1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "cds/cdsConfig.hpp" 28 #include "classfile/classLoader.hpp" 29 #include "classfile/javaClasses.inline.hpp" 30 #include "classfile/stringTable.hpp" 31 #include "classfile/vmClasses.hpp" 32 #include "classfile/vmSymbols.hpp" 33 #include "code/SCCache.hpp" 34 #include "code/codeCache.hpp" 35 #include "code/compiledIC.hpp" 36 #include "code/nmethod.inline.hpp" 37 #include "code/scopeDesc.hpp" 38 #include "code/vtableStubs.hpp" 39 #include "compiler/abstractCompiler.hpp" 40 #include "compiler/compileBroker.hpp" 41 #include "compiler/disassembler.hpp" 42 #include "gc/shared/barrierSet.hpp" 43 #include "gc/shared/collectedHeap.hpp" 44 #include "interpreter/interpreter.hpp" 45 #include "interpreter/interpreterRuntime.hpp" 46 #include "jvm.h" 47 #include "jfr/jfrEvents.hpp" 48 #include "logging/log.hpp" 49 #include "memory/resourceArea.hpp" 50 #include "memory/universe.hpp" 51 #include "metaprogramming/primitiveConversions.hpp" 52 #include "oops/klass.hpp" 53 #include "oops/method.inline.hpp" 54 #include "oops/objArrayKlass.hpp" 55 #include "oops/oop.inline.hpp" 56 #include "prims/forte.hpp" 57 #include "prims/jvmtiExport.hpp" 58 #include "prims/jvmtiThreadState.hpp" 59 #include "prims/methodHandles.hpp" 60 #include "prims/nativeLookup.hpp" 61 #include "runtime/arguments.hpp" 62 #include "runtime/atomic.hpp" 63 #include "runtime/basicLock.inline.hpp" 64 #include "runtime/frame.inline.hpp" 65 #include "runtime/handles.inline.hpp" 66 #include "runtime/init.hpp" 67 #include "runtime/interfaceSupport.inline.hpp" 68 #include "runtime/java.hpp" 69 #include "runtime/javaCalls.hpp" 70 #include "runtime/jniHandles.inline.hpp" 71 #include "runtime/perfData.inline.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/stubRoutines.hpp" 75 #include "runtime/synchronizer.inline.hpp" 76 #include "runtime/timerTrace.hpp" 77 #include "runtime/vframe.inline.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "runtime/vm_version.hpp" 80 #include "services/management.hpp" 81 #include "utilities/copy.hpp" 82 #include "utilities/dtrace.hpp" 83 #include "utilities/events.hpp" 84 #include "utilities/globalDefinitions.hpp" 85 #include "utilities/resourceHash.hpp" 86 #include "utilities/macros.hpp" 87 #include "utilities/xmlstream.hpp" 88 #ifdef COMPILER1 89 #include "c1/c1_Runtime1.hpp" 90 #endif 91 #if INCLUDE_JFR 92 #include "jfr/jfr.hpp" 93 #endif 94 95 // Shared runtime stub routines reside in their own unique blob with a 96 // single entry point 97 98 99 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 100 type SharedRuntime::BLOB_FIELD_NAME(name); 101 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 102 #undef SHARED_STUB_FIELD_DEFINE 103 104 nmethod* SharedRuntime::_cont_doYield_stub; 105 106 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr; 107 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time = nullptr; 108 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time = nullptr; 109 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr; 110 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time = nullptr; 111 112 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 113 const char *SharedRuntime::_stub_names[] = { 114 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 115 }; 116 117 //----------------------------generate_stubs----------------------------------- 118 void SharedRuntime::generate_initial_stubs() { 119 // Build this early so it's available for the interpreter. 120 _throw_StackOverflowError_blob = 121 generate_throw_exception(SharedStubId::throw_StackOverflowError_id, 122 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 123 } 124 125 void SharedRuntime::generate_stubs() { 126 _wrong_method_blob = 127 generate_resolve_blob(SharedStubId::wrong_method_id, 128 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 129 _wrong_method_abstract_blob = 130 generate_resolve_blob(SharedStubId::wrong_method_abstract_id, 131 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 132 _ic_miss_blob = 133 generate_resolve_blob(SharedStubId::ic_miss_id, 134 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 135 _resolve_opt_virtual_call_blob = 136 generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id, 137 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 138 _resolve_virtual_call_blob = 139 generate_resolve_blob(SharedStubId::resolve_virtual_call_id, 140 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 141 _resolve_static_call_blob = 142 generate_resolve_blob(SharedStubId::resolve_static_call_id, 143 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 144 145 _throw_delayed_StackOverflowError_blob = 146 generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id, 147 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 148 149 _throw_AbstractMethodError_blob = 150 generate_throw_exception(SharedStubId::throw_AbstractMethodError_id, 151 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 152 153 _throw_IncompatibleClassChangeError_blob = 154 generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id, 155 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 156 157 _throw_NullPointerException_at_call_blob = 158 generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id, 159 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 160 161 #if COMPILER2_OR_JVMCI 162 // Vectors are generated only by C2 and JVMCI. 163 bool support_wide = is_wide_vector(MaxVectorSize); 164 if (support_wide) { 165 _polling_page_vectors_safepoint_handler_blob = 166 generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id, 167 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 168 } 169 #endif // COMPILER2_OR_JVMCI 170 _polling_page_safepoint_handler_blob = 171 generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id, 172 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 173 _polling_page_return_handler_blob = 174 generate_handler_blob(SharedStubId::polling_page_return_handler_id, 175 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 176 177 generate_deopt_blob(); 178 179 if (UsePerfData) { 180 EXCEPTION_MARK; 181 NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call"); 182 NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time, SUN_CI, "resovle_virtual_call"); 183 NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time, SUN_CI, "resovle_static_call"); 184 NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method"); 185 NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time , SUN_CI, "ic_miss"); 186 if (HAS_PENDING_EXCEPTION) { 187 vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly"); 188 } 189 } 190 } 191 192 void SharedRuntime::init_adapter_library() { 193 AdapterHandlerLibrary::initialize(); 194 } 195 196 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) { 197 st->print(" %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us()); 198 if (TraceThreadTime) { 199 st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us()); 200 } 201 st->print(" / %5d events", cnt); 202 st->cr(); 203 } 204 205 void SharedRuntime::print_counters_on(outputStream* st) { 206 st->print_cr("SharedRuntime:"); 207 if (UsePerfData) { 208 print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr); 209 print_counter_on(st, "resolve_virtual_call:", _perf_resolve_virtual_total_time, _resolve_virtual_ctr); 210 print_counter_on(st, "resolve_static_call:", _perf_resolve_static_total_time, _resolve_static_ctr); 211 print_counter_on(st, "handle_wrong_method:", _perf_handle_wrong_method_total_time, _wrong_method_ctr); 212 print_counter_on(st, "ic_miss:", _perf_ic_miss_total_time, _ic_miss_ctr); 213 214 jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() + 215 _perf_resolve_virtual_total_time->elapsed_counter_value() + 216 _perf_resolve_static_total_time->elapsed_counter_value() + 217 _perf_handle_wrong_method_total_time->elapsed_counter_value() + 218 _perf_ic_miss_total_time->elapsed_counter_value()); 219 st->print("Total: " JLONG_FORMAT_W(5) "us", total_elapsed_time_us); 220 if (TraceThreadTime) { 221 jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() + 222 _perf_resolve_virtual_total_time->thread_counter_value() + 223 _perf_resolve_static_total_time->thread_counter_value() + 224 _perf_handle_wrong_method_total_time->thread_counter_value() + 225 _perf_ic_miss_total_time->thread_counter_value()); 226 st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us); 227 228 } 229 st->cr(); 230 } else { 231 st->print_cr(" no data (UsePerfData is turned off)"); 232 } 233 } 234 235 #if INCLUDE_JFR 236 //------------------------------generate jfr runtime stubs ------ 237 void SharedRuntime::generate_jfr_stubs() { 238 ResourceMark rm; 239 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 240 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 241 242 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 243 _jfr_return_lease_blob = generate_jfr_return_lease(); 244 } 245 246 #endif // INCLUDE_JFR 247 248 #include <math.h> 249 250 // Implementation of SharedRuntime 251 252 // For statistics 253 uint SharedRuntime::_ic_miss_ctr = 0; 254 uint SharedRuntime::_wrong_method_ctr = 0; 255 uint SharedRuntime::_resolve_static_ctr = 0; 256 uint SharedRuntime::_resolve_virtual_ctr = 0; 257 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 258 259 #ifndef PRODUCT 260 uint SharedRuntime::_implicit_null_throws = 0; 261 uint SharedRuntime::_implicit_div0_throws = 0; 262 263 int64_t SharedRuntime::_nof_normal_calls = 0; 264 int64_t SharedRuntime::_nof_inlined_calls = 0; 265 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 266 int64_t SharedRuntime::_nof_static_calls = 0; 267 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 268 int64_t SharedRuntime::_nof_interface_calls = 0; 269 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 270 271 uint SharedRuntime::_new_instance_ctr=0; 272 uint SharedRuntime::_new_array_ctr=0; 273 uint SharedRuntime::_multi2_ctr=0; 274 uint SharedRuntime::_multi3_ctr=0; 275 uint SharedRuntime::_multi4_ctr=0; 276 uint SharedRuntime::_multi5_ctr=0; 277 uint SharedRuntime::_mon_enter_stub_ctr=0; 278 uint SharedRuntime::_mon_exit_stub_ctr=0; 279 uint SharedRuntime::_mon_enter_ctr=0; 280 uint SharedRuntime::_mon_exit_ctr=0; 281 uint SharedRuntime::_partial_subtype_ctr=0; 282 uint SharedRuntime::_jbyte_array_copy_ctr=0; 283 uint SharedRuntime::_jshort_array_copy_ctr=0; 284 uint SharedRuntime::_jint_array_copy_ctr=0; 285 uint SharedRuntime::_jlong_array_copy_ctr=0; 286 uint SharedRuntime::_oop_array_copy_ctr=0; 287 uint SharedRuntime::_checkcast_array_copy_ctr=0; 288 uint SharedRuntime::_unsafe_array_copy_ctr=0; 289 uint SharedRuntime::_generic_array_copy_ctr=0; 290 uint SharedRuntime::_slow_array_copy_ctr=0; 291 uint SharedRuntime::_find_handler_ctr=0; 292 uint SharedRuntime::_rethrow_ctr=0; 293 uint SharedRuntime::_unsafe_set_memory_ctr=0; 294 295 int SharedRuntime::_ICmiss_index = 0; 296 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 297 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 298 299 300 void SharedRuntime::trace_ic_miss(address at) { 301 for (int i = 0; i < _ICmiss_index; i++) { 302 if (_ICmiss_at[i] == at) { 303 _ICmiss_count[i]++; 304 return; 305 } 306 } 307 int index = _ICmiss_index++; 308 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 309 _ICmiss_at[index] = at; 310 _ICmiss_count[index] = 1; 311 } 312 313 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) { 314 if (ICMissHistogram) { 315 st->print_cr("IC Miss Histogram:"); 316 int tot_misses = 0; 317 for (int i = 0; i < _ICmiss_index; i++) { 318 st->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 319 tot_misses += _ICmiss_count[i]; 320 } 321 st->print_cr("Total IC misses: %7d", tot_misses); 322 } 323 } 324 #endif // !PRODUCT 325 326 327 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 328 return x * y; 329 JRT_END 330 331 332 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 333 if (x == min_jlong && y == CONST64(-1)) { 334 return x; 335 } else { 336 return x / y; 337 } 338 JRT_END 339 340 341 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 342 if (x == min_jlong && y == CONST64(-1)) { 343 return 0; 344 } else { 345 return x % y; 346 } 347 JRT_END 348 349 350 #ifdef _WIN64 351 const juint float_sign_mask = 0x7FFFFFFF; 352 const juint float_infinity = 0x7F800000; 353 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 354 const julong double_infinity = CONST64(0x7FF0000000000000); 355 #endif 356 357 #if !defined(X86) 358 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 359 #ifdef _WIN64 360 // 64-bit Windows on amd64 returns the wrong values for 361 // infinity operands. 362 juint xbits = PrimitiveConversions::cast<juint>(x); 363 juint ybits = PrimitiveConversions::cast<juint>(y); 364 // x Mod Infinity == x unless x is infinity 365 if (((xbits & float_sign_mask) != float_infinity) && 366 ((ybits & float_sign_mask) == float_infinity) ) { 367 return x; 368 } 369 return ((jfloat)fmod_winx64((double)x, (double)y)); 370 #else 371 return ((jfloat)fmod((double)x,(double)y)); 372 #endif 373 JRT_END 374 375 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 376 #ifdef _WIN64 377 julong xbits = PrimitiveConversions::cast<julong>(x); 378 julong ybits = PrimitiveConversions::cast<julong>(y); 379 // x Mod Infinity == x unless x is infinity 380 if (((xbits & double_sign_mask) != double_infinity) && 381 ((ybits & double_sign_mask) == double_infinity) ) { 382 return x; 383 } 384 return ((jdouble)fmod_winx64((double)x, (double)y)); 385 #else 386 return ((jdouble)fmod((double)x,(double)y)); 387 #endif 388 JRT_END 389 #endif // !X86 390 391 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 392 return (jfloat)x; 393 JRT_END 394 395 #ifdef __SOFTFP__ 396 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 397 return x + y; 398 JRT_END 399 400 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 401 return x - y; 402 JRT_END 403 404 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 405 return x * y; 406 JRT_END 407 408 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 409 return x / y; 410 JRT_END 411 412 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 413 return x + y; 414 JRT_END 415 416 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 417 return x - y; 418 JRT_END 419 420 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 421 return x * y; 422 JRT_END 423 424 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 425 return x / y; 426 JRT_END 427 428 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 429 return (jdouble)x; 430 JRT_END 431 432 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 433 return (jdouble)x; 434 JRT_END 435 436 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 437 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 438 JRT_END 439 440 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 441 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 442 JRT_END 443 444 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 445 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 446 JRT_END 447 448 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 449 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 450 JRT_END 451 452 // Functions to return the opposite of the aeabi functions for nan. 453 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 454 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 455 JRT_END 456 457 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 458 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 459 JRT_END 460 461 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 462 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 463 JRT_END 464 465 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 466 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 467 JRT_END 468 469 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 470 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 471 JRT_END 472 473 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 474 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 475 JRT_END 476 477 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 478 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 479 JRT_END 480 481 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 482 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 483 JRT_END 484 485 // Intrinsics make gcc generate code for these. 