067 if (adapter_blob == nullptr) { 3068 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 3069 generate_code = true; 3070 } 3071 } else { 3072 generate_code = true; 3073 } 3074 if (generate_code) { 3075 int nargs; 3076 BasicType* bt = _fingerprint->as_basic_type(nargs); 3077 if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, nargs, bt, /* is_transient */ false)) { 3078 // Don't throw exceptions during VM initialization because java.lang.* classes 3079 // might not have been initialized, causing problems when constructing the 3080 // Java exception object. 3081 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 3082 } 3083 } 3084 // Outside of the lock 3085 if (adapter_blob != nullptr) { 3086 post_adapter_creation(adapter_blob, this); 3087 } 3088 assert(_linked, "AdapterHandlerEntry must now be linked"); 3089 } 3090 3091 void AdapterHandlerLibrary::link_aot_adapters() { 3092 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available"); 3093 _aot_adapter_handler_table.iterate([](AdapterHandlerEntry* entry) { 3094 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 3095 entry->link(); 3096 }); 3097 } 3098 3099 // This method is called during production run to lookup simple adapters 3100 // in the archived adapter handler table 3101 void AdapterHandlerLibrary::lookup_simple_adapters() { 3102 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 3103 3104 MutexLocker mu(AdapterHandlerLibrary_lock); 3105 _no_arg_handler = lookup(0, nullptr); 3106 3107 BasicType obj_args[] = { T_OBJECT }; 3108 _obj_arg_handler = lookup(1, obj_args); 3109 3110 BasicType int_args[] = { T_INT }; 3111 _int_arg_handler = lookup(1, int_args); 3112 3113 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 3114 _obj_int_arg_handler = lookup(2, obj_int_args); 3115 3116 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 3117 _obj_obj_arg_handler = lookup(2, obj_obj_args); 3118 3119 assert(_no_arg_handler != nullptr && 3120 _obj_arg_handler != nullptr && 3121 _int_arg_handler != nullptr && 3122 _obj_int_arg_handler != nullptr && 3123 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3124 assert(_no_arg_handler->is_linked() && 3125 _obj_arg_handler->is_linked() && 3126 _int_arg_handler->is_linked() && 3127 _obj_int_arg_handler->is_linked() && 3128 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3129 } 3130 #endif // INCLUDE_CDS 3131 3132 address AdapterHandlerEntry::base_address() { 3133 address base = _i2c_entry; 3134 if (base == nullptr) base = _c2i_entry; 3135 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3136 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3137 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3138 return base; 3139 } 3140 3141 void AdapterHandlerEntry::relocate(address new_base) { 3142 address old_base = base_address(); 3143 assert(old_base != nullptr, ""); 3144 ptrdiff_t delta = new_base - old_base; 3145 if (_i2c_entry != nullptr) 3146 _i2c_entry += delta; 3147 if (_c2i_entry != nullptr) 3148 _c2i_entry += delta; 3149 if (_c2i_unverified_entry != nullptr) 3150 _c2i_unverified_entry += delta; 3151 if (_c2i_no_clinit_check_entry != nullptr) 3152 _c2i_no_clinit_check_entry += delta; 3153 assert(base_address() == new_base, ""); 3154 } 3155 3156 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3157 LogStreamHandle(Trace, aot) lsh; 3158 if (lsh.is_enabled()) { 3159 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3160 lsh.cr(); 3161 } 3162 it->push(&_fingerprint); 3163 } 3164 3165 AdapterHandlerEntry::~AdapterHandlerEntry() { 3166 if (_fingerprint != nullptr) { 3167 AdapterFingerPrint::deallocate(_fingerprint); 3168 _fingerprint = nullptr; 3169 } 3170 #ifdef ASSERT 3171 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3172 #endif 3173 FreeHeap(this); 3174 } 3175 3176 3177 #ifdef ASSERT 3178 // Capture the code before relocation so that it can be compared 3179 // against other versions. If the code is captured after relocation 3180 // then relative instructions won't be equivalent. 3181 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3182 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3183 _saved_code_length = length; 3184 memcpy(_saved_code, buffer, length); 3185 } 3186 3187 3188 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3189 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3190 3191 if (other->_saved_code_length != _saved_code_length) { 3192 return false; 3193 } 3194 3195 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3196 } 3197 #endif 3198 3199 3200 /** 3201 * Create a native wrapper for this native method. The wrapper converts the 3202 * Java-compiled calling convention to the native convention, handles 3203 * arguments, and transitions to native. On return from the native we transition 3204 * back to java blocking if a safepoint is in progress. 