1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveBuilder.hpp"
  26 #include "cds/archiveUtils.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/aotCodeCache.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/compiledIC.hpp"
  35 #include "code/nmethod.inline.hpp"
  36 #include "code/scopeDesc.hpp"
  37 #include "code/vtableStubs.hpp"
  38 #include "compiler/abstractCompiler.hpp"
  39 #include "compiler/compileBroker.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/interpreterRuntime.hpp"
  45 #include "jfr/jfrEvents.hpp"
  46 #include "jvm.h"
  47 #include "logging/log.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "metaprogramming/primitiveConversions.hpp"
  51 #include "oops/klass.hpp"
  52 #include "oops/method.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "prims/forte.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/methodHandles.hpp"
  59 #include "prims/nativeLookup.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/atomicAccess.hpp"
  62 #include "runtime/basicLock.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/init.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/jniHandles.inline.hpp"
  70 #include "runtime/osThread.hpp"
  71 #include "runtime/perfData.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/synchronizer.hpp"
  76 #include "runtime/timerTrace.hpp"
  77 #include "runtime/vframe.inline.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vm_version.hpp"

  80 #include "utilities/copy.hpp"
  81 #include "utilities/dtrace.hpp"
  82 #include "utilities/events.hpp"
  83 #include "utilities/globalDefinitions.hpp"
  84 #include "utilities/hashTable.hpp"
  85 #include "utilities/macros.hpp"
  86 #include "utilities/xmlstream.hpp"
  87 #ifdef COMPILER1
  88 #include "c1/c1_Runtime1.hpp"
  89 #endif
  90 #if INCLUDE_JFR
  91 #include "jfr/jfr.inline.hpp"
  92 #endif
  93 
  94 // Shared runtime stub routines reside in their own unique blob with a
  95 // single entry point
  96 
  97 
  98 #define SHARED_STUB_FIELD_DEFINE(name, type) \
  99   type*       SharedRuntime::BLOB_FIELD_NAME(name);
 100   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
 101 #undef SHARED_STUB_FIELD_DEFINE
 102 
 103 nmethod*            SharedRuntime::_cont_doYield_stub;
 104 






 105 #if 0
 106 // TODO tweak global stub name generation to match this
 107 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 108 const char *SharedRuntime::_stub_names[] = {
 109   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 110 };
 111 #endif
 112 
 113 //----------------------------generate_stubs-----------------------------------
 114 void SharedRuntime::generate_initial_stubs() {
 115   // Build this early so it's available for the interpreter.
 116   _throw_StackOverflowError_blob =
 117     generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
 118                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 119 }
 120 
 121 void SharedRuntime::generate_stubs() {
 122   _wrong_method_blob =
 123     generate_resolve_blob(StubId::shared_wrong_method_id,
 124                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 125   _wrong_method_abstract_blob =
 126     generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
 127                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 128   _ic_miss_blob =
 129     generate_resolve_blob(StubId::shared_ic_miss_id,
 130                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 131   _resolve_opt_virtual_call_blob =
 132     generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
 133                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 134   _resolve_virtual_call_blob =
 135     generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
 136                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 137   _resolve_static_call_blob =
 138     generate_resolve_blob(StubId::shared_resolve_static_call_id,
 139                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 140 
 141   _throw_delayed_StackOverflowError_blob =
 142     generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
 143                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 144 
 145   _throw_AbstractMethodError_blob =
 146     generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
 147                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 148 
 149   _throw_IncompatibleClassChangeError_blob =
 150     generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
 151                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 152 
 153   _throw_NullPointerException_at_call_blob =
 154     generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
 155                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 156 
 157 #if COMPILER2_OR_JVMCI
 158   // Vectors are generated only by C2 and JVMCI.
 159   bool support_wide = is_wide_vector(MaxVectorSize);
 160   if (support_wide) {
 161     _polling_page_vectors_safepoint_handler_blob =
 162       generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
 163                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 164   }
 165 #endif // COMPILER2_OR_JVMCI
 166   _polling_page_safepoint_handler_blob =
 167     generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
 168                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 169   _polling_page_return_handler_blob =
 170     generate_handler_blob(StubId::shared_polling_page_return_handler_id,
 171                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 172 
 173   generate_deopt_blob();












 174 }
 175 
 176 void SharedRuntime::init_adapter_library() {
 177   AdapterHandlerLibrary::initialize();
 178 }
 179 







































 180 #if INCLUDE_JFR
 181 //------------------------------generate jfr runtime stubs ------
 182 void SharedRuntime::generate_jfr_stubs() {
 183   ResourceMark rm;
 184   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 185   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 186 
 187   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 188   _jfr_return_lease_blob = generate_jfr_return_lease();
 189 }
 190 
 191 #endif // INCLUDE_JFR
 192 
 193 #include <math.h>
 194 
 195 // Implementation of SharedRuntime
 196 
 197 #ifndef PRODUCT
 198 // For statistics
 199 uint SharedRuntime::_ic_miss_ctr = 0;
 200 uint SharedRuntime::_wrong_method_ctr = 0;
 201 uint SharedRuntime::_resolve_static_ctr = 0;
 202 uint SharedRuntime::_resolve_virtual_ctr = 0;
 203 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;


