1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoader.hpp" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/nmethod.inline.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/abstractCompiler.hpp" 37 #include "compiler/compileBroker.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.inline.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/interpreterRuntime.hpp" 44 #include "jvm.h" 45 #include "jfr/jfrEvents.hpp" 46 #include "logging/log.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "memory/universe.hpp" 49 #include "metaprogramming/primitiveConversions.hpp" 50 #include "oops/klass.hpp" 51 #include "oops/method.inline.hpp" 52 #include "oops/objArrayKlass.hpp" 53 #include "oops/oop.inline.hpp" 54 #include "prims/forte.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "prims/jvmtiThreadState.hpp" 57 #include "prims/methodHandles.hpp" 58 #include "prims/nativeLookup.hpp" 59 #include "runtime/arguments.hpp" 60 #include "runtime/atomic.hpp" 61 #include "runtime/basicLock.inline.hpp" 62 #include "runtime/frame.inline.hpp" 63 #include "runtime/handles.inline.hpp" 64 #include "runtime/init.hpp" 65 #include "runtime/interfaceSupport.inline.hpp" 66 #include "runtime/java.hpp" 67 #include "runtime/javaCalls.hpp" 68 #include "runtime/jniHandles.inline.hpp" 69 #include "runtime/perfData.inline.hpp" 70 #include "runtime/sharedRuntime.hpp" 71 #include "runtime/stackWatermarkSet.hpp" 72 #include "runtime/stubRoutines.hpp" 73 #include "runtime/synchronizer.inline.hpp" 74 #include "runtime/timerTrace.hpp" 75 #include "runtime/vframe.inline.hpp" 76 #include "runtime/vframeArray.hpp" 77 #include "runtime/vm_version.hpp" 78 #include "services/management.hpp" 79 #include "utilities/copy.hpp" 80 #include "utilities/dtrace.hpp" 81 #include "utilities/events.hpp" 82 #include "utilities/globalDefinitions.hpp" 83 #include "utilities/resourceHash.hpp" 84 #include "utilities/macros.hpp" 85 #include "utilities/xmlstream.hpp" 86 #ifdef COMPILER1 87 #include "c1/c1_Runtime1.hpp" 88 #endif 89 #if INCLUDE_JFR 90 #include "jfr/jfr.hpp" 91 #endif 92 93 // Shared runtime stub routines reside in their own unique blob with a 94 // single entry point 95 96 97 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 98 type SharedRuntime::BLOB_FIELD_NAME(name); 99 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 100 #undef SHARED_STUB_FIELD_DEFINE 101 102 nmethod* SharedRuntime::_cont_doYield_stub; 103 104 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr; 105 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time = nullptr; 106 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time = nullptr; 107 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr; 108 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time = nullptr; 109 110 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 111 const char *SharedRuntime::_stub_names[] = { 112 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 113 }; 114 115 //----------------------------generate_stubs----------------------------------- 116 void SharedRuntime::generate_initial_stubs() { 117 // Build this early so it's available for the interpreter. 118 _throw_StackOverflowError_blob = 119 generate_throw_exception(SharedStubId::throw_StackOverflowError_id, 120 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 121 } 122 123 void SharedRuntime::generate_stubs() { 124 _wrong_method_blob = 125 generate_resolve_blob(SharedStubId::wrong_method_id, 126 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 127 _wrong_method_abstract_blob = 128 generate_resolve_blob(SharedStubId::wrong_method_abstract_id, 129 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 130 _ic_miss_blob = 131 generate_resolve_blob(SharedStubId::ic_miss_id, 132 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 133 _resolve_opt_virtual_call_blob = 134 generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id, 135 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 136 _resolve_virtual_call_blob = 137 generate_resolve_blob(SharedStubId::resolve_virtual_call_id, 138 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 139 _resolve_static_call_blob = 140 generate_resolve_blob(SharedStubId::resolve_static_call_id, 141 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 142 143 _throw_delayed_StackOverflowError_blob = 144 generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id, 145 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 146 147 _throw_AbstractMethodError_blob = 148 generate_throw_exception(SharedStubId::throw_AbstractMethodError_id, 149 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 150 151 _throw_IncompatibleClassChangeError_blob = 152 generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id, 153 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 154 155 _throw_NullPointerException_at_call_blob = 156 generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id, 157 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 158 159 AdapterHandlerLibrary::initialize(); 160 161 #if COMPILER2_OR_JVMCI 162 // Vectors are generated only by C2 and JVMCI. 163 bool support_wide = is_wide_vector(MaxVectorSize); 164 if (support_wide) { 165 _polling_page_vectors_safepoint_handler_blob = 166 generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id, 167 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 168 } 169 #endif // COMPILER2_OR_JVMCI 170 _polling_page_safepoint_handler_blob = 171 generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id, 172 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 173 _polling_page_return_handler_blob = 174 generate_handler_blob(SharedStubId::polling_page_return_handler_id, 175 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 176 177 generate_deopt_blob(); 178 179 if (UsePerfData) { 180 EXCEPTION_MARK; 181 NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call"); 182 NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time, SUN_CI, "resovle_virtual_call"); 183 NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time, SUN_CI, "resovle_static_call"); 184 NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method"); 185 NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time , SUN_CI, "ic_miss"); 186 if (HAS_PENDING_EXCEPTION) { 187 vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly"); 188 } 189 } 190 } 191 192 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) { 193 st->print(" %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us()); 194 if (TraceThreadTime) { 195 st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us()); 196 } 197 st->print(" / %5d events", cnt); 198 st->cr(); 199 } 200 201 void SharedRuntime::print_counters_on(outputStream* st) { 202 st->print_cr("SharedRuntime:"); 203 if (UsePerfData) { 204 print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr); 205 print_counter_on(st, "resolve_virtual_call:", _perf_resolve_virtual_total_time, _resolve_virtual_ctr); 206 print_counter_on(st, "resolve_static_call:", _perf_resolve_static_total_time, _resolve_static_ctr); 207 print_counter_on(st, "handle_wrong_method:", _perf_handle_wrong_method_total_time, _wrong_method_ctr); 208 print_counter_on(st, "ic_miss:", _perf_ic_miss_total_time, _ic_miss_ctr); 209 210 jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() + 211 _perf_resolve_virtual_total_time->elapsed_counter_value() + 212 _perf_resolve_static_total_time->elapsed_counter_value() + 213 _perf_handle_wrong_method_total_time->elapsed_counter_value() + 214 _perf_ic_miss_total_time->elapsed_counter_value()); 215 st->print("Total: " JLONG_FORMAT_W(5) "us", total_elapsed_time_us); 216 if (TraceThreadTime) { 217 jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() + 218 _perf_resolve_virtual_total_time->thread_counter_value() + 219 _perf_resolve_static_total_time->thread_counter_value() + 220 _perf_handle_wrong_method_total_time->thread_counter_value() + 221 _perf_ic_miss_total_time->thread_counter_value()); 222 st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us); 223 224 } 225 st->cr(); 226 } else { 227 st->print_cr(" no data (UsePerfData is turned off)"); 228 } 229 } 230 231 #if INCLUDE_JFR 232 //------------------------------generate jfr runtime stubs ------ 233 void SharedRuntime::generate_jfr_stubs() { 234 ResourceMark rm; 235 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 236 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 237 238 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 239 _jfr_return_lease_blob = generate_jfr_return_lease(); 240 } 241 242 #endif // INCLUDE_JFR 243 244 #include <math.h> 245 246 // Implementation of SharedRuntime 247 248 // For statistics 249 uint SharedRuntime::_ic_miss_ctr = 0; 250 uint SharedRuntime::_wrong_method_ctr = 0; 251 uint SharedRuntime::_resolve_static_ctr = 0; 252 uint SharedRuntime::_resolve_virtual_ctr = 0; 253 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 254 255 #ifndef PRODUCT 256 uint SharedRuntime::_implicit_null_throws = 0; 257 uint SharedRuntime::_implicit_div0_throws = 0; 258 259 int64_t SharedRuntime::_nof_normal_calls = 0; 260 int64_t SharedRuntime::_nof_inlined_calls = 0; 261 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 262 int64_t SharedRuntime::_nof_static_calls = 0; 263 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 264 int64_t SharedRuntime::_nof_interface_calls = 0; 265 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 266 267 uint SharedRuntime::_new_instance_ctr=0; 268 uint SharedRuntime::_new_array_ctr=0; 269 uint SharedRuntime::_multi2_ctr=0; 270 uint SharedRuntime::_multi3_ctr=0; 271 uint SharedRuntime::_multi4_ctr=0; 272 uint SharedRuntime::_multi5_ctr=0; 273 uint SharedRuntime::_mon_enter_stub_ctr=0; 274 uint SharedRuntime::_mon_exit_stub_ctr=0; 275 uint SharedRuntime::_mon_enter_ctr=0; 276 uint SharedRuntime::_mon_exit_ctr=0; 277 uint SharedRuntime::_partial_subtype_ctr=0; 278 uint SharedRuntime::_jbyte_array_copy_ctr=0; 279 uint SharedRuntime::_jshort_array_copy_ctr=0; 280 uint SharedRuntime::_jint_array_copy_ctr=0; 281 uint SharedRuntime::_jlong_array_copy_ctr=0; 282 uint SharedRuntime::_oop_array_copy_ctr=0; 283 uint SharedRuntime::_checkcast_array_copy_ctr=0; 284 uint SharedRuntime::_unsafe_array_copy_ctr=0; 285 uint SharedRuntime::_generic_array_copy_ctr=0; 286 uint SharedRuntime::_slow_array_copy_ctr=0; 287 uint SharedRuntime::_find_handler_ctr=0; 288 uint SharedRuntime::_rethrow_ctr=0; 289 uint SharedRuntime::_unsafe_set_memory_ctr=0; 290 291 int SharedRuntime::_ICmiss_index = 0; 292 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 293 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 294 295 296 void SharedRuntime::trace_ic_miss(address at) { 297 for (int i = 0; i < _ICmiss_index; i++) { 298 if (_ICmiss_at[i] == at) { 299 _ICmiss_count[i]++; 300 return; 301 } 302 } 303 int index = _ICmiss_index++; 304 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 305 _ICmiss_at[index] = at; 306 _ICmiss_count[index] = 1; 307 } 308 309 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) { 310 if (ICMissHistogram) { 311 st->print_cr("IC Miss Histogram:"); 312 int tot_misses = 0; 313 for (int i = 0; i < _ICmiss_index; i++) { 314 st->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 315 tot_misses += _ICmiss_count[i]; 316 } 317 st->print_cr("Total IC misses: %7d", tot_misses); 318 } 319 } 320 #endif // !PRODUCT 321 322 323 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 324 return x * y; 325 JRT_END 326 327 328 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 329 if (x == min_jlong && y == CONST64(-1)) { 330 return x; 331 } else { 332 return x / y; 333 } 334 JRT_END 335 336 337 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 338 if (x == min_jlong && y == CONST64(-1)) { 339 return 0; 340 } else { 341 return x % y; 342 } 343 JRT_END 344 345 346 #ifdef _WIN64 347 const juint float_sign_mask = 0x7FFFFFFF; 348 const juint float_infinity = 0x7F800000; 349 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 350 const julong double_infinity = CONST64(0x7FF0000000000000); 351 #endif 352 353 #if !defined(X86) 354 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 355 #ifdef _WIN64 356 // 64-bit Windows on amd64 returns the wrong values for 357 // infinity operands. 358 juint xbits = PrimitiveConversions::cast<juint>(x); 359 juint ybits = PrimitiveConversions::cast<juint>(y); 360 // x Mod Infinity == x unless x is infinity 361 if (((xbits & float_sign_mask) != float_infinity) && 362 ((ybits & float_sign_mask) == float_infinity) ) { 363 return x; 364 } 365 return ((jfloat)fmod_winx64((double)x, (double)y)); 366 #else 367 return ((jfloat)fmod((double)x,(double)y)); 368 #endif 369 JRT_END 370 371 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 372 #ifdef _WIN64 373 julong xbits = PrimitiveConversions::cast<julong>(x); 374 julong ybits = PrimitiveConversions::cast<julong>(y); 375 // x Mod Infinity == x unless x is infinity 376 if (((xbits & double_sign_mask) != double_infinity) && 377 ((ybits & double_sign_mask) == double_infinity) ) { 378 return x; 379 } 380 return ((jdouble)fmod_winx64((double)x, (double)y)); 381 #else 382 return ((jdouble)fmod((double)x,(double)y)); 383 #endif 384 JRT_END 385 #endif // !X86 386 387 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 388 return (jfloat)x; 389 JRT_END 390 391 #ifdef __SOFTFP__ 392 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 393 return x + y; 394 JRT_END 395 396 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 397 return x - y; 398 JRT_END 399 400 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 401 return x * y; 402 JRT_END 403 404 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 405 return x / y; 406 JRT_END 407 408 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 409 return x + y; 410 JRT_END 411 412 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 413 return x - y; 414 JRT_END 415 416 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 417 return x * y; 418 JRT_END 419 420 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 421 return x / y; 422 JRT_END 423 424 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 425 return (jdouble)x; 426 JRT_END 427 428 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 429 return (jdouble)x; 430 JRT_END 431 432 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 433 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 434 JRT_END 435 436 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 437 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 438 JRT_END 439 440 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 441 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 442 JRT_END 443 444 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 445 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 446 JRT_END 447 448 // Functions to return the opposite of the aeabi functions for nan. 449 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 450 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 451 JRT_END 452 453 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 454 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 455 JRT_END 456 457 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 458 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 459 JRT_END 460 461 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 462 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 463 JRT_END 464 465 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 466 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 467 JRT_END 468 469 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 470 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 471 JRT_END 472 473 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 474 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 475 JRT_END 476 477 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 478 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 479 JRT_END 480 481 // Intrinsics make gcc generate code for these. 