1 /*
2 * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "cds/aotCompressedPointers.hpp"
26 #include "cds/archiveBuilder.hpp"
27 #include "cds/archiveUtils.inline.hpp"
28 #include "classfile/classLoader.hpp"
29 #include "classfile/compactHashtable.hpp"
30 #include "classfile/javaClasses.inline.hpp"
31 #include "classfile/stringTable.hpp"
32 #include "classfile/vmClasses.hpp"
33 #include "classfile/vmSymbols.hpp"
34 #include "code/aotCodeCache.hpp"
35 #include "code/codeCache.hpp"
36 #include "code/compiledIC.hpp"
37 #include "code/nmethod.inline.hpp"
38 #include "code/scopeDesc.hpp"
39 #include "code/vtableStubs.hpp"
40 #include "compiler/abstractCompiler.hpp"
41 #include "compiler/compileBroker.hpp"
42 #include "compiler/disassembler.hpp"
43 #include "gc/shared/barrierSet.hpp"
44 #include "gc/shared/collectedHeap.hpp"
45 #include "interpreter/interpreter.hpp"
46 #include "interpreter/interpreterRuntime.hpp"
47 #include "jfr/jfrEvents.hpp"
48 #include "jvm.h"
49 #include "logging/log.hpp"
50 #include "memory/resourceArea.hpp"
51 #include "memory/universe.hpp"
52 #include "metaprogramming/primitiveConversions.hpp"
53 #include "oops/klass.hpp"
54 #include "oops/method.inline.hpp"
55 #include "oops/objArrayKlass.hpp"
56 #include "oops/oop.inline.hpp"
57 #include "prims/forte.hpp"
58 #include "prims/jvmtiExport.hpp"
59 #include "prims/jvmtiThreadState.hpp"
60 #include "prims/methodHandles.hpp"
61 #include "prims/nativeLookup.hpp"
62 #include "runtime/arguments.hpp"
63 #include "runtime/atomicAccess.hpp"
64 #include "runtime/basicLock.inline.hpp"
65 #include "runtime/frame.inline.hpp"
66 #include "runtime/handles.inline.hpp"
67 #include "runtime/init.hpp"
68 #include "runtime/interfaceSupport.inline.hpp"
69 #include "runtime/java.hpp"
70 #include "runtime/javaCalls.hpp"
71 #include "runtime/jniHandles.inline.hpp"
72 #include "runtime/osThread.hpp"
73 #include "runtime/perfData.inline.hpp"
74 #include "runtime/sharedRuntime.hpp"
75 #include "runtime/stackWatermarkSet.hpp"
76 #include "runtime/stubRoutines.hpp"
77 #include "runtime/synchronizer.hpp"
78 #include "runtime/timerTrace.hpp"
79 #include "runtime/vframe.inline.hpp"
80 #include "runtime/vframeArray.hpp"
81 #include "runtime/vm_version.hpp"
82 #include "services/management.hpp"
83 #include "utilities/copy.hpp"
84 #include "utilities/dtrace.hpp"
85 #include "utilities/events.hpp"
86 #include "utilities/globalDefinitions.hpp"
87 #include "utilities/hashTable.hpp"
88 #include "utilities/macros.hpp"
89 #include "utilities/xmlstream.hpp"
90 #ifdef COMPILER1
91 #include "c1/c1_Runtime1.hpp"
92 #endif
93 #ifdef COMPILER2
94 #include "opto/runtime.hpp"
95 #endif
96 #if INCLUDE_JFR
97 #include "jfr/jfr.inline.hpp"
98 #endif
99
100 // Shared runtime stub routines reside in their own unique blob with a
101 // single entry point
102
103
104 #define SHARED_STUB_FIELD_DEFINE(name, type) \
105 type* SharedRuntime::BLOB_FIELD_NAME(name);
106 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
107 #undef SHARED_STUB_FIELD_DEFINE
108
109 nmethod* SharedRuntime::_cont_doYield_stub;
110
111 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr;
112 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time = nullptr;
113 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time = nullptr;
114 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr;
115 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time = nullptr;
116
117 #if 0
118 // TODO tweak global stub name generation to match this
119 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
120 const char *SharedRuntime::_stub_names[] = {
121 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
122 };
123 #endif
124
125 //----------------------------generate_stubs-----------------------------------
126 void SharedRuntime::generate_initial_stubs() {
127 // Build this early so it's available for the interpreter.
128 _throw_StackOverflowError_blob =
129 generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
130 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
131 }
132
133 void SharedRuntime::generate_stubs() {
134 _wrong_method_blob =
135 generate_resolve_blob(StubId::shared_wrong_method_id,
136 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
137 _wrong_method_abstract_blob =
138 generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
139 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
140 _ic_miss_blob =
141 generate_resolve_blob(StubId::shared_ic_miss_id,
142 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
143 _resolve_opt_virtual_call_blob =
144 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
145 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
146 _resolve_virtual_call_blob =
147 generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
148 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
149 _resolve_static_call_blob =
150 generate_resolve_blob(StubId::shared_resolve_static_call_id,
151 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
152
153 _throw_delayed_StackOverflowError_blob =
154 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
155 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
156
157 _throw_AbstractMethodError_blob =
158 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
159 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
160
161 _throw_IncompatibleClassChangeError_blob =
162 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
163 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
164
165 _throw_NullPointerException_at_call_blob =
166 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
167 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
168
169 #if COMPILER2_OR_JVMCI
170 // Vectors are generated only by C2 and JVMCI.
171 bool support_wide = is_wide_vector(MaxVectorSize);
172 if (support_wide) {
173 _polling_page_vectors_safepoint_handler_blob =
174 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
175 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
176 }
177 #endif // COMPILER2_OR_JVMCI
178 _polling_page_safepoint_handler_blob =
179 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
180 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
181 _polling_page_return_handler_blob =
182 generate_handler_blob(StubId::shared_polling_page_return_handler_id,
183 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
184
185 generate_deopt_blob();
186
187 if (UsePerfData) {
188 EXCEPTION_MARK;
189 NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call");
190 NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time, SUN_CI, "resovle_virtual_call");
191 NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time, SUN_CI, "resovle_static_call");
192 NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method");
193 NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time , SUN_CI, "ic_miss");
194 if (HAS_PENDING_EXCEPTION) {
195 vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly");
196 }
197 }
198 }
199
200 void SharedRuntime::init_adapter_library() {
201 AdapterHandlerLibrary::initialize();
202 }
203
204 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) {
205 st->print(" %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us());
206 if (TraceThreadTime) {
207 st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us());
208 }
209 st->print(" / %5d events", cnt);
210 st->cr();
211 }
212
213 void SharedRuntime::print_counters_on(outputStream* st) {
214 st->print_cr("SharedRuntime:");
215 if (UsePerfData) {
216 print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr);
217 print_counter_on(st, "resolve_virtual_call:", _perf_resolve_virtual_total_time, _resolve_virtual_ctr);
218 print_counter_on(st, "resolve_static_call:", _perf_resolve_static_total_time, _resolve_static_ctr);
219 print_counter_on(st, "handle_wrong_method:", _perf_handle_wrong_method_total_time, _wrong_method_ctr);
220 print_counter_on(st, "ic_miss:", _perf_ic_miss_total_time, _ic_miss_ctr);
221
222 jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() +
223 _perf_resolve_virtual_total_time->elapsed_counter_value() +
224 _perf_resolve_static_total_time->elapsed_counter_value() +
225 _perf_handle_wrong_method_total_time->elapsed_counter_value() +
226 _perf_ic_miss_total_time->elapsed_counter_value());
227 st->print("Total: " JLONG_FORMAT_W(5) "us", total_elapsed_time_us);
228 if (TraceThreadTime) {
229 jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() +
230 _perf_resolve_virtual_total_time->thread_counter_value() +
231 _perf_resolve_static_total_time->thread_counter_value() +
232 _perf_handle_wrong_method_total_time->thread_counter_value() +
233 _perf_ic_miss_total_time->thread_counter_value());
234 st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us);
235
236 }
237 st->cr();
238 } else {
239 st->print_cr(" no data (UsePerfData is turned off)");
240 }
241 }
242
243 #if INCLUDE_JFR
244 //------------------------------generate jfr runtime stubs ------
245 void SharedRuntime::generate_jfr_stubs() {
246 ResourceMark rm;
247 const char* timer_msg = "SharedRuntime generate_jfr_stubs";
248 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
249
250 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
251 _jfr_return_lease_blob = generate_jfr_return_lease();
252 }
253
254 #endif // INCLUDE_JFR
255
256 #include <math.h>
257
258 // Implementation of SharedRuntime
259
260 // For statistics
261 uint SharedRuntime::_ic_miss_ctr = 0;
262 uint SharedRuntime::_wrong_method_ctr = 0;
263 uint SharedRuntime::_resolve_static_ctr = 0;
264 uint SharedRuntime::_resolve_virtual_ctr = 0;
265 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
266
267 #ifndef PRODUCT
268 uint SharedRuntime::_implicit_null_throws = 0;
269 uint SharedRuntime::_implicit_div0_throws = 0;
270
271 int64_t SharedRuntime::_nof_normal_calls = 0;
272 int64_t SharedRuntime::_nof_inlined_calls = 0;
273 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
274 int64_t SharedRuntime::_nof_static_calls = 0;
275 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
276 int64_t SharedRuntime::_nof_interface_calls = 0;
277 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
278
279 uint SharedRuntime::_new_instance_ctr=0;
280 uint SharedRuntime::_new_array_ctr=0;
281 uint SharedRuntime::_multi2_ctr=0;
282 uint SharedRuntime::_multi3_ctr=0;
283 uint SharedRuntime::_multi4_ctr=0;
284 uint SharedRuntime::_multi5_ctr=0;
285 uint SharedRuntime::_mon_enter_stub_ctr=0;
286 uint SharedRuntime::_mon_exit_stub_ctr=0;
287 uint SharedRuntime::_mon_enter_ctr=0;
288 uint SharedRuntime::_mon_exit_ctr=0;
289 uint SharedRuntime::_partial_subtype_ctr=0;
290 uint SharedRuntime::_jbyte_array_copy_ctr=0;
291 uint SharedRuntime::_jshort_array_copy_ctr=0;
292 uint SharedRuntime::_jint_array_copy_ctr=0;
293 uint SharedRuntime::_jlong_array_copy_ctr=0;
294 uint SharedRuntime::_oop_array_copy_ctr=0;
295 uint SharedRuntime::_checkcast_array_copy_ctr=0;
296 uint SharedRuntime::_unsafe_array_copy_ctr=0;
297 uint SharedRuntime::_generic_array_copy_ctr=0;
298 uint SharedRuntime::_slow_array_copy_ctr=0;
299 uint SharedRuntime::_find_handler_ctr=0;
300 uint SharedRuntime::_rethrow_ctr=0;
301 uint SharedRuntime::_unsafe_set_memory_ctr=0;
302
303 int SharedRuntime::_ICmiss_index = 0;
304 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
305 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
306
307
308 void SharedRuntime::trace_ic_miss(address at) {
309 for (int i = 0; i < _ICmiss_index; i++) {
310 if (_ICmiss_at[i] == at) {
311 _ICmiss_count[i]++;
312 return;
313 }
314 }
315 int index = _ICmiss_index++;
316 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
317 _ICmiss_at[index] = at;
318 _ICmiss_count[index] = 1;
319 }
320
321 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) {
322 if (ICMissHistogram) {
323 st->print_cr("IC Miss Histogram:");
324 int tot_misses = 0;
325 for (int i = 0; i < _ICmiss_index; i++) {
326 st->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
327 tot_misses += _ICmiss_count[i];
328 }
329 st->print_cr("Total IC misses: %7d", tot_misses);
330 }
331 }
332
333 #ifdef COMPILER2
334 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
335 void SharedRuntime::debug_print_value(jboolean x) {
336 tty->print_cr("boolean %d", x);
337 }
338
339 void SharedRuntime::debug_print_value(jbyte x) {
340 tty->print_cr("byte %d", x);
341 }
342
343 void SharedRuntime::debug_print_value(jshort x) {
344 tty->print_cr("short %d", x);
345 }
346
347 void SharedRuntime::debug_print_value(jchar x) {
348 tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
349 }
350
351 void SharedRuntime::debug_print_value(jint x) {
352 tty->print_cr("int %d", x);
353 }
354
355 void SharedRuntime::debug_print_value(jlong x) {
356 tty->print_cr("long " JLONG_FORMAT, x);
357 }
358
359 void SharedRuntime::debug_print_value(jfloat x) {
360 tty->print_cr("float %f", x);
361 }
362
363 void SharedRuntime::debug_print_value(jdouble x) {
364 tty->print_cr("double %lf", x);
365 }
366
367 void SharedRuntime::debug_print_value(oopDesc* x) {
368 x->print();
369 }
370 #endif // COMPILER2
371
372 #endif // PRODUCT
373
374
375 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
376 return x * y;
377 JRT_END
378
379
380 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
381 if (x == min_jlong && y == CONST64(-1)) {
382 return x;
383 } else {
384 return x / y;
385 }
386 JRT_END
387
388
389 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
390 if (x == min_jlong && y == CONST64(-1)) {
391 return 0;
392 } else {
393 return x % y;
394 }
395 JRT_END
396
397
398 #ifdef _WIN64
399 const juint float_sign_mask = 0x7FFFFFFF;
400 const juint float_infinity = 0x7F800000;
401 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
402 const julong double_infinity = CONST64(0x7FF0000000000000);
403 #endif
404
405 #if !defined(X86)
406 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
407 #ifdef _WIN64
408 // 64-bit Windows on amd64 returns the wrong values for
409 // infinity operands.