486 float SharedRuntime::fneg(float f) { 487 return -f; 488 } 489 490 double SharedRuntime::dneg(double f) { 491 return -f; 492 } 493 494 #endif // __SOFTFP__ 495 496 #if defined(__SOFTFP__) || defined(E500V2) 497 // Intrinsics make gcc generate code for these. 498 double SharedRuntime::dabs(double f) { 499 return (f <= (double)0.0) ? (double)0.0 - f : f; 500 } 501 502 #endif 503 504 #if defined(__SOFTFP__) || defined(PPC) 505 double SharedRuntime::dsqrt(double f) { 506 return sqrt(f); 507 } 508 #endif 509 510 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 511 if (g_isnan(x)) 512 return 0; 513 if (x >= (jfloat) max_jint) 514 return max_jint; 515 if (x <= (jfloat) min_jint) 516 return min_jint; 517 return (jint) x; 518 JRT_END 519 520 521 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 522 if (g_isnan(x)) 523 return 0; 524 if (x >= (jfloat) max_jlong) 525 return max_jlong; 526 if (x <= (jfloat) min_jlong) 527 return min_jlong; 528 return (jlong) x; 529 JRT_END 530 531 532 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 533 if (g_isnan(x)) 534 return 0; 535 if (x >= (jdouble) max_jint) 536 return max_jint; 537 if (x <= (jdouble) min_jint) 538 return min_jint; 539 return (jint) x; 540 JRT_END 541 542 543 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 544 if (g_isnan(x)) 545 return 0; 546 if (x >= (jdouble) max_jlong) 547 return max_jlong; 548 if (x <= (jdouble) min_jlong) 549 return min_jlong; 550 return (jlong) x; 551 JRT_END 552 553 554 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 555 return (jfloat)x; 556 JRT_END 557 558 559 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 560 return (jfloat)x; 561 JRT_END 562 563 564 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 565 return (jdouble)x; 566 JRT_END 567 568 569 // Exception handling across interpreter/compiler boundaries 570 // 571 // exception_handler_for_return_address(...) returns the continuation address. 572 // The continuation address is the entry point of the exception handler of the 573 // previous frame depending on the return address. 574 575 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 576 // Note: This is called when we have unwound the frame of the callee that did 577 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 578 // Notably, the stack is not walkable at this point, and hence the check must 579 // be deferred until later. Specifically, any of the handlers returned here in 580 // this function, will get dispatched to, and call deferred checks to 581 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 582 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 583 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 584 585 // Reset method handle flag. 586 current->set_is_method_handle_return(false); 587 588 #if INCLUDE_JVMCI 589 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 590 // and other exception handler continuations do not read it 591 current->set_exception_pc(nullptr); 592 #endif // INCLUDE_JVMCI 593 594 if (Continuation::is_return_barrier_entry(return_address)) { 595 return StubRoutines::cont_returnBarrierExc(); 596 } 597 598 // The fastest case first 599 CodeBlob* blob = CodeCache::find_blob(return_address); 600 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 601 if (nm != nullptr) { 602 // Set flag if return address is a method handle call site. 603 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 604 // native nmethods don't have exception handlers 605 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 606 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 607 if (nm->is_deopt_pc(return_address)) { 608 // If we come here because of a stack overflow, the stack may be 609 // unguarded. Reguard the stack otherwise if we return to the 610 // deopt blob and the stack bang causes a stack overflow we 611 // crash. 612 StackOverflow* overflow_state = current->stack_overflow_state(); 613 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 614 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 615 overflow_state->set_reserved_stack_activation(current->stack_base()); 616 } 617 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 618 // The deferred StackWatermarkSet::after_unwind check will be performed in 619 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 620 return SharedRuntime::deopt_blob()->unpack_with_exception(); 621 } else { 622 // The deferred StackWatermarkSet::after_unwind check will be performed in 623 // * OptoRuntime::handle_exception_C_helper for C2 code 624 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 625 return nm->exception_begin(); 626 } 627 } 628 629 // Entry code 630 if (StubRoutines::returns_to_call_stub(return_address)) { 631 // The deferred StackWatermarkSet::after_unwind check will be performed in 632 // JavaCallWrapper::~JavaCallWrapper 633 return StubRoutines::catch_exception_entry(); 634 } 635 if (blob != nullptr && blob->is_upcall_stub()) { 636 return StubRoutines::upcall_stub_exception_handler(); 637 } 638 // Interpreted code 639 if (Interpreter::contains(return_address)) { 640 // The deferred StackWatermarkSet::after_unwind check will be performed in 641 // InterpreterRuntime::exception_handler_for_exception 642 return Interpreter::rethrow_exception_entry(); 643 } 644 645 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 646 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 647 648 #ifndef PRODUCT 649 { ResourceMark rm; 650 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 651 os::print_location(tty, (intptr_t)return_address); 652 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 653 tty->print_cr("b) other problem"); 654 } 655 #endif // PRODUCT 656 ShouldNotReachHere(); 657 return nullptr; 658 } 659 660 661 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 662 return raw_exception_handler_for_return_address(current, return_address); 663 JRT_END 664 665 666 address SharedRuntime::get_poll_stub(address pc) { 667 address stub; 668 // Look up the code blob 669 CodeBlob *cb = CodeCache::find_blob(pc); 670 671 // Should be an nmethod 672 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 673 674 // Look up the relocation information 675 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 676 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 677 678 #ifdef ASSERT 679 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 680 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 681 Disassembler::decode(cb); 682 fatal("Only polling locations are used for safepoint"); 683 } 684 #endif 685 686 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 687 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 688 if (at_poll_return) { 689 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 690 "polling page return stub not created yet"); 691 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 692 } else if (has_wide_vectors) { 693 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 694 "polling page vectors safepoint stub not created yet"); 695 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 696 } else { 697 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 698 "polling page safepoint stub not created yet"); 699 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 700 } 701 log_debug(safepoint)("... found polling page %s exception at pc = " 702 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 703 at_poll_return ? "return" : "loop", 704 (intptr_t)pc, (intptr_t)stub); 705 return stub; 706 } 707 708 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 709 if (JvmtiExport::can_post_on_exceptions()) { 710 vframeStream vfst(current, true); 711 methodHandle method = methodHandle(current, vfst.method()); 712 address bcp = method()->bcp_from(vfst.bci()); 713 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 714 } 715 716 #if INCLUDE_JVMCI 717 if (EnableJVMCI) { 718 vframeStream vfst(current, true); 719 methodHandle method = methodHandle(current, vfst.method()); 720 int bci = vfst.bci(); 721 MethodData* trap_mdo = method->method_data(); 722 if (trap_mdo != nullptr) { 723 // Set exception_seen if the exceptional bytecode is an invoke 724 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 725 if (call.is_valid()) { 726 ResourceMark rm(current); 727 728 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 729 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 730 731 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 732 if (pdata != nullptr && pdata->is_BitData()) { 733 BitData* bit_data = (BitData*) pdata; 734 bit_data->set_exception_seen(); 735 } 736 } 737 } 738 } 739 #endif 740 741 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 742 } 743 744 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 745 Handle h_exception = Exceptions::new_exception(current, name, message); 746 throw_and_post_jvmti_exception(current, h_exception); 747 } 748 749 #if INCLUDE_JVMTI 750 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 751 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 752 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 753 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 754 JNIHandles::destroy_local(vthread); 755 JRT_END 756 757 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 758 assert(hide == JNI_TRUE, "must be VTMS transition start"); 759 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 760 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 761 JNIHandles::destroy_local(vthread); 762 JRT_END 763 764 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 765 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 766 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 767 JNIHandles::destroy_local(vthread); 768 JRT_END 769 770 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 771 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 772 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 773 JNIHandles::destroy_local(vthread); 774 JRT_END 775 #endif // INCLUDE_JVMTI 776 777 // The interpreter code to call this tracing function is only 778 // called/generated when UL is on for redefine, class and has the right level 779 // and tags. Since obsolete methods are never compiled, we don't have 780 // to modify the compilers to generate calls to this function. 781 // 782 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 783 JavaThread* thread, Method* method)) 784 if (method->is_obsolete()) { 785 // We are calling an obsolete method, but this is not necessarily 786 // an error. Our method could have been redefined just after we 787 // fetched the Method* from the constant pool. 788 ResourceMark rm; 789 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 790 } 791 792 LogStreamHandle(Trace, interpreter, bytecode) log; 793 if (log.is_enabled()) { 794 ResourceMark rm; 795 log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s", 796 p2i(thread), 797 (method->is_static() ? "static" : "virtual"), 798 method->name_and_sig_as_C_string(), 799 (method->is_native() ? " native" : ""), 800 (thread->class_being_initialized() != nullptr ? " clinit" : ""), 801 (method->method_holder()->is_initialized() ? "" : " being_initialized")); 802 } 803 return 0; 804 JRT_END 805 806 // ret_pc points into caller; we are returning caller's exception handler 807 // for given exception 808 // Note that the implementation of this method assumes it's only called when an exception has actually occured 809 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 810 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 811 assert(nm != nullptr, "must exist"); 812 ResourceMark rm; 813 814 #if INCLUDE_JVMCI 815 if (nm->is_compiled_by_jvmci()) { 816 // lookup exception handler for this pc 817 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 818 ExceptionHandlerTable table(nm); 819 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 820 if (t != nullptr) { 821 return nm->code_begin() + t->pco(); 822 } else { 823 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 824 } 825 } 826 #endif // INCLUDE_JVMCI 827 828 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 829 // determine handler bci, if any 830 EXCEPTION_MARK; 831 832 int handler_bci = -1; 833 int scope_depth = 0; 834 if (!force_unwind) { 835 int bci = sd->bci(); 836 bool recursive_exception = false; 837 do { 838 bool skip_scope_increment = false; 839 // exception handler lookup 840 Klass* ek = exception->klass(); 841 methodHandle mh(THREAD, sd->method()); 842 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 843 if (HAS_PENDING_EXCEPTION) { 844 recursive_exception = true; 845 // We threw an exception while trying to find the exception handler. 846 // Transfer the new exception to the exception handle which will 847 // be set into thread local storage, and do another lookup for an 848 // exception handler for this exception, this time starting at the 849 // BCI of the exception handler which caused the exception to be 850 // thrown (bugs 4307310 and 4546590). Set "exception" reference 851 // argument to ensure that the correct exception is thrown (4870175). 852 recursive_exception_occurred = true; 853 exception = Handle(THREAD, PENDING_EXCEPTION); 854 CLEAR_PENDING_EXCEPTION; 855 if (handler_bci >= 0) { 856 bci = handler_bci; 857 handler_bci = -1; 858 skip_scope_increment = true; 859 } 860 } 861 else { 862 recursive_exception = false; 863 } 864 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 865 sd = sd->sender(); 866 if (sd != nullptr) { 867 bci = sd->bci(); 868 } 869 ++scope_depth; 870 } 871 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 872 } 873 874 // found handling method => lookup exception handler 875 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 876 877 ExceptionHandlerTable table(nm); 878 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 879 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 880 // Allow abbreviated catch tables. The idea is to allow a method 881 // to materialize its exceptions without committing to the exact 882 // routing of exceptions. In particular this is needed for adding 883 // a synthetic handler to unlock monitors when inlining 884 // synchronized methods since the unlock path isn't represented in 885 // the bytecodes. 886 t = table.entry_for(catch_pco, -1, 0); 887 } 888 889 #ifdef COMPILER1 890 if (t == nullptr && nm->is_compiled_by_c1()) { 891 assert(nm->unwind_handler_begin() != nullptr, ""); 892 return nm->unwind_handler_begin(); 893 } 894 #endif 895 896 if (t == nullptr) { 897 ttyLocker ttyl; 898 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 899 tty->print_cr(" Exception:"); 900 exception->print(); 901 tty->cr(); 902 tty->print_cr(" Compiled exception table :"); 903 table.print(); 904 nm->print(); 905 nm->print_code(); 906 guarantee(false, "missing exception handler"); 907 return nullptr; 908 } 909 910 if (handler_bci != -1) { // did we find a handler in this method? 911 sd->method()->set_exception_handler_entered(handler_bci); // profile 912 } 913 return nm->code_begin() + t->pco(); 914 } 915 916 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 917 // These errors occur only at call sites 918 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 919 JRT_END 920 921 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 922 // These errors occur only at call sites 923 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 924 JRT_END 925 926 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 927 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 928 JRT_END 929 930 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 931 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 932 JRT_END 933 934 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 935 // This entry point is effectively only used for NullPointerExceptions which occur at inline 936 // cache sites (when the callee activation is not yet set up) so we are at a call site 937 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 938 JRT_END 939 940 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 941 throw_StackOverflowError_common(current, false); 942 JRT_END 943 944 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 945 throw_StackOverflowError_common(current, true); 946 JRT_END 947 948 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 949 // We avoid using the normal exception construction in this case because 950 // it performs an upcall to Java, and we're already out of stack space. 