482 float SharedRuntime::fneg(float f) { 483 return -f; 484 } 485 486 double SharedRuntime::dneg(double f) { 487 return -f; 488 } 489 490 #endif // __SOFTFP__ 491 492 #if defined(__SOFTFP__) || defined(E500V2) 493 // Intrinsics make gcc generate code for these. 494 double SharedRuntime::dabs(double f) { 495 return (f <= (double)0.0) ? (double)0.0 - f : f; 496 } 497 498 #endif 499 500 #if defined(__SOFTFP__) || defined(PPC) 501 double SharedRuntime::dsqrt(double f) { 502 return sqrt(f); 503 } 504 #endif 505 506 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 507 if (g_isnan(x)) 508 return 0; 509 if (x >= (jfloat) max_jint) 510 return max_jint; 511 if (x <= (jfloat) min_jint) 512 return min_jint; 513 return (jint) x; 514 JRT_END 515 516 517 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 518 if (g_isnan(x)) 519 return 0; 520 if (x >= (jfloat) max_jlong) 521 return max_jlong; 522 if (x <= (jfloat) min_jlong) 523 return min_jlong; 524 return (jlong) x; 525 JRT_END 526 527 528 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 529 if (g_isnan(x)) 530 return 0; 531 if (x >= (jdouble) max_jint) 532 return max_jint; 533 if (x <= (jdouble) min_jint) 534 return min_jint; 535 return (jint) x; 536 JRT_END 537 538 539 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 540 if (g_isnan(x)) 541 return 0; 542 if (x >= (jdouble) max_jlong) 543 return max_jlong; 544 if (x <= (jdouble) min_jlong) 545 return min_jlong; 546 return (jlong) x; 547 JRT_END 548 549 550 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 551 return (jfloat)x; 552 JRT_END 553 554 555 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 556 return (jfloat)x; 557 JRT_END 558 559 560 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 561 return (jdouble)x; 562 JRT_END 563 564 565 // Exception handling across interpreter/compiler boundaries 566 // 567 // exception_handler_for_return_address(...) returns the continuation address. 568 // The continuation address is the entry point of the exception handler of the 569 // previous frame depending on the return address. 570 571 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 572 // Note: This is called when we have unwound the frame of the callee that did 573 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 574 // Notably, the stack is not walkable at this point, and hence the check must 575 // be deferred until later. Specifically, any of the handlers returned here in 576 // this function, will get dispatched to, and call deferred checks to 577 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 578 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 579 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 580 581 // Reset method handle flag. 582 current->set_is_method_handle_return(false); 583 584 #if INCLUDE_JVMCI 585 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 586 // and other exception handler continuations do not read it 587 current->set_exception_pc(nullptr); 588 #endif // INCLUDE_JVMCI 589 590 if (Continuation::is_return_barrier_entry(return_address)) { 591 return StubRoutines::cont_returnBarrierExc(); 592 } 593 594 // The fastest case first 595 CodeBlob* blob = CodeCache::find_blob(return_address); 596 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 597 if (nm != nullptr) { 598 // Set flag if return address is a method handle call site. 599 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 600 // native nmethods don't have exception handlers 601 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 602 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 603 if (nm->is_deopt_pc(return_address)) { 604 // If we come here because of a stack overflow, the stack may be 605 // unguarded. Reguard the stack otherwise if we return to the 606 // deopt blob and the stack bang causes a stack overflow we 607 // crash. 608 StackOverflow* overflow_state = current->stack_overflow_state(); 609 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 610 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 611 overflow_state->set_reserved_stack_activation(current->stack_base()); 612 } 613 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 614 // The deferred StackWatermarkSet::after_unwind check will be performed in 615 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 616 return SharedRuntime::deopt_blob()->unpack_with_exception(); 617 } else { 618 // The deferred StackWatermarkSet::after_unwind check will be performed in 619 // * OptoRuntime::handle_exception_C_helper for C2 code 620 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 621 return nm->exception_begin(); 622 } 623 } 624 625 // Entry code 626 if (StubRoutines::returns_to_call_stub(return_address)) { 627 // The deferred StackWatermarkSet::after_unwind check will be performed in 628 // JavaCallWrapper::~JavaCallWrapper 629 return StubRoutines::catch_exception_entry(); 630 } 631 if (blob != nullptr && blob->is_upcall_stub()) { 632 return StubRoutines::upcall_stub_exception_handler(); 633 } 634 // Interpreted code 635 if (Interpreter::contains(return_address)) { 636 // The deferred StackWatermarkSet::after_unwind check will be performed in 637 // InterpreterRuntime::exception_handler_for_exception 638 return Interpreter::rethrow_exception_entry(); 639 } 640 641 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 642 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 643 644 #ifndef PRODUCT 645 { ResourceMark rm; 646 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 647 os::print_location(tty, (intptr_t)return_address); 648 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 649 tty->print_cr("b) other problem"); 650 } 651 #endif // PRODUCT 652 ShouldNotReachHere(); 653 return nullptr; 654 } 655 656 657 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 658 return raw_exception_handler_for_return_address(current, return_address); 659 JRT_END 660 661 662 address SharedRuntime::get_poll_stub(address pc) { 663 address stub; 664 // Look up the code blob 665 CodeBlob *cb = CodeCache::find_blob(pc); 666 667 // Should be an nmethod 668 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 669 670 // Look up the relocation information 671 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 672 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 673 674 #ifdef ASSERT 675 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 676 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 677 Disassembler::decode(cb); 678 fatal("Only polling locations are used for safepoint"); 679 } 680 #endif 681 682 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 683 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 684 if (at_poll_return) { 685 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 686 "polling page return stub not created yet"); 687 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 688 } else if (has_wide_vectors) { 689 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 690 "polling page vectors safepoint stub not created yet"); 691 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 692 } else { 693 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 694 "polling page safepoint stub not created yet"); 695 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 696 } 697 log_debug(safepoint)("... found polling page %s exception at pc = " 698 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 699 at_poll_return ? "return" : "loop", 700 (intptr_t)pc, (intptr_t)stub); 701 return stub; 702 } 703 704 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 705 if (JvmtiExport::can_post_on_exceptions()) { 706 vframeStream vfst(current, true); 707 methodHandle method = methodHandle(current, vfst.method()); 708 address bcp = method()->bcp_from(vfst.bci()); 709 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 710 } 711 712 #if INCLUDE_JVMCI 713 if (EnableJVMCI) { 714 vframeStream vfst(current, true); 715 methodHandle method = methodHandle(current, vfst.method()); 716 int bci = vfst.bci(); 717 MethodData* trap_mdo = method->method_data(); 718 if (trap_mdo != nullptr) { 719 // Set exception_seen if the exceptional bytecode is an invoke 720 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 721 if (call.is_valid()) { 722 ResourceMark rm(current); 723 724 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 725 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 726 727 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 728 if (pdata != nullptr && pdata->is_BitData()) { 729 BitData* bit_data = (BitData*) pdata; 730 bit_data->set_exception_seen(); 731 } 732 } 733 } 734 } 735 #endif 736 737 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 738 } 739 740 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 741 Handle h_exception = Exceptions::new_exception(current, name, message); 742 throw_and_post_jvmti_exception(current, h_exception); 743 } 744 745 #if INCLUDE_JVMTI 746 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 747 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 748 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 749 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 750 JNIHandles::destroy_local(vthread); 751 JRT_END 752 753 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 754 assert(hide == JNI_TRUE, "must be VTMS transition start"); 755 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 756 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 757 JNIHandles::destroy_local(vthread); 758 JRT_END 759 760 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 761 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 762 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 763 JNIHandles::destroy_local(vthread); 764 JRT_END 765 766 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 767 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 768 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 769 JNIHandles::destroy_local(vthread); 770 JRT_END 771 #endif // INCLUDE_JVMTI 772 773 // The interpreter code to call this tracing function is only 774 // called/generated when UL is on for redefine, class and has the right level 775 // and tags. Since obsolete methods are never compiled, we don't have 776 // to modify the compilers to generate calls to this function. 777 // 778 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 779 JavaThread* thread, Method* method)) 780 if (method->is_obsolete()) { 781 // We are calling an obsolete method, but this is not necessarily 782 // an error. Our method could have been redefined just after we 783 // fetched the Method* from the constant pool. 784 ResourceMark rm; 785 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 786 } 787 788 LogStreamHandle(Trace, interpreter, bytecode) log; 789 if (log.is_enabled()) { 790 ResourceMark rm; 791 log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s", 792 p2i(thread), 793 (method->is_static() ? "static" : "virtual"), 794 method->name_and_sig_as_C_string(), 795 (method->is_native() ? " native" : ""), 796 (thread->class_being_initialized() != nullptr ? " clinit" : ""), 797 (method->method_holder()->is_initialized() ? "" : " being_initialized")); 798 } 799 return 0; 800 JRT_END 801 802 // ret_pc points into caller; we are returning caller's exception handler 803 // for given exception 804 // Note that the implementation of this method assumes it's only called when an exception has actually occured 805 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 806 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 807 assert(nm != nullptr, "must exist"); 808 ResourceMark rm; 809 810 #if INCLUDE_JVMCI 811 if (nm->is_compiled_by_jvmci()) { 812 // lookup exception handler for this pc 813 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 814 ExceptionHandlerTable table(nm); 815 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 816 if (t != nullptr) { 817 return nm->code_begin() + t->pco(); 818 } else { 819 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 820 } 821 } 822 #endif // INCLUDE_JVMCI 823 824 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 825 // determine handler bci, if any 826 EXCEPTION_MARK; 827 828 int handler_bci = -1; 829 int scope_depth = 0; 830 if (!force_unwind) { 831 int bci = sd->bci(); 832 bool recursive_exception = false; 833 do { 834 bool skip_scope_increment = false; 835 // exception handler lookup 836 Klass* ek = exception->klass(); 837 methodHandle mh(THREAD, sd->method()); 838 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 839 if (HAS_PENDING_EXCEPTION) { 840 recursive_exception = true; 841 // We threw an exception while trying to find the exception handler. 842 // Transfer the new exception to the exception handle which will 843 // be set into thread local storage, and do another lookup for an 844 // exception handler for this exception, this time starting at the 845 // BCI of the exception handler which caused the exception to be 846 // thrown (bugs 4307310 and 4546590). Set "exception" reference 847 // argument to ensure that the correct exception is thrown (4870175). 