1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveBuilder.hpp"
  26 #include "cds/archiveUtils.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/aotCodeCache.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/compiledIC.hpp"
  35 #include "code/nmethod.inline.hpp"
  36 #include "code/scopeDesc.hpp"
  37 #include "code/vtableStubs.hpp"
  38 #include "compiler/abstractCompiler.hpp"
  39 #include "compiler/compileBroker.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/interpreterRuntime.hpp"
  45 #include "jfr/jfrEvents.hpp"
  46 #include "jvm.h"
  47 #include "logging/log.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "metaprogramming/primitiveConversions.hpp"
  51 #include "oops/klass.hpp"
  52 #include "oops/method.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "prims/forte.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/methodHandles.hpp"
  59 #include "prims/nativeLookup.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/atomicAccess.hpp"
  62 #include "runtime/basicLock.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/init.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/jniHandles.inline.hpp"
  70 #include "runtime/osThread.hpp"
  71 #include "runtime/perfData.inline.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/synchronizer.hpp"
  76 #include "runtime/timerTrace.hpp"
  77 #include "runtime/vframe.inline.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vm_version.hpp"
  80 #include "services/management.hpp"
  81 #include "utilities/copy.hpp"
  82 #include "utilities/dtrace.hpp"
  83 #include "utilities/events.hpp"
  84 #include "utilities/globalDefinitions.hpp"
  85 #include "utilities/hashTable.hpp"
  86 #include "utilities/macros.hpp"
  87 #include "utilities/xmlstream.hpp"
  88 #ifdef COMPILER1
  89 #include "c1/c1_Runtime1.hpp"
  90 #endif
  91 #if INCLUDE_JFR
  92 #include "jfr/jfr.inline.hpp"
  93 #endif
  94 
  95 // Shared runtime stub routines reside in their own unique blob with a
  96 // single entry point
  97 
  98 
  99 #define SHARED_STUB_FIELD_DEFINE(name, type) \
 100   type*       SharedRuntime::BLOB_FIELD_NAME(name);
 101   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
 102 #undef SHARED_STUB_FIELD_DEFINE
 103 
 104 nmethod*            SharedRuntime::_cont_doYield_stub;
 105 
 106 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr;
 107 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time     = nullptr;
 108 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time      = nullptr;
 109 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr;
 110 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time             = nullptr;
 111 
 112 #if 0
 113 // TODO tweak global stub name generation to match this
 114 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 115 const char *SharedRuntime::_stub_names[] = {
 116   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 117 };
 118 #endif
 119 
 120 //----------------------------generate_stubs-----------------------------------
 121 void SharedRuntime::generate_initial_stubs() {
 122   // Build this early so it's available for the interpreter.
 123   _throw_StackOverflowError_blob =
 124     generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
 125                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 126 }
 127 
 128 void SharedRuntime::generate_stubs() {
 129   _wrong_method_blob =
 130     generate_resolve_blob(StubId::shared_wrong_method_id,
 131                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 132   _wrong_method_abstract_blob =
 133     generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
 134                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 135   _ic_miss_blob =
 136     generate_resolve_blob(StubId::shared_ic_miss_id,
 137                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 138   _resolve_opt_virtual_call_blob =
 139     generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
 140                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 141   _resolve_virtual_call_blob =
 142     generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
 143                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 144   _resolve_static_call_blob =
 145     generate_resolve_blob(StubId::shared_resolve_static_call_id,
 146                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 147 
 148   _throw_delayed_StackOverflowError_blob =
 149     generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
 150                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 151 
 152   _throw_AbstractMethodError_blob =
 153     generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
 154                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 155 
 156   _throw_IncompatibleClassChangeError_blob =
 157     generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
 158                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 159 
 160   _throw_NullPointerException_at_call_blob =
 161     generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
 162                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 163 
 164 #if COMPILER2_OR_JVMCI
 165   // Vectors are generated only by C2 and JVMCI.
 166   bool support_wide = is_wide_vector(MaxVectorSize);
 167   if (support_wide) {
 168     _polling_page_vectors_safepoint_handler_blob =
 169       generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
 170                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 171   }
 172 #endif // COMPILER2_OR_JVMCI
 173   _polling_page_safepoint_handler_blob =
 174     generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
 175                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 176   _polling_page_return_handler_blob =
 177     generate_handler_blob(StubId::shared_polling_page_return_handler_id,
 178                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 179 
 180   generate_deopt_blob();
 181 
 182   if (UsePerfData) {
 183     EXCEPTION_MARK;
 184     NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call");
 185     NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time,     SUN_CI, "resovle_virtual_call");
 186     NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time,      SUN_CI, "resovle_static_call");
 187     NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method");
 188     NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time ,            SUN_CI, "ic_miss");
 189     if (HAS_PENDING_EXCEPTION) {
 190       vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly");
 191     }
 192   }
 193 }
 194 
 195 void SharedRuntime::init_adapter_library() {
 196   AdapterHandlerLibrary::initialize();
 197 }
 198 
 199 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) {
 200   st->print("  %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us());
 201   if (TraceThreadTime) {
 202     st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us());
 203   }
 204   st->print(" / %5d events", cnt);
 205   st->cr();
 206 }
 207 
 208 void SharedRuntime::print_counters_on(outputStream* st) {
 209   st->print_cr("SharedRuntime:");
 210   if (UsePerfData) {
 211     print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr);
 212     print_counter_on(st, "resolve_virtual_call:",     _perf_resolve_virtual_total_time,     _resolve_virtual_ctr);
 213     print_counter_on(st, "resolve_static_call:",      _perf_resolve_static_total_time,      _resolve_static_ctr);
 214     print_counter_on(st, "handle_wrong_method:",      _perf_handle_wrong_method_total_time, _wrong_method_ctr);
 215     print_counter_on(st, "ic_miss:",                  _perf_ic_miss_total_time,             _ic_miss_ctr);
 216 
 217     jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() +
 218                                                           _perf_resolve_virtual_total_time->elapsed_counter_value() +
 219                                                           _perf_resolve_static_total_time->elapsed_counter_value() +
 220                                                           _perf_handle_wrong_method_total_time->elapsed_counter_value() +
 221                                                           _perf_ic_miss_total_time->elapsed_counter_value());
 222     st->print("Total:                      " JLONG_FORMAT_W(5) "us", total_elapsed_time_us);
 223     if (TraceThreadTime) {
 224       jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() +
 225                                                            _perf_resolve_virtual_total_time->thread_counter_value() +
 226                                                            _perf_resolve_static_total_time->thread_counter_value() +
 227                                                            _perf_handle_wrong_method_total_time->thread_counter_value() +
 228                                                            _perf_ic_miss_total_time->thread_counter_value());
 229       st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us);
 230 
 231     }
 232     st->cr();
 233   } else {
 234     st->print_cr("  no data (UsePerfData is turned off)");
 235   }
 236 }
 237 
 238 #if INCLUDE_JFR
 239 //------------------------------generate jfr runtime stubs ------
 240 void SharedRuntime::generate_jfr_stubs() {
 241   ResourceMark rm;
 242   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 243   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 244 
 245   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 246   _jfr_return_lease_blob = generate_jfr_return_lease();
 247 }
 248 
 249 #endif // INCLUDE_JFR
 250 
 251 #include <math.h>
 252 
 253 // Implementation of SharedRuntime
 254 
 255 // For statistics
 256 uint SharedRuntime::_ic_miss_ctr = 0;
 257 uint SharedRuntime::_wrong_method_ctr = 0;
 258 uint SharedRuntime::_resolve_static_ctr = 0;
 259 uint SharedRuntime::_resolve_virtual_ctr = 0;
 260 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
 261 
 262 #ifndef PRODUCT
 263 uint SharedRuntime::_implicit_null_throws = 0;
 264 uint SharedRuntime::_implicit_div0_throws = 0;
 265 
 266 int64_t SharedRuntime::_nof_normal_calls = 0;
 267 int64_t SharedRuntime::_nof_inlined_calls = 0;
 268 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 269 int64_t SharedRuntime::_nof_static_calls = 0;
 270 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 271 int64_t SharedRuntime::_nof_interface_calls = 0;
 272 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 273 
 274 uint SharedRuntime::_new_instance_ctr=0;
 275 uint SharedRuntime::_new_array_ctr=0;
 276 uint SharedRuntime::_multi2_ctr=0;
 277 uint SharedRuntime::_multi3_ctr=0;
 278 uint SharedRuntime::_multi4_ctr=0;
 279 uint SharedRuntime::_multi5_ctr=0;
 280 uint SharedRuntime::_mon_enter_stub_ctr=0;
 281 uint SharedRuntime::_mon_exit_stub_ctr=0;
 282 uint SharedRuntime::_mon_enter_ctr=0;
 283 uint SharedRuntime::_mon_exit_ctr=0;
 284 uint SharedRuntime::_partial_subtype_ctr=0;
 285 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 286 uint SharedRuntime::_jshort_array_copy_ctr=0;
 287 uint SharedRuntime::_jint_array_copy_ctr=0;
 288 uint SharedRuntime::_jlong_array_copy_ctr=0;
 289 uint SharedRuntime::_oop_array_copy_ctr=0;
 290 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 291 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 292 uint SharedRuntime::_generic_array_copy_ctr=0;
 293 uint SharedRuntime::_slow_array_copy_ctr=0;
 294 uint SharedRuntime::_find_handler_ctr=0;
 295 uint SharedRuntime::_rethrow_ctr=0;
 296 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 297 
 298 int     SharedRuntime::_ICmiss_index                    = 0;
 299 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 300 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 301 
 302 
 303 void SharedRuntime::trace_ic_miss(address at) {
 304   for (int i = 0; i < _ICmiss_index; i++) {
 305     if (_ICmiss_at[i] == at) {
 306       _ICmiss_count[i]++;
 307       return;
 308     }
 309   }
 310   int index = _ICmiss_index++;
 311   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 312   _ICmiss_at[index] = at;
 313   _ICmiss_count[index] = 1;
 314 }
 315 
 316 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) {
 317   if (ICMissHistogram) {
 318     st->print_cr("IC Miss Histogram:");
 319     int tot_misses = 0;
 320     for (int i = 0; i < _ICmiss_index; i++) {
 321       st->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 322       tot_misses += _ICmiss_count[i];
 323     }
 324     st->print_cr("Total IC misses: %7d", tot_misses);
 325   }
 326 }
 327 
 328 #ifdef COMPILER2
 329 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
 330 void SharedRuntime::debug_print_value(jboolean x) {
 331   tty->print_cr("boolean %d", x);
 332 }
 333 
 334 void SharedRuntime::debug_print_value(jbyte x) {
 335   tty->print_cr("byte %d", x);
 336 }
 337 
 338 void SharedRuntime::debug_print_value(jshort x) {
 339   tty->print_cr("short %d", x);
 340 }
 341 
 342 void SharedRuntime::debug_print_value(jchar x) {
 343   tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
 344 }
 345 
 346 void SharedRuntime::debug_print_value(jint x) {
 347   tty->print_cr("int %d", x);
 348 }
 349 
 350 void SharedRuntime::debug_print_value(jlong x) {
 351   tty->print_cr("long " JLONG_FORMAT, x);
 352 }
 353 
 354 void SharedRuntime::debug_print_value(jfloat x) {
 355   tty->print_cr("float %f", x);
 356 }
 357 
 358 void SharedRuntime::debug_print_value(jdouble x) {
 359   tty->print_cr("double %lf", x);
 360 }
 361 
 362 void SharedRuntime::debug_print_value(oopDesc* x) {
 363   x->print();
 364 }
 365 #endif // COMPILER2
 366 
 367 #endif // PRODUCT
 368 
 369 
 370 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 371   return x * y;
 372 JRT_END
 373 
 374 
 375 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 376   if (x == min_jlong && y == CONST64(-1)) {
 377     return x;
 378   } else {
 379     return x / y;
 380   }
 381 JRT_END
 382 
 383 
 384 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 385   if (x == min_jlong && y == CONST64(-1)) {
 386     return 0;
 387   } else {
 388     return x % y;
 389   }
 390 JRT_END
 391 
 392 
 393 #ifdef _WIN64
 394 const juint  float_sign_mask  = 0x7FFFFFFF;
 395 const juint  float_infinity   = 0x7F800000;
 396 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 397 const julong double_infinity  = CONST64(0x7FF0000000000000);
 398 #endif
 399 
 400 #if !defined(X86)
 401 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 402 #ifdef _WIN64
 403   // 64-bit Windows on amd64 returns the wrong values for
 404   // infinity operands.
 405   juint xbits = PrimitiveConversions::cast<juint>(x);
 406   juint ybits = PrimitiveConversions::cast<juint>(y);
 407   // x Mod Infinity == x unless x is infinity
 408   if (((xbits & float_sign_mask) != float_infinity) &&
 409        ((ybits & float_sign_mask) == float_infinity) ) {
 410     return x;
 411   }
 412   return ((jfloat)fmod_winx64((double)x, (double)y));
 413 #else
 414   return ((jfloat)fmod((double)x,(double)y));
 415 #endif
 416 JRT_END
 417 
 418 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 419 #ifdef _WIN64
 420   julong xbits = PrimitiveConversions::cast<julong>(x);
 421   julong ybits = PrimitiveConversions::cast<julong>(y);
 422   // x Mod Infinity == x unless x is infinity
 423   if (((xbits & double_sign_mask) != double_infinity) &&
 424        ((ybits & double_sign_mask) == double_infinity) ) {
 425     return x;
 426   }
 427   return ((jdouble)fmod_winx64((double)x, (double)y));
 428 #else
 429   return ((jdouble)fmod((double)x,(double)y));
 430 #endif
 431 JRT_END
 432 #endif // !X86
 433 
 434 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 435   return (jfloat)x;
 436 JRT_END
 437 
 438 #ifdef __SOFTFP__
 439 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 440   return x + y;
 441 JRT_END
 442 
 443 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 444   return x - y;
 445 JRT_END
 446 
 447 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 448   return x * y;
 449 JRT_END
 450 
 451 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 452   return x / y;
 453 JRT_END
 454 
 455 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 456   return x + y;
 457 JRT_END
 458 
 459 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 460   return x - y;
 461 JRT_END
 462 
 463 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 464   return x * y;
 465 JRT_END
 466 
 467 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 468   return x / y;
 469 JRT_END
 470 
 471 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 472   return (jdouble)x;
 473 JRT_END
 474 
 475 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 476   return (jdouble)x;
 477 JRT_END
 478 
 479 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 480   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 481 JRT_END
 482 
 483 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 484   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 485 JRT_END
 486 
 487 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 488   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 489 JRT_END
 490 
 491 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 492   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 493 JRT_END
 494 
 495 // Functions to return the opposite of the aeabi functions for nan.
