1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jfr/jfrEvents.hpp" 46 #include "jvm.h" 47 #include "logging/log.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "metaprogramming/primitiveConversions.hpp" 51 #include "oops/klass.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/forte.hpp" 56 #include "prims/jvmtiExport.hpp" 57 #include "prims/jvmtiThreadState.hpp" 58 #include "prims/methodHandles.hpp" 59 #include "prims/nativeLookup.hpp" 60 #include "runtime/arguments.hpp" 61 #include "runtime/atomicAccess.hpp" 62 #include "runtime/basicLock.inline.hpp" 63 #include "runtime/frame.inline.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/init.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/java.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/jniHandles.inline.hpp" 70 #include "runtime/osThread.hpp" 71 #include "runtime/perfData.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/stubRoutines.hpp" 75 #include "runtime/synchronizer.hpp" 76 #include "runtime/timerTrace.hpp" 77 #include "runtime/vframe.inline.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "runtime/vm_version.hpp" 80 #include "utilities/copy.hpp" 81 #include "utilities/dtrace.hpp" 82 #include "utilities/events.hpp" 83 #include "utilities/globalDefinitions.hpp" 84 #include "utilities/hashTable.hpp" 85 #include "utilities/macros.hpp" 86 #include "utilities/xmlstream.hpp" 87 #ifdef COMPILER1 88 #include "c1/c1_Runtime1.hpp" 89 #endif 90 #ifdef COMPILER2 91 #include "opto/runtime.hpp" 92 #endif 93 #if INCLUDE_JFR 94 #include "jfr/jfr.inline.hpp" 95 #endif 96 97 // Shared runtime stub routines reside in their own unique blob with a 98 // single entry point 99 100 101 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 102 type* SharedRuntime::BLOB_FIELD_NAME(name); 103 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 104 #undef SHARED_STUB_FIELD_DEFINE 105 106 nmethod* SharedRuntime::_cont_doYield_stub; 107 108 #if 0 109 // TODO tweak global stub name generation to match this 110 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 111 const char *SharedRuntime::_stub_names[] = { 112 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 113 }; 114 #endif 115 116 //----------------------------generate_stubs----------------------------------- 117 void SharedRuntime::generate_initial_stubs() { 118 // Build this early so it's available for the interpreter. 119 _throw_StackOverflowError_blob = 120 generate_throw_exception(StubId::shared_throw_StackOverflowError_id, 121 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 122 } 123 124 void SharedRuntime::generate_stubs() { 125 _wrong_method_blob = 126 generate_resolve_blob(StubId::shared_wrong_method_id, 127 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 128 _wrong_method_abstract_blob = 129 generate_resolve_blob(StubId::shared_wrong_method_abstract_id, 130 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 131 _ic_miss_blob = 132 generate_resolve_blob(StubId::shared_ic_miss_id, 133 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 134 _resolve_opt_virtual_call_blob = 135 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id, 136 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 137 _resolve_virtual_call_blob = 138 generate_resolve_blob(StubId::shared_resolve_virtual_call_id, 139 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 140 _resolve_static_call_blob = 141 generate_resolve_blob(StubId::shared_resolve_static_call_id, 142 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 143 144 _throw_delayed_StackOverflowError_blob = 145 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id, 146 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 147 148 _throw_AbstractMethodError_blob = 149 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id, 150 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 151 152 _throw_IncompatibleClassChangeError_blob = 153 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id, 154 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 155 156 _throw_NullPointerException_at_call_blob = 157 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id, 158 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 159 160 #if COMPILER2_OR_JVMCI 161 // Vectors are generated only by C2 and JVMCI. 162 bool support_wide = is_wide_vector(MaxVectorSize); 163 if (support_wide) { 164 _polling_page_vectors_safepoint_handler_blob = 165 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id, 166 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 167 } 168 #endif // COMPILER2_OR_JVMCI 169 _polling_page_safepoint_handler_blob = 170 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id, 171 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 172 _polling_page_return_handler_blob = 173 generate_handler_blob(StubId::shared_polling_page_return_handler_id, 174 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 175 176 generate_deopt_blob(); 177 } 178 179 void SharedRuntime::init_adapter_library() { 180 AdapterHandlerLibrary::initialize(); 181 } 182 183 #if INCLUDE_JFR 184 //------------------------------generate jfr runtime stubs ------ 185 void SharedRuntime::generate_jfr_stubs() { 186 ResourceMark rm; 187 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 188 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 189 190 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 191 _jfr_return_lease_blob = generate_jfr_return_lease(); 192 } 193 194 #endif // INCLUDE_JFR 195 196 #include <math.h> 197 198 // Implementation of SharedRuntime 199 200 #ifndef PRODUCT 201 // For statistics 202 uint SharedRuntime::_ic_miss_ctr = 0; 203 uint SharedRuntime::_wrong_method_ctr = 0; 204 uint SharedRuntime::_resolve_static_ctr = 0; 205 uint SharedRuntime::_resolve_virtual_ctr = 0; 206 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 207 uint SharedRuntime::_implicit_null_throws = 0; 208 uint SharedRuntime::_implicit_div0_throws = 0; 209 210 int64_t SharedRuntime::_nof_normal_calls = 0; 211 int64_t SharedRuntime::_nof_inlined_calls = 0; 212 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 213 int64_t SharedRuntime::_nof_static_calls = 0; 214 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 215 int64_t SharedRuntime::_nof_interface_calls = 0; 216 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 217 218 uint SharedRuntime::_new_instance_ctr=0; 219 uint SharedRuntime::_new_array_ctr=0; 220 uint SharedRuntime::_multi2_ctr=0; 221 uint SharedRuntime::_multi3_ctr=0; 222 uint SharedRuntime::_multi4_ctr=0; 223 uint SharedRuntime::_multi5_ctr=0; 224 uint SharedRuntime::_mon_enter_stub_ctr=0; 225 uint SharedRuntime::_mon_exit_stub_ctr=0; 226 uint SharedRuntime::_mon_enter_ctr=0; 227 uint SharedRuntime::_mon_exit_ctr=0; 228 uint SharedRuntime::_partial_subtype_ctr=0; 229 uint SharedRuntime::_jbyte_array_copy_ctr=0; 230 uint SharedRuntime::_jshort_array_copy_ctr=0; 231 uint SharedRuntime::_jint_array_copy_ctr=0; 232 uint SharedRuntime::_jlong_array_copy_ctr=0; 233 uint SharedRuntime::_oop_array_copy_ctr=0; 234 uint SharedRuntime::_checkcast_array_copy_ctr=0; 235 uint SharedRuntime::_unsafe_array_copy_ctr=0; 236 uint SharedRuntime::_generic_array_copy_ctr=0; 237 uint SharedRuntime::_slow_array_copy_ctr=0; 238 uint SharedRuntime::_find_handler_ctr=0; 239 uint SharedRuntime::_rethrow_ctr=0; 240 uint SharedRuntime::_unsafe_set_memory_ctr=0; 241 242 int SharedRuntime::_ICmiss_index = 0; 243 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 244 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 245 246 247 void SharedRuntime::trace_ic_miss(address at) { 248 for (int i = 0; i < _ICmiss_index; i++) { 249 if (_ICmiss_at[i] == at) { 250 _ICmiss_count[i]++; 251 return; 252 } 253 } 254 int index = _ICmiss_index++; 255 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 256 _ICmiss_at[index] = at; 257 _ICmiss_count[index] = 1; 258 } 259 260 void SharedRuntime::print_ic_miss_histogram() { 261 if (ICMissHistogram) { 262 tty->print_cr("IC Miss Histogram:"); 263 int tot_misses = 0; 264 for (int i = 0; i < _ICmiss_index; i++) { 265 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 266 tot_misses += _ICmiss_count[i]; 267 } 268 tty->print_cr("Total IC misses: %7d", tot_misses); 269 } 270 } 271 272 #ifdef COMPILER2 273 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for) 274 void SharedRuntime::debug_print_value(jboolean x) { 275 tty->print_cr("boolean %d", x); 276 } 277 278 void SharedRuntime::debug_print_value(jbyte x) { 279 tty->print_cr("byte %d", x); 280 } 281 282 void SharedRuntime::debug_print_value(jshort x) { 283 tty->print_cr("short %d", x); 284 } 285 286 void SharedRuntime::debug_print_value(jchar x) { 287 tty->print_cr("char %c %d", isprint(x) ? x : ' ', x); 288 } 289 290 void SharedRuntime::debug_print_value(jint x) { 291 tty->print_cr("int %d", x); 292 } 293 294 void SharedRuntime::debug_print_value(jlong x) { 295 tty->print_cr("long " JLONG_FORMAT, x); 296 } 297 298 void SharedRuntime::debug_print_value(jfloat x) { 299 tty->print_cr("float %f", x); 300 } 301 302 void SharedRuntime::debug_print_value(jdouble x) { 303 tty->print_cr("double %lf", x); 304 } 305 306 void SharedRuntime::debug_print_value(oopDesc* x) { 307 x->print(); 308 } 309 #endif // COMPILER2 310 311 #endif // PRODUCT 312 313 314 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 315 return x * y; 316 JRT_END 317 318 319 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 320 if (x == min_jlong && y == CONST64(-1)) { 321 return x; 322 } else { 323 return x / y; 324 } 325 JRT_END 326 327 328 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 329 if (x == min_jlong && y == CONST64(-1)) { 330 return 0; 331 } else { 332 return x % y; 333 } 334 JRT_END 335 336 337 #ifdef _WIN64 338 const juint float_sign_mask = 0x7FFFFFFF; 339 const juint float_infinity = 0x7F800000; 340 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 341 const julong double_infinity = CONST64(0x7FF0000000000000); 342 #endif 343 344 #if !defined(X86) 345 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 346 #ifdef _WIN64 347 // 64-bit Windows on amd64 returns the wrong values for 348 // infinity operands. 349 juint xbits = PrimitiveConversions::cast<juint>(x); 350 juint ybits = PrimitiveConversions::cast<juint>(y); 351 // x Mod Infinity == x unless x is infinity 352 if (((xbits & float_sign_mask) != float_infinity) && 353 ((ybits & float_sign_mask) == float_infinity) ) { 354 return x; 355 } 356 return ((jfloat)fmod_winx64((double)x, (double)y)); 357 #else 358 return ((jfloat)fmod((double)x,(double)y)); 359 #endif 360 JRT_END 361 362 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 363 #ifdef _WIN64 364 julong xbits = PrimitiveConversions::cast<julong>(x); 365 julong ybits = PrimitiveConversions::cast<julong>(y); 366 // x Mod Infinity == x unless x is infinity 367 if (((xbits & double_sign_mask) != double_infinity) && 368 ((ybits & double_sign_mask) == double_infinity) ) { 369 return x; 370 } 371 return ((jdouble)fmod_winx64((double)x, (double)y)); 372 #else 373 return ((jdouble)fmod((double)x,(double)y)); 374 #endif 375 JRT_END 376 #endif // !X86 377 378 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 379 return (jfloat)x; 380 JRT_END 381 382 #ifdef __SOFTFP__ 383 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 384 return x + y; 385 JRT_END 386 387 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 388 return x - y; 389 JRT_END 390 391 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 392 return x * y; 393 JRT_END 394 395 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 396 return x / y; 397 JRT_END 398 399 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 400 return x + y; 401 JRT_END 402 403 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 404 return x - y; 405 JRT_END 406 407 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 408 return x * y; 409 JRT_END 410 411 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 412 return x / y; 413 JRT_END 414 415 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 416 return (jdouble)x; 417 JRT_END 418 419 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 420 return (jdouble)x; 421 JRT_END 422 423 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 424 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 425 JRT_END 426 427 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 428 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 429 JRT_END 430 431 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 432 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 433 JRT_END 434 435 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 436 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 437 JRT_END 438 439 // Functions to return the opposite of the aeabi functions for nan. 440 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 441 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 442 JRT_END 443 444 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 445 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 446 JRT_END 447 448 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 449 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 450 JRT_END 451 452 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 453 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 454 JRT_END 455 456 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 457 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 458 JRT_END 459 460 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 461 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 462 JRT_END 463 464 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 465 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 466 JRT_END 467 468 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 469 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 470 JRT_END 471 472 // Intrinsics make gcc generate code for these. 473 float SharedRuntime::fneg(float f) { 474 return -f; 475 } 476 477 double SharedRuntime::dneg(double f) { 478 return -f; 479 } 480 481 #endif // __SOFTFP__ 482 483 #if defined(__SOFTFP__) || defined(E500V2) 484 // Intrinsics make gcc generate code for these. 485 double SharedRuntime::dabs(double f) { 486 return (f <= (double)0.0) ? (double)0.0 - f : f; 487 } 488 489 #endif 490 491 #if defined(__SOFTFP__) 492 double SharedRuntime::dsqrt(double f) { 493 return sqrt(f); 494 } 495 #endif 496 497 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 498 if (g_isnan(x)) 499 return 0; 500 if (x >= (jfloat) max_jint) 501 return max_jint; 502 if (x <= (jfloat) min_jint) 503 return min_jint; 504 return (jint) x; 505 JRT_END 506 507 508 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 509 if (g_isnan(x)) 510 return 0; 511 if (x >= (jfloat) max_jlong) 512 return max_jlong; 513 if (x <= (jfloat) min_jlong) 514 return min_jlong; 515 return (jlong) x; 516 JRT_END 517 518 519 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 520 if (g_isnan(x)) 521 return 0; 522 if (x >= (jdouble) max_jint) 523 return max_jint; 524 if (x <= (jdouble) min_jint) 525 return min_jint; 526 return (jint) x; 527 JRT_END 528 529 530 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 531 if (g_isnan(x)) 532 return 0; 533 if (x >= (jdouble) max_jlong) 534 return max_jlong; 535 if (x <= (jdouble) min_jlong) 536 return min_jlong; 537 return (jlong) x; 538 JRT_END 539 540 541 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 542 return (jfloat)x; 543 JRT_END 544 545 546 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 547 return (jfloat)x; 548 JRT_END 549 550 551 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 552 return (jdouble)x; 553 JRT_END 554 555 556 // Exception handling across interpreter/compiler boundaries 557 // 558 // exception_handler_for_return_address(...) returns the continuation address. 