848 recursive_exception_occurred = true; 849 exception = Handle(THREAD, PENDING_EXCEPTION); 850 CLEAR_PENDING_EXCEPTION; 851 if (handler_bci >= 0) { 852 bci = handler_bci; 853 handler_bci = -1; 854 skip_scope_increment = true; 855 } 856 } 857 else { 858 recursive_exception = false; 859 } 860 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 861 sd = sd->sender(); 862 if (sd != nullptr) { 863 bci = sd->bci(); 864 } 865 ++scope_depth; 866 } 867 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 868 } 869 870 // found handling method => lookup exception handler 871 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 872 873 ExceptionHandlerTable table(nm); 874 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 875 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 876 // Allow abbreviated catch tables. The idea is to allow a method 877 // to materialize its exceptions without committing to the exact 878 // routing of exceptions. In particular this is needed for adding 879 // a synthetic handler to unlock monitors when inlining 880 // synchronized methods since the unlock path isn't represented in 881 // the bytecodes. 882 t = table.entry_for(catch_pco, -1, 0); 883 } 884 885 #ifdef COMPILER1 886 if (t == nullptr && nm->is_compiled_by_c1()) { 887 assert(nm->unwind_handler_begin() != nullptr, ""); 888 return nm->unwind_handler_begin(); 889 } 890 #endif 891 892 if (t == nullptr) { 893 ttyLocker ttyl; 894 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 895 tty->print_cr(" Exception:"); 896 exception->print(); 897 tty->cr(); 898 tty->print_cr(" Compiled exception table :"); 899 table.print(); 900 nm->print(); 901 nm->print_code(); 902 guarantee(false, "missing exception handler"); 903 return nullptr; 904 } 905 906 if (handler_bci != -1) { // did we find a handler in this method? 907 sd->method()->set_exception_handler_entered(handler_bci); // profile 908 } 909 return nm->code_begin() + t->pco(); 910 } 911 912 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 913 // These errors occur only at call sites 914 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 915 JRT_END 916 917 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 918 // These errors occur only at call sites 919 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 920 JRT_END 921 922 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 923 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 924 JRT_END 925 926 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 927 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 928 JRT_END 929 930 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 931 // This entry point is effectively only used for NullPointerExceptions which occur at inline 932 // cache sites (when the callee activation is not yet set up) so we are at a call site 933 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 934 JRT_END 935 936 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 937 throw_StackOverflowError_common(current, false); 938 JRT_END 939 940 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 941 throw_StackOverflowError_common(current, true); 942 JRT_END 943 944 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 945 // We avoid using the normal exception construction in this case because 946 // it performs an upcall to Java, and we're already out of stack space. 947 JavaThread* THREAD = current; // For exception macros. 948 Klass* k = vmClasses::StackOverflowError_klass(); 949 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 950 if (delayed) { 951 java_lang_Throwable::set_message(exception_oop, 952 Universe::delayed_stack_overflow_error_message()); 953 } 954 Handle exception (current, exception_oop); 955 if (StackTraceInThrowable) { 956 java_lang_Throwable::fill_in_stack_trace(exception); 957 } 958 // Remove the ScopedValue bindings in case we got a 959 // StackOverflowError while we were trying to remove ScopedValue 960 // bindings. 961 current->clear_scopedValueBindings(); 962 // Increment counter for hs_err file reporting 963 Atomic::inc(&Exceptions::_stack_overflow_errors); 964 throw_and_post_jvmti_exception(current, exception); 965 } 966 967 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 968 address pc, 969 ImplicitExceptionKind exception_kind) 970 { 971 address target_pc = nullptr; 972 973 if (Interpreter::contains(pc)) { 974 switch (exception_kind) { 975 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 976 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 977 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 978 default: ShouldNotReachHere(); 979 } 980 } else { 981 switch (exception_kind) { 982 case STACK_OVERFLOW: { 983 // Stack overflow only occurs upon frame setup; the callee is 984 // going to be unwound. Dispatch to a shared runtime stub 985 // which will cause the StackOverflowError to be fabricated 986 // and processed. 987 // Stack overflow should never occur during deoptimization: 988 // the compiled method bangs the stack by as much as the 989 // interpreter would need in case of a deoptimization. The 990 // deoptimization blob and uncommon trap blob bang the stack 991 // in a debug VM to verify the correctness of the compiled 992 // method stack banging. 993 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 994 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 995 return SharedRuntime::throw_StackOverflowError_entry(); 996 } 997 998 case IMPLICIT_NULL: { 999 if (VtableStubs::contains(pc)) { 1000 // We haven't yet entered the callee frame. Fabricate an 1001 // exception and begin dispatching it in the caller. Since 1002 // the caller was at a call site, it's safe to destroy all 1003 // caller-saved registers, as these entry points do. 1004 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 1005 1006 // If vt_stub is null, then return null to signal handler to report the SEGV error. 1007 if (vt_stub == nullptr) return nullptr; 1008 1009 if (vt_stub->is_abstract_method_error(pc)) { 1010 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 1011 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 1012 // Instead of throwing the abstract method error here directly, we re-resolve 1013 // and will throw the AbstractMethodError during resolve. As a result, we'll 1014 // get a more detailed error message. 1015 return SharedRuntime::get_handle_wrong_method_stub(); 1016 } else { 1017 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 1018 // Assert that the signal comes from the expected location in stub code. 1019 assert(vt_stub->is_null_pointer_exception(pc), 1020 "obtained signal from unexpected location in stub code"); 1021 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1022 } 1023 } else { 1024 CodeBlob* cb = CodeCache::find_blob(pc); 1025 1026 // If code blob is null, then return null to signal handler to report the SEGV error. 1027 if (cb == nullptr) return nullptr; 1028 1029 // Exception happened in CodeCache. Must be either: 1030 // 1. Inline-cache check in C2I handler blob, 1031 // 2. Inline-cache check in nmethod, or 1032 // 3. Implicit null exception in nmethod 1033 1034 if (!cb->is_nmethod()) { 1035 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 1036 if (!is_in_blob) { 1037 // Allow normal crash reporting to handle this 1038 return nullptr; 1039 } 1040 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 1041 // There is no handler here, so we will simply unwind. 1042 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1043 } 1044 1045 // Otherwise, it's a compiled method. Consult its exception handlers. 1046 nmethod* nm = cb->as_nmethod(); 1047 if (nm->inlinecache_check_contains(pc)) { 1048 // exception happened inside inline-cache check code 1049 // => the nmethod is not yet active (i.e., the frame 1050 // is not set up yet) => use return address pushed by 1051 // caller => don't push another return address 1052 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 1053 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1054 } 1055 1056 if (nm->method()->is_method_handle_intrinsic()) { 1057 // exception happened inside MH dispatch code, similar to a vtable stub 1058 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 1059 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1060 } 1061 1062 #ifndef PRODUCT 1063 _implicit_null_throws++; 1064 #endif 1065 target_pc = nm->continuation_for_implicit_null_exception(pc); 1066 // If there's an unexpected fault, target_pc might be null, 1067 // in which case we want to fall through into the normal 1068 // error handling code. 1069 } 1070 1071 break; // fall through 1072 } 1073 1074 1075 case IMPLICIT_DIVIDE_BY_ZERO: { 1076 nmethod* nm = CodeCache::find_nmethod(pc); 1077 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1078 #ifndef PRODUCT 1079 _implicit_div0_throws++; 1080 #endif 1081 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1082 // If there's an unexpected fault, target_pc might be null, 1083 // in which case we want to fall through into the normal 1084 // error handling code. 1085 break; // fall through 1086 } 1087 1088 default: ShouldNotReachHere(); 1089 } 1090 1091 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1092 1093 if (exception_kind == IMPLICIT_NULL) { 1094 #ifndef PRODUCT 1095 // for AbortVMOnException flag 1096 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1097 #endif //PRODUCT 1098 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1099 } else { 1100 #ifndef PRODUCT 1101 // for AbortVMOnException flag 1102 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1103 #endif //PRODUCT 1104 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1105 } 1106 return target_pc; 1107 } 1108 1109 ShouldNotReachHere(); 1110 return nullptr; 1111 } 1112 1113 1114 /** 1115 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1116 * installed in the native function entry of all native Java methods before 1117 * they get linked to their actual native methods. 1118 * 1119 * \note 1120 * This method actually never gets called! The reason is because 1121 * the interpreter's native entries call NativeLookup::lookup() which 1122 * throws the exception when the lookup fails. The exception is then 1123 * caught and forwarded on the return from NativeLookup::lookup() call 1124 * before the call to the native function. This might change in the future. 1125 */ 1126 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1127 { 1128 // We return a bad value here to make sure that the exception is 1129 // forwarded before we look at the return value. 1130 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1131 } 1132 JNI_END 1133 1134 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1135 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1136 } 1137 1138 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1139 #if INCLUDE_JVMCI 1140 if (!obj->klass()->has_finalizer()) { 1141 return; 1142 } 1143 #endif // INCLUDE_JVMCI 1144 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1145 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1146 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1147 JRT_END 1148 1149 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1150 assert(thread != nullptr, "No thread"); 1151 if (thread == nullptr) { 1152 return 0; 1153 } 1154 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1155 "current cannot touch oops after its GC barrier is detached."); 1156 oop obj = thread->threadObj(); 1157 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1158 } 1159 1160 /** 1161 * This function ought to be a void function, but cannot be because 1162 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1163 * 6254741. Once that is fixed we can remove the dummy return value. 1164 */ 1165 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1166 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1167 } 1168 1169 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1170 return dtrace_object_alloc(thread, o, o->size()); 1171 } 1172 1173 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1174 assert(DTraceAllocProbes, "wrong call"); 1175 Klass* klass = o->klass(); 1176 Symbol* name = klass->name(); 1177 HOTSPOT_OBJECT_ALLOC( 1178 get_java_tid(thread), 1179 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1180 return 0; 1181 } 1182 1183 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1184 JavaThread* current, Method* method)) 1185 assert(current == JavaThread::current(), "pre-condition"); 1186 1187 assert(DTraceMethodProbes, "wrong call"); 1188 Symbol* kname = method->klass_name(); 1189 Symbol* name = method->name(); 1190 Symbol* sig = method->signature(); 1191 HOTSPOT_METHOD_ENTRY( 1192 get_java_tid(current), 1193 (char *) kname->bytes(), kname->utf8_length(), 1194 (char *) name->bytes(), name->utf8_length(), 1195 (char *) sig->bytes(), sig->utf8_length()); 1196 return 0; 1197 JRT_END 1198 1199 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1200 JavaThread* current, Method* method)) 1201 assert(current == JavaThread::current(), "pre-condition"); 1202 assert(DTraceMethodProbes, "wrong call"); 1203 Symbol* kname = method->klass_name(); 1204 Symbol* name = method->name(); 1205 Symbol* sig = method->signature(); 1206 HOTSPOT_METHOD_RETURN( 1207 get_java_tid(current), 1208 (char *) kname->bytes(), kname->utf8_length(), 1209 (char *) name->bytes(), name->utf8_length(), 1210 (char *) sig->bytes(), sig->utf8_length()); 1211 return 0; 1212 JRT_END 1213 1214 1215 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1216 // for a call current in progress, i.e., arguments has been pushed on stack 1217 // put callee has not been invoked yet. Used by: resolve virtual/static, 1218 // vtable updates, etc. Caller frame must be compiled. 1219 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1220 JavaThread* current = THREAD; 1221 ResourceMark rm(current); 1222 1223 // last java frame on stack (which includes native call frames) 1224 vframeStream vfst(current, true); // Do not skip and javaCalls 1225 1226 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1227 } 1228 1229 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1230 nmethod* caller = vfst.nm(); 1231 1232 address pc = vfst.frame_pc(); 1233 { // Get call instruction under lock because another thread may be busy patching it. 1234 CompiledICLocker ic_locker(caller); 1235 return caller->attached_method_before_pc(pc); 1236 } 1237 return nullptr; 1238 } 1239 1240 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1241 // for a call current in progress, i.e., arguments has been pushed on stack 1242 // but callee has not been invoked yet. Caller frame must be compiled. 