 204 uint SharedRuntime::_implicit_null_throws = 0;
 205 uint SharedRuntime::_implicit_div0_throws = 0;
 206 
 207 int64_t SharedRuntime::_nof_normal_calls = 0;
 208 int64_t SharedRuntime::_nof_inlined_calls = 0;
 209 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 210 int64_t SharedRuntime::_nof_static_calls = 0;
 211 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 212 int64_t SharedRuntime::_nof_interface_calls = 0;
 213 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 214 
 215 uint SharedRuntime::_new_instance_ctr=0;
 216 uint SharedRuntime::_new_array_ctr=0;
 217 uint SharedRuntime::_multi2_ctr=0;
 218 uint SharedRuntime::_multi3_ctr=0;
 219 uint SharedRuntime::_multi4_ctr=0;
 220 uint SharedRuntime::_multi5_ctr=0;
 221 uint SharedRuntime::_mon_enter_stub_ctr=0;
 222 uint SharedRuntime::_mon_exit_stub_ctr=0;
 223 uint SharedRuntime::_mon_enter_ctr=0;
 224 uint SharedRuntime::_mon_exit_ctr=0;
 225 uint SharedRuntime::_partial_subtype_ctr=0;
 226 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 227 uint SharedRuntime::_jshort_array_copy_ctr=0;
 228 uint SharedRuntime::_jint_array_copy_ctr=0;
 229 uint SharedRuntime::_jlong_array_copy_ctr=0;
 230 uint SharedRuntime::_oop_array_copy_ctr=0;
 231 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 232 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 233 uint SharedRuntime::_generic_array_copy_ctr=0;
 234 uint SharedRuntime::_slow_array_copy_ctr=0;
 235 uint SharedRuntime::_find_handler_ctr=0;
 236 uint SharedRuntime::_rethrow_ctr=0;
 237 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 238 
 239 int     SharedRuntime::_ICmiss_index                    = 0;
 240 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 241 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 242 
 243 
 244 void SharedRuntime::trace_ic_miss(address at) {
 245   for (int i = 0; i < _ICmiss_index; i++) {
 246     if (_ICmiss_at[i] == at) {
 247       _ICmiss_count[i]++;
 248       return;
 249     }
 250   }
 251   int index = _ICmiss_index++;
 252   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 253   _ICmiss_at[index] = at;
 254   _ICmiss_count[index] = 1;
 255 }
 256 
 257 void SharedRuntime::print_ic_miss_histogram() {
 258   if (ICMissHistogram) {
 259     tty->print_cr("IC Miss Histogram:");
 260     int tot_misses = 0;
 261     for (int i = 0; i < _ICmiss_index; i++) {
 262       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 263       tot_misses += _ICmiss_count[i];
 264     }
 265     tty->print_cr("Total IC misses: %7d", tot_misses);
 266   }
 267 }
 268 
 269 #ifdef COMPILER2
 270 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
 271 void SharedRuntime::debug_print_value(jboolean x) {
 272   tty->print_cr("boolean %d", x);
 273 }
 274 
 275 void SharedRuntime::debug_print_value(jbyte x) {
 276   tty->print_cr("byte %d", x);
 277 }
 278 
 279 void SharedRuntime::debug_print_value(jshort x) {
 280   tty->print_cr("short %d", x);
 281 }
 282 
 283 void SharedRuntime::debug_print_value(jchar x) {
 284   tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
 285 }
 286 
 287 void SharedRuntime::debug_print_value(jint x) {
 288   tty->print_cr("int %d", x);
 289 }
 290 
 291 void SharedRuntime::debug_print_value(jlong x) {
 292   tty->print_cr("long " JLONG_FORMAT, x);
 293 }
 294 
 295 void SharedRuntime::debug_print_value(jfloat x) {
 296   tty->print_cr("float %f", x);
 297 }
 298 
 299 void SharedRuntime::debug_print_value(jdouble x) {
 300   tty->print_cr("double %lf", x);
 301 }
 302 
 303 void SharedRuntime::debug_print_value(oopDesc* x) {
 304   x->print();
 305 }
 306 #endif // COMPILER2
 307 
 308 #endif // PRODUCT
 309 
 310 
 311 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 312   return x * y;
 313 JRT_END
 314 
 315 
 316 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 317   if (x == min_jlong && y == CONST64(-1)) {
 318     return x;
 319   } else {
 320     return x / y;
 321   }
 322 JRT_END
 323 
 324 
 325 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 326   if (x == min_jlong && y == CONST64(-1)) {
 327     return 0;
 328   } else {
 329     return x % y;
 330   }
 331 JRT_END
 332 
 333 
 334 #ifdef _WIN64
 335 const juint  float_sign_mask  = 0x7FFFFFFF;
 336 const juint  float_infinity   = 0x7F800000;
 337 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 338 const julong double_infinity  = CONST64(0x7FF0000000000000);
 339 #endif
 340 
 341 #if !defined(X86)
 342 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 343 #ifdef _WIN64
 344   // 64-bit Windows on amd64 returns the wrong values for
 345   // infinity operands.
 346   juint xbits = PrimitiveConversions::cast<juint>(x);
 347   juint ybits = PrimitiveConversions::cast<juint>(y);
 348   // x Mod Infinity == x unless x is infinity
 349   if (((xbits & float_sign_mask) != float_infinity) &&
 350        ((ybits & float_sign_mask) == float_infinity) ) {
 351     return x;
 352   }
 353   return ((jfloat)fmod_winx64((double)x, (double)y));
 354 #else
 355   return ((jfloat)fmod((double)x,(double)y));
 356 #endif
 357 JRT_END
 358 
 359 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 360 #ifdef _WIN64
 361   julong xbits = PrimitiveConversions::cast<julong>(x);
 362   julong ybits = PrimitiveConversions::cast<julong>(y);
 363   // x Mod Infinity == x unless x is infinity
 364   if (((xbits & double_sign_mask) != double_infinity) &&
 365        ((ybits & double_sign_mask) == double_infinity) ) {
 366     return x;
 367   }
 368   return ((jdouble)fmod_winx64((double)x, (double)y));
 369 #else
 370   return ((jdouble)fmod((double)x,(double)y));
 371 #endif
 372 JRT_END
 373 #endif // !X86
 374 
 375 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 376   return (jfloat)x;
 377 JRT_END
 378 
 379 #ifdef __SOFTFP__
 380 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 381   return x + y;
 382 JRT_END
 383 
 384 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 385   return x - y;
 386 JRT_END
 387 
 388 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 389   return x * y;
 390 JRT_END
 391 
 392 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 393   return x / y;
 394 JRT_END
 395 
 396 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 397   return x + y;
 398 JRT_END
 399 
 400 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 401   return x - y;
 402 JRT_END
 403 
 404 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 405   return x * y;
 406 JRT_END
 407 
 408 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 409   return x / y;
 410 JRT_END
 411 
 412 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 413   return (jdouble)x;
 414 JRT_END
 415 
 416 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 417   return (jdouble)x;
 418 JRT_END
 419 
 420 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 421   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 422 JRT_END
 423 
 424 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 425   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 426 JRT_END
 427 
 428 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 429   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 430 JRT_END
 431 
 432 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 433   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 434 JRT_END
 435 
 436 // Functions to return the opposite of the aeabi functions for nan.
 437 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 438   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 439 JRT_END
 440 
 441 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 442   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 443 JRT_END
 444 
 445 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 446   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 447 JRT_END
 448 
 449 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 450   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 451 JRT_END
 452 
 453 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 454   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 455 JRT_END
 456 
 457 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 458   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 459 JRT_END
 460 
 461 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 462   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 463 JRT_END
 464 
 465 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 466   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 467 JRT_END
 468 
 469 // Intrinsics make gcc generate code for these.
 470 float  SharedRuntime::fneg(float f)   {
 471   return -f;
 472 }
 473 
 474 double SharedRuntime::dneg(double f)  {
 475   return -f;
 476 }
 477 
 478 #endif // __SOFTFP__
 479 
 480 #if defined(__SOFTFP__) || defined(E500V2)
 481 // Intrinsics make gcc generate code for these.
 482 double SharedRuntime::dabs(double f)  {
 483   return (f <= (double)0.0) ? (double)0.0 - f : f;
 484 }
 485 
 486 #endif
 487 
 488 #if defined(__SOFTFP__)
 489 double SharedRuntime::dsqrt(double f) {
 490   return sqrt(f);
 491 }
 492 #endif
 493 
 494 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 495   if (g_isnan(x))
 496     return 0;
 497   if (x >= (jfloat) max_jint)
 498     return max_jint;
 499   if (x <= (jfloat) min_jint)
 500     return min_jint;
 501   return (jint) x;
 502 JRT_END
 503 
 504 
 505 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 506   if (g_isnan(x))
 507     return 0;
 508   if (x >= (jfloat) max_jlong)
 509     return max_jlong;
 510   if (x <= (jfloat) min_jlong)
 511     return min_jlong;
 512   return (jlong) x;
 513 JRT_END
 514 
 515 
 516 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 517   if (g_isnan(x))
 518     return 0;
 519   if (x >= (jdouble) max_jint)
 520     return max_jint;
 521   if (x <= (jdouble) min_jint)
 522     return min_jint;
 523   return (jint) x;
 524 JRT_END
 525 
 526 
 527 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 528   if (g_isnan(x))
 529     return 0;
 530   if (x >= (jdouble) max_jlong)
 531     return max_jlong;
 532   if (x <= (jdouble) min_jlong)
 533     return min_jlong;
 534   return (jlong) x;
 535 JRT_END
 536 
 537 
 538 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 539   return (jfloat)x;
 540 JRT_END
 541 
 542 
 543 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 544   return (jfloat)x;
 545 JRT_END
 546 
 547 
 548 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 549   return (jdouble)x;
 550 JRT_END
 551 
 552 
 553 // Exception handling across interpreter/compiler boundaries
 554 //
 555 // exception_handler_for_return_address(...) returns the continuation address.
 556 // The continuation address is the entry point of the exception handler of the
 557 // previous frame depending on the return address.
 558 
 559 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 560   // Note: This is called when we have unwound the frame of the callee that did
 561   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 562   // Notably, the stack is not walkable at this point, and hence the check must
 563   // be deferred until later. Specifically, any of the handlers returned here in
 564   // this function, will get dispatched to, and call deferred checks to
 565   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 566   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 567   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 568 
 569 #if INCLUDE_JVMCI
 570   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 571   // and other exception handler continuations do not read it
 572   current->set_exception_pc(nullptr);
 573 #endif // INCLUDE_JVMCI
 574 
 575   if (Continuation::is_return_barrier_entry(return_address)) {
 576     return StubRoutines::cont_returnBarrierExc();
 577   }
 578 
 579   // The fastest case first
 580   CodeBlob* blob = CodeCache::find_blob(return_address);
 581   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 582   if (nm != nullptr) {
 583     // native nmethods don't have exception handlers
 584     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 585     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 586     if (nm->is_deopt_pc(return_address)) {
 587       // If we come here because of a stack overflow, the stack may be
 588       // unguarded. Reguard the stack otherwise if we return to the
 589       // deopt blob and the stack bang causes a stack overflow we
 590       // crash.
 591       StackOverflow* overflow_state = current->stack_overflow_state();
 592       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 593       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 594         overflow_state->set_reserved_stack_activation(current->stack_base());
 595       }
 596       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 597       // The deferred StackWatermarkSet::after_unwind check will be performed in
 598       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 599       return SharedRuntime::deopt_blob()->unpack_with_exception();
 600     } else {
 601       // The deferred StackWatermarkSet::after_unwind check will be performed in
 602       // * OptoRuntime::handle_exception_C_helper for C2 code
 603       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 604       return nm->exception_begin();
 605     }
 606   }
 607 
 608   // Entry code
 609   if (StubRoutines::returns_to_call_stub(return_address)) {
 610     // The deferred StackWatermarkSet::after_unwind check will be performed in
 611     // JavaCallWrapper::~JavaCallWrapper
 612     assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
 613     return StubRoutines::catch_exception_entry();
 614   }
 615   if (blob != nullptr && blob->is_upcall_stub()) {
 616     return StubRoutines::upcall_stub_exception_handler();
 617   }
 618   // Interpreted code
 619   if (Interpreter::contains(return_address)) {
 620     // The deferred StackWatermarkSet::after_unwind check will be performed in
 621     // InterpreterRuntime::exception_handler_for_exception
 622     return Interpreter::rethrow_exception_entry();
 623   }
 624 
 625   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 626   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 627 
 628 #ifndef PRODUCT
 629   { ResourceMark rm;
 630     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 631     os::print_location(tty, (intptr_t)return_address);
 632     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 633     tty->print_cr("b) other problem");
 634   }
 635 #endif // PRODUCT
 636   ShouldNotReachHere();
 637   return nullptr;
 638 }
 639 
 640 
 641 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 642   return raw_exception_handler_for_return_address(current, return_address);
 643 JRT_END
 644 
 645 
 646 address SharedRuntime::get_poll_stub(address pc) {
 647   address stub;
 648   // Look up the code blob
 649   CodeBlob *cb = CodeCache::find_blob(pc);
 650 
 651   // Should be an nmethod
 652   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 653 
 654   // Look up the relocation information
 655   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 656       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 657 
 658 #ifdef ASSERT
 659   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 660     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 661     Disassembler::decode(cb);
 662     fatal("Only polling locations are used for safepoint");
 663   }
 664 #endif
 665 
 666   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 667   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 668   if (at_poll_return) {
 669     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 670            "polling page return stub not created yet");
 671     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 672   } else if (has_wide_vectors) {
 673     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 674            "polling page vectors safepoint stub not created yet");
 675     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 676   } else {
 677     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 678            "polling page safepoint stub not created yet");
 679     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 680   }
 681   log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
 682                        INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
 683                        p2i(Thread::current()),
 684                        Thread::current()->osthread()->thread_id(),
 685                        p2i(pc),
 686                        at_poll_return ? "return" : "loop",
 687                        p2i(stub));
 688   return stub;
 689 }
 690 
 691 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 692   if (JvmtiExport::can_post_on_exceptions()) {
 693     vframeStream vfst(current, true);
 694     methodHandle method = methodHandle(current, vfst.method());
 695     address bcp = method()->bcp_from(vfst.bci());
 696     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 697   }
 698 
 699 #if INCLUDE_JVMCI
 700   if (EnableJVMCI) {
 701     vframeStream vfst(current, true);
 702     methodHandle method = methodHandle(current, vfst.method());
 703     int bci = vfst.bci();
 704     MethodData* trap_mdo = method->method_data();
 705     if (trap_mdo != nullptr) {
 706       // Set exception_seen if the exceptional bytecode is an invoke
 707       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 708       if (call.is_valid()) {
 709         ResourceMark rm(current);
 710 
 711         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 712         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 713 
 714         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 715         if (pdata != nullptr && pdata->is_BitData()) {
 716           BitData* bit_data = (BitData*) pdata;
 717           bit_data->set_exception_seen();
 718         }
 719       }
 720     }
 721   }
 722 #endif
 723 
 724   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 725 }
 726 
 727 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 728   Handle h_exception = Exceptions::new_exception(current, name, message);
 729   throw_and_post_jvmti_exception(current, h_exception);
 730 }
 731 
 732 #if INCLUDE_JVMTI
 733 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 734   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 735   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 736   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 737   JNIHandles::destroy_local(vthread);
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 741   assert(hide == JNI_TRUE, "must be VTMS transition start");
 742   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 743   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 744   JNIHandles::destroy_local(vthread);
 745 JRT_END
 746 
 747 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 748   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 749   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 750   JNIHandles::destroy_local(vthread);
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 754   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 755   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 756   JNIHandles::destroy_local(vthread);
 757 JRT_END
 758 #endif // INCLUDE_JVMTI
 759 
 760 // The interpreter code to call this tracing function is only
 761 // called/generated when UL is on for redefine, class and has the right level
 762 // and tags. Since obsolete methods are never compiled, we don't have
 763 // to modify the compilers to generate calls to this function.
 764 //
 765 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 766     JavaThread* thread, Method* method))
 767   if (method->is_obsolete()) {
 768     // We are calling an obsolete method, but this is not necessarily
 769     // an error. Our method could have been redefined just after we
 770     // fetched the Method* from the constant pool.
 771     ResourceMark rm;
 772     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 773   }