559 // The continuation address is the entry point of the exception handler of the 560 // previous frame depending on the return address. 561 562 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 563 // Note: This is called when we have unwound the frame of the callee that did 564 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 565 // Notably, the stack is not walkable at this point, and hence the check must 566 // be deferred until later. Specifically, any of the handlers returned here in 567 // this function, will get dispatched to, and call deferred checks to 568 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 569 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 570 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 571 572 #if INCLUDE_JVMCI 573 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 574 // and other exception handler continuations do not read it 575 current->set_exception_pc(nullptr); 576 #endif // INCLUDE_JVMCI 577 578 if (Continuation::is_return_barrier_entry(return_address)) { 579 return StubRoutines::cont_returnBarrierExc(); 580 } 581 582 // The fastest case first 583 CodeBlob* blob = CodeCache::find_blob(return_address); 584 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 585 if (nm != nullptr) { 586 // native nmethods don't have exception handlers 587 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 588 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 589 if (nm->is_deopt_pc(return_address)) { 590 // If we come here because of a stack overflow, the stack may be 591 // unguarded. Reguard the stack otherwise if we return to the 592 // deopt blob and the stack bang causes a stack overflow we 593 // crash. 594 StackOverflow* overflow_state = current->stack_overflow_state(); 595 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 596 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 597 overflow_state->set_reserved_stack_activation(current->stack_base()); 598 } 599 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 600 // The deferred StackWatermarkSet::after_unwind check will be performed in 601 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 602 return SharedRuntime::deopt_blob()->unpack_with_exception(); 603 } else { 604 // The deferred StackWatermarkSet::after_unwind check will be performed in 605 // * OptoRuntime::handle_exception_C_helper for C2 code 606 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 607 #ifdef COMPILER2 608 if (nm->compiler_type() == compiler_c2) { 609 return OptoRuntime::exception_blob()->entry_point(); 610 } 611 #endif // COMPILER2 612 return nm->exception_begin(); 613 } 614 } 615 616 // Entry code 617 if (StubRoutines::returns_to_call_stub(return_address)) { 618 // The deferred StackWatermarkSet::after_unwind check will be performed in 619 // JavaCallWrapper::~JavaCallWrapper 620 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before"); 621 return StubRoutines::catch_exception_entry(); 622 } 623 if (blob != nullptr && blob->is_upcall_stub()) { 624 return StubRoutines::upcall_stub_exception_handler(); 625 } 626 // Interpreted code 627 if (Interpreter::contains(return_address)) { 628 // The deferred StackWatermarkSet::after_unwind check will be performed in 629 // InterpreterRuntime::exception_handler_for_exception 630 return Interpreter::rethrow_exception_entry(); 631 } 632 633 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 634 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 635 636 #ifndef PRODUCT 637 { ResourceMark rm; 638 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 639 os::print_location(tty, (intptr_t)return_address); 640 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 641 tty->print_cr("b) other problem"); 642 } 643 #endif // PRODUCT 644 ShouldNotReachHere(); 645 return nullptr; 646 } 647 648 649 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 650 return raw_exception_handler_for_return_address(current, return_address); 651 JRT_END 652 653 654 address SharedRuntime::get_poll_stub(address pc) { 655 address stub; 656 // Look up the code blob 657 CodeBlob *cb = CodeCache::find_blob(pc); 658 659 // Should be an nmethod 660 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 661 662 // Look up the relocation information 663 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 664 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 665 666 #ifdef ASSERT 667 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 668 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 669 Disassembler::decode(cb); 670 fatal("Only polling locations are used for safepoint"); 671 } 672 #endif 673 674 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 675 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 676 if (at_poll_return) { 677 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 678 "polling page return stub not created yet"); 679 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 680 } else if (has_wide_vectors) { 681 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 682 "polling page vectors safepoint stub not created yet"); 683 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 684 } else { 685 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 686 "polling page safepoint stub not created yet"); 687 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 688 } 689 log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = " 690 INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT, 691 p2i(Thread::current()), 692 Thread::current()->osthread()->thread_id(), 693 p2i(pc), 694 at_poll_return ? "return" : "loop", 695 p2i(stub)); 696 return stub; 697 } 698 699 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 700 if (JvmtiExport::can_post_on_exceptions()) { 701 vframeStream vfst(current, true); 702 methodHandle method = methodHandle(current, vfst.method()); 703 address bcp = method()->bcp_from(vfst.bci()); 704 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 705 } 706 707 #if INCLUDE_JVMCI 708 if (EnableJVMCI) { 709 vframeStream vfst(current, true); 710 methodHandle method = methodHandle(current, vfst.method()); 711 int bci = vfst.bci(); 712 MethodData* trap_mdo = method->method_data(); 713 if (trap_mdo != nullptr) { 714 // Set exception_seen if the exceptional bytecode is an invoke 715 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 716 if (call.is_valid()) { 717 ResourceMark rm(current); 718 719 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 720 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 721 722 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 723 if (pdata != nullptr && pdata->is_BitData()) { 724 BitData* bit_data = (BitData*) pdata; 725 bit_data->set_exception_seen(); 726 } 727 } 728 } 729 } 730 #endif 731 732 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 733 } 734 735 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 736 Handle h_exception = Exceptions::new_exception(current, name, message); 737 throw_and_post_jvmti_exception(current, h_exception); 738 } 739 740 // The interpreter code to call this tracing function is only 741 // called/generated when UL is on for redefine, class and has the right level 742 // and tags. Since obsolete methods are never compiled, we don't have 743 // to modify the compilers to generate calls to this function. 744 // 745 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 746 JavaThread* thread, Method* method)) 747 if (method->is_obsolete()) { 748 // We are calling an obsolete method, but this is not necessarily 749 // an error. Our method could have been redefined just after we 750 // fetched the Method* from the constant pool. 751 ResourceMark rm; 752 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 753 } 754 return 0; 755 JRT_END 756 757 // ret_pc points into caller; we are returning caller's exception handler 758 // for given exception 759 // Note that the implementation of this method assumes it's only called when an exception has actually occured 760 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 761 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 762 assert(nm != nullptr, "must exist"); 763 ResourceMark rm; 764 765 #if INCLUDE_JVMCI 766 if (nm->is_compiled_by_jvmci()) { 767 // lookup exception handler for this pc 768 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 769 ExceptionHandlerTable table(nm); 770 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 771 if (t != nullptr) { 772 return nm->code_begin() + t->pco(); 773 } else { 774 bool make_not_entrant = true; 775 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant); 776 } 777 } 778 #endif // INCLUDE_JVMCI 779 780 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 781 // determine handler bci, if any 782 EXCEPTION_MARK; 783 784 Handle orig_exception(THREAD, exception()); 785 786 int handler_bci = -1; 787 int scope_depth = 0; 788 if (!force_unwind) { 789 int bci = sd->bci(); 790 bool recursive_exception = false; 791 do { 792 bool skip_scope_increment = false; 793 // exception handler lookup 794 Klass* ek = exception->klass(); 795 methodHandle mh(THREAD, sd->method()); 796 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 797 if (HAS_PENDING_EXCEPTION) { 798 recursive_exception = true; 799 // We threw an exception while trying to find the exception handler. 800 // Transfer the new exception to the exception handle which will 801 // be set into thread local storage, and do another lookup for an 802 // exception handler for this exception, this time starting at the 803 // BCI of the exception handler which caused the exception to be 804 // thrown (bugs 4307310 and 4546590). Set "exception" reference 805 // argument to ensure that the correct exception is thrown (4870175). 806 recursive_exception_occurred = true; 807 exception.replace(PENDING_EXCEPTION); 808 CLEAR_PENDING_EXCEPTION; 809 if (handler_bci >= 0) { 810 bci = handler_bci; 811 handler_bci = -1; 812 skip_scope_increment = true; 813 } 814 } 815 else { 816 recursive_exception = false; 817 } 818 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 819 sd = sd->sender(); 820 if (sd != nullptr) { 821 bci = sd->bci(); 822 } 823 ++scope_depth; 824 } 825 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 826 } 827 828 // found handling method => lookup exception handler 829 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 830 831 ExceptionHandlerTable table(nm); 832 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 833 834 // If the compiler did not anticipate a recursive exception, resulting in an exception 835 // thrown from the catch bci, then the compiled exception handler might be missing. 836 // This is rare. Just deoptimize and let the interpreter rethrow the original 837 // exception at the original bci. 838 if (t == nullptr && recursive_exception_occurred) { 839 exception.replace(orig_exception()); // restore original exception 840 bool make_not_entrant = false; 841 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant); 842 } 843 844 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 845 // Allow abbreviated catch tables. The idea is to allow a method 846 // to materialize its exceptions without committing to the exact 847 // routing of exceptions. In particular this is needed for adding 848 // a synthetic handler to unlock monitors when inlining 849 // synchronized methods since the unlock path isn't represented in 850 // the bytecodes. 851 t = table.entry_for(catch_pco, -1, 0); 852 } 853 854 #ifdef COMPILER1 855 if (t == nullptr && nm->is_compiled_by_c1()) { 856 assert(nm->unwind_handler_begin() != nullptr, ""); 857 return nm->unwind_handler_begin(); 858 } 859 #endif 860 861 if (t == nullptr) { 862 ttyLocker ttyl; 863 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 864 tty->print_cr(" Exception:"); 865 exception->print(); 866 tty->cr(); 867 tty->print_cr(" Compiled exception table :"); 868 table.print(); 869 nm->print(); 870 nm->print_code(); 871 guarantee(false, "missing exception handler"); 872 return nullptr; 873 } 874 875 if (handler_bci != -1) { // did we find a handler in this method? 876 sd->method()->set_exception_handler_entered(handler_bci); // profile 877 } 878 return nm->code_begin() + t->pco(); 879 } 880 881 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 882 // These errors occur only at call sites 883 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 884 JRT_END 885 886 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 887 // These errors occur only at call sites 888 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 889 JRT_END 890 891 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 892 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 893 JRT_END 894 895 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 896 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 897 JRT_END 898 899 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 900 // This entry point is effectively only used for NullPointerExceptions which occur at inline 901 // cache sites (when the callee activation is not yet set up) so we are at a call site 902 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 903 JRT_END 904 905 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 906 throw_StackOverflowError_common(current, false); 907 JRT_END 908 909 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 910 throw_StackOverflowError_common(current, true); 911 JRT_END 912 913 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 914 // We avoid using the normal exception construction in this case because 915 // it performs an upcall to Java, and we're already out of stack space. 916 JavaThread* THREAD = current; // For exception macros. 917 InstanceKlass* k = vmClasses::StackOverflowError_klass(); 918 oop exception_oop = k->allocate_instance(CHECK); 919 if (delayed) { 920 java_lang_Throwable::set_message(exception_oop, 921 Universe::delayed_stack_overflow_error_message()); 922 } 923 Handle exception (current, exception_oop); 924 if (StackTraceInThrowable) { 925 java_lang_Throwable::fill_in_stack_trace(exception); 926 } 927 // Remove the ScopedValue bindings in case we got a 928 // StackOverflowError while we were trying to remove ScopedValue 929 // bindings. 930 current->clear_scopedValueBindings(); 931 // Increment counter for hs_err file reporting 932 AtomicAccess::inc(&Exceptions::_stack_overflow_errors); 933 throw_and_post_jvmti_exception(current, exception); 934 } 935 936 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 937 address pc, 938 ImplicitExceptionKind exception_kind) 939 { 940 address target_pc = nullptr; 941 942 if (Interpreter::contains(pc)) { 943 switch (exception_kind) { 944 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 945 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 946 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 947 default: ShouldNotReachHere(); 948 } 949 } else { 950 switch (exception_kind) { 951 case STACK_OVERFLOW: { 952 // Stack overflow only occurs upon frame setup; the callee is 953 // going to be unwound. Dispatch to a shared runtime stub 954 // which will cause the StackOverflowError to be fabricated 955 // and processed. 