1243 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1244 CallInfo& callinfo, TRAPS) { 1245 Handle receiver; 1246 Handle nullHandle; // create a handy null handle for exception returns 1247 JavaThread* current = THREAD; 1248 1249 assert(!vfst.at_end(), "Java frame must exist"); 1250 1251 // Find caller and bci from vframe 1252 methodHandle caller(current, vfst.method()); 1253 int bci = vfst.bci(); 1254 1255 if (caller->is_continuation_enter_intrinsic()) { 1256 bc = Bytecodes::_invokestatic; 1257 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1258 return receiver; 1259 } 1260 1261 Bytecode_invoke bytecode(caller, bci); 1262 int bytecode_index = bytecode.index(); 1263 bc = bytecode.invoke_code(); 1264 1265 methodHandle attached_method(current, extract_attached_method(vfst)); 1266 if (attached_method.not_null()) { 1267 Method* callee = bytecode.static_target(CHECK_NH); 1268 vmIntrinsics::ID id = callee->intrinsic_id(); 1269 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1270 // it attaches statically resolved method to the call site. 1271 if (MethodHandles::is_signature_polymorphic(id) && 1272 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1273 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1274 1275 // Adjust invocation mode according to the attached method. 1276 switch (bc) { 1277 case Bytecodes::_invokevirtual: 1278 if (attached_method->method_holder()->is_interface()) { 1279 bc = Bytecodes::_invokeinterface; 1280 } 1281 break; 1282 case Bytecodes::_invokeinterface: 1283 if (!attached_method->method_holder()->is_interface()) { 1284 bc = Bytecodes::_invokevirtual; 1285 } 1286 break; 1287 case Bytecodes::_invokehandle: 1288 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1289 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1290 : Bytecodes::_invokevirtual; 1291 } 1292 break; 1293 default: 1294 break; 1295 } 1296 } 1297 } 1298 1299 assert(bc != Bytecodes::_illegal, "not initialized"); 1300 1301 bool has_receiver = bc != Bytecodes::_invokestatic && 1302 bc != Bytecodes::_invokedynamic && 1303 bc != Bytecodes::_invokehandle; 1304 1305 // Find receiver for non-static call 1306 if (has_receiver) { 1307 // This register map must be update since we need to find the receiver for 1308 // compiled frames. The receiver might be in a register. 1309 RegisterMap reg_map2(current, 1310 RegisterMap::UpdateMap::include, 1311 RegisterMap::ProcessFrames::include, 1312 RegisterMap::WalkContinuation::skip); 1313 frame stubFrame = current->last_frame(); 1314 // Caller-frame is a compiled frame 1315 frame callerFrame = stubFrame.sender(®_map2); 1316 1317 if (attached_method.is_null()) { 1318 Method* callee = bytecode.static_target(CHECK_NH); 1319 if (callee == nullptr) { 1320 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1321 } 1322 } 1323 1324 // Retrieve from a compiled argument list 1325 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1326 assert(oopDesc::is_oop_or_null(receiver()), ""); 1327 1328 if (receiver.is_null()) { 1329 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1330 } 1331 } 1332 1333 // Resolve method 1334 if (attached_method.not_null()) { 1335 // Parameterized by attached method. 1336 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1337 } else { 1338 // Parameterized by bytecode. 1339 constantPoolHandle constants(current, caller->constants()); 1340 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1341 } 1342 1343 #ifdef ASSERT 1344 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1345 if (has_receiver) { 1346 assert(receiver.not_null(), "should have thrown exception"); 1347 Klass* receiver_klass = receiver->klass(); 1348 Klass* rk = nullptr; 1349 if (attached_method.not_null()) { 1350 // In case there's resolved method attached, use its holder during the check. 1351 rk = attached_method->method_holder(); 1352 } else { 1353 // Klass is already loaded. 1354 constantPoolHandle constants(current, caller->constants()); 1355 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1356 } 1357 Klass* static_receiver_klass = rk; 1358 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1359 "actual receiver must be subclass of static receiver klass"); 1360 if (receiver_klass->is_instance_klass()) { 1361 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1362 tty->print_cr("ERROR: Klass not yet initialized!!"); 1363 receiver_klass->print(); 1364 } 1365 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1366 } 1367 } 1368 #endif 1369 1370 return receiver; 1371 } 1372 1373 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1374 JavaThread* current = THREAD; 1375 ResourceMark rm(current); 1376 // We need first to check if any Java activations (compiled, interpreted) 1377 // exist on the stack since last JavaCall. If not, we need 1378 // to get the target method from the JavaCall wrapper. 1379 vframeStream vfst(current, true); // Do not skip any javaCalls 1380 methodHandle callee_method; 1381 if (vfst.at_end()) { 1382 // No Java frames were found on stack since we did the JavaCall. 1383 // Hence the stack can only contain an entry_frame. We need to 1384 // find the target method from the stub frame. 1385 RegisterMap reg_map(current, 1386 RegisterMap::UpdateMap::skip, 1387 RegisterMap::ProcessFrames::include, 1388 RegisterMap::WalkContinuation::skip); 1389 frame fr = current->last_frame(); 1390 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1391 fr = fr.sender(®_map); 1392 assert(fr.is_entry_frame(), "must be"); 1393 // fr is now pointing to the entry frame. 1394 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1395 } else { 1396 Bytecodes::Code bc; 1397 CallInfo callinfo; 1398 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1399 callee_method = methodHandle(current, callinfo.selected_method()); 1400 } 1401 assert(callee_method()->is_method(), "must be"); 1402 return callee_method; 1403 } 1404 1405 // Resolves a call. 1406 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1407 JavaThread* current = THREAD; 1408 ResourceMark rm(current); 1409 RegisterMap cbl_map(current, 1410 RegisterMap::UpdateMap::skip, 1411 RegisterMap::ProcessFrames::include, 1412 RegisterMap::WalkContinuation::skip); 1413 frame caller_frame = current->last_frame().sender(&cbl_map); 1414 1415 CodeBlob* caller_cb = caller_frame.cb(); 1416 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1417 nmethod* caller_nm = caller_cb->as_nmethod(); 1418 1419 // determine call info & receiver 1420 // note: a) receiver is null for static calls 1421 // b) an exception is thrown if receiver is null for non-static calls 1422 CallInfo call_info; 1423 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1424 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1425 1426 NoSafepointVerifier nsv; 1427 1428 methodHandle callee_method(current, call_info.selected_method()); 1429 1430 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1431 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1432 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1433 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1434 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1435 1436 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1437 1438 // tracing/debugging/statistics 1439 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1440 (is_virtual) ? (&_resolve_virtual_ctr) : 1441 (&_resolve_static_ctr); 1442 Atomic::inc(addr); 1443 1444 #ifndef PRODUCT 1445 if (TraceCallFixup) { 1446 ResourceMark rm(current); 1447 tty->print("resolving %s%s (%s) call to", 1448 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1449 Bytecodes::name(invoke_code)); 1450 callee_method->print_short_name(tty); 1451 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1452 p2i(caller_frame.pc()), p2i(callee_method->code())); 1453 } 1454 #endif 1455 1456 if (invoke_code == Bytecodes::_invokestatic) { 1457 assert(callee_method->method_holder()->is_initialized() || 1458 callee_method->method_holder()->is_reentrant_initialization(current), 1459 "invalid class initialization state for invoke_static"); 1460 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1461 // In order to keep class initialization check, do not patch call 1462 // site for static call when the class is not fully initialized. 1463 // Proper check is enforced by call site re-resolution on every invocation. 1464 // 1465 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1466 // explicit class initialization check is put in nmethod entry (VEP). 1467 assert(callee_method->method_holder()->is_linked(), "must be"); 1468 return callee_method; 1469 } 1470 } 1471 1472 1473 // JSR 292 key invariant: 1474 // If the resolved method is a MethodHandle invoke target, the call 1475 // site must be a MethodHandle call site, because the lambda form might tail-call 1476 // leaving the stack in a state unknown to either caller or callee 1477 1478 // Compute entry points. The computation of the entry points is independent of 1479 // patching the call. 1480 1481 // Make sure the callee nmethod does not get deoptimized and removed before 1482 // we are done patching the code. 1483 1484 1485 CompiledICLocker ml(caller_nm); 1486 if (is_virtual && !is_optimized) { 1487 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1488 inline_cache->update(&call_info, receiver->klass()); 1489 } else { 1490 // Callsite is a direct call - set it to the destination method 1491 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1492 callsite->set(callee_method); 1493 } 1494 1495 return callee_method; 1496 } 1497 1498 // Inline caches exist only in compiled code 1499 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1500 PerfTraceTime timer(_perf_ic_miss_total_time); 1501 1502 #ifdef ASSERT 1503 RegisterMap reg_map(current, 1504 RegisterMap::UpdateMap::skip, 1505 RegisterMap::ProcessFrames::include, 1506 RegisterMap::WalkContinuation::skip); 1507 frame stub_frame = current->last_frame(); 1508 assert(stub_frame.is_runtime_frame(), "sanity check"); 1509 frame caller_frame = stub_frame.sender(®_map); 1510 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1511 #endif /* ASSERT */ 1512 1513 methodHandle callee_method; 1514 JRT_BLOCK 1515 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1516 // Return Method* through TLS 1517 current->set_vm_result_2(callee_method()); 1518 JRT_BLOCK_END 1519 // return compiled code entry point after potential safepoints 1520 return get_resolved_entry(current, callee_method); 1521 JRT_END 1522 1523 1524 // Handle call site that has been made non-entrant 1525 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1526 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1527 1528 // 6243940 We might end up in here if the callee is deoptimized 1529 // as we race to call it. We don't want to take a safepoint if 1530 // the caller was interpreted because the caller frame will look 1531 // interpreted to the stack walkers and arguments are now 1532 // "compiled" so it is much better to make this transition 1533 // invisible to the stack walking code. The i2c path will 1534 // place the callee method in the callee_target. It is stashed 1535 // there because if we try and find the callee by normal means a 1536 // safepoint is possible and have trouble gc'ing the compiled args. 1537 RegisterMap reg_map(current, 1538 RegisterMap::UpdateMap::skip, 1539 RegisterMap::ProcessFrames::include, 1540 RegisterMap::WalkContinuation::skip); 1541 frame stub_frame = current->last_frame(); 1542 assert(stub_frame.is_runtime_frame(), "sanity check"); 1543 frame caller_frame = stub_frame.sender(®_map); 1544 1545 if (caller_frame.is_interpreted_frame() || 1546 caller_frame.is_entry_frame() || 1547 caller_frame.is_upcall_stub_frame()) { 1548 Method* callee = current->callee_target(); 1549 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1550 current->set_vm_result_2(callee); 1551 current->set_callee_target(nullptr); 1552 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1553 // Bypass class initialization checks in c2i when caller is in native. 1554 // JNI calls to static methods don't have class initialization checks. 1555 // Fast class initialization checks are present in c2i adapters and call into 1556 // SharedRuntime::handle_wrong_method() on the slow path. 1557 // 1558 // JVM upcalls may land here as well, but there's a proper check present in 1559 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1560 // so bypassing it in c2i adapter is benign. 1561 return callee->get_c2i_no_clinit_check_entry(); 1562 } else { 1563 return callee->get_c2i_entry(); 1564 } 1565 } 1566 1567 // Must be compiled to compiled path which is safe to stackwalk 1568 methodHandle callee_method; 1569 JRT_BLOCK 1570 // Force resolving of caller (if we called from compiled frame) 1571 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1572 current->set_vm_result_2(callee_method()); 1573 JRT_BLOCK_END 1574 // return compiled code entry point after potential safepoints 1575 return get_resolved_entry(current, callee_method); 1576 JRT_END 1577 1578 // Handle abstract method call 1579 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1580 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1581 1582 // Verbose error message for AbstractMethodError. 1583 // Get the called method from the invoke bytecode. 1584 vframeStream vfst(current, true); 1585 assert(!vfst.at_end(), "Java frame must exist"); 1586 methodHandle caller(current, vfst.method()); 1587 Bytecode_invoke invoke(caller, vfst.bci()); 1588 DEBUG_ONLY( invoke.verify(); ) 1589 1590 // Find the compiled caller frame. 1591 RegisterMap reg_map(current, 1592 RegisterMap::UpdateMap::include, 1593 RegisterMap::ProcessFrames::include, 1594 RegisterMap::WalkContinuation::skip); 1595 frame stubFrame = current->last_frame(); 1596 assert(stubFrame.is_runtime_frame(), "must be"); 1597 frame callerFrame = stubFrame.sender(®_map); 1598 assert(callerFrame.is_compiled_frame(), "must be"); 1599 1600 // Install exception and return forward entry. 1601 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1602 JRT_BLOCK 1603 methodHandle callee(current, invoke.static_target(current)); 1604 if (!callee.is_null()) { 1605 oop recv = callerFrame.retrieve_receiver(®_map); 1606 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1607 res = StubRoutines::forward_exception_entry(); 1608 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1609 } 1610 JRT_BLOCK_END 1611 return res; 1612 JRT_END 1613 1614 // return verified_code_entry if interp_only_mode is not set for the current thread; 1615 // otherwise return c2i entry. 