410 juint xbits = PrimitiveConversions::cast<juint>(x);
411 juint ybits = PrimitiveConversions::cast<juint>(y);
412 // x Mod Infinity == x unless x is infinity
413 if (((xbits & float_sign_mask) != float_infinity) &&
414 ((ybits & float_sign_mask) == float_infinity) ) {
415 return x;
416 }
417 return ((jfloat)fmod_winx64((double)x, (double)y));
418 #else
419 return ((jfloat)fmod((double)x,(double)y));
420 #endif
421 JRT_END
422
423 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
424 #ifdef _WIN64
425 julong xbits = PrimitiveConversions::cast<julong>(x);
426 julong ybits = PrimitiveConversions::cast<julong>(y);
427 // x Mod Infinity == x unless x is infinity
428 if (((xbits & double_sign_mask) != double_infinity) &&
429 ((ybits & double_sign_mask) == double_infinity) ) {
430 return x;
431 }
432 return ((jdouble)fmod_winx64((double)x, (double)y));
433 #else
434 return ((jdouble)fmod((double)x,(double)y));
435 #endif
436 JRT_END
437 #endif // !X86
438
439 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
440 return (jfloat)x;
441 JRT_END
442
443 #ifdef __SOFTFP__
444 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
445 return x + y;
446 JRT_END
447
448 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
449 return x - y;
450 JRT_END
451
452 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
453 return x * y;
454 JRT_END
455
456 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
457 return x / y;
458 JRT_END
459
460 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
461 return x + y;
462 JRT_END
463
464 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
465 return x - y;
466 JRT_END
467
468 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
469 return x * y;
470 JRT_END
471
472 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
473 return x / y;
474 JRT_END
475
476 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
477 return (jdouble)x;
478 JRT_END
479
480 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
481 return (jdouble)x;
482 JRT_END
483
484 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
485 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
486 JRT_END
487
488 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
489 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
490 JRT_END
491
492 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
493 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
494 JRT_END
495
496 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
497 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
498 JRT_END
499
500 // Functions to return the opposite of the aeabi functions for nan.
501 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
502 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
503 JRT_END
504
505 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
506 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
507 JRT_END
508
509 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
510 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
511 JRT_END
512
513 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
514 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
515 JRT_END
516
517 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
518 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
519 JRT_END
520
521 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
522 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
523 JRT_END
524
525 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
526 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
527 JRT_END
528
529 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
530 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
531 JRT_END
532
533 // Intrinsics make gcc generate code for these.
534 float SharedRuntime::fneg(float f) {
535 return -f;
536 }
537
538 double SharedRuntime::dneg(double f) {
539 return -f;
540 }
541
542 #endif // __SOFTFP__
543
544 #if defined(__SOFTFP__) || defined(E500V2)
545 // Intrinsics make gcc generate code for these.
546 double SharedRuntime::dabs(double f) {
547 return (f <= (double)0.0) ? (double)0.0 - f : f;
548 }
549
550 #endif
551
552 #if defined(__SOFTFP__)
553 double SharedRuntime::dsqrt(double f) {
554 return sqrt(f);
555 }
556 #endif
557
558 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
559 if (g_isnan(x))
560 return 0;
561 if (x >= (jfloat) max_jint)
562 return max_jint;
563 if (x <= (jfloat) min_jint)
564 return min_jint;
565 return (jint) x;
566 JRT_END
567
568
569 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
570 if (g_isnan(x))
571 return 0;
572 if (x >= (jfloat) max_jlong)
573 return max_jlong;
574 if (x <= (jfloat) min_jlong)
575 return min_jlong;
576 return (jlong) x;
577 JRT_END
578
579
580 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
581 if (g_isnan(x))
582 return 0;
583 if (x >= (jdouble) max_jint)
584 return max_jint;
585 if (x <= (jdouble) min_jint)
586 return min_jint;
587 return (jint) x;
588 JRT_END
589
590
591 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
592 if (g_isnan(x))
593 return 0;
594 if (x >= (jdouble) max_jlong)
595 return max_jlong;
596 if (x <= (jdouble) min_jlong)
597 return min_jlong;
598 return (jlong) x;
599 JRT_END
600
601
602 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
603 return (jfloat)x;
604 JRT_END
605
606
607 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
608 return (jfloat)x;
609 JRT_END
610
611
612 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
613 return (jdouble)x;
614 JRT_END
615
616
617 // Exception handling across interpreter/compiler boundaries
618 //
619 // exception_handler_for_return_address(...) returns the continuation address.
620 // The continuation address is the entry point of the exception handler of the
621 // previous frame depending on the return address.
622
623 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
624 // Note: This is called when we have unwound the frame of the callee that did
625 // throw an exception. So far, no check has been performed by the StackWatermarkSet.
626 // Notably, the stack is not walkable at this point, and hence the check must
627 // be deferred until later. Specifically, any of the handlers returned here in
628 // this function, will get dispatched to, and call deferred checks to
629 // StackWatermarkSet::after_unwind at a point where the stack is walkable.
630 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
631 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
632
633 #if INCLUDE_JVMCI
634 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
635 // and other exception handler continuations do not read it
636 current->set_exception_pc(nullptr);
637 #endif // INCLUDE_JVMCI
638
639 if (Continuation::is_return_barrier_entry(return_address)) {
640 return StubRoutines::cont_returnBarrierExc();
641 }
642
643 // The fastest case first
644 CodeBlob* blob = CodeCache::find_blob(return_address);
645 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
646 if (nm != nullptr) {
647 // native nmethods don't have exception handlers
648 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
649 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
650 if (nm->is_deopt_pc(return_address)) {
651 // If we come here because of a stack overflow, the stack may be
652 // unguarded. Reguard the stack otherwise if we return to the
653 // deopt blob and the stack bang causes a stack overflow we
654 // crash.
655 StackOverflow* overflow_state = current->stack_overflow_state();
656 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
657 if (overflow_state->reserved_stack_activation() != current->stack_base()) {
658 overflow_state->set_reserved_stack_activation(current->stack_base());
659 }
660 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
661 // The deferred StackWatermarkSet::after_unwind check will be performed in
662 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
663 return SharedRuntime::deopt_blob()->unpack_with_exception();
664 } else {
665 // The deferred StackWatermarkSet::after_unwind check will be performed in
666 // * OptoRuntime::handle_exception_C_helper for C2 code
667 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
668 #ifdef COMPILER2
669 if (nm->compiler_type() == compiler_c2) {
670 return OptoRuntime::exception_blob()->entry_point();
671 }
672 #endif // COMPILER2
673 return nm->exception_begin();
674 }
675 }
676
677 // Entry code
678 if (StubRoutines::returns_to_call_stub(return_address)) {
679 // The deferred StackWatermarkSet::after_unwind check will be performed in
680 // JavaCallWrapper::~JavaCallWrapper
681 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
682 return StubRoutines::catch_exception_entry();
683 }
684 if (blob != nullptr && blob->is_upcall_stub()) {
685 return StubRoutines::upcall_stub_exception_handler();
686 }
687 // Interpreted code
688 if (Interpreter::contains(return_address)) {
689 // The deferred StackWatermarkSet::after_unwind check will be performed in
690 // InterpreterRuntime::exception_handler_for_exception
691 return Interpreter::rethrow_exception_entry();
692 }
693
694 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
695 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
696
697 #ifndef PRODUCT
698 { ResourceMark rm;
699 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
700 os::print_location(tty, (intptr_t)return_address);
701 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
702 tty->print_cr("b) other problem");
703 }
704 #endif // PRODUCT
705 ShouldNotReachHere();
706 return nullptr;
707 }
708
709
710 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
711 return raw_exception_handler_for_return_address(current, return_address);
712 JRT_END
713
714
715 address SharedRuntime::get_poll_stub(address pc) {
716 address stub;
717 // Look up the code blob
718 CodeBlob *cb = CodeCache::find_blob(pc);
719
720 // Should be an nmethod
721 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
722
723 // Look up the relocation information
724 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
725 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
726
727 #ifdef ASSERT
728 if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
729 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
730 Disassembler::decode(cb);
731 fatal("Only polling locations are used for safepoint");
732 }
733 #endif
734
735 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
736 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
737 if (at_poll_return) {
738 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
739 "polling page return stub not created yet");
740 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
741 } else if (has_wide_vectors) {
742 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
743 "polling page vectors safepoint stub not created yet");
744 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
745 } else {
746 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
747 "polling page safepoint stub not created yet");
748 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
749 }
750 log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
751 INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
752 p2i(Thread::current()),
753 Thread::current()->osthread()->thread_id(),
754 p2i(pc),
755 at_poll_return ? "return" : "loop",
756 p2i(stub));
757 return stub;
758 }
759
760 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
761 if (JvmtiExport::can_post_on_exceptions()) {
762 vframeStream vfst(current, true);
763 methodHandle method = methodHandle(current, vfst.method());
764 address bcp = method()->bcp_from(vfst.bci());
765 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
766 }
767
768 #if INCLUDE_JVMCI
769 if (EnableJVMCI) {
770 vframeStream vfst(current, true);
771 methodHandle method = methodHandle(current, vfst.method());
772 int bci = vfst.bci();
773 MethodData* trap_mdo = method->method_data();
774 if (trap_mdo != nullptr) {
775 // Set exception_seen if the exceptional bytecode is an invoke
776 Bytecode_invoke call = Bytecode_invoke_check(method, bci);
777 if (call.is_valid()) {
778 ResourceMark rm(current);
779
780 // Lock to read ProfileData, and ensure lock is not broken by a safepoint
781 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
782
783 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
784 if (pdata != nullptr && pdata->is_BitData()) {
785 BitData* bit_data = (BitData*) pdata;
786 bit_data->set_exception_seen();
787 }
788 }
789 }
790 }
791 #endif
792
793 Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
794 }
795
796 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
797 Handle h_exception = Exceptions::new_exception(current, name, message);
798 throw_and_post_jvmti_exception(current, h_exception);
799 }
800
801 // The interpreter code to call this tracing function is only
802 // called/generated when UL is on for redefine, class and has the right level
803 // and tags. Since obsolete methods are never compiled, we don't have
804 // to modify the compilers to generate calls to this function.
805 //
806 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
807 JavaThread* thread, Method* method))
808 if (method->is_obsolete()) {
809 // We are calling an obsolete method, but this is not necessarily
810 // an error. Our method could have been redefined just after we
811 // fetched the Method* from the constant pool.
812 ResourceMark rm;
813 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
814 }
815
816 LogStreamHandle(Trace, interpreter, bytecode) log;
817 if (log.is_enabled()) {
818 ResourceMark rm;
819 log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s",
820 p2i(thread),
821 (method->is_static() ? "static" : "virtual"),
822 method->name_and_sig_as_C_string(),
823 (method->is_native() ? " native" : ""),
824 (thread->class_being_initialized() != nullptr ? " clinit" : ""),
825 (method->method_holder()->is_initialized() ? "" : " being_initialized"));
826 }
827 return 0;
828 JRT_END
829
830 // ret_pc points into caller; we are returning caller's exception handler
831 // for given exception
832 // Note that the implementation of this method assumes it's only called when an exception has actually occured
833 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
834 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
835 assert(nm != nullptr, "must exist");
836 ResourceMark rm;
837
838 #if INCLUDE_JVMCI
839 if (nm->is_compiled_by_jvmci()) {
840 // lookup exception handler for this pc
841 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
842 ExceptionHandlerTable table(nm);
843 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
844 if (t != nullptr) {
845 return nm->code_begin() + t->pco();
846 } else {
847 bool make_not_entrant = true;
848 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
849 }
850 }
851 #endif // INCLUDE_JVMCI
852
853 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
854 // determine handler bci, if any
855 EXCEPTION_MARK;
856
857 Handle orig_exception(THREAD, exception());
858
859 int handler_bci = -1;
860 int scope_depth = 0;
861 if (!force_unwind) {
862 int bci = sd->bci();
863 bool recursive_exception = false;
864 do {
865 bool skip_scope_increment = false;
866 // exception handler lookup
867 Klass* ek = exception->klass();
868 methodHandle mh(THREAD, sd->method());
869 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
870 if (HAS_PENDING_EXCEPTION) {
871 recursive_exception = true;
872 // We threw an exception while trying to find the exception handler.
873 // Transfer the new exception to the exception handle which will
874 // be set into thread local storage, and do another lookup for an
875 // exception handler for this exception, this time starting at the
876 // BCI of the exception handler which caused the exception to be
877 // thrown (bugs 4307310 and 4546590). Set "exception" reference
878 // argument to ensure that the correct exception is thrown (4870175).
879 recursive_exception_occurred = true;
880 exception.replace(PENDING_EXCEPTION);
881 CLEAR_PENDING_EXCEPTION;
882 if (handler_bci >= 0) {
883 bci = handler_bci;
884 handler_bci = -1;
885 skip_scope_increment = true;
886 }
887 }
888 else {
889 recursive_exception = false;
890 }
891 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
892 sd = sd->sender();
893 if (sd != nullptr) {
894 bci = sd->bci();
895 }
896 ++scope_depth;
897 }
898 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
899 }
900
901 // found handling method => lookup exception handler
902 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
903
904 ExceptionHandlerTable table(nm);
905 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
906
907 // If the compiler did not anticipate a recursive exception, resulting in an exception
908 // thrown from the catch bci, then the compiled exception handler might be missing.
909 // This is rare. Just deoptimize and let the interpreter rethrow the original
910 // exception at the original bci.
911 if (t == nullptr && recursive_exception_occurred) {
912 exception.replace(orig_exception()); // restore original exception
913 bool make_not_entrant = false;
914 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
915 }
916
917 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
918 // Allow abbreviated catch tables. The idea is to allow a method
919 // to materialize its exceptions without committing to the exact
920 // routing of exceptions. In particular this is needed for adding
921 // a synthetic handler to unlock monitors when inlining
922 // synchronized methods since the unlock path isn't represented in
923 // the bytecodes.
924 t = table.entry_for(catch_pco, -1, 0);
925 }
926
927 #ifdef COMPILER1
928 if (t == nullptr && nm->is_compiled_by_c1()) {
929 assert(nm->unwind_handler_begin() != nullptr, "");
930 return nm->unwind_handler_begin();
931 }
932 #endif
933
934 if (t == nullptr) {
935 ttyLocker ttyl;
936 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
937 tty->print_cr(" Exception:");
938 exception->print();
939 tty->cr();
940 tty->print_cr(" Compiled exception table :");
941 table.print();
942 nm->print();
943 nm->print_code();
944 guarantee(false, "missing exception handler");
945 return nullptr;
946 }
947
948 if (handler_bci != -1) { // did we find a handler in this method?