951 JavaThread* THREAD = current; // For exception macros. 952 Klass* k = vmClasses::StackOverflowError_klass(); 953 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 954 if (delayed) { 955 java_lang_Throwable::set_message(exception_oop, 956 Universe::delayed_stack_overflow_error_message()); 957 } 958 Handle exception (current, exception_oop); 959 if (StackTraceInThrowable) { 960 java_lang_Throwable::fill_in_stack_trace(exception); 961 } 962 // Remove the ScopedValue bindings in case we got a 963 // StackOverflowError while we were trying to remove ScopedValue 964 // bindings. 965 current->clear_scopedValueBindings(); 966 // Increment counter for hs_err file reporting 967 Atomic::inc(&Exceptions::_stack_overflow_errors); 968 throw_and_post_jvmti_exception(current, exception); 969 } 970 971 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 972 address pc, 973 ImplicitExceptionKind exception_kind) 974 { 975 address target_pc = nullptr; 976 977 if (Interpreter::contains(pc)) { 978 switch (exception_kind) { 979 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 980 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 981 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 982 default: ShouldNotReachHere(); 983 } 984 } else { 985 switch (exception_kind) { 986 case STACK_OVERFLOW: { 987 // Stack overflow only occurs upon frame setup; the callee is 988 // going to be unwound. Dispatch to a shared runtime stub 989 // which will cause the StackOverflowError to be fabricated 990 // and processed. 991 // Stack overflow should never occur during deoptimization: 992 // the compiled method bangs the stack by as much as the 993 // interpreter would need in case of a deoptimization. The 994 // deoptimization blob and uncommon trap blob bang the stack 995 // in a debug VM to verify the correctness of the compiled 996 // method stack banging. 997 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 998 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 999 return SharedRuntime::throw_StackOverflowError_entry(); 1000 } 1001 1002 case IMPLICIT_NULL: { 1003 if (VtableStubs::contains(pc)) { 1004 // We haven't yet entered the callee frame. Fabricate an 1005 // exception and begin dispatching it in the caller. Since 1006 // the caller was at a call site, it's safe to destroy all 1007 // caller-saved registers, as these entry points do. 1008 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 1009 1010 // If vt_stub is null, then return null to signal handler to report the SEGV error. 1011 if (vt_stub == nullptr) return nullptr; 1012 1013 if (vt_stub->is_abstract_method_error(pc)) { 1014 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 1015 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 1016 // Instead of throwing the abstract method error here directly, we re-resolve 1017 // and will throw the AbstractMethodError during resolve. As a result, we'll 1018 // get a more detailed error message. 1019 return SharedRuntime::get_handle_wrong_method_stub(); 1020 } else { 1021 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 1022 // Assert that the signal comes from the expected location in stub code. 1023 assert(vt_stub->is_null_pointer_exception(pc), 1024 "obtained signal from unexpected location in stub code"); 1025 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1026 } 1027 } else { 1028 CodeBlob* cb = CodeCache::find_blob(pc); 1029 1030 // If code blob is null, then return null to signal handler to report the SEGV error. 1031 if (cb == nullptr) return nullptr; 1032 1033 // Exception happened in CodeCache. Must be either: 1034 // 1. Inline-cache check in C2I handler blob, 1035 // 2. Inline-cache check in nmethod, or 1036 // 3. Implicit null exception in nmethod 1037 1038 if (!cb->is_nmethod()) { 1039 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 1040 if (!is_in_blob) { 1041 // Allow normal crash reporting to handle this 1042 return nullptr; 1043 } 1044 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 1045 // There is no handler here, so we will simply unwind. 1046 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1047 } 1048 1049 // Otherwise, it's a compiled method. Consult its exception handlers. 1050 nmethod* nm = cb->as_nmethod(); 1051 if (nm->inlinecache_check_contains(pc)) { 1052 // exception happened inside inline-cache check code 1053 // => the nmethod is not yet active (i.e., the frame 1054 // is not set up yet) => use return address pushed by 1055 // caller => don't push another return address 1056 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 1057 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1058 } 1059 1060 if (nm->method()->is_method_handle_intrinsic()) { 1061 // exception happened inside MH dispatch code, similar to a vtable stub 1062 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 1063 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1064 } 1065 1066 #ifndef PRODUCT 1067 _implicit_null_throws++; 1068 #endif 1069 target_pc = nm->continuation_for_implicit_null_exception(pc); 1070 // If there's an unexpected fault, target_pc might be null, 1071 // in which case we want to fall through into the normal 1072 // error handling code. 1073 } 1074 1075 break; // fall through 1076 } 1077 1078 1079 case IMPLICIT_DIVIDE_BY_ZERO: { 1080 nmethod* nm = CodeCache::find_nmethod(pc); 1081 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1082 #ifndef PRODUCT 1083 _implicit_div0_throws++; 1084 #endif 1085 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1086 // If there's an unexpected fault, target_pc might be null, 1087 // in which case we want to fall through into the normal 1088 // error handling code. 1089 break; // fall through 1090 } 1091 1092 default: ShouldNotReachHere(); 1093 } 1094 1095 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1096 1097 if (exception_kind == IMPLICIT_NULL) { 1098 #ifndef PRODUCT 1099 // for AbortVMOnException flag 1100 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1101 #endif //PRODUCT 1102 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1103 } else { 1104 #ifndef PRODUCT 1105 // for AbortVMOnException flag 1106 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1107 #endif //PRODUCT 1108 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1109 } 1110 return target_pc; 1111 } 1112 1113 ShouldNotReachHere(); 1114 return nullptr; 1115 } 1116 1117 1118 /** 1119 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1120 * installed in the native function entry of all native Java methods before 1121 * they get linked to their actual native methods. 1122 * 1123 * \note 1124 * This method actually never gets called! The reason is because 1125 * the interpreter's native entries call NativeLookup::lookup() which 1126 * throws the exception when the lookup fails. The exception is then 1127 * caught and forwarded on the return from NativeLookup::lookup() call 1128 * before the call to the native function. This might change in the future. 1129 */ 1130 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1131 { 1132 // We return a bad value here to make sure that the exception is 1133 // forwarded before we look at the return value. 1134 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1135 } 1136 JNI_END 1137 1138 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1139 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1140 } 1141 1142 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1143 #if INCLUDE_JVMCI 1144 if (!obj->klass()->has_finalizer()) { 1145 return; 1146 } 1147 #endif // INCLUDE_JVMCI 1148 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1149 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1150 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1151 JRT_END 1152 1153 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1154 assert(thread != nullptr, "No thread"); 1155 if (thread == nullptr) { 1156 return 0; 1157 } 1158 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1159 "current cannot touch oops after its GC barrier is detached."); 1160 oop obj = thread->threadObj(); 1161 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1162 } 1163 1164 /** 1165 * This function ought to be a void function, but cannot be because 1166 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1167 * 6254741. Once that is fixed we can remove the dummy return value. 1168 */ 1169 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1170 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1171 } 1172 1173 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1174 return dtrace_object_alloc(thread, o, o->size()); 1175 } 1176 1177 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1178 assert(DTraceAllocProbes, "wrong call"); 1179 Klass* klass = o->klass(); 1180 Symbol* name = klass->name(); 1181 HOTSPOT_OBJECT_ALLOC( 1182 get_java_tid(thread), 1183 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1184 return 0; 1185 } 1186 1187 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1188 JavaThread* current, Method* method)) 1189 assert(current == JavaThread::current(), "pre-condition"); 1190 1191 assert(DTraceMethodProbes, "wrong call"); 1192 Symbol* kname = method->klass_name(); 1193 Symbol* name = method->name(); 1194 Symbol* sig = method->signature(); 1195 HOTSPOT_METHOD_ENTRY( 1196 get_java_tid(current), 1197 (char *) kname->bytes(), kname->utf8_length(), 1198 (char *) name->bytes(), name->utf8_length(), 1199 (char *) sig->bytes(), sig->utf8_length()); 1200 return 0; 1201 JRT_END 1202 1203 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1204 JavaThread* current, Method* method)) 1205 assert(current == JavaThread::current(), "pre-condition"); 1206 assert(DTraceMethodProbes, "wrong call"); 1207 Symbol* kname = method->klass_name(); 1208 Symbol* name = method->name(); 1209 Symbol* sig = method->signature(); 1210 HOTSPOT_METHOD_RETURN( 1211 get_java_tid(current), 1212 (char *) kname->bytes(), kname->utf8_length(), 1213 (char *) name->bytes(), name->utf8_length(), 1214 (char *) sig->bytes(), sig->utf8_length()); 1215 return 0; 1216 JRT_END 1217 1218 1219 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1220 // for a call current in progress, i.e., arguments has been pushed on stack 1221 // put callee has not been invoked yet. Used by: resolve virtual/static, 1222 // vtable updates, etc. Caller frame must be compiled. 1223 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1224 JavaThread* current = THREAD; 1225 ResourceMark rm(current); 1226 1227 // last java frame on stack (which includes native call frames) 1228 vframeStream vfst(current, true); // Do not skip and javaCalls 1229 1230 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1231 } 1232 1233 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1234 nmethod* caller = vfst.nm(); 1235 1236 address pc = vfst.frame_pc(); 1237 { // Get call instruction under lock because another thread may be busy patching it. 1238 CompiledICLocker ic_locker(caller); 1239 return caller->attached_method_before_pc(pc); 1240 } 1241 return nullptr; 1242 } 1243 1244 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1245 // for a call current in progress, i.e., arguments has been pushed on stack 1246 // but callee has not been invoked yet. Caller frame must be compiled. 1247 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1248 CallInfo& callinfo, TRAPS) { 1249 Handle receiver; 1250 Handle nullHandle; // create a handy null handle for exception returns 1251 JavaThread* current = THREAD; 1252 1253 assert(!vfst.at_end(), "Java frame must exist"); 1254 1255 // Find caller and bci from vframe 1256 methodHandle caller(current, vfst.method()); 1257 int bci = vfst.bci(); 1258 1259 if (caller->is_continuation_enter_intrinsic()) { 1260 bc = Bytecodes::_invokestatic; 1261 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1262 return receiver; 1263 } 1264 1265 Bytecode_invoke bytecode(caller, bci); 1266 int bytecode_index = bytecode.index(); 1267 bc = bytecode.invoke_code(); 1268 1269 methodHandle attached_method(current, extract_attached_method(vfst)); 1270 if (attached_method.not_null()) { 1271 Method* callee = bytecode.static_target(CHECK_NH); 1272 vmIntrinsics::ID id = callee->intrinsic_id(); 1273 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1274 // it attaches statically resolved method to the call site. 1275 if (MethodHandles::is_signature_polymorphic(id) && 1276 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1277 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1278 1279 // Adjust invocation mode according to the attached method. 1280 switch (bc) { 1281 case Bytecodes::_invokevirtual: 1282 if (attached_method->method_holder()->is_interface()) { 1283 bc = Bytecodes::_invokeinterface; 1284 } 1285 break; 1286 case Bytecodes::_invokeinterface: 1287 if (!attached_method->method_holder()->is_interface()) { 1288 bc = Bytecodes::_invokevirtual; 1289 } 1290 break; 1291 case Bytecodes::_invokehandle: 1292 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1293 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1294 : Bytecodes::_invokevirtual; 1295 } 1296 break; 1297 default: 1298 break; 1299 } 1300 } 1301 } 1302 1303 assert(bc != Bytecodes::_illegal, "not initialized"); 1304 1305 bool has_receiver = bc != Bytecodes::_invokestatic && 1306 bc != Bytecodes::_invokedynamic && 1307 bc != Bytecodes::_invokehandle; 1308 1309 // Find receiver for non-static call 1310 if (has_receiver) { 1311 // This register map must be update since we need to find the receiver for 1312 // compiled frames. The receiver might be in a register. 1313 RegisterMap reg_map2(current, 1314 RegisterMap::UpdateMap::include, 1315 RegisterMap::ProcessFrames::include, 1316 RegisterMap::WalkContinuation::skip); 1317 frame stubFrame = current->last_frame(); 1318 // Caller-frame is a compiled frame 1319 frame callerFrame = stubFrame.sender(®_map2); 1320 1321 if (attached_method.is_null()) { 1322 Method* callee = bytecode.static_target(CHECK_NH); 1323 if (callee == nullptr) { 1324 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1325 } 1326 } 1327 1328 // Retrieve from a compiled argument list 1329 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1330 assert(oopDesc::is_oop_or_null(receiver()), ""); 1331 1332 if (receiver.is_null()) { 1333 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1334 } 1335 } 1336 1337 // Resolve method 1338 if (attached_method.not_null()) { 1339 // Parameterized by attached method. 1340 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1341 } else { 1342 // Parameterized by bytecode. 1343 constantPoolHandle constants(current, caller->constants()); 1344 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1345 } 1346 1347 #ifdef ASSERT 1348 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1349 if (has_receiver) { 1350 assert(receiver.not_null(), "should have thrown exception"); 1351 Klass* receiver_klass = receiver->klass(); 1352 Klass* rk = nullptr; 1353 if (attached_method.not_null()) { 1354 // In case there's resolved method attached, use its holder during the check. 1355 rk = attached_method->method_holder(); 1356 } else { 1357 // Klass is already loaded. 1358 constantPoolHandle constants(current, caller->constants()); 1359 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1360 } 1361 Klass* static_receiver_klass = rk; 1362 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1363 "actual receiver must be subclass of static receiver klass"); 1364 if (receiver_klass->is_instance_klass()) { 1365 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1366 tty->print_cr("ERROR: Klass not yet initialized!!"); 1367 receiver_klass->print(); 1368 } 1369 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1370 } 1371 } 1372 #endif 1373 1374 return receiver; 1375 } 1376 1377 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1378 JavaThread* current = THREAD; 1379 ResourceMark rm(current); 1380 // We need first to check if any Java activations (compiled, interpreted) 1381 // exist on the stack since last JavaCall. If not, we need 1382 // to get the target method from the JavaCall wrapper. 