956 // Stack overflow should never occur during deoptimization: 957 // the compiled method bangs the stack by as much as the 958 // interpreter would need in case of a deoptimization. The 959 // deoptimization blob and uncommon trap blob bang the stack 960 // in a debug VM to verify the correctness of the compiled 961 // method stack banging. 962 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 963 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 964 return SharedRuntime::throw_StackOverflowError_entry(); 965 } 966 967 case IMPLICIT_NULL: { 968 if (VtableStubs::contains(pc)) { 969 // We haven't yet entered the callee frame. Fabricate an 970 // exception and begin dispatching it in the caller. Since 971 // the caller was at a call site, it's safe to destroy all 972 // caller-saved registers, as these entry points do. 973 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 974 975 // If vt_stub is null, then return null to signal handler to report the SEGV error. 976 if (vt_stub == nullptr) return nullptr; 977 978 if (vt_stub->is_abstract_method_error(pc)) { 979 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 980 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 981 // Instead of throwing the abstract method error here directly, we re-resolve 982 // and will throw the AbstractMethodError during resolve. As a result, we'll 983 // get a more detailed error message. 984 return SharedRuntime::get_handle_wrong_method_stub(); 985 } else { 986 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 987 // Assert that the signal comes from the expected location in stub code. 988 assert(vt_stub->is_null_pointer_exception(pc), 989 "obtained signal from unexpected location in stub code"); 990 return SharedRuntime::throw_NullPointerException_at_call_entry(); 991 } 992 } else { 993 CodeBlob* cb = CodeCache::find_blob(pc); 994 995 // If code blob is null, then return null to signal handler to report the SEGV error. 996 if (cb == nullptr) return nullptr; 997 998 // Exception happened in CodeCache. Must be either: 999 // 1. Inline-cache check in C2I handler blob, 1000 // 2. Inline-cache check in nmethod, or 1001 // 3. Implicit null exception in nmethod 1002 1003 if (!cb->is_nmethod()) { 1004 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 1005 if (!is_in_blob) { 1006 // Allow normal crash reporting to handle this 1007 return nullptr; 1008 } 1009 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 1010 // There is no handler here, so we will simply unwind. 1011 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1012 } 1013 1014 // Otherwise, it's a compiled method. Consult its exception handlers. 1015 nmethod* nm = cb->as_nmethod(); 1016 if (nm->inlinecache_check_contains(pc)) { 1017 // exception happened inside inline-cache check code 1018 // => the nmethod is not yet active (i.e., the frame 1019 // is not set up yet) => use return address pushed by 1020 // caller => don't push another return address 1021 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 1022 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1023 } 1024 1025 if (nm->method()->is_method_handle_intrinsic()) { 1026 // exception happened inside MH dispatch code, similar to a vtable stub 1027 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 1028 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1029 } 1030 1031 #ifndef PRODUCT 1032 _implicit_null_throws++; 1033 #endif 1034 target_pc = nm->continuation_for_implicit_null_exception(pc); 1035 // If there's an unexpected fault, target_pc might be null, 1036 // in which case we want to fall through into the normal 1037 // error handling code. 1038 } 1039 1040 break; // fall through 1041 } 1042 1043 1044 case IMPLICIT_DIVIDE_BY_ZERO: { 1045 nmethod* nm = CodeCache::find_nmethod(pc); 1046 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1047 #ifndef PRODUCT 1048 _implicit_div0_throws++; 1049 #endif 1050 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1051 // If there's an unexpected fault, target_pc might be null, 1052 // in which case we want to fall through into the normal 1053 // error handling code. 1054 break; // fall through 1055 } 1056 1057 default: ShouldNotReachHere(); 1058 } 1059 1060 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1061 1062 if (exception_kind == IMPLICIT_NULL) { 1063 #ifndef PRODUCT 1064 // for AbortVMOnException flag 1065 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1066 #endif //PRODUCT 1067 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1068 } else { 1069 #ifndef PRODUCT 1070 // for AbortVMOnException flag 1071 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1072 #endif //PRODUCT 1073 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1074 } 1075 return target_pc; 1076 } 1077 1078 ShouldNotReachHere(); 1079 return nullptr; 1080 } 1081 1082 1083 /** 1084 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1085 * installed in the native function entry of all native Java methods before 1086 * they get linked to their actual native methods. 1087 * 1088 * \note 1089 * This method actually never gets called! The reason is because 1090 * the interpreter's native entries call NativeLookup::lookup() which 1091 * throws the exception when the lookup fails. The exception is then 1092 * caught and forwarded on the return from NativeLookup::lookup() call 1093 * before the call to the native function. This might change in the future. 1094 */ 1095 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1096 { 1097 // We return a bad value here to make sure that the exception is 1098 // forwarded before we look at the return value. 1099 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1100 } 1101 JNI_END 1102 1103 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1104 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1105 } 1106 1107 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1108 #if INCLUDE_JVMCI 1109 if (!obj->klass()->has_finalizer()) { 1110 return; 1111 } 1112 #endif // INCLUDE_JVMCI 1113 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1114 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1115 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1116 JRT_END 1117 1118 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1119 assert(thread != nullptr, "No thread"); 1120 if (thread == nullptr) { 1121 return 0; 1122 } 1123 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1124 "current cannot touch oops after its GC barrier is detached."); 1125 oop obj = thread->threadObj(); 1126 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1127 } 1128 1129 /** 1130 * This function ought to be a void function, but cannot be because 1131 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1132 * 6254741. Once that is fixed we can remove the dummy return value. 1133 */ 1134 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1135 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1136 } 1137 1138 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1139 return dtrace_object_alloc(thread, o, o->size()); 1140 } 1141 1142 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1143 assert(DTraceAllocProbes, "wrong call"); 1144 Klass* klass = o->klass(); 1145 Symbol* name = klass->name(); 1146 HOTSPOT_OBJECT_ALLOC( 1147 get_java_tid(thread), 1148 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1149 return 0; 1150 } 1151 1152 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1153 JavaThread* current, Method* method)) 1154 assert(current == JavaThread::current(), "pre-condition"); 1155 1156 assert(DTraceMethodProbes, "wrong call"); 1157 Symbol* kname = method->klass_name(); 1158 Symbol* name = method->name(); 1159 Symbol* sig = method->signature(); 1160 HOTSPOT_METHOD_ENTRY( 1161 get_java_tid(current), 1162 (char *) kname->bytes(), kname->utf8_length(), 1163 (char *) name->bytes(), name->utf8_length(), 1164 (char *) sig->bytes(), sig->utf8_length()); 1165 return 0; 1166 JRT_END 1167 1168 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1169 JavaThread* current, Method* method)) 1170 assert(current == JavaThread::current(), "pre-condition"); 1171 assert(DTraceMethodProbes, "wrong call"); 1172 Symbol* kname = method->klass_name(); 1173 Symbol* name = method->name(); 1174 Symbol* sig = method->signature(); 1175 HOTSPOT_METHOD_RETURN( 1176 get_java_tid(current), 1177 (char *) kname->bytes(), kname->utf8_length(), 1178 (char *) name->bytes(), name->utf8_length(), 1179 (char *) sig->bytes(), sig->utf8_length()); 1180 return 0; 1181 JRT_END 1182 1183 1184 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1185 // for a call current in progress, i.e., arguments has been pushed on stack 1186 // put callee has not been invoked yet. Used by: resolve virtual/static, 1187 // vtable updates, etc. Caller frame must be compiled. 1188 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1189 JavaThread* current = THREAD; 1190 ResourceMark rm(current); 1191 1192 // last java frame on stack (which includes native call frames) 1193 vframeStream vfst(current, true); // Do not skip and javaCalls 1194 1195 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1196 } 1197 1198 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1199 nmethod* caller = vfst.nm(); 1200 1201 address pc = vfst.frame_pc(); 1202 { // Get call instruction under lock because another thread may be busy patching it. 1203 CompiledICLocker ic_locker(caller); 1204 return caller->attached_method_before_pc(pc); 1205 } 1206 return nullptr; 1207 } 1208 1209 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1210 // for a call current in progress, i.e., arguments has been pushed on stack 1211 // but callee has not been invoked yet. Caller frame must be compiled. 1212 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1213 CallInfo& callinfo, TRAPS) { 1214 Handle receiver; 1215 Handle nullHandle; // create a handy null handle for exception returns 1216 JavaThread* current = THREAD; 1217 1218 assert(!vfst.at_end(), "Java frame must exist"); 1219 1220 // Find caller and bci from vframe 1221 methodHandle caller(current, vfst.method()); 1222 int bci = vfst.bci(); 1223 1224 if (caller->is_continuation_enter_intrinsic()) { 1225 bc = Bytecodes::_invokestatic; 1226 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1227 return receiver; 1228 } 1229 1230 Bytecode_invoke bytecode(caller, bci); 1231 int bytecode_index = bytecode.index(); 1232 bc = bytecode.invoke_code(); 1233 1234 methodHandle attached_method(current, extract_attached_method(vfst)); 1235 if (attached_method.not_null()) { 1236 Method* callee = bytecode.static_target(CHECK_NH); 1237 vmIntrinsics::ID id = callee->intrinsic_id(); 1238 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1239 // it attaches statically resolved method to the call site. 1240 if (MethodHandles::is_signature_polymorphic(id) && 1241 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1242 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1243 1244 // Adjust invocation mode according to the attached method. 1245 switch (bc) { 1246 case Bytecodes::_invokevirtual: 1247 if (attached_method->method_holder()->is_interface()) { 1248 bc = Bytecodes::_invokeinterface; 1249 } 1250 break; 1251 case Bytecodes::_invokeinterface: 1252 if (!attached_method->method_holder()->is_interface()) { 1253 bc = Bytecodes::_invokevirtual; 1254 } 1255 break; 1256 case Bytecodes::_invokehandle: 1257 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1258 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1259 : Bytecodes::_invokevirtual; 1260 } 1261 break; 1262 default: 1263 break; 1264 } 1265 } 1266 } 1267 1268 assert(bc != Bytecodes::_illegal, "not initialized"); 1269 1270 bool has_receiver = bc != Bytecodes::_invokestatic && 1271 bc != Bytecodes::_invokedynamic && 1272 bc != Bytecodes::_invokehandle; 1273 1274 // Find receiver for non-static call 1275 if (has_receiver) { 1276 // This register map must be update since we need to find the receiver for 1277 // compiled frames. The receiver might be in a register. 1278 RegisterMap reg_map2(current, 1279 RegisterMap::UpdateMap::include, 1280 RegisterMap::ProcessFrames::include, 1281 RegisterMap::WalkContinuation::skip); 1282 frame stubFrame = current->last_frame(); 1283 // Caller-frame is a compiled frame 1284 frame callerFrame = stubFrame.sender(®_map2); 1285 1286 if (attached_method.is_null()) { 1287 Method* callee = bytecode.static_target(CHECK_NH); 1288 if (callee == nullptr) { 1289 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1290 } 1291 } 1292 1293 // Retrieve from a compiled argument list 1294 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1295 assert(oopDesc::is_oop_or_null(receiver()), ""); 1296 1297 if (receiver.is_null()) { 1298 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1299 } 1300 } 1301 1302 // Resolve method 1303 if (attached_method.not_null()) { 1304 // Parameterized by attached method. 1305 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1306 } else { 1307 // Parameterized by bytecode. 1308 constantPoolHandle constants(current, caller->constants()); 1309 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1310 } 1311 1312 #ifdef ASSERT 1313 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1314 if (has_receiver) { 1315 assert(receiver.not_null(), "should have thrown exception"); 1316 Klass* receiver_klass = receiver->klass(); 1317 Klass* rk = nullptr; 1318 if (attached_method.not_null()) { 1319 // In case there's resolved method attached, use its holder during the check. 1320 rk = attached_method->method_holder(); 1321 } else { 1322 // Klass is already loaded. 1323 constantPoolHandle constants(current, caller->constants()); 1324 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1325 } 1326 Klass* static_receiver_klass = rk; 1327 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1328 "actual receiver must be subclass of static receiver klass"); 1329 if (receiver_klass->is_instance_klass()) { 1330 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1331 tty->print_cr("ERROR: Klass not yet initialized!!"); 1332 receiver_klass->print(); 1333 } 1334 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1335 } 1336 } 1337 #endif 1338 1339 return receiver; 1340 } 1341 1342 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1343 JavaThread* current = THREAD; 1344 ResourceMark rm(current); 1345 // We need first to check if any Java activations (compiled, interpreted) 1346 // exist on the stack since last JavaCall. If not, we need 1347 // to get the target method from the JavaCall wrapper. 1348 vframeStream vfst(current, true); // Do not skip any javaCalls 1349 methodHandle callee_method; 1350 if (vfst.at_end()) { 1351 // No Java frames were found on stack since we did the JavaCall. 1352 // Hence the stack can only contain an entry_frame. We need to 1353 // find the target method from the stub frame. 1354 RegisterMap reg_map(current, 1355 RegisterMap::UpdateMap::skip, 1356 RegisterMap::ProcessFrames::include, 1357 RegisterMap::WalkContinuation::skip); 1358 frame fr = current->last_frame(); 1359 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1360 fr = fr.sender(®_map); 1361 assert(fr.is_entry_frame(), "must be"); 1362 // fr is now pointing to the entry frame. 