3205 */ 3206 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3207 ResourceMark rm; 3208 nmethod* nm = nullptr; 3209 3210 // Check if memory should be freed before allocation 3211 CodeCache::gc_on_allocation(); 3212 3213 assert(method->is_native(), "must be native"); 3214 assert(method->is_special_native_intrinsic() || 3215 method->has_native_function(), "must have something valid to call!"); 3216 3217 { 3218 // Perform the work while holding the lock, but perform any printing outside the lock 3219 MutexLocker mu(AdapterHandlerLibrary_lock); 3220 // See if somebody beat us to it 3221 if (method->code() != nullptr) { 3222 return; 3223 } 3224 3225 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3226 assert(compile_id > 0, "Must generate native wrapper"); 3227 3228 3229 ResourceMark rm; 3230 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3231 if (buf != nullptr) { 3232 CodeBuffer buffer(buf); 3233 3234 if (method->is_continuation_enter_intrinsic()) { 3235 buffer.initialize_stubs_size(192); 3236 } 3237 3238 struct { double data[20]; } locs_buf; 3239 struct { double data[20]; } stubs_locs_buf; 3240 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3241 #if defined(AARCH64) || defined(PPC64) 3242 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3243 // in the constant pool to ensure ordering between the barrier and oops 3244 // accesses. For native_wrappers we need a constant. 3245 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3246 // static java call that is resolved in the runtime. 3247 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3248 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3249 } 3250 #endif 3251 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3252 MacroAssembler _masm(&buffer); 3253 3254 // Fill in the signature array, for the calling-convention call. 3255 const int total_args_passed = method->size_of_parameters(); 3256 3257 VMRegPair stack_regs[16]; 3258 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3259 3260 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3261 method->is_static(), total_args_passed); 3262 BasicType* sig_bt = si.basic_types(); 3263 assert(si.slots() == total_args_passed, ""); 3264 BasicType ret_type = si.return_type(); 3265 3266 // Now get the compiled-Java arguments layout. 3267 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3268 3269 // Generate the compiled-to-native wrapper code 3270 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3271 3272 if (nm != nullptr) { 3273 { 3274 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3275 if (nm->make_in_use()) { 3276 method->set_code(method, nm); 3277 } 3278 } 3279 3280 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3281 if (directive->PrintAssemblyOption) { 3282 nm->print_code(); 3283 } 3284 DirectivesStack::release(directive); 3285 } 3286 } 3287 } // Unlock AdapterHandlerLibrary_lock 3288 3289 3290 // Install the generated code. 3291 if (nm != nullptr) { 3292 const char *msg = method->is_static() ? "(static)" : ""; 3293 CompileTask::print_ul(nm, msg); 3294 if (PrintCompilation) { 3295 ttyLocker ttyl; 3296 CompileTask::print(tty, nm, msg); 3297 } 3298 nm->post_compiled_method_load_event(); 3299 } 3300 } 3301 3302 // ------------------------------------------------------------------------- 3303 // Java-Java calling convention 3304 // (what you use when Java calls Java) 3305 3306 //------------------------------name_for_receiver---------------------------------- 3307 // For a given signature, return the VMReg for parameter 0. 3308 VMReg SharedRuntime::name_for_receiver() { 3309 VMRegPair regs; 3310 BasicType sig_bt = T_OBJECT; 3311 (void) java_calling_convention(&sig_bt, ®s, 1); 3312 // Return argument 0 register. In the LP64 build pointers 3313 // take 2 registers, but the VM wants only the 'main' name. 3314 return regs.first(); 3315 } 3316 3317 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3318 // This method is returning a data structure allocating as a 3319 // ResourceObject, so do not put any ResourceMarks in here. 3320 3321 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3322 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3323 int cnt = 0; 3324 if (has_receiver) { 3325 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3326 } 3327 3328 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3329 BasicType type = ss.type(); 3330 sig_bt[cnt++] = type; 3331 if (is_double_word_type(type)) 3332 sig_bt[cnt++] = T_VOID; 3333 } 3334 3335 if (has_appendix) { 3336 sig_bt[cnt++] = T_OBJECT; 3337 } 3338 3339 assert(cnt < 256, "grow table size"); 3340 3341 int comp_args_on_stack; 3342 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3343 3344 // the calling convention doesn't count out_preserve_stack_slots so 3345 // we must add that in to get "true" stack offsets. 