1616 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1617 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1618 // In interp_only_mode we need to go to the interpreted entry 1619 // The c2i won't patch in this mode -- see fixup_callers_callsite 1620 return callee_method->get_c2i_entry(); 1621 } 1622 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1623 return callee_method->verified_code_entry(); 1624 } 1625 1626 // resolve a static call and patch code 1627 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1628 PerfTraceTime timer(_perf_resolve_static_total_time); 1629 1630 methodHandle callee_method; 1631 bool enter_special = false; 1632 JRT_BLOCK 1633 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1634 current->set_vm_result_2(callee_method()); 1635 JRT_BLOCK_END 1636 // return compiled code entry point after potential safepoints 1637 return get_resolved_entry(current, callee_method); 1638 JRT_END 1639 1640 // resolve virtual call and update inline cache to monomorphic 1641 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1642 PerfTraceTime timer(_perf_resolve_virtual_total_time); 1643 1644 methodHandle callee_method; 1645 JRT_BLOCK 1646 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1647 current->set_vm_result_2(callee_method()); 1648 JRT_BLOCK_END 1649 // return compiled code entry point after potential safepoints 1650 return get_resolved_entry(current, callee_method); 1651 JRT_END 1652 1653 1654 // Resolve a virtual call that can be statically bound (e.g., always 1655 // monomorphic, so it has no inline cache). Patch code to resolved target. 1656 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1657 PerfTraceTime timer(_perf_resolve_opt_virtual_total_time); 1658 1659 methodHandle callee_method; 1660 JRT_BLOCK 1661 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1662 current->set_vm_result_2(callee_method()); 1663 JRT_BLOCK_END 1664 // return compiled code entry point after potential safepoints 1665 return get_resolved_entry(current, callee_method); 1666 JRT_END 1667 1668 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1669 JavaThread* current = THREAD; 1670 ResourceMark rm(current); 1671 CallInfo call_info; 1672 Bytecodes::Code bc; 1673 1674 // receiver is null for static calls. An exception is thrown for null 1675 // receivers for non-static calls 1676 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1677 1678 methodHandle callee_method(current, call_info.selected_method()); 1679 1680 Atomic::inc(&_ic_miss_ctr); 1681 1682 #ifndef PRODUCT 1683 // Statistics & Tracing 1684 if (TraceCallFixup) { 1685 ResourceMark rm(current); 1686 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1687 callee_method->print_short_name(tty); 1688 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1689 } 1690 1691 if (ICMissHistogram) { 1692 MutexLocker m(VMStatistic_lock); 1693 RegisterMap reg_map(current, 1694 RegisterMap::UpdateMap::skip, 1695 RegisterMap::ProcessFrames::include, 1696 RegisterMap::WalkContinuation::skip); 1697 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1698 // produce statistics under the lock 1699 trace_ic_miss(f.pc()); 1700 } 1701 #endif 1702 1703 // install an event collector so that when a vtable stub is created the 1704 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1705 // event can't be posted when the stub is created as locks are held 1706 // - instead the event will be deferred until the event collector goes 1707 // out of scope. 1708 JvmtiDynamicCodeEventCollector event_collector; 1709 1710 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1711 RegisterMap reg_map(current, 1712 RegisterMap::UpdateMap::skip, 1713 RegisterMap::ProcessFrames::include, 1714 RegisterMap::WalkContinuation::skip); 1715 frame caller_frame = current->last_frame().sender(®_map); 1716 CodeBlob* cb = caller_frame.cb(); 1717 nmethod* caller_nm = cb->as_nmethod(); 1718 1719 CompiledICLocker ml(caller_nm); 1720 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1721 inline_cache->update(&call_info, receiver()->klass()); 1722 1723 return callee_method; 1724 } 1725 1726 // 1727 // Resets a call-site in compiled code so it will get resolved again. 1728 // This routines handles both virtual call sites, optimized virtual call 1729 // sites, and static call sites. Typically used to change a call sites 1730 // destination from compiled to interpreted. 1731 // 1732 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1733 JavaThread* current = THREAD; 1734 ResourceMark rm(current); 1735 RegisterMap reg_map(current, 1736 RegisterMap::UpdateMap::skip, 1737 RegisterMap::ProcessFrames::include, 1738 RegisterMap::WalkContinuation::skip); 1739 frame stub_frame = current->last_frame(); 1740 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1741 frame caller = stub_frame.sender(®_map); 1742 1743 // Do nothing if the frame isn't a live compiled frame. 1744 // nmethod could be deoptimized by the time we get here 1745 // so no update to the caller is needed. 1746 1747 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1748 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1749 1750 address pc = caller.pc(); 1751 1752 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1753 assert(caller_nm != nullptr, "did not find caller nmethod"); 1754 1755 // Default call_addr is the location of the "basic" call. 1756 // Determine the address of the call we a reresolving. With 1757 // Inline Caches we will always find a recognizable call. 1758 // With Inline Caches disabled we may or may not find a 1759 // recognizable call. We will always find a call for static 1760 // calls and for optimized virtual calls. For vanilla virtual 1761 // calls it depends on the state of the UseInlineCaches switch. 1762 // 1763 // With Inline Caches disabled we can get here for a virtual call 1764 // for two reasons: 1765 // 1 - calling an abstract method. The vtable for abstract methods 1766 // will run us thru handle_wrong_method and we will eventually 1767 // end up in the interpreter to throw the ame. 1768 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1769 // call and between the time we fetch the entry address and 1770 // we jump to it the target gets deoptimized. Similar to 1 1771 // we will wind up in the interprter (thru a c2i with c2). 1772 // 1773 CompiledICLocker ml(caller_nm); 1774 address call_addr = caller_nm->call_instruction_address(pc); 1775 1776 if (call_addr != nullptr) { 1777 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1778 // bytes back in the instruction stream so we must also check for reloc info. 1779 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1780 bool ret = iter.next(); // Get item 1781 if (ret) { 1782 switch (iter.type()) { 1783 case relocInfo::static_call_type: 1784 case relocInfo::opt_virtual_call_type: { 1785 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1786 cdc->set_to_clean(); 1787 break; 1788 } 1789 1790 case relocInfo::virtual_call_type: { 1791 // compiled, dispatched call (which used to call an interpreted method) 1792 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1793 inline_cache->set_to_clean(); 1794 break; 1795 } 1796 default: 1797 break; 1798 } 1799 } 1800 } 1801 } 1802 1803 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1804 1805 Atomic::inc(&_wrong_method_ctr); 1806 1807 #ifndef PRODUCT 1808 if (TraceCallFixup) { 1809 ResourceMark rm(current); 1810 tty->print("handle_wrong_method reresolving call to"); 1811 callee_method->print_short_name(tty); 1812 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1813 } 1814 #endif 1815 1816 return callee_method; 1817 } 1818 1819 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1820 // The faulting unsafe accesses should be changed to throw the error 1821 // synchronously instead. Meanwhile the faulting instruction will be 1822 // skipped over (effectively turning it into a no-op) and an 1823 // asynchronous exception will be raised which the thread will 1824 // handle at a later point. If the instruction is a load it will 1825 // return garbage. 1826 1827 // Request an async exception. 1828 thread->set_pending_unsafe_access_error(); 1829 1830 // Return address of next instruction to execute. 1831 return next_pc; 1832 } 1833 1834 #ifdef ASSERT 1835 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1836 const BasicType* sig_bt, 1837 const VMRegPair* regs) { 1838 ResourceMark rm; 1839 const int total_args_passed = method->size_of_parameters(); 1840 const VMRegPair* regs_with_member_name = regs; 1841 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1842 1843 const int member_arg_pos = total_args_passed - 1; 1844 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1845 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1846 1847 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1848 1849 for (int i = 0; i < member_arg_pos; i++) { 1850 VMReg a = regs_with_member_name[i].first(); 1851 VMReg b = regs_without_member_name[i].first(); 1852 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1853 } 1854 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1855 } 1856 #endif 1857 1858 // --------------------------------------------------------------------------- 1859 // We are calling the interpreter via a c2i. Normally this would mean that 1860 // we were called by a compiled method. However we could have lost a race 1861 // where we went int -> i2c -> c2i and so the caller could in fact be 1862 // interpreted. If the caller is compiled we attempt to patch the caller 1863 // so he no longer calls into the interpreter. 1864 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1865 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1866 1867 // It's possible that deoptimization can occur at a call site which hasn't 1868 // been resolved yet, in which case this function will be called from 1869 // an nmethod that has been patched for deopt and we can ignore the 1870 // request for a fixup. 1871 // Also it is possible that we lost a race in that from_compiled_entry 1872 // is now back to the i2c in that case we don't need to patch and if 1873 // we did we'd leap into space because the callsite needs to use 1874 // "to interpreter" stub in order to load up the Method*. Don't 1875 // ask me how I know this... 1876 1877 // Result from nmethod::is_unloading is not stable across safepoints. 1878 NoSafepointVerifier nsv; 1879 1880 nmethod* callee = method->code(); 1881 if (callee == nullptr) { 1882 return; 1883 } 1884 1885 // write lock needed because we might patch call site by set_to_clean() 1886 // and is_unloading() can modify nmethod's state 1887 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1888 1889 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1890 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1891 return; 1892 } 1893 1894 // The check above makes sure this is an nmethod. 1895 nmethod* caller = cb->as_nmethod(); 1896 1897 // Get the return PC for the passed caller PC. 1898 address return_pc = caller_pc + frame::pc_return_offset; 1899 1900 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1901 return; 1902 } 1903 1904 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1905 CompiledICLocker ic_locker(caller); 1906 ResourceMark rm; 1907 1908 // If we got here through a static call or opt_virtual call, then we know where the 1909 // call address would be; let's peek at it 1910 address callsite_addr = (address)nativeCall_before(return_pc); 1911 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1912 if (!iter.next()) { 1913 // No reloc entry found; not a static or optimized virtual call 1914 return; 1915 } 1916 1917 relocInfo::relocType type = iter.reloc()->type(); 1918 if (type != relocInfo::static_call_type && 1919 type != relocInfo::opt_virtual_call_type) { 1920 return; 1921 } 1922 1923 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1924 callsite->set_to_clean(); 1925 JRT_END 1926 1927 1928 // same as JVM_Arraycopy, but called directly from compiled code 1929 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1930 oopDesc* dest, jint dest_pos, 1931 jint length, 1932 JavaThread* current)) { 1933 #ifndef PRODUCT 1934 _slow_array_copy_ctr++; 1935 #endif 1936 // Check if we have null pointers 1937 if (src == nullptr || dest == nullptr) { 1938 THROW(vmSymbols::java_lang_NullPointerException()); 1939 } 1940 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1941 // even though the copy_array API also performs dynamic checks to ensure 1942 // that src and dest are truly arrays (and are conformable). 1943 // The copy_array mechanism is awkward and could be removed, but 1944 // the compilers don't call this function except as a last resort, 1945 // so it probably doesn't matter. 1946 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1947 (arrayOopDesc*)dest, dest_pos, 1948 length, current); 1949 } 1950 JRT_END 1951 1952 // The caller of generate_class_cast_message() (or one of its callers) 1953 // must use a ResourceMark in order to correctly free the result. 1954 char* SharedRuntime::generate_class_cast_message( 1955 JavaThread* thread, Klass* caster_klass) { 1956 1957 // Get target class name from the checkcast instruction 1958 vframeStream vfst(thread, true); 1959 assert(!vfst.at_end(), "Java frame must exist"); 1960 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1961 constantPoolHandle cpool(thread, vfst.method()->constants()); 1962 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1963 Symbol* target_klass_name = nullptr; 1964 if (target_klass == nullptr) { 1965 // This klass should be resolved, but just in case, get the name in the klass slot. 1966 target_klass_name = cpool->klass_name_at(cc.index()); 1967 } 1968 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1969 } 1970 1971 1972 // The caller of generate_class_cast_message() (or one of its callers) 1973 // must use a ResourceMark in order to correctly free the result. 1974 char* SharedRuntime::generate_class_cast_message( 1975 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1976 const char* caster_name = caster_klass->external_name(); 1977 1978 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1979 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1980 target_klass->external_name(); 1981 1982 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1983 1984 const char* caster_klass_description = ""; 1985 const char* target_klass_description = ""; 1986 const char* klass_separator = ""; 1987 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1988 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1989 } else { 1990 caster_klass_description = caster_klass->class_in_module_of_loader(); 1991 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1992 klass_separator = (target_klass != nullptr) ? "; " : ""; 1993 } 1994 1995 // add 3 for parenthesis and preceding space 1996 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1997 1998 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1999 if (message == nullptr) { 2000 // Shouldn't happen, but don't cause even more problems if it does 2001 message = const_cast<char*>(caster_klass->external_name()); 2002 } else { 2003 jio_snprintf(message, 2004 msglen, 2005 "class %s cannot be cast to class %s (%s%s%s)", 2006 caster_name, 2007 target_name, 2008 caster_klass_description, 2009 klass_separator, 2010 target_klass_description 2011 ); 2012 } 2013 return message; 2014 } 2015 2016 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2017 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2018 JRT_END 2019 2020 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2021 if (!SafepointSynchronize::is_synchronizing()) { 2022 // Only try quick_enter() if we're not trying to reach a safepoint 2023 // so that the calling thread reaches the safepoint more quickly. 