 496 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 497   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 498 JRT_END
 499 
 500 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 501   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 502 JRT_END
 503 
 504 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 505   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 506 JRT_END
 507 
 508 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 509   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 510 JRT_END
 511 
 512 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 513   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 514 JRT_END
 515 
 516 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 517   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 518 JRT_END
 519 
 520 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 521   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 522 JRT_END
 523 
 524 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 525   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 526 JRT_END
 527 
 528 // Intrinsics make gcc generate code for these.
 529 float  SharedRuntime::fneg(float f)   {
 530   return -f;
 531 }
 532 
 533 double SharedRuntime::dneg(double f)  {
 534   return -f;
 535 }
 536 
 537 #endif // __SOFTFP__
 538 
 539 #if defined(__SOFTFP__) || defined(E500V2)
 540 // Intrinsics make gcc generate code for these.
 541 double SharedRuntime::dabs(double f)  {
 542   return (f <= (double)0.0) ? (double)0.0 - f : f;
 543 }
 544 
 545 #endif
 546 
 547 #if defined(__SOFTFP__)
 548 double SharedRuntime::dsqrt(double f) {
 549   return sqrt(f);
 550 }
 551 #endif
 552 
 553 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 554   if (g_isnan(x))
 555     return 0;
 556   if (x >= (jfloat) max_jint)
 557     return max_jint;
 558   if (x <= (jfloat) min_jint)
 559     return min_jint;
 560   return (jint) x;
 561 JRT_END
 562 
 563 
 564 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 565   if (g_isnan(x))
 566     return 0;
 567   if (x >= (jfloat) max_jlong)
 568     return max_jlong;
 569   if (x <= (jfloat) min_jlong)
 570     return min_jlong;
 571   return (jlong) x;
 572 JRT_END
 573 
 574 
 575 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 576   if (g_isnan(x))
 577     return 0;
 578   if (x >= (jdouble) max_jint)
 579     return max_jint;
 580   if (x <= (jdouble) min_jint)
 581     return min_jint;
 582   return (jint) x;
 583 JRT_END
 584 
 585 
 586 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 587   if (g_isnan(x))
 588     return 0;
 589   if (x >= (jdouble) max_jlong)
 590     return max_jlong;
 591   if (x <= (jdouble) min_jlong)
 592     return min_jlong;
 593   return (jlong) x;
 594 JRT_END
 595 
 596 
 597 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 598   return (jfloat)x;
 599 JRT_END
 600 
 601 
 602 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 603   return (jfloat)x;
 604 JRT_END
 605 
 606 
 607 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 608   return (jdouble)x;
 609 JRT_END
 610 
 611 
 612 // Exception handling across interpreter/compiler boundaries
 613 //
 614 // exception_handler_for_return_address(...) returns the continuation address.
 615 // The continuation address is the entry point of the exception handler of the
 616 // previous frame depending on the return address.
 617 
 618 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 619   // Note: This is called when we have unwound the frame of the callee that did
 620   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 621   // Notably, the stack is not walkable at this point, and hence the check must
 622   // be deferred until later. Specifically, any of the handlers returned here in
 623   // this function, will get dispatched to, and call deferred checks to
 624   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 625   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 626   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 627 
 628 #if INCLUDE_JVMCI
 629   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 630   // and other exception handler continuations do not read it
 631   current->set_exception_pc(nullptr);
 632 #endif // INCLUDE_JVMCI
 633 
 634   if (Continuation::is_return_barrier_entry(return_address)) {
 635     return StubRoutines::cont_returnBarrierExc();
 636   }
 637 
 638   // The fastest case first
 639   CodeBlob* blob = CodeCache::find_blob(return_address);
 640   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 641   if (nm != nullptr) {
 642     // native nmethods don't have exception handlers
 643     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 644     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 645     if (nm->is_deopt_pc(return_address)) {
 646       // If we come here because of a stack overflow, the stack may be
 647       // unguarded. Reguard the stack otherwise if we return to the
 648       // deopt blob and the stack bang causes a stack overflow we
 649       // crash.
 650       StackOverflow* overflow_state = current->stack_overflow_state();
 651       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 652       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 653         overflow_state->set_reserved_stack_activation(current->stack_base());
 654       }
 655       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 656       // The deferred StackWatermarkSet::after_unwind check will be performed in
 657       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 658       return SharedRuntime::deopt_blob()->unpack_with_exception();
 659     } else {
 660       // The deferred StackWatermarkSet::after_unwind check will be performed in
 661       // * OptoRuntime::handle_exception_C_helper for C2 code
 662       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 663       return nm->exception_begin();
 664     }
 665   }
 666 
 667   // Entry code
 668   if (StubRoutines::returns_to_call_stub(return_address)) {
 669     // The deferred StackWatermarkSet::after_unwind check will be performed in
 670     // JavaCallWrapper::~JavaCallWrapper
 671     assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
 672     return StubRoutines::catch_exception_entry();
 673   }
 674   if (blob != nullptr && blob->is_upcall_stub()) {
 675     return StubRoutines::upcall_stub_exception_handler();
 676   }
 677   // Interpreted code
 678   if (Interpreter::contains(return_address)) {
 679     // The deferred StackWatermarkSet::after_unwind check will be performed in
 680     // InterpreterRuntime::exception_handler_for_exception
 681     return Interpreter::rethrow_exception_entry();
 682   }
 683 
 684   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 685   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 686 
 687 #ifndef PRODUCT
 688   { ResourceMark rm;
 689     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 690     os::print_location(tty, (intptr_t)return_address);
 691     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 692     tty->print_cr("b) other problem");
 693   }
 694 #endif // PRODUCT
 695   ShouldNotReachHere();
 696   return nullptr;
 697 }
 698 
 699 
 700 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 701   return raw_exception_handler_for_return_address(current, return_address);
 702 JRT_END
 703 
 704 
 705 address SharedRuntime::get_poll_stub(address pc) {
 706   address stub;
 707   // Look up the code blob
 708   CodeBlob *cb = CodeCache::find_blob(pc);
 709 
 710   // Should be an nmethod
 711   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 712 
 713   // Look up the relocation information
 714   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 715       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 716 
 717 #ifdef ASSERT
 718   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 719     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 720     Disassembler::decode(cb);
 721     fatal("Only polling locations are used for safepoint");
 722   }
 723 #endif
 724 
 725   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 726   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 727   if (at_poll_return) {
 728     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 729            "polling page return stub not created yet");
 730     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 731   } else if (has_wide_vectors) {
 732     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 733            "polling page vectors safepoint stub not created yet");
 734     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 735   } else {
 736     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 737            "polling page safepoint stub not created yet");
 738     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 739   }
 740   log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
 741                        INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
 742                        p2i(Thread::current()),
 743                        Thread::current()->osthread()->thread_id(),
 744                        p2i(pc),
 745                        at_poll_return ? "return" : "loop",
 746                        p2i(stub));
 747   return stub;
 748 }
 749 
 750 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 751   if (JvmtiExport::can_post_on_exceptions()) {
 752     vframeStream vfst(current, true);
 753     methodHandle method = methodHandle(current, vfst.method());
 754     address bcp = method()->bcp_from(vfst.bci());
 755     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 756   }
 757 
 758 #if INCLUDE_JVMCI
 759   if (EnableJVMCI) {
 760     vframeStream vfst(current, true);
 761     methodHandle method = methodHandle(current, vfst.method());
 762     int bci = vfst.bci();
 763     MethodData* trap_mdo = method->method_data();
 764     if (trap_mdo != nullptr) {
 765       // Set exception_seen if the exceptional bytecode is an invoke
 766       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 767       if (call.is_valid()) {
 768         ResourceMark rm(current);
 769 
 770         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 771         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 772 
 773         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 774         if (pdata != nullptr && pdata->is_BitData()) {
 775           BitData* bit_data = (BitData*) pdata;
 776           bit_data->set_exception_seen();
 777         }
 778       }
 779     }
 780   }
 781 #endif
 782 
 783   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 784 }
 785 
 786 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 787   Handle h_exception = Exceptions::new_exception(current, name, message);
 788   throw_and_post_jvmti_exception(current, h_exception);
 789 }
 790 
 791 #if INCLUDE_JVMTI
 792 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 793   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 794   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 795   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 796   JNIHandles::destroy_local(vthread);
 797 JRT_END
 798 
 799 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 800   assert(hide == JNI_TRUE, "must be VTMS transition start");
 801   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 802   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 803   JNIHandles::destroy_local(vthread);
 804 JRT_END
 805 
 806 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 807   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 808   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 809   JNIHandles::destroy_local(vthread);
 810 JRT_END
 811 
 812 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 813   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 814   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 815   JNIHandles::destroy_local(vthread);
 816 JRT_END
 817 #endif // INCLUDE_JVMTI
 818 
 819 // The interpreter code to call this tracing function is only
 820 // called/generated when UL is on for redefine, class and has the right level
 821 // and tags. Since obsolete methods are never compiled, we don't have
 822 // to modify the compilers to generate calls to this function.
 823 //
 824 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 825     JavaThread* thread, Method* method))
 826   if (method->is_obsolete()) {
 827     // We are calling an obsolete method, but this is not necessarily
 828     // an error. Our method could have been redefined just after we
 829     // fetched the Method* from the constant pool.
 830     ResourceMark rm;
 831     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 832   }
 833 
 834   LogStreamHandle(Trace, interpreter, bytecode) log;
 835   if (log.is_enabled()) {
 836     ResourceMark rm;
 837     log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s",
 838               p2i(thread),
 839               (method->is_static() ? "static" : "virtual"),
 840               method->name_and_sig_as_C_string(),
 841               (method->is_native() ? " native" : ""),
 842               (thread->class_being_initialized() != nullptr ? " clinit" : ""),
 843               (method->method_holder()->is_initialized() ? "" : " being_initialized"));
 844   }
 845   return 0;
 846 JRT_END
 847 
 848 // ret_pc points into caller; we are returning caller's exception handler
 849 // for given exception
 850 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 851 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 852                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 853   assert(nm != nullptr, "must exist");
 854   ResourceMark rm;
 855 
 856 #if INCLUDE_JVMCI
 857   if (nm->is_compiled_by_jvmci()) {
 858     // lookup exception handler for this pc
 859     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 860     ExceptionHandlerTable table(nm);
 861     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 862     if (t != nullptr) {
 863       return nm->code_begin() + t->pco();
 864     } else {
 865       bool make_not_entrant = true;
 866       return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
 867     }
 868   }
 869 #endif // INCLUDE_JVMCI
 870 
 871   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 872   // determine handler bci, if any
 873   EXCEPTION_MARK;
 874 
 875   int handler_bci = -1;
 876   int scope_depth = 0;
 877   if (!force_unwind) {
 878     int bci = sd->bci();
 879     bool recursive_exception = false;
 880     do {
 881       bool skip_scope_increment = false;
 882       // exception handler lookup
 883       Klass* ek = exception->klass();
 884       methodHandle mh(THREAD, sd->method());
 885       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 886       if (HAS_PENDING_EXCEPTION) {
 887         recursive_exception = true;
 888         // We threw an exception while trying to find the exception handler.
 889         // Transfer the new exception to the exception handle which will
 890         // be set into thread local storage, and do another lookup for an
 891         // exception handler for this exception, this time starting at the
 892         // BCI of the exception handler which caused the exception to be
 893         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 894         // argument to ensure that the correct exception is thrown (4870175).
 895         recursive_exception_occurred = true;
 896         exception = Handle(THREAD, PENDING_EXCEPTION);
 897         CLEAR_PENDING_EXCEPTION;
 898         if (handler_bci >= 0) {
 899           bci = handler_bci;
 900           handler_bci = -1;
 901           skip_scope_increment = true;
 902         }
 903       }
 904       else {
 905         recursive_exception = false;
 906       }
 907       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 908         sd = sd->sender();
 909         if (sd != nullptr) {
 910           bci = sd->bci();
 911         }
 912         ++scope_depth;
 913       }
 914     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 915   }
 916 
 917   // found handling method => lookup exception handler
 918   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 919 
 920   ExceptionHandlerTable table(nm);
 921   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 922 
 923   // If the compiler did not anticipate a recursive exception, resulting in an exception
 924   // thrown from the catch bci, then the compiled exception handler might be missing.
 925   // This is rare.  Just deoptimize and let the interpreter handle it.
 926   if (t == nullptr && recursive_exception_occurred) {
 927     bool make_not_entrant = false;
 928     return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
 929   }
 930 
 931   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 932     // Allow abbreviated catch tables.  The idea is to allow a method
 933     // to materialize its exceptions without committing to the exact
 934     // routing of exceptions.  In particular this is needed for adding
 935     // a synthetic handler to unlock monitors when inlining
 936     // synchronized methods since the unlock path isn't represented in
 937     // the bytecodes.
 938     t = table.entry_for(catch_pco, -1, 0);
 939   }
 940 
 941 #ifdef COMPILER1
 942   if (t == nullptr && nm->is_compiled_by_c1()) {
 943     assert(nm->unwind_handler_begin() != nullptr, "");
 944     return nm->unwind_handler_begin();
 945   }
 946 #endif
 947 
 948   if (t == nullptr) {
 949     ttyLocker ttyl;
 950     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 951     tty->print_cr("   Exception:");
 952     exception->print();
 953     tty->cr();
 954     tty->print_cr(" Compiled exception table :");
 955     table.print();
 956     nm->print();
 957     nm->print_code();
 958     guarantee(false, "missing exception handler");
 959     return nullptr;
 960   }
 961 
 962   if (handler_bci != -1) { // did we find a handler in this method?