 774   return 0;
 775 JRT_END
 776 
 777 // ret_pc points into caller; we are returning caller's exception handler
 778 // for given exception
 779 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 780 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 781                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 782   assert(nm != nullptr, "must exist");
 783   ResourceMark rm;
 784 
 785 #if INCLUDE_JVMCI
 786   if (nm->is_compiled_by_jvmci()) {
 787     // lookup exception handler for this pc
 788     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 789     ExceptionHandlerTable table(nm);
 790     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 791     if (t != nullptr) {
 792       return nm->code_begin() + t->pco();
 793     } else {
 794       bool make_not_entrant = true;
 795       return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
 796     }
 797   }
 798 #endif // INCLUDE_JVMCI
 799 
 800   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 801   // determine handler bci, if any
 802   EXCEPTION_MARK;
 803 
 804   int handler_bci = -1;
 805   int scope_depth = 0;
 806   if (!force_unwind) {
 807     int bci = sd->bci();
 808     bool recursive_exception = false;
 809     do {
 810       bool skip_scope_increment = false;
 811       // exception handler lookup
 812       Klass* ek = exception->klass();
 813       methodHandle mh(THREAD, sd->method());
 814       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 815       if (HAS_PENDING_EXCEPTION) {
 816         recursive_exception = true;
 817         // We threw an exception while trying to find the exception handler.
 818         // Transfer the new exception to the exception handle which will
 819         // be set into thread local storage, and do another lookup for an
 820         // exception handler for this exception, this time starting at the
 821         // BCI of the exception handler which caused the exception to be
 822         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 823         // argument to ensure that the correct exception is thrown (4870175).
 824         recursive_exception_occurred = true;
 825         exception = Handle(THREAD, PENDING_EXCEPTION);
 826         CLEAR_PENDING_EXCEPTION;
 827         if (handler_bci >= 0) {
 828           bci = handler_bci;
 829           handler_bci = -1;
 830           skip_scope_increment = true;
 831         }
 832       }
 833       else {
 834         recursive_exception = false;
 835       }
 836       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 837         sd = sd->sender();
 838         if (sd != nullptr) {
 839           bci = sd->bci();
 840         }
 841         ++scope_depth;
 842       }
 843     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 844   }
 845 
 846   // found handling method => lookup exception handler
 847   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 848 
 849   ExceptionHandlerTable table(nm);
 850   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 851 
 852   // If the compiler did not anticipate a recursive exception, resulting in an exception
 853   // thrown from the catch bci, then the compiled exception handler might be missing.
 854   // This is rare.  Just deoptimize and let the interpreter handle it.
 855   if (t == nullptr && recursive_exception_occurred) {
 856     bool make_not_entrant = false;
 857     return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant);
 858   }
 859 
 860   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 861     // Allow abbreviated catch tables.  The idea is to allow a method
 862     // to materialize its exceptions without committing to the exact
 863     // routing of exceptions.  In particular this is needed for adding
 864     // a synthetic handler to unlock monitors when inlining
 865     // synchronized methods since the unlock path isn't represented in
 866     // the bytecodes.
 867     t = table.entry_for(catch_pco, -1, 0);
 868   }
 869 
 870 #ifdef COMPILER1
 871   if (t == nullptr && nm->is_compiled_by_c1()) {
 872     assert(nm->unwind_handler_begin() != nullptr, "");
 873     return nm->unwind_handler_begin();
 874   }
 875 #endif
 876 
 877   if (t == nullptr) {
 878     ttyLocker ttyl;
 879     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 880     tty->print_cr("   Exception:");
 881     exception->print();
 882     tty->cr();
 883     tty->print_cr(" Compiled exception table :");
 884     table.print();
 885     nm->print();
 886     nm->print_code();
 887     guarantee(false, "missing exception handler");
 888     return nullptr;
 889   }
 890 
 891   if (handler_bci != -1) { // did we find a handler in this method?
 892     sd->method()->set_exception_handler_entered(handler_bci); // profile
 893   }
 894   return nm->code_begin() + t->pco();
 895 }
 896 
 897 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 898   // These errors occur only at call sites
 899   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 900 JRT_END
 901 
 902 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 903   // These errors occur only at call sites
 904   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 905 JRT_END
 906 
 907 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 908   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 909 JRT_END
 910 
 911 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 912   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 913 JRT_END
 914 
 915 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 916   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 917   // cache sites (when the callee activation is not yet set up) so we are at a call site
 918   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 919 JRT_END
 920 
 921 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 922   throw_StackOverflowError_common(current, false);
 923 JRT_END
 924 
 925 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 926   throw_StackOverflowError_common(current, true);
 927 JRT_END
 928 
 929 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 930   // We avoid using the normal exception construction in this case because
 931   // it performs an upcall to Java, and we're already out of stack space.
 932   JavaThread* THREAD = current; // For exception macros.
 933   InstanceKlass* k = vmClasses::StackOverflowError_klass();
 934   oop exception_oop = k->allocate_instance(CHECK);
 935   if (delayed) {
 936     java_lang_Throwable::set_message(exception_oop,
 937                                      Universe::delayed_stack_overflow_error_message());
 938   }
 939   Handle exception (current, exception_oop);
 940   if (StackTraceInThrowable) {
 941     java_lang_Throwable::fill_in_stack_trace(exception);
 942   }
 943   // Remove the ScopedValue bindings in case we got a
 944   // StackOverflowError while we were trying to remove ScopedValue
 945   // bindings.
 946   current->clear_scopedValueBindings();
 947   // Increment counter for hs_err file reporting
 948   AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
 949   throw_and_post_jvmti_exception(current, exception);
 950 }
 951 
 952 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 953                                                            address pc,
 954                                                            ImplicitExceptionKind exception_kind)
 955 {
 956   address target_pc = nullptr;
 957 
 958   if (Interpreter::contains(pc)) {
 959     switch (exception_kind) {
 960       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 961       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 962       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 963       default:                      ShouldNotReachHere();
 964     }
 965   } else {
 966     switch (exception_kind) {
 967       case STACK_OVERFLOW: {
 968         // Stack overflow only occurs upon frame setup; the callee is
 969         // going to be unwound. Dispatch to a shared runtime stub
 970         // which will cause the StackOverflowError to be fabricated
 971         // and processed.
 972         // Stack overflow should never occur during deoptimization:
 973         // the compiled method bangs the stack by as much as the
 974         // interpreter would need in case of a deoptimization. The
 975         // deoptimization blob and uncommon trap blob bang the stack
 976         // in a debug VM to verify the correctness of the compiled
 977         // method stack banging.
 978         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 979         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 980         return SharedRuntime::throw_StackOverflowError_entry();
 981       }
 982 
 983       case IMPLICIT_NULL: {
 984         if (VtableStubs::contains(pc)) {
 985           // We haven't yet entered the callee frame. Fabricate an
 986           // exception and begin dispatching it in the caller. Since
 987           // the caller was at a call site, it's safe to destroy all
 988           // caller-saved registers, as these entry points do.
 989           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 990 
 991           // If vt_stub is null, then return null to signal handler to report the SEGV error.
 992           if (vt_stub == nullptr) return nullptr;
 993 
 994           if (vt_stub->is_abstract_method_error(pc)) {
 995             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 996             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 997             // Instead of throwing the abstract method error here directly, we re-resolve
 998             // and will throw the AbstractMethodError during resolve. As a result, we'll
 999             // get a more detailed error message.
1000             return SharedRuntime::get_handle_wrong_method_stub();
1001           } else {
1002             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
1003             // Assert that the signal comes from the expected location in stub code.
1004             assert(vt_stub->is_null_pointer_exception(pc),
1005                    "obtained signal from unexpected location in stub code");
1006             return SharedRuntime::throw_NullPointerException_at_call_entry();
1007           }
1008         } else {
1009           CodeBlob* cb = CodeCache::find_blob(pc);
1010 
1011           // If code blob is null, then return null to signal handler to report the SEGV error.
1012           if (cb == nullptr) return nullptr;
1013 
1014           // Exception happened in CodeCache. Must be either:
1015           // 1. Inline-cache check in C2I handler blob,
1016           // 2. Inline-cache check in nmethod, or
1017           // 3. Implicit null exception in nmethod
1018 
1019           if (!cb->is_nmethod()) {
1020             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1021             if (!is_in_blob) {
1022               // Allow normal crash reporting to handle this
1023               return nullptr;
1024             }
1025             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1026             // There is no handler here, so we will simply unwind.
1027             return SharedRuntime::throw_NullPointerException_at_call_entry();
1028           }
1029 
1030           // Otherwise, it's a compiled method.  Consult its exception handlers.
1031           nmethod* nm = cb->as_nmethod();
1032           if (nm->inlinecache_check_contains(pc)) {
1033             // exception happened inside inline-cache check code
1034             // => the nmethod is not yet active (i.e., the frame
1035             // is not set up yet) => use return address pushed by
1036             // caller => don't push another return address
1037             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1038             return SharedRuntime::throw_NullPointerException_at_call_entry();
1039           }
1040 
1041           if (nm->method()->is_method_handle_intrinsic()) {
1042             // exception happened inside MH dispatch code, similar to a vtable stub
1043             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1044             return SharedRuntime::throw_NullPointerException_at_call_entry();
1045           }
1046 
1047 #ifndef PRODUCT
1048           _implicit_null_throws++;
1049 #endif
1050           target_pc = nm->continuation_for_implicit_null_exception(pc);
1051           // If there's an unexpected fault, target_pc might be null,
1052           // in which case we want to fall through into the normal
1053           // error handling code.
1054         }
1055 
1056         break; // fall through
1057       }
1058 
1059 
1060       case IMPLICIT_DIVIDE_BY_ZERO: {
1061         nmethod* nm = CodeCache::find_nmethod(pc);
1062         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1063 #ifndef PRODUCT
1064         _implicit_div0_throws++;
1065 #endif
1066         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1067         // If there's an unexpected fault, target_pc might be null,
1068         // in which case we want to fall through into the normal
1069         // error handling code.
1070         break; // fall through
1071       }
1072 
1073       default: ShouldNotReachHere();
1074     }
1075 
1076     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1077 
1078     if (exception_kind == IMPLICIT_NULL) {
1079 #ifndef PRODUCT
1080       // for AbortVMOnException flag
1081       Exceptions::debug_check_abort("java.lang.NullPointerException");
1082 #endif //PRODUCT
1083       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1084     } else {
1085 #ifndef PRODUCT
1086       // for AbortVMOnException flag
1087       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1088 #endif //PRODUCT
1089       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1090     }
1091     return target_pc;
1092   }
1093 
1094   ShouldNotReachHere();
1095   return nullptr;
1096 }
1097 
1098 
1099 /**
1100  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1101  * installed in the native function entry of all native Java methods before
1102  * they get linked to their actual native methods.
1103  *
1104  * \note
1105  * This method actually never gets called!  The reason is because
1106  * the interpreter's native entries call NativeLookup::lookup() which
1107  * throws the exception when the lookup fails.  The exception is then
1108  * caught and forwarded on the return from NativeLookup::lookup() call
1109  * before the call to the native function.  This might change in the future.
1110  */
1111 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1112 {
1113   // We return a bad value here to make sure that the exception is
1114   // forwarded before we look at the return value.
1115   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1116 }
1117 JNI_END
1118 
1119 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1120   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1121 }
1122 
1123 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1124 #if INCLUDE_JVMCI
1125   if (!obj->klass()->has_finalizer()) {
1126     return;
1127   }
1128 #endif // INCLUDE_JVMCI
1129   assert(oopDesc::is_oop(obj), "must be a valid oop");
1130   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1131   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1132 JRT_END
1133 
1134 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1135   assert(thread != nullptr, "No thread");
1136   if (thread == nullptr) {
1137     return 0;
1138   }
1139   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1140             "current cannot touch oops after its GC barrier is detached.");
1141   oop obj = thread->threadObj();
1142   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1143 }
1144 
1145 /**
1146  * This function ought to be a void function, but cannot be because
1147  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1148  * 6254741.  Once that is fixed we can remove the dummy return value.
1149  */
1150 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1151   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1152 }
1153 
1154 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1155   return dtrace_object_alloc(thread, o, o->size());
1156 }
1157 
1158 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1159   assert(DTraceAllocProbes, "wrong call");
1160   Klass* klass = o->klass();
1161   Symbol* name = klass->name();
1162   HOTSPOT_OBJECT_ALLOC(
1163                    get_java_tid(thread),
1164                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1165   return 0;
1166 }
1167 
1168 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1169     JavaThread* current, Method* method))
1170   assert(current == JavaThread::current(), "pre-condition");
1171 
1172   assert(DTraceMethodProbes, "wrong call");
1173   Symbol* kname = method->klass_name();
1174   Symbol* name = method->name();
1175   Symbol* sig = method->signature();
1176   HOTSPOT_METHOD_ENTRY(
1177       get_java_tid(current),
1178       (char *) kname->bytes(), kname->utf8_length(),
1179       (char *) name->bytes(), name->utf8_length(),
1180       (char *) sig->bytes(), sig->utf8_length());
1181   return 0;
1182 JRT_END
1183 
1184 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1185     JavaThread* current, Method* method))
1186   assert(current == JavaThread::current(), "pre-condition");
1187   assert(DTraceMethodProbes, "wrong call");
1188   Symbol* kname = method->klass_name();
1189   Symbol* name = method->name();
1190   Symbol* sig = method->signature();
1191   HOTSPOT_METHOD_RETURN(
1192       get_java_tid(current),
1193       (char *) kname->bytes(), kname->utf8_length(),
1194       (char *) name->bytes(), name->utf8_length(),
1195       (char *) sig->bytes(), sig->utf8_length());
1196   return 0;
1197 JRT_END
1198 
1199 
1200 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1201 // for a call current in progress, i.e., arguments has been pushed on stack
1202 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1203 // vtable updates, etc.  Caller frame must be compiled.
1204 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1205   JavaThread* current = THREAD;
1206   ResourceMark rm(current);
1207 
1208   // last java frame on stack (which includes native call frames)
1209   vframeStream vfst(current, true);  // Do not skip and javaCalls
1210 
1211   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1212 }
1213 
1214 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1215   nmethod* caller = vfst.nm();
1216 
1217   address pc = vfst.frame_pc();
1218   { // Get call instruction under lock because another thread may be busy patching it.
1219     CompiledICLocker ic_locker(caller);
1220     return caller->attached_method_before_pc(pc);
1221   }
1222   return nullptr;
1223 }
1224 
1225 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1226 // for a call current in progress, i.e., arguments has been pushed on stack
1227 // but callee has not been invoked yet.  Caller frame must be compiled.
1228 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1229                                               CallInfo& callinfo, TRAPS) {
1230   Handle receiver;
1231   Handle nullHandle;  // create a handy null handle for exception returns
1232   JavaThread* current = THREAD;
1233 
1234   assert(!vfst.at_end(), "Java frame must exist");
1235 
1236   // Find caller and bci from vframe
1237   methodHandle caller(current, vfst.method());
1238   int          bci   = vfst.bci();
1239 
1240   if (caller->is_continuation_enter_intrinsic()) {
1241     bc = Bytecodes::_invokestatic;
1242     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1243     return receiver;
1244   }
1245 
1246   Bytecode_invoke bytecode(caller, bci);
1247   int bytecode_index = bytecode.index();
1248   bc = bytecode.invoke_code();
1249 
1250   methodHandle attached_method(current, extract_attached_method(vfst));
1251   if (attached_method.not_null()) {
1252     Method* callee = bytecode.static_target(CHECK_NH);
1253     vmIntrinsics::ID id = callee->intrinsic_id();
1254     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1255     // it attaches statically resolved method to the call site.
1256     if (MethodHandles::is_signature_polymorphic(id) &&
1257         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1258       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1259 
1260       // Adjust invocation mode according to the attached method.
1261       switch (bc) {
1262         case Bytecodes::_invokevirtual:
1263           if (attached_method->method_holder()->is_interface()) {
1264             bc = Bytecodes::_invokeinterface;
1265           }
1266           break;
1267         case Bytecodes::_invokeinterface:
1268           if (!attached_method->method_holder()->is_interface()) {
1269             bc = Bytecodes::_invokevirtual;
1270           }
1271           break;
1272         case Bytecodes::_invokehandle:
1273           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1274             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1275                                               : Bytecodes::_invokevirtual;
1276           }
1277           break;
1278         default:
1279           break;
1280       }
1281     }
1282   }
1283 
1284   assert(bc != Bytecodes::_illegal, "not initialized");
1285 
1286   bool has_receiver = bc != Bytecodes::_invokestatic &&
1287                       bc != Bytecodes::_invokedynamic &&
1288                       bc != Bytecodes::_invokehandle;
1289 
1290   // Find receiver for non-static call
1291   if (has_receiver) {
1292     // This register map must be update since we need to find the receiver for
1293     // compiled frames. The receiver might be in a register.
1294     RegisterMap reg_map2(current,
1295                          RegisterMap::UpdateMap::include,
1296                          RegisterMap::ProcessFrames::include,
1297                          RegisterMap::WalkContinuation::skip);
1298     frame stubFrame   = current->last_frame();
1299     // Caller-frame is a compiled frame
1300     frame callerFrame = stubFrame.sender(&reg_map2);
1301 
1302     if (attached_method.is_null()) {
1303       Method* callee = bytecode.static_target(CHECK_NH);
1304       if (callee == nullptr) {
1305         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1306       }
1307     }
1308 
1309     // Retrieve from a compiled argument list
1310     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1311     assert(oopDesc::is_oop_or_null(receiver()), "");
1312 
1313     if (receiver.is_null()) {
1314       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1315     }
1316   }
1317 
1318   // Resolve method
1319   if (attached_method.not_null()) {
1320     // Parameterized by attached method.
1321     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1322   } else {
1323     // Parameterized by bytecode.
1324     constantPoolHandle constants(current, caller->constants());
1325     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1326   }
1327 
1328 #ifdef ASSERT
1329   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1330   if (has_receiver) {
1331     assert(receiver.not_null(), "should have thrown exception");
1332     Klass* receiver_klass = receiver->klass();
1333     Klass* rk = nullptr;
1334     if (attached_method.not_null()) {
1335       // In case there's resolved method attached, use its holder during the check.
1336       rk = attached_method->method_holder();
1337     } else {
1338       // Klass is already loaded.
1339       constantPoolHandle constants(current, caller->constants());
1340       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1341     }
1342     Klass* static_receiver_klass = rk;
1343     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1344            "actual receiver must be subclass of static receiver klass");
1345     if (receiver_klass->is_instance_klass()) {
1346       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1347         tty->print_cr("ERROR: Klass not yet initialized!!");
1348         receiver_klass->print();
1349       }
1350       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1351     }
1352   }
1353 #endif
1354 
1355   return receiver;
1356 }
1357 
1358 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1359   JavaThread* current = THREAD;
1360   ResourceMark rm(current);
1361   // We need first to check if any Java activations (compiled, interpreted)
1362   // exist on the stack since last JavaCall.  If not, we need
1363   // to get the target method from the JavaCall wrapper.
1364   vframeStream vfst(current, true);  // Do not skip any javaCalls
1365   methodHandle callee_method;
1366   if (vfst.at_end()) {
1367     // No Java frames were found on stack since we did the JavaCall.
1368     // Hence the stack can only contain an entry_frame.  We need to
1369     // find the target method from the stub frame.
1370     RegisterMap reg_map(current,
1371                         RegisterMap::UpdateMap::skip,
1372                         RegisterMap::ProcessFrames::include,
1373                         RegisterMap::WalkContinuation::skip);
1374     frame fr = current->last_frame();
1375     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1376     fr = fr.sender(&reg_map);
1377     assert(fr.is_entry_frame(), "must be");
1378     // fr is now pointing to the entry frame.
1379     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1380   } else {
1381     Bytecodes::Code bc;
1382     CallInfo callinfo;
1383     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1384     callee_method = methodHandle(current, callinfo.selected_method());
1385   }
1386   assert(callee_method()->is_method(), "must be");
1387   return callee_method;
1388 }
1389 
1390 // Resolves a call.
1391 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1392   JavaThread* current = THREAD;
1393   ResourceMark rm(current);
1394   RegisterMap cbl_map(current,
1395                       RegisterMap::UpdateMap::skip,
1396                       RegisterMap::ProcessFrames::include,
1397                       RegisterMap::WalkContinuation::skip);
1398   frame caller_frame = current->last_frame().sender(&cbl_map);
1399 
1400   CodeBlob* caller_cb = caller_frame.cb();
1401   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1402   nmethod* caller_nm = caller_cb->as_nmethod();
1403 
1404   // determine call info & receiver
1405   // note: a) receiver is null for static calls
1406   //       b) an exception is thrown if receiver is null for non-static calls
1407   CallInfo call_info;
1408   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1409   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1410 
1411   NoSafepointVerifier nsv;
1412 
1413   methodHandle callee_method(current, call_info.selected_method());
1414 
1415   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1416          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1417          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1418          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1419          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1420 
1421   assert(!caller_nm->is_unloading(), "It should not be unloading");
1422 
1423 #ifndef PRODUCT
1424   // tracing/debugging/statistics
1425   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1426                  (is_virtual) ? (&_resolve_virtual_ctr) :
1427                                 (&_resolve_static_ctr);
1428   AtomicAccess::inc(addr);
1429 