949 sd->method()->set_exception_handler_entered(handler_bci); // profile
950 }
951 return nm->code_begin() + t->pco();
952 }
953
954 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
955 // These errors occur only at call sites
956 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
957 JRT_END
958
959 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
960 // These errors occur only at call sites
961 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
962 JRT_END
963
964 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
965 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
966 JRT_END
967
968 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
969 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
970 JRT_END
971
972 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
973 // This entry point is effectively only used for NullPointerExceptions which occur at inline
974 // cache sites (when the callee activation is not yet set up) so we are at a call site
975 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
976 JRT_END
977
978 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
979 throw_StackOverflowError_common(current, false);
980 JRT_END
981
982 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
983 throw_StackOverflowError_common(current, true);
984 JRT_END
985
986 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
987 // We avoid using the normal exception construction in this case because
988 // it performs an upcall to Java, and we're already out of stack space.
989 JavaThread* THREAD = current; // For exception macros.
990 InstanceKlass* k = vmClasses::StackOverflowError_klass();
991 oop exception_oop = k->allocate_instance(CHECK);
992 if (delayed) {
993 java_lang_Throwable::set_message(exception_oop,
994 Universe::delayed_stack_overflow_error_message());
995 }
996 Handle exception (current, exception_oop);
997 if (StackTraceInThrowable) {
998 java_lang_Throwable::fill_in_stack_trace(exception);
999 }
1000 // Remove the ScopedValue bindings in case we got a
1001 // StackOverflowError while we were trying to remove ScopedValue
1002 // bindings.
1003 current->clear_scopedValueBindings();
1004 // Increment counter for hs_err file reporting
1005 AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
1006 throw_and_post_jvmti_exception(current, exception);
1007 }
1008
1009 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
1010 address pc,
1011 ImplicitExceptionKind exception_kind)
1012 {
1013 address target_pc = nullptr;
1014
1015 if (Interpreter::contains(pc)) {
1016 switch (exception_kind) {
1017 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
1018 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
1019 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
1020 default: ShouldNotReachHere();
1021 }
1022 } else {
1023 switch (exception_kind) {
1024 case STACK_OVERFLOW: {
1025 // Stack overflow only occurs upon frame setup; the callee is
1026 // going to be unwound. Dispatch to a shared runtime stub
1027 // which will cause the StackOverflowError to be fabricated
1028 // and processed.
1029 // Stack overflow should never occur during deoptimization:
1030 // the compiled method bangs the stack by as much as the
1031 // interpreter would need in case of a deoptimization. The
1032 // deoptimization blob and uncommon trap blob bang the stack
1033 // in a debug VM to verify the correctness of the compiled
1034 // method stack banging.
1035 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
1036 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
1037 return SharedRuntime::throw_StackOverflowError_entry();
1038 }
1039
1040 case IMPLICIT_NULL: {
1041 if (VtableStubs::contains(pc)) {
1042 // We haven't yet entered the callee frame. Fabricate an
1043 // exception and begin dispatching it in the caller. Since
1044 // the caller was at a call site, it's safe to destroy all
1045 // caller-saved registers, as these entry points do.
1046 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
1047
1048 // If vt_stub is null, then return null to signal handler to report the SEGV error.
1049 if (vt_stub == nullptr) return nullptr;
1050
1051 if (vt_stub->is_abstract_method_error(pc)) {
1052 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
1053 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
1054 // Instead of throwing the abstract method error here directly, we re-resolve
1055 // and will throw the AbstractMethodError during resolve. As a result, we'll
1056 // get a more detailed error message.
1057 return SharedRuntime::get_handle_wrong_method_stub();
1058 } else {
1059 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
1060 // Assert that the signal comes from the expected location in stub code.
1061 assert(vt_stub->is_null_pointer_exception(pc),
1062 "obtained signal from unexpected location in stub code");
1063 return SharedRuntime::throw_NullPointerException_at_call_entry();
1064 }
1065 } else {
1066 CodeBlob* cb = CodeCache::find_blob(pc);
1067
1068 // If code blob is null, then return null to signal handler to report the SEGV error.
1069 if (cb == nullptr) return nullptr;
1070
1071 // Exception happened in CodeCache. Must be either:
1072 // 1. Inline-cache check in C2I handler blob,
1073 // 2. Inline-cache check in nmethod, or
1074 // 3. Implicit null exception in nmethod
1075
1076 if (!cb->is_nmethod()) {
1077 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1078 if (!is_in_blob) {
1079 // Allow normal crash reporting to handle this
1080 return nullptr;
1081 }
1082 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1083 // There is no handler here, so we will simply unwind.
1084 return SharedRuntime::throw_NullPointerException_at_call_entry();
1085 }
1086
1087 // Otherwise, it's a compiled method. Consult its exception handlers.
1088 nmethod* nm = cb->as_nmethod();
1089 if (nm->inlinecache_check_contains(pc)) {
1090 // exception happened inside inline-cache check code
1091 // => the nmethod is not yet active (i.e., the frame
1092 // is not set up yet) => use return address pushed by
1093 // caller => don't push another return address
1094 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1095 return SharedRuntime::throw_NullPointerException_at_call_entry();
1096 }
1097
1098 if (nm->method()->is_method_handle_intrinsic()) {
1099 // exception happened inside MH dispatch code, similar to a vtable stub
1100 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1101 return SharedRuntime::throw_NullPointerException_at_call_entry();
1102 }
1103
1104 #ifndef PRODUCT
1105 _implicit_null_throws++;
1106 #endif
1107 target_pc = nm->continuation_for_implicit_null_exception(pc);
1108 // If there's an unexpected fault, target_pc might be null,
1109 // in which case we want to fall through into the normal
1110 // error handling code.
1111 }
1112
1113 break; // fall through
1114 }
1115
1116
1117 case IMPLICIT_DIVIDE_BY_ZERO: {
1118 nmethod* nm = CodeCache::find_nmethod(pc);
1119 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1120 #ifndef PRODUCT
1121 _implicit_div0_throws++;
1122 #endif
1123 target_pc = nm->continuation_for_implicit_div0_exception(pc);
1124 // If there's an unexpected fault, target_pc might be null,
1125 // in which case we want to fall through into the normal
1126 // error handling code.
1127 break; // fall through
1128 }
1129
1130 default: ShouldNotReachHere();
1131 }
1132
1133 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1134
1135 if (exception_kind == IMPLICIT_NULL) {
1136 #ifndef PRODUCT
1137 // for AbortVMOnException flag
1138 Exceptions::debug_check_abort("java.lang.NullPointerException");
1139 #endif //PRODUCT
1140 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1141 } else {
1142 #ifndef PRODUCT
1143 // for AbortVMOnException flag
1144 Exceptions::debug_check_abort("java.lang.ArithmeticException");
1145 #endif //PRODUCT
1146 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1147 }
1148 return target_pc;
1149 }
1150
1151 ShouldNotReachHere();
1152 return nullptr;
1153 }
1154
1155
1156 /**
1157 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is
1158 * installed in the native function entry of all native Java methods before
1159 * they get linked to their actual native methods.
1160 *
1161 * \note
1162 * This method actually never gets called! The reason is because
1163 * the interpreter's native entries call NativeLookup::lookup() which
1164 * throws the exception when the lookup fails. The exception is then
1165 * caught and forwarded on the return from NativeLookup::lookup() call
1166 * before the call to the native function. This might change in the future.
1167 */
1168 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1169 {
1170 // We return a bad value here to make sure that the exception is
1171 // forwarded before we look at the return value.
1172 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1173 }
1174 JNI_END
1175
1176 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1177 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1178 }
1179
1180 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1181 #if INCLUDE_JVMCI
1182 if (!obj->klass()->has_finalizer()) {
1183 return;
1184 }
1185 #endif // INCLUDE_JVMCI
1186 assert(oopDesc::is_oop(obj), "must be a valid oop");
1187 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1188 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1189 JRT_END
1190
1191 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1192 assert(thread != nullptr, "No thread");
1193 if (thread == nullptr) {
1194 return 0;
1195 }
1196 guarantee(Thread::current() != thread || thread->is_oop_safe(),
1197 "current cannot touch oops after its GC barrier is detached.");
1198 oop obj = thread->threadObj();
1199 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1200 }
1201
1202 /**
1203 * This function ought to be a void function, but cannot be because
1204 * it gets turned into a tail-call on sparc, which runs into dtrace bug
1205 * 6254741. Once that is fixed we can remove the dummy return value.
1206 */
1207 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1208 return dtrace_object_alloc(JavaThread::current(), o, o->size());
1209 }
1210
1211 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1212 return dtrace_object_alloc(thread, o, o->size());
1213 }
1214
1215 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1216 assert(DTraceAllocProbes, "wrong call");
1217 Klass* klass = o->klass();
1218 Symbol* name = klass->name();
1219 HOTSPOT_OBJECT_ALLOC(
1220 get_java_tid(thread),
1221 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1222 return 0;
1223 }
1224
1225 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1226 JavaThread* current, Method* method))
1227 assert(current == JavaThread::current(), "pre-condition");
1228
1229 assert(DTraceMethodProbes, "wrong call");
1230 Symbol* kname = method->klass_name();
1231 Symbol* name = method->name();
1232 Symbol* sig = method->signature();
1233 HOTSPOT_METHOD_ENTRY(
1234 get_java_tid(current),
1235 (char *) kname->bytes(), kname->utf8_length(),
1236 (char *) name->bytes(), name->utf8_length(),
1237 (char *) sig->bytes(), sig->utf8_length());
1238 return 0;
1239 JRT_END
1240
1241 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1242 JavaThread* current, Method* method))
1243 assert(current == JavaThread::current(), "pre-condition");
1244 assert(DTraceMethodProbes, "wrong call");
1245 Symbol* kname = method->klass_name();
1246 Symbol* name = method->name();
1247 Symbol* sig = method->signature();
1248 HOTSPOT_METHOD_RETURN(
1249 get_java_tid(current),
1250 (char *) kname->bytes(), kname->utf8_length(),
1251 (char *) name->bytes(), name->utf8_length(),
1252 (char *) sig->bytes(), sig->utf8_length());
1253 return 0;
1254 JRT_END
1255
1256
1257 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1258 // for a call current in progress, i.e., arguments has been pushed on stack
1259 // put callee has not been invoked yet. Used by: resolve virtual/static,
1260 // vtable updates, etc. Caller frame must be compiled.
1261 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1262 JavaThread* current = THREAD;
1263 ResourceMark rm(current);
1264
1265 // last java frame on stack (which includes native call frames)
1266 vframeStream vfst(current, true); // Do not skip and javaCalls
1267
1268 return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1269 }
1270
1271 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1272 nmethod* caller = vfst.nm();
1273
1274 address pc = vfst.frame_pc();
1275 { // Get call instruction under lock because another thread may be busy patching it.
1276 CompiledICLocker ic_locker(caller);
1277 return caller->attached_method_before_pc(pc);
1278 }
1279 return nullptr;
1280 }
1281
1282 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1283 // for a call current in progress, i.e., arguments has been pushed on stack
1284 // but callee has not been invoked yet. Caller frame must be compiled.
1285 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1286 CallInfo& callinfo, TRAPS) {
1287 Handle receiver;
1288 Handle nullHandle; // create a handy null handle for exception returns
1289 JavaThread* current = THREAD;
1290
1291 assert(!vfst.at_end(), "Java frame must exist");
1292
1293 // Find caller and bci from vframe
1294 methodHandle caller(current, vfst.method());
1295 int bci = vfst.bci();
1296
1297 if (caller->is_continuation_enter_intrinsic()) {
1298 bc = Bytecodes::_invokestatic;
1299 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1300 return receiver;
1301 }
1302
1303 Bytecode_invoke bytecode(caller, bci);
1304 int bytecode_index = bytecode.index();
1305 bc = bytecode.invoke_code();
1306
1307 methodHandle attached_method(current, extract_attached_method(vfst));
1308 if (attached_method.not_null()) {
1309 Method* callee = bytecode.static_target(CHECK_NH);
1310 vmIntrinsics::ID id = callee->intrinsic_id();
1311 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1312 // it attaches statically resolved method to the call site.
1313 if (MethodHandles::is_signature_polymorphic(id) &&
1314 MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1315 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1316
1317 // Adjust invocation mode according to the attached method.
1318 switch (bc) {
1319 case Bytecodes::_invokevirtual:
1320 if (attached_method->method_holder()->is_interface()) {
1321 bc = Bytecodes::_invokeinterface;
1322 }
1323 break;
1324 case Bytecodes::_invokeinterface:
1325 if (!attached_method->method_holder()->is_interface()) {
1326 bc = Bytecodes::_invokevirtual;
1327 }
1328 break;
1329 case Bytecodes::_invokehandle:
1330 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1331 bc = attached_method->is_static() ? Bytecodes::_invokestatic
1332 : Bytecodes::_invokevirtual;
1333 }
1334 break;
1335 default:
1336 break;
1337 }
1338 }
1339 }
1340
1341 assert(bc != Bytecodes::_illegal, "not initialized");
1342
1343 bool has_receiver = bc != Bytecodes::_invokestatic &&
1344 bc != Bytecodes::_invokedynamic &&
1345 bc != Bytecodes::_invokehandle;
1346
1347 // Find receiver for non-static call
1348 if (has_receiver) {
1349 // This register map must be update since we need to find the receiver for
1350 // compiled frames. The receiver might be in a register.
1351 RegisterMap reg_map2(current,
1352 RegisterMap::UpdateMap::include,
1353 RegisterMap::ProcessFrames::include,
1354 RegisterMap::WalkContinuation::skip);
1355 frame stubFrame = current->last_frame();
1356 // Caller-frame is a compiled frame
1357 frame callerFrame = stubFrame.sender(®_map2);
1358
1359 if (attached_method.is_null()) {
1360 Method* callee = bytecode.static_target(CHECK_NH);
1361 if (callee == nullptr) {
1362 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1363 }
1364 }
1365
1366 // Retrieve from a compiled argument list
1367 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2));
1368 assert(oopDesc::is_oop_or_null(receiver()), "");
1369
1370 if (receiver.is_null()) {
1371 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1372 }
1373 }
1374
1375 // Resolve method
1376 if (attached_method.not_null()) {
1377 // Parameterized by attached method.