 963     sd->method()->set_exception_handler_entered(handler_bci); // profile
 964   }
 965   return nm->code_begin() + t->pco();
 966 }
 967 
 968 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 969   // These errors occur only at call sites
 970   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 971 JRT_END
 972 
 973 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 974   // These errors occur only at call sites
 975   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 976 JRT_END
 977 
 978 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 979   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 980 JRT_END
 981 
 982 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 983   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 984 JRT_END
 985 
 986 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 987   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 988   // cache sites (when the callee activation is not yet set up) so we are at a call site
 989   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 990 JRT_END
 991 
 992 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 993   throw_StackOverflowError_common(current, false);
 994 JRT_END
 995 
 996 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 997   throw_StackOverflowError_common(current, true);
 998 JRT_END
 999 
1000 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
1001   // We avoid using the normal exception construction in this case because
1002   // it performs an upcall to Java, and we're already out of stack space.
1003   JavaThread* THREAD = current; // For exception macros.
1004   InstanceKlass* k = vmClasses::StackOverflowError_klass();
1005   oop exception_oop = k->allocate_instance(CHECK);
1006   if (delayed) {
1007     java_lang_Throwable::set_message(exception_oop,
1008                                      Universe::delayed_stack_overflow_error_message());
1009   }
1010   Handle exception (current, exception_oop);
1011   if (StackTraceInThrowable) {
1012     java_lang_Throwable::fill_in_stack_trace(exception);
1013   }
1014   // Remove the ScopedValue bindings in case we got a
1015   // StackOverflowError while we were trying to remove ScopedValue
1016   // bindings.
1017   current->clear_scopedValueBindings();
1018   // Increment counter for hs_err file reporting
1019   AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
1020   throw_and_post_jvmti_exception(current, exception);
1021 }
1022 
1023 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
1024                                                            address pc,
1025                                                            ImplicitExceptionKind exception_kind)
1026 {
1027   address target_pc = nullptr;
1028 
1029   if (Interpreter::contains(pc)) {
1030     switch (exception_kind) {
1031       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
1032       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
1033       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
1034       default:                      ShouldNotReachHere();
1035     }
1036   } else {
1037     switch (exception_kind) {
1038       case STACK_OVERFLOW: {
1039         // Stack overflow only occurs upon frame setup; the callee is
1040         // going to be unwound. Dispatch to a shared runtime stub
1041         // which will cause the StackOverflowError to be fabricated
1042         // and processed.
1043         // Stack overflow should never occur during deoptimization:
1044         // the compiled method bangs the stack by as much as the
1045         // interpreter would need in case of a deoptimization. The
1046         // deoptimization blob and uncommon trap blob bang the stack
1047         // in a debug VM to verify the correctness of the compiled
1048         // method stack banging.
1049         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
1050         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
1051         return SharedRuntime::throw_StackOverflowError_entry();
1052       }
1053 
1054       case IMPLICIT_NULL: {
1055         if (VtableStubs::contains(pc)) {
1056           // We haven't yet entered the callee frame. Fabricate an
1057           // exception and begin dispatching it in the caller. Since
1058           // the caller was at a call site, it's safe to destroy all
1059           // caller-saved registers, as these entry points do.
1060           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
1061 
1062           // If vt_stub is null, then return null to signal handler to report the SEGV error.
1063           if (vt_stub == nullptr) return nullptr;
1064 
1065           if (vt_stub->is_abstract_method_error(pc)) {
1066             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
1067             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
1068             // Instead of throwing the abstract method error here directly, we re-resolve
1069             // and will throw the AbstractMethodError during resolve. As a result, we'll
1070             // get a more detailed error message.
1071             return SharedRuntime::get_handle_wrong_method_stub();
1072           } else {
1073             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
1074             // Assert that the signal comes from the expected location in stub code.
1075             assert(vt_stub->is_null_pointer_exception(pc),
1076                    "obtained signal from unexpected location in stub code");
1077             return SharedRuntime::throw_NullPointerException_at_call_entry();
1078           }
1079         } else {
1080           CodeBlob* cb = CodeCache::find_blob(pc);
1081 
1082           // If code blob is null, then return null to signal handler to report the SEGV error.
1083           if (cb == nullptr) return nullptr;
1084 
1085           // Exception happened in CodeCache. Must be either:
1086           // 1. Inline-cache check in C2I handler blob,
1087           // 2. Inline-cache check in nmethod, or
1088           // 3. Implicit null exception in nmethod
1089 
1090           if (!cb->is_nmethod()) {
1091             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1092             if (!is_in_blob) {
1093               // Allow normal crash reporting to handle this
1094               return nullptr;
1095             }
1096             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1097             // There is no handler here, so we will simply unwind.
1098             return SharedRuntime::throw_NullPointerException_at_call_entry();
1099           }
1100 
1101           // Otherwise, it's a compiled method.  Consult its exception handlers.
1102           nmethod* nm = cb->as_nmethod();
1103           if (nm->inlinecache_check_contains(pc)) {
1104             // exception happened inside inline-cache check code
1105             // => the nmethod is not yet active (i.e., the frame
1106             // is not set up yet) => use return address pushed by
1107             // caller => don't push another return address
1108             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1109             return SharedRuntime::throw_NullPointerException_at_call_entry();
1110           }
1111 
1112           if (nm->method()->is_method_handle_intrinsic()) {
1113             // exception happened inside MH dispatch code, similar to a vtable stub
1114             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1115             return SharedRuntime::throw_NullPointerException_at_call_entry();
1116           }
1117 
1118 #ifndef PRODUCT
1119           _implicit_null_throws++;
1120 #endif
1121           target_pc = nm->continuation_for_implicit_null_exception(pc);
1122           // If there's an unexpected fault, target_pc might be null,
1123           // in which case we want to fall through into the normal
1124           // error handling code.
1125         }
1126 
1127         break; // fall through
1128       }
1129 
1130 
1131       case IMPLICIT_DIVIDE_BY_ZERO: {
1132         nmethod* nm = CodeCache::find_nmethod(pc);
1133         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1134 #ifndef PRODUCT
1135         _implicit_div0_throws++;
1136 #endif
1137         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1138         // If there's an unexpected fault, target_pc might be null,
1139         // in which case we want to fall through into the normal
1140         // error handling code.
1141         break; // fall through
1142       }
1143 
1144       default: ShouldNotReachHere();
1145     }
1146 
1147     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1148 
1149     if (exception_kind == IMPLICIT_NULL) {
1150 #ifndef PRODUCT
1151       // for AbortVMOnException flag
1152       Exceptions::debug_check_abort("java.lang.NullPointerException");
1153 #endif //PRODUCT
1154       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1155     } else {
1156 #ifndef PRODUCT
1157       // for AbortVMOnException flag
1158       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1159 #endif //PRODUCT
1160       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1161     }
1162     return target_pc;
1163   }
1164 
1165   ShouldNotReachHere();
1166   return nullptr;
1167 }
1168 
1169 
1170 /**
1171  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1172  * installed in the native function entry of all native Java methods before
1173  * they get linked to their actual native methods.
1174  *
1175  * \note
1176  * This method actually never gets called!  The reason is because
1177  * the interpreter's native entries call NativeLookup::lookup() which
1178  * throws the exception when the lookup fails.  The exception is then
1179  * caught and forwarded on the return from NativeLookup::lookup() call
1180  * before the call to the native function.  This might change in the future.
1181  */
1182 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1183 {
1184   // We return a bad value here to make sure that the exception is
1185   // forwarded before we look at the return value.
1186   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1187 }
1188 JNI_END
1189 
1190 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1191   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1192 }
1193 
1194 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1195 #if INCLUDE_JVMCI
1196   if (!obj->klass()->has_finalizer()) {
1197     return;
1198   }
1199 #endif // INCLUDE_JVMCI
1200   assert(oopDesc::is_oop(obj), "must be a valid oop");
1201   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1202   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1203 JRT_END
1204 
1205 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1206   assert(thread != nullptr, "No thread");
1207   if (thread == nullptr) {
1208     return 0;
1209   }
1210   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1211             "current cannot touch oops after its GC barrier is detached.");
1212   oop obj = thread->threadObj();
1213   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1214 }
1215 
1216 /**
1217  * This function ought to be a void function, but cannot be because
1218  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1219  * 6254741.  Once that is fixed we can remove the dummy return value.
1220  */
1221 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1222   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1223 }
1224 
1225 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1226   return dtrace_object_alloc(thread, o, o->size());
1227 }
1228 
1229 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1230   assert(DTraceAllocProbes, "wrong call");
1231   Klass* klass = o->klass();
1232   Symbol* name = klass->name();
1233   HOTSPOT_OBJECT_ALLOC(
1234                    get_java_tid(thread),
1235                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1236   return 0;
1237 }
1238 
1239 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1240     JavaThread* current, Method* method))
1241   assert(current == JavaThread::current(), "pre-condition");
1242 
1243   assert(DTraceMethodProbes, "wrong call");
1244   Symbol* kname = method->klass_name();
1245   Symbol* name = method->name();
1246   Symbol* sig = method->signature();
1247   HOTSPOT_METHOD_ENTRY(
1248       get_java_tid(current),
1249       (char *) kname->bytes(), kname->utf8_length(),
1250       (char *) name->bytes(), name->utf8_length(),
1251       (char *) sig->bytes(), sig->utf8_length());
1252   return 0;
1253 JRT_END
1254 
1255 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1256     JavaThread* current, Method* method))
1257   assert(current == JavaThread::current(), "pre-condition");
1258   assert(DTraceMethodProbes, "wrong call");
1259   Symbol* kname = method->klass_name();
1260   Symbol* name = method->name();
1261   Symbol* sig = method->signature();
1262   HOTSPOT_METHOD_RETURN(
1263       get_java_tid(current),
1264       (char *) kname->bytes(), kname->utf8_length(),
1265       (char *) name->bytes(), name->utf8_length(),
1266       (char *) sig->bytes(), sig->utf8_length());
1267   return 0;
1268 JRT_END
1269 
1270 
1271 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1272 // for a call current in progress, i.e., arguments has been pushed on stack
1273 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1274 // vtable updates, etc.  Caller frame must be compiled.
1275 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1276   JavaThread* current = THREAD;
1277   ResourceMark rm(current);
1278 
1279   // last java frame on stack (which includes native call frames)
1280   vframeStream vfst(current, true);  // Do not skip and javaCalls
1281 
1282   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1283 }
1284 
1285 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1286   nmethod* caller = vfst.nm();
1287 
1288   address pc = vfst.frame_pc();
1289   { // Get call instruction under lock because another thread may be busy patching it.
1290     CompiledICLocker ic_locker(caller);
1291     return caller->attached_method_before_pc(pc);
1292   }
1293   return nullptr;
1294 }
1295 
1296 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1297 // for a call current in progress, i.e., arguments has been pushed on stack
1298 // but callee has not been invoked yet.  Caller frame must be compiled.
1299 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1300                                               CallInfo& callinfo, TRAPS) {
1301   Handle receiver;
1302   Handle nullHandle;  // create a handy null handle for exception returns
1303   JavaThread* current = THREAD;
1304 
1305   assert(!vfst.at_end(), "Java frame must exist");
1306 
1307   // Find caller and bci from vframe
1308   methodHandle caller(current, vfst.method());
1309   int          bci   = vfst.bci();
1310 
1311   if (caller->is_continuation_enter_intrinsic()) {
1312     bc = Bytecodes::_invokestatic;
1313     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1314     return receiver;
1315   }
1316 
1317   Bytecode_invoke bytecode(caller, bci);
1318   int bytecode_index = bytecode.index();
1319   bc = bytecode.invoke_code();
1320 
1321   methodHandle attached_method(current, extract_attached_method(vfst));
1322   if (attached_method.not_null()) {
1323     Method* callee = bytecode.static_target(CHECK_NH);
1324     vmIntrinsics::ID id = callee->intrinsic_id();
1325     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1326     // it attaches statically resolved method to the call site.
1327     if (MethodHandles::is_signature_polymorphic(id) &&
1328         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1329       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1330 
1331       // Adjust invocation mode according to the attached method.
1332       switch (bc) {
1333         case Bytecodes::_invokevirtual:
1334           if (attached_method->method_holder()->is_interface()) {
1335             bc = Bytecodes::_invokeinterface;
1336           }
1337           break;
1338         case Bytecodes::_invokeinterface:
1339           if (!attached_method->method_holder()->is_interface()) {
1340             bc = Bytecodes::_invokevirtual;
1341           }
1342           break;
1343         case Bytecodes::_invokehandle:
1344           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1345             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1346                                               : Bytecodes::_invokevirtual;
1347           }
1348           break;
1349         default:
1350           break;
1351       }
1352     }
1353   }
1354 
1355   assert(bc != Bytecodes::_illegal, "not initialized");
1356 
1357   bool has_receiver = bc != Bytecodes::_invokestatic &&
1358                       bc != Bytecodes::_invokedynamic &&
1359                       bc != Bytecodes::_invokehandle;
1360 
1361   // Find receiver for non-static call
1362   if (has_receiver) {
1363     // This register map must be update since we need to find the receiver for
1364     // compiled frames. The receiver might be in a register.
1365     RegisterMap reg_map2(current,
1366                          RegisterMap::UpdateMap::include,
1367                          RegisterMap::ProcessFrames::include,
1368                          RegisterMap::WalkContinuation::skip);
1369     frame stubFrame   = current->last_frame();
1370     // Caller-frame is a compiled frame
1371     frame callerFrame = stubFrame.sender(&reg_map2);
1372 
1373     if (attached_method.is_null()) {
1374       Method* callee = bytecode.static_target(CHECK_NH);
1375       if (callee == nullptr) {
1376         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1377       }
1378     }
1379 
1380     // Retrieve from a compiled argument list
1381     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1382     assert(oopDesc::is_oop_or_null(receiver()), "");
1383 
1384     if (receiver.is_null()) {
1385       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1386     }
1387   }
1388 
1389   // Resolve method
1390   if (attached_method.not_null()) {
1391     // Parameterized by attached method.
1392     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1393   } else {
1394     // Parameterized by bytecode.
1395     constantPoolHandle constants(current, caller->constants());
1396     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1397   }
1398 
1399 #ifdef ASSERT
1400   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1401   if (has_receiver) {
1402     assert(receiver.not_null(), "should have thrown exception");
1403     Klass* receiver_klass = receiver->klass();
1404     Klass* rk = nullptr;
1405     if (attached_method.not_null()) {
1406       // In case there's resolved method attached, use its holder during the check.