1430   if (TraceCallFixup) {
1431     ResourceMark rm(current);
1432     tty->print("resolving %s%s (%s) call to",
1433                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1434                Bytecodes::name(invoke_code));
1435     callee_method->print_short_name(tty);
1436     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1437                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1438   }
1439 #endif
1440 
1441   if (invoke_code == Bytecodes::_invokestatic) {
1442     assert(callee_method->method_holder()->is_initialized() ||
1443            callee_method->method_holder()->is_reentrant_initialization(current),
1444            "invalid class initialization state for invoke_static");
1445     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1446       // In order to keep class initialization check, do not patch call
1447       // site for static call when the class is not fully initialized.
1448       // Proper check is enforced by call site re-resolution on every invocation.
1449       //
1450       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1451       // explicit class initialization check is put in nmethod entry (VEP).
1452       assert(callee_method->method_holder()->is_linked(), "must be");
1453       return callee_method;
1454     }
1455   }
1456 
1457 
1458   // JSR 292 key invariant:
1459   // If the resolved method is a MethodHandle invoke target, the call
1460   // site must be a MethodHandle call site, because the lambda form might tail-call
1461   // leaving the stack in a state unknown to either caller or callee
1462 
1463   // Compute entry points. The computation of the entry points is independent of
1464   // patching the call.
1465 
1466   // Make sure the callee nmethod does not get deoptimized and removed before
1467   // we are done patching the code.
1468 
1469 
1470   CompiledICLocker ml(caller_nm);
1471   if (is_virtual && !is_optimized) {
1472     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1473     inline_cache->update(&call_info, receiver->klass());
1474   } else {
1475     // Callsite is a direct call - set it to the destination method
1476     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1477     callsite->set(callee_method);
1478   }
1479 
1480   return callee_method;
1481 }
1482 
1483 // Inline caches exist only in compiled code
1484 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))