1378 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1379 } else {
1380 // Parameterized by bytecode.
1381 constantPoolHandle constants(current, caller->constants());
1382 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1383 }
1384
1385 #ifdef ASSERT
1386 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1387 if (has_receiver) {
1388 assert(receiver.not_null(), "should have thrown exception");
1389 Klass* receiver_klass = receiver->klass();
1390 Klass* rk = nullptr;
1391 if (attached_method.not_null()) {
1392 // In case there's resolved method attached, use its holder during the check.
1393 rk = attached_method->method_holder();
1394 } else {
1395 // Klass is already loaded.
1396 constantPoolHandle constants(current, caller->constants());
1397 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1398 }
1399 Klass* static_receiver_klass = rk;
1400 assert(receiver_klass->is_subtype_of(static_receiver_klass),
1401 "actual receiver must be subclass of static receiver klass");
1402 if (receiver_klass->is_instance_klass()) {
1403 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1404 tty->print_cr("ERROR: Klass not yet initialized!!");
1405 receiver_klass->print();
1406 }
1407 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1408 }
1409 }
1410 #endif
1411
1412 return receiver;
1413 }
1414
1415 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1416 JavaThread* current = THREAD;
1417 ResourceMark rm(current);
1418 // We need first to check if any Java activations (compiled, interpreted)
1419 // exist on the stack since last JavaCall. If not, we need
1420 // to get the target method from the JavaCall wrapper.
1421 vframeStream vfst(current, true); // Do not skip any javaCalls
1422 methodHandle callee_method;
1423 if (vfst.at_end()) {
1424 // No Java frames were found on stack since we did the JavaCall.
1425 // Hence the stack can only contain an entry_frame. We need to
1426 // find the target method from the stub frame.
1427 RegisterMap reg_map(current,
1428 RegisterMap::UpdateMap::skip,
1429 RegisterMap::ProcessFrames::include,
1430 RegisterMap::WalkContinuation::skip);
1431 frame fr = current->last_frame();
1432 assert(fr.is_runtime_frame(), "must be a runtimeStub");
1433 fr = fr.sender(®_map);
1434 assert(fr.is_entry_frame(), "must be");
1435 // fr is now pointing to the entry frame.
1436 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1437 } else {
1438 Bytecodes::Code bc;
1439 CallInfo callinfo;
1440 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1441 callee_method = methodHandle(current, callinfo.selected_method());
1442 }
1443 assert(callee_method()->is_method(), "must be");
1444 return callee_method;
1445 }
1446
1447 // Resolves a call.
1448 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1449 JavaThread* current = THREAD;
1450 ResourceMark rm(current);
1451 RegisterMap cbl_map(current,
1452 RegisterMap::UpdateMap::skip,
1453 RegisterMap::ProcessFrames::include,
1454 RegisterMap::WalkContinuation::skip);
1455 frame caller_frame = current->last_frame().sender(&cbl_map);
1456
1457 CodeBlob* caller_cb = caller_frame.cb();
1458 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1459 nmethod* caller_nm = caller_cb->as_nmethod();
1460
1461 // determine call info & receiver
1462 // note: a) receiver is null for static calls
1463 // b) an exception is thrown if receiver is null for non-static calls
1464 CallInfo call_info;
1465 Bytecodes::Code invoke_code = Bytecodes::_illegal;
1466 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1467
1468 NoSafepointVerifier nsv;
1469
1470 methodHandle callee_method(current, call_info.selected_method());
1471
1472 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1473 (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1474 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1475 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1476 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1477
1478 assert(!caller_nm->is_unloading(), "It should not be unloading");
1479
1480 // tracing/debugging/statistics
1481 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1482 (is_virtual) ? (&_resolve_virtual_ctr) :
1483 (&_resolve_static_ctr);
1484 AtomicAccess::inc(addr);
1485
1486 #ifndef PRODUCT
1487 if (TraceCallFixup) {
1488 ResourceMark rm(current);
1489 tty->print("resolving %s%s (%s) call to",
1490 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1491 Bytecodes::name(invoke_code));
1492 callee_method->print_short_name(tty);
1493 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1494 p2i(caller_frame.pc()), p2i(callee_method->code()));
1495 }
1496 #endif
1497
1498 if (invoke_code == Bytecodes::_invokestatic) {
1499 assert(callee_method->method_holder()->is_initialized() ||
1500 callee_method->method_holder()->is_reentrant_initialization(current),
1501 "invalid class initialization state for invoke_static");
1502 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1503 // In order to keep class initialization check, do not patch call
1504 // site for static call when the class is not fully initialized.
1505 // Proper check is enforced by call site re-resolution on every invocation.
1506 //
1507 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1508 // explicit class initialization check is put in nmethod entry (VEP).
1509 assert(callee_method->method_holder()->is_linked(), "must be");
1510 return callee_method;
1511 }
1512 }
1513
1514
1515 // JSR 292 key invariant:
1516 // If the resolved method is a MethodHandle invoke target, the call
1517 // site must be a MethodHandle call site, because the lambda form might tail-call
1518 // leaving the stack in a state unknown to either caller or callee
1519
1520 // Compute entry points. The computation of the entry points is independent of
1521 // patching the call.
1522
1523 // Make sure the callee nmethod does not get deoptimized and removed before
1524 // we are done patching the code.
1525
1526
1527 CompiledICLocker ml(caller_nm);
1528 if (is_virtual && !is_optimized) {
1529 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1530 inline_cache->update(&call_info, receiver->klass());
1531 } else {
1532 // Callsite is a direct call - set it to the destination method
1533 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1534 callsite->set(callee_method);
1535 }
1536
1537 return callee_method;
1538 }
1539
1540 // Inline caches exist only in compiled code
1541 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1542 PerfTraceTime timer(_perf_ic_miss_total_time);
1543
1544 #ifdef ASSERT
1545 RegisterMap reg_map(current,
1546 RegisterMap::UpdateMap::skip,
1547 RegisterMap::ProcessFrames::include,
1548 RegisterMap::WalkContinuation::skip);
1549 frame stub_frame = current->last_frame();
1550 assert(stub_frame.is_runtime_frame(), "sanity check");
1551 frame caller_frame = stub_frame.sender(®_map);
1552 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1553 #endif /* ASSERT */
1554
1555 methodHandle callee_method;
1556 JRT_BLOCK
1557 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1558 // Return Method* through TLS
1559 current->set_vm_result_metadata(callee_method());
1560 JRT_BLOCK_END
1561 // return compiled code entry point after potential safepoints
1562 return get_resolved_entry(current, callee_method);
1563 JRT_END
1564
1565
1566 // Handle call site that has been made non-entrant
1567 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1568 PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1569
1570 // 6243940 We might end up in here if the callee is deoptimized
1571 // as we race to call it. We don't want to take a safepoint if
1572 // the caller was interpreted because the caller frame will look
1573 // interpreted to the stack walkers and arguments are now
1574 // "compiled" so it is much better to make this transition
1575 // invisible to the stack walking code. The i2c path will
1576 // place the callee method in the callee_target. It is stashed
1577 // there because if we try and find the callee by normal means a
1578 // safepoint is possible and have trouble gc'ing the compiled args.
1579 RegisterMap reg_map(current,
1580 RegisterMap::UpdateMap::skip,
1581 RegisterMap::ProcessFrames::include,
1582 RegisterMap::WalkContinuation::skip);
1583 frame stub_frame = current->last_frame();
1584 assert(stub_frame.is_runtime_frame(), "sanity check");
1585 frame caller_frame = stub_frame.sender(®_map);
1586
1587 if (caller_frame.is_interpreted_frame() ||
1588 caller_frame.is_entry_frame() ||
1589 caller_frame.is_upcall_stub_frame()) {
1590 Method* callee = current->callee_target();
1591 guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1592 current->set_vm_result_metadata(callee);
1593 current->set_callee_target(nullptr);
1594 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1595 // Bypass class initialization checks in c2i when caller is in native.
1596 // JNI calls to static methods don't have class initialization checks.
1597 // Fast class initialization checks are present in c2i adapters and call into
1598 // SharedRuntime::handle_wrong_method() on the slow path.
1599 //
1600 // JVM upcalls may land here as well, but there's a proper check present in
1601 // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1602 // so bypassing it in c2i adapter is benign.
1603 return callee->get_c2i_no_clinit_check_entry();
1604 } else {
1605 return callee->get_c2i_entry();
1606 }
1607 }
1608
1609 // Must be compiled to compiled path which is safe to stackwalk
1610 methodHandle callee_method;
1611 JRT_BLOCK
1612 // Force resolving of caller (if we called from compiled frame)
1613 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1614 current->set_vm_result_metadata(callee_method());
1615 JRT_BLOCK_END
1616 // return compiled code entry point after potential safepoints
1617 return get_resolved_entry(current, callee_method);
1618 JRT_END
1619
1620 // Handle abstract method call
1621 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1622 PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1623
1624 // Verbose error message for AbstractMethodError.
1625 // Get the called method from the invoke bytecode.
1626 vframeStream vfst(current, true);
1627 assert(!vfst.at_end(), "Java frame must exist");
1628 methodHandle caller(current, vfst.method());
1629 Bytecode_invoke invoke(caller, vfst.bci());
1630 DEBUG_ONLY( invoke.verify(); )
1631
1632 // Find the compiled caller frame.
1633 RegisterMap reg_map(current,
1634 RegisterMap::UpdateMap::include,
1635 RegisterMap::ProcessFrames::include,
1636 RegisterMap::WalkContinuation::skip);
1637 frame stubFrame = current->last_frame();
1638 assert(stubFrame.is_runtime_frame(), "must be");
1639 frame callerFrame = stubFrame.sender(®_map);
1640 assert(callerFrame.is_compiled_frame(), "must be");
1641
1642 // Install exception and return forward entry.
1643 address res = SharedRuntime::throw_AbstractMethodError_entry();
1644 JRT_BLOCK
1645 methodHandle callee(current, invoke.static_target(current));
1646 if (!callee.is_null()) {
1647 oop recv = callerFrame.retrieve_receiver(®_map);
1648 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1649 res = StubRoutines::forward_exception_entry();
1650 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1651 }
1652 JRT_BLOCK_END
1653 return res;
1654 JRT_END
1655
1656 // return verified_code_entry if interp_only_mode is not set for the current thread;
1657 // otherwise return c2i entry.
1658 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1659 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1660 // In interp_only_mode we need to go to the interpreted entry
1661 // The c2i won't patch in this mode -- see fixup_callers_callsite
1662 return callee_method->get_c2i_entry();
1663 }
1664 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1665 return callee_method->verified_code_entry();
1666 }
1667
1668 // resolve a static call and patch code
1669 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1670 PerfTraceTime timer(_perf_resolve_static_total_time);
1671
1672 methodHandle callee_method;
1673 bool enter_special = false;
1674 JRT_BLOCK
1675 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1676 current->set_vm_result_metadata(callee_method());
1677 JRT_BLOCK_END
1678 // return compiled code entry point after potential safepoints
1679 return get_resolved_entry(current, callee_method);
1680 JRT_END
1681
1682 // resolve virtual call and update inline cache to monomorphic
1683 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1684 PerfTraceTime timer(_perf_resolve_virtual_total_time);
1685
1686 methodHandle callee_method;
1687 JRT_BLOCK
1688 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1689 current->set_vm_result_metadata(callee_method());
1690 JRT_BLOCK_END
1691 // return compiled code entry point after potential safepoints
1692 return get_resolved_entry(current, callee_method);
1693 JRT_END
1694
1695
1696 // Resolve a virtual call that can be statically bound (e.g., always
1697 // monomorphic, so it has no inline cache). Patch code to resolved target.
1698 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1699 PerfTraceTime timer(_perf_resolve_opt_virtual_total_time);
1700
1701 methodHandle callee_method;
1702 JRT_BLOCK
1703 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1704 current->set_vm_result_metadata(callee_method());
1705 JRT_BLOCK_END
1706 // return compiled code entry point after potential safepoints
1707 return get_resolved_entry(current, callee_method);
1708 JRT_END
1709
1710 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1711 JavaThread* current = THREAD;
1712 ResourceMark rm(current);
1713 CallInfo call_info;
1714 Bytecodes::Code bc;
1715
1716 // receiver is null for static calls. An exception is thrown for null
1717 // receivers for non-static calls
1718 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1719
1720 methodHandle callee_method(current, call_info.selected_method());
1721
1722 AtomicAccess::inc(&_ic_miss_ctr);
1723
1724 #ifndef PRODUCT
1725 // Statistics & Tracing
1726 if (TraceCallFixup) {
1727 ResourceMark rm(current);
1728 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1729 callee_method->print_short_name(tty);
1730 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1731 }
1732
1733 if (ICMissHistogram) {
1734 MutexLocker m(VMStatistic_lock);
1735 RegisterMap reg_map(current,
1736 RegisterMap::UpdateMap::skip,
1737 RegisterMap::ProcessFrames::include,
1738 RegisterMap::WalkContinuation::skip);
1739 frame f = current->last_frame().real_sender(®_map);// skip runtime stub
1740 // produce statistics under the lock
1741 trace_ic_miss(f.pc());
1742 }
1743 #endif
1744
1745 // install an event collector so that when a vtable stub is created the
1746 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1747 // event can't be posted when the stub is created as locks are held
1748 // - instead the event will be deferred until the event collector goes
1749 // out of scope.
1750 JvmtiDynamicCodeEventCollector event_collector;
1751
1752 // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1753 RegisterMap reg_map(current,
1754 RegisterMap::UpdateMap::skip,
1755 RegisterMap::ProcessFrames::include,
1756 RegisterMap::WalkContinuation::skip);
1757 frame caller_frame = current->last_frame().sender(®_map);
1758 CodeBlob* cb = caller_frame.cb();
1759 nmethod* caller_nm = cb->as_nmethod();
1760
1761 CompiledICLocker ml(caller_nm);
1762 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1763 inline_cache->update(&call_info, receiver()->klass());
1764
1765 return callee_method;
1766 }
1767
1768 //
1769 // Resets a call-site in compiled code so it will get resolved again.
1770 // This routines handles both virtual call sites, optimized virtual call
1771 // sites, and static call sites. Typically used to change a call sites
1772 // destination from compiled to interpreted.