1407       rk = attached_method->method_holder();
1408     } else {
1409       // Klass is already loaded.
1410       constantPoolHandle constants(current, caller->constants());
1411       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1412     }
1413     Klass* static_receiver_klass = rk;
1414     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1415            "actual receiver must be subclass of static receiver klass");
1416     if (receiver_klass->is_instance_klass()) {
1417       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1418         tty->print_cr("ERROR: Klass not yet initialized!!");
1419         receiver_klass->print();
1420       }
1421       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1422     }
1423   }
1424 #endif
1425 
1426   return receiver;
1427 }
1428 
1429 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1430   JavaThread* current = THREAD;
1431   ResourceMark rm(current);
1432   // We need first to check if any Java activations (compiled, interpreted)
1433   // exist on the stack since last JavaCall.  If not, we need
1434   // to get the target method from the JavaCall wrapper.
1435   vframeStream vfst(current, true);  // Do not skip any javaCalls
1436   methodHandle callee_method;
1437   if (vfst.at_end()) {
1438     // No Java frames were found on stack since we did the JavaCall.
1439     // Hence the stack can only contain an entry_frame.  We need to
1440     // find the target method from the stub frame.
1441     RegisterMap reg_map(current,
1442                         RegisterMap::UpdateMap::skip,
1443                         RegisterMap::ProcessFrames::include,
1444                         RegisterMap::WalkContinuation::skip);
1445     frame fr = current->last_frame();
1446     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1447     fr = fr.sender(&reg_map);
1448     assert(fr.is_entry_frame(), "must be");
1449     // fr is now pointing to the entry frame.
1450     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1451   } else {
1452     Bytecodes::Code bc;
1453     CallInfo callinfo;
1454     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1455     callee_method = methodHandle(current, callinfo.selected_method());
1456   }
1457   assert(callee_method()->is_method(), "must be");
1458   return callee_method;
1459 }
1460 
1461 // Resolves a call.
1462 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1463   JavaThread* current = THREAD;
1464   ResourceMark rm(current);
1465   RegisterMap cbl_map(current,
1466                       RegisterMap::UpdateMap::skip,
1467                       RegisterMap::ProcessFrames::include,
1468                       RegisterMap::WalkContinuation::skip);
1469   frame caller_frame = current->last_frame().sender(&cbl_map);
1470 
1471   CodeBlob* caller_cb = caller_frame.cb();
1472   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1473   nmethod* caller_nm = caller_cb->as_nmethod();
1474 
1475   // determine call info & receiver
1476   // note: a) receiver is null for static calls
1477   //       b) an exception is thrown if receiver is null for non-static calls
1478   CallInfo call_info;
1479   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1480   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1481 
1482   NoSafepointVerifier nsv;
1483 
1484   methodHandle callee_method(current, call_info.selected_method());
1485 
1486   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1487          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1488          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1489          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1490          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1491 
1492   assert(!caller_nm->is_unloading(), "It should not be unloading");
1493 
1494   // tracing/debugging/statistics
1495   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1496                  (is_virtual) ? (&_resolve_virtual_ctr) :
1497                                 (&_resolve_static_ctr);
1498   AtomicAccess::inc(addr);
1499 
1500 #ifndef PRODUCT
1501   if (TraceCallFixup) {
1502     ResourceMark rm(current);
1503     tty->print("resolving %s%s (%s) call to",
1504                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1505                Bytecodes::name(invoke_code));
1506     callee_method->print_short_name(tty);
1507     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1508                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1509   }
1510 #endif
1511 
1512   if (invoke_code == Bytecodes::_invokestatic) {
1513     assert(callee_method->method_holder()->is_initialized() ||
1514            callee_method->method_holder()->is_reentrant_initialization(current),
1515            "invalid class initialization state for invoke_static");
1516     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1517       // In order to keep class initialization check, do not patch call
1518       // site for static call when the class is not fully initialized.
1519       // Proper check is enforced by call site re-resolution on every invocation.
1520       //
1521       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1522       // explicit class initialization check is put in nmethod entry (VEP).
1523       assert(callee_method->method_holder()->is_linked(), "must be");
1524       return callee_method;
1525     }
1526   }
1527 
1528 
1529   // JSR 292 key invariant:
1530   // If the resolved method is a MethodHandle invoke target, the call
1531   // site must be a MethodHandle call site, because the lambda form might tail-call
1532   // leaving the stack in a state unknown to either caller or callee
1533 
1534   // Compute entry points. The computation of the entry points is independent of
1535   // patching the call.
1536 
1537   // Make sure the callee nmethod does not get deoptimized and removed before
1538   // we are done patching the code.
1539 
1540 
1541   CompiledICLocker ml(caller_nm);
1542   if (is_virtual && !is_optimized) {
1543     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1544     inline_cache->update(&call_info, receiver->klass());
1545   } else {
1546     // Callsite is a direct call - set it to the destination method
1547     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1548     callsite->set(callee_method);
1549   }
1550 
1551   return callee_method;
1552 }
1553 
1554 // Inline caches exist only in compiled code
1555 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1556   PerfTraceTime timer(_perf_ic_miss_total_time);
1557 
1558 #ifdef ASSERT
1559   RegisterMap reg_map(current,
1560                       RegisterMap::UpdateMap::skip,
1561                       RegisterMap::ProcessFrames::include,
1562                       RegisterMap::WalkContinuation::skip);
1563   frame stub_frame = current->last_frame();
1564   assert(stub_frame.is_runtime_frame(), "sanity check");
1565   frame caller_frame = stub_frame.sender(&reg_map);
1566   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1567 #endif /* ASSERT */
1568 
1569   methodHandle callee_method;
1570   JRT_BLOCK
1571     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1572     // Return Method* through TLS
1573     current->set_vm_result_metadata(callee_method());
1574   JRT_BLOCK_END
1575   // return compiled code entry point after potential safepoints
1576   return get_resolved_entry(current, callee_method);
1577 JRT_END
1578 
1579 
1580 // Handle call site that has been made non-entrant
1581 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1582   PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1583 
1584   // 6243940 We might end up in here if the callee is deoptimized
1585   // as we race to call it.  We don't want to take a safepoint if
1586   // the caller was interpreted because the caller frame will look
1587   // interpreted to the stack walkers and arguments are now
1588   // "compiled" so it is much better to make this transition
1589   // invisible to the stack walking code. The i2c path will
1590   // place the callee method in the callee_target. It is stashed
1591   // there because if we try and find the callee by normal means a
1592   // safepoint is possible and have trouble gc'ing the compiled args.
1593   RegisterMap reg_map(current,
1594                       RegisterMap::UpdateMap::skip,
1595                       RegisterMap::ProcessFrames::include,
1596                       RegisterMap::WalkContinuation::skip);
1597   frame stub_frame = current->last_frame();
1598   assert(stub_frame.is_runtime_frame(), "sanity check");
1599   frame caller_frame = stub_frame.sender(&reg_map);
1600 
1601   if (caller_frame.is_interpreted_frame() ||
1602       caller_frame.is_entry_frame() ||
1603       caller_frame.is_upcall_stub_frame()) {
1604     Method* callee = current->callee_target();
1605     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1606     current->set_vm_result_metadata(callee);
1607     current->set_callee_target(nullptr);
1608     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1609       // Bypass class initialization checks in c2i when caller is in native.
1610       // JNI calls to static methods don't have class initialization checks.
1611       // Fast class initialization checks are present in c2i adapters and call into
1612       // SharedRuntime::handle_wrong_method() on the slow path.
1613       //
1614       // JVM upcalls may land here as well, but there's a proper check present in
1615       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1616       // so bypassing it in c2i adapter is benign.
1617       return callee->get_c2i_no_clinit_check_entry();
1618     } else {
1619       return callee->get_c2i_entry();
1620     }
1621   }
1622 
1623   // Must be compiled to compiled path which is safe to stackwalk
1624   methodHandle callee_method;
1625   JRT_BLOCK
1626     // Force resolving of caller (if we called from compiled frame)
1627     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1628     current->set_vm_result_metadata(callee_method());
1629   JRT_BLOCK_END
1630   // return compiled code entry point after potential safepoints
1631   return get_resolved_entry(current, callee_method);
1632 JRT_END
1633 
1634 // Handle abstract method call
1635 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1636   PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1637 
1638   // Verbose error message for AbstractMethodError.
1639   // Get the called method from the invoke bytecode.
1640   vframeStream vfst(current, true);
1641   assert(!vfst.at_end(), "Java frame must exist");
1642   methodHandle caller(current, vfst.method());
1643   Bytecode_invoke invoke(caller, vfst.bci());
1644   DEBUG_ONLY( invoke.verify(); )
1645 
1646   // Find the compiled caller frame.
1647   RegisterMap reg_map(current,
1648                       RegisterMap::UpdateMap::include,
1649                       RegisterMap::ProcessFrames::include,
1650                       RegisterMap::WalkContinuation::skip);
1651   frame stubFrame = current->last_frame();
1652   assert(stubFrame.is_runtime_frame(), "must be");
1653   frame callerFrame = stubFrame.sender(&reg_map);
1654   assert(callerFrame.is_compiled_frame(), "must be");
1655 
1656   // Install exception and return forward entry.
1657   address res = SharedRuntime::throw_AbstractMethodError_entry();
1658   JRT_BLOCK
1659     methodHandle callee(current, invoke.static_target(current));
1660     if (!callee.is_null()) {
1661       oop recv = callerFrame.retrieve_receiver(&reg_map);
1662       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1663       res = StubRoutines::forward_exception_entry();
1664       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1665     }
1666   JRT_BLOCK_END
1667   return res;
1668 JRT_END
1669 
1670 // return verified_code_entry if interp_only_mode is not set for the current thread;
1671 // otherwise return c2i entry.
1672 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1673   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1674     // In interp_only_mode we need to go to the interpreted entry
1675     // The c2i won't patch in this mode -- see fixup_callers_callsite
1676     return callee_method->get_c2i_entry();
1677   }
1678   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1679   return callee_method->verified_code_entry();
1680 }
1681 
1682 // resolve a static call and patch code
1683 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1684   PerfTraceTime timer(_perf_resolve_static_total_time);
1685 
1686   methodHandle callee_method;
1687   bool enter_special = false;
1688   JRT_BLOCK
1689     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1690     current->set_vm_result_metadata(callee_method());
1691   JRT_BLOCK_END
1692   // return compiled code entry point after potential safepoints
1693   return get_resolved_entry(current, callee_method);
1694 JRT_END
1695 
1696 // resolve virtual call and update inline cache to monomorphic
1697 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1698   PerfTraceTime timer(_perf_resolve_virtual_total_time);
1699 
1700   methodHandle callee_method;
1701   JRT_BLOCK
1702     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1703     current->set_vm_result_metadata(callee_method());
1704   JRT_BLOCK_END
1705   // return compiled code entry point after potential safepoints
1706   return get_resolved_entry(current, callee_method);
1707 JRT_END
1708 
1709 
1710 // Resolve a virtual call that can be statically bound (e.g., always
1711 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1712 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1713   PerfTraceTime timer(_perf_resolve_opt_virtual_total_time);
1714 
1715   methodHandle callee_method;
1716   JRT_BLOCK
1717     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1718     current->set_vm_result_metadata(callee_method());
1719   JRT_BLOCK_END
1720   // return compiled code entry point after potential safepoints
1721   return get_resolved_entry(current, callee_method);
1722 JRT_END
1723 
1724 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1725   JavaThread* current = THREAD;
1726   ResourceMark rm(current);
1727   CallInfo call_info;
1728   Bytecodes::Code bc;
1729 
1730   // receiver is null for static calls. An exception is thrown for null
1731   // receivers for non-static calls
1732   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1733 
1734   methodHandle callee_method(current, call_info.selected_method());
1735 
1736   AtomicAccess::inc(&_ic_miss_ctr);
1737 
1738 #ifndef PRODUCT
1739   // Statistics & Tracing
1740   if (TraceCallFixup) {
1741     ResourceMark rm(current);
1742     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1743     callee_method->print_short_name(tty);
1744     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1745   }
1746 
1747   if (ICMissHistogram) {
1748     MutexLocker m(VMStatistic_lock);
1749     RegisterMap reg_map(current,
1750                         RegisterMap::UpdateMap::skip,
1751                         RegisterMap::ProcessFrames::include,
1752                         RegisterMap::WalkContinuation::skip);
1753     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1754     // produce statistics under the lock
1755     trace_ic_miss(f.pc());
1756   }
1757 #endif
1758 
1759   // install an event collector so that when a vtable stub is created the
1760   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1761   // event can't be posted when the stub is created as locks are held
1762   // - instead the event will be deferred until the event collector goes
1763   // out of scope.
1764   JvmtiDynamicCodeEventCollector event_collector;
1765 
1766   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1767   RegisterMap reg_map(current,
1768                       RegisterMap::UpdateMap::skip,
1769                       RegisterMap::ProcessFrames::include,
1770                       RegisterMap::WalkContinuation::skip);
1771   frame caller_frame = current->last_frame().sender(&reg_map);
1772   CodeBlob* cb = caller_frame.cb();
1773   nmethod* caller_nm = cb->as_nmethod();
1774 
1775   CompiledICLocker ml(caller_nm);
1776   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1777   inline_cache->update(&call_info, receiver()->klass());
1778 
1779   return callee_method;
1780 }
1781 
1782 //
1783 // Resets a call-site in compiled code so it will get resolved again.
1784 // This routines handles both virtual call sites, optimized virtual call
1785 // sites, and static call sites. Typically used to change a call sites
1786 // destination from compiled to interpreted.
1787 //
1788 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1789   JavaThread* current = THREAD;
1790   ResourceMark rm(current);
1791   RegisterMap reg_map(current,
1792                       RegisterMap::UpdateMap::skip,
1793                       RegisterMap::ProcessFrames::include,
1794                       RegisterMap::WalkContinuation::skip);
1795   frame stub_frame = current->last_frame();
1796   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1797   frame caller = stub_frame.sender(&reg_map);
1798 
1799   // Do nothing if the frame isn't a live compiled frame.