1485 #ifdef ASSERT
1486   RegisterMap reg_map(current,
1487                       RegisterMap::UpdateMap::skip,
1488                       RegisterMap::ProcessFrames::include,
1489                       RegisterMap::WalkContinuation::skip);
1490   frame stub_frame = current->last_frame();
1491   assert(stub_frame.is_runtime_frame(), "sanity check");
1492   frame caller_frame = stub_frame.sender(&reg_map);
1493   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1494 #endif /* ASSERT */
1495 
1496   methodHandle callee_method;
1497   JRT_BLOCK
1498     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1499     // Return Method* through TLS
1500     current->set_vm_result_metadata(callee_method());
1501   JRT_BLOCK_END
1502   // return compiled code entry point after potential safepoints
1503   return get_resolved_entry(current, callee_method);
1504 JRT_END
1505 
1506 
1507 // Handle call site that has been made non-entrant
1508 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))


1509   // 6243940 We might end up in here if the callee is deoptimized
1510   // as we race to call it.  We don't want to take a safepoint if
1511   // the caller was interpreted because the caller frame will look
1512   // interpreted to the stack walkers and arguments are now
1513   // "compiled" so it is much better to make this transition
1514   // invisible to the stack walking code. The i2c path will
1515   // place the callee method in the callee_target. It is stashed
1516   // there because if we try and find the callee by normal means a
1517   // safepoint is possible and have trouble gc'ing the compiled args.
1518   RegisterMap reg_map(current,
1519                       RegisterMap::UpdateMap::skip,
1520                       RegisterMap::ProcessFrames::include,
1521                       RegisterMap::WalkContinuation::skip);
1522   frame stub_frame = current->last_frame();
1523   assert(stub_frame.is_runtime_frame(), "sanity check");
1524   frame caller_frame = stub_frame.sender(&reg_map);
1525 
1526   if (caller_frame.is_interpreted_frame() ||
1527       caller_frame.is_entry_frame() ||
1528       caller_frame.is_upcall_stub_frame()) {
1529     Method* callee = current->callee_target();
1530     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1531     current->set_vm_result_metadata(callee);
1532     current->set_callee_target(nullptr);
1533     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1534       // Bypass class initialization checks in c2i when caller is in native.
1535       // JNI calls to static methods don't have class initialization checks.
1536       // Fast class initialization checks are present in c2i adapters and call into
1537       // SharedRuntime::handle_wrong_method() on the slow path.
1538       //
1539       // JVM upcalls may land here as well, but there's a proper check present in
1540       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1541       // so bypassing it in c2i adapter is benign.
1542       return callee->get_c2i_no_clinit_check_entry();
1543     } else {
1544       return callee->get_c2i_entry();
1545     }
1546   }
1547 
1548   // Must be compiled to compiled path which is safe to stackwalk
1549   methodHandle callee_method;
1550   JRT_BLOCK
1551     // Force resolving of caller (if we called from compiled frame)
1552     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1553     current->set_vm_result_metadata(callee_method());
1554   JRT_BLOCK_END
1555   // return compiled code entry point after potential safepoints
1556   return get_resolved_entry(current, callee_method);
1557 JRT_END
1558 
1559 // Handle abstract method call
1560 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))