3346 3347 if (comp_args_on_stack) { 3348 for (int i = 0; i < cnt; i++) { 3349 VMReg reg1 = regs[i].first(); 3350 if (reg1->is_stack()) { 3351 // Yuck 3352 reg1 = reg1->bias(out_preserve_stack_slots()); 3353 } 3354 VMReg reg2 = regs[i].second(); 3355 if (reg2->is_stack()) { 3356 // Yuck 3357 reg2 = reg2->bias(out_preserve_stack_slots()); 3358 } 3359 regs[i].set_pair(reg2, reg1); 3360 } 3361 } 3362 3363 // results 3364 *arg_size = cnt; 3365 return regs; 3366 } 3367 3368 // OSR Migration Code 3369 // 3370 // This code is used convert interpreter frames into compiled frames. It is 3371 // called from very start of a compiled OSR nmethod. A temp array is 3372 // allocated to hold the interesting bits of the interpreter frame. All 3373 // active locks are inflated to allow them to move. The displaced headers and 3374 // active interpreter locals are copied into the temp buffer. Then we return 3375 // back to the compiled code. The compiled code then pops the current 3376 // interpreter frame off the stack and pushes a new compiled frame. Then it 3377 // copies the interpreter locals and displaced headers where it wants. 3378 // Finally it calls back to free the temp buffer. 3379 // 3380 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3381 3382 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3383 assert(current == JavaThread::current(), "pre-condition"); 3384 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 3385 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3386 // frame. The stack watermark code below ensures that the interpreted frame is processed 3387 // before it gets unwound. This is helpful as the size of the compiled frame could be 3388 // larger than the interpreted frame, which could result in the new frame not being 3389 // processed correctly. 3390 StackWatermarkSet::before_unwind(current); 3391 3392 // 3393 // This code is dependent on the memory layout of the interpreter local 3394 // array and the monitors. On all of our platforms the layout is identical 3395 // so this code is shared. If some platform lays the their arrays out 3396 // differently then this code could move to platform specific code or 3397 // the code here could be modified to copy items one at a time using 3398 // frame accessor methods and be platform independent. 3399 3400 frame fr = current->last_frame(); 3401 assert(fr.is_interpreted_frame(), ""); 3402 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3403 3404 // Figure out how many monitors are active. 3405 int active_monitor_count = 0; 3406 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3407 kptr < fr.interpreter_frame_monitor_begin(); 3408 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3409 if (kptr->obj() != nullptr) active_monitor_count++; 3410 } 3411 3412 // QQQ we could place number of active monitors in the array so that compiled code 3413 // could double check it. 3414 3415 Method* moop = fr.interpreter_frame_method(); 3416 int max_locals = moop->max_locals(); 3417 // Allocate temp buffer, 1 word per local & 2 per active monitor 3418 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3419 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3420 3421 // Copy the locals. Order is preserved so that loading of longs works. 3422 // Since there's no GC I can copy the oops blindly. 3423 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3424 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3425 (HeapWord*)&buf[0], 3426 max_locals); 3427 3428 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3429 int i = max_locals; 3430 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3431 kptr2 < fr.interpreter_frame_monitor_begin(); 3432 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3433 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3434 BasicLock *lock = kptr2->lock(); 3435 if (LockingMode == LM_LEGACY) { 3436 // Inflate so the object's header no longer refers to the BasicLock. 3437 if (lock->displaced_header().is_unlocked()) { 3438 // The object is locked and the resulting ObjectMonitor* will also be 3439 // locked so it can't be async deflated until ownership is dropped. 3440 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3441 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3442 } 3443 // Now the displaced header is free to move because the 3444 // object's header no longer refers to it. 3445 buf[i] = (intptr_t)lock->displaced_header().value(); 3446 } else if (UseObjectMonitorTable) { 3447 buf[i] = (intptr_t)lock->object_monitor_cache(); 3448 } 3449 #ifdef ASSERT 3450 else { 3451 buf[i] = badDispHeaderOSR; 3452 } 3453 #endif 3454 i++; 3455 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3456 } 3457 } 3458 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3459 3460 RegisterMap map(current, 3461 RegisterMap::UpdateMap::skip, 3462 RegisterMap::ProcessFrames::include, 3463 RegisterMap::WalkContinuation::skip); 3464 frame sender = fr.sender(&map); 3465 if (sender.is_interpreted_frame()) { 3466 current->push_cont_fastpath(sender.sp()); 3467 } 3468 3469 return buf; 3470 JRT_END 3471 3472 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3473 FREE_C_HEAP_ARRAY(intptr_t, buf); 3474 JRT_END 3475 3476 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3477 bool found = false; 3478 #if INCLUDE_CDS 