1800   // nmethod could be deoptimized by the time we get here
1801   // so no update to the caller is needed.
1802 
1803   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1804       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1805 
1806     address pc = caller.pc();
1807 
1808     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1809     assert(caller_nm != nullptr, "did not find caller nmethod");
1810 
1811     // Default call_addr is the location of the "basic" call.
1812     // Determine the address of the call we a reresolving. With
1813     // Inline Caches we will always find a recognizable call.
1814     // With Inline Caches disabled we may or may not find a
1815     // recognizable call. We will always find a call for static
1816     // calls and for optimized virtual calls. For vanilla virtual
1817     // calls it depends on the state of the UseInlineCaches switch.
1818     //
1819     // With Inline Caches disabled we can get here for a virtual call
1820     // for two reasons:
1821     //   1 - calling an abstract method. The vtable for abstract methods
1822     //       will run us thru handle_wrong_method and we will eventually
1823     //       end up in the interpreter to throw the ame.
1824     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1825     //       call and between the time we fetch the entry address and
1826     //       we jump to it the target gets deoptimized. Similar to 1
1827     //       we will wind up in the interprter (thru a c2i with c2).
1828     //
1829     CompiledICLocker ml(caller_nm);
1830     address call_addr = caller_nm->call_instruction_address(pc);
1831 
1832     if (call_addr != nullptr) {
1833       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1834       // bytes back in the instruction stream so we must also check for reloc info.
1835       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1836       bool ret = iter.next(); // Get item
1837       if (ret) {
1838         switch (iter.type()) {
1839           case relocInfo::static_call_type:
1840           case relocInfo::opt_virtual_call_type: {
1841             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1842             cdc->set_to_clean();
1843             break;
1844           }
1845 
1846           case relocInfo::virtual_call_type: {
1847             // compiled, dispatched call (which used to call an interpreted method)
1848             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1849             inline_cache->set_to_clean();
1850             break;
1851           }
1852           default:
1853             break;
1854         }
1855       }
1856     }
1857   }
1858 
1859   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1860 
1861   AtomicAccess::inc(&_wrong_method_ctr);
1862 
1863 #ifndef PRODUCT
1864   if (TraceCallFixup) {
1865     ResourceMark rm(current);
1866     tty->print("handle_wrong_method reresolving call to");
1867     callee_method->print_short_name(tty);
1868     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1869   }
1870 #endif
1871 
1872   return callee_method;
1873 }
1874 
1875 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1876   // The faulting unsafe accesses should be changed to throw the error
1877   // synchronously instead. Meanwhile the faulting instruction will be
1878   // skipped over (effectively turning it into a no-op) and an
1879   // asynchronous exception will be raised which the thread will
1880   // handle at a later point. If the instruction is a load it will
1881   // return garbage.
1882 
1883   // Request an async exception.
1884   thread->set_pending_unsafe_access_error();
1885 
1886   // Return address of next instruction to execute.
1887   return next_pc;
1888 }
1889 
1890 #ifdef ASSERT
1891 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1892                                                                 const BasicType* sig_bt,
1893                                                                 const VMRegPair* regs) {
1894   ResourceMark rm;
1895   const int total_args_passed = method->size_of_parameters();
1896   const VMRegPair*    regs_with_member_name = regs;
1897         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1898 
1899   const int member_arg_pos = total_args_passed - 1;
1900   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1901   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1902 
1903   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1904 
1905   for (int i = 0; i < member_arg_pos; i++) {
1906     VMReg a =    regs_with_member_name[i].first();
1907     VMReg b = regs_without_member_name[i].first();
1908     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1909   }
1910   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1911 }
1912 #endif
1913 
1914 // ---------------------------------------------------------------------------
1915 // We are calling the interpreter via a c2i. Normally this would mean that
1916 // we were called by a compiled method. However we could have lost a race
1917 // where we went int -> i2c -> c2i and so the caller could in fact be
1918 // interpreted. If the caller is compiled we attempt to patch the caller
1919 // so he no longer calls into the interpreter.
1920 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1921   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1922 
1923   // It's possible that deoptimization can occur at a call site which hasn't
1924   // been resolved yet, in which case this function will be called from
1925   // an nmethod that has been patched for deopt and we can ignore the
1926   // request for a fixup.
1927   // Also it is possible that we lost a race in that from_compiled_entry
1928   // is now back to the i2c in that case we don't need to patch and if
1929   // we did we'd leap into space because the callsite needs to use
1930   // "to interpreter" stub in order to load up the Method*. Don't
1931   // ask me how I know this...
1932 
1933   // Result from nmethod::is_unloading is not stable across safepoints.
1934   NoSafepointVerifier nsv;
1935 
1936   nmethod* callee = method->code();
1937   if (callee == nullptr) {
1938     return;
1939   }
1940 
1941   // write lock needed because we might patch call site by set_to_clean()
1942   // and is_unloading() can modify nmethod's state
1943   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1944 
1945   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1946   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1947     return;
1948   }
1949 
1950   // The check above makes sure this is an nmethod.
1951   nmethod* caller = cb->as_nmethod();
1952 
1953   // Get the return PC for the passed caller PC.
1954   address return_pc = caller_pc + frame::pc_return_offset;
1955 
1956   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1957     return;
1958   }
1959 
1960   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1961   CompiledICLocker ic_locker(caller);
1962   ResourceMark rm;
1963 
1964   // If we got here through a static call or opt_virtual call, then we know where the
1965   // call address would be; let's peek at it
1966   address callsite_addr = (address)nativeCall_before(return_pc);
1967   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1968   if (!iter.next()) {
1969     // No reloc entry found; not a static or optimized virtual call
1970     return;
1971   }
1972 
1973   relocInfo::relocType type = iter.reloc()->type();
1974   if (type != relocInfo::static_call_type &&
1975       type != relocInfo::opt_virtual_call_type) {
1976     return;
1977   }
1978 
1979   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1980   callsite->set_to_clean();
1981 JRT_END
1982 
1983 
1984 // same as JVM_Arraycopy, but called directly from compiled code
1985 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1986                                                 oopDesc* dest, jint dest_pos,
1987                                                 jint length,
1988                                                 JavaThread* current)) {
1989 #ifndef PRODUCT
1990   _slow_array_copy_ctr++;
1991 #endif
1992   // Check if we have null pointers
1993   if (src == nullptr || dest == nullptr) {
1994     THROW(vmSymbols::java_lang_NullPointerException());
1995   }
1996   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1997   // even though the copy_array API also performs dynamic checks to ensure
1998   // that src and dest are truly arrays (and are conformable).
1999   // The copy_array mechanism is awkward and could be removed, but
2000   // the compilers don't call this function except as a last resort,
2001   // so it probably doesn't matter.
2002   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2003                                         (arrayOopDesc*)dest, dest_pos,
2004                                         length, current);
2005 }
2006 JRT_END
2007 
2008 // The caller of generate_class_cast_message() (or one of its callers)
2009 // must use a ResourceMark in order to correctly free the result.
2010 char* SharedRuntime::generate_class_cast_message(
2011     JavaThread* thread, Klass* caster_klass) {
2012 
2013   // Get target class name from the checkcast instruction
2014   vframeStream vfst(thread, true);
2015   assert(!vfst.at_end(), "Java frame must exist");
2016   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2017   constantPoolHandle cpool(thread, vfst.method()->constants());
2018   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2019   Symbol* target_klass_name = nullptr;
2020   if (target_klass == nullptr) {
2021     // This klass should be resolved, but just in case, get the name in the klass slot.
2022     target_klass_name = cpool->klass_name_at(cc.index());
2023   }
2024   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2025 }
2026 
2027 
2028 // The caller of generate_class_cast_message() (or one of its callers)
2029 // must use a ResourceMark in order to correctly free the result.
2030 char* SharedRuntime::generate_class_cast_message(
2031     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2032   const char* caster_name = caster_klass->external_name();
2033 
2034   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
2035   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
2036                                                    target_klass->external_name();
2037 
2038   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2039 
2040   const char* caster_klass_description = "";
2041   const char* target_klass_description = "";
2042   const char* klass_separator = "";
2043   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
2044     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2045   } else {
2046     caster_klass_description = caster_klass->class_in_module_of_loader();
2047     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
2048     klass_separator = (target_klass != nullptr) ? "; " : "";
2049   }
2050 
2051   // add 3 for parenthesis and preceding space
2052   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2053 
2054   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2055   if (message == nullptr) {
2056     // Shouldn't happen, but don't cause even more problems if it does
2057     message = const_cast<char*>(caster_klass->external_name());
2058   } else {
2059     jio_snprintf(message,
2060                  msglen,
2061                  "class %s cannot be cast to class %s (%s%s%s)",
2062                  caster_name,
2063                  target_name,
2064                  caster_klass_description,
2065                  klass_separator,
2066                  target_klass_description
2067                  );
2068   }
2069   return message;
2070 }
2071 
2072 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2073   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2074 JRT_END
2075 
2076 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2077   if (!SafepointSynchronize::is_synchronizing()) {
2078     // Only try quick_enter() if we're not trying to reach a safepoint
2079     // so that the calling thread reaches the safepoint more quickly.
2080     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
2081       return;
2082     }
2083   }
2084   // NO_ASYNC required because an async exception on the state transition destructor
2085   // would leave you with the lock held and it would never be released.
2086   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2087   // and the model is that an exception implies the method failed.
2088   JRT_BLOCK_NO_ASYNC
2089   Handle h_obj(THREAD, obj);
2090   ObjectSynchronizer::enter(h_obj, lock, current);
2091   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2092   JRT_BLOCK_END
2093 }
2094 
2095 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2096 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2097   SharedRuntime::monitor_enter_helper(obj, lock, current);
2098 JRT_END
2099 
2100 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2101   assert(JavaThread::current() == current, "invariant");
2102   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2103   ExceptionMark em(current);
2104 
2105   // Check if C2_MacroAssembler::fast_unlock() or
2106   // C2_MacroAssembler::fast_unlock() unlocked an inflated
2107   // monitor before going slow path.  Since there is no safepoint
2108   // polling when calling into the VM, we can be sure that the monitor
2109   // hasn't been deallocated.
2110   ObjectMonitor* m = current->unlocked_inflated_monitor();
2111   if (m != nullptr) {
2112     assert(!m->has_owner(current), "must be");
2113     current->clear_unlocked_inflated_monitor();
2114 
2115     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2116     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2117       // Some other thread acquired the lock (or the monitor was
2118       // deflated). Either way we are done.
2119       return;
2120     }
2121   }
2122 
2123   // The object could become unlocked through a JNI call, which we have no other checks for.
2124   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2125   if (obj->is_unlocked()) {
2126     if (CheckJNICalls) {
2127       fatal("Object has been unlocked by JNI");
2128     }
2129     return;
2130   }
2131   ObjectSynchronizer::exit(obj, lock, current);
2132 }
2133 
2134 // Handles the uncommon cases of monitor unlocking in compiled code
2135 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2136   assert(current == JavaThread::current(), "pre-condition");
2137   SharedRuntime::monitor_exit_helper(obj, lock, current);
2138 JRT_END
2139 
2140 #ifndef PRODUCT
2141 
2142 void SharedRuntime::print_statistics() {
2143   ttyLocker ttyl;
2144   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2145 
2146   SharedRuntime::print_ic_miss_histogram_on(tty);
2147   SharedRuntime::print_counters_on(tty);
2148   AdapterHandlerLibrary::print_statistics_on(tty);
2149 
2150   if (xtty != nullptr)  xtty->tail("statistics");
2151 }
2152 
2153 //void SharedRuntime::print_counters_on(outputStream* st) {
2154 //  // Dump the JRT_ENTRY counters
2155 //  if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr);
2156 //  if (_new_array_ctr)    st->print_cr("%5u new array requires GC", _new_array_ctr);
2157 //  if (_multi2_ctr)       st->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2158 //  if (_multi3_ctr)       st->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2159 //  if (_multi4_ctr)       st->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2160 //  if (_multi5_ctr)       st->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2161 //
2162 //  st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2163 //  st->print_cr("%5u wrong method", _wrong_method_ctr);
2164 //  st->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2165 //  st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2166 //  st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2167 //
2168 //  if (_mon_enter_stub_ctr)       st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2169 //  if (_mon_exit_stub_ctr)        st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2170 //  if (_mon_enter_ctr)            st->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2171 //  if (_mon_exit_ctr)             st->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2172 //  if (_partial_subtype_ctr)      st->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2173 //  if (_jbyte_array_copy_ctr)     st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2174 //  if (_jshort_array_copy_ctr)    st->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2175 //  if (_jint_array_copy_ctr)      st->print_cr("%5u int array copies", _jint_array_copy_ctr);
2176 //  if (_jlong_array_copy_ctr)     st->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2177 //  if (_oop_array_copy_ctr)       st->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2178 //  if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2179 //  if (_unsafe_array_copy_ctr)    st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2180 //  if (_generic_array_copy_ctr)   st->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2181 //  if (_slow_array_copy_ctr)      st->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2182 //  if (_find_handler_ctr)         st->print_cr("%5u find exception handler", _find_handler_ctr);
2183 //  if (_rethrow_ctr)              st->print_cr("%5u rethrow handler", _rethrow_ctr);
2184 //  if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2185 //}
2186 
2187 inline double percent(int64_t x, int64_t y) {
2188   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2189 }
2190 
2191 class MethodArityHistogram {
2192  public:
2193   enum { MAX_ARITY = 256 };
2194  private:
2195   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2196   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2197   static uint64_t _total_compiled_calls;
2198   static uint64_t _max_compiled_calls_per_method;
2199   static int _max_arity;                       // max. arity seen
2200   static int _max_size;                        // max. arg size seen
2201 
2202   static void add_method_to_histogram(nmethod* nm) {
2203     Method* method = (nm == nullptr) ? nullptr : nm->method();
2204     if (method != nullptr) {
2205       ArgumentCount args(method->signature());
2206       int arity   = args.size() + (method->is_static() ? 0 : 1);
2207       int argsize = method->size_of_parameters();
2208       arity   = MIN2(arity, MAX_ARITY-1);
2209       argsize = MIN2(argsize, MAX_ARITY-1);
2210       uint64_t count = (uint64_t)method->compiled_invocation_count();
2211       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2212       _total_compiled_calls    += count;
2213       _arity_histogram[arity]  += count;
2214       _size_histogram[argsize] += count;
2215       _max_arity = MAX2(_max_arity, arity);
2216       _max_size  = MAX2(_max_size, argsize);
2217     }
2218   }
2219 
2220   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2221     const int N = MIN2(9, n);
2222     double sum = 0;
2223     double weighted_sum = 0;
2224     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2225     if (sum >= 1) { // prevent divide by zero or divide overflow
2226       double rest = sum;
2227       double percent = sum / 100;
2228       for (int i = 0; i <= N; i++) {
2229         rest -= (double)histo[i];
2230         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2231       }
2232       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2233       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2234       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2235       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2236     } else {
2237       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2238     }
2239   }
2240 
2241   void print_histogram() {
2242     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2243     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2244     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2245     print_histogram_helper(_max_size, _size_histogram, "size");
2246     tty->cr();
2247   }
2248 
2249  public:
2250   MethodArityHistogram() {
2251     // Take the Compile_lock to protect against changes in the CodeBlob structures
2252     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2253     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2254     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2255     _max_arity = _max_size = 0;
2256     _total_compiled_calls = 0;
2257     _max_compiled_calls_per_method = 0;
2258     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2259     CodeCache::nmethods_do(add_method_to_histogram);
2260     print_histogram();
2261   }
2262 };
2263 
2264 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2265 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2266 uint64_t MethodArityHistogram::_total_compiled_calls;
2267 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2268 int MethodArityHistogram::_max_arity;
2269 int MethodArityHistogram::_max_size;
2270 
2271 void SharedRuntime::print_call_statistics_on(outputStream* st) {
2272   tty->print_cr("Calls from compiled code:");
2273   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2274   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2275   int64_t mono_i = _nof_interface_calls;
2276   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2277   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2278   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2279   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2280   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2281   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2282   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2283   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2284   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2285   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2286   tty->cr();
2287   tty->print_cr("Note 1: counter updates are not MT-safe.");
2288   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2289   tty->print_cr("        %% in nested categories are relative to their category");
2290   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2291   tty->cr();
2292 
2293   MethodArityHistogram h;
2294 }
2295 #endif
2296 
2297 #ifndef PRODUCT
2298 static int _lookups; // number of calls to lookup
2299 static int _equals;  // number of buckets checked with matching hash
2300 static int _archived_hits; // number of successful lookups in archived table
2301 static int _runtime_hits;  // number of successful lookups in runtime table
2302 #endif
2303 
2304 // A simple wrapper class around the calling convention information
2305 // that allows sharing of adapters for the same calling convention.