1561   // Verbose error message for AbstractMethodError.
1562   // Get the called method from the invoke bytecode.
1563   vframeStream vfst(current, true);
1564   assert(!vfst.at_end(), "Java frame must exist");
1565   methodHandle caller(current, vfst.method());
1566   Bytecode_invoke invoke(caller, vfst.bci());
1567   DEBUG_ONLY( invoke.verify(); )
1568 
1569   // Find the compiled caller frame.
1570   RegisterMap reg_map(current,
1571                       RegisterMap::UpdateMap::include,
1572                       RegisterMap::ProcessFrames::include,
1573                       RegisterMap::WalkContinuation::skip);
1574   frame stubFrame = current->last_frame();
1575   assert(stubFrame.is_runtime_frame(), "must be");
1576   frame callerFrame = stubFrame.sender(&reg_map);
1577   assert(callerFrame.is_compiled_frame(), "must be");
1578 
1579   // Install exception and return forward entry.
1580   address res = SharedRuntime::throw_AbstractMethodError_entry();
1581   JRT_BLOCK
1582     methodHandle callee(current, invoke.static_target(current));
1583     if (!callee.is_null()) {
1584       oop recv = callerFrame.retrieve_receiver(&reg_map);
1585       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1586       res = StubRoutines::forward_exception_entry();
1587       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1588     }
1589   JRT_BLOCK_END
1590   return res;
1591 JRT_END
1592 
1593 // return verified_code_entry if interp_only_mode is not set for the current thread;
1594 // otherwise return c2i entry.
1595 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1596   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1597     // In interp_only_mode we need to go to the interpreted entry
1598     // The c2i won't patch in this mode -- see fixup_callers_callsite
1599     return callee_method->get_c2i_entry();
1600   }
1601   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1602   return callee_method->verified_code_entry();
1603 }
1604 
1605 // resolve a static call and patch code
1606 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))


1607   methodHandle callee_method;
1608   bool enter_special = false;
1609   JRT_BLOCK
1610     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1611     current->set_vm_result_metadata(callee_method());
1612   JRT_BLOCK_END
1613   // return compiled code entry point after potential safepoints
1614   return get_resolved_entry(current, callee_method);
1615 JRT_END
1616 
1617 // resolve virtual call and update inline cache to monomorphic
1618 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))


1619   methodHandle callee_method;
1620   JRT_BLOCK
1621     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1622     current->set_vm_result_metadata(callee_method());
1623   JRT_BLOCK_END
1624   // return compiled code entry point after potential safepoints
1625   return get_resolved_entry(current, callee_method);
1626 JRT_END
1627 
1628 
1629 // Resolve a virtual call that can be statically bound (e.g., always
1630 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1631 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))


1632   methodHandle callee_method;
1633   JRT_BLOCK
1634     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1635     current->set_vm_result_metadata(callee_method());
1636   JRT_BLOCK_END
1637   // return compiled code entry point after potential safepoints
1638   return get_resolved_entry(current, callee_method);
1639 JRT_END
1640 
1641 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1642   JavaThread* current = THREAD;
1643   ResourceMark rm(current);
1644   CallInfo call_info;
1645   Bytecodes::Code bc;
1646 
1647   // receiver is null for static calls. An exception is thrown for null
1648   // receivers for non-static calls
1649   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1650 
1651   methodHandle callee_method(current, call_info.selected_method());
1652 
1653 #ifndef PRODUCT
1654   AtomicAccess::inc(&_ic_miss_ctr);
1655 

1656   // Statistics & Tracing
1657   if (TraceCallFixup) {
1658     ResourceMark rm(current);
1659     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1660     callee_method->print_short_name(tty);
1661     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1662   }
1663 
1664   if (ICMissHistogram) {
1665     MutexLocker m(VMStatistic_lock);
1666     RegisterMap reg_map(current,
1667                         RegisterMap::UpdateMap::skip,
1668                         RegisterMap::ProcessFrames::include,
1669                         RegisterMap::WalkContinuation::skip);
1670     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1671     // produce statistics under the lock
1672     trace_ic_miss(f.pc());
1673   }
1674 #endif
1675 
1676   // install an event collector so that when a vtable stub is created the
1677   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1678   // event can't be posted when the stub is created as locks are held
1679   // - instead the event will be deferred until the event collector goes
1680   // out of scope.
1681   JvmtiDynamicCodeEventCollector event_collector;
1682 
1683   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1684   RegisterMap reg_map(current,
1685                       RegisterMap::UpdateMap::skip,
1686                       RegisterMap::ProcessFrames::include,
1687                       RegisterMap::WalkContinuation::skip);
1688   frame caller_frame = current->last_frame().sender(&reg_map);
1689   CodeBlob* cb = caller_frame.cb();
1690   nmethod* caller_nm = cb->as_nmethod();
1691 
1692   CompiledICLocker ml(caller_nm);
1693   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1694   inline_cache->update(&call_info, receiver()->klass());
1695 
1696   return callee_method;
1697 }
1698 
1699 //
1700 // Resets a call-site in compiled code so it will get resolved again.
1701 // This routines handles both virtual call sites, optimized virtual call
1702 // sites, and static call sites. Typically used to change a call sites
1703 // destination from compiled to interpreted.
1704 //
1705 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1706   JavaThread* current = THREAD;
1707   ResourceMark rm(current);
1708   RegisterMap reg_map(current,
1709                       RegisterMap::UpdateMap::skip,
1710                       RegisterMap::ProcessFrames::include,
1711                       RegisterMap::WalkContinuation::skip);
1712   frame stub_frame = current->last_frame();
1713   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1714   frame caller = stub_frame.sender(&reg_map);
1715 
1716   // Do nothing if the frame isn't a live compiled frame.
1717   // nmethod could be deoptimized by the time we get here
1718   // so no update to the caller is needed.
1719 
1720   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1721       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1722 
1723     address pc = caller.pc();
1724 
1725     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1726     assert(caller_nm != nullptr, "did not find caller nmethod");
1727 
1728     // Default call_addr is the location of the "basic" call.
1729     // Determine the address of the call we a reresolving. With
1730     // Inline Caches we will always find a recognizable call.
1731     // With Inline Caches disabled we may or may not find a
1732     // recognizable call. We will always find a call for static
1733     // calls and for optimized virtual calls. For vanilla virtual
1734     // calls it depends on the state of the UseInlineCaches switch.
1735     //
1736     // With Inline Caches disabled we can get here for a virtual call
1737     // for two reasons:
1738     //   1 - calling an abstract method. The vtable for abstract methods
1739     //       will run us thru handle_wrong_method and we will eventually
1740     //       end up in the interpreter to throw the ame.
1741     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1742     //       call and between the time we fetch the entry address and
1743     //       we jump to it the target gets deoptimized. Similar to 1
1744     //       we will wind up in the interprter (thru a c2i with c2).
1745     //
1746     CompiledICLocker ml(caller_nm);
1747     address call_addr = caller_nm->call_instruction_address(pc);
1748 
1749     if (call_addr != nullptr) {
1750       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1751       // bytes back in the instruction stream so we must also check for reloc info.
1752       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1753       bool ret = iter.next(); // Get item
1754       if (ret) {
1755         switch (iter.type()) {
1756           case relocInfo::static_call_type:
1757           case relocInfo::opt_virtual_call_type: {
1758             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1759             cdc->set_to_clean();
1760             break;
1761           }
1762 
1763           case relocInfo::virtual_call_type: {
1764             // compiled, dispatched call (which used to call an interpreted method)
1765             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1766             inline_cache->set_to_clean();
1767             break;
1768           }
1769           default:
1770             break;
1771         }
1772       }
1773     }
1774   }
1775 
1776   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1777 
1778 
1779 #ifndef PRODUCT
1780   AtomicAccess::inc(&_wrong_method_ctr);
1781 