1773 //
1774 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1775 JavaThread* current = THREAD;
1776 ResourceMark rm(current);
1777 RegisterMap reg_map(current,
1778 RegisterMap::UpdateMap::skip,
1779 RegisterMap::ProcessFrames::include,
1780 RegisterMap::WalkContinuation::skip);
1781 frame stub_frame = current->last_frame();
1782 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1783 frame caller = stub_frame.sender(®_map);
1784
1785 // Do nothing if the frame isn't a live compiled frame.
1786 // nmethod could be deoptimized by the time we get here
1787 // so no update to the caller is needed.
1788
1789 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1790 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1791
1792 address pc = caller.pc();
1793
1794 nmethod* caller_nm = CodeCache::find_nmethod(pc);
1795 assert(caller_nm != nullptr, "did not find caller nmethod");
1796
1797 // Default call_addr is the location of the "basic" call.
1798 // Determine the address of the call we a reresolving. With
1799 // Inline Caches we will always find a recognizable call.
1800 // With Inline Caches disabled we may or may not find a
1801 // recognizable call. We will always find a call for static
1802 // calls and for optimized virtual calls. For vanilla virtual
1803 // calls it depends on the state of the UseInlineCaches switch.
1804 //
1805 // With Inline Caches disabled we can get here for a virtual call
1806 // for two reasons:
1807 // 1 - calling an abstract method. The vtable for abstract methods
1808 // will run us thru handle_wrong_method and we will eventually
1809 // end up in the interpreter to throw the ame.
1810 // 2 - a racing deoptimization. We could be doing a vanilla vtable
1811 // call and between the time we fetch the entry address and
1812 // we jump to it the target gets deoptimized. Similar to 1
1813 // we will wind up in the interprter (thru a c2i with c2).
1814 //
1815 CompiledICLocker ml(caller_nm);
1816 address call_addr = caller_nm->call_instruction_address(pc);
1817
1818 if (call_addr != nullptr) {
1819 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1820 // bytes back in the instruction stream so we must also check for reloc info.
1821 RelocIterator iter(caller_nm, call_addr, call_addr+1);
1822 bool ret = iter.next(); // Get item
1823 if (ret) {
1824 switch (iter.type()) {
1825 case relocInfo::static_call_type:
1826 case relocInfo::opt_virtual_call_type: {
1827 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1828 cdc->set_to_clean();
1829 break;
1830 }
1831
1832 case relocInfo::virtual_call_type: {
1833 // compiled, dispatched call (which used to call an interpreted method)
1834 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1835 inline_cache->set_to_clean();
1836 break;
1837 }
1838 default:
1839 break;
1840 }
1841 }
1842 }
1843 }
1844
1845 methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1846
1847 AtomicAccess::inc(&_wrong_method_ctr);
1848
1849 #ifndef PRODUCT
1850 if (TraceCallFixup) {
1851 ResourceMark rm(current);
1852 tty->print("handle_wrong_method reresolving call to");
1853 callee_method->print_short_name(tty);
1854 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1855 }
1856 #endif
1857
1858 return callee_method;
1859 }
1860
1861 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1862 // The faulting unsafe accesses should be changed to throw the error
1863 // synchronously instead. Meanwhile the faulting instruction will be
1864 // skipped over (effectively turning it into a no-op) and an
1865 // asynchronous exception will be raised which the thread will
1866 // handle at a later point. If the instruction is a load it will
1867 // return garbage.
1868
1869 // Request an async exception.
1870 thread->set_pending_unsafe_access_error();
1871
1872 // Return address of next instruction to execute.
1873 return next_pc;
1874 }
1875
1876 #ifdef ASSERT
1877 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1878 const BasicType* sig_bt,
1879 const VMRegPair* regs) {
1880 ResourceMark rm;
1881 const int total_args_passed = method->size_of_parameters();
1882 const VMRegPair* regs_with_member_name = regs;
1883 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1884
1885 const int member_arg_pos = total_args_passed - 1;
1886 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1887 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1888
1889 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1890
1891 for (int i = 0; i < member_arg_pos; i++) {
1892 VMReg a = regs_with_member_name[i].first();
1893 VMReg b = regs_without_member_name[i].first();
1894 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1895 }
1896 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1897 }
1898 #endif
1899
1900 // ---------------------------------------------------------------------------
1901 // We are calling the interpreter via a c2i. Normally this would mean that
1902 // we were called by a compiled method. However we could have lost a race
1903 // where we went int -> i2c -> c2i and so the caller could in fact be
1904 // interpreted. If the caller is compiled we attempt to patch the caller
1905 // so he no longer calls into the interpreter.
1906 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1907 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1908
1909 // It's possible that deoptimization can occur at a call site which hasn't
1910 // been resolved yet, in which case this function will be called from
1911 // an nmethod that has been patched for deopt and we can ignore the
1912 // request for a fixup.
1913 // Also it is possible that we lost a race in that from_compiled_entry
1914 // is now back to the i2c in that case we don't need to patch and if
1915 // we did we'd leap into space because the callsite needs to use
1916 // "to interpreter" stub in order to load up the Method*. Don't
1917 // ask me how I know this...
1918
1919 // Result from nmethod::is_unloading is not stable across safepoints.
1920 NoSafepointVerifier nsv;
1921
1922 nmethod* callee = method->code();
1923 if (callee == nullptr) {
1924 return;
1925 }
1926
1927 // write lock needed because we might patch call site by set_to_clean()
1928 // and is_unloading() can modify nmethod's state
1929 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1930
1931 CodeBlob* cb = CodeCache::find_blob(caller_pc);
1932 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1933 return;
1934 }
1935
1936 // The check above makes sure this is an nmethod.
1937 nmethod* caller = cb->as_nmethod();
1938
1939 // Get the return PC for the passed caller PC.
1940 address return_pc = caller_pc + frame::pc_return_offset;
1941
1942 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1943 return;
1944 }
1945
1946 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1947 CompiledICLocker ic_locker(caller);
1948 ResourceMark rm;
1949
1950 // If we got here through a static call or opt_virtual call, then we know where the
1951 // call address would be; let's peek at it
1952 address callsite_addr = (address)nativeCall_before(return_pc);
1953 RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1954 if (!iter.next()) {
1955 // No reloc entry found; not a static or optimized virtual call
1956 return;
1957 }
1958
1959 relocInfo::relocType type = iter.reloc()->type();
1960 if (type != relocInfo::static_call_type &&
1961 type != relocInfo::opt_virtual_call_type) {
1962 return;
1963 }
1964
1965 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1966 callsite->set_to_clean();
1967 JRT_END
1968
1969
1970 // same as JVM_Arraycopy, but called directly from compiled code
1971 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
1972 oopDesc* dest, jint dest_pos,
1973 jint length,
1974 JavaThread* current)) {
1975 #ifndef PRODUCT
1976 _slow_array_copy_ctr++;
1977 #endif
1978 // Check if we have null pointers
1979 if (src == nullptr || dest == nullptr) {
1980 THROW(vmSymbols::java_lang_NullPointerException());
1981 }
1982 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
1983 // even though the copy_array API also performs dynamic checks to ensure
1984 // that src and dest are truly arrays (and are conformable).
1985 // The copy_array mechanism is awkward and could be removed, but
1986 // the compilers don't call this function except as a last resort,
1987 // so it probably doesn't matter.
1988 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1989 (arrayOopDesc*)dest, dest_pos,
1990 length, current);
1991 }
1992 JRT_END
1993
1994 // The caller of generate_class_cast_message() (or one of its callers)
1995 // must use a ResourceMark in order to correctly free the result.
1996 char* SharedRuntime::generate_class_cast_message(
1997 JavaThread* thread, Klass* caster_klass) {
1998
1999 // Get target class name from the checkcast instruction
2000 vframeStream vfst(thread, true);
2001 assert(!vfst.at_end(), "Java frame must exist");
2002 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2003 constantPoolHandle cpool(thread, vfst.method()->constants());
2004 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2005 Symbol* target_klass_name = nullptr;
2006 if (target_klass == nullptr) {
2007 // This klass should be resolved, but just in case, get the name in the klass slot.
2008 target_klass_name = cpool->klass_name_at(cc.index());
2009 }
2010 return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2011 }
2012
2013
2014 // The caller of generate_class_cast_message() (or one of its callers)
2015 // must use a ResourceMark in order to correctly free the result.
2016 char* SharedRuntime::generate_class_cast_message(
2017 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2018 const char* caster_name = caster_klass->external_name();
2019
2020 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
2021 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
2022 target_klass->external_name();
2023
2024 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2025
2026 const char* caster_klass_description = "";
2027 const char* target_klass_description = "";
2028 const char* klass_separator = "";
2029 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
2030 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2031 } else {
2032 caster_klass_description = caster_klass->class_in_module_of_loader();
2033 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
2034 klass_separator = (target_klass != nullptr) ? "; " : "";
2035 }
2036
2037 // add 3 for parenthesis and preceding space
2038 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2039
2040 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2041 if (message == nullptr) {
2042 // Shouldn't happen, but don't cause even more problems if it does
2043 message = const_cast<char*>(caster_klass->external_name());
2044 } else {
2045 jio_snprintf(message,
2046 msglen,
2047 "class %s cannot be cast to class %s (%s%s%s)",
2048 caster_name,
2049 target_name,
2050 caster_klass_description,
2051 klass_separator,
2052 target_klass_description
2053 );
2054 }
2055 return message;
2056 }
2057
2058 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2059 (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2060 JRT_END
2061
2062 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2063 if (!SafepointSynchronize::is_synchronizing()) {
2064 // Only try quick_enter() if we're not trying to reach a safepoint
2065 // so that the calling thread reaches the safepoint more quickly.
2066 if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
2067 return;
2068 }
2069 }
2070 // NO_ASYNC required because an async exception on the state transition destructor
2071 // would leave you with the lock held and it would never be released.
2072 // The normal monitorenter NullPointerException is thrown without acquiring a lock
2073 // and the model is that an exception implies the method failed.
2074 JRT_BLOCK_NO_ASYNC
2075 Handle h_obj(THREAD, obj);
2076 ObjectSynchronizer::enter(h_obj, lock, current);
2077 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2078 JRT_BLOCK_END
2079 }
2080
2081 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2082 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2083 SharedRuntime::monitor_enter_helper(obj, lock, current);
2084 JRT_END
2085
2086 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2087 assert(JavaThread::current() == current, "invariant");
2088 // Exit must be non-blocking, and therefore no exceptions can be thrown.
2089 ExceptionMark em(current);
2090
2091 // Check if C2_MacroAssembler::fast_unlock() or
2092 // C2_MacroAssembler::fast_unlock() unlocked an inflated
2093 // monitor before going slow path. Since there is no safepoint
2094 // polling when calling into the VM, we can be sure that the monitor
2095 // hasn't been deallocated.
2096 ObjectMonitor* m = current->unlocked_inflated_monitor();
2097 if (m != nullptr) {
2098 assert(!m->has_owner(current), "must be");
2099 current->clear_unlocked_inflated_monitor();
2100
2101 // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2102 if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2103 // Some other thread acquired the lock (or the monitor was
2104 // deflated). Either way we are done.
2105 return;
2106 }
2107 }
2108
2109 // The object could become unlocked through a JNI call, which we have no other checks for.