2306 class AdapterFingerPrint : public MetaspaceObj {
2307  private:
2308   enum {
2309     _basic_type_bits = 4,
2310     _basic_type_mask = right_n_bits(_basic_type_bits),
2311     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2312   };
2313   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2314   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2315 
2316   int _length;
2317 
2318   static int data_offset() { return sizeof(AdapterFingerPrint); }
2319   int* data_pointer() {
2320     return (int*)((address)this + data_offset());
2321   }
2322 
2323   // Private construtor. Use allocate() to get an instance.
2324   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2325     int* data = data_pointer();
2326     // Pack the BasicTypes with 8 per int
2327     assert(len == length(total_args_passed), "sanity");
2328     _length = len;
2329     int sig_index = 0;
2330     for (int index = 0; index < _length; index++) {
2331       int value = 0;
2332       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2333         int bt = adapter_encoding(sig_bt[sig_index++]);
2334         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2335         value = (value << _basic_type_bits) | bt;
2336       }
2337       data[index] = value;
2338     }
2339   }
2340 
2341   // Call deallocate instead
2342   ~AdapterFingerPrint() {
2343     ShouldNotCallThis();
2344   }
2345 
2346   static int length(int total_args) {
2347     return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2348   }
2349 
2350   static int compute_size_in_words(int len) {
2351     return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2352   }
2353 
2354   // Remap BasicTypes that are handled equivalently by the adapters.
2355   // These are correct for the current system but someday it might be
2356   // necessary to make this mapping platform dependent.
2357   static int adapter_encoding(BasicType in) {
2358     switch (in) {
2359       case T_BOOLEAN:
2360       case T_BYTE:
2361       case T_SHORT:
2362       case T_CHAR:
2363         // There are all promoted to T_INT in the calling convention
2364         return T_INT;
2365 
2366       case T_OBJECT:
2367       case T_ARRAY:
2368         // In other words, we assume that any register good enough for
2369         // an int or long is good enough for a managed pointer.
2370 #ifdef _LP64
2371         return T_LONG;
2372 #else
2373         return T_INT;
2374 #endif
2375 
2376       case T_INT:
2377       case T_LONG:
2378       case T_FLOAT:
2379       case T_DOUBLE:
2380       case T_VOID:
2381         return in;
2382 
2383       default:
2384         ShouldNotReachHere();
2385         return T_CONFLICT;
2386     }
2387   }
2388 
2389   void* operator new(size_t size, size_t fp_size) throw() {
2390     assert(fp_size >= size, "sanity check");
2391     void* p = AllocateHeap(fp_size, mtCode);
2392     memset(p, 0, fp_size);
2393     return p;
2394   }
2395 
2396   template<typename Function>
2397   void iterate_args(Function function) {
2398     for (int i = 0; i < length(); i++) {
2399       unsigned val = (unsigned)value(i);
2400       // args are packed so that first/lower arguments are in the highest
2401       // bits of each int value, so iterate from highest to the lowest
2402       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2403         unsigned v = (val >> j) & _basic_type_mask;
2404         if (v == 0) {
2405           continue;
2406         }
2407         function(v);
2408       }
2409     }
2410   }
2411 
2412  public:
2413   static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2414     int len = length(total_args_passed);
2415     int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2416     AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2417     assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2418     return afp;
2419   }
2420 
2421   static void deallocate(AdapterFingerPrint* fp) {
2422     FreeHeap(fp);
2423   }
2424 
2425   int value(int index) {
2426     int* data = data_pointer();
2427     return data[index];
2428   }
2429 
2430   int length() {
2431     return _length;
2432   }
2433 
2434   unsigned int compute_hash() {
2435     int hash = 0;
2436     for (int i = 0; i < length(); i++) {
2437       int v = value(i);
2438       //Add arithmetic operation to the hash, like +3 to improve hashing
2439       hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2440     }
2441     return (unsigned int)hash;
2442   }
2443 
2444   const char* as_string() {
2445     stringStream st;
2446     st.print("0x");
2447     for (int i = 0; i < length(); i++) {
2448       st.print("%x", value(i));
2449     }
2450     return st.as_string();
2451   }
2452 
2453   const char* as_basic_args_string() {
2454     stringStream st;
2455     bool long_prev = false;
2456     iterate_args([&] (int arg) {
2457       if (long_prev) {
2458         long_prev = false;
2459         if (arg == T_VOID) {
2460           st.print("J");
2461         } else {
2462           st.print("L");
2463         }
2464       }
2465       switch (arg) {
2466         case T_INT:    st.print("I");    break;
2467         case T_LONG:   long_prev = true; break;
2468         case T_FLOAT:  st.print("F");    break;
2469         case T_DOUBLE: st.print("D");    break;
2470         case T_VOID:   break;
2471         default: ShouldNotReachHere();
2472       }
2473     });
2474     if (long_prev) {
2475       st.print("L");
2476     }
2477     return st.as_string();
2478   }
2479 
2480   BasicType* as_basic_type(int& nargs) {
2481     nargs = 0;
2482     GrowableArray<BasicType> btarray;
2483     bool long_prev = false;
2484 
2485     iterate_args([&] (int arg) {
2486       if (long_prev) {
2487         long_prev = false;
2488         if (arg == T_VOID) {
2489           btarray.append(T_LONG);
2490         } else {
2491           btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2492         }
2493       }
2494       switch (arg) {
2495         case T_INT: // fallthrough
2496         case T_FLOAT: // fallthrough
2497         case T_DOUBLE:
2498         case T_VOID:
2499           btarray.append((BasicType)arg);
2500           break;
2501         case T_LONG:
2502           long_prev = true;
2503           break;
2504         default: ShouldNotReachHere();
2505       }
2506     });
2507 
2508     if (long_prev) {
2509       btarray.append(T_OBJECT);
2510     }
2511 
2512     nargs = btarray.length();
2513     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2514     int index = 0;
2515     GrowableArrayIterator<BasicType> iter = btarray.begin();
2516     while (iter != btarray.end()) {
2517       sig_bt[index++] = *iter;
2518       ++iter;
2519     }
2520     assert(index == btarray.length(), "sanity check");
2521 #ifdef ASSERT
2522     {
2523       AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2524       assert(this->equals(compare_fp), "sanity check");
2525       AdapterFingerPrint::deallocate(compare_fp);
2526     }
2527 #endif
2528     return sig_bt;
2529   }
2530 
2531   bool equals(AdapterFingerPrint* other) {
2532     if (other->_length != _length) {
2533       return false;
2534     } else {
2535       for (int i = 0; i < _length; i++) {
2536         if (value(i) != other->value(i)) {
2537           return false;
2538         }
2539       }
2540     }
2541     return true;
2542   }
2543 
2544   // methods required by virtue of being a MetaspaceObj
2545   void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2546   int size() const { return compute_size_in_words(_length); }
2547   MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2548 
2549   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2550     NOT_PRODUCT(_equals++);
2551     return fp1->equals(fp2);
2552   }
2553 
2554   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2555     return fp->compute_hash();
2556   }
2557 };
2558 
2559 #if INCLUDE_CDS
2560 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2561   return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2562 }
2563 
2564 class ArchivedAdapterTable : public OffsetCompactHashtable<
2565   AdapterFingerPrint*,
2566   AdapterHandlerEntry*,
2567   adapter_fp_equals_compact_hashtable_entry> {};
2568 #endif // INCLUDE_CDS
2569 
2570 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2571 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2572                   AnyObj::C_HEAP, mtCode,
2573                   AdapterFingerPrint::compute_hash,
2574                   AdapterFingerPrint::equals>;
2575 static AdapterHandlerTable* _adapter_handler_table;
2576 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2577 
2578 // Find a entry with the same fingerprint if it exists
2579 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2580   NOT_PRODUCT(_lookups++);
2581   assert_lock_strong(AdapterHandlerLibrary_lock);
2582   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2583   AdapterHandlerEntry* entry = nullptr;
2584 #if INCLUDE_CDS
2585   // if we are building the archive then the archived adapter table is
2586   // not valid and we need to use the ones added to the runtime table
2587   if (AOTCodeCache::is_using_adapter()) {
2588     // Search archived table first. It is read-only table so can be searched without lock
2589     entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2590 #ifndef PRODUCT
2591     if (entry != nullptr) {
2592       _archived_hits++;
2593     }
2594 #endif
2595   }
2596 #endif // INCLUDE_CDS
2597   if (entry == nullptr) {
2598     assert_lock_strong(AdapterHandlerLibrary_lock);
2599     AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2600     if (entry_p != nullptr) {
2601       entry = *entry_p;
2602       assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2603              entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2604              fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2605   #ifndef PRODUCT
2606       _runtime_hits++;
2607   #endif
2608     }
2609   }
2610   AdapterFingerPrint::deallocate(fp);
2611   return entry;
2612 }
2613 
2614 #ifndef PRODUCT
2615 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) {
2616   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2617     return sizeof(*key) + sizeof(*a);
2618   };
2619   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2620   ts.print(st, "AdapterHandlerTable");
2621   st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2622                _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2623   int total_hits = _archived_hits + _runtime_hits;
2624   st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2625                _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2626 }
2627 #endif // !PRODUCT
2628 
2629 // ---------------------------------------------------------------------------
2630 // Implementation of AdapterHandlerLibrary
2631 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2632 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2633 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2634 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2635 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2636 #if INCLUDE_CDS
2637 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2638 #endif // INCLUDE_CDS
2639 static const int AdapterHandlerLibrary_size = 16*K;
2640 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2641 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2642 
2643 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2644   assert(_buffer != nullptr, "should be initialized");
2645   return _buffer;
2646 }
2647 
2648 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2649   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2650     AdapterBlob* adapter_blob = entry->adapter_blob();
2651     char blob_id[256];
2652     jio_snprintf(blob_id,
2653                  sizeof(blob_id),
2654                  "%s(%s)",
2655                  adapter_blob->name(),
2656                  entry->fingerprint()->as_string());
2657     if (Forte::is_enabled()) {
2658       Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2659     }
2660 
2661     if (JvmtiExport::should_post_dynamic_code_generated()) {
2662       JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2663     }
2664   }
2665 }
2666 
2667 void AdapterHandlerLibrary::initialize() {
2668   {
2669     ResourceMark rm;
2670     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2671     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2672   }
2673 
2674 #if INCLUDE_CDS
2675   // Link adapters in AOT Cache to their code in AOT Code Cache
2676   if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2677     link_aot_adapters();
2678     lookup_simple_adapters();
2679     return;
2680   }
2681 #endif // INCLUDE_CDS
2682 
2683   ResourceMark rm;
2684   {
2685     MutexLocker mu(AdapterHandlerLibrary_lock);
2686 
2687     _no_arg_handler = create_adapter(0, nullptr);
2688 
2689     BasicType obj_args[] = { T_OBJECT };
2690     _obj_arg_handler = create_adapter(1, obj_args);
2691 
2692     BasicType int_args[] = { T_INT };
2693     _int_arg_handler = create_adapter(1, int_args);
2694 
2695     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2696     _obj_int_arg_handler = create_adapter(2, obj_int_args);
2697 
2698     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2699     _obj_obj_arg_handler = create_adapter(2, obj_obj_args);
2700 
2701     // we should always get an entry back but we don't have any
2702     // associated blob on Zero
2703     assert(_no_arg_handler != nullptr &&
2704            _obj_arg_handler != nullptr &&
2705            _int_arg_handler != nullptr &&
2706            _obj_int_arg_handler != nullptr &&
2707            _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2708   }
2709 
2710   // Outside of the lock
2711 #ifndef ZERO
2712   // no blobs to register when we are on Zero
2713   post_adapter_creation(_no_arg_handler);
2714   post_adapter_creation(_obj_arg_handler);
2715   post_adapter_creation(_int_arg_handler);
2716   post_adapter_creation(_obj_int_arg_handler);
2717   post_adapter_creation(_obj_obj_arg_handler);
2718 #endif // ZERO
2719 }
2720 
2721 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2722   uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2723   assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2724   return AdapterHandlerEntry::allocate(id, fingerprint);
2725 }
2726 
2727 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2728   int total_args_passed = method->size_of_parameters(); // All args on stack
2729   if (total_args_passed == 0) {
2730     return _no_arg_handler;
2731   } else if (total_args_passed == 1) {
2732     if (!method->is_static()) {
2733       return _obj_arg_handler;
2734     }
2735     switch (method->signature()->char_at(1)) {
2736       case JVM_SIGNATURE_CLASS:
2737       case JVM_SIGNATURE_ARRAY:
2738         return _obj_arg_handler;
2739       case JVM_SIGNATURE_INT:
2740       case JVM_SIGNATURE_BOOLEAN:
2741       case JVM_SIGNATURE_CHAR:
2742       case JVM_SIGNATURE_BYTE:
2743       case JVM_SIGNATURE_SHORT:
2744         return _int_arg_handler;
2745     }
2746   } else if (total_args_passed == 2 &&
2747              !method->is_static()) {
2748     switch (method->signature()->char_at(1)) {
2749       case JVM_SIGNATURE_CLASS:
2750       case JVM_SIGNATURE_ARRAY:
2751         return _obj_obj_arg_handler;
2752       case JVM_SIGNATURE_INT:
2753       case JVM_SIGNATURE_BOOLEAN:
2754       case JVM_SIGNATURE_CHAR:
2755       case JVM_SIGNATURE_BYTE:
2756       case JVM_SIGNATURE_SHORT:
2757         return _obj_int_arg_handler;
2758     }
2759   }
2760   return nullptr;
2761 }
2762 
2763 class AdapterSignatureIterator : public SignatureIterator {
2764  private:
2765   BasicType stack_sig_bt[16];
2766   BasicType* sig_bt;
2767   int index;
2768 
2769  public:
2770   AdapterSignatureIterator(Symbol* signature,
2771                            fingerprint_t fingerprint,
2772                            bool is_static,
2773                            int total_args_passed) :
2774     SignatureIterator(signature, fingerprint),
2775     index(0)
2776   {
2777     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2778     if (!is_static) { // Pass in receiver first
2779       sig_bt[index++] = T_OBJECT;
2780     }
2781     do_parameters_on(this);
2782   }
2783 
2784   BasicType* basic_types() {
2785     return sig_bt;
2786   }
2787 
2788 #ifdef ASSERT
2789   int slots() {
2790     return index;
2791   }
2792 #endif
2793 
2794  private:
2795 
2796   friend class SignatureIterator;  // so do_parameters_on can call do_type
2797   void do_type(BasicType type) {
2798     sig_bt[index++] = type;
2799     if (type == T_LONG || type == T_DOUBLE) {
2800       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2801     }
2802   }
2803 };
2804 
2805 
2806 const char* AdapterHandlerEntry::_entry_names[] = {
2807   "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2808 };
2809 
2810 #ifdef ASSERT
2811 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2812   // we can only check for the same code if there is any
2813 #ifndef ZERO
2814   AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true);
2815   assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
2816   assert(comparison_entry->compare_code(cached_entry), "code must match");
2817   // Release the one just created
2818   AdapterHandlerEntry::deallocate(comparison_entry);
2819 # endif // ZERO
2820 }
2821 #endif /* ASSERT*/
2822 
2823 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2824   assert(!method->is_abstract(), "abstract methods do not have adapters");
2825   // Use customized signature handler.  Need to lock around updates to
2826   // the _adapter_handler_table (it is not safe for concurrent readers
2827   // and a single writer: this could be fixed if it becomes a
2828   // problem).