1782   if (TraceCallFixup) {
1783     ResourceMark rm(current);
1784     tty->print("handle_wrong_method reresolving call to");
1785     callee_method->print_short_name(tty);
1786     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1787   }
1788 #endif
1789 
1790   return callee_method;
1791 }
1792 
1793 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1794   // The faulting unsafe accesses should be changed to throw the error
1795   // synchronously instead. Meanwhile the faulting instruction will be
1796   // skipped over (effectively turning it into a no-op) and an
1797   // asynchronous exception will be raised which the thread will
1798   // handle at a later point. If the instruction is a load it will
1799   // return garbage.
1800 
1801   // Request an async exception.
1802   thread->set_pending_unsafe_access_error();
1803 
1804   // Return address of next instruction to execute.
1805   return next_pc;
1806 }
1807 
1808 #ifdef ASSERT
1809 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1810                                                                 const BasicType* sig_bt,
1811                                                                 const VMRegPair* regs) {
1812   ResourceMark rm;
1813   const int total_args_passed = method->size_of_parameters();
1814   const VMRegPair*    regs_with_member_name = regs;
1815         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1816 
1817   const int member_arg_pos = total_args_passed - 1;
1818   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1819   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1820 
1821   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1822 
1823   for (int i = 0; i < member_arg_pos; i++) {
1824     VMReg a =    regs_with_member_name[i].first();
1825     VMReg b = regs_without_member_name[i].first();
1826     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1827   }
1828   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1829 }
1830 #endif
1831 
1832 // ---------------------------------------------------------------------------
1833 // We are calling the interpreter via a c2i. Normally this would mean that
1834 // we were called by a compiled method. However we could have lost a race
1835 // where we went int -> i2c -> c2i and so the caller could in fact be
1836 // interpreted. If the caller is compiled we attempt to patch the caller
1837 // so he no longer calls into the interpreter.
1838 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1839   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1840 
1841   // It's possible that deoptimization can occur at a call site which hasn't
1842   // been resolved yet, in which case this function will be called from
1843   // an nmethod that has been patched for deopt and we can ignore the
1844   // request for a fixup.
1845   // Also it is possible that we lost a race in that from_compiled_entry
1846   // is now back to the i2c in that case we don't need to patch and if
1847   // we did we'd leap into space because the callsite needs to use
1848   // "to interpreter" stub in order to load up the Method*. Don't
1849   // ask me how I know this...
1850 
1851   // Result from nmethod::is_unloading is not stable across safepoints.
1852   NoSafepointVerifier nsv;
1853 
1854   nmethod* callee = method->code();
1855   if (callee == nullptr) {
1856     return;
1857   }
1858 
1859   // write lock needed because we might patch call site by set_to_clean()
1860   // and is_unloading() can modify nmethod's state
1861   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1862 
1863   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1864   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1865     return;
1866   }
1867 
1868   // The check above makes sure this is an nmethod.
1869   nmethod* caller = cb->as_nmethod();
1870 
1871   // Get the return PC for the passed caller PC.
1872   address return_pc = caller_pc + frame::pc_return_offset;
1873 
1874   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1875     return;
1876   }
1877 
1878   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1879   CompiledICLocker ic_locker(caller);
1880   ResourceMark rm;
1881 
1882   // If we got here through a static call or opt_virtual call, then we know where the
1883   // call address would be; let's peek at it
1884   address callsite_addr = (address)nativeCall_before(return_pc);
1885   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1886   if (!iter.next()) {
1887     // No reloc entry found; not a static or optimized virtual call
1888     return;
1889   }
1890 
1891   relocInfo::relocType type = iter.reloc()->type();
1892   if (type != relocInfo::static_call_type &&
1893       type != relocInfo::opt_virtual_call_type) {
1894     return;
1895   }
1896 
1897   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1898   callsite->set_to_clean();
1899 JRT_END
1900 
1901 
1902 // same as JVM_Arraycopy, but called directly from compiled code
1903 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1904                                                 oopDesc* dest, jint dest_pos,
1905                                                 jint length,
1906                                                 JavaThread* current)) {
1907 #ifndef PRODUCT
1908   _slow_array_copy_ctr++;
1909 #endif
1910   // Check if we have null pointers
1911   if (src == nullptr || dest == nullptr) {
1912     THROW(vmSymbols::java_lang_NullPointerException());
1913   }
1914   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1915   // even though the copy_array API also performs dynamic checks to ensure
1916   // that src and dest are truly arrays (and are conformable).
1917   // The copy_array mechanism is awkward and could be removed, but
1918   // the compilers don't call this function except as a last resort,
1919   // so it probably doesn't matter.
1920   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1921                                         (arrayOopDesc*)dest, dest_pos,
1922                                         length, current);
1923 }
1924 JRT_END
1925 
1926 // The caller of generate_class_cast_message() (or one of its callers)
1927 // must use a ResourceMark in order to correctly free the result.
1928 char* SharedRuntime::generate_class_cast_message(
1929     JavaThread* thread, Klass* caster_klass) {
1930 
1931   // Get target class name from the checkcast instruction
1932   vframeStream vfst(thread, true);
1933   assert(!vfst.at_end(), "Java frame must exist");
1934   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1935   constantPoolHandle cpool(thread, vfst.method()->constants());
1936   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1937   Symbol* target_klass_name = nullptr;
1938   if (target_klass == nullptr) {
1939     // This klass should be resolved, but just in case, get the name in the klass slot.
1940     target_klass_name = cpool->klass_name_at(cc.index());
1941   }
1942   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1943 }
1944 
1945 
1946 // The caller of generate_class_cast_message() (or one of its callers)
1947 // must use a ResourceMark in order to correctly free the result.
1948 char* SharedRuntime::generate_class_cast_message(
1949     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1950   const char* caster_name = caster_klass->external_name();
1951 
1952   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
1953   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
1954                                                    target_klass->external_name();
1955 
1956   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1957 
1958   const char* caster_klass_description = "";
1959   const char* target_klass_description = "";
1960   const char* klass_separator = "";
1961   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
1962     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1963   } else {
1964     caster_klass_description = caster_klass->class_in_module_of_loader();
1965     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
1966     klass_separator = (target_klass != nullptr) ? "; " : "";
1967   }
1968 
1969   // add 3 for parenthesis and preceding space
1970   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1971 
1972   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1973   if (message == nullptr) {
1974     // Shouldn't happen, but don't cause even more problems if it does
1975     message = const_cast<char*>(caster_klass->external_name());
1976   } else {
1977     jio_snprintf(message,
1978                  msglen,
1979                  "class %s cannot be cast to class %s (%s%s%s)",
1980                  caster_name,
1981                  target_name,
1982                  caster_klass_description,
1983                  klass_separator,
1984                  target_klass_description
1985                  );
1986   }
1987   return message;
1988 }
1989 
1990 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1991   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
1992 JRT_END
1993 
1994 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1995   if (!SafepointSynchronize::is_synchronizing()) {
1996     // Only try quick_enter() if we're not trying to reach a safepoint
1997     // so that the calling thread reaches the safepoint more quickly.
1998     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
1999       return;
2000     }
2001   }
2002   // NO_ASYNC required because an async exception on the state transition destructor
2003   // would leave you with the lock held and it would never be released.
2004   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2005   // and the model is that an exception implies the method failed.
2006   JRT_BLOCK_NO_ASYNC
2007   Handle h_obj(THREAD, obj);
2008   ObjectSynchronizer::enter(h_obj, lock, current);
2009   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2010   JRT_BLOCK_END
2011 }
2012 
2013 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2014 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2015   SharedRuntime::monitor_enter_helper(obj, lock, current);
2016 JRT_END
2017 
2018 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2019   assert(JavaThread::current() == current, "invariant");
2020   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2021   ExceptionMark em(current);
2022 
2023   // Check if C2_MacroAssembler::fast_unlock() or
2024   // C2_MacroAssembler::fast_unlock() unlocked an inflated
2025   // monitor before going slow path.  Since there is no safepoint
2026   // polling when calling into the VM, we can be sure that the monitor
2027   // hasn't been deallocated.
2028   ObjectMonitor* m = current->unlocked_inflated_monitor();
2029   if (m != nullptr) {
2030     assert(!m->has_owner(current), "must be");
2031     current->clear_unlocked_inflated_monitor();
2032 
2033     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2034     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2035       // Some other thread acquired the lock (or the monitor was
2036       // deflated). Either way we are done.
2037       return;
2038     }
2039   }
2040 
2041   // The object could become unlocked through a JNI call, which we have no other checks for.
2042   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2043   if (obj->is_unlocked()) {
2044     if (CheckJNICalls) {
2045       fatal("Object has been unlocked by JNI");
2046     }
2047     return;
2048   }
2049   ObjectSynchronizer::exit(obj, lock, current);
2050 }
2051 
2052 // Handles the uncommon cases of monitor unlocking in compiled code
2053 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2054   assert(current == JavaThread::current(), "pre-condition");
2055   SharedRuntime::monitor_exit_helper(obj, lock, current);
2056 JRT_END
2057 
2058 #ifndef PRODUCT
2059 
2060 void SharedRuntime::print_statistics() {
2061   ttyLocker ttyl;
2062   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2063 
2064   SharedRuntime::print_ic_miss_histogram();
2065 
2066   // Dump the JRT_ENTRY counters
2067   if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
2068   if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
2069   if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2070   if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2071   if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2072   if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2073 
2074   tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2075   tty->print_cr("%5u wrong method", _wrong_method_ctr);
2076   tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2077   tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2078   tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2079 
2080   if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2081   if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2082   if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2083   if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2084   if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2085   if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2086   if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2087   if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
2088   if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2089   if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2090   if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2091   if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2092   if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2093   if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2094   if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
2095   if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
2096   if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2097 
2098   AdapterHandlerLibrary::print_statistics();
2099 
2100   if (xtty != nullptr)  xtty->tail("statistics");
2101 }
2102 


