2024 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 2025 return; 2026 } 2027 } 2028 // NO_ASYNC required because an async exception on the state transition destructor 2029 // would leave you with the lock held and it would never be released. 2030 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2031 // and the model is that an exception implies the method failed. 2032 JRT_BLOCK_NO_ASYNC 2033 Handle h_obj(THREAD, obj); 2034 ObjectSynchronizer::enter(h_obj, lock, current); 2035 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2036 JRT_BLOCK_END 2037 } 2038 2039 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2040 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2041 SharedRuntime::monitor_enter_helper(obj, lock, current); 2042 JRT_END 2043 2044 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2045 assert(JavaThread::current() == current, "invariant"); 2046 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2047 ExceptionMark em(current); 2048 2049 // Check if C2_MacroAssembler::fast_unlock() or 2050 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 2051 // monitor before going slow path. Since there is no safepoint 2052 // polling when calling into the VM, we can be sure that the monitor 2053 // hasn't been deallocated. 2054 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2055 if (m != nullptr) { 2056 assert(!m->has_owner(current), "must be"); 2057 current->clear_unlocked_inflated_monitor(); 2058 2059 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2060 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2061 // Some other thread acquired the lock (or the monitor was 2062 // deflated). Either way we are done. 2063 current->dec_held_monitor_count(); 2064 return; 2065 } 2066 } 2067 2068 // The object could become unlocked through a JNI call, which we have no other checks for. 2069 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2070 if (obj->is_unlocked()) { 2071 if (CheckJNICalls) { 2072 fatal("Object has been unlocked by JNI"); 2073 } 2074 return; 2075 } 2076 ObjectSynchronizer::exit(obj, lock, current); 2077 } 2078 2079 // Handles the uncommon cases of monitor unlocking in compiled code 2080 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2081 assert(current == JavaThread::current(), "pre-condition"); 2082 SharedRuntime::monitor_exit_helper(obj, lock, current); 2083 JRT_END 2084 2085 // This is only called when CheckJNICalls is true, and only 2086 // for virtual thread termination. 2087 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 2088 assert(CheckJNICalls, "Only call this when checking JNI usage"); 2089 if (log_is_enabled(Debug, jni)) { 2090 JavaThread* current = JavaThread::current(); 2091 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 2092 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 2093 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 2094 ") exiting with Objects still locked by JNI MonitorEnter.", 2095 vthread_id, carrier_id); 2096 } 2097 JRT_END 2098 2099 #ifndef PRODUCT 2100 2101 void SharedRuntime::print_statistics() { 2102 ttyLocker ttyl; 2103 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2104 2105 SharedRuntime::print_ic_miss_histogram_on(tty); 2106 SharedRuntime::print_counters_on(tty); 2107 AdapterHandlerLibrary::print_statistics_on(tty); 2108 2109 if (xtty != nullptr) xtty->tail("statistics"); 2110 } 2111 2112 //void SharedRuntime::print_counters_on(outputStream* st) { 2113 // // Dump the JRT_ENTRY counters 2114 // if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr); 2115 // if (_new_array_ctr) st->print_cr("%5u new array requires GC", _new_array_ctr); 2116 // if (_multi2_ctr) st->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2117 // if (_multi3_ctr) st->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2118 // if (_multi4_ctr) st->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2119 // if (_multi5_ctr) st->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2120 // 2121 // st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2122 // st->print_cr("%5u wrong method", _wrong_method_ctr); 2123 // st->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2124 // st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2125 // st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2126 // 2127 // if (_mon_enter_stub_ctr) st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2128 // if (_mon_exit_stub_ctr) st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2129 // if (_mon_enter_ctr) st->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2130 // if (_mon_exit_ctr) st->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2131 // if (_partial_subtype_ctr) st->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2132 // if (_jbyte_array_copy_ctr) st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2133 // if (_jshort_array_copy_ctr) st->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2134 // if (_jint_array_copy_ctr) st->print_cr("%5u int array copies", _jint_array_copy_ctr); 2135 // if (_jlong_array_copy_ctr) st->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2136 // if (_oop_array_copy_ctr) st->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2137 // if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2138 // if (_unsafe_array_copy_ctr) st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2139 // if (_generic_array_copy_ctr) st->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2140 // if (_slow_array_copy_ctr) st->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2141 // if (_find_handler_ctr) st->print_cr("%5u find exception handler", _find_handler_ctr); 2142 // if (_rethrow_ctr) st->print_cr("%5u rethrow handler", _rethrow_ctr); 2143 // if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2144 //} 2145 2146 inline double percent(int64_t x, int64_t y) { 2147 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2148 } 2149 2150 class MethodArityHistogram { 2151 public: 2152 enum { MAX_ARITY = 256 }; 2153 private: 2154 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2155 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2156 static uint64_t _total_compiled_calls; 2157 static uint64_t _max_compiled_calls_per_method; 2158 static int _max_arity; // max. arity seen 2159 static int _max_size; // max. arg size seen 2160 2161 static void add_method_to_histogram(nmethod* nm) { 2162 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2163 if (method != nullptr) { 2164 ArgumentCount args(method->signature()); 2165 int arity = args.size() + (method->is_static() ? 0 : 1); 2166 int argsize = method->size_of_parameters(); 2167 arity = MIN2(arity, MAX_ARITY-1); 2168 argsize = MIN2(argsize, MAX_ARITY-1); 2169 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2170 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2171 _total_compiled_calls += count; 2172 _arity_histogram[arity] += count; 2173 _size_histogram[argsize] += count; 2174 _max_arity = MAX2(_max_arity, arity); 2175 _max_size = MAX2(_max_size, argsize); 2176 } 2177 } 2178 2179 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2180 const int N = MIN2(9, n); 2181 double sum = 0; 2182 double weighted_sum = 0; 2183 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2184 if (sum >= 1) { // prevent divide by zero or divide overflow 2185 double rest = sum; 2186 double percent = sum / 100; 2187 for (int i = 0; i <= N; i++) { 2188 rest -= (double)histo[i]; 2189 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2190 } 2191 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2192 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2193 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2194 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2195 } else { 2196 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2197 } 2198 } 2199 2200 void print_histogram() { 2201 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2202 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2203 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2204 print_histogram_helper(_max_size, _size_histogram, "size"); 2205 tty->cr(); 2206 } 2207 2208 public: 2209 MethodArityHistogram() { 2210 // Take the Compile_lock to protect against changes in the CodeBlob structures 2211 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2212 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2213 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2214 _max_arity = _max_size = 0; 2215 _total_compiled_calls = 0; 2216 _max_compiled_calls_per_method = 0; 2217 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2218 CodeCache::nmethods_do(add_method_to_histogram); 2219 print_histogram(); 2220 } 2221 }; 2222 2223 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2224 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2225 uint64_t MethodArityHistogram::_total_compiled_calls; 2226 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2227 int MethodArityHistogram::_max_arity; 2228 int MethodArityHistogram::_max_size; 2229 2230 void SharedRuntime::print_call_statistics_on(outputStream* st) { 2231 tty->print_cr("Calls from compiled code:"); 2232 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2233 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2234 int64_t mono_i = _nof_interface_calls; 2235 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2236 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2237 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2238 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2239 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2240 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2241 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2242 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2243 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2244 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2245 tty->cr(); 2246 tty->print_cr("Note 1: counter updates are not MT-safe."); 2247 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2248 tty->print_cr(" %% in nested categories are relative to their category"); 2249 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2250 tty->cr(); 2251 2252 MethodArityHistogram h; 2253 } 2254 #endif 2255 2256 #ifndef PRODUCT 2257 static int _lookups; // number of calls to lookup 2258 static int _equals; // number of buckets checked with matching hash 2259 static int _hits; // number of successful lookups 2260 static int _compact; // number of equals calls with compact signature 2261 #endif 2262 2263 // A simple wrapper class around the calling convention information 2264 // that allows sharing of adapters for the same calling convention. 2265 class AdapterFingerPrint : public CHeapObj<mtCode> { 2266 private: 2267 enum { 2268 _basic_type_bits = 4, 2269 _basic_type_mask = right_n_bits(_basic_type_bits), 2270 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2271 _compact_int_count = 3 2272 }; 2273 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2274 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2275 2276 union { 2277 int _compact[_compact_int_count]; 2278 int* _fingerprint; 2279 } _value; 2280 int _length; // A negative length indicates the fingerprint is in the compact form, 2281 // Otherwise _value._fingerprint is the array. 2282 2283 // Remap BasicTypes that are handled equivalently by the adapters. 2284 // These are correct for the current system but someday it might be 2285 // necessary to make this mapping platform dependent. 2286 static int adapter_encoding(BasicType in) { 2287 switch (in) { 2288 case T_BOOLEAN: 2289 case T_BYTE: 2290 case T_SHORT: 2291 case T_CHAR: 2292 // There are all promoted to T_INT in the calling convention 2293 return T_INT; 2294 2295 case T_OBJECT: 2296 case T_ARRAY: 2297 // In other words, we assume that any register good enough for 2298 // an int or long is good enough for a managed pointer. 2299 #ifdef _LP64 2300 return T_LONG; 2301 #else 2302 return T_INT; 2303 #endif 2304 2305 case T_INT: 2306 case T_LONG: 2307 case T_FLOAT: 2308 case T_DOUBLE: 2309 case T_VOID: 2310 return in; 2311 2312 default: 2313 ShouldNotReachHere(); 2314 return T_CONFLICT; 2315 } 2316 } 2317 2318 public: 2319 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2320 // The fingerprint is based on the BasicType signature encoded 2321 // into an array of ints with eight entries per int. 2322 int* ptr; 2323 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2324 if (len <= _compact_int_count) { 2325 assert(_compact_int_count == 3, "else change next line"); 2326 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2327 // Storing the signature encoded as signed chars hits about 98% 2328 // of the time. 2329 _length = -len; 2330 ptr = _value._compact; 2331 } else { 2332 _length = len; 2333 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2334 ptr = _value._fingerprint; 2335 } 2336 2337 // Now pack the BasicTypes with 8 per int 2338 int sig_index = 0; 2339 for (int index = 0; index < len; index++) { 2340 int value = 0; 2341 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2342 int bt = adapter_encoding(sig_bt[sig_index++]); 2343 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2344 value = (value << _basic_type_bits) | bt; 2345 } 2346 ptr[index] = value; 2347 } 2348 } 2349 2350 ~AdapterFingerPrint() { 2351 if (_length > 0) { 2352 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2353 } 2354 } 2355 2356 int value(int index) { 2357 if (_length < 0) { 2358 return _value._compact[index]; 2359 } 2360 return _value._fingerprint[index]; 2361 } 2362 int length() { 2363 if (_length < 0) return -_length; 2364 return _length; 2365 } 2366 2367 bool is_compact() { 2368 return _length <= 0; 2369 } 2370 2371 unsigned int compute_hash() { 2372 int hash = 0; 2373 for (int i = 0; i < length(); i++) { 2374 int v = value(i); 2375 hash = (hash << 8) ^ v ^ (hash >> 5); 2376 } 2377 return (unsigned int)hash; 2378 } 2379 2380 const char* as_string() { 2381 stringStream st; 2382 st.print("0x"); 2383 for (int i = 0; i < length(); i++) { 2384 st.print("%x", value(i)); 2385 } 2386 return st.as_string(); 2387 } 2388 2389 #ifndef PRODUCT 2390 // Reconstitutes the basic type arguments from the fingerprint, 2391 // producing strings like LIJDF 2392 const char* as_basic_args_string() { 2393 stringStream st; 2394 bool long_prev = false; 2395 for (int i = 0; i < length(); i++) { 2396 unsigned val = (unsigned)value(i); 2397 // args are packed so that first/lower arguments are in the highest 2398 // bits of each int value, so iterate from highest to the lowest 2399 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2400 unsigned v = (val >> j) & _basic_type_mask; 2401 if (v == 0) { 2402 assert(i == length() - 1, "Only expect zeroes in the last word"); 2403 continue; 2404 } 2405 if (long_prev) { 2406 long_prev = false; 2407 if (v == T_VOID) { 2408 st.print("J"); 2409 } else { 2410 st.print("L"); 2411 } 2412 } 2413 switch (v) { 2414 case T_INT: st.print("I"); break; 2415 case T_LONG: long_prev = true; break; 2416 case T_FLOAT: st.print("F"); break; 2417 case T_DOUBLE: st.print("D"); break; 2418 case T_VOID: break; 2419 default: ShouldNotReachHere(); 2420 } 2421 } 2422 } 2423 if (long_prev) { 2424 st.print("L"); 2425 } 2426 return st.as_string(); 2427 } 2428 #endif // !product 2429 2430 bool equals(AdapterFingerPrint* other) { 2431 if (other->_length != _length) { 2432 return false; 2433 } 2434 if (_length < 0) { 2435 assert(_compact_int_count == 3, "else change next line"); 2436 return _value._compact[0] == other->_value._compact[0] && 2437 _value._compact[1] == other->_value._compact[1] && 2438 _value._compact[2] == other->_value._compact[2]; 2439 } else { 2440 for (int i = 0; i < _length; i++) { 2441 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2442 return false; 2443 } 2444 } 2445 } 2446 return true; 2447 } 2448 2449 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2450 NOT_PRODUCT(_equals++); 2451 return fp1->equals(fp2); 2452 } 2453 2454 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2455 return fp->compute_hash(); 2456 } 2457 }; 2458 2459 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2460 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2461 AnyObj::C_HEAP, mtCode, 2462 AdapterFingerPrint::compute_hash, 2463 AdapterFingerPrint::equals>; 2464 static AdapterHandlerTable* _adapter_handler_table; 2465 2466 // Find a entry with the same fingerprint if it exists 2467 static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2468 NOT_PRODUCT(_lookups++); 2469 assert_lock_strong(AdapterHandlerLibrary_lock); 2470 AdapterFingerPrint fp(total_args_passed, sig_bt); 2471 AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp); 2472 if (entry != nullptr) { 2473 #ifndef PRODUCT 2474 if (fp.is_compact()) _compact++; 2475 _hits++; 2476 #endif 2477 return *entry; 2478 } 2479 return nullptr; 2480 } 2481 2482 #ifndef PRODUCT 2483 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) { 2484 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2485 return sizeof(*key) + sizeof(*a); 2486 }; 2487 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2488 ts.print(st, "AdapterHandlerTable"); 2489 st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2490 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2491 st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d", 2492 _lookups, _equals, _hits, _compact); 2493 } 2494 #endif // !PRODUCT 2495 2496 // --------------------------------------------------------------------------- 2497 // Implementation of AdapterHandlerLibrary 2498 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2499 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2500 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2501 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2502 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2503 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2504 const int AdapterHandlerLibrary_size = 16*K; 2505 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2506 2507 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2508 return _buffer; 2509 } 2510 2511 static void post_adapter_creation(const AdapterBlob* new_adapter, 2512 const AdapterHandlerEntry* entry) { 2513 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2514 char blob_id[256]; 2515 jio_snprintf(blob_id, 2516 sizeof(blob_id), 2517 "%s(%s)", 2518 new_adapter->name(), 2519 entry->fingerprint()->as_string()); 2520 if (Forte::is_enabled()) { 2521 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2522 } 2523 2524 if (JvmtiExport::should_post_dynamic_code_generated()) { 2525 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2526 } 2527 } 2528 } 2529 2530 void AdapterHandlerLibrary::initialize() { 2531 ResourceMark rm; 2532 AdapterBlob* no_arg_blob = nullptr; 2533 AdapterBlob* int_arg_blob = nullptr; 2534 AdapterBlob* obj_arg_blob = nullptr; 2535 AdapterBlob* obj_int_arg_blob = nullptr; 2536 AdapterBlob* obj_obj_arg_blob = nullptr; 2537 { 2538 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2539 MutexLocker mu(AdapterHandlerLibrary_lock); 2540 2541 // Create a special handler for abstract methods. Abstract methods 2542 // are never compiled so an i2c entry is somewhat meaningless, but 2543 // throw AbstractMethodError just in case. 2544 // Pass wrong_method_abstract for the c2i transitions to return 2545 // AbstractMethodError for invalid invocations. 2546 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2547 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, nullptr), 2548 SharedRuntime::throw_AbstractMethodError_entry(), 2549 wrong_method_abstract, wrong_method_abstract); 2550 2551 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2552 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr, true); 2553 2554 BasicType obj_args[] = { T_OBJECT }; 2555 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true); 2556 2557 BasicType int_args[] = { T_INT }; 2558 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true); 2559 2560 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2561 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true); 2562 2563 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2564 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true); 2565 2566 assert(no_arg_blob != nullptr && 2567 obj_arg_blob != nullptr && 2568 int_arg_blob != nullptr && 2569 obj_int_arg_blob != nullptr && 2570 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2571 } 2572 2573 // Outside of the lock 2574 post_adapter_creation(no_arg_blob, _no_arg_handler); 2575 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2576 post_adapter_creation(int_arg_blob, _int_arg_handler); 2577 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2578 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2579 } 2580 2581 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2582 address i2c_entry, 2583 address c2i_entry, 2584 address c2i_unverified_entry, 2585 address c2i_no_clinit_check_entry) { 2586 // Insert an entry into the table 2587 return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, 2588 c2i_no_clinit_check_entry); 2589 } 2590 2591 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2592 if (method->is_abstract()) { 2593 return _abstract_method_handler; 2594 } 2595 int total_args_passed = method->size_of_parameters(); // All args on stack 2596 if (total_args_passed == 0) { 2597 return _no_arg_handler; 2598 } else if (total_args_passed == 1) { 2599 if (!method->is_static()) { 2600 return _obj_arg_handler; 2601 } 2602 switch (method->signature()->char_at(1)) { 2603 case JVM_SIGNATURE_CLASS: 2604 case JVM_SIGNATURE_ARRAY: 2605 return _obj_arg_handler; 2606 case JVM_SIGNATURE_INT: 2607 case JVM_SIGNATURE_BOOLEAN: 2608 case JVM_SIGNATURE_CHAR: 2609 case JVM_SIGNATURE_BYTE: 2610 case JVM_SIGNATURE_SHORT: 2611 return _int_arg_handler; 2612 } 2613 } else if (total_args_passed == 2 && 2614 !method->is_static()) { 2615 switch (method->signature()->char_at(1)) { 2616 case JVM_SIGNATURE_CLASS: 2617 case JVM_SIGNATURE_ARRAY: 2618 return _obj_obj_arg_handler; 2619 case JVM_SIGNATURE_INT: 2620 case JVM_SIGNATURE_BOOLEAN: 2621 case JVM_SIGNATURE_CHAR: 2622 case JVM_SIGNATURE_BYTE: 2623 case JVM_SIGNATURE_SHORT: 2624 return _obj_int_arg_handler; 2625 } 2626 } 2627 return nullptr; 2628 } 2629 2630 class AdapterSignatureIterator : public SignatureIterator { 2631 private: 2632 BasicType stack_sig_bt[16]; 2633 BasicType* sig_bt; 2634 int index; 2635 2636 public: 2637 AdapterSignatureIterator(Symbol* signature, 2638 fingerprint_t fingerprint, 2639 bool is_static, 2640 int total_args_passed) : 2641 SignatureIterator(signature, fingerprint), 2642 index(0) 2643 { 2644 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2645 if (!is_static) { // Pass in receiver first 2646 sig_bt[index++] = T_OBJECT; 2647 } 2648 do_parameters_on(this); 2649 } 2650 2651 BasicType* basic_types() { 2652 return sig_bt; 2653 } 2654 2655 #ifdef ASSERT 2656 int slots() { 2657 return index; 2658 } 2659 #endif 2660 2661 private: 2662 2663 friend class SignatureIterator; // so do_parameters_on can call do_type 2664 void do_type(BasicType type) { 2665 sig_bt[index++] = type; 2666 if (type == T_LONG || type == T_DOUBLE) { 2667 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2668 } 2669 } 2670 }; 2671 2672 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2673 // Use customized signature handler. Need to lock around updates to 2674 // the _adapter_handler_table (it is not safe for concurrent readers 2675 // and a single writer: this could be fixed if it becomes a 2676 // problem). 2677 2678 // Fast-path for trivial adapters 2679 AdapterHandlerEntry* entry = get_simple_adapter(method); 2680 if (entry != nullptr) { 2681 return entry; 2682 } 2683 2684 ResourceMark rm; 2685 AdapterBlob* new_adapter = nullptr; 2686 2687 // Fill in the signature array, for the calling-convention call. 2688 int total_args_passed = method->size_of_parameters(); // All args on stack 2689 2690 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2691 method->is_static(), total_args_passed); 2692 assert(si.slots() == total_args_passed, ""); 2693 BasicType* sig_bt = si.basic_types(); 2694 { 2695 MutexLocker mu(AdapterHandlerLibrary_lock); 2696 2697 // Lookup method signature's fingerprint 2698 entry = lookup(total_args_passed, sig_bt); 2699 2700 if (entry != nullptr) { 2701 #ifdef ASSERT 2702 if (VerifyAdapterSharing) { 2703 AdapterBlob* comparison_blob = nullptr; 2704 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false); 2705 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2706 assert(comparison_entry->compare_code(entry), "code must match"); 2707 // Release the one just created and return the original 2708 delete comparison_entry; 2709 } 2710 #endif 2711 return entry; 2712 } 2713 2714 entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true); 2715 } 2716 2717 // Outside of the lock 2718 if (new_adapter != nullptr) { 2719 post_adapter_creation(new_adapter, entry); 2720 } 2721 return entry; 2722 } 2723 2724 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter, 2725 int total_args_passed, 2726 BasicType* sig_bt, 2727 bool allocate_code_blob) { 2728 if (log_is_enabled(Info, perf, class, link)) { 2729 ClassLoader::perf_method_adapters_count()->inc(); 2730 } 2731 2732 // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result, 2733 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior 2734 // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated 2735 // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs. 2736 bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr; 2737 2738 VMRegPair stack_regs[16]; 2739 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2740 2741 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2742 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2743 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2744 CodeBuffer buffer(buf); 2745 short buffer_locs[20]; 2746 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2747 sizeof(buffer_locs)/sizeof(relocInfo)); 2748 2749 // Make a C heap allocated version of the fingerprint to store in the adapter 2750 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2751 MacroAssembler _masm(&buffer); 2752 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2753 total_args_passed, 2754 comp_args_on_stack, 2755 sig_bt, 2756 regs, 2757 fingerprint); 2758 2759 #ifdef ASSERT 2760 if (VerifyAdapterSharing) { 2761 entry->save_code(buf->code_begin(), buffer.insts_size()); 2762 if (!allocate_code_blob) { 2763 return entry; 2764 } 2765 } 2766 #endif 2767 2768 new_adapter = AdapterBlob::create(&buffer); 2769 NOT_PRODUCT(int insts_size = buffer.insts_size()); 2770 if (new_adapter == nullptr) { 2771 // CodeCache is full, disable compilation 2772 // Ought to log this but compile log is only per compile thread 2773 // and we're some non descript Java thread. 2774 return nullptr; 2775 } 2776 entry->relocate(new_adapter->content_begin()); 2777 #ifndef PRODUCT 2778 // debugging support 2779 if (PrintAdapterHandlers || PrintStubCode) { 2780 ttyLocker ttyl; 2781 entry->print_adapter_on(tty); 2782 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 2783 _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(), 2784 fingerprint->as_string(), insts_size); 2785 tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry())); 2786 if (Verbose || PrintStubCode) { 2787 address first_pc = entry->base_address(); 2788 if (first_pc != nullptr) { 2789 Disassembler::decode(first_pc, first_pc + insts_size, tty 2790 NOT_PRODUCT(COMMA &new_adapter->asm_remarks())); 2791 tty->cr(); 2792 } 2793 } 2794 } 2795 #endif 2796 2797 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2798 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2799 if (contains_all_checks || !VerifyAdapterCalls) { 2800 assert_lock_strong(AdapterHandlerLibrary_lock); 2801 _adapter_handler_table->put(fingerprint, entry); 2802 } 2803 return entry; 2804 } 2805 2806 address AdapterHandlerEntry::base_address() { 2807 address base = _i2c_entry; 2808 if (base == nullptr) base = _c2i_entry; 2809 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 2810 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 2811 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 2812 return base; 2813 } 2814 2815 void AdapterHandlerEntry::relocate(address new_base) { 2816 address old_base = base_address(); 2817 assert(old_base != nullptr, ""); 2818 ptrdiff_t delta = new_base - old_base; 2819 if (_i2c_entry != nullptr) 2820 _i2c_entry += delta; 2821 if (_c2i_entry != nullptr) 2822 _c2i_entry += delta; 2823 if (_c2i_unverified_entry != nullptr) 2824 _c2i_unverified_entry += delta; 2825 if (_c2i_no_clinit_check_entry != nullptr) 2826 _c2i_no_clinit_check_entry += delta; 2827 assert(base_address() == new_base, ""); 2828 } 2829 2830 2831 AdapterHandlerEntry::~AdapterHandlerEntry() { 2832 delete _fingerprint; 2833 #ifdef ASSERT 2834 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2835 #endif 2836 } 2837 2838 2839 #ifdef ASSERT 2840 // Capture the code before relocation so that it can be compared 2841 // against other versions. If the code is captured after relocation 2842 // then relative instructions won't be equivalent. 