2829 
2830   // Fast-path for trivial adapters
2831   AdapterHandlerEntry* entry = get_simple_adapter(method);
2832   if (entry != nullptr) {
2833     return entry;
2834   }
2835 
2836   ResourceMark rm;
2837   bool new_entry = false;
2838 
2839   // Fill in the signature array, for the calling-convention call.
2840   int total_args_passed = method->size_of_parameters(); // All args on stack
2841 
2842   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2843                               method->is_static(), total_args_passed);
2844   assert(si.slots() == total_args_passed, "");
2845   BasicType* sig_bt = si.basic_types();
2846   {
2847     MutexLocker mu(AdapterHandlerLibrary_lock);
2848 
2849     // Lookup method signature's fingerprint
2850     entry = lookup(total_args_passed, sig_bt);
2851 
2852     if (entry != nullptr) {
2853 #ifndef ZERO
2854       assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2855 #endif
2856 #ifdef ASSERT
2857       if (!entry->in_aot_cache() && VerifyAdapterSharing) {
2858         verify_adapter_sharing(total_args_passed, sig_bt, entry);
2859       }
2860 #endif
2861     } else {
2862       entry = create_adapter(total_args_passed, sig_bt);
2863       if (entry != nullptr) {
2864         new_entry = true;
2865       }
2866     }
2867   }
2868 
2869   // Outside of the lock
2870   if (new_entry) {
2871     post_adapter_creation(entry);
2872   }
2873   return entry;
2874 }
2875 
2876 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2877   ResourceMark rm;
2878   const char* name = AdapterHandlerLibrary::name(handler);
2879   const uint32_t id = AdapterHandlerLibrary::id(handler);
2880 
2881   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
2882   if (blob != nullptr) {
2883     handler->set_adapter_blob(blob->as_adapter_blob());
2884   }
2885 }
2886 
2887 #ifndef PRODUCT
2888 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
2889   ttyLocker ttyl;
2890   ResourceMark rm;
2891   int insts_size;
2892   // on Zero the blob may be null
2893   handler->print_adapter_on(tty);
2894   AdapterBlob* adapter_blob = handler->adapter_blob();
2895   if (adapter_blob == nullptr) {
2896     return;
2897   }
2898   insts_size = adapter_blob->code_size();
2899   st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2900                 handler->fingerprint()->as_basic_args_string(),
2901                 handler->fingerprint()->as_string(), insts_size);
2902   st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2903   if (Verbose || PrintStubCode) {
2904     address first_pc = adapter_blob->content_begin();
2905     if (first_pc != nullptr) {
2906       Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2907       st->cr();
2908     }
2909   }
2910 }
2911 #endif // PRODUCT
2912 
2913 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
2914                                               int entry_offset[AdapterBlob::ENTRY_COUNT]) {
2915   entry_offset[AdapterBlob::I2C] = 0;
2916   entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
2917   entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
2918   if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
2919     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
2920   } else {
2921     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
2922   }
2923 }
2924 
2925 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
2926                                                   int total_args_passed,
2927                                                   BasicType* sig_bt,
2928                                                   bool is_transient) {
2929   if (log_is_enabled(Info, perf, class, link)) {
2930     ClassLoader::perf_method_adapters_count()->inc();
2931   }
2932 
2933 #ifndef ZERO
2934   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2935   CodeBuffer buffer(buf);
2936   short buffer_locs[20];
2937   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2938                                          sizeof(buffer_locs)/sizeof(relocInfo));
2939   MacroAssembler masm(&buffer);
2940   VMRegPair stack_regs[16];
2941   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2942 
2943   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2944   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2945   address entry_address[AdapterBlob::ENTRY_COUNT];
2946   SharedRuntime::generate_i2c2i_adapters(&masm,
2947                                          total_args_passed,
2948                                          comp_args_on_stack,
2949                                          sig_bt,
2950                                          regs,
2951                                          entry_address);
2952   // On zero there is no code to save and no need to create a blob and
2953   // or relocate the handler.
2954   int entry_offset[AdapterBlob::ENTRY_COUNT];
2955   address_to_offset(entry_address, entry_offset);
2956 #ifdef ASSERT
2957   if (VerifyAdapterSharing) {
2958     handler->save_code(buf->code_begin(), buffer.insts_size());
2959     if (is_transient) {
2960       return true;
2961     }
2962   }
2963 #endif
2964   AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset);
2965   if (adapter_blob == nullptr) {
2966     // CodeCache is full, disable compilation
2967     // Ought to log this but compile log is only per compile thread
2968     // and we're some non descript Java thread.
2969     return false;
2970   }
2971   handler->set_adapter_blob(adapter_blob);
2972   if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2973     // try to save generated code
2974     const char* name = AdapterHandlerLibrary::name(handler);
2975     const uint32_t id = AdapterHandlerLibrary::id(handler);
2976     bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
2977     assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2978   }
2979 #endif // ZERO
2980 
2981 #ifndef PRODUCT
2982   // debugging support
2983   if (PrintAdapterHandlers || PrintStubCode) {
2984     print_adapter_handler_info(tty, handler);
2985   }
2986 #endif
2987 
2988   return true;
2989 }
2990 
2991 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed,
2992                                                            BasicType* sig_bt,
2993                                                            bool is_transient) {
2994   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2995   AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2996   if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) {
2997     AdapterHandlerEntry::deallocate(handler);
2998     return nullptr;
2999   }
3000   if (!is_transient) {
3001     assert_lock_strong(AdapterHandlerLibrary_lock);
3002     _adapter_handler_table->put(fp, handler);
3003   }
3004   return handler;
3005 }
3006 
3007 #if INCLUDE_CDS
3008 void AdapterHandlerEntry::remove_unshareable_info() {
3009 #ifdef ASSERT
3010    _saved_code = nullptr;
3011    _saved_code_length = 0;
3012 #endif // ASSERT
3013    _adapter_blob = nullptr;
3014    _linked = false;
3015 }
3016 
3017 class CopyAdapterTableToArchive : StackObj {
3018 private:
3019   CompactHashtableWriter* _writer;
3020   ArchiveBuilder* _builder;
3021 public:
3022   CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
3023                                                              _builder(ArchiveBuilder::current())
3024   {}
3025 
3026   bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
3027     LogStreamHandle(Trace, aot) lsh;
3028     if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
3029       assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
3030       AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
3031       assert(buffered_fp != nullptr,"sanity check");
3032       AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
3033       assert(buffered_entry != nullptr,"sanity check");
3034 
3035       uint hash = fp->compute_hash();
3036       u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
3037       _writer->add(hash, delta);
3038       if (lsh.is_enabled()) {
3039         address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
3040         address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
3041         log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
3042       }
3043     } else {
3044       if (lsh.is_enabled()) {
3045         log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
3046       }
3047     }
3048     return true;
3049   }
3050 };
3051 
3052 void AdapterHandlerLibrary::dump_aot_adapter_table() {
3053   CompactHashtableStats stats;
3054   CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
3055   CopyAdapterTableToArchive copy(&writer);
3056   _adapter_handler_table->iterate(&copy);
3057   writer.dump(&_aot_adapter_handler_table, "archived adapter table");
3058 }
3059 
3060 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
3061   _aot_adapter_handler_table.serialize_header(soc);
3062 }
3063 
3064 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
3065 #ifdef ASSERT
3066   if (TestAOTAdapterLinkFailure) {
3067     return;
3068   }
3069 #endif
3070   lookup_aot_cache(handler);
3071 #ifndef PRODUCT
3072   // debugging support
3073   if (PrintAdapterHandlers || PrintStubCode) {
3074     print_adapter_handler_info(tty, handler);
3075   }
3076 #endif
3077 }
3078 
3079 // This method is used during production run to link archived adapters (stored in AOT Cache)
3080 // to their code in AOT Code Cache
3081 void AdapterHandlerEntry::link() {
3082   ResourceMark rm;
3083   assert(_fingerprint != nullptr, "_fingerprint must not be null");
3084   bool generate_code = false;
3085   // Generate code only if AOTCodeCache is not available, or
3086   // caching adapters is disabled, or we fail to link
3087   // the AdapterHandlerEntry to its code in the AOTCodeCache
3088   if (AOTCodeCache::is_using_adapter()) {
3089     AdapterHandlerLibrary::link_aot_adapter_handler(this);
3090     // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
3091     if (_adapter_blob == nullptr) {
3092       log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
3093       generate_code = true;
3094     }
3095   } else {
3096     generate_code = true;
3097   }
3098   if (generate_code) {
3099     int nargs;
3100     BasicType* bt = _fingerprint->as_basic_type(nargs);
3101     if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) {
3102       // Don't throw exceptions during VM initialization because java.lang.* classes
3103       // might not have been initialized, causing problems when constructing the
3104       // Java exception object.
3105       vm_exit_during_initialization("Out of space in CodeCache for adapters");
3106     }
3107   }
3108   if (_adapter_blob != nullptr) {
3109     post_adapter_creation(this);
3110   }
3111   assert(_linked, "AdapterHandlerEntry must now be linked");
3112 }
3113 
3114 void AdapterHandlerLibrary::link_aot_adapters() {
3115   uint max_id = 0;
3116   assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3117   /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3118    * That implies adapter ids of the adapters in the cache may not be contiguous.
3119    * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3120    * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3121    * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3122    */
3123   _aot_adapter_handler_table.iterate([&](AdapterHandlerEntry* entry) {
3124     assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3125     entry->link();
3126     max_id = MAX2(max_id, entry->id());
3127   });
3128   // Set adapter id to the maximum id found in the AOTCache
3129   assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3130   _id_counter = max_id;
3131 }
3132 
3133 // This method is called during production run to lookup simple adapters
3134 // in the archived adapter handler table
3135 void AdapterHandlerLibrary::lookup_simple_adapters() {
3136   assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3137 
3138   MutexLocker mu(AdapterHandlerLibrary_lock);
3139   _no_arg_handler = lookup(0, nullptr);
3140 
3141   BasicType obj_args[] = { T_OBJECT };
3142   _obj_arg_handler = lookup(1, obj_args);
3143 
3144   BasicType int_args[] = { T_INT };
3145   _int_arg_handler = lookup(1, int_args);
3146 
3147   BasicType obj_int_args[] = { T_OBJECT, T_INT };
3148   _obj_int_arg_handler = lookup(2, obj_int_args);
3149 
3150   BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3151   _obj_obj_arg_handler = lookup(2, obj_obj_args);
3152 
3153   assert(_no_arg_handler != nullptr &&
3154          _obj_arg_handler != nullptr &&
3155          _int_arg_handler != nullptr &&
3156          _obj_int_arg_handler != nullptr &&
3157          _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3158   assert(_no_arg_handler->is_linked() &&
3159          _obj_arg_handler->is_linked() &&
3160          _int_arg_handler->is_linked() &&
3161          _obj_int_arg_handler->is_linked() &&
3162          _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3163 }
3164 #endif // INCLUDE_CDS
3165 
3166 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3167   LogStreamHandle(Trace, aot) lsh;
3168   if (lsh.is_enabled()) {
3169     lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3170     lsh.cr();
3171   }
3172   it->push(&_fingerprint);
3173 }
3174 
3175 AdapterHandlerEntry::~AdapterHandlerEntry() {
3176   if (_fingerprint != nullptr) {
3177     AdapterFingerPrint::deallocate(_fingerprint);
3178     _fingerprint = nullptr;
3179   }
3180 #ifdef ASSERT
3181   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3182 #endif
3183   FreeHeap(this);
3184 }
3185 
3186 
3187 #ifdef ASSERT
3188 // Capture the code before relocation so that it can be compared
3189 // against other versions.  If the code is captured after relocation
3190 // then relative instructions won't be equivalent.