1363 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1364 } else { 1365 Bytecodes::Code bc; 1366 CallInfo callinfo; 1367 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1368 callee_method = methodHandle(current, callinfo.selected_method()); 1369 } 1370 assert(callee_method()->is_method(), "must be"); 1371 return callee_method; 1372 } 1373 1374 // Resolves a call. 1375 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1376 JavaThread* current = THREAD; 1377 ResourceMark rm(current); 1378 RegisterMap cbl_map(current, 1379 RegisterMap::UpdateMap::skip, 1380 RegisterMap::ProcessFrames::include, 1381 RegisterMap::WalkContinuation::skip); 1382 frame caller_frame = current->last_frame().sender(&cbl_map); 1383 1384 CodeBlob* caller_cb = caller_frame.cb(); 1385 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1386 nmethod* caller_nm = caller_cb->as_nmethod(); 1387 1388 // determine call info & receiver 1389 // note: a) receiver is null for static calls 1390 // b) an exception is thrown if receiver is null for non-static calls 1391 CallInfo call_info; 1392 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1393 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1394 1395 NoSafepointVerifier nsv; 1396 1397 methodHandle callee_method(current, call_info.selected_method()); 1398 1399 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1400 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1401 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1402 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1403 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1404 1405 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1406 1407 #ifndef PRODUCT 1408 // tracing/debugging/statistics 1409 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1410 (is_virtual) ? (&_resolve_virtual_ctr) : 1411 (&_resolve_static_ctr); 1412 AtomicAccess::inc(addr); 1413 1414 if (TraceCallFixup) { 1415 ResourceMark rm(current); 1416 tty->print("resolving %s%s (%s) call to", 1417 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1418 Bytecodes::name(invoke_code)); 1419 callee_method->print_short_name(tty); 1420 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1421 p2i(caller_frame.pc()), p2i(callee_method->code())); 1422 } 1423 #endif 1424 1425 if (invoke_code == Bytecodes::_invokestatic) { 1426 assert(callee_method->method_holder()->is_initialized() || 1427 callee_method->method_holder()->is_reentrant_initialization(current), 1428 "invalid class initialization state for invoke_static"); 1429 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1430 // In order to keep class initialization check, do not patch call 1431 // site for static call when the class is not fully initialized. 1432 // Proper check is enforced by call site re-resolution on every invocation. 1433 // 1434 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1435 // explicit class initialization check is put in nmethod entry (VEP). 1436 assert(callee_method->method_holder()->is_linked(), "must be"); 1437 return callee_method; 1438 } 1439 } 1440 1441 1442 // JSR 292 key invariant: 1443 // If the resolved method is a MethodHandle invoke target, the call 1444 // site must be a MethodHandle call site, because the lambda form might tail-call 1445 // leaving the stack in a state unknown to either caller or callee 1446 1447 // Compute entry points. The computation of the entry points is independent of 1448 // patching the call. 1449 1450 // Make sure the callee nmethod does not get deoptimized and removed before 1451 // we are done patching the code. 1452 1453 1454 CompiledICLocker ml(caller_nm); 1455 if (is_virtual && !is_optimized) { 1456 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1457 inline_cache->update(&call_info, receiver->klass()); 1458 } else { 1459 // Callsite is a direct call - set it to the destination method 1460 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1461 callsite->set(callee_method); 1462 } 1463 1464 return callee_method; 1465 } 1466 1467 // Inline caches exist only in compiled code 1468 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1469 #ifdef ASSERT 1470 RegisterMap reg_map(current, 1471 RegisterMap::UpdateMap::skip, 1472 RegisterMap::ProcessFrames::include, 1473 RegisterMap::WalkContinuation::skip); 1474 frame stub_frame = current->last_frame(); 1475 assert(stub_frame.is_runtime_frame(), "sanity check"); 1476 frame caller_frame = stub_frame.sender(®_map); 1477 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1478 #endif /* ASSERT */ 1479 1480 methodHandle callee_method; 1481 JRT_BLOCK 1482 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1483 // Return Method* through TLS 1484 current->set_vm_result_metadata(callee_method()); 1485 JRT_BLOCK_END 1486 // return compiled code entry point after potential safepoints 1487 return get_resolved_entry(current, callee_method); 1488 JRT_END 1489 1490 1491 // Handle call site that has been made non-entrant 1492 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1493 // 6243940 We might end up in here if the callee is deoptimized 1494 // as we race to call it. We don't want to take a safepoint if 1495 // the caller was interpreted because the caller frame will look 1496 // interpreted to the stack walkers and arguments are now 1497 // "compiled" so it is much better to make this transition 1498 // invisible to the stack walking code. The i2c path will 1499 // place the callee method in the callee_target. It is stashed 1500 // there because if we try and find the callee by normal means a 1501 // safepoint is possible and have trouble gc'ing the compiled args. 1502 RegisterMap reg_map(current, 1503 RegisterMap::UpdateMap::skip, 1504 RegisterMap::ProcessFrames::include, 1505 RegisterMap::WalkContinuation::skip); 1506 frame stub_frame = current->last_frame(); 1507 assert(stub_frame.is_runtime_frame(), "sanity check"); 1508 frame caller_frame = stub_frame.sender(®_map); 1509 1510 if (caller_frame.is_interpreted_frame() || 1511 caller_frame.is_entry_frame() || 1512 caller_frame.is_upcall_stub_frame()) { 1513 Method* callee = current->callee_target(); 1514 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1515 current->set_vm_result_metadata(callee); 1516 current->set_callee_target(nullptr); 1517 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1518 // Bypass class initialization checks in c2i when caller is in native. 1519 // JNI calls to static methods don't have class initialization checks. 1520 // Fast class initialization checks are present in c2i adapters and call into 1521 // SharedRuntime::handle_wrong_method() on the slow path. 1522 // 1523 // JVM upcalls may land here as well, but there's a proper check present in 1524 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1525 // so bypassing it in c2i adapter is benign. 1526 return callee->get_c2i_no_clinit_check_entry(); 1527 } else { 1528 return callee->get_c2i_entry(); 1529 } 1530 } 1531 1532 // Must be compiled to compiled path which is safe to stackwalk 1533 methodHandle callee_method; 1534 JRT_BLOCK 1535 // Force resolving of caller (if we called from compiled frame) 1536 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1537 current->set_vm_result_metadata(callee_method()); 1538 JRT_BLOCK_END 1539 // return compiled code entry point after potential safepoints 1540 return get_resolved_entry(current, callee_method); 1541 JRT_END 1542 1543 // Handle abstract method call 1544 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1545 // Verbose error message for AbstractMethodError. 1546 // Get the called method from the invoke bytecode. 1547 vframeStream vfst(current, true); 1548 assert(!vfst.at_end(), "Java frame must exist"); 1549 methodHandle caller(current, vfst.method()); 1550 Bytecode_invoke invoke(caller, vfst.bci()); 1551 DEBUG_ONLY( invoke.verify(); ) 1552 1553 // Find the compiled caller frame. 1554 RegisterMap reg_map(current, 1555 RegisterMap::UpdateMap::include, 1556 RegisterMap::ProcessFrames::include, 1557 RegisterMap::WalkContinuation::skip); 1558 frame stubFrame = current->last_frame(); 1559 assert(stubFrame.is_runtime_frame(), "must be"); 1560 frame callerFrame = stubFrame.sender(®_map); 1561 assert(callerFrame.is_compiled_frame(), "must be"); 1562 1563 // Install exception and return forward entry. 1564 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1565 JRT_BLOCK 1566 methodHandle callee(current, invoke.static_target(current)); 1567 if (!callee.is_null()) { 1568 oop recv = callerFrame.retrieve_receiver(®_map); 1569 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1570 res = StubRoutines::forward_exception_entry(); 1571 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1572 } 1573 JRT_BLOCK_END 1574 return res; 1575 JRT_END 1576 1577 // return verified_code_entry if interp_only_mode is not set for the current thread; 1578 // otherwise return c2i entry. 1579 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1580 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1581 // In interp_only_mode we need to go to the interpreted entry 1582 // The c2i won't patch in this mode -- see fixup_callers_callsite 1583 return callee_method->get_c2i_entry(); 1584 } 1585 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1586 return callee_method->verified_code_entry(); 1587 } 1588 1589 // resolve a static call and patch code 1590 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1591 methodHandle callee_method; 1592 bool enter_special = false; 1593 JRT_BLOCK 1594 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1595 current->set_vm_result_metadata(callee_method()); 1596 JRT_BLOCK_END 1597 // return compiled code entry point after potential safepoints 1598 return get_resolved_entry(current, callee_method); 1599 JRT_END 1600 1601 // resolve virtual call and update inline cache to monomorphic 1602 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1603 methodHandle callee_method; 1604 JRT_BLOCK 1605 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1606 current->set_vm_result_metadata(callee_method()); 1607 JRT_BLOCK_END 1608 // return compiled code entry point after potential safepoints 1609 return get_resolved_entry(current, callee_method); 1610 JRT_END 1611 1612 1613 // Resolve a virtual call that can be statically bound (e.g., always 1614 // monomorphic, so it has no inline cache). Patch code to resolved target. 1615 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1616 methodHandle callee_method; 1617 JRT_BLOCK 1618 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1619 current->set_vm_result_metadata(callee_method()); 1620 JRT_BLOCK_END 1621 // return compiled code entry point after potential safepoints 1622 return get_resolved_entry(current, callee_method); 1623 JRT_END 1624 1625 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1626 JavaThread* current = THREAD; 1627 ResourceMark rm(current); 1628 CallInfo call_info; 1629 Bytecodes::Code bc; 1630 1631 // receiver is null for static calls. An exception is thrown for null 1632 // receivers for non-static calls 1633 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1634 1635 methodHandle callee_method(current, call_info.selected_method()); 1636 1637 #ifndef PRODUCT 1638 AtomicAccess::inc(&_ic_miss_ctr); 1639 1640 // Statistics & Tracing 1641 if (TraceCallFixup) { 1642 ResourceMark rm(current); 1643 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1644 callee_method->print_short_name(tty); 1645 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1646 } 1647 1648 if (ICMissHistogram) { 1649 MutexLocker m(VMStatistic_lock); 1650 RegisterMap reg_map(current, 1651 RegisterMap::UpdateMap::skip, 1652 RegisterMap::ProcessFrames::include, 1653 RegisterMap::WalkContinuation::skip); 1654 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1655 // produce statistics under the lock 1656 trace_ic_miss(f.pc()); 1657 } 1658 #endif 1659 1660 // install an event collector so that when a vtable stub is created the 1661 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1662 // event can't be posted when the stub is created as locks are held 1663 // - instead the event will be deferred until the event collector goes 1664 // out of scope. 1665 JvmtiDynamicCodeEventCollector event_collector; 1666 1667 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1668 RegisterMap reg_map(current, 1669 RegisterMap::UpdateMap::skip, 1670 RegisterMap::ProcessFrames::include, 1671 RegisterMap::WalkContinuation::skip); 1672 frame caller_frame = current->last_frame().sender(®_map); 1673 CodeBlob* cb = caller_frame.cb(); 1674 nmethod* caller_nm = cb->as_nmethod(); 1675 1676 CompiledICLocker ml(caller_nm); 1677 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1678 inline_cache->update(&call_info, receiver()->klass()); 1679 1680 return callee_method; 1681 } 1682 1683 // 1684 // Resets a call-site in compiled code so it will get resolved again. 1685 // This routines handles both virtual call sites, optimized virtual call 1686 // sites, and static call sites. Typically used to change a call sites 1687 // destination from compiled to interpreted. 1688 // 1689 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1690 JavaThread* current = THREAD; 1691 ResourceMark rm(current); 1692 RegisterMap reg_map(current, 1693 RegisterMap::UpdateMap::skip, 1694 RegisterMap::ProcessFrames::include, 1695 RegisterMap::WalkContinuation::skip); 1696 frame stub_frame = current->last_frame(); 1697 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1698 frame caller = stub_frame.sender(®_map); 1699 1700 // Do nothing if the frame isn't a live compiled frame. 1701 // nmethod could be deoptimized by the time we get here 1702 // so no update to the caller is needed. 1703 1704 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1705 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1706 1707 address pc = caller.pc(); 1708 1709 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1710 assert(caller_nm != nullptr, "did not find caller nmethod"); 1711 1712 // Default call_addr is the location of the "basic" call. 1713 // Determine the address of the call we a reresolving. With 1714 // Inline Caches we will always find a recognizable call. 1715 // With Inline Caches disabled we may or may not find a 1716 // recognizable call. We will always find a call for static 1717 // calls and for optimized virtual calls. For vanilla virtual 1718 // calls it depends on the state of the UseInlineCaches switch. 1719 // 1720 // With Inline Caches disabled we can get here for a virtual call 1721 // for two reasons: 1722 // 1 - calling an abstract method. The vtable for abstract methods 1723 // will run us thru handle_wrong_method and we will eventually 1724 // end up in the interpreter to throw the ame. 1725 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1726 // call and between the time we fetch the entry address and 1727 // we jump to it the target gets deoptimized. Similar to 1 1728 // we will wind up in the interprter (thru a c2i with c2). 