2110 // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2111 if (obj->is_unlocked()) {
2112 if (CheckJNICalls) {
2113 fatal("Object has been unlocked by JNI");
2114 }
2115 return;
2116 }
2117 ObjectSynchronizer::exit(obj, lock, current);
2118 }
2119
2120 // Handles the uncommon cases of monitor unlocking in compiled code
2121 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2122 assert(current == JavaThread::current(), "pre-condition");
2123 SharedRuntime::monitor_exit_helper(obj, lock, current);
2124 JRT_END
2125
2126 #ifndef PRODUCT
2127
2128 void SharedRuntime::print_statistics() {
2129 ttyLocker ttyl;
2130 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'");
2131
2132 SharedRuntime::print_ic_miss_histogram_on(tty);
2133 SharedRuntime::print_counters_on(tty);
2134 AdapterHandlerLibrary::print_statistics_on(tty);
2135
2136 if (xtty != nullptr) xtty->tail("statistics");
2137 }
2138
2139 //void SharedRuntime::print_counters_on(outputStream* st) {
2140 // // Dump the JRT_ENTRY counters
2141 // if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr);
2142 // if (_new_array_ctr) st->print_cr("%5u new array requires GC", _new_array_ctr);
2143 // if (_multi2_ctr) st->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2144 // if (_multi3_ctr) st->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2145 // if (_multi4_ctr) st->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2146 // if (_multi5_ctr) st->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2147 //
2148 // st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2149 // st->print_cr("%5u wrong method", _wrong_method_ctr);
2150 // st->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2151 // st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2152 // st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2153 //
2154 // if (_mon_enter_stub_ctr) st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2155 // if (_mon_exit_stub_ctr) st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2156 // if (_mon_enter_ctr) st->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2157 // if (_mon_exit_ctr) st->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2158 // if (_partial_subtype_ctr) st->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2159 // if (_jbyte_array_copy_ctr) st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2160 // if (_jshort_array_copy_ctr) st->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2161 // if (_jint_array_copy_ctr) st->print_cr("%5u int array copies", _jint_array_copy_ctr);
2162 // if (_jlong_array_copy_ctr) st->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2163 // if (_oop_array_copy_ctr) st->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2164 // if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2165 // if (_unsafe_array_copy_ctr) st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2166 // if (_generic_array_copy_ctr) st->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2167 // if (_slow_array_copy_ctr) st->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2168 // if (_find_handler_ctr) st->print_cr("%5u find exception handler", _find_handler_ctr);
2169 // if (_rethrow_ctr) st->print_cr("%5u rethrow handler", _rethrow_ctr);
2170 // if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2171 //}
2172
2173 inline double percent(int64_t x, int64_t y) {
2174 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2175 }
2176
2177 class MethodArityHistogram {
2178 public:
2179 enum { MAX_ARITY = 256 };
2180 private:
2181 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2182 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words
2183 static uint64_t _total_compiled_calls;
2184 static uint64_t _max_compiled_calls_per_method;
2185 static int _max_arity; // max. arity seen
2186 static int _max_size; // max. arg size seen
2187
2188 static void add_method_to_histogram(nmethod* nm) {
2189 Method* method = (nm == nullptr) ? nullptr : nm->method();
2190 if (method != nullptr) {
2191 ArgumentCount args(method->signature());
2192 int arity = args.size() + (method->is_static() ? 0 : 1);
2193 int argsize = method->size_of_parameters();
2194 arity = MIN2(arity, MAX_ARITY-1);
2195 argsize = MIN2(argsize, MAX_ARITY-1);
2196 uint64_t count = (uint64_t)method->compiled_invocation_count();
2197 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2198 _total_compiled_calls += count;
2199 _arity_histogram[arity] += count;
2200 _size_histogram[argsize] += count;
2201 _max_arity = MAX2(_max_arity, arity);
2202 _max_size = MAX2(_max_size, argsize);
2203 }
2204 }
2205
2206 void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2207 const int N = MIN2(9, n);
2208 double sum = 0;
2209 double weighted_sum = 0;
2210 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2211 if (sum >= 1) { // prevent divide by zero or divide overflow
2212 double rest = sum;
2213 double percent = sum / 100;
2214 for (int i = 0; i <= N; i++) {
2215 rest -= (double)histo[i];
2216 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2217 }
2218 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2219 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2220 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2221 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2222 } else {
2223 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2224 }
2225 }
2226
2227 void print_histogram() {
2228 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2229 print_histogram_helper(_max_arity, _arity_histogram, "arity");
2230 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2231 print_histogram_helper(_max_size, _size_histogram, "size");
2232 tty->cr();
2233 }
2234
2235 public:
2236 MethodArityHistogram() {
2237 // Take the Compile_lock to protect against changes in the CodeBlob structures
2238 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2239 // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2240 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2241 _max_arity = _max_size = 0;
2242 _total_compiled_calls = 0;
2243 _max_compiled_calls_per_method = 0;
2244 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2245 CodeCache::nmethods_do(add_method_to_histogram);
2246 print_histogram();
2247 }
2248 };
2249
2250 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2251 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2252 uint64_t MethodArityHistogram::_total_compiled_calls;
2253 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2254 int MethodArityHistogram::_max_arity;
2255 int MethodArityHistogram::_max_size;
2256
2257 void SharedRuntime::print_call_statistics_on(outputStream* st) {
2258 tty->print_cr("Calls from compiled code:");
2259 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2260 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2261 int64_t mono_i = _nof_interface_calls;
2262 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total);
2263 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
2264 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2265 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
2266 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2267 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
2268 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2269 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
2270 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2271 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2272 tty->cr();
2273 tty->print_cr("Note 1: counter updates are not MT-safe.");
2274 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2275 tty->print_cr(" %% in nested categories are relative to their category");
2276 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
2277 tty->cr();
2278
2279 MethodArityHistogram h;
2280 }
2281 #endif
2282
2283 #ifndef PRODUCT
2284 static int _lookups; // number of calls to lookup
2285 static int _equals; // number of buckets checked with matching hash
2286 static int _archived_hits; // number of successful lookups in archived table
2287 static int _runtime_hits; // number of successful lookups in runtime table
2288 #endif
2289
2290 // A simple wrapper class around the calling convention information
2291 // that allows sharing of adapters for the same calling convention.
2292 class AdapterFingerPrint : public MetaspaceObj {
2293 private:
2294 enum {
2295 _basic_type_bits = 4,
2296 _basic_type_mask = right_n_bits(_basic_type_bits),
2297 _basic_types_per_int = BitsPerInt / _basic_type_bits,
2298 };
2299 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
2300 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2301
2302 int _length;
2303
2304 static int data_offset() { return sizeof(AdapterFingerPrint); }
2305 int* data_pointer() {
2306 return (int*)((address)this + data_offset());
2307 }
2308
2309 // Private construtor. Use allocate() to get an instance.
2310 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2311 int* data = data_pointer();
2312 // Pack the BasicTypes with 8 per int
2313 assert(len == length(total_args_passed), "sanity");
2314 _length = len;
2315 int sig_index = 0;
2316 for (int index = 0; index < _length; index++) {
2317 int value = 0;
2318 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2319 int bt = adapter_encoding(sig_bt[sig_index++]);
2320 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2321 value = (value << _basic_type_bits) | bt;
2322 }
2323 data[index] = value;
2324 }
2325 }
2326
2327 // Call deallocate instead
2328 ~AdapterFingerPrint() {
2329 ShouldNotCallThis();
2330 }
2331
2332 static int length(int total_args) {
2333 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2334 }
2335
2336 static int compute_size_in_words(int len) {
2337 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2338 }
2339
2340 // Remap BasicTypes that are handled equivalently by the adapters.
2341 // These are correct for the current system but someday it might be
2342 // necessary to make this mapping platform dependent.
2343 static int adapter_encoding(BasicType in) {
2344 switch (in) {
2345 case T_BOOLEAN:
2346 case T_BYTE:
2347 case T_SHORT:
2348 case T_CHAR:
2349 // There are all promoted to T_INT in the calling convention
2350 return T_INT;
2351
2352 case T_OBJECT:
2353 case T_ARRAY:
2354 // In other words, we assume that any register good enough for
2355 // an int or long is good enough for a managed pointer.
2356 #ifdef _LP64
2357 return T_LONG;
2358 #else
2359 return T_INT;
2360 #endif
2361
2362 case T_INT:
2363 case T_LONG:
2364 case T_FLOAT:
2365 case T_DOUBLE:
2366 case T_VOID:
2367 return in;
2368
2369 default:
2370 ShouldNotReachHere();
2371 return T_CONFLICT;
2372 }
2373 }
2374
2375 void* operator new(size_t size, size_t fp_size) throw() {
2376 assert(fp_size >= size, "sanity check");
2377 void* p = AllocateHeap(fp_size, mtCode);
2378 memset(p, 0, fp_size);
2379 return p;
2380 }
2381
2382 template<typename Function>
2383 void iterate_args(Function function) {
2384 for (int i = 0; i < length(); i++) {
2385 unsigned val = (unsigned)value(i);
2386 // args are packed so that first/lower arguments are in the highest
2387 // bits of each int value, so iterate from highest to the lowest
2388 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2389 unsigned v = (val >> j) & _basic_type_mask;
2390 if (v == 0) {
2391 continue;
2392 }
2393 function(v);
2394 }
2395 }
2396 }
2397
2398 public:
2399 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2400 int len = length(total_args_passed);
2401 int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2402 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2403 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2404 return afp;
2405 }
2406
2407 static void deallocate(AdapterFingerPrint* fp) {
2408 FreeHeap(fp);
2409 }
2410
2411 int value(int index) {
2412 int* data = data_pointer();
2413 return data[index];
2414 }
2415
2416 int length() {
2417 return _length;
2418 }
2419
2420 unsigned int compute_hash() {
2421 int hash = 0;
2422 for (int i = 0; i < length(); i++) {
2423 int v = value(i);
2424 //Add arithmetic operation to the hash, like +3 to improve hashing
2425 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2426 }
2427 return (unsigned int)hash;
2428 }
2429
2430 const char* as_string() {
2431 stringStream st;
2432 st.print("0x");
2433 for (int i = 0; i < length(); i++) {
2434 st.print("%x", value(i));
2435 }
2436 return st.as_string();
2437 }
2438
2439 const char* as_basic_args_string() {
2440 stringStream st;
2441 bool long_prev = false;
2442 iterate_args([&] (int arg) {
2443 if (long_prev) {
2444 long_prev = false;
2445 if (arg == T_VOID) {
2446 st.print("J");
2447 } else {
2448 st.print("L");
2449 }
2450 }
2451 switch (arg) {
2452 case T_INT: st.print("I"); break;
2453 case T_LONG: long_prev = true; break;
2454 case T_FLOAT: st.print("F"); break;
2455 case T_DOUBLE: st.print("D"); break;
2456 case T_VOID: break;
2457 default: ShouldNotReachHere();
2458 }
2459 });
2460 if (long_prev) {
2461 st.print("L");
2462 }
2463 return st.as_string();
2464 }
2465
2466 BasicType* as_basic_type(int& nargs) {
2467 nargs = 0;
2468 GrowableArray<BasicType> btarray;
2469 bool long_prev = false;
2470
2471 iterate_args([&] (int arg) {
2472 if (long_prev) {
2473 long_prev = false;
2474 if (arg == T_VOID) {
2475 btarray.append(T_LONG);
2476 } else {
2477 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2478 }
2479 }
2480 switch (arg) {
2481 case T_INT: // fallthrough
2482 case T_FLOAT: // fallthrough
2483 case T_DOUBLE:
2484 case T_VOID:
2485 btarray.append((BasicType)arg);
2486 break;
2487 case T_LONG:
2488 long_prev = true;
2489 break;
2490 default: ShouldNotReachHere();
2491 }
2492 });
2493
2494 if (long_prev) {
2495 btarray.append(T_OBJECT);
2496 }
2497
2498 nargs = btarray.length();
2499 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2500 int index = 0;
2501 GrowableArrayIterator<BasicType> iter = btarray.begin();
2502 while (iter != btarray.end()) {
2503 sig_bt[index++] = *iter;
2504 ++iter;
2505 }
2506 assert(index == btarray.length(), "sanity check");
2507 #ifdef ASSERT
2508 {
2509 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2510 assert(this->equals(compare_fp), "sanity check");
2511 AdapterFingerPrint::deallocate(compare_fp);
2512 }
2513 #endif
2514 return sig_bt;
2515 }
2516
2517 bool equals(AdapterFingerPrint* other) {
2518 if (other->_length != _length) {
2519 return false;
2520 } else {
2521 for (int i = 0; i < _length; i++) {
2522 if (value(i) != other->value(i)) {
2523 return false;
2524 }
2525 }
2526 }
2527 return true;
2528 }
2529
2530 // methods required by virtue of being a MetaspaceObj
2531 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2532 int size() const { return compute_size_in_words(_length); }
2533 MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2534
2535 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2536 NOT_PRODUCT(_equals++);
2537 return fp1->equals(fp2);
2538 }
2539
2540 static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2541 return fp->compute_hash();
2542 }
2543 };
2544
2545 #if INCLUDE_CDS
2546 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2547 return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2548 }
2549
2550 class ArchivedAdapterTable : public OffsetCompactHashtable<
2551 AdapterFingerPrint*,
2552 AdapterHandlerEntry*,
2553 adapter_fp_equals_compact_hashtable_entry> {};
2554 #endif // INCLUDE_CDS
2555
2556 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2557 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2558 AnyObj::C_HEAP, mtCode,
2559 AdapterFingerPrint::compute_hash,
2560 AdapterFingerPrint::equals>;
2561 static AdapterHandlerTable* _adapter_handler_table;
2562 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2563
2564 // Find a entry with the same fingerprint if it exists
2565 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2566 NOT_PRODUCT(_lookups++);
2567 assert_lock_strong(AdapterHandlerLibrary_lock);
2568 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2569 AdapterHandlerEntry* entry = nullptr;
2570 #if INCLUDE_CDS
2571 // if we are building the archive then the archived adapter table is
2572 // not valid and we need to use the ones added to the runtime table
2573 if (AOTCodeCache::is_using_adapter()) {
2574 // Search archived table first. It is read-only table so can be searched without lock
2575 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2576 #ifndef PRODUCT
2577 if (entry != nullptr) {
2578 _archived_hits++;
2579 }
2580 #endif
2581 }
2582 #endif // INCLUDE_CDS
2583 if (entry == nullptr) {
2584 assert_lock_strong(AdapterHandlerLibrary_lock);
2585 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2586 if (entry_p != nullptr) {
2587 entry = *entry_p;
2588 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2589 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2590 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2591 #ifndef PRODUCT
2592 _runtime_hits++;