3479 if (AOTCodeCache::is_using_adapter()) { 3480 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3481 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); 3482 }; 3483 _aot_adapter_handler_table.iterate(findblob_archived_table); 3484 } 3485 #endif // INCLUDE_CDS 3486 if (!found) { 3487 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3488 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3489 }; 3490 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3491 _adapter_handler_table->iterate(findblob_runtime_table); 3492 } 3493 return found; 3494 } 3495 3496 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) { 3497 return fingerprint->as_basic_args_string(); 3498 } 3499 3500 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) { 3501 unsigned int hash = fingerprint->compute_hash(); 3502 return hash; 3503 } 3504 3505 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3506 bool found = false; 3507 #if INCLUDE_CDS 3508 if (AOTCodeCache::is_using_adapter()) { 3509 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3510 if (b == CodeCache::find_blob(handler->get_i2c_entry())) { 3511 found = true; 3512 st->print("Adapter for signature: "); 3513 handler->print_adapter_on(st); 3514 return true; 3515 } else { 3516 return false; // keep looking 3517 } 3518 }; 3519 _aot_adapter_handler_table.iterate(findblob_archived_table); 3520 } 3521 #endif // INCLUDE_CDS 3522 if (!found) { 3523 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3524 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3525 found = true; 3526 st->print("Adapter for signature: "); 3527 a->print_adapter_on(st); 3528 return true; 3529 } else { 3530 return false; // keep looking 3531 } 3532 }; 3533 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3534 _adapter_handler_table->iterate(findblob_runtime_table); 3535 } 3536 assert(found, "Should have found handler"); 3537 } 3538 3539 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3540 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3541 if (get_i2c_entry() != nullptr) { 3542 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3543 } 3544 if (get_c2i_entry() != nullptr) { 3545 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3546 } 3547 if (get_c2i_unverified_entry() != nullptr) { 3548 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3549 } 3550 if (get_c2i_no_clinit_check_entry() != nullptr) { 3551 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3552 } 3553 st->cr(); 3554 } 3555 3556 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3557 assert(current == JavaThread::current(), "pre-condition"); 3558 StackOverflow* overflow_state = current->stack_overflow_state(); 3559 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3560 overflow_state->set_reserved_stack_activation(current->stack_base()); 3561 JRT_END 3562 3563 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3564 ResourceMark rm(current); 3565 frame activation; 3566 nmethod* nm = nullptr; 3567 int count = 1; 3568 3569 assert(fr.is_java_frame(), "Must start on Java frame"); 3570 3571 RegisterMap map(JavaThread::current(), 3572 RegisterMap::UpdateMap::skip, 3573 RegisterMap::ProcessFrames::skip, 3574 RegisterMap::WalkContinuation::skip); // don't walk continuations 3575 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3576 if (!fr.is_java_frame()) { 3577 continue; 3578 } 3579 3580 Method* method = nullptr; 3581 bool found = false; 3582 if (fr.is_interpreted_frame()) { 3583 method = fr.interpreter_frame_method(); 3584 if (method != nullptr && method->has_reserved_stack_access()) { 3585 found = true; 3586 } 3587 } else { 3588 CodeBlob* cb = fr.cb(); 3589 if (cb != nullptr && cb->is_nmethod()) { 3590 nm = cb->as_nmethod(); 3591 method = nm->method(); 3592 // scope_desc_near() must be used, instead of scope_desc_at() because on 3593 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3594 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3595 method = sd->method(); 3596 if (method != nullptr && method->has_reserved_stack_access()) { 3597 found = true; 3598 } 3599 } 3600 } 3601 } 3602 if (found) { 3603 activation = fr; 3604 warning("Potentially dangerous stack overflow in " 3605 "ReservedStackAccess annotated method %s [%d]", 3606 method->name_and_sig_as_C_string(), count++); 3607 EventReservedStackActivation event; 3608 if (event.should_commit()) { 3609 event.set_method(method); 3610 event.commit(); 3611 } 3612 } 3613 } 3614 return activation; 3615 } 3616 3617 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3618 // After any safepoint, just before going back to compiled code, 3619 // we inform the GC that we will be doing initializing writes to 3620 // this object in the future without emitting card-marks, so 3621 // GC may take any compensating steps. 3622 3623 oop new_obj = current->vm_result_oop(); 3624 if (new_obj == nullptr) return; 3625 3626 BarrierSet *bs = BarrierSet::barrier_set(); 3627 bs->on_slowpath_allocation_exit(current, new_obj); 3628 }