1729 // 1730 CompiledICLocker ml(caller_nm); 1731 address call_addr = caller_nm->call_instruction_address(pc); 1732 1733 if (call_addr != nullptr) { 1734 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1735 // bytes back in the instruction stream so we must also check for reloc info. 1736 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1737 bool ret = iter.next(); // Get item 1738 if (ret) { 1739 switch (iter.type()) { 1740 case relocInfo::static_call_type: 1741 case relocInfo::opt_virtual_call_type: { 1742 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1743 cdc->set_to_clean(); 1744 break; 1745 } 1746 1747 case relocInfo::virtual_call_type: { 1748 // compiled, dispatched call (which used to call an interpreted method) 1749 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1750 inline_cache->set_to_clean(); 1751 break; 1752 } 1753 default: 1754 break; 1755 } 1756 } 1757 } 1758 } 1759 1760 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1761 1762 1763 #ifndef PRODUCT 1764 AtomicAccess::inc(&_wrong_method_ctr); 1765 1766 if (TraceCallFixup) { 1767 ResourceMark rm(current); 1768 tty->print("handle_wrong_method reresolving call to"); 1769 callee_method->print_short_name(tty); 1770 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1771 } 1772 #endif 1773 1774 return callee_method; 1775 } 1776 1777 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1778 // The faulting unsafe accesses should be changed to throw the error 1779 // synchronously instead. Meanwhile the faulting instruction will be 1780 // skipped over (effectively turning it into a no-op) and an 1781 // asynchronous exception will be raised which the thread will 1782 // handle at a later point. If the instruction is a load it will 1783 // return garbage. 1784 1785 // Request an async exception. 1786 thread->set_pending_unsafe_access_error(); 1787 1788 // Return address of next instruction to execute. 1789 return next_pc; 1790 } 1791 1792 #ifdef ASSERT 1793 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1794 const BasicType* sig_bt, 1795 const VMRegPair* regs) { 1796 ResourceMark rm; 1797 const int total_args_passed = method->size_of_parameters(); 1798 const VMRegPair* regs_with_member_name = regs; 1799 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1800 1801 const int member_arg_pos = total_args_passed - 1; 1802 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1803 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1804 1805 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1806 1807 for (int i = 0; i < member_arg_pos; i++) { 1808 VMReg a = regs_with_member_name[i].first(); 1809 VMReg b = regs_without_member_name[i].first(); 1810 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1811 } 1812 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1813 } 1814 #endif 1815 1816 // --------------------------------------------------------------------------- 1817 // We are calling the interpreter via a c2i. Normally this would mean that 1818 // we were called by a compiled method. However we could have lost a race 1819 // where we went int -> i2c -> c2i and so the caller could in fact be 1820 // interpreted. If the caller is compiled we attempt to patch the caller 1821 // so he no longer calls into the interpreter. 1822 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1823 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1824 1825 // It's possible that deoptimization can occur at a call site which hasn't 1826 // been resolved yet, in which case this function will be called from 1827 // an nmethod that has been patched for deopt and we can ignore the 1828 // request for a fixup. 1829 // Also it is possible that we lost a race in that from_compiled_entry 1830 // is now back to the i2c in that case we don't need to patch and if 1831 // we did we'd leap into space because the callsite needs to use 1832 // "to interpreter" stub in order to load up the Method*. Don't 1833 // ask me how I know this... 1834 1835 // Result from nmethod::is_unloading is not stable across safepoints. 1836 NoSafepointVerifier nsv; 1837 1838 nmethod* callee = method->code(); 1839 if (callee == nullptr) { 1840 return; 1841 } 1842 1843 // write lock needed because we might patch call site by set_to_clean() 1844 // and is_unloading() can modify nmethod's state 1845 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1846 1847 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1848 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1849 return; 1850 } 1851 1852 // The check above makes sure this is an nmethod. 1853 nmethod* caller = cb->as_nmethod(); 1854 1855 // Get the return PC for the passed caller PC. 1856 address return_pc = caller_pc + frame::pc_return_offset; 1857 1858 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1859 return; 1860 } 1861 1862 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1863 CompiledICLocker ic_locker(caller); 1864 ResourceMark rm; 1865 1866 // If we got here through a static call or opt_virtual call, then we know where the 1867 // call address would be; let's peek at it 1868 address callsite_addr = (address)nativeCall_before(return_pc); 1869 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1870 if (!iter.next()) { 1871 // No reloc entry found; not a static or optimized virtual call 1872 return; 1873 } 1874 1875 relocInfo::relocType type = iter.reloc()->type(); 1876 if (type != relocInfo::static_call_type && 1877 type != relocInfo::opt_virtual_call_type) { 1878 return; 1879 } 1880 1881 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1882 callsite->set_to_clean(); 1883 JRT_END 1884 1885 1886 // same as JVM_Arraycopy, but called directly from compiled code 1887 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1888 oopDesc* dest, jint dest_pos, 1889 jint length, 1890 JavaThread* current)) { 1891 #ifndef PRODUCT 1892 _slow_array_copy_ctr++; 1893 #endif 1894 // Check if we have null pointers 1895 if (src == nullptr || dest == nullptr) { 1896 THROW(vmSymbols::java_lang_NullPointerException()); 1897 } 1898 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1899 // even though the copy_array API also performs dynamic checks to ensure 1900 // that src and dest are truly arrays (and are conformable). 1901 // The copy_array mechanism is awkward and could be removed, but 1902 // the compilers don't call this function except as a last resort, 1903 // so it probably doesn't matter. 1904 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1905 (arrayOopDesc*)dest, dest_pos, 1906 length, current); 1907 } 1908 JRT_END 1909 1910 // The caller of generate_class_cast_message() (or one of its callers) 1911 // must use a ResourceMark in order to correctly free the result. 1912 char* SharedRuntime::generate_class_cast_message( 1913 JavaThread* thread, Klass* caster_klass) { 1914 1915 // Get target class name from the checkcast instruction 1916 vframeStream vfst(thread, true); 1917 assert(!vfst.at_end(), "Java frame must exist"); 1918 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1919 constantPoolHandle cpool(thread, vfst.method()->constants()); 1920 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1921 Symbol* target_klass_name = nullptr; 1922 if (target_klass == nullptr) { 1923 // This klass should be resolved, but just in case, get the name in the klass slot. 1924 target_klass_name = cpool->klass_name_at(cc.index()); 1925 } 1926 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1927 } 1928 1929 1930 // The caller of generate_class_cast_message() (or one of its callers) 1931 // must use a ResourceMark in order to correctly free the result. 1932 char* SharedRuntime::generate_class_cast_message( 1933 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1934 const char* caster_name = caster_klass->external_name(); 1935 1936 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1937 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1938 target_klass->external_name(); 1939 1940 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1941 1942 const char* caster_klass_description = ""; 1943 const char* target_klass_description = ""; 1944 const char* klass_separator = ""; 1945 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1946 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1947 } else { 1948 caster_klass_description = caster_klass->class_in_module_of_loader(); 1949 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1950 klass_separator = (target_klass != nullptr) ? "; " : ""; 1951 } 1952 1953 // add 3 for parenthesis and preceding space 1954 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1955 1956 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1957 if (message == nullptr) { 1958 // Shouldn't happen, but don't cause even more problems if it does 1959 message = const_cast<char*>(caster_klass->external_name()); 1960 } else { 1961 jio_snprintf(message, 1962 msglen, 1963 "class %s cannot be cast to class %s (%s%s%s)", 1964 caster_name, 1965 target_name, 1966 caster_klass_description, 1967 klass_separator, 1968 target_klass_description 1969 ); 1970 } 1971 return message; 1972 } 1973 1974 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1975 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 1976 JRT_END 1977 1978 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1979 if (!SafepointSynchronize::is_synchronizing()) { 1980 // Only try quick_enter() if we're not trying to reach a safepoint 1981 // so that the calling thread reaches the safepoint more quickly. 1982 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 1983 return; 1984 } 1985 } 1986 // NO_ASYNC required because an async exception on the state transition destructor 1987 // would leave you with the lock held and it would never be released. 1988 // The normal monitorenter NullPointerException is thrown without acquiring a lock 1989 // and the model is that an exception implies the method failed. 1990 JRT_BLOCK_NO_ASYNC 1991 Handle h_obj(THREAD, obj); 1992 ObjectSynchronizer::enter(h_obj, lock, current); 1993 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1994 JRT_BLOCK_END 1995 } 1996 1997 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1998 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1999 SharedRuntime::monitor_enter_helper(obj, lock, current); 2000 JRT_END 2001 2002 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2003 assert(JavaThread::current() == current, "invariant"); 2004 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2005 ExceptionMark em(current); 2006 2007 // Check if C2_MacroAssembler::fast_unlock() or 2008 // C2_MacroAssembler::fast_unlock() unlocked an inflated 2009 // monitor before going slow path. Since there is no safepoint 2010 // polling when calling into the VM, we can be sure that the monitor 2011 // hasn't been deallocated. 2012 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2013 if (m != nullptr) { 2014 assert(!m->has_owner(current), "must be"); 2015 current->clear_unlocked_inflated_monitor(); 2016 2017 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2018 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2019 // Some other thread acquired the lock (or the monitor was 2020 // deflated). Either way we are done. 2021 return; 2022 } 2023 } 2024 2025 // The object could become unlocked through a JNI call, which we have no other checks for. 2026 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2027 if (obj->is_unlocked()) { 2028 if (CheckJNICalls) { 2029 fatal("Object has been unlocked by JNI"); 2030 } 2031 return; 2032 } 2033 ObjectSynchronizer::exit(obj, lock, current); 2034 } 2035 2036 // Handles the uncommon cases of monitor unlocking in compiled code 2037 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2038 assert(current == JavaThread::current(), "pre-condition"); 2039 SharedRuntime::monitor_exit_helper(obj, lock, current); 2040 JRT_END 2041 2042 #ifndef PRODUCT 2043 2044 void SharedRuntime::print_statistics() { 2045 ttyLocker ttyl; 2046 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2047 2048 SharedRuntime::print_ic_miss_histogram(); 2049 2050 // Dump the JRT_ENTRY counters 2051 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2052 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2053 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2054 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2055 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2056 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2057 2058 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2059 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2060 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2061 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2062 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2063 2064 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2065 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2066 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2067 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2068 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2069 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2070 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2071 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2072 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2073 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2074 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2075 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2076 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2077 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2078 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2079 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2080 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2081 2082 AdapterHandlerLibrary::print_statistics(); 2083 2084 if (xtty != nullptr) xtty->tail("statistics"); 2085 } 2086 2087 inline double percent(int64_t x, int64_t y) { 2088 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2089 } 2090 2091 class MethodArityHistogram { 2092 public: 2093 enum { MAX_ARITY = 256 }; 2094 private: 2095 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2096 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2097 static uint64_t _total_compiled_calls; 2098 static uint64_t _max_compiled_calls_per_method; 2099 static int _max_arity; // max. arity seen 2100 static int _max_size; // max. arg size seen 2101 2102 static void add_method_to_histogram(nmethod* nm) { 2103 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2104 if (method != nullptr) { 2105 ArgumentCount args(method->signature()); 2106 int arity = args.size() + (method->is_static() ? 