1383 vframeStream vfst(current, true); // Do not skip any javaCalls 1384 methodHandle callee_method; 1385 if (vfst.at_end()) { 1386 // No Java frames were found on stack since we did the JavaCall. 1387 // Hence the stack can only contain an entry_frame. We need to 1388 // find the target method from the stub frame. 1389 RegisterMap reg_map(current, 1390 RegisterMap::UpdateMap::skip, 1391 RegisterMap::ProcessFrames::include, 1392 RegisterMap::WalkContinuation::skip); 1393 frame fr = current->last_frame(); 1394 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1395 fr = fr.sender(®_map); 1396 assert(fr.is_entry_frame(), "must be"); 1397 // fr is now pointing to the entry frame. 1398 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1399 } else { 1400 Bytecodes::Code bc; 1401 CallInfo callinfo; 1402 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1403 callee_method = methodHandle(current, callinfo.selected_method()); 1404 } 1405 assert(callee_method()->is_method(), "must be"); 1406 return callee_method; 1407 } 1408 1409 // Resolves a call. 1410 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1411 JavaThread* current = THREAD; 1412 ResourceMark rm(current); 1413 RegisterMap cbl_map(current, 1414 RegisterMap::UpdateMap::skip, 1415 RegisterMap::ProcessFrames::include, 1416 RegisterMap::WalkContinuation::skip); 1417 frame caller_frame = current->last_frame().sender(&cbl_map); 1418 1419 CodeBlob* caller_cb = caller_frame.cb(); 1420 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1421 nmethod* caller_nm = caller_cb->as_nmethod(); 1422 1423 // determine call info & receiver 1424 // note: a) receiver is null for static calls 1425 // b) an exception is thrown if receiver is null for non-static calls 1426 CallInfo call_info; 1427 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1428 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1429 1430 NoSafepointVerifier nsv; 1431 1432 methodHandle callee_method(current, call_info.selected_method()); 1433 1434 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1435 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1436 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1437 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1438 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1439 1440 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1441 1442 // tracing/debugging/statistics 1443 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1444 (is_virtual) ? (&_resolve_virtual_ctr) : 1445 (&_resolve_static_ctr); 1446 Atomic::inc(addr); 1447 1448 #ifndef PRODUCT 1449 if (TraceCallFixup) { 1450 ResourceMark rm(current); 1451 tty->print("resolving %s%s (%s) call to", 1452 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1453 Bytecodes::name(invoke_code)); 1454 callee_method->print_short_name(tty); 1455 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1456 p2i(caller_frame.pc()), p2i(callee_method->code())); 1457 } 1458 #endif 1459 1460 if (invoke_code == Bytecodes::_invokestatic) { 1461 assert(callee_method->method_holder()->is_initialized() || 1462 callee_method->method_holder()->is_reentrant_initialization(current), 1463 "invalid class initialization state for invoke_static"); 1464 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1465 // In order to keep class initialization check, do not patch call 1466 // site for static call when the class is not fully initialized. 1467 // Proper check is enforced by call site re-resolution on every invocation. 1468 // 1469 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1470 // explicit class initialization check is put in nmethod entry (VEP). 1471 assert(callee_method->method_holder()->is_linked(), "must be"); 1472 return callee_method; 1473 } 1474 } 1475 1476 1477 // JSR 292 key invariant: 1478 // If the resolved method is a MethodHandle invoke target, the call 1479 // site must be a MethodHandle call site, because the lambda form might tail-call 1480 // leaving the stack in a state unknown to either caller or callee 1481 1482 // Compute entry points. The computation of the entry points is independent of 1483 // patching the call. 1484 1485 // Make sure the callee nmethod does not get deoptimized and removed before 1486 // we are done patching the code. 1487 1488 1489 CompiledICLocker ml(caller_nm); 1490 if (is_virtual && !is_optimized) { 1491 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1492 inline_cache->update(&call_info, receiver->klass()); 1493 } else { 1494 // Callsite is a direct call - set it to the destination method 1495 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1496 callsite->set(callee_method); 1497 } 1498 1499 return callee_method; 1500 } 1501 1502 // Inline caches exist only in compiled code 1503 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1504 PerfTraceTime timer(_perf_ic_miss_total_time); 1505 1506 #ifdef ASSERT 1507 RegisterMap reg_map(current, 1508 RegisterMap::UpdateMap::skip, 1509 RegisterMap::ProcessFrames::include, 1510 RegisterMap::WalkContinuation::skip); 1511 frame stub_frame = current->last_frame(); 1512 assert(stub_frame.is_runtime_frame(), "sanity check"); 1513 frame caller_frame = stub_frame.sender(®_map); 1514 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1515 #endif /* ASSERT */ 1516 1517 methodHandle callee_method; 1518 JRT_BLOCK 1519 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1520 // Return Method* through TLS 1521 current->set_vm_result_2(callee_method()); 1522 JRT_BLOCK_END 1523 // return compiled code entry point after potential safepoints 1524 return get_resolved_entry(current, callee_method); 1525 JRT_END 1526 1527 1528 // Handle call site that has been made non-entrant 1529 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1530 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1531 1532 // 6243940 We might end up in here if the callee is deoptimized 1533 // as we race to call it. We don't want to take a safepoint if 1534 // the caller was interpreted because the caller frame will look 1535 // interpreted to the stack walkers and arguments are now 1536 // "compiled" so it is much better to make this transition 1537 // invisible to the stack walking code. The i2c path will 1538 // place the callee method in the callee_target. It is stashed 1539 // there because if we try and find the callee by normal means a 1540 // safepoint is possible and have trouble gc'ing the compiled args. 1541 RegisterMap reg_map(current, 1542 RegisterMap::UpdateMap::skip, 1543 RegisterMap::ProcessFrames::include, 1544 RegisterMap::WalkContinuation::skip); 1545 frame stub_frame = current->last_frame(); 1546 assert(stub_frame.is_runtime_frame(), "sanity check"); 1547 frame caller_frame = stub_frame.sender(®_map); 1548 1549 if (caller_frame.is_interpreted_frame() || 1550 caller_frame.is_entry_frame() || 1551 caller_frame.is_upcall_stub_frame()) { 1552 Method* callee = current->callee_target(); 1553 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1554 current->set_vm_result_2(callee); 1555 current->set_callee_target(nullptr); 1556 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1557 // Bypass class initialization checks in c2i when caller is in native. 1558 // JNI calls to static methods don't have class initialization checks. 1559 // Fast class initialization checks are present in c2i adapters and call into 1560 // SharedRuntime::handle_wrong_method() on the slow path. 1561 // 1562 // JVM upcalls may land here as well, but there's a proper check present in 1563 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1564 // so bypassing it in c2i adapter is benign. 1565 return callee->get_c2i_no_clinit_check_entry(); 1566 } else { 1567 return callee->get_c2i_entry(); 1568 } 1569 } 1570 1571 // Must be compiled to compiled path which is safe to stackwalk 1572 methodHandle callee_method; 1573 JRT_BLOCK 1574 // Force resolving of caller (if we called from compiled frame) 1575 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1576 current->set_vm_result_2(callee_method()); 1577 JRT_BLOCK_END 1578 // return compiled code entry point after potential safepoints 1579 return get_resolved_entry(current, callee_method); 1580 JRT_END 1581 1582 // Handle abstract method call 1583 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1584 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1585 1586 // Verbose error message for AbstractMethodError. 1587 // Get the called method from the invoke bytecode. 1588 vframeStream vfst(current, true); 1589 assert(!vfst.at_end(), "Java frame must exist"); 1590 methodHandle caller(current, vfst.method()); 1591 Bytecode_invoke invoke(caller, vfst.bci()); 1592 DEBUG_ONLY( invoke.verify(); ) 1593 1594 // Find the compiled caller frame. 1595 RegisterMap reg_map(current, 1596 RegisterMap::UpdateMap::include, 1597 RegisterMap::ProcessFrames::include, 1598 RegisterMap::WalkContinuation::skip); 1599 frame stubFrame = current->last_frame(); 1600 assert(stubFrame.is_runtime_frame(), "must be"); 1601 frame callerFrame = stubFrame.sender(®_map); 1602 assert(callerFrame.is_compiled_frame(), "must be"); 1603 1604 // Install exception and return forward entry. 1605 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1606 JRT_BLOCK 1607 methodHandle callee(current, invoke.static_target(current)); 1608 if (!callee.is_null()) { 1609 oop recv = callerFrame.retrieve_receiver(®_map); 1610 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1611 res = StubRoutines::forward_exception_entry(); 1612 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1613 } 1614 JRT_BLOCK_END 1615 return res; 1616 JRT_END 1617 1618 // return verified_code_entry if interp_only_mode is not set for the current thread; 1619 // otherwise return c2i entry. 1620 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1621 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1622 // In interp_only_mode we need to go to the interpreted entry 1623 // The c2i won't patch in this mode -- see fixup_callers_callsite 1624 return callee_method->get_c2i_entry(); 1625 } 1626 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1627 return callee_method->verified_code_entry(); 1628 } 1629 1630 // resolve a static call and patch code 1631 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1632 PerfTraceTime timer(_perf_resolve_static_total_time); 1633 1634 methodHandle callee_method; 1635 bool enter_special = false; 1636 JRT_BLOCK 1637 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1638 current->set_vm_result_2(callee_method()); 1639 JRT_BLOCK_END 1640 // return compiled code entry point after potential safepoints 1641 return get_resolved_entry(current, callee_method); 1642 JRT_END 1643 1644 // resolve virtual call and update inline cache to monomorphic 1645 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1646 PerfTraceTime timer(_perf_resolve_virtual_total_time); 1647 1648 methodHandle callee_method; 1649 JRT_BLOCK 1650 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1651 current->set_vm_result_2(callee_method()); 1652 JRT_BLOCK_END 1653 // return compiled code entry point after potential safepoints 1654 return get_resolved_entry(current, callee_method); 1655 JRT_END 1656 1657 1658 // Resolve a virtual call that can be statically bound (e.g., always 1659 // monomorphic, so it has no inline cache). Patch code to resolved target. 1660 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1661 PerfTraceTime timer(_perf_resolve_opt_virtual_total_time); 1662 1663 methodHandle callee_method; 1664 JRT_BLOCK 1665 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1666 current->set_vm_result_2(callee_method()); 1667 JRT_BLOCK_END 1668 // return compiled code entry point after potential safepoints 1669 return get_resolved_entry(current, callee_method); 1670 JRT_END 1671 1672 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1673 JavaThread* current = THREAD; 1674 ResourceMark rm(current); 1675 CallInfo call_info; 1676 Bytecodes::Code bc; 1677 1678 // receiver is null for static calls. An exception is thrown for null 1679 // receivers for non-static calls 1680 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1681 1682 methodHandle callee_method(current, call_info.selected_method()); 1683 1684 Atomic::inc(&_ic_miss_ctr); 1685 1686 #ifndef PRODUCT 1687 // Statistics & Tracing 1688 if (TraceCallFixup) { 1689 ResourceMark rm(current); 1690 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1691 callee_method->print_short_name(tty); 1692 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1693 } 1694 1695 if (ICMissHistogram) { 1696 MutexLocker m(VMStatistic_lock); 1697 RegisterMap reg_map(current, 1698 RegisterMap::UpdateMap::skip, 1699 RegisterMap::ProcessFrames::include, 1700 RegisterMap::WalkContinuation::skip); 1701 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1702 // produce statistics under the lock 1703 trace_ic_miss(f.pc()); 1704 } 1705 #endif 1706 1707 // install an event collector so that when a vtable stub is created the 1708 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1709 // event can't be posted when the stub is created as locks are held 1710 // - instead the event will be deferred until the event collector goes 1711 // out of scope. 1712 JvmtiDynamicCodeEventCollector event_collector; 1713 1714 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1715 RegisterMap reg_map(current, 1716 RegisterMap::UpdateMap::skip, 1717 RegisterMap::ProcessFrames::include, 1718 RegisterMap::WalkContinuation::skip); 1719 frame caller_frame = current->last_frame().sender(®_map); 1720 CodeBlob* cb = caller_frame.cb(); 1721 nmethod* caller_nm = cb->as_nmethod(); 1722 1723 CompiledICLocker ml(caller_nm); 1724 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1725 inline_cache->update(&call_info, receiver()->klass()); 1726 1727 return callee_method; 1728 } 1729 1730 // 1731 // Resets a call-site in compiled code so it will get resolved again. 1732 // This routines handles both virtual call sites, optimized virtual call 1733 // sites, and static call sites. Typically used to change a call sites 1734 // destination from compiled to interpreted. 1735 // 1736 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1737 JavaThread* current = THREAD; 1738 ResourceMark rm(current); 1739 RegisterMap reg_map(current, 1740 RegisterMap::UpdateMap::skip, 1741 RegisterMap::ProcessFrames::include, 1742 RegisterMap::WalkContinuation::skip); 1743 frame stub_frame = current->last_frame(); 1744 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1745 frame caller = stub_frame.sender(®_map); 1746 1747 // Do nothing if the frame isn't a live compiled frame. 1748 // nmethod could be deoptimized by the time we get here 1749 // so no update to the caller is needed. 1750 1751 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1752 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1753 1754 address pc = caller.pc(); 1755 1756 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1757 assert(caller_nm != nullptr, "did not find caller nmethod"); 1758 1759 // Default call_addr is the location of the "basic" call. 1760 // Determine the address of the call we a reresolving. With 1761 // Inline Caches we will always find a recognizable call. 1762 // With Inline Caches disabled we may or may not find a 1763 // recognizable call. We will always find a call for static 1764 // calls and for optimized virtual calls. For vanilla virtual 1765 // calls it depends on the state of the UseInlineCaches switch. 1766 // 1767 // With Inline Caches disabled we can get here for a virtual call 1768 // for two reasons: 1769 // 1 - calling an abstract method. The vtable for abstract methods 1770 // will run us thru handle_wrong_method and we will eventually 1771 // end up in the interpreter to throw the ame. 1772 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1773 // call and between the time we fetch the entry address and 1774 // we jump to it the target gets deoptimized. Similar to 1 1775 // we will wind up in the interprter (thru a c2i with c2). 