2593 #endif
2594 }
2595 }
2596 AdapterFingerPrint::deallocate(fp);
2597 return entry;
2598 }
2599
2600 #ifndef PRODUCT
2601 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) {
2602 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2603 return sizeof(*key) + sizeof(*a);
2604 };
2605 TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2606 ts.print(st, "AdapterHandlerTable");
2607 st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2608 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2609 int total_hits = _archived_hits + _runtime_hits;
2610 st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2611 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2612 }
2613 #endif // !PRODUCT
2614
2615 // ---------------------------------------------------------------------------
2616 // Implementation of AdapterHandlerLibrary
2617 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2618 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2619 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2620 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2621 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2622 #if INCLUDE_CDS
2623 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2624 #endif // INCLUDE_CDS
2625 static const int AdapterHandlerLibrary_size = 16*K;
2626 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2627 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2628
2629 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2630 assert(_buffer != nullptr, "should be initialized");
2631 return _buffer;
2632 }
2633
2634 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2635 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2636 AdapterBlob* adapter_blob = entry->adapter_blob();
2637 char blob_id[256];
2638 jio_snprintf(blob_id,
2639 sizeof(blob_id),
2640 "%s(%s)",
2641 adapter_blob->name(),
2642 entry->fingerprint()->as_string());
2643 if (Forte::is_enabled()) {
2644 Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2645 }
2646
2647 if (JvmtiExport::should_post_dynamic_code_generated()) {
2648 JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2649 }
2650 }
2651 }
2652
2653 void AdapterHandlerLibrary::initialize() {
2654 {
2655 ResourceMark rm;
2656 _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2657 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2658 }
2659
2660 #if INCLUDE_CDS
2661 // Link adapters in AOT Cache to their code in AOT Code Cache
2662 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2663 link_aot_adapters();
2664 lookup_simple_adapters();
2665 return;
2666 }
2667 #endif // INCLUDE_CDS
2668
2669 ResourceMark rm;
2670 {
2671 MutexLocker mu(AdapterHandlerLibrary_lock);
2672
2673 _no_arg_handler = create_adapter(0, nullptr);
2674
2675 BasicType obj_args[] = { T_OBJECT };
2676 _obj_arg_handler = create_adapter(1, obj_args);
2677
2678 BasicType int_args[] = { T_INT };
2679 _int_arg_handler = create_adapter(1, int_args);
2680
2681 BasicType obj_int_args[] = { T_OBJECT, T_INT };
2682 _obj_int_arg_handler = create_adapter(2, obj_int_args);
2683
2684 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2685 _obj_obj_arg_handler = create_adapter(2, obj_obj_args);
2686
2687 // we should always get an entry back but we don't have any
2688 // associated blob on Zero
2689 assert(_no_arg_handler != nullptr &&
2690 _obj_arg_handler != nullptr &&
2691 _int_arg_handler != nullptr &&
2692 _obj_int_arg_handler != nullptr &&
2693 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2694 }
2695
2696 // Outside of the lock
2697 #ifndef ZERO
2698 // no blobs to register when we are on Zero
2699 post_adapter_creation(_no_arg_handler);
2700 post_adapter_creation(_obj_arg_handler);
2701 post_adapter_creation(_int_arg_handler);
2702 post_adapter_creation(_obj_int_arg_handler);
2703 post_adapter_creation(_obj_obj_arg_handler);
2704 #endif // ZERO
2705 }
2706
2707 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2708 uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2709 assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2710 return AdapterHandlerEntry::allocate(id, fingerprint);
2711 }
2712
2713 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2714 int total_args_passed = method->size_of_parameters(); // All args on stack
2715 if (total_args_passed == 0) {
2716 return _no_arg_handler;
2717 } else if (total_args_passed == 1) {
2718 if (!method->is_static()) {
2719 return _obj_arg_handler;
2720 }
2721 switch (method->signature()->char_at(1)) {
2722 case JVM_SIGNATURE_CLASS:
2723 case JVM_SIGNATURE_ARRAY:
2724 return _obj_arg_handler;
2725 case JVM_SIGNATURE_INT:
2726 case JVM_SIGNATURE_BOOLEAN:
2727 case JVM_SIGNATURE_CHAR:
2728 case JVM_SIGNATURE_BYTE:
2729 case JVM_SIGNATURE_SHORT:
2730 return _int_arg_handler;
2731 }
2732 } else if (total_args_passed == 2 &&
2733 !method->is_static()) {
2734 switch (method->signature()->char_at(1)) {
2735 case JVM_SIGNATURE_CLASS:
2736 case JVM_SIGNATURE_ARRAY:
2737 return _obj_obj_arg_handler;
2738 case JVM_SIGNATURE_INT:
2739 case JVM_SIGNATURE_BOOLEAN:
2740 case JVM_SIGNATURE_CHAR:
2741 case JVM_SIGNATURE_BYTE:
2742 case JVM_SIGNATURE_SHORT:
2743 return _obj_int_arg_handler;
2744 }
2745 }
2746 return nullptr;
2747 }
2748
2749 class AdapterSignatureIterator : public SignatureIterator {
2750 private:
2751 BasicType stack_sig_bt[16];
2752 BasicType* sig_bt;
2753 int index;
2754
2755 public:
2756 AdapterSignatureIterator(Symbol* signature,
2757 fingerprint_t fingerprint,
2758 bool is_static,
2759 int total_args_passed) :
2760 SignatureIterator(signature, fingerprint),
2761 index(0)
2762 {
2763 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2764 if (!is_static) { // Pass in receiver first
2765 sig_bt[index++] = T_OBJECT;
2766 }
2767 do_parameters_on(this);
2768 }
2769
2770 BasicType* basic_types() {
2771 return sig_bt;
2772 }
2773
2774 #ifdef ASSERT
2775 int slots() {
2776 return index;
2777 }
2778 #endif
2779
2780 private:
2781
2782 friend class SignatureIterator; // so do_parameters_on can call do_type
2783 void do_type(BasicType type) {
2784 sig_bt[index++] = type;
2785 if (type == T_LONG || type == T_DOUBLE) {
2786 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2787 }
2788 }
2789 };
2790
2791
2792 const char* AdapterHandlerEntry::_entry_names[] = {
2793 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2794 };
2795
2796 #ifdef ASSERT
2797 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2798 // we can only check for the same code if there is any
2799 #ifndef ZERO
2800 AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true);
2801 assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
2802 assert(comparison_entry->compare_code(cached_entry), "code must match");
2803 // Release the one just created
2804 AdapterHandlerEntry::deallocate(comparison_entry);
2805 # endif // ZERO
2806 }
2807 #endif /* ASSERT*/
2808
2809 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2810 assert(!method->is_abstract(), "abstract methods do not have adapters");
2811 // Use customized signature handler. Need to lock around updates to
2812 // the _adapter_handler_table (it is not safe for concurrent readers
2813 // and a single writer: this could be fixed if it becomes a
2814 // problem).
2815
2816 // Fast-path for trivial adapters
2817 AdapterHandlerEntry* entry = get_simple_adapter(method);
2818 if (entry != nullptr) {
2819 return entry;
2820 }
2821
2822 ResourceMark rm;
2823 bool new_entry = false;
2824
2825 // Fill in the signature array, for the calling-convention call.
2826 int total_args_passed = method->size_of_parameters(); // All args on stack
2827
2828 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2829 method->is_static(), total_args_passed);
2830 assert(si.slots() == total_args_passed, "");
2831 BasicType* sig_bt = si.basic_types();
2832 {
2833 MutexLocker mu(AdapterHandlerLibrary_lock);
2834
2835 // Lookup method signature's fingerprint
2836 entry = lookup(total_args_passed, sig_bt);
2837
2838 if (entry != nullptr) {
2839 #ifndef ZERO
2840 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2841 #endif
2842 #ifdef ASSERT
2843 if (!entry->in_aot_cache() && VerifyAdapterSharing) {
2844 verify_adapter_sharing(total_args_passed, sig_bt, entry);
2845 }
2846 #endif
2847 } else {
2848 entry = create_adapter(total_args_passed, sig_bt);
2849 if (entry != nullptr) {
2850 new_entry = true;
2851 }
2852 }
2853 }
2854
2855 // Outside of the lock
2856 if (new_entry) {
2857 post_adapter_creation(entry);
2858 }
2859 return entry;
2860 }
2861
2862 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2863 ResourceMark rm;
2864 const char* name = AdapterHandlerLibrary::name(handler);
2865 const uint32_t id = AdapterHandlerLibrary::id(handler);
2866
2867 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
2868 if (blob != nullptr) {
2869 handler->set_adapter_blob(blob->as_adapter_blob());
2870 }
2871 }
2872
2873 #ifndef PRODUCT
2874 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
2875 ttyLocker ttyl;
2876 ResourceMark rm;
2877 int insts_size;
2878 // on Zero the blob may be null
2879 handler->print_adapter_on(tty);
2880 AdapterBlob* adapter_blob = handler->adapter_blob();
2881 if (adapter_blob == nullptr) {
2882 return;
2883 }
2884 insts_size = adapter_blob->code_size();
2885 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2886 handler->fingerprint()->as_basic_args_string(),
2887 handler->fingerprint()->as_string(), insts_size);
2888 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2889 if (Verbose || PrintStubCode) {
2890 address first_pc = adapter_blob->content_begin();
2891 if (first_pc != nullptr) {
2892 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2893 st->cr();
2894 }
2895 }
2896 }
2897 #endif // PRODUCT
2898
2899 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
2900 int entry_offset[AdapterBlob::ENTRY_COUNT]) {
2901 entry_offset[AdapterBlob::I2C] = 0;
2902 entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
2903 entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
2904 if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
2905 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
2906 } else {
2907 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
2908 }
2909 }
2910
2911 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
2912 int total_args_passed,
2913 BasicType* sig_bt,
2914 bool is_transient) {
2915 if (log_is_enabled(Info, perf, class, link)) {
2916 ClassLoader::perf_method_adapters_count()->inc();
2917 }
2918
2919 #ifndef ZERO
2920 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2921 CodeBuffer buffer(buf);
2922 short buffer_locs[20];
2923 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2924 sizeof(buffer_locs)/sizeof(relocInfo));
2925 MacroAssembler masm(&buffer);
2926 VMRegPair stack_regs[16];
2927 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2928
2929 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2930 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2931 address entry_address[AdapterBlob::ENTRY_COUNT];
2932 SharedRuntime::generate_i2c2i_adapters(&masm,
2933 total_args_passed,
2934 comp_args_on_stack,
2935 sig_bt,
2936 regs,
2937 entry_address);
2938 // On zero there is no code to save and no need to create a blob and
2939 // or relocate the handler.
2940 int entry_offset[AdapterBlob::ENTRY_COUNT];
2941 address_to_offset(entry_address, entry_offset);
2942 #ifdef ASSERT
2943 if (VerifyAdapterSharing) {
2944 handler->save_code(buf->code_begin(), buffer.insts_size());
2945 if (is_transient) {
2946 return true;
2947 }
2948 }
2949 #endif
2950 AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset);
2951 if (adapter_blob == nullptr) {
2952 // CodeCache is full, disable compilation
2953 // Ought to log this but compile log is only per compile thread
2954 // and we're some non descript Java thread.
2955 return false;
2956 }
2957 handler->set_adapter_blob(adapter_blob);
2958 if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2959 // try to save generated code
2960 const char* name = AdapterHandlerLibrary::name(handler);
2961 const uint32_t id = AdapterHandlerLibrary::id(handler);
2962 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
2963 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2964 }
2965 #endif // ZERO
2966
2967 #ifndef PRODUCT
2968 // debugging support
2969 if (PrintAdapterHandlers || PrintStubCode) {
2970 print_adapter_handler_info(tty, handler);
2971 }
2972 #endif
2973
2974 return true;
2975 }
2976
2977 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed,
2978 BasicType* sig_bt,
2979 bool is_transient) {
2980 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2981 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2982 if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) {
2983 AdapterHandlerEntry::deallocate(handler);
2984 return nullptr;
2985 }
2986 if (!is_transient) {
2987 assert_lock_strong(AdapterHandlerLibrary_lock);
2988 _adapter_handler_table->put(fp, handler);
2989 }
2990 return handler;
2991 }
2992
2993 #if INCLUDE_CDS
2994 void AdapterHandlerEntry::remove_unshareable_info() {
2995 #ifdef ASSERT
2996 _saved_code = nullptr;
2997 _saved_code_length = 0;
2998 #endif // ASSERT
2999 _adapter_blob = nullptr;
3000 _linked = false;
3001 }
3002
3003 class CopyAdapterTableToArchive : StackObj {
3004 private:
3005 CompactHashtableWriter* _writer;
3006 ArchiveBuilder* _builder;
3007 public:
3008 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
3009 _builder(ArchiveBuilder::current())
3010 {}
3011
3012 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
3013 LogStreamHandle(Trace, aot) lsh;
3014 if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
3015 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
3016 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
3017 assert(buffered_fp != nullptr,"sanity check");
3018 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
3019 assert(buffered_entry != nullptr,"sanity check");
3020
3021 uint hash = fp->compute_hash();
3022 _writer->add(hash, AOTCompressedPointers::encode_not_null(buffered_entry));
3023 if (lsh.is_enabled()) {
3024 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
3025 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
3026 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
3027 }
3028 } else {
3029 if (lsh.is_enabled()) {
3030 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
3031 }
3032 }
3033 return true;
3034 }
3035 };
3036
3037 void AdapterHandlerLibrary::dump_aot_adapter_table() {
3038 CompactHashtableStats stats;
3039 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
3040 CopyAdapterTableToArchive copy(&writer);
3041 _adapter_handler_table->iterate(©);
3042 writer.dump(&_aot_adapter_handler_table, "archived adapter table");
3043 }
3044
3045 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
3046 _aot_adapter_handler_table.serialize_header(soc);
3047 }
3048
3049 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
3050 #ifdef ASSERT
3051 if (TestAOTAdapterLinkFailure) {
3052 return;
3053 }
3054 #endif
3055 lookup_aot_cache(handler);
3056 #ifndef PRODUCT
3057 // debugging support
3058 if (PrintAdapterHandlers || PrintStubCode) {
3059 print_adapter_handler_info(tty, handler);
3060 }
3061 #endif
3062 }
3063
3064 // This method is used during production run to link archived adapters (stored in AOT Cache)
3065 // to their code in AOT Code Cache
3066 void AdapterHandlerEntry::link() {
3067 ResourceMark rm;
3068 assert(_fingerprint != nullptr, "_fingerprint must not be null");
3069 bool generate_code = false;
3070 // Generate code only if AOTCodeCache is not available, or
3071 // caching adapters is disabled, or we fail to link
3072 // the AdapterHandlerEntry to its code in the AOTCodeCache
3073 if (AOTCodeCache::is_using_adapter()) {
3074 AdapterHandlerLibrary::link_aot_adapter_handler(this);
3075 // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
3076 if (_adapter_blob == nullptr) {
3077 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
3078 generate_code = true;
3079 }
3080 } else {
3081 generate_code = true;
3082 }
3083 if (generate_code) {
3084 int nargs;
3085 BasicType* bt = _fingerprint->as_basic_type(nargs);
3086 if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) {
3087 // Don't throw exceptions during VM initialization because java.lang.* classes
3088 // might not have been initialized, causing problems when constructing the
3089 // Java exception object.
3090 vm_exit_during_initialization("Out of space in CodeCache for adapters");
3091 }
3092 }
3093 if (_adapter_blob != nullptr) {
3094 post_adapter_creation(this);
3095 }
3096 assert(_linked, "AdapterHandlerEntry must now be linked");
3097 }
3098
3099 void AdapterHandlerLibrary::link_aot_adapters() {
3100 uint max_id = 0;
3101 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3102 /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3103 * That implies adapter ids of the adapters in the cache may not be contiguous.