0 : 1); 2107 int argsize = method->size_of_parameters(); 2108 arity = MIN2(arity, MAX_ARITY-1); 2109 argsize = MIN2(argsize, MAX_ARITY-1); 2110 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2111 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2112 _total_compiled_calls += count; 2113 _arity_histogram[arity] += count; 2114 _size_histogram[argsize] += count; 2115 _max_arity = MAX2(_max_arity, arity); 2116 _max_size = MAX2(_max_size, argsize); 2117 } 2118 } 2119 2120 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2121 const int N = MIN2(9, n); 2122 double sum = 0; 2123 double weighted_sum = 0; 2124 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2125 if (sum >= 1) { // prevent divide by zero or divide overflow 2126 double rest = sum; 2127 double percent = sum / 100; 2128 for (int i = 0; i <= N; i++) { 2129 rest -= (double)histo[i]; 2130 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2131 } 2132 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2133 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2134 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2135 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2136 } else { 2137 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2138 } 2139 } 2140 2141 void print_histogram() { 2142 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2143 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2144 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2145 print_histogram_helper(_max_size, _size_histogram, "size"); 2146 tty->cr(); 2147 } 2148 2149 public: 2150 MethodArityHistogram() { 2151 // Take the Compile_lock to protect against changes in the CodeBlob structures 2152 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2153 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2154 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2155 _max_arity = _max_size = 0; 2156 _total_compiled_calls = 0; 2157 _max_compiled_calls_per_method = 0; 2158 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2159 CodeCache::nmethods_do(add_method_to_histogram); 2160 print_histogram(); 2161 } 2162 }; 2163 2164 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2165 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2166 uint64_t MethodArityHistogram::_total_compiled_calls; 2167 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2168 int MethodArityHistogram::_max_arity; 2169 int MethodArityHistogram::_max_size; 2170 2171 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2172 tty->print_cr("Calls from compiled code:"); 2173 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2174 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2175 int64_t mono_i = _nof_interface_calls; 2176 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2177 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2178 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2179 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2180 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2181 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2182 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2183 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2184 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2185 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2186 tty->cr(); 2187 tty->print_cr("Note 1: counter updates are not MT-safe."); 2188 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2189 tty->print_cr(" %% in nested categories are relative to their category"); 2190 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2191 tty->cr(); 2192 2193 MethodArityHistogram h; 2194 } 2195 #endif 2196 2197 #ifndef PRODUCT 2198 static int _lookups; // number of calls to lookup 2199 static int _equals; // number of buckets checked with matching hash 2200 static int _archived_hits; // number of successful lookups in archived table 2201 static int _runtime_hits; // number of successful lookups in runtime table 2202 #endif 2203 2204 // A simple wrapper class around the calling convention information 2205 // that allows sharing of adapters for the same calling convention. 2206 class AdapterFingerPrint : public MetaspaceObj { 2207 private: 2208 enum { 2209 _basic_type_bits = 4, 2210 _basic_type_mask = right_n_bits(_basic_type_bits), 2211 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2212 }; 2213 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2214 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2215 2216 int _length; 2217 2218 static int data_offset() { return sizeof(AdapterFingerPrint); } 2219 int* data_pointer() { 2220 return (int*)((address)this + data_offset()); 2221 } 2222 2223 // Private construtor. Use allocate() to get an instance. 2224 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) { 2225 int* data = data_pointer(); 2226 // Pack the BasicTypes with 8 per int 2227 assert(len == length(total_args_passed), "sanity"); 2228 _length = len; 2229 int sig_index = 0; 2230 for (int index = 0; index < _length; index++) { 2231 int value = 0; 2232 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2233 int bt = adapter_encoding(sig_bt[sig_index++]); 2234 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2235 value = (value << _basic_type_bits) | bt; 2236 } 2237 data[index] = value; 2238 } 2239 } 2240 2241 // Call deallocate instead 2242 ~AdapterFingerPrint() { 2243 ShouldNotCallThis(); 2244 } 2245 2246 static int length(int total_args) { 2247 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int; 2248 } 2249 2250 static int compute_size_in_words(int len) { 2251 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int))); 2252 } 2253 2254 // Remap BasicTypes that are handled equivalently by the adapters. 2255 // These are correct for the current system but someday it might be 2256 // necessary to make this mapping platform dependent. 2257 static int adapter_encoding(BasicType in) { 2258 switch (in) { 2259 case T_BOOLEAN: 2260 case T_BYTE: 2261 case T_SHORT: 2262 case T_CHAR: 2263 // There are all promoted to T_INT in the calling convention 2264 return T_INT; 2265 2266 case T_OBJECT: 2267 case T_ARRAY: 2268 // In other words, we assume that any register good enough for 2269 // an int or long is good enough for a managed pointer. 2270 #ifdef _LP64 2271 return T_LONG; 2272 #else 2273 return T_INT; 2274 #endif 2275 2276 case T_INT: 2277 case T_LONG: 2278 case T_FLOAT: 2279 case T_DOUBLE: 2280 case T_VOID: 2281 return in; 2282 2283 default: 2284 ShouldNotReachHere(); 2285 return T_CONFLICT; 2286 } 2287 } 2288 2289 void* operator new(size_t size, size_t fp_size) throw() { 2290 assert(fp_size >= size, "sanity check"); 2291 void* p = AllocateHeap(fp_size, mtCode); 2292 memset(p, 0, fp_size); 2293 return p; 2294 } 2295 2296 template<typename Function> 2297 void iterate_args(Function function) { 2298 for (int i = 0; i < length(); i++) { 2299 unsigned val = (unsigned)value(i); 2300 // args are packed so that first/lower arguments are in the highest 2301 // bits of each int value, so iterate from highest to the lowest 2302 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2303 unsigned v = (val >> j) & _basic_type_mask; 2304 if (v == 0) { 2305 continue; 2306 } 2307 function(v); 2308 } 2309 } 2310 } 2311 2312 public: 2313 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) { 2314 int len = length(total_args_passed); 2315 int size_in_bytes = BytesPerWord * compute_size_in_words(len); 2316 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len); 2317 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match"); 2318 return afp; 2319 } 2320 2321 static void deallocate(AdapterFingerPrint* fp) { 2322 FreeHeap(fp); 2323 } 2324 2325 int value(int index) { 2326 int* data = data_pointer(); 2327 return data[index]; 2328 } 2329 2330 int length() { 2331 return _length; 2332 } 2333 2334 unsigned int compute_hash() { 2335 int hash = 0; 2336 for (int i = 0; i < length(); i++) { 2337 int v = value(i); 2338 //Add arithmetic operation to the hash, like +3 to improve hashing 2339 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2340 } 2341 return (unsigned int)hash; 2342 } 2343 2344 const char* as_string() { 2345 stringStream st; 2346 st.print("0x"); 2347 for (int i = 0; i < length(); i++) { 2348 st.print("%x", value(i)); 2349 } 2350 return st.as_string(); 2351 } 2352 2353 const char* as_basic_args_string() { 2354 stringStream st; 2355 bool long_prev = false; 2356 iterate_args([&] (int arg) { 2357 if (long_prev) { 2358 long_prev = false; 2359 if (arg == T_VOID) { 2360 st.print("J"); 2361 } else { 2362 st.print("L"); 2363 } 2364 } 2365 switch (arg) { 2366 case T_INT: st.print("I"); break; 2367 case T_LONG: long_prev = true; break; 2368 case T_FLOAT: st.print("F"); break; 2369 case T_DOUBLE: st.print("D"); break; 2370 case T_VOID: break; 2371 default: ShouldNotReachHere(); 2372 } 2373 }); 2374 if (long_prev) { 2375 st.print("L"); 2376 } 2377 return st.as_string(); 2378 } 2379 2380 BasicType* as_basic_type(int& nargs) { 2381 nargs = 0; 2382 GrowableArray<BasicType> btarray; 2383 bool long_prev = false; 2384 2385 iterate_args([&] (int arg) { 2386 if (long_prev) { 2387 long_prev = false; 2388 if (arg == T_VOID) { 2389 btarray.append(T_LONG); 2390 } else { 2391 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter 2392 } 2393 } 2394 switch (arg) { 2395 case T_INT: // fallthrough 2396 case T_FLOAT: // fallthrough 2397 case T_DOUBLE: 2398 case T_VOID: 2399 btarray.append((BasicType)arg); 2400 break; 2401 case T_LONG: 2402 long_prev = true; 2403 break; 2404 default: ShouldNotReachHere(); 2405 } 2406 }); 2407 2408 if (long_prev) { 2409 btarray.append(T_OBJECT); 2410 } 2411 2412 nargs = btarray.length(); 2413 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs); 2414 int index = 0; 2415 GrowableArrayIterator<BasicType> iter = btarray.begin(); 2416 while (iter != btarray.end()) { 2417 sig_bt[index++] = *iter; 2418 ++iter; 2419 } 2420 assert(index == btarray.length(), "sanity check"); 2421 #ifdef ASSERT 2422 { 2423 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt); 2424 assert(this->equals(compare_fp), "sanity check"); 2425 AdapterFingerPrint::deallocate(compare_fp); 2426 } 2427 #endif 2428 return sig_bt; 2429 } 2430 2431 bool equals(AdapterFingerPrint* other) { 2432 if (other->_length != _length) { 2433 return false; 2434 } else { 2435 for (int i = 0; i < _length; i++) { 2436 if (value(i) != other->value(i)) { 2437 return false; 2438 } 2439 } 2440 } 2441 return true; 2442 } 2443 2444 // methods required by virtue of being a MetaspaceObj 2445 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2446 int size() const { return compute_size_in_words(_length); } 2447 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2448 2449 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2450 NOT_PRODUCT(_equals++); 2451 return fp1->equals(fp2); 2452 } 2453 2454 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2455 return fp->compute_hash(); 2456 } 2457 }; 2458 2459 #if INCLUDE_CDS 2460 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2461 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2462 } 2463 2464 class ArchivedAdapterTable : public OffsetCompactHashtable< 2465 AdapterFingerPrint*, 2466 AdapterHandlerEntry*, 2467 adapter_fp_equals_compact_hashtable_entry> {}; 2468 #endif // INCLUDE_CDS 2469 2470 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2471 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2472 AnyObj::C_HEAP, mtCode, 2473 AdapterFingerPrint::compute_hash, 2474 AdapterFingerPrint::equals>; 2475 static AdapterHandlerTable* _adapter_handler_table; 2476 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2477 2478 // Find a entry with the same fingerprint if it exists 2479 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) { 2480 NOT_PRODUCT(_lookups++); 2481 assert_lock_strong(AdapterHandlerLibrary_lock); 2482 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2483 AdapterHandlerEntry* entry = nullptr; 2484 #if INCLUDE_CDS 2485 // if we are building the archive then the archived adapter table is 2486 // not valid and we need to use the ones added to the runtime table 2487 if (AOTCodeCache::is_using_adapter()) { 2488 // Search archived table first. It is read-only table so can be searched without lock 2489 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2490 #ifndef PRODUCT 2491 if (entry != nullptr) { 2492 _archived_hits++; 2493 } 2494 #endif 2495 } 2496 #endif // INCLUDE_CDS 2497 if (entry == nullptr) { 2498 assert_lock_strong(AdapterHandlerLibrary_lock); 2499 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2500 if (entry_p != nullptr) { 2501 entry = *entry_p; 2502 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2503 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2504 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2505 #ifndef PRODUCT 2506 _runtime_hits++; 2507 #endif 2508 } 2509 } 2510 AdapterFingerPrint::deallocate(fp); 2511 return entry; 2512 } 2513 2514 #ifndef PRODUCT 2515 static void print_table_statistics() { 2516 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2517 return sizeof(*key) + sizeof(*a); 2518 }; 2519 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2520 ts.print(tty, "AdapterHandlerTable"); 2521 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2522 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2523 int total_hits = _archived_hits + _runtime_hits; 2524 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)", 2525 _lookups, _equals, total_hits, _archived_hits, _runtime_hits); 2526 } 2527 #endif 2528 2529 // --------------------------------------------------------------------------- 2530 // Implementation of AdapterHandlerLibrary 2531 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2532 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2533 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2534 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2535 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2536 #if INCLUDE_CDS 2537 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2538 #endif // INCLUDE_CDS 2539 static const int AdapterHandlerLibrary_size = 16*K; 2540 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2541 volatile uint AdapterHandlerLibrary::_id_counter = 0; 2542 2543 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2544 assert(_buffer != nullptr, "should be initialized"); 2545 return _buffer; 2546 } 2547 2548 static void post_adapter_creation(const AdapterHandlerEntry* entry) { 2549 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2550 AdapterBlob* adapter_blob = entry->adapter_blob(); 2551 char blob_id[256]; 2552 jio_snprintf(blob_id, 2553 sizeof(blob_id), 2554 "%s(%s)", 2555 adapter_blob->name(), 2556 entry->fingerprint()->as_string()); 2557 if (Forte::is_enabled()) { 2558 Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end()); 2559 } 2560 2561 if (JvmtiExport::should_post_dynamic_code_generated()) { 2562 JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end()); 2563 } 2564 } 2565 } 2566 2567 void AdapterHandlerLibrary::initialize() { 2568 { 2569 ResourceMark rm; 2570 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2571 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2572 } 2573 2574 #if INCLUDE_CDS 2575 // Link adapters in AOT Cache to their code in AOT Code Cache 2576 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) { 2577 link_aot_adapters(); 2578 lookup_simple_adapters(); 2579 return; 2580 } 2581 #endif // INCLUDE_CDS 2582 2583 ResourceMark rm; 2584 { 2585 MutexLocker mu(AdapterHandlerLibrary_lock); 2586 2587 _no_arg_handler = create_adapter(0, nullptr); 2588 2589 BasicType obj_args[] = { T_OBJECT }; 2590 _obj_arg_handler = create_adapter(1, obj_args); 2591 2592 BasicType int_args[] = { T_INT }; 2593 _int_arg_handler = create_adapter(1, int_args); 2594 2595 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2596 _obj_int_arg_handler = create_adapter(2, obj_int_args); 2597 2598 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2599 _obj_obj_arg_handler = create_adapter(2, obj_obj_args); 2600 2601 // we should always get an entry back but we don't have any 2602 // associated blob on Zero 2603 assert(_no_arg_handler != nullptr && 2604 _obj_arg_handler != nullptr && 2605 _int_arg_handler != nullptr && 2606 _obj_int_arg_handler != nullptr && 2607 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created"); 