1776 // 1777 CompiledICLocker ml(caller_nm); 1778 address call_addr = caller_nm->call_instruction_address(pc); 1779 1780 if (call_addr != nullptr) { 1781 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1782 // bytes back in the instruction stream so we must also check for reloc info. 1783 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1784 bool ret = iter.next(); // Get item 1785 if (ret) { 1786 switch (iter.type()) { 1787 case relocInfo::static_call_type: 1788 case relocInfo::opt_virtual_call_type: { 1789 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1790 cdc->set_to_clean(); 1791 break; 1792 } 1793 1794 case relocInfo::virtual_call_type: { 1795 // compiled, dispatched call (which used to call an interpreted method) 1796 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1797 inline_cache->set_to_clean(); 1798 break; 1799 } 1800 default: 1801 break; 1802 } 1803 } 1804 } 1805 } 1806 1807 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1808 1809 Atomic::inc(&_wrong_method_ctr); 1810 1811 #ifndef PRODUCT 1812 if (TraceCallFixup) { 1813 ResourceMark rm(current); 1814 tty->print("handle_wrong_method reresolving call to"); 1815 callee_method->print_short_name(tty); 1816 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1817 } 1818 #endif 1819 1820 return callee_method; 1821 } 1822 1823 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1824 // The faulting unsafe accesses should be changed to throw the error 1825 // synchronously instead. Meanwhile the faulting instruction will be 1826 // skipped over (effectively turning it into a no-op) and an 1827 // asynchronous exception will be raised which the thread will 1828 // handle at a later point. If the instruction is a load it will 1829 // return garbage. 1830 1831 // Request an async exception. 1832 thread->set_pending_unsafe_access_error(); 1833 1834 // Return address of next instruction to execute. 1835 return next_pc; 1836 } 1837 1838 #ifdef ASSERT 1839 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1840 const BasicType* sig_bt, 1841 const VMRegPair* regs) { 1842 ResourceMark rm; 1843 const int total_args_passed = method->size_of_parameters(); 1844 const VMRegPair* regs_with_member_name = regs; 1845 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1846 1847 const int member_arg_pos = total_args_passed - 1; 1848 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1849 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1850 1851 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1852 1853 for (int i = 0; i < member_arg_pos; i++) { 1854 VMReg a = regs_with_member_name[i].first(); 1855 VMReg b = regs_without_member_name[i].first(); 1856 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1857 } 1858 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1859 } 1860 #endif 1861 1862 // --------------------------------------------------------------------------- 1863 // We are calling the interpreter via a c2i. Normally this would mean that 1864 // we were called by a compiled method. However we could have lost a race 1865 // where we went int -> i2c -> c2i and so the caller could in fact be 1866 // interpreted. If the caller is compiled we attempt to patch the caller 1867 // so he no longer calls into the interpreter. 1868 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1869 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1870 1871 // It's possible that deoptimization can occur at a call site which hasn't 1872 // been resolved yet, in which case this function will be called from 1873 // an nmethod that has been patched for deopt and we can ignore the 1874 // request for a fixup. 1875 // Also it is possible that we lost a race in that from_compiled_entry 1876 // is now back to the i2c in that case we don't need to patch and if 1877 // we did we'd leap into space because the callsite needs to use 1878 // "to interpreter" stub in order to load up the Method*. Don't 1879 // ask me how I know this... 1880 1881 // Result from nmethod::is_unloading is not stable across safepoints. 1882 NoSafepointVerifier nsv; 1883 1884 nmethod* callee = method->code(); 1885 if (callee == nullptr) { 1886 return; 1887 } 1888 1889 // write lock needed because we might patch call site by set_to_clean() 1890 // and is_unloading() can modify nmethod's state 1891 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1892 1893 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1894 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1895 return; 1896 } 1897 1898 // The check above makes sure this is an nmethod. 1899 nmethod* caller = cb->as_nmethod(); 1900 1901 // Get the return PC for the passed caller PC. 1902 address return_pc = caller_pc + frame::pc_return_offset; 1903 1904 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1905 return; 1906 } 1907 1908 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1909 CompiledICLocker ic_locker(caller); 1910 ResourceMark rm; 1911 1912 // If we got here through a static call or opt_virtual call, then we know where the 1913 // call address would be; let's peek at it 1914 address callsite_addr = (address)nativeCall_before(return_pc); 1915 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1916 if (!iter.next()) { 1917 // No reloc entry found; not a static or optimized virtual call 1918 return; 1919 } 1920 1921 relocInfo::relocType type = iter.reloc()->type(); 1922 if (type != relocInfo::static_call_type && 1923 type != relocInfo::opt_virtual_call_type) { 1924 return; 1925 } 1926 1927 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1928 callsite->set_to_clean(); 1929 JRT_END 1930 1931 1932 // same as JVM_Arraycopy, but called directly from compiled code 1933 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1934 oopDesc* dest, jint dest_pos, 1935 jint length, 1936 JavaThread* current)) { 1937 #ifndef PRODUCT 1938 _slow_array_copy_ctr++; 1939 #endif 1940 // Check if we have null pointers 1941 if (src == nullptr || dest == nullptr) { 1942 THROW(vmSymbols::java_lang_NullPointerException()); 1943 } 1944 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1945 // even though the copy_array API also performs dynamic checks to ensure 1946 // that src and dest are truly arrays (and are conformable). 1947 // The copy_array mechanism is awkward and could be removed, but 1948 // the compilers don't call this function except as a last resort, 1949 // so it probably doesn't matter. 1950 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1951 (arrayOopDesc*)dest, dest_pos, 1952 length, current); 1953 } 1954 JRT_END 1955 1956 // The caller of generate_class_cast_message() (or one of its callers) 1957 // must use a ResourceMark in order to correctly free the result. 1958 char* SharedRuntime::generate_class_cast_message( 1959 JavaThread* thread, Klass* caster_klass) { 1960 1961 // Get target class name from the checkcast instruction 1962 vframeStream vfst(thread, true); 1963 assert(!vfst.at_end(), "Java frame must exist"); 1964 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1965 constantPoolHandle cpool(thread, vfst.method()->constants()); 1966 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1967 Symbol* target_klass_name = nullptr; 1968 if (target_klass == nullptr) { 1969 // This klass should be resolved, but just in case, get the name in the klass slot. 1970 target_klass_name = cpool->klass_name_at(cc.index()); 1971 } 1972 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1973 } 1974 1975 1976 // The caller of generate_class_cast_message() (or one of its callers) 1977 // must use a ResourceMark in order to correctly free the result. 1978 char* SharedRuntime::generate_class_cast_message( 1979 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1980 const char* caster_name = caster_klass->external_name(); 1981 1982 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1983 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1984 target_klass->external_name(); 1985 1986 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1987 1988 const char* caster_klass_description = ""; 1989 const char* target_klass_description = ""; 1990 const char* klass_separator = ""; 1991 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1992 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1993 } else { 1994 caster_klass_description = caster_klass->class_in_module_of_loader(); 1995 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1996 klass_separator = (target_klass != nullptr) ? "; " : ""; 1997 } 1998 1999 // add 3 for parenthesis and preceding space 2000 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 2001 2002 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2003 if (message == nullptr) { 2004 // Shouldn't happen, but don't cause even more problems if it does 2005 message = const_cast<char*>(caster_klass->external_name()); 2006 } else { 2007 jio_snprintf(message, 2008 msglen, 2009 "class %s cannot be cast to class %s (%s%s%s)", 2010 caster_name, 2011 target_name, 2012 caster_klass_description, 2013 klass_separator, 2014 target_klass_description 2015 ); 2016 } 2017 return message; 2018 } 2019 2020 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2021 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2022 JRT_END 2023 2024 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2025 if (!SafepointSynchronize::is_synchronizing()) { 2026 // Only try quick_enter() if we're not trying to reach a safepoint 2027 // so that the calling thread reaches the safepoint more quickly. 2028 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 2029 return; 2030 } 2031 } 2032 // NO_ASYNC required because an async exception on the state transition destructor 2033 // would leave you with the lock held and it would never be released. 2034 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2035 // and the model is that an exception implies the method failed. 2036 JRT_BLOCK_NO_ASYNC 2037 Handle h_obj(THREAD, obj); 2038 ObjectSynchronizer::enter(h_obj, lock, current); 2039 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2040 JRT_BLOCK_END 2041 } 2042 2043 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2044 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2045 SharedRuntime::monitor_enter_helper(obj, lock, current); 2046 JRT_END 2047 2048 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2049 assert(JavaThread::current() == current, "invariant"); 2050 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2051 ExceptionMark em(current); 2052 2053 // Check if C2_MacroAssembler::fast_unlock() or 2054 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 2055 // monitor before going slow path. Since there is no safepoint 2056 // polling when calling into the VM, we can be sure that the monitor 2057 // hasn't been deallocated. 2058 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2059 if (m != nullptr) { 2060 assert(!m->has_owner(current), "must be"); 2061 current->clear_unlocked_inflated_monitor(); 2062 2063 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2064 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2065 // Some other thread acquired the lock (or the monitor was 2066 // deflated). Either way we are done. 2067 current->dec_held_monitor_count(); 2068 return; 2069 } 2070 } 2071 2072 // The object could become unlocked through a JNI call, which we have no other checks for. 2073 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2074 if (obj->is_unlocked()) { 2075 if (CheckJNICalls) { 2076 fatal("Object has been unlocked by JNI"); 2077 } 2078 return; 2079 } 2080 ObjectSynchronizer::exit(obj, lock, current); 2081 } 2082 2083 // Handles the uncommon cases of monitor unlocking in compiled code 2084 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2085 assert(current == JavaThread::current(), "pre-condition"); 2086 SharedRuntime::monitor_exit_helper(obj, lock, current); 2087 JRT_END 2088 2089 // This is only called when CheckJNICalls is true, and only 2090 // for virtual thread termination. 2091 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2092 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2093 if (log_is_enabled(Debug, jni)) { 2094 JavaThread* current = JavaThread::current(); 2095 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2096 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2097 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2098 ") exiting with Objects still locked by JNI MonitorEnter.", 2099 vthread_id, carrier_id); 2100 } 2101 JRT_END 2102 2103 #ifndef PRODUCT 2104 2105 void SharedRuntime::print_statistics() { 2106 ttyLocker ttyl; 2107 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2108 2109 SharedRuntime::print_ic_miss_histogram_on(tty); 2110 SharedRuntime::print_counters_on(tty); 2111 AdapterHandlerLibrary::print_statistics_on(tty); 2112 2113 if (xtty != nullptr) xtty->tail("statistics"); 2114 } 2115 2116 //void SharedRuntime::print_counters_on(outputStream* st) { 2117 // // Dump the JRT_ENTRY counters 2118 // if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr); 2119 // if (_new_array_ctr) st->print_cr("%5u new array requires GC", _new_array_ctr); 2120 // if (_multi2_ctr) st->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2121 // if (_multi3_ctr) st->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2122 // if (_multi4_ctr) st->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2123 // if (_multi5_ctr) st->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2124 // 2125 // st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2126 // st->print_cr("%5u wrong method", _wrong_method_ctr); 2127 // st->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2128 // st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2129 // st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2130 // 2131 // if (_mon_enter_stub_ctr) st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2132 // if (_mon_exit_stub_ctr) st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2133 // if (_mon_enter_ctr) st->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2134 // if (_mon_exit_ctr) st->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2135 // if (_partial_subtype_ctr) st->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2136 // if (_jbyte_array_copy_ctr) st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2137 // if (_jshort_array_copy_ctr) st->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2138 // if (_jint_array_copy_ctr) st->print_cr("%5u int array copies", _jint_array_copy_ctr); 2139 // if (_jlong_array_copy_ctr) st->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2140 // if (_oop_array_copy_ctr) st->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2141 // if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2142 // if (_unsafe_array_copy_ctr) st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2143 // if (_generic_array_copy_ctr) st->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2144 // if (_slow_array_copy_ctr) st->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2145 // if (_find_handler_ctr) st->print_cr("%5u find exception handler", _find_handler_ctr); 2146 // if (_rethrow_ctr) st->print_cr("%5u rethrow handler", _rethrow_ctr); 2147 // if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2148 //} 2149 2150 inline double percent(int64_t x, int64_t y) { 2151 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2152 } 2153 2154 class MethodArityHistogram { 2155 public: 2156 enum { MAX_ARITY = 256 }; 2157 private: 2158 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2159 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2160 static uint64_t _total_compiled_calls; 2161 static uint64_t _max_compiled_calls_per_method; 2162 static int _max_arity; // max. arity seen 2163 static int _max_size; // max. arg size seen 2164 2165 static void add_method_to_histogram(nmethod* nm) { 2166 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2167 if (method != nullptr) { 2168 ArgumentCount args(method->signature()); 2169 int arity = args.size() + (method->is_static() ? 