3104 * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3105 * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3106 * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3107 */
3108 _aot_adapter_handler_table.iterate_all([&](AdapterHandlerEntry* entry) {
3109 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3110 entry->link();
3111 max_id = MAX2(max_id, entry->id());
3112 });
3113 // Set adapter id to the maximum id found in the AOTCache
3114 assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3115 _id_counter = max_id;
3116 }
3117
3118 // This method is called during production run to lookup simple adapters
3119 // in the archived adapter handler table
3120 void AdapterHandlerLibrary::lookup_simple_adapters() {
3121 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3122
3123 MutexLocker mu(AdapterHandlerLibrary_lock);
3124 _no_arg_handler = lookup(0, nullptr);
3125
3126 BasicType obj_args[] = { T_OBJECT };
3127 _obj_arg_handler = lookup(1, obj_args);
3128
3129 BasicType int_args[] = { T_INT };
3130 _int_arg_handler = lookup(1, int_args);
3131
3132 BasicType obj_int_args[] = { T_OBJECT, T_INT };
3133 _obj_int_arg_handler = lookup(2, obj_int_args);
3134
3135 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3136 _obj_obj_arg_handler = lookup(2, obj_obj_args);
3137
3138 assert(_no_arg_handler != nullptr &&
3139 _obj_arg_handler != nullptr &&
3140 _int_arg_handler != nullptr &&
3141 _obj_int_arg_handler != nullptr &&
3142 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3143 assert(_no_arg_handler->is_linked() &&
3144 _obj_arg_handler->is_linked() &&
3145 _int_arg_handler->is_linked() &&
3146 _obj_int_arg_handler->is_linked() &&
3147 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3148 }
3149 #endif // INCLUDE_CDS
3150
3151 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3152 LogStreamHandle(Trace, aot) lsh;
3153 if (lsh.is_enabled()) {
3154 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3155 lsh.cr();
3156 }
3157 it->push(&_fingerprint);
3158 }
3159
3160 AdapterHandlerEntry::~AdapterHandlerEntry() {
3161 if (_fingerprint != nullptr) {
3162 AdapterFingerPrint::deallocate(_fingerprint);
3163 _fingerprint = nullptr;
3164 }
3165 #ifdef ASSERT
3166 FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3167 #endif
3168 FreeHeap(this);
3169 }
3170
3171
3172 #ifdef ASSERT
3173 // Capture the code before relocation so that it can be compared
3174 // against other versions. If the code is captured after relocation
3175 // then relative instructions won't be equivalent.
3176 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3177 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3178 _saved_code_length = length;
3179 memcpy(_saved_code, buffer, length);
3180 }
3181
3182
3183 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3184 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3185
3186 if (other->_saved_code_length != _saved_code_length) {
3187 return false;
3188 }
3189
3190 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3191 }
3192 #endif
3193
3194
3195 /**
3196 * Create a native wrapper for this native method. The wrapper converts the
3197 * Java-compiled calling convention to the native convention, handles
3198 * arguments, and transitions to native. On return from the native we transition
3199 * back to java blocking if a safepoint is in progress.
3200 */
3201 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3202 ResourceMark rm;
3203 nmethod* nm = nullptr;
3204
3205 // Check if memory should be freed before allocation
3206 CodeCache::gc_on_allocation();
3207
3208 assert(method->is_native(), "must be native");
3209 assert(method->is_special_native_intrinsic() ||
3210 method->has_native_function(), "must have something valid to call!");
3211
3212 {
3213 // Perform the work while holding the lock, but perform any printing outside the lock
3214 MutexLocker mu(AdapterHandlerLibrary_lock);
3215 // See if somebody beat us to it
3216 if (method->code() != nullptr) {
3217 return;
3218 }
3219
3220 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3221 assert(compile_id > 0, "Must generate native wrapper");
3222
3223
3224 ResourceMark rm;
3225 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3226 if (buf != nullptr) {
3227 CodeBuffer buffer(buf);
3228
3229 if (method->is_continuation_enter_intrinsic()) {
3230 buffer.initialize_stubs_size(192);
3231 }
3232
3233 struct { double data[20]; } locs_buf;
3234 struct { double data[20]; } stubs_locs_buf;
3235 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3236 #if defined(AARCH64) || defined(PPC64)
3237 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3238 // in the constant pool to ensure ordering between the barrier and oops
3239 // accesses. For native_wrappers we need a constant.
3240 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3241 // static java call that is resolved in the runtime.
3242 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3243 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3244 }
3245 #endif
3246 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3247 MacroAssembler _masm(&buffer);
3248
3249 // Fill in the signature array, for the calling-convention call.
3250 const int total_args_passed = method->size_of_parameters();
3251
3252 VMRegPair stack_regs[16];
3253 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3254
3255 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3256 method->is_static(), total_args_passed);
3257 BasicType* sig_bt = si.basic_types();
3258 assert(si.slots() == total_args_passed, "");
3259 BasicType ret_type = si.return_type();
3260
3261 // Now get the compiled-Java arguments layout.
3262 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3263
3264 // Generate the compiled-to-native wrapper code
3265 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3266
3267 if (nm != nullptr) {
3268 {
3269 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3270 if (nm->make_in_use()) {
3271 method->set_code(method, nm);
3272 }
3273 }
3274
3275 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3276 if (directive->PrintAssemblyOption) {
3277 nm->print_code();
3278 }
3279 DirectivesStack::release(directive);
3280 }
3281 }
3282 } // Unlock AdapterHandlerLibrary_lock
3283
3284
3285 // Install the generated code.
3286 if (nm != nullptr) {
3287 const char *msg = method->is_static() ? "(static)" : "";
3288 CompileTask::print_ul(nm, msg);
3289 if (PrintCompilation) {
3290 ttyLocker ttyl;
3291 CompileTask::print(tty, nm, msg);
3292 }
3293 nm->post_compiled_method_load_event();
3294 }
3295 }
3296
3297 // -------------------------------------------------------------------------
3298 // Java-Java calling convention
3299 // (what you use when Java calls Java)
3300
3301 //------------------------------name_for_receiver----------------------------------
3302 // For a given signature, return the VMReg for parameter 0.
3303 VMReg SharedRuntime::name_for_receiver() {
3304 VMRegPair regs;
3305 BasicType sig_bt = T_OBJECT;
3306 (void) java_calling_convention(&sig_bt, ®s, 1);
3307 // Return argument 0 register. In the LP64 build pointers
3308 // take 2 registers, but the VM wants only the 'main' name.
3309 return regs.first();
3310 }
3311
3312 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3313 // This method is returning a data structure allocating as a
3314 // ResourceObject, so do not put any ResourceMarks in here.
3315
3316 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3317 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3318 int cnt = 0;
3319 if (has_receiver) {
3320 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3321 }
3322
3323 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3324 BasicType type = ss.type();
3325 sig_bt[cnt++] = type;
3326 if (is_double_word_type(type))
3327 sig_bt[cnt++] = T_VOID;
3328 }
3329
3330 if (has_appendix) {
3331 sig_bt[cnt++] = T_OBJECT;
3332 }
3333
3334 assert(cnt < 256, "grow table size");
3335
3336 int comp_args_on_stack;
3337 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3338
3339 // the calling convention doesn't count out_preserve_stack_slots so
3340 // we must add that in to get "true" stack offsets.
3341
3342 if (comp_args_on_stack) {
3343 for (int i = 0; i < cnt; i++) {
3344 VMReg reg1 = regs[i].first();
3345 if (reg1->is_stack()) {
3346 // Yuck
3347 reg1 = reg1->bias(out_preserve_stack_slots());
3348 }
3349 VMReg reg2 = regs[i].second();
3350 if (reg2->is_stack()) {
3351 // Yuck
3352 reg2 = reg2->bias(out_preserve_stack_slots());
3353 }
3354 regs[i].set_pair(reg2, reg1);
3355 }
3356 }
3357
3358 // results
3359 *arg_size = cnt;
3360 return regs;
3361 }
3362
3363 // OSR Migration Code
3364 //
3365 // This code is used convert interpreter frames into compiled frames. It is
3366 // called from very start of a compiled OSR nmethod. A temp array is
3367 // allocated to hold the interesting bits of the interpreter frame. All
3368 // active locks are inflated to allow them to move. The displaced headers and
3369 // active interpreter locals are copied into the temp buffer. Then we return
3370 // back to the compiled code. The compiled code then pops the current
3371 // interpreter frame off the stack and pushes a new compiled frame. Then it
3372 // copies the interpreter locals and displaced headers where it wants.
3373 // Finally it calls back to free the temp buffer.
3374 //
3375 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3376
3377 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3378 assert(current == JavaThread::current(), "pre-condition");
3379 JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3380 // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3381 // frame. The stack watermark code below ensures that the interpreted frame is processed
3382 // before it gets unwound. This is helpful as the size of the compiled frame could be
3383 // larger than the interpreted frame, which could result in the new frame not being
3384 // processed correctly.
3385 StackWatermarkSet::before_unwind(current);
3386
3387 //
3388 // This code is dependent on the memory layout of the interpreter local
3389 // array and the monitors. On all of our platforms the layout is identical
3390 // so this code is shared. If some platform lays the their arrays out
3391 // differently then this code could move to platform specific code or
3392 // the code here could be modified to copy items one at a time using
3393 // frame accessor methods and be platform independent.
3394
3395 frame fr = current->last_frame();
3396 assert(fr.is_interpreted_frame(), "");
3397 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3398
3399 // Figure out how many monitors are active.
3400 int active_monitor_count = 0;
3401 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3402 kptr < fr.interpreter_frame_monitor_begin();
3403 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3404 if (kptr->obj() != nullptr) active_monitor_count++;
3405 }
3406
3407 // QQQ we could place number of active monitors in the array so that compiled code
3408 // could double check it.
3409
3410 Method* moop = fr.interpreter_frame_method();
3411 int max_locals = moop->max_locals();
3412 // Allocate temp buffer, 1 word per local & 2 per active monitor
3413 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3414 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3415
3416 // Copy the locals. Order is preserved so that loading of longs works.
3417 // Since there's no GC I can copy the oops blindly.
3418 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3419 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3420 (HeapWord*)&buf[0],
3421 max_locals);
3422
3423 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
3424 int i = max_locals;
3425 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3426 kptr2 < fr.interpreter_frame_monitor_begin();
3427 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3428 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array
3429 BasicLock *lock = kptr2->lock();
3430 if (UseObjectMonitorTable) {
3431 buf[i] = (intptr_t)lock->object_monitor_cache();
3432 }
3433 #ifdef ASSERT
3434 else {
3435 buf[i] = badDispHeaderOSR;
3436 }
3437 #endif
3438 i++;
3439 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3440 }
3441 }
3442 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3443
3444 RegisterMap map(current,
3445 RegisterMap::UpdateMap::skip,
3446 RegisterMap::ProcessFrames::include,
3447 RegisterMap::WalkContinuation::skip);
3448 frame sender = fr.sender(&map);
3449 if (sender.is_interpreted_frame()) {
3450 current->push_cont_fastpath(sender.unextended_sp());
3451 }
3452
3453 return buf;
3454 JRT_END
3455
3456 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3457 FREE_C_HEAP_ARRAY(intptr_t, buf);
3458 JRT_END
3459
3460 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3461 return handler->fingerprint()->as_basic_args_string();
3462 }
3463
3464 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3465 return handler->id();
3466 }
3467
3468 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3469 bool found = false;
3470 #if INCLUDE_CDS
3471 if (AOTCodeCache::is_using_adapter()) {
3472 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3473 if (b == handler->adapter_blob()) {
3474 found = true;
3475 st->print("Adapter for signature: ");
3476 handler->print_adapter_on(st);
3477 return false; // abort iteration
3478 } else {
3479 return true; // keep looking
3480 }
3481 };
3482 _aot_adapter_handler_table.iterate(findblob_archived_table);
3483 }
3484 #endif // INCLUDE_CDS
3485 if (!found) {
3486 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* handler) {
3487 if (b == handler->adapter_blob()) {
3488 found = true;
3489 st->print("Adapter for signature: ");
3490 handler->print_adapter_on(st);
3491 return false; // abort iteration
3492 } else {
3493 return true; // keep looking
3494 }
3495 };
3496 assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3497 _adapter_handler_table->iterate(findblob_runtime_table);
3498 }
3499 assert(found, "Should have found handler");
3500 }
3501
3502 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3503 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3504 if (adapter_blob() != nullptr) {
3505 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3506 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3507 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3508 if (get_c2i_no_clinit_check_entry() != nullptr) {
3509 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3510 }
3511 }
3512 st->cr();
3513 }
3514
3515 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3516 assert(current == JavaThread::current(), "pre-condition");
3517 StackOverflow* overflow_state = current->stack_overflow_state();
3518 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3519 overflow_state->set_reserved_stack_activation(current->stack_base());
3520 JRT_END
3521
3522 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3523 ResourceMark rm(current);
3524 frame activation;
3525 nmethod* nm = nullptr;
3526 int count = 1;
3527
3528 assert(fr.is_java_frame(), "Must start on Java frame");
3529
3530 RegisterMap map(JavaThread::current(),
3531 RegisterMap::UpdateMap::skip,
3532 RegisterMap::ProcessFrames::skip,
3533 RegisterMap::WalkContinuation::skip); // don't walk continuations
3534 for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3535 if (!fr.is_java_frame()) {
3536 continue;
3537 }
3538
3539 Method* method = nullptr;
3540 bool found = false;
3541 if (fr.is_interpreted_frame()) {
3542 method = fr.interpreter_frame_method();
3543 if (method != nullptr && method->has_reserved_stack_access()) {
3544 found = true;
3545 }
3546 } else {
3547 CodeBlob* cb = fr.cb();
3548 if (cb != nullptr && cb->is_nmethod()) {
3549 nm = cb->as_nmethod();
3550 method = nm->method();
3551 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3552 method = sd->method();
3553 if (method != nullptr && method->has_reserved_stack_access()) {
3554 found = true;
3555 }
3556 }
3557 }
3558 }
3559 if (found) {
3560 activation = fr;
3561 warning("Potentially dangerous stack overflow in "
3562 "ReservedStackAccess annotated method %s [%d]",
3563 method->name_and_sig_as_C_string(), count++);
3564 EventReservedStackActivation event;
3565 if (event.should_commit()) {
3566 event.set_method(method);
3567 event.commit();
3568 }
3569 }
3570 }
3571 return activation;
3572 }
3573
3574 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3575 // After any safepoint, just before going back to compiled code,
3576 // we inform the GC that we will be doing initializing writes to
3577 // this object in the future without emitting card-marks, so
3578 // GC may take any compensating steps.
3579
3580 oop new_obj = current->vm_result_oop();
3581 if (new_obj == nullptr) return;
3582
3583 BarrierSet *bs = BarrierSet::barrier_set();
3584 bs->on_slowpath_allocation_exit(current, new_obj);
3585 }