2608 } 2609 2610 // Outside of the lock 2611 #ifndef ZERO 2612 // no blobs to register when we are on Zero 2613 post_adapter_creation(_no_arg_handler); 2614 post_adapter_creation(_obj_arg_handler); 2615 post_adapter_creation(_int_arg_handler); 2616 post_adapter_creation(_obj_int_arg_handler); 2617 post_adapter_creation(_obj_obj_arg_handler); 2618 #endif // ZERO 2619 } 2620 2621 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2622 uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1); 2623 assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods"); 2624 return AdapterHandlerEntry::allocate(id, fingerprint); 2625 } 2626 2627 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2628 int total_args_passed = method->size_of_parameters(); // All args on stack 2629 if (total_args_passed == 0) { 2630 return _no_arg_handler; 2631 } else if (total_args_passed == 1) { 2632 if (!method->is_static()) { 2633 return _obj_arg_handler; 2634 } 2635 switch (method->signature()->char_at(1)) { 2636 case JVM_SIGNATURE_CLASS: 2637 case JVM_SIGNATURE_ARRAY: 2638 return _obj_arg_handler; 2639 case JVM_SIGNATURE_INT: 2640 case JVM_SIGNATURE_BOOLEAN: 2641 case JVM_SIGNATURE_CHAR: 2642 case JVM_SIGNATURE_BYTE: 2643 case JVM_SIGNATURE_SHORT: 2644 return _int_arg_handler; 2645 } 2646 } else if (total_args_passed == 2 && 2647 !method->is_static()) { 2648 switch (method->signature()->char_at(1)) { 2649 case JVM_SIGNATURE_CLASS: 2650 case JVM_SIGNATURE_ARRAY: 2651 return _obj_obj_arg_handler; 2652 case JVM_SIGNATURE_INT: 2653 case JVM_SIGNATURE_BOOLEAN: 2654 case JVM_SIGNATURE_CHAR: 2655 case JVM_SIGNATURE_BYTE: 2656 case JVM_SIGNATURE_SHORT: 2657 return _obj_int_arg_handler; 2658 } 2659 } 2660 return nullptr; 2661 } 2662 2663 class AdapterSignatureIterator : public SignatureIterator { 2664 private: 2665 BasicType stack_sig_bt[16]; 2666 BasicType* sig_bt; 2667 int index; 2668 2669 public: 2670 AdapterSignatureIterator(Symbol* signature, 2671 fingerprint_t fingerprint, 2672 bool is_static, 2673 int total_args_passed) : 2674 SignatureIterator(signature, fingerprint), 2675 index(0) 2676 { 2677 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2678 if (!is_static) { // Pass in receiver first 2679 sig_bt[index++] = T_OBJECT; 2680 } 2681 do_parameters_on(this); 2682 } 2683 2684 BasicType* basic_types() { 2685 return sig_bt; 2686 } 2687 2688 #ifdef ASSERT 2689 int slots() { 2690 return index; 2691 } 2692 #endif 2693 2694 private: 2695 2696 friend class SignatureIterator; // so do_parameters_on can call do_type 2697 void do_type(BasicType type) { 2698 sig_bt[index++] = type; 2699 if (type == T_LONG || type == T_DOUBLE) { 2700 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2701 } 2702 } 2703 }; 2704 2705 2706 const char* AdapterHandlerEntry::_entry_names[] = { 2707 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 2708 }; 2709 2710 #ifdef ASSERT 2711 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) { 2712 // we can only check for the same code if there is any 2713 #ifndef ZERO 2714 AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true); 2715 assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison"); 2716 assert(comparison_entry->compare_code(cached_entry), "code must match"); 2717 // Release the one just created 2718 AdapterHandlerEntry::deallocate(comparison_entry); 2719 # endif // ZERO 2720 } 2721 #endif /* ASSERT*/ 2722 2723 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2724 assert(!method->is_abstract(), "abstract methods do not have adapters"); 2725 // Use customized signature handler. Need to lock around updates to 2726 // the _adapter_handler_table (it is not safe for concurrent readers 2727 // and a single writer: this could be fixed if it becomes a 2728 // problem). 2729 2730 // Fast-path for trivial adapters 2731 AdapterHandlerEntry* entry = get_simple_adapter(method); 2732 if (entry != nullptr) { 2733 return entry; 2734 } 2735 2736 ResourceMark rm; 2737 bool new_entry = false; 2738 2739 // Fill in the signature array, for the calling-convention call. 2740 int total_args_passed = method->size_of_parameters(); // All args on stack 2741 2742 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2743 method->is_static(), total_args_passed); 2744 assert(si.slots() == total_args_passed, ""); 2745 BasicType* sig_bt = si.basic_types(); 2746 { 2747 MutexLocker mu(AdapterHandlerLibrary_lock); 2748 2749 // Lookup method signature's fingerprint 2750 entry = lookup(total_args_passed, sig_bt); 2751 2752 if (entry != nullptr) { 2753 #ifndef ZERO 2754 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 2755 #endif 2756 #ifdef ASSERT 2757 if (!entry->in_aot_cache() && VerifyAdapterSharing) { 2758 verify_adapter_sharing(total_args_passed, sig_bt, entry); 2759 } 2760 #endif 2761 } else { 2762 entry = create_adapter(total_args_passed, sig_bt); 2763 if (entry != nullptr) { 2764 new_entry = true; 2765 } 2766 } 2767 } 2768 2769 // Outside of the lock 2770 if (new_entry) { 2771 post_adapter_creation(entry); 2772 } 2773 return entry; 2774 } 2775 2776 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 2777 ResourceMark rm; 2778 const char* name = AdapterHandlerLibrary::name(handler); 2779 const uint32_t id = AdapterHandlerLibrary::id(handler); 2780 2781 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name); 2782 if (blob != nullptr) { 2783 handler->set_adapter_blob(blob->as_adapter_blob()); 2784 } 2785 } 2786 2787 #ifndef PRODUCT 2788 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) { 2789 ttyLocker ttyl; 2790 ResourceMark rm; 2791 int insts_size; 2792 // on Zero the blob may be null 2793 handler->print_adapter_on(tty); 2794 AdapterBlob* adapter_blob = handler->adapter_blob(); 2795 if (adapter_blob == nullptr) { 2796 return; 2797 } 2798 insts_size = adapter_blob->code_size(); 2799 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 2800 handler->fingerprint()->as_basic_args_string(), 2801 handler->fingerprint()->as_string(), insts_size); 2802 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 2803 if (Verbose || PrintStubCode) { 2804 address first_pc = adapter_blob->content_begin(); 2805 if (first_pc != nullptr) { 2806 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 2807 st->cr(); 2808 } 2809 } 2810 } 2811 #endif // PRODUCT 2812 2813 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT], 2814 int entry_offset[AdapterBlob::ENTRY_COUNT]) { 2815 entry_offset[AdapterBlob::I2C] = 0; 2816 entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C]; 2817 entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C]; 2818 if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) { 2819 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1; 2820 } else { 2821 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C]; 2822 } 2823 } 2824 2825 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler, 2826 int total_args_passed, 2827 BasicType* sig_bt, 2828 bool is_transient) { 2829 if (log_is_enabled(Info, perf, class, link)) { 2830 ClassLoader::perf_method_adapters_count()->inc(); 2831 } 2832 2833 #ifndef ZERO 2834 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2835 CodeBuffer buffer(buf); 2836 short buffer_locs[20]; 2837 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2838 sizeof(buffer_locs)/sizeof(relocInfo)); 2839 MacroAssembler masm(&buffer); 2840 VMRegPair stack_regs[16]; 2841 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2842 2843 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2844 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2845 address entry_address[AdapterBlob::ENTRY_COUNT]; 2846 SharedRuntime::generate_i2c2i_adapters(&masm, 2847 total_args_passed, 2848 comp_args_on_stack, 2849 sig_bt, 2850 regs, 2851 entry_address); 2852 // On zero there is no code to save and no need to create a blob and 2853 // or relocate the handler. 2854 int entry_offset[AdapterBlob::ENTRY_COUNT]; 2855 address_to_offset(entry_address, entry_offset); 2856 #ifdef ASSERT 2857 if (VerifyAdapterSharing) { 2858 handler->save_code(buf->code_begin(), buffer.insts_size()); 2859 if (is_transient) { 2860 return true; 2861 } 2862 } 2863 #endif 2864 AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset); 2865 if (adapter_blob == nullptr) { 2866 // CodeCache is full, disable compilation 2867 // Ought to log this but compile log is only per compile thread 2868 // and we're some non descript Java thread. 2869 return false; 2870 } 2871 handler->set_adapter_blob(adapter_blob); 2872 if (!is_transient && AOTCodeCache::is_dumping_adapter()) { 2873 // try to save generated code 2874 const char* name = AdapterHandlerLibrary::name(handler); 2875 const uint32_t id = AdapterHandlerLibrary::id(handler); 2876 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name); 2877 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled"); 2878 } 2879 #endif // ZERO 2880 2881 #ifndef PRODUCT 2882 // debugging support 2883 if (PrintAdapterHandlers || PrintStubCode) { 2884 print_adapter_handler_info(tty, handler); 2885 } 2886 #endif 2887 2888 return true; 2889 } 2890 2891 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed, 2892 BasicType* sig_bt, 2893 bool is_transient) { 2894 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2895 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 2896 if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) { 2897 AdapterHandlerEntry::deallocate(handler); 2898 return nullptr; 2899 } 2900 if (!is_transient) { 2901 assert_lock_strong(AdapterHandlerLibrary_lock); 2902 _adapter_handler_table->put(fp, handler); 2903 } 2904 return handler; 2905 } 2906 2907 #if INCLUDE_CDS 2908 void AdapterHandlerEntry::remove_unshareable_info() { 2909 #ifdef ASSERT 2910 _saved_code = nullptr; 2911 _saved_code_length = 0; 2912 #endif // ASSERT 2913 _adapter_blob = nullptr; 2914 _linked = false; 2915 } 2916 2917 class CopyAdapterTableToArchive : StackObj { 2918 private: 2919 CompactHashtableWriter* _writer; 2920 ArchiveBuilder* _builder; 2921 public: 2922 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 2923 _builder(ArchiveBuilder::current()) 2924 {} 2925 2926 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 2927 LogStreamHandle(Trace, aot) lsh; 2928 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 2929 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 2930 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 2931 assert(buffered_fp != nullptr,"sanity check"); 2932 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 2933 assert(buffered_entry != nullptr,"sanity check"); 2934 2935 uint hash = fp->compute_hash(); 2936 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 2937 _writer->add(hash, delta); 2938 if (lsh.is_enabled()) { 2939 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 2940 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 2941 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 2942 } 2943 } else { 2944 if (lsh.is_enabled()) { 2945 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 2946 } 2947 } 2948 return true; 2949 } 2950 }; 2951 2952 void AdapterHandlerLibrary::dump_aot_adapter_table() { 2953 CompactHashtableStats stats; 2954 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 2955 CopyAdapterTableToArchive copy(&writer); 2956 _adapter_handler_table->iterate(©); 2957 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 2958 } 2959 2960 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 2961 _aot_adapter_handler_table.serialize_header(soc); 2962 } 2963 2964 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 2965 #ifdef ASSERT 2966 if (TestAOTAdapterLinkFailure) { 2967 return; 2968 } 2969 #endif 2970 lookup_aot_cache(handler); 2971 #ifndef PRODUCT 2972 // debugging support 2973 if (PrintAdapterHandlers || PrintStubCode) { 2974 print_adapter_handler_info(tty, handler); 2975 } 2976 #endif 2977 } 2978 2979 // This method is used during production run to link archived adapters (stored in AOT Cache) 2980 // to their code in AOT Code Cache 2981 void AdapterHandlerEntry::link() { 2982 ResourceMark rm; 2983 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 2984 bool generate_code = false; 2985 // Generate code only if AOTCodeCache is not available, or 2986 // caching adapters is disabled, or we fail to link 2987 // the AdapterHandlerEntry to its code in the AOTCodeCache 2988 if (AOTCodeCache::is_using_adapter()) { 2989 AdapterHandlerLibrary::link_aot_adapter_handler(this); 2990 // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null 2991 if (_adapter_blob == nullptr) { 2992 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 2993 generate_code = true; 2994 } 2995 } else { 2996 generate_code = true; 2997 } 2998 if (generate_code) { 2999 int nargs; 3000 BasicType* bt = _fingerprint->as_basic_type(nargs); 3001 if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) { 3002 // Don't throw exceptions during VM initialization because java.lang.* classes 3003 // might not have been initialized, causing problems when constructing the 3004 // Java exception object. 3005 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 3006 } 3007 } 3008 if (_adapter_blob != nullptr) { 3009 post_adapter_creation(this); 3010 } 3011 assert(_linked, "AdapterHandlerEntry must now be linked"); 3012 } 3013 3014 void AdapterHandlerLibrary::link_aot_adapters() { 3015 uint max_id = 0; 3016 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available"); 3017 /* It is possible that some adapters generated in assembly phase are not stored in the cache. 3018 * That implies adapter ids of the adapters in the cache may not be contiguous. 3019 * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may 3020 * result in collision of adapter ids between AOT stored handlers and runtime generated handlers. 3021 * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers. 3022 */ 3023 _aot_adapter_handler_table.iterate_all([&](AdapterHandlerEntry* entry) { 3024 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 3025 entry->link(); 3026 max_id = MAX2(max_id, entry->id()); 3027 }); 3028 // Set adapter id to the maximum id found in the AOTCache 3029 assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage"); 3030 _id_counter = max_id; 3031 } 3032 3033 // This method is called during production run to lookup simple adapters 3034 // in the archived adapter handler table 3035 void AdapterHandlerLibrary::lookup_simple_adapters() { 3036 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 3037 3038 MutexLocker mu(AdapterHandlerLibrary_lock); 3039 _no_arg_handler = lookup(0, nullptr); 3040 3041 BasicType obj_args[] = { T_OBJECT }; 3042 _obj_arg_handler = lookup(1, obj_args); 3043 3044 BasicType int_args[] = { T_INT }; 3045 _int_arg_handler = lookup(1, int_args); 3046 3047 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 3048 _obj_int_arg_handler = lookup(2, obj_int_args); 3049 3050 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 3051 _obj_obj_arg_handler = lookup(2, obj_obj_args); 3052 3053 assert(_no_arg_handler != nullptr && 3054 _obj_arg_handler != nullptr && 3055 _int_arg_handler != nullptr && 3056 _obj_int_arg_handler != nullptr && 3057 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3058 assert(_no_arg_handler->is_linked() && 3059 _obj_arg_handler->is_linked() && 3060 _int_arg_handler->is_linked() && 3061 _obj_int_arg_handler->is_linked() && 3062 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3063 } 3064 #endif // INCLUDE_CDS 3065 3066 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3067 LogStreamHandle(Trace, aot) lsh; 3068 if (lsh.is_enabled()) { 3069 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3070 lsh.cr(); 3071 } 3072 it->push(&_fingerprint); 3073 } 3074 3075 AdapterHandlerEntry::~AdapterHandlerEntry() { 3076 if (_fingerprint != nullptr) { 3077 AdapterFingerPrint::deallocate(_fingerprint); 3078 _fingerprint = nullptr; 3079 } 3080 #ifdef ASSERT 3081 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3082 #endif 3083 FreeHeap(this); 3084 } 3085 3086 3087 #ifdef ASSERT 3088 // Capture the code before relocation so that it can be compared 3089 // against other versions. If the code is captured after relocation 3090 // then relative instructions won't be equivalent. 