0 : 1); 2170 int argsize = method->size_of_parameters(); 2171 arity = MIN2(arity, MAX_ARITY-1); 2172 argsize = MIN2(argsize, MAX_ARITY-1); 2173 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2174 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2175 _total_compiled_calls += count; 2176 _arity_histogram[arity] += count; 2177 _size_histogram[argsize] += count; 2178 _max_arity = MAX2(_max_arity, arity); 2179 _max_size = MAX2(_max_size, argsize); 2180 } 2181 } 2182 2183 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2184 const int N = MIN2(9, n); 2185 double sum = 0; 2186 double weighted_sum = 0; 2187 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2188 if (sum >= 1) { // prevent divide by zero or divide overflow 2189 double rest = sum; 2190 double percent = sum / 100; 2191 for (int i = 0; i <= N; i++) { 2192 rest -= (double)histo[i]; 2193 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2194 } 2195 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2196 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2197 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2198 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2199 } else { 2200 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2201 } 2202 } 2203 2204 void print_histogram() { 2205 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2206 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2207 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2208 print_histogram_helper(_max_size, _size_histogram, "size"); 2209 tty->cr(); 2210 } 2211 2212 public: 2213 MethodArityHistogram() { 2214 // Take the Compile_lock to protect against changes in the CodeBlob structures 2215 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2216 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2217 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2218 _max_arity = _max_size = 0; 2219 _total_compiled_calls = 0; 2220 _max_compiled_calls_per_method = 0; 2221 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2222 CodeCache::nmethods_do(add_method_to_histogram); 2223 print_histogram(); 2224 } 2225 }; 2226 2227 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2228 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2229 uint64_t MethodArityHistogram::_total_compiled_calls; 2230 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2231 int MethodArityHistogram::_max_arity; 2232 int MethodArityHistogram::_max_size; 2233 2234 void SharedRuntime::print_call_statistics_on(outputStream* st) { 2235 tty->print_cr("Calls from compiled code:"); 2236 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2237 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2238 int64_t mono_i = _nof_interface_calls; 2239 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2240 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2241 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2242 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2243 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2244 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2245 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2246 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2247 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2248 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2249 tty->cr(); 2250 tty->print_cr("Note 1: counter updates are not MT-safe."); 2251 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2252 tty->print_cr(" %% in nested categories are relative to their category"); 2253 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2254 tty->cr(); 2255 2256 MethodArityHistogram h; 2257 } 2258 #endif 2259 2260 #ifndef PRODUCT 2261 static int _lookups; // number of calls to lookup 2262 static int _equals; // number of buckets checked with matching hash 2263 static int _archived_hits; // number of successful lookups in archived table 2264 static int _runtime_hits; // number of successful lookups in runtime table 2265 static int _compact; // number of equals calls with compact signature 2266 #endif 2267 2268 // A simple wrapper class around the calling convention information 2269 // that allows sharing of adapters for the same calling convention. 2270 class AdapterFingerPrint : public MetaspaceObj { 2271 private: 2272 enum { 2273 _basic_type_bits = 4, 2274 _basic_type_mask = right_n_bits(_basic_type_bits), 2275 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2276 _compact_int_count = 3 2277 }; 2278 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2279 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2280 2281 int _length; 2282 int _value[_compact_int_count]; 2283 2284 // Private construtor. Use allocate() to get an instance. 2285 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2286 // Pack the BasicTypes with 8 per int 2287 _length = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2288 int sig_index = 0; 2289 for (int index = 0; index < _length; index++) { 2290 int value = 0; 2291 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2292 int bt = adapter_encoding(sig_bt[sig_index++]); 2293 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2294 value = (value << _basic_type_bits) | bt; 2295 } 2296 _value[index] = value; 2297 } 2298 } 2299 2300 // Call deallocate instead 2301 ~AdapterFingerPrint() { 2302 FreeHeap(this); 2303 } 2304 2305 // Remap BasicTypes that are handled equivalently by the adapters. 2306 // These are correct for the current system but someday it might be 2307 // necessary to make this mapping platform dependent. 2308 static int adapter_encoding(BasicType in) { 2309 switch (in) { 2310 case T_BOOLEAN: 2311 case T_BYTE: 2312 case T_SHORT: 2313 case T_CHAR: 2314 // There are all promoted to T_INT in the calling convention 2315 return T_INT; 2316 2317 case T_OBJECT: 2318 case T_ARRAY: 2319 // In other words, we assume that any register good enough for 2320 // an int or long is good enough for a managed pointer. 2321 #ifdef _LP64 2322 return T_LONG; 2323 #else 2324 return T_INT; 2325 #endif 2326 2327 case T_INT: 2328 case T_LONG: 2329 case T_FLOAT: 2330 case T_DOUBLE: 2331 case T_VOID: 2332 return in; 2333 2334 default: 2335 ShouldNotReachHere(); 2336 return T_CONFLICT; 2337 } 2338 } 2339 2340 void* operator new(size_t size, size_t fp_size) throw() { 2341 assert(fp_size >= size, "sanity check"); 2342 void* p = AllocateHeap(fp_size, mtCode); 2343 memset(p, 0, fp_size); 2344 return p; 2345 } 2346 2347 template<typename Function> 2348 void iterate_args(Function function) { 2349 for (int i = 0; i < length(); i++) { 2350 unsigned val = (unsigned)value(i); 2351 // args are packed so that first/lower arguments are in the highest 2352 // bits of each int value, so iterate from highest to the lowest 2353 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2354 unsigned v = (val >> j) & _basic_type_mask; 2355 if (v == 0) { 2356 continue; 2357 } 2358 function(v); 2359 } 2360 } 2361 } 2362 2363 public: 2364 static int allocation_size(int total_args_passed, BasicType* sig_bt) { 2365 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2366 return sizeof(AdapterFingerPrint) + (len > _compact_int_count ? (len - _compact_int_count) * sizeof(int) : 0); 2367 } 2368 2369 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) { 2370 int size_in_bytes = allocation_size(total_args_passed, sig_bt); 2371 return new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt); 2372 } 2373 2374 static void deallocate(AdapterFingerPrint* fp) { 2375 fp->~AdapterFingerPrint(); 2376 } 2377 2378 int value(int index) { 2379 return _value[index]; 2380 } 2381 2382 int length() { 2383 if (_length < 0) return -_length; 2384 return _length; 2385 } 2386 2387 bool is_compact() { 2388 return _length <= _compact_int_count; 2389 } 2390 2391 unsigned int compute_hash() { 2392 int hash = 0; 2393 for (int i = 0; i < length(); i++) { 2394 int v = value(i); 2395 //Add arithmetic operation to the hash, like +3 to improve hashing 2396 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2397 } 2398 return (unsigned int)hash; 2399 } 2400 2401 const char* as_string() { 2402 stringStream st; 2403 st.print("0x"); 2404 for (int i = 0; i < length(); i++) { 2405 st.print("%x", value(i)); 2406 } 2407 return st.as_string(); 2408 } 2409 2410 const char* as_basic_args_string() { 2411 stringStream st; 2412 bool long_prev = false; 2413 iterate_args([&] (int arg) { 2414 if (long_prev) { 2415 long_prev = false; 2416 if (arg == T_VOID) { 2417 st.print("J"); 2418 } else { 2419 st.print("L"); 2420 } 2421 } 2422 switch (arg) { 2423 case T_INT: st.print("I"); break; 2424 case T_LONG: long_prev = true; break; 2425 case T_FLOAT: st.print("F"); break; 2426 case T_DOUBLE: st.print("D"); break; 2427 case T_VOID: break; 2428 default: ShouldNotReachHere(); 2429 } 2430 }); 2431 if (long_prev) { 2432 st.print("L"); 2433 } 2434 return st.as_string(); 2435 } 2436 2437 BasicType* as_basic_type(int& nargs) { 2438 nargs = 0; 2439 GrowableArray<BasicType> btarray; 2440 bool long_prev = false; 2441 2442 iterate_args([&] (int arg) { 2443 if (long_prev) { 2444 long_prev = false; 2445 if (arg == T_VOID) { 2446 btarray.append(T_LONG); 2447 } else { 2448 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter 2449 } 2450 } 2451 switch (arg) { 2452 case T_INT: // fallthrough 2453 case T_FLOAT: // fallthrough 2454 case T_DOUBLE: 2455 case T_VOID: 2456 btarray.append((BasicType)arg); 2457 break; 2458 case T_LONG: 2459 long_prev = true; 2460 break; 2461 default: ShouldNotReachHere(); 2462 } 2463 }); 2464 2465 if (long_prev) { 2466 btarray.append(T_OBJECT); 2467 } 2468 2469 nargs = btarray.length(); 2470 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs); 2471 int index = 0; 2472 GrowableArrayIterator<BasicType> iter = btarray.begin(); 2473 while (iter != btarray.end()) { 2474 sig_bt[index++] = *iter; 2475 ++iter; 2476 } 2477 assert(index == btarray.length(), "sanity check"); 2478 #ifdef ASSERT 2479 { 2480 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt); 2481 assert(this->equals(compare_fp), "sanity check"); 2482 AdapterFingerPrint::deallocate(compare_fp); 2483 } 2484 #endif 2485 return sig_bt; 2486 } 2487 2488 bool equals(AdapterFingerPrint* other) { 2489 if (other->_length != _length) { 2490 return false; 2491 } else { 2492 for (int i = 0; i < _length; i++) { 2493 if (_value[i] != other->_value[i]) { 2494 return false; 2495 } 2496 } 2497 } 2498 return true; 2499 } 2500 2501 // methods required by virtue of being a MetaspaceObj 2502 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2503 int size() const { return (int)heap_word_size(sizeof(AdapterFingerPrint) + (_length > _compact_int_count ? (_length - _compact_int_count) * sizeof(int) : 0)); } 2504 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2505 2506 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2507 NOT_PRODUCT(_equals++); 2508 return fp1->equals(fp2); 2509 } 2510 2511 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2512 return fp->compute_hash(); 2513 } 2514 }; 2515 2516 #if INCLUDE_CDS 2517 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2518 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2519 } 2520 2521 class ArchivedAdapterTable : public OffsetCompactHashtable< 2522 AdapterFingerPrint*, 2523 AdapterHandlerEntry*, 2524 adapter_fp_equals_compact_hashtable_entry> {}; 2525 #endif // INCLUDE_CDS 2526 2527 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2528 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2529 AnyObj::C_HEAP, mtCode, 2530 AdapterFingerPrint::compute_hash, 2531 AdapterFingerPrint::equals>; 2532 static AdapterHandlerTable* _adapter_handler_table; 2533 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2534 2535 // Find a entry with the same fingerprint if it exists 2536 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(AdapterFingerPrint* fp) { 2537 NOT_PRODUCT(_lookups++); 2538 AdapterHandlerEntry* entry = nullptr; 2539 #if INCLUDE_CDS 2540 // if we are building the archive then the archived adapter table is 2541 // not valid and we need to use the ones added to the runtime table 2542 if (!CDSConfig::is_dumping_adapters()) { 2543 // Search archived table first. It is read-only table so can be searched without lock 2544 entry = _archived_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2545 if (entry != nullptr) { 2546 #ifndef PRODUCT 2547 if (fp->is_compact()) { 2548 _compact++; 2549 } 2550 _archived_hits++; 2551 #endif 2552 return entry; 2553 } 2554 } 2555 #endif // INCLUDE_CDS 2556 assert_lock_strong(AdapterHandlerLibrary_lock); 2557 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2558 if (entry_p != nullptr) { 2559 entry = *entry_p; 2560 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2561 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2562 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2563 #ifndef PRODUCT 2564 if (fp->is_compact()) _compact++; 2565 _runtime_hits++; 2566 #endif 2567 return entry; 2568 } 2569 return nullptr; 2570 } 2571 2572 #ifndef PRODUCT 2573 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) { 2574 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2575 return sizeof(*key) + sizeof(*a); 2576 }; 2577 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2578 ts.print(st, "AdapterHandlerTable"); 2579 st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2580 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2581 int total_hits = _archived_hits + _runtime_hits; 2582 st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d) compact %d", 2583 _lookups, _equals, total_hits, _archived_hits, _runtime_hits, _compact); 2584 } 2585 #endif // !PRODUCT 2586 2587 // --------------------------------------------------------------------------- 2588 // Implementation of AdapterHandlerLibrary 2589 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2590 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2591 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2592 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2593 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2594 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2595 #if INCLUDE_CDS 2596 ArchivedAdapterTable AdapterHandlerLibrary::_archived_adapter_handler_table; 2597 #endif // INCLUDE_CDS 2598 const int AdapterHandlerLibrary_size = 16*K; 2599 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2600 2601 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2602 return _buffer; 2603 } 2604 2605 static void post_adapter_creation(const AdapterBlob* new_adapter, 2606 const AdapterHandlerEntry* entry) { 2607 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2608 char blob_id[256]; 2609 jio_snprintf(blob_id, 2610 sizeof(blob_id), 2611 "%s(%s)", 2612 new_adapter->name(), 2613 entry->fingerprint()->as_string()); 2614 if (Forte::is_enabled()) { 2615 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2616 } 2617 2618 if (JvmtiExport::should_post_dynamic_code_generated()) { 2619 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2620 } 2621 } 2622 } 2623 2624 void AdapterHandlerLibrary::initialize() { 2625 ResourceMark rm; 2626 AdapterBlob* no_arg_blob = nullptr; 2627 AdapterBlob* int_arg_blob = nullptr; 2628 AdapterBlob* obj_arg_blob = nullptr; 2629 AdapterBlob* obj_int_arg_blob = nullptr; 2630 AdapterBlob* obj_obj_arg_blob = nullptr; 2631 { 2632 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2633 MutexLocker mu(AdapterHandlerLibrary_lock); 2634 2635 // Create a special handler for abstract methods. Abstract methods 2636 // are never compiled so an i2c entry is somewhat meaningless, but 2637 // throw AbstractMethodError just in case. 2638 // Pass wrong_method_abstract for the c2i transitions to return 2639 // AbstractMethodError for invalid invocations. 