2843 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 2844 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 2845 _saved_code_length = length; 2846 memcpy(_saved_code, buffer, length); 2847 } 2848 2849 2850 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 2851 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 2852 2853 if (other->_saved_code_length != _saved_code_length) { 2854 return false; 2855 } 2856 2857 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 2858 } 2859 #endif 2860 2861 2862 /** 2863 * Create a native wrapper for this native method. The wrapper converts the 2864 * Java-compiled calling convention to the native convention, handles 2865 * arguments, and transitions to native. On return from the native we transition 2866 * back to java blocking if a safepoint is in progress. 2867 */ 2868 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 2869 ResourceMark rm; 2870 nmethod* nm = nullptr; 2871 2872 // Check if memory should be freed before allocation 2873 CodeCache::gc_on_allocation(); 2874 2875 assert(method->is_native(), "must be native"); 2876 assert(method->is_special_native_intrinsic() || 2877 method->has_native_function(), "must have something valid to call!"); 2878 2879 { 2880 // Perform the work while holding the lock, but perform any printing outside the lock 2881 MutexLocker mu(AdapterHandlerLibrary_lock); 2882 // See if somebody beat us to it 2883 if (method->code() != nullptr) { 2884 return; 2885 } 2886 2887 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 2888 assert(compile_id > 0, "Must generate native wrapper"); 2889 2890 2891 ResourceMark rm; 2892 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2893 if (buf != nullptr) { 2894 CodeBuffer buffer(buf); 2895 2896 if (method->is_continuation_enter_intrinsic()) { 2897 buffer.initialize_stubs_size(192); 2898 } 2899 2900 struct { double data[20]; } locs_buf; 2901 struct { double data[20]; } stubs_locs_buf; 2902 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2903 #if defined(AARCH64) || defined(PPC64) 2904 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 2905 // in the constant pool to ensure ordering between the barrier and oops 2906 // accesses. For native_wrappers we need a constant. 2907 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 2908 // static java call that is resolved in the runtime. 2909 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 2910 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 2911 } 2912 #endif 2913 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 2914 MacroAssembler _masm(&buffer); 2915 2916 // Fill in the signature array, for the calling-convention call. 2917 const int total_args_passed = method->size_of_parameters(); 2918 2919 VMRegPair stack_regs[16]; 2920 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2921 2922 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2923 method->is_static(), total_args_passed); 2924 BasicType* sig_bt = si.basic_types(); 2925 assert(si.slots() == total_args_passed, ""); 2926 BasicType ret_type = si.return_type(); 2927 2928 // Now get the compiled-Java arguments layout. 2929 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2930 2931 // Generate the compiled-to-native wrapper code 2932 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 2933 2934 if (nm != nullptr) { 2935 { 2936 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2937 if (nm->make_in_use()) { 2938 method->set_code(method, nm); 2939 } 2940 } 2941 2942 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 2943 if (directive->PrintAssemblyOption) { 2944 nm->print_code(); 2945 } 2946 DirectivesStack::release(directive); 2947 } 2948 } 2949 } // Unlock AdapterHandlerLibrary_lock 2950 2951 2952 // Install the generated code. 2953 if (nm != nullptr) { 2954 const char *msg = method->is_static() ? "(static)" : ""; 2955 CompileTask::print_ul(nm, msg); 2956 if (PrintCompilation) { 2957 ttyLocker ttyl; 2958 CompileTask::print(tty, nm, msg); 2959 } 2960 nm->post_compiled_method_load_event(); 2961 } 2962 } 2963 2964 // ------------------------------------------------------------------------- 2965 // Java-Java calling convention 2966 // (what you use when Java calls Java) 2967 2968 //------------------------------name_for_receiver---------------------------------- 2969 // For a given signature, return the VMReg for parameter 0. 2970 VMReg SharedRuntime::name_for_receiver() { 2971 VMRegPair regs; 2972 BasicType sig_bt = T_OBJECT; 2973 (void) java_calling_convention(&sig_bt, ®s, 1); 2974 // Return argument 0 register. In the LP64 build pointers 2975 // take 2 registers, but the VM wants only the 'main' name. 2976 return regs.first(); 2977 } 2978 2979 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 2980 // This method is returning a data structure allocating as a 2981 // ResourceObject, so do not put any ResourceMarks in here. 2982 2983 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 2984 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 2985 int cnt = 0; 2986 if (has_receiver) { 2987 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 2988 } 2989 2990 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 2991 BasicType type = ss.type(); 2992 sig_bt[cnt++] = type; 2993 if (is_double_word_type(type)) 2994 sig_bt[cnt++] = T_VOID; 2995 } 2996 2997 if (has_appendix) { 2998 sig_bt[cnt++] = T_OBJECT; 2999 } 3000 3001 assert(cnt < 256, "grow table size"); 3002 3003 int comp_args_on_stack; 3004 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3005 3006 // the calling convention doesn't count out_preserve_stack_slots so 3007 // we must add that in to get "true" stack offsets. 3008 3009 if (comp_args_on_stack) { 3010 for (int i = 0; i < cnt; i++) { 3011 VMReg reg1 = regs[i].first(); 3012 if (reg1->is_stack()) { 3013 // Yuck 3014 reg1 = reg1->bias(out_preserve_stack_slots()); 3015 } 3016 VMReg reg2 = regs[i].second(); 3017 if (reg2->is_stack()) { 3018 // Yuck 3019 reg2 = reg2->bias(out_preserve_stack_slots()); 3020 } 3021 regs[i].set_pair(reg2, reg1); 3022 } 3023 } 3024 3025 // results 3026 *arg_size = cnt; 3027 return regs; 3028 } 3029 3030 // OSR Migration Code 3031 // 3032 // This code is used convert interpreter frames into compiled frames. It is 3033 // called from very start of a compiled OSR nmethod. A temp array is 3034 // allocated to hold the interesting bits of the interpreter frame. All 3035 // active locks are inflated to allow them to move. The displaced headers and 3036 // active interpreter locals are copied into the temp buffer. Then we return 3037 // back to the compiled code. The compiled code then pops the current 3038 // interpreter frame off the stack and pushes a new compiled frame. Then it 3039 // copies the interpreter locals and displaced headers where it wants. 3040 // Finally it calls back to free the temp buffer. 3041 // 3042 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3043 3044 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3045 assert(current == JavaThread::current(), "pre-condition"); 3046 3047 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3048 // frame. The stack watermark code below ensures that the interpreted frame is processed 3049 // before it gets unwound. This is helpful as the size of the compiled frame could be 3050 // larger than the interpreted frame, which could result in the new frame not being 3051 // processed correctly. 3052 StackWatermarkSet::before_unwind(current); 3053 3054 // 3055 // This code is dependent on the memory layout of the interpreter local 3056 // array and the monitors. On all of our platforms the layout is identical 3057 // so this code is shared. If some platform lays the their arrays out 3058 // differently then this code could move to platform specific code or 3059 // the code here could be modified to copy items one at a time using 3060 // frame accessor methods and be platform independent. 3061 3062 frame fr = current->last_frame(); 3063 assert(fr.is_interpreted_frame(), ""); 3064 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3065 3066 // Figure out how many monitors are active. 3067 int active_monitor_count = 0; 3068 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3069 kptr < fr.interpreter_frame_monitor_begin(); 3070 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3071 if (kptr->obj() != nullptr) active_monitor_count++; 3072 } 3073 3074 // QQQ we could place number of active monitors in the array so that compiled code 3075 // could double check it. 3076 3077 Method* moop = fr.interpreter_frame_method(); 3078 int max_locals = moop->max_locals(); 3079 // Allocate temp buffer, 1 word per local & 2 per active monitor 3080 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3081 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3082 3083 // Copy the locals. Order is preserved so that loading of longs works. 3084 // Since there's no GC I can copy the oops blindly. 3085 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3086 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3087 (HeapWord*)&buf[0], 3088 max_locals); 3089 3090 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3091 int i = max_locals; 3092 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3093 kptr2 < fr.interpreter_frame_monitor_begin(); 3094 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3095 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3096 BasicLock *lock = kptr2->lock(); 3097 if (LockingMode == LM_LEGACY) { 3098 // Inflate so the object's header no longer refers to the BasicLock. 3099 if (lock->displaced_header().is_unlocked()) { 3100 // The object is locked and the resulting ObjectMonitor* will also be 3101 // locked so it can't be async deflated until ownership is dropped. 3102 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3103 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3104 } 3105 // Now the displaced header is free to move because the 3106 // object's header no longer refers to it. 3107 buf[i] = (intptr_t)lock->displaced_header().value(); 3108 } else if (UseObjectMonitorTable) { 3109 buf[i] = (intptr_t)lock->object_monitor_cache(); 3110 } 3111 #ifdef ASSERT 3112 else { 3113 buf[i] = badDispHeaderOSR; 3114 } 3115 #endif 3116 i++; 3117 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3118 } 3119 } 3120 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3121 3122 RegisterMap map(current, 3123 RegisterMap::UpdateMap::skip, 3124 RegisterMap::ProcessFrames::include, 3125 RegisterMap::WalkContinuation::skip); 3126 frame sender = fr.sender(&map); 3127 if (sender.is_interpreted_frame()) { 3128 current->push_cont_fastpath(sender.sp()); 3129 } 3130 3131 return buf; 3132 JRT_END 3133 3134 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3135 FREE_C_HEAP_ARRAY(intptr_t, buf); 3136 JRT_END 3137 3138 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3139 bool found = false; 3140 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3141 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3142 }; 3143 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3144 _adapter_handler_table->iterate(findblob); 3145 return found; 3146 } 3147 3148 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3149 bool found = false; 3150 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3151 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3152 found = true; 3153 st->print("Adapter for signature: "); 3154 a->print_adapter_on(st); 3155 return true; 3156 } else { 3157 return false; // keep looking 3158 } 3159 }; 3160 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3161 _adapter_handler_table->iterate(findblob); 3162 assert(found, "Should have found handler"); 3163 } 3164 3165 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3166 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3167 if (get_i2c_entry() != nullptr) { 3168 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3169 } 3170 if (get_c2i_entry() != nullptr) { 3171 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3172 } 3173 if (get_c2i_unverified_entry() != nullptr) { 3174 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3175 } 3176 if (get_c2i_no_clinit_check_entry() != nullptr) { 3177 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3178 } 3179 st->cr(); 3180 } 3181 3182 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3183 assert(current == JavaThread::current(), "pre-condition"); 3184 StackOverflow* overflow_state = current->stack_overflow_state(); 3185 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3186 overflow_state->set_reserved_stack_activation(current->stack_base()); 3187 JRT_END 3188 3189 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3190 ResourceMark rm(current); 3191 frame activation; 3192 nmethod* nm = nullptr; 3193 int count = 1; 3194 3195 assert(fr.is_java_frame(), "Must start on Java frame"); 3196 3197 RegisterMap map(JavaThread::current(), 3198 RegisterMap::UpdateMap::skip, 3199 RegisterMap::ProcessFrames::skip, 3200 RegisterMap::WalkContinuation::skip); // don't walk continuations 3201 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3202 if (!fr.is_java_frame()) { 3203 continue; 3204 } 3205 3206 Method* method = nullptr; 3207 bool found = false; 3208 if (fr.is_interpreted_frame()) { 3209 method = fr.interpreter_frame_method(); 3210 if (method != nullptr && method->has_reserved_stack_access()) { 3211 found = true; 3212 } 3213 } else { 3214 CodeBlob* cb = fr.cb(); 3215 if (cb != nullptr && cb->is_nmethod()) { 3216 nm = cb->as_nmethod(); 3217 method = nm->method(); 3218 // scope_desc_near() must be used, instead of scope_desc_at() because on 3219 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3220 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3221 method = sd->method(); 3222 if (method != nullptr && method->has_reserved_stack_access()) { 3223 found = true; 3224 } 3225 } 3226 } 3227 } 3228 if (found) { 3229 activation = fr; 3230 warning("Potentially dangerous stack overflow in " 3231 "ReservedStackAccess annotated method %s [%d]", 3232 method->name_and_sig_as_C_string(), count++); 3233 EventReservedStackActivation event; 3234 if (event.should_commit()) { 3235 event.set_method(method); 3236 event.commit(); 3237 } 3238 } 3239 } 3240 return activation; 3241 } 3242 3243 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3244 // After any safepoint, just before going back to compiled code, 3245 // we inform the GC that we will be doing initializing writes to 3246 // this object in the future without emitting card-marks, so 3247 // GC may take any compensating steps. 3248 3249 oop new_obj = current->vm_result(); 3250 if (new_obj == nullptr) return; 3251 3252 BarrierSet *bs = BarrierSet::barrier_set(); 3253 bs->on_slowpath_allocation_exit(current, new_obj); 3254 }