3091 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3092 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3093 _saved_code_length = length; 3094 memcpy(_saved_code, buffer, length); 3095 } 3096 3097 3098 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3099 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3100 3101 if (other->_saved_code_length != _saved_code_length) { 3102 return false; 3103 } 3104 3105 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3106 } 3107 #endif 3108 3109 3110 /** 3111 * Create a native wrapper for this native method. The wrapper converts the 3112 * Java-compiled calling convention to the native convention, handles 3113 * arguments, and transitions to native. On return from the native we transition 3114 * back to java blocking if a safepoint is in progress. 3115 */ 3116 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3117 ResourceMark rm; 3118 nmethod* nm = nullptr; 3119 3120 // Check if memory should be freed before allocation 3121 CodeCache::gc_on_allocation(); 3122 3123 assert(method->is_native(), "must be native"); 3124 assert(method->is_special_native_intrinsic() || 3125 method->has_native_function(), "must have something valid to call!"); 3126 3127 { 3128 // Perform the work while holding the lock, but perform any printing outside the lock 3129 MutexLocker mu(AdapterHandlerLibrary_lock); 3130 // See if somebody beat us to it 3131 if (method->code() != nullptr) { 3132 return; 3133 } 3134 3135 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3136 assert(compile_id > 0, "Must generate native wrapper"); 3137 3138 3139 ResourceMark rm; 3140 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3141 if (buf != nullptr) { 3142 CodeBuffer buffer(buf); 3143 3144 if (method->is_continuation_enter_intrinsic()) { 3145 buffer.initialize_stubs_size(192); 3146 } 3147 3148 struct { double data[20]; } locs_buf; 3149 struct { double data[20]; } stubs_locs_buf; 3150 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3151 #if defined(AARCH64) || defined(PPC64) 3152 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3153 // in the constant pool to ensure ordering between the barrier and oops 3154 // accesses. For native_wrappers we need a constant. 3155 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3156 // static java call that is resolved in the runtime. 3157 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3158 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3159 } 3160 #endif 3161 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3162 MacroAssembler _masm(&buffer); 3163 3164 // Fill in the signature array, for the calling-convention call. 3165 const int total_args_passed = method->size_of_parameters(); 3166 3167 VMRegPair stack_regs[16]; 3168 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3169 3170 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3171 method->is_static(), total_args_passed); 3172 BasicType* sig_bt = si.basic_types(); 3173 assert(si.slots() == total_args_passed, ""); 3174 BasicType ret_type = si.return_type(); 3175 3176 // Now get the compiled-Java arguments layout. 3177 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3178 3179 // Generate the compiled-to-native wrapper code 3180 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3181 3182 if (nm != nullptr) { 3183 { 3184 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3185 if (nm->make_in_use()) { 3186 method->set_code(method, nm); 3187 } 3188 } 3189 3190 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3191 if (directive->PrintAssemblyOption) { 3192 nm->print_code(); 3193 } 3194 DirectivesStack::release(directive); 3195 } 3196 } 3197 } // Unlock AdapterHandlerLibrary_lock 3198 3199 3200 // Install the generated code. 3201 if (nm != nullptr) { 3202 const char *msg = method->is_static() ? "(static)" : ""; 3203 CompileTask::print_ul(nm, msg); 3204 if (PrintCompilation) { 3205 ttyLocker ttyl; 3206 CompileTask::print(tty, nm, msg); 3207 } 3208 nm->post_compiled_method_load_event(); 3209 } 3210 } 3211 3212 // ------------------------------------------------------------------------- 3213 // Java-Java calling convention 3214 // (what you use when Java calls Java) 3215 3216 //------------------------------name_for_receiver---------------------------------- 3217 // For a given signature, return the VMReg for parameter 0. 3218 VMReg SharedRuntime::name_for_receiver() { 3219 VMRegPair regs; 3220 BasicType sig_bt = T_OBJECT; 3221 (void) java_calling_convention(&sig_bt, ®s, 1); 3222 // Return argument 0 register. In the LP64 build pointers 3223 // take 2 registers, but the VM wants only the 'main' name. 3224 return regs.first(); 3225 } 3226 3227 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3228 // This method is returning a data structure allocating as a 3229 // ResourceObject, so do not put any ResourceMarks in here. 3230 3231 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3232 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3233 int cnt = 0; 3234 if (has_receiver) { 3235 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3236 } 3237 3238 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3239 BasicType type = ss.type(); 3240 sig_bt[cnt++] = type; 3241 if (is_double_word_type(type)) 3242 sig_bt[cnt++] = T_VOID; 3243 } 3244 3245 if (has_appendix) { 3246 sig_bt[cnt++] = T_OBJECT; 3247 } 3248 3249 assert(cnt < 256, "grow table size"); 3250 3251 int comp_args_on_stack; 3252 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3253 3254 // the calling convention doesn't count out_preserve_stack_slots so 3255 // we must add that in to get "true" stack offsets. 3256 3257 if (comp_args_on_stack) { 3258 for (int i = 0; i < cnt; i++) { 3259 VMReg reg1 = regs[i].first(); 3260 if (reg1->is_stack()) { 3261 // Yuck 3262 reg1 = reg1->bias(out_preserve_stack_slots()); 3263 } 3264 VMReg reg2 = regs[i].second(); 3265 if (reg2->is_stack()) { 3266 // Yuck 3267 reg2 = reg2->bias(out_preserve_stack_slots()); 3268 } 3269 regs[i].set_pair(reg2, reg1); 3270 } 3271 } 3272 3273 // results 3274 *arg_size = cnt; 3275 return regs; 3276 } 3277 3278 // OSR Migration Code 3279 // 3280 // This code is used convert interpreter frames into compiled frames. It is 3281 // called from very start of a compiled OSR nmethod. A temp array is 3282 // allocated to hold the interesting bits of the interpreter frame. All 3283 // active locks are inflated to allow them to move. The displaced headers and 3284 // active interpreter locals are copied into the temp buffer. Then we return 3285 // back to the compiled code. The compiled code then pops the current 3286 // interpreter frame off the stack and pushes a new compiled frame. Then it 3287 // copies the interpreter locals and displaced headers where it wants. 3288 // Finally it calls back to free the temp buffer. 3289 // 3290 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3291 3292 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3293 assert(current == JavaThread::current(), "pre-condition"); 3294 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 3295 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3296 // frame. The stack watermark code below ensures that the interpreted frame is processed 3297 // before it gets unwound. This is helpful as the size of the compiled frame could be 3298 // larger than the interpreted frame, which could result in the new frame not being 3299 // processed correctly. 3300 StackWatermarkSet::before_unwind(current); 3301 3302 // 3303 // This code is dependent on the memory layout of the interpreter local 3304 // array and the monitors. On all of our platforms the layout is identical 3305 // so this code is shared. If some platform lays the their arrays out 3306 // differently then this code could move to platform specific code or 3307 // the code here could be modified to copy items one at a time using 3308 // frame accessor methods and be platform independent. 3309 3310 frame fr = current->last_frame(); 3311 assert(fr.is_interpreted_frame(), ""); 3312 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3313 3314 // Figure out how many monitors are active. 3315 int active_monitor_count = 0; 3316 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3317 kptr < fr.interpreter_frame_monitor_begin(); 3318 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3319 if (kptr->obj() != nullptr) active_monitor_count++; 3320 } 3321 3322 // QQQ we could place number of active monitors in the array so that compiled code 3323 // could double check it. 3324 3325 Method* moop = fr.interpreter_frame_method(); 3326 int max_locals = moop->max_locals(); 3327 // Allocate temp buffer, 1 word per local & 2 per active monitor 3328 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3329 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3330 3331 // Copy the locals. Order is preserved so that loading of longs works. 3332 // Since there's no GC I can copy the oops blindly. 3333 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3334 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3335 (HeapWord*)&buf[0], 3336 max_locals); 3337 3338 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3339 int i = max_locals; 3340 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3341 kptr2 < fr.interpreter_frame_monitor_begin(); 3342 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3343 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3344 BasicLock *lock = kptr2->lock(); 3345 if (UseObjectMonitorTable) { 3346 buf[i] = (intptr_t)lock->object_monitor_cache(); 3347 } 3348 #ifdef ASSERT 3349 else { 3350 buf[i] = badDispHeaderOSR; 3351 } 3352 #endif 3353 i++; 3354 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3355 } 3356 } 3357 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3358 3359 RegisterMap map(current, 3360 RegisterMap::UpdateMap::skip, 3361 RegisterMap::ProcessFrames::include, 3362 RegisterMap::WalkContinuation::skip); 3363 frame sender = fr.sender(&map); 3364 if (sender.is_interpreted_frame()) { 3365 current->push_cont_fastpath(sender.unextended_sp()); 3366 } 3367 3368 return buf; 3369 JRT_END 3370 3371 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3372 FREE_C_HEAP_ARRAY(intptr_t, buf); 3373 JRT_END 3374 3375 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) { 3376 return handler->fingerprint()->as_basic_args_string(); 3377 } 3378 3379 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) { 3380 return handler->id(); 3381 } 3382 3383 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3384 bool found = false; 3385 #if INCLUDE_CDS 3386 if (AOTCodeCache::is_using_adapter()) { 3387 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3388 if (b == handler->adapter_blob()) { 3389 found = true; 3390 st->print("Adapter for signature: "); 3391 handler->print_adapter_on(st); 3392 return false; // abort iteration 3393 } else { 3394 return true; // keep looking 3395 } 3396 }; 3397 _aot_adapter_handler_table.iterate(findblob_archived_table); 3398 } 3399 #endif // INCLUDE_CDS 3400 if (!found) { 3401 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* handler) { 3402 if (b == handler->adapter_blob()) { 3403 found = true; 3404 st->print("Adapter for signature: "); 3405 handler->print_adapter_on(st); 3406 return false; // abort iteration 3407 } else { 3408 return true; // keep looking 3409 } 3410 }; 3411 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3412 _adapter_handler_table->iterate(findblob_runtime_table); 3413 } 3414 assert(found, "Should have found handler"); 3415 } 3416 3417 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3418 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3419 if (adapter_blob() != nullptr) { 3420 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3421 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3422 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3423 if (get_c2i_no_clinit_check_entry() != nullptr) { 3424 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3425 } 3426 } 3427 st->cr(); 3428 } 3429 3430 #ifndef PRODUCT 3431 3432 void AdapterHandlerLibrary::print_statistics() { 3433 print_table_statistics(); 3434 } 3435 3436 #endif /* PRODUCT */ 3437 3438 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3439 assert(current == JavaThread::current(), "pre-condition"); 3440 StackOverflow* overflow_state = current->stack_overflow_state(); 3441 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3442 overflow_state->set_reserved_stack_activation(current->stack_base()); 3443 JRT_END 3444 3445 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3446 ResourceMark rm(current); 3447 frame activation; 3448 nmethod* nm = nullptr; 3449 int count = 1; 3450 3451 assert(fr.is_java_frame(), "Must start on Java frame"); 3452 3453 RegisterMap map(JavaThread::current(), 3454 RegisterMap::UpdateMap::skip, 3455 RegisterMap::ProcessFrames::skip, 3456 RegisterMap::WalkContinuation::skip); // don't walk continuations 3457 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3458 if (!fr.is_java_frame()) { 3459 continue; 3460 } 3461 3462 Method* method = nullptr; 3463 bool found = false; 3464 if (fr.is_interpreted_frame()) { 3465 method = fr.interpreter_frame_method(); 3466 if (method != nullptr && method->has_reserved_stack_access()) { 3467 found = true; 3468 } 3469 } else { 3470 CodeBlob* cb = fr.cb(); 3471 if (cb != nullptr && cb->is_nmethod()) { 3472 nm = cb->as_nmethod(); 3473 method = nm->method(); 3474 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3475 method = sd->method(); 3476 if (method != nullptr && method->has_reserved_stack_access()) { 3477 found = true; 3478 } 3479 } 3480 } 3481 } 3482 if (found) { 3483 activation = fr; 3484 warning("Potentially dangerous stack overflow in " 3485 "ReservedStackAccess annotated method %s [%d]", 3486 method->name_and_sig_as_C_string(), count++); 3487 EventReservedStackActivation event; 3488 if (event.should_commit()) { 3489 event.set_method(method); 3490 event.commit(); 3491 } 3492 } 3493 } 3494 return activation; 3495 } 3496 3497 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3498 // After any safepoint, just before going back to compiled code, 3499 // we inform the GC that we will be doing initializing writes to 3500 // this object in the future without emitting card-marks, so 3501 // GC may take any compensating steps. 3502 3503 oop new_obj = current->vm_result_oop(); 3504 if (new_obj == nullptr) return; 3505 3506 BarrierSet *bs = BarrierSet::barrier_set(); 3507 bs->on_slowpath_allocation_exit(current, new_obj); 3508 } --- EOF ---