2640 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2641 _abstract_method_handler = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(0, nullptr), 2642 SharedRuntime::throw_AbstractMethodError_entry(), 2643 wrong_method_abstract, wrong_method_abstract); 2644 2645 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2646 _no_arg_handler = create_simple_adapter(no_arg_blob, 0, nullptr); 2647 2648 BasicType obj_args[] = { T_OBJECT }; 2649 _obj_arg_handler = create_simple_adapter(obj_arg_blob, 1, obj_args); 2650 2651 BasicType int_args[] = { T_INT }; 2652 _int_arg_handler = create_simple_adapter(int_arg_blob, 1, int_args); 2653 2654 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2655 _obj_int_arg_handler = create_simple_adapter(obj_int_arg_blob, 2, obj_int_args); 2656 2657 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2658 _obj_obj_arg_handler = create_simple_adapter(obj_obj_arg_blob, 2, obj_obj_args); 2659 2660 assert(no_arg_blob != nullptr && 2661 obj_arg_blob != nullptr && 2662 int_arg_blob != nullptr && 2663 obj_int_arg_blob != nullptr && 2664 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2665 } 2666 2667 // Outside of the lock 2668 post_adapter_creation(no_arg_blob, _no_arg_handler); 2669 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2670 post_adapter_creation(int_arg_blob, _int_arg_handler); 2671 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2672 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2673 } 2674 2675 AdapterHandlerEntry* AdapterHandlerLibrary::create_simple_adapter(AdapterBlob*& adapter_blob, 2676 int total_args_passed, 2677 BasicType* sig_bt) { 2678 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2679 // We may find the adapter in the table if it is loaded from the AOT cache 2680 AdapterHandlerEntry* entry = lookup(fp); 2681 if (entry != nullptr) { 2682 assert(entry->is_shared() && !entry->is_linked(), "Non null AdapterHandlerEntry should be in the AOT cache in unlinked state"); 2683 if (!link_adapter_handler(entry, adapter_blob)) { 2684 if (!generate_adapter_code(adapter_blob, entry, total_args_passed, sig_bt, /* is_transient */ false)) { 2685 return nullptr; 2686 } 2687 } 2688 // AdapterFingerPrint is already in the cache, no need to keep this one 2689 AdapterFingerPrint::deallocate(fp); 2690 } else { 2691 entry = create_adapter(adapter_blob, fp, total_args_passed, sig_bt, /* is_transient */ false); 2692 } 2693 return entry; 2694 } 2695 2696 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2697 address i2c_entry, 2698 address c2i_entry, 2699 address c2i_unverified_entry, 2700 address c2i_no_clinit_check_entry) { 2701 // Insert an entry into the table 2702 return AdapterHandlerEntry::allocate(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, 2703 c2i_no_clinit_check_entry); 2704 } 2705 2706 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2707 if (method->is_abstract()) { 2708 return _abstract_method_handler; 2709 } 2710 int total_args_passed = method->size_of_parameters(); // All args on stack 2711 if (total_args_passed == 0) { 2712 return _no_arg_handler; 2713 } else if (total_args_passed == 1) { 2714 if (!method->is_static()) { 2715 return _obj_arg_handler; 2716 } 2717 switch (method->signature()->char_at(1)) { 2718 case JVM_SIGNATURE_CLASS: 2719 case JVM_SIGNATURE_ARRAY: 2720 return _obj_arg_handler; 2721 case JVM_SIGNATURE_INT: 2722 case JVM_SIGNATURE_BOOLEAN: 2723 case JVM_SIGNATURE_CHAR: 2724 case JVM_SIGNATURE_BYTE: 2725 case JVM_SIGNATURE_SHORT: 2726 return _int_arg_handler; 2727 } 2728 } else if (total_args_passed == 2 && 2729 !method->is_static()) { 2730 switch (method->signature()->char_at(1)) { 2731 case JVM_SIGNATURE_CLASS: 2732 case JVM_SIGNATURE_ARRAY: 2733 return _obj_obj_arg_handler; 2734 case JVM_SIGNATURE_INT: 2735 case JVM_SIGNATURE_BOOLEAN: 2736 case JVM_SIGNATURE_CHAR: 2737 case JVM_SIGNATURE_BYTE: 2738 case JVM_SIGNATURE_SHORT: 2739 return _obj_int_arg_handler; 2740 } 2741 } 2742 return nullptr; 2743 } 2744 2745 class AdapterSignatureIterator : public SignatureIterator { 2746 private: 2747 BasicType stack_sig_bt[16]; 2748 BasicType* sig_bt; 2749 int index; 2750 2751 public: 2752 AdapterSignatureIterator(Symbol* signature, 2753 fingerprint_t fingerprint, 2754 bool is_static, 2755 int total_args_passed) : 2756 SignatureIterator(signature, fingerprint), 2757 index(0) 2758 { 2759 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2760 if (!is_static) { // Pass in receiver first 2761 sig_bt[index++] = T_OBJECT; 2762 } 2763 do_parameters_on(this); 2764 } 2765 2766 BasicType* basic_types() { 2767 return sig_bt; 2768 } 2769 2770 #ifdef ASSERT 2771 int slots() { 2772 return index; 2773 } 2774 #endif 2775 2776 private: 2777 2778 friend class SignatureIterator; // so do_parameters_on can call do_type 2779 void do_type(BasicType type) { 2780 sig_bt[index++] = type; 2781 if (type == T_LONG || type == T_DOUBLE) { 2782 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2783 } 2784 } 2785 }; 2786 2787 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2788 // Use customized signature handler. Need to lock around updates to 2789 // the _adapter_handler_table (it is not safe for concurrent readers 2790 // and a single writer: this could be fixed if it becomes a 2791 // problem). 2792 2793 // Fast-path for trivial adapters 2794 AdapterHandlerEntry* entry = get_simple_adapter(method); 2795 if (entry != nullptr) { 2796 return entry; 2797 } 2798 2799 ResourceMark rm; 2800 AdapterBlob* new_adapter = nullptr; 2801 2802 // Fill in the signature array, for the calling-convention call. 2803 int total_args_passed = method->size_of_parameters(); // All args on stack 2804 2805 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2806 method->is_static(), total_args_passed); 2807 assert(si.slots() == total_args_passed, ""); 2808 BasicType* sig_bt = si.basic_types(); 2809 { 2810 MutexLocker mu(AdapterHandlerLibrary_lock); 2811 2812 // Lookup method signature's fingerprint 2813 AdapterFingerPrint *fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2814 entry = lookup(fp); 2815 2816 if (entry != nullptr) { 2817 #ifdef ASSERT 2818 if (VerifyAdapterSharing) { 2819 AdapterBlob* comparison_blob = nullptr; 2820 AdapterFingerPrint* comparison_fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2821 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, comparison_fp, total_args_passed, sig_bt, true); 2822 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2823 assert(comparison_entry->compare_code(entry), "code must match"); 2824 AdapterFingerPrint::deallocate(comparison_fp); 2825 // Release the one just created and return the original 2826 AdapterHandlerEntry::deallocate(comparison_entry); 2827 } 2828 #endif 2829 AdapterFingerPrint::deallocate(fp); 2830 return entry; 2831 } 2832 2833 entry = create_adapter(new_adapter, fp, total_args_passed, sig_bt, /* is_transient */ false); 2834 } 2835 2836 // Outside of the lock 2837 if (new_adapter != nullptr) { 2838 post_adapter_creation(new_adapter, entry); 2839 } 2840 return entry; 2841 } 2842 2843 bool AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler, CodeBuffer* buffer) { 2844 ResourceMark rm; 2845 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2846 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2847 uint32_t offsets[4]; 2848 if (SCCache::load_adapter(buffer, id, name, offsets)) { 2849 address i2c_entry = buffer->insts_begin(); 2850 assert(offsets[0] == 0, "sanity check"); 2851 handler->set_entry_points(i2c_entry, i2c_entry + offsets[1], i2c_entry + offsets[2], i2c_entry + offsets[3]); 2852 return true; 2853 } 2854 return false; 2855 } 2856 2857 #ifndef PRODUCT 2858 void AdapterHandlerLibrary::print_adapter_handler_info(AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) { 2859 ttyLocker ttyl; 2860 ResourceMark rm; 2861 int insts_size = adapter_blob->code_size(); 2862 handler->print_adapter_on(tty); 2863 tty->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 2864 handler->fingerprint()->as_basic_args_string(), 2865 handler->fingerprint()->as_string(), insts_size); 2866 tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 2867 if (Verbose || PrintStubCode) { 2868 address first_pc = handler->base_address(); 2869 if (first_pc != nullptr) { 2870 Disassembler::decode(first_pc, first_pc + insts_size, tty, &adapter_blob->asm_remarks()); 2871 tty->cr(); 2872 } 2873 } 2874 } 2875 #endif // PRODUCT 2876 2877 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob, 2878 AdapterHandlerEntry* handler, 2879 int total_args_passed, 2880 BasicType* sig_bt, 2881 bool is_transient) { 2882 if (log_is_enabled(Info, perf, class, link)) { 2883 ClassLoader::perf_method_adapters_count()->inc(); 2884 } 2885 2886 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2887 CodeBuffer buffer(buf); 2888 short buffer_locs[20]; 2889 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2890 sizeof(buffer_locs)/sizeof(relocInfo)); 2891 MacroAssembler masm(&buffer); 2892 VMRegPair stack_regs[16]; 2893 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2894 2895 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2896 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2897 SharedRuntime::generate_i2c2i_adapters(&masm, 2898 total_args_passed, 2899 comp_args_on_stack, 2900 sig_bt, 2901 regs, 2902 handler); 2903 if (CDSConfig::is_dumping_adapters()) { 2904 // try to save generated code 2905 const char* name = AdapterHandlerLibrary::name(handler->fingerprint()); 2906 const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint()); 2907 uint32_t offsets[4]; 2908 offsets[0] = 0; 2909 offsets[1] = handler->get_c2i_entry() - handler->get_i2c_entry(); 2910 offsets[2] = handler->get_c2i_unverified_entry() - handler->get_i2c_entry(); 2911 offsets[3] = handler->get_c2i_no_clinit_check_entry() - handler->get_i2c_entry(); 2912 SCCache::store_adapter(&buffer, id, name, offsets); 2913 } 2914 #ifdef ASSERT 2915 if (VerifyAdapterSharing) { 2916 handler->save_code(buf->code_begin(), buffer.insts_size()); 2917 if (is_transient) { 2918 return true; 2919 } 2920 } 2921 #endif 2922 2923 adapter_blob = AdapterBlob::create(&buffer); 2924 if (adapter_blob == nullptr) { 2925 // CodeCache is full, disable compilation 2926 // Ought to log this but compile log is only per compile thread 2927 // and we're some non descript Java thread. 2928 return false; 2929 } 2930 handler->relocate(adapter_blob->content_begin()); 2931 #ifndef PRODUCT 2932 // debugging support 2933 if (PrintAdapterHandlers || PrintStubCode) { 2934 print_adapter_handler_info(handler, adapter_blob); 2935 } 2936 #endif 2937 return true; 2938 } 2939 2940 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob, 2941 AdapterFingerPrint* fingerprint, 2942 int total_args_passed, 2943 BasicType* sig_bt, 2944 bool is_transient) { 2945 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fingerprint); 2946 if (!generate_adapter_code(adapter_blob, handler, total_args_passed, sig_bt, is_transient)) { 2947 return nullptr; 2948 } 2949 if (!is_transient) { 2950 assert_lock_strong(AdapterHandlerLibrary_lock); 2951 _adapter_handler_table->put(fingerprint, handler); 2952 } 2953 return handler; 2954 } 2955 2956 #if INCLUDE_CDS 2957 bool AdapterHandlerLibrary::link_adapter_handler(AdapterHandlerEntry* handler, AdapterBlob*& adapter_blob) { 2958 #ifndef PRODUCT 2959 if (TestAdapterLinkFailure) { 2960 return false; 2961 } 2962 #endif 2963 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2964 CodeBuffer buffer(buf); 2965 short buffer_locs[20]; 2966 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2967 sizeof(buffer_locs)/sizeof(relocInfo)); 2968 2969 if (!lookup_aot_cache(handler, &buffer)) { 2970 return false; 2971 } 2972 adapter_blob = AdapterBlob::create(&buffer); 2973 if (adapter_blob == nullptr) { 2974 // CodeCache is full, disable compilation 2975 // Ought to log this but compile log is only per compile thread 2976 // and we're some non descript Java thread. 2977 return false; 2978 } 2979 handler->relocate(adapter_blob->content_begin()); 2980 #ifndef PRODUCT 2981 // debugging support 2982 if (PrintAdapterHandlers || PrintStubCode) { 2983 print_adapter_handler_info(handler, adapter_blob); 2984 } 2985 #endif 2986 return true; 2987 } 2988 2989 class CopyAdapterTableToArchive : StackObj { 2990 private: 2991 CompactHashtableWriter* _writer; 2992 ArchiveBuilder* _builder; 2993 public: 2994 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 2995 _builder(ArchiveBuilder::current()) 2996 {} 2997 2998 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 2999 LogStreamHandle(Trace, cds) lsh; 3000 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 3001 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 3002 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 3003 assert(buffered_fp != nullptr,"sanity check"); 3004 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 3005 assert(buffered_entry != nullptr,"sanity check"); 3006 3007 uint hash = fp->compute_hash(); 3008 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 3009 _writer->add(hash, delta); 3010 if (lsh.is_enabled()) { 3011 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 3012 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 3013 log_trace(cds)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 3014 } 3015 } else { 3016 if (lsh.is_enabled()) { 3017 log_trace(cds)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 3018 } 3019 } 3020 return true; 3021 } 3022 }; 3023 3024 size_t AdapterHandlerLibrary::estimate_size_for_archive() { 3025 return CompactHashtableWriter::estimate_size(_adapter_handler_table->number_of_entries()); 3026 } 3027 3028 void AdapterHandlerLibrary::archive_adapter_table() { 3029 CompactHashtableStats stats; 3030 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 3031 CopyAdapterTableToArchive copy(&writer); 3032 _adapter_handler_table->iterate(©); 3033 writer.dump(&_archived_adapter_handler_table, "archived adapter table"); 3034 } 3035 3036 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 3037 _archived_adapter_handler_table.serialize_header(soc); 3038 } 3039 #endif // INCLUDE_CDS 3040 3041 address AdapterHandlerEntry::base_address() { 3042 address base = _i2c_entry; 3043 if (base == nullptr) base = _c2i_entry; 3044 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 3045 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 3046 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 3047 return base; 3048 } 3049 3050 void AdapterHandlerEntry::relocate(address new_base) { 3051 address old_base = base_address(); 3052 assert(old_base != nullptr, ""); 3053 ptrdiff_t delta = new_base - old_base; 3054 if (_i2c_entry != nullptr) 3055 _i2c_entry += delta; 3056 if (_c2i_entry != nullptr) 3057 _c2i_entry += delta; 3058 if (_c2i_unverified_entry != nullptr) 3059 _c2i_unverified_entry += delta; 3060 if (_c2i_no_clinit_check_entry != nullptr) 3061 _c2i_no_clinit_check_entry += delta; 3062 assert(base_address() == new_base, ""); 3063 } 3064 3065 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3066 LogStreamHandle(Trace, cds) lsh; 3067 if (lsh.is_enabled()) { 3068 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3069 lsh.cr(); 3070 } 3071 it->push(&_fingerprint); 3072 } 3073 3074 #if INCLUDE_CDS 3075 void AdapterHandlerEntry::remove_unshareable_info() { 3076 set_entry_points(nullptr, nullptr, nullptr, nullptr, false); 3077 } 3078 3079 void AdapterHandlerEntry::restore_unshareable_info(TRAPS) { 3080 PerfTraceElapsedTime timer(ClassLoader::perf_method_adapters_time()); 3081 // A fixed set of simple adapters are eagerly linked during JVM initialization 3082 // in AdapterHandlerTable::initialize(). 3083 // Others may already have been linked because they are shared by other methods. 3084 if (is_linked()) { 3085 return; 3086 } 3087 AdapterBlob* adapter_blob = nullptr; 3088 { 3089 MutexLocker mu(AdapterHandlerLibrary_lock); 3090 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 3091 #ifdef ASSERT 3092 AdapterHandlerEntry* entry = AdapterHandlerLibrary::lookup(_fingerprint); 3093 assert(entry == this, "sanity check"); 3094 #endif 3095 if (!AdapterHandlerLibrary::link_adapter_handler(this, adapter_blob)) { 3096 ResourceMark rm; 3097 log_warning(cds)("Failed to link AdapterHandlerEntry to its code in the AOT code cache"); 3098 int nargs; 3099 BasicType* bt = _fingerprint->as_basic_type(nargs); 3100 if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, nargs, bt, /* is_transient */ false)) { 3101 if (!is_init_completed()) { 3102 // Don't throw exceptions during VM initialization because java.lang.* classes 3103 // might not have been initialized, causing problems when constructing the 3104 // Java exception object. 3105 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 3106 } else { 3107 THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(), "Out of space in CodeCache for adapters"); 3108 } 3109 } 3110 } 3111 } 3112 // Outside of the lock 3113 if (adapter_blob != nullptr) { 3114 post_adapter_creation(adapter_blob, this); 3115 } 3116 assert(_linked, "AdapterHandlerEntry must now be linked"); 3117 } 3118 #endif // INCLUDE_CDS 3119 3120 AdapterHandlerEntry::~AdapterHandlerEntry() { 3121 #ifdef ASSERT 3122 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3123 #endif 3124 FreeHeap(this); 3125 } 3126 3127 3128 #ifdef ASSERT 3129 // Capture the code before relocation so that it can be compared 3130 // against other versions. If the code is captured after relocation 3131 // then relative instructions won't be equivalent. 