3191 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3192   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3193   _saved_code_length = length;
3194   memcpy(_saved_code, buffer, length);
3195 }
3196 
3197 
3198 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3199   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3200 
3201   if (other->_saved_code_length != _saved_code_length) {
3202     return false;
3203   }
3204 
3205   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3206 }
3207 #endif
3208 
3209 
3210 /**
3211  * Create a native wrapper for this native method.  The wrapper converts the
3212  * Java-compiled calling convention to the native convention, handles
3213  * arguments, and transitions to native.  On return from the native we transition
3214  * back to java blocking if a safepoint is in progress.
3215  */
3216 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3217   ResourceMark rm;
3218   nmethod* nm = nullptr;
3219 
3220   // Check if memory should be freed before allocation
3221   CodeCache::gc_on_allocation();
3222 
3223   assert(method->is_native(), "must be native");
3224   assert(method->is_special_native_intrinsic() ||
3225          method->has_native_function(), "must have something valid to call!");
3226 
3227   {
3228     // Perform the work while holding the lock, but perform any printing outside the lock
3229     MutexLocker mu(AdapterHandlerLibrary_lock);
3230     // See if somebody beat us to it
3231     if (method->code() != nullptr) {
3232       return;
3233     }
3234 
3235     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3236     assert(compile_id > 0, "Must generate native wrapper");
3237 
3238 
3239     ResourceMark rm;
3240     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3241     if (buf != nullptr) {
3242       CodeBuffer buffer(buf);
3243 
3244       if (method->is_continuation_enter_intrinsic()) {
3245         buffer.initialize_stubs_size(192);
3246       }
3247 
3248       struct { double data[20]; } locs_buf;
3249       struct { double data[20]; } stubs_locs_buf;
3250       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3251 #if defined(AARCH64) || defined(PPC64)
3252       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3253       // in the constant pool to ensure ordering between the barrier and oops
3254       // accesses. For native_wrappers we need a constant.
3255       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3256       // static java call that is resolved in the runtime.
3257       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3258         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3259       }
3260 #endif
3261       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3262       MacroAssembler _masm(&buffer);
3263 
3264       // Fill in the signature array, for the calling-convention call.
3265       const int total_args_passed = method->size_of_parameters();
3266 
3267       VMRegPair stack_regs[16];
3268       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3269 
3270       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3271                               method->is_static(), total_args_passed);
3272       BasicType* sig_bt = si.basic_types();
3273       assert(si.slots() == total_args_passed, "");
3274       BasicType ret_type = si.return_type();
3275 
3276       // Now get the compiled-Java arguments layout.
3277       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3278 
3279       // Generate the compiled-to-native wrapper code
3280       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3281 
3282       if (nm != nullptr) {
3283         {
3284           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3285           if (nm->make_in_use()) {
3286             method->set_code(method, nm);
3287           }
3288         }
3289 
3290         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3291         if (directive->PrintAssemblyOption) {
3292           nm->print_code();
3293         }
3294         DirectivesStack::release(directive);
3295       }
3296     }
3297   } // Unlock AdapterHandlerLibrary_lock
3298 
3299 
3300   // Install the generated code.
3301   if (nm != nullptr) {
3302     const char *msg = method->is_static() ? "(static)" : "";
3303     CompileTask::print_ul(nm, msg);
3304     if (PrintCompilation) {
3305       ttyLocker ttyl;
3306       CompileTask::print(tty, nm, msg);
3307     }
3308     nm->post_compiled_method_load_event();
3309   }
3310 }
3311 
3312 // -------------------------------------------------------------------------
3313 // Java-Java calling convention
3314 // (what you use when Java calls Java)
3315 
3316 //------------------------------name_for_receiver----------------------------------
3317 // For a given signature, return the VMReg for parameter 0.
3318 VMReg SharedRuntime::name_for_receiver() {
3319   VMRegPair regs;
3320   BasicType sig_bt = T_OBJECT;
3321   (void) java_calling_convention(&sig_bt, &regs, 1);
3322   // Return argument 0 register.  In the LP64 build pointers
3323   // take 2 registers, but the VM wants only the 'main' name.
3324   return regs.first();
3325 }
3326 
3327 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3328   // This method is returning a data structure allocating as a
3329   // ResourceObject, so do not put any ResourceMarks in here.
3330 
3331   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3332   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3333   int cnt = 0;
3334   if (has_receiver) {
3335     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3336   }
3337 
3338   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3339     BasicType type = ss.type();
3340     sig_bt[cnt++] = type;
3341     if (is_double_word_type(type))
3342       sig_bt[cnt++] = T_VOID;
3343   }
3344 
3345   if (has_appendix) {
3346     sig_bt[cnt++] = T_OBJECT;
3347   }
3348 
3349   assert(cnt < 256, "grow table size");
3350 
3351   int comp_args_on_stack;
3352   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3353 
3354   // the calling convention doesn't count out_preserve_stack_slots so
3355   // we must add that in to get "true" stack offsets.
3356 
3357   if (comp_args_on_stack) {
3358     for (int i = 0; i < cnt; i++) {
3359       VMReg reg1 = regs[i].first();
3360       if (reg1->is_stack()) {
3361         // Yuck
3362         reg1 = reg1->bias(out_preserve_stack_slots());
3363       }
3364       VMReg reg2 = regs[i].second();
3365       if (reg2->is_stack()) {
3366         // Yuck
3367         reg2 = reg2->bias(out_preserve_stack_slots());
3368       }
3369       regs[i].set_pair(reg2, reg1);
3370     }
3371   }
3372 
3373   // results
3374   *arg_size = cnt;
3375   return regs;
3376 }
3377 
3378 // OSR Migration Code
3379 //
3380 // This code is used convert interpreter frames into compiled frames.  It is
3381 // called from very start of a compiled OSR nmethod.  A temp array is
3382 // allocated to hold the interesting bits of the interpreter frame.  All
3383 // active locks are inflated to allow them to move.  The displaced headers and
3384 // active interpreter locals are copied into the temp buffer.  Then we return
3385 // back to the compiled code.  The compiled code then pops the current
3386 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3387 // copies the interpreter locals and displaced headers where it wants.
3388 // Finally it calls back to free the temp buffer.
3389 //
3390 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3391 
3392 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3393   assert(current == JavaThread::current(), "pre-condition");
3394   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3395   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3396   // frame. The stack watermark code below ensures that the interpreted frame is processed
3397   // before it gets unwound. This is helpful as the size of the compiled frame could be
3398   // larger than the interpreted frame, which could result in the new frame not being
3399   // processed correctly.
3400   StackWatermarkSet::before_unwind(current);
3401 
3402   //
3403   // This code is dependent on the memory layout of the interpreter local
3404   // array and the monitors. On all of our platforms the layout is identical
3405   // so this code is shared. If some platform lays the their arrays out
3406   // differently then this code could move to platform specific code or
3407   // the code here could be modified to copy items one at a time using
3408   // frame accessor methods and be platform independent.
3409 
3410   frame fr = current->last_frame();
3411   assert(fr.is_interpreted_frame(), "");
3412   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3413 
3414   // Figure out how many monitors are active.
3415   int active_monitor_count = 0;
3416   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3417        kptr < fr.interpreter_frame_monitor_begin();
3418        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3419     if (kptr->obj() != nullptr) active_monitor_count++;
3420   }
3421 
3422   // QQQ we could place number of active monitors in the array so that compiled code
3423   // could double check it.
3424 
3425   Method* moop = fr.interpreter_frame_method();
3426   int max_locals = moop->max_locals();
3427   // Allocate temp buffer, 1 word per local & 2 per active monitor
3428   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3429   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3430 
3431   // Copy the locals.  Order is preserved so that loading of longs works.
3432   // Since there's no GC I can copy the oops blindly.
3433   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3434   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3435                        (HeapWord*)&buf[0],
3436                        max_locals);
3437 
3438   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3439   int i = max_locals;
3440   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3441        kptr2 < fr.interpreter_frame_monitor_begin();
3442        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3443     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3444       BasicLock *lock = kptr2->lock();
3445       if (UseObjectMonitorTable) {
3446         buf[i] = (intptr_t)lock->object_monitor_cache();
3447       }
3448 #ifdef ASSERT
3449       else {
3450         buf[i] = badDispHeaderOSR;
3451       }
3452 #endif
3453       i++;
3454       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3455     }
3456   }
3457   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3458 
3459   RegisterMap map(current,
3460                   RegisterMap::UpdateMap::skip,
3461                   RegisterMap::ProcessFrames::include,
3462                   RegisterMap::WalkContinuation::skip);
3463   frame sender = fr.sender(&map);
3464   if (sender.is_interpreted_frame()) {
3465     current->push_cont_fastpath(sender.sp());
3466   }
3467 
3468   return buf;
3469 JRT_END
3470 
3471 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3472   FREE_C_HEAP_ARRAY(intptr_t, buf);
3473 JRT_END
3474 
3475 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3476   bool found = false;
3477 #if INCLUDE_CDS
3478   if (AOTCodeCache::is_using_adapter()) {
3479     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3480       return (found = (b == CodeCache::find_blob(handler->get_i2c_entry())));
3481     };
3482     _aot_adapter_handler_table.iterate(findblob_archived_table);
3483   }
3484 #endif // INCLUDE_CDS
3485   if (!found) {
3486     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3487       return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3488     };
3489     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3490     _adapter_handler_table->iterate(findblob_runtime_table);
3491   }
3492   return found;
3493 }
3494 
3495 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3496   return handler->fingerprint()->as_basic_args_string();
3497 }
3498 
3499 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3500   return handler->id();
3501 }
3502 
3503 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3504   bool found = false;
3505 #if INCLUDE_CDS
3506   if (AOTCodeCache::is_using_adapter()) {
3507     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3508       if (b == CodeCache::find_blob(handler->get_i2c_entry())) {
3509         found = true;
3510         st->print("Adapter for signature: ");
3511         handler->print_adapter_on(st);
3512         return true;
3513       } else {
3514         return false; // keep looking
3515       }
3516     };
3517     _aot_adapter_handler_table.iterate(findblob_archived_table);
3518   }
3519 #endif // INCLUDE_CDS
3520   if (!found) {
3521     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3522       if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3523         found = true;
3524         st->print("Adapter for signature: ");
3525         a->print_adapter_on(st);
3526         return true;
3527       } else {
3528         return false; // keep looking
3529       }
3530     };
3531     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3532     _adapter_handler_table->iterate(findblob_runtime_table);
3533   }
3534   assert(found, "Should have found handler");
3535 }
3536 
3537 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3538   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3539   if (adapter_blob() != nullptr) {
3540     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3541     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3542     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3543     if (get_c2i_no_clinit_check_entry() != nullptr) {
3544       st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3545     }
3546   }
3547   st->cr();
3548 }
3549 
3550 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3551   assert(current == JavaThread::current(), "pre-condition");
3552   StackOverflow* overflow_state = current->stack_overflow_state();
3553   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3554   overflow_state->set_reserved_stack_activation(current->stack_base());
3555 JRT_END
3556 
3557 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3558   ResourceMark rm(current);
3559   frame activation;
3560   nmethod* nm = nullptr;
3561   int count = 1;
3562 
3563   assert(fr.is_java_frame(), "Must start on Java frame");
3564 
3565   RegisterMap map(JavaThread::current(),
3566                   RegisterMap::UpdateMap::skip,
3567                   RegisterMap::ProcessFrames::skip,
3568                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3569   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3570     if (!fr.is_java_frame()) {
3571       continue;
3572     }
3573 
3574     Method* method = nullptr;
3575     bool found = false;
3576     if (fr.is_interpreted_frame()) {
3577       method = fr.interpreter_frame_method();
3578       if (method != nullptr && method->has_reserved_stack_access()) {
3579         found = true;
3580       }
3581     } else {
3582       CodeBlob* cb = fr.cb();
3583       if (cb != nullptr && cb->is_nmethod()) {
3584         nm = cb->as_nmethod();
3585         method = nm->method();
3586         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3587           method = sd->method();
3588           if (method != nullptr && method->has_reserved_stack_access()) {
3589             found = true;
3590           }
3591         }
3592       }
3593     }
3594     if (found) {
3595       activation = fr;
3596       warning("Potentially dangerous stack overflow in "
3597               "ReservedStackAccess annotated method %s [%d]",
3598               method->name_and_sig_as_C_string(), count++);
3599       EventReservedStackActivation event;
3600       if (event.should_commit()) {
3601         event.set_method(method);
3602         event.commit();
3603       }
3604     }
3605   }
3606   return activation;
3607 }
3608 
3609 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3610   // After any safepoint, just before going back to compiled code,
3611   // we inform the GC that we will be doing initializing writes to
3612   // this object in the future without emitting card-marks, so
3613   // GC may take any compensating steps.
3614 
3615   oop new_obj = current->vm_result_oop();
3616   if (new_obj == nullptr) return;
3617 
3618   BarrierSet *bs = BarrierSet::barrier_set();
3619   bs->on_slowpath_allocation_exit(current, new_obj);
3620 }