3132 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3133 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3134 _saved_code_length = length; 3135 memcpy(_saved_code, buffer, length); 3136 } 3137 3138 3139 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3140 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3141 3142 if (other->_saved_code_length != _saved_code_length) { 3143 return false; 3144 } 3145 3146 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3147 } 3148 #endif 3149 3150 3151 /** 3152 * Create a native wrapper for this native method. The wrapper converts the 3153 * Java-compiled calling convention to the native convention, handles 3154 * arguments, and transitions to native. On return from the native we transition 3155 * back to java blocking if a safepoint is in progress. 3156 */ 3157 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3158 ResourceMark rm; 3159 nmethod* nm = nullptr; 3160 3161 // Check if memory should be freed before allocation 3162 CodeCache::gc_on_allocation(); 3163 3164 assert(method->is_native(), "must be native"); 3165 assert(method->is_special_native_intrinsic() || 3166 method->has_native_function(), "must have something valid to call!"); 3167 3168 { 3169 // Perform the work while holding the lock, but perform any printing outside the lock 3170 MutexLocker mu(AdapterHandlerLibrary_lock); 3171 // See if somebody beat us to it 3172 if (method->code() != nullptr) { 3173 return; 3174 } 3175 3176 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3177 assert(compile_id > 0, "Must generate native wrapper"); 3178 3179 3180 ResourceMark rm; 3181 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3182 if (buf != nullptr) { 3183 CodeBuffer buffer(buf); 3184 3185 if (method->is_continuation_enter_intrinsic()) { 3186 buffer.initialize_stubs_size(192); 3187 } 3188 3189 struct { double data[20]; } locs_buf; 3190 struct { double data[20]; } stubs_locs_buf; 3191 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3192 #if defined(AARCH64) || defined(PPC64) 3193 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3194 // in the constant pool to ensure ordering between the barrier and oops 3195 // accesses. For native_wrappers we need a constant. 3196 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3197 // static java call that is resolved in the runtime. 3198 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3199 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3200 } 3201 #endif 3202 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3203 MacroAssembler _masm(&buffer); 3204 3205 // Fill in the signature array, for the calling-convention call. 3206 const int total_args_passed = method->size_of_parameters(); 3207 3208 VMRegPair stack_regs[16]; 3209 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3210 3211 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3212 method->is_static(), total_args_passed); 3213 BasicType* sig_bt = si.basic_types(); 3214 assert(si.slots() == total_args_passed, ""); 3215 BasicType ret_type = si.return_type(); 3216 3217 // Now get the compiled-Java arguments layout. 3218 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3219 3220 // Generate the compiled-to-native wrapper code 3221 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3222 3223 if (nm != nullptr) { 3224 { 3225 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3226 if (nm->make_in_use()) { 3227 method->set_code(method, nm); 3228 } 3229 } 3230 3231 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3232 if (directive->PrintAssemblyOption) { 3233 nm->print_code(); 3234 } 3235 DirectivesStack::release(directive); 3236 } 3237 } 3238 } // Unlock AdapterHandlerLibrary_lock 3239 3240 3241 // Install the generated code. 3242 if (nm != nullptr) { 3243 const char *msg = method->is_static() ? "(static)" : ""; 3244 CompileTask::print_ul(nm, msg); 3245 if (PrintCompilation) { 3246 ttyLocker ttyl; 3247 CompileTask::print(tty, nm, msg); 3248 } 3249 nm->post_compiled_method_load_event(); 3250 } 3251 } 3252 3253 // ------------------------------------------------------------------------- 3254 // Java-Java calling convention 3255 // (what you use when Java calls Java) 3256 3257 //------------------------------name_for_receiver---------------------------------- 3258 // For a given signature, return the VMReg for parameter 0. 3259 VMReg SharedRuntime::name_for_receiver() { 3260 VMRegPair regs; 3261 BasicType sig_bt = T_OBJECT; 3262 (void) java_calling_convention(&sig_bt, ®s, 1); 3263 // Return argument 0 register. In the LP64 build pointers 3264 // take 2 registers, but the VM wants only the 'main' name. 3265 return regs.first(); 3266 } 3267 3268 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3269 // This method is returning a data structure allocating as a 3270 // ResourceObject, so do not put any ResourceMarks in here. 3271 3272 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3273 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3274 int cnt = 0; 3275 if (has_receiver) { 3276 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3277 } 3278 3279 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3280 BasicType type = ss.type(); 3281 sig_bt[cnt++] = type; 3282 if (is_double_word_type(type)) 3283 sig_bt[cnt++] = T_VOID; 3284 } 3285 3286 if (has_appendix) { 3287 sig_bt[cnt++] = T_OBJECT; 3288 } 3289 3290 assert(cnt < 256, "grow table size"); 3291 3292 int comp_args_on_stack; 3293 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3294 3295 // the calling convention doesn't count out_preserve_stack_slots so 3296 // we must add that in to get "true" stack offsets. 3297 3298 if (comp_args_on_stack) { 3299 for (int i = 0; i < cnt; i++) { 3300 VMReg reg1 = regs[i].first(); 3301 if (reg1->is_stack()) { 3302 // Yuck 3303 reg1 = reg1->bias(out_preserve_stack_slots()); 3304 } 3305 VMReg reg2 = regs[i].second(); 3306 if (reg2->is_stack()) { 3307 // Yuck 3308 reg2 = reg2->bias(out_preserve_stack_slots()); 3309 } 3310 regs[i].set_pair(reg2, reg1); 3311 } 3312 } 3313 3314 // results 3315 *arg_size = cnt; 3316 return regs; 3317 } 3318 3319 // OSR Migration Code 3320 // 3321 // This code is used convert interpreter frames into compiled frames. It is 3322 // called from very start of a compiled OSR nmethod. A temp array is 3323 // allocated to hold the interesting bits of the interpreter frame. All 3324 // active locks are inflated to allow them to move. The displaced headers and 3325 // active interpreter locals are copied into the temp buffer. Then we return 3326 // back to the compiled code. The compiled code then pops the current 3327 // interpreter frame off the stack and pushes a new compiled frame. Then it 3328 // copies the interpreter locals and displaced headers where it wants. 3329 // Finally it calls back to free the temp buffer. 3330 // 3331 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3332 3333 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3334 assert(current == JavaThread::current(), "pre-condition"); 3335 3336 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3337 // frame. The stack watermark code below ensures that the interpreted frame is processed 3338 // before it gets unwound. This is helpful as the size of the compiled frame could be 3339 // larger than the interpreted frame, which could result in the new frame not being 3340 // processed correctly. 3341 StackWatermarkSet::before_unwind(current); 3342 3343 // 3344 // This code is dependent on the memory layout of the interpreter local 3345 // array and the monitors. On all of our platforms the layout is identical 3346 // so this code is shared. If some platform lays the their arrays out 3347 // differently then this code could move to platform specific code or 3348 // the code here could be modified to copy items one at a time using 3349 // frame accessor methods and be platform independent. 3350 3351 frame fr = current->last_frame(); 3352 assert(fr.is_interpreted_frame(), ""); 3353 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3354 3355 // Figure out how many monitors are active. 3356 int active_monitor_count = 0; 3357 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3358 kptr < fr.interpreter_frame_monitor_begin(); 3359 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3360 if (kptr->obj() != nullptr) active_monitor_count++; 3361 } 3362 3363 // QQQ we could place number of active monitors in the array so that compiled code 3364 // could double check it. 3365 3366 Method* moop = fr.interpreter_frame_method(); 3367 int max_locals = moop->max_locals(); 3368 // Allocate temp buffer, 1 word per local & 2 per active monitor 3369 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3370 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3371 3372 // Copy the locals. Order is preserved so that loading of longs works. 3373 // Since there's no GC I can copy the oops blindly. 3374 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3375 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3376 (HeapWord*)&buf[0], 3377 max_locals); 3378 3379 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3380 int i = max_locals; 3381 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3382 kptr2 < fr.interpreter_frame_monitor_begin(); 3383 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3384 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3385 BasicLock *lock = kptr2->lock(); 3386 if (LockingMode == LM_LEGACY) { 3387 // Inflate so the object's header no longer refers to the BasicLock. 3388 if (lock->displaced_header().is_unlocked()) { 3389 // The object is locked and the resulting ObjectMonitor* will also be 3390 // locked so it can't be async deflated until ownership is dropped. 3391 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3392 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3393 } 3394 // Now the displaced header is free to move because the 3395 // object's header no longer refers to it. 3396 buf[i] = (intptr_t)lock->displaced_header().value(); 3397 } else if (UseObjectMonitorTable) { 3398 buf[i] = (intptr_t)lock->object_monitor_cache(); 3399 } 3400 #ifdef ASSERT 3401 else { 3402 buf[i] = badDispHeaderOSR; 3403 } 3404 #endif 3405 i++; 3406 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3407 } 3408 } 3409 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3410 3411 RegisterMap map(current, 3412 RegisterMap::UpdateMap::skip, 3413 RegisterMap::ProcessFrames::include, 3414 RegisterMap::WalkContinuation::skip); 3415 frame sender = fr.sender(&map); 3416 if (sender.is_interpreted_frame()) { 3417 current->push_cont_fastpath(sender.sp()); 3418 } 3419 3420 return buf; 3421 JRT_END 3422 3423 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3424 FREE_C_HEAP_ARRAY(intptr_t, buf); 3425 JRT_END 3426 3427 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3428 bool found = false; 3429 #if INCLUDE_CDS 3430 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3431 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); 3432 }; 3433 _archived_adapter_handler_table.iterate(findblob_archived_table); 3434 #endif // INCLUDE_CDS 3435 if (!found) { 3436 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3437 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3438 }; 3439 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3440 _adapter_handler_table->iterate(findblob_runtime_table); 3441 } 3442 return found; 3443 } 3444 3445 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) { 3446 return fingerprint->as_basic_args_string(); 3447 } 3448 3449 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) { 3450 unsigned int hash = fingerprint->compute_hash(); 3451 return hash; 3452 } 3453 3454 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3455 bool found = false; 3456 #if INCLUDE_CDS 3457 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3458 if (b == CodeCache::find_blob(handler->get_i2c_entry())) { 3459 found = true; 3460 st->print("Adapter for signature: "); 3461 handler->print_adapter_on(st); 3462 return true; 3463 } else { 3464 return false; // keep looking 3465 3466 } 3467 }; 3468 _archived_adapter_handler_table.iterate(findblob_archived_table); 3469 #endif // INCLUDE_CDS 3470 if (!found) { 3471 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3472 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3473 found = true; 3474 st->print("Adapter for signature: "); 3475 a->print_adapter_on(st); 3476 return true; 3477 } else { 3478 return false; // keep looking 3479 } 3480 }; 3481 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3482 _adapter_handler_table->iterate(findblob_runtime_table); 3483 } 3484 assert(found, "Should have found handler"); 3485 } 3486 3487 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3488 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3489 if (get_i2c_entry() != nullptr) { 3490 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3491 } 3492 if (get_c2i_entry() != nullptr) { 3493 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3494 } 3495 if (get_c2i_unverified_entry() != nullptr) { 3496 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3497 } 3498 if (get_c2i_no_clinit_check_entry() != nullptr) { 3499 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3500 } 3501 st->cr(); 3502 } 3503 3504 bool AdapterHandlerLibrary::is_abstract_method_adapter(AdapterHandlerEntry* entry) { 3505 if (entry == _abstract_method_handler) { 3506 return true; 3507 } 3508 return false; 3509 } 3510 3511 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3512 assert(current == JavaThread::current(), "pre-condition"); 3513 StackOverflow* overflow_state = current->stack_overflow_state(); 3514 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3515 overflow_state->set_reserved_stack_activation(current->stack_base()); 3516 JRT_END 3517 3518 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3519 ResourceMark rm(current); 3520 frame activation; 3521 nmethod* nm = nullptr; 3522 int count = 1; 3523 3524 assert(fr.is_java_frame(), "Must start on Java frame"); 3525 3526 RegisterMap map(JavaThread::current(), 3527 RegisterMap::UpdateMap::skip, 3528 RegisterMap::ProcessFrames::skip, 3529 RegisterMap::WalkContinuation::skip); // don't walk continuations 3530 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3531 if (!fr.is_java_frame()) { 3532 continue; 3533 } 3534 3535 Method* method = nullptr; 3536 bool found = false; 3537 if (fr.is_interpreted_frame()) { 3538 method = fr.interpreter_frame_method(); 3539 if (method != nullptr && method->has_reserved_stack_access()) { 3540 found = true; 3541 } 3542 } else { 3543 CodeBlob* cb = fr.cb(); 3544 if (cb != nullptr && cb->is_nmethod()) { 3545 nm = cb->as_nmethod(); 3546 method = nm->method(); 3547 // scope_desc_near() must be used, instead of scope_desc_at() because on 3548 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3549 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3550 method = sd->method(); 3551 if (method != nullptr && method->has_reserved_stack_access()) { 3552 found = true; 3553 } 3554 } 3555 } 3556 } 3557 if (found) { 3558 activation = fr; 3559 warning("Potentially dangerous stack overflow in " 3560 "ReservedStackAccess annotated method %s [%d]", 3561 method->name_and_sig_as_C_string(), count++); 3562 EventReservedStackActivation event; 3563 if (event.should_commit()) { 3564 event.set_method(method); 3565 event.commit(); 3566 } 3567 } 3568 } 3569 return activation; 3570 } 3571 3572 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3573 // After any safepoint, just before going back to compiled code, 3574 // we inform the GC that we will be doing initializing writes to 3575 // this object in the future without emitting card-marks, so 3576 // GC may take any compensating steps. 3577 3578 oop new_obj = current->vm_result(); 3579 if (new_obj == nullptr) return; 3580 3581 BarrierSet *bs = BarrierSet::barrier_set(); 3582 bs->on_slowpath_allocation_exit(current, new_obj); 3583 }