2103 inline double percent(int64_t x, int64_t y) {
2104   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2105 }
2106 
2107 class MethodArityHistogram {
2108  public:
2109   enum { MAX_ARITY = 256 };
2110  private:
2111   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2112   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2113   static uint64_t _total_compiled_calls;
2114   static uint64_t _max_compiled_calls_per_method;
2115   static int _max_arity;                       // max. arity seen
2116   static int _max_size;                        // max. arg size seen
2117 
2118   static void add_method_to_histogram(nmethod* nm) {
2119     Method* method = (nm == nullptr) ? nullptr : nm->method();
2120     if (method != nullptr) {
2121       ArgumentCount args(method->signature());
2122       int arity   = args.size() + (method->is_static() ? 0 : 1);
2123       int argsize = method->size_of_parameters();
2124       arity   = MIN2(arity, MAX_ARITY-1);
2125       argsize = MIN2(argsize, MAX_ARITY-1);
2126       uint64_t count = (uint64_t)method->compiled_invocation_count();
2127       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2128       _total_compiled_calls    += count;
2129       _arity_histogram[arity]  += count;
2130       _size_histogram[argsize] += count;
2131       _max_arity = MAX2(_max_arity, arity);
2132       _max_size  = MAX2(_max_size, argsize);
2133     }
2134   }
2135 
2136   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2137     const int N = MIN2(9, n);
2138     double sum = 0;
2139     double weighted_sum = 0;
2140     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2141     if (sum >= 1) { // prevent divide by zero or divide overflow
2142       double rest = sum;
2143       double percent = sum / 100;
2144       for (int i = 0; i <= N; i++) {
2145         rest -= (double)histo[i];
2146         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2147       }
2148       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2149       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2150       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2151       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2152     } else {
2153       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2154     }
2155   }
2156 
2157   void print_histogram() {
2158     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2159     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2160     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2161     print_histogram_helper(_max_size, _size_histogram, "size");
2162     tty->cr();
2163   }
2164 
2165  public:
2166   MethodArityHistogram() {
2167     // Take the Compile_lock to protect against changes in the CodeBlob structures
2168     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2169     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2170     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2171     _max_arity = _max_size = 0;
2172     _total_compiled_calls = 0;
2173     _max_compiled_calls_per_method = 0;
2174     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2175     CodeCache::nmethods_do(add_method_to_histogram);
2176     print_histogram();
2177   }
2178 };
2179 
2180 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2181 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2182 uint64_t MethodArityHistogram::_total_compiled_calls;
2183 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2184 int MethodArityHistogram::_max_arity;
2185 int MethodArityHistogram::_max_size;
2186 
2187 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2188   tty->print_cr("Calls from compiled code:");
2189   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2190   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2191   int64_t mono_i = _nof_interface_calls;
2192   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2193   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2194   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2195   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2196   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2197   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2198   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2199   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2200   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2201   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2202   tty->cr();
2203   tty->print_cr("Note 1: counter updates are not MT-safe.");
2204   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2205   tty->print_cr("        %% in nested categories are relative to their category");
2206   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2207   tty->cr();
2208 
2209   MethodArityHistogram h;
2210 }
2211 #endif
2212 
2213 #ifndef PRODUCT
2214 static int _lookups; // number of calls to lookup
2215 static int _equals;  // number of buckets checked with matching hash
2216 static int _archived_hits; // number of successful lookups in archived table
2217 static int _runtime_hits;  // number of successful lookups in runtime table
2218 #endif
2219 
2220 // A simple wrapper class around the calling convention information
2221 // that allows sharing of adapters for the same calling convention.
2222 class AdapterFingerPrint : public MetaspaceObj {
2223  private:
2224   enum {
2225     _basic_type_bits = 4,
2226     _basic_type_mask = right_n_bits(_basic_type_bits),
2227     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2228   };
2229   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2230   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2231 
2232   int _length;
2233 
2234   static int data_offset() { return sizeof(AdapterFingerPrint); }
2235   int* data_pointer() {
2236     return (int*)((address)this + data_offset());
2237   }
2238 
2239   // Private construtor. Use allocate() to get an instance.
2240   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2241     int* data = data_pointer();
2242     // Pack the BasicTypes with 8 per int
2243     assert(len == length(total_args_passed), "sanity");
2244     _length = len;
2245     int sig_index = 0;
2246     for (int index = 0; index < _length; index++) {
2247       int value = 0;
2248       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2249         int bt = adapter_encoding(sig_bt[sig_index++]);
2250         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2251         value = (value << _basic_type_bits) | bt;
2252       }
2253       data[index] = value;
2254     }
2255   }
2256 
2257   // Call deallocate instead
2258   ~AdapterFingerPrint() {
2259     ShouldNotCallThis();
2260   }
2261 
2262   static int length(int total_args) {
2263     return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2264   }
2265 
2266   static int compute_size_in_words(int len) {
2267     return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2268   }
2269 
2270   // Remap BasicTypes that are handled equivalently by the adapters.
2271   // These are correct for the current system but someday it might be
2272   // necessary to make this mapping platform dependent.
2273   static int adapter_encoding(BasicType in) {
2274     switch (in) {
2275       case T_BOOLEAN:
2276       case T_BYTE:
2277       case T_SHORT:
2278       case T_CHAR:
2279         // There are all promoted to T_INT in the calling convention
2280         return T_INT;
2281 
2282       case T_OBJECT:
2283       case T_ARRAY:
2284         // In other words, we assume that any register good enough for
2285         // an int or long is good enough for a managed pointer.
2286 #ifdef _LP64
2287         return T_LONG;
2288 #else
2289         return T_INT;
2290 #endif
2291 
2292       case T_INT:
2293       case T_LONG:
2294       case T_FLOAT:
2295       case T_DOUBLE:
2296       case T_VOID:
2297         return in;
2298 
2299       default:
2300         ShouldNotReachHere();
2301         return T_CONFLICT;
2302     }
2303   }
2304 
2305   void* operator new(size_t size, size_t fp_size) throw() {
2306     assert(fp_size >= size, "sanity check");
2307     void* p = AllocateHeap(fp_size, mtCode);
2308     memset(p, 0, fp_size);
2309     return p;
2310   }
2311 
2312   template<typename Function>
2313   void iterate_args(Function function) {
2314     for (int i = 0; i < length(); i++) {
2315       unsigned val = (unsigned)value(i);
2316       // args are packed so that first/lower arguments are in the highest
2317       // bits of each int value, so iterate from highest to the lowest
2318       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2319         unsigned v = (val >> j) & _basic_type_mask;
2320         if (v == 0) {
2321           continue;
2322         }
2323         function(v);
2324       }
2325     }
2326   }
2327 
2328  public:
2329   static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2330     int len = length(total_args_passed);
2331     int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2332     AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2333     assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2334     return afp;
2335   }
2336 
2337   static void deallocate(AdapterFingerPrint* fp) {
2338     FreeHeap(fp);
2339   }
2340 
2341   int value(int index) {
2342     int* data = data_pointer();
2343     return data[index];
2344   }
2345 
2346   int length() {
2347     return _length;
2348   }
2349 
2350   unsigned int compute_hash() {
2351     int hash = 0;
2352     for (int i = 0; i < length(); i++) {
2353       int v = value(i);
2354       //Add arithmetic operation to the hash, like +3 to improve hashing
2355       hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2356     }
2357     return (unsigned int)hash;
2358   }
2359 
2360   const char* as_string() {
2361     stringStream st;
2362     st.print("0x");
2363     for (int i = 0; i < length(); i++) {
2364       st.print("%x", value(i));
2365     }
2366     return st.as_string();
2367   }
2368 
2369   const char* as_basic_args_string() {
2370     stringStream st;
2371     bool long_prev = false;
2372     iterate_args([&] (int arg) {
2373       if (long_prev) {
2374         long_prev = false;
2375         if (arg == T_VOID) {
2376           st.print("J");
2377         } else {
2378           st.print("L");
2379         }
2380       }
2381       switch (arg) {
2382         case T_INT:    st.print("I");    break;
2383         case T_LONG:   long_prev = true; break;
2384         case T_FLOAT:  st.print("F");    break;
2385         case T_DOUBLE: st.print("D");    break;
2386         case T_VOID:   break;
2387         default: ShouldNotReachHere();
2388       }
2389     });
2390     if (long_prev) {
2391       st.print("L");
2392     }
2393     return st.as_string();
2394   }
2395 
2396   BasicType* as_basic_type(int& nargs) {
2397     nargs = 0;
2398     GrowableArray<BasicType> btarray;
2399     bool long_prev = false;
2400 
2401     iterate_args([&] (int arg) {
2402       if (long_prev) {
2403         long_prev = false;
2404         if (arg == T_VOID) {
2405           btarray.append(T_LONG);
2406         } else {
2407           btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2408         }
2409       }
2410       switch (arg) {
2411         case T_INT: // fallthrough
2412         case T_FLOAT: // fallthrough
2413         case T_DOUBLE:
2414         case T_VOID:
2415           btarray.append((BasicType)arg);
2416           break;
2417         case T_LONG:
2418           long_prev = true;
2419           break;
2420         default: ShouldNotReachHere();
2421       }
2422     });
2423 
2424     if (long_prev) {
2425       btarray.append(T_OBJECT);
2426     }
2427 
2428     nargs = btarray.length();
2429     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2430     int index = 0;
2431     GrowableArrayIterator<BasicType> iter = btarray.begin();
2432     while (iter != btarray.end()) {
2433       sig_bt[index++] = *iter;
2434       ++iter;
2435     }
2436     assert(index == btarray.length(), "sanity check");
2437 #ifdef ASSERT
2438     {
2439       AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2440       assert(this->equals(compare_fp), "sanity check");
2441       AdapterFingerPrint::deallocate(compare_fp);
2442     }
2443 #endif
2444     return sig_bt;
2445   }
2446 
2447   bool equals(AdapterFingerPrint* other) {
2448     if (other->_length != _length) {
2449       return false;
2450     } else {
2451       for (int i = 0; i < _length; i++) {
2452         if (value(i) != other->value(i)) {
2453           return false;
2454         }
2455       }
2456     }
2457     return true;
2458   }
2459 
2460   // methods required by virtue of being a MetaspaceObj
2461   void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2462   int size() const { return compute_size_in_words(_length); }
2463   MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2464 
2465   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2466     NOT_PRODUCT(_equals++);
2467     return fp1->equals(fp2);
2468   }
2469 
2470   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2471     return fp->compute_hash();
2472   }
2473 };
2474 
2475 #if INCLUDE_CDS
2476 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2477   return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2478 }
2479 
2480 class ArchivedAdapterTable : public OffsetCompactHashtable<
2481   AdapterFingerPrint*,
2482   AdapterHandlerEntry*,
2483   adapter_fp_equals_compact_hashtable_entry> {};
2484 #endif // INCLUDE_CDS
2485 
2486 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2487 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2488                   AnyObj::C_HEAP, mtCode,
2489                   AdapterFingerPrint::compute_hash,
2490                   AdapterFingerPrint::equals>;
2491 static AdapterHandlerTable* _adapter_handler_table;
2492 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2493 
2494 // Find a entry with the same fingerprint if it exists
2495 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2496   NOT_PRODUCT(_lookups++);
2497   assert_lock_strong(AdapterHandlerLibrary_lock);
2498   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2499   AdapterHandlerEntry* entry = nullptr;
2500 #if INCLUDE_CDS
2501   // if we are building the archive then the archived adapter table is
2502   // not valid and we need to use the ones added to the runtime table
2503   if (AOTCodeCache::is_using_adapter()) {
2504     // Search archived table first. It is read-only table so can be searched without lock
2505     entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2506 #ifndef PRODUCT
2507     if (entry != nullptr) {
2508       _archived_hits++;
2509     }
2510 #endif
2511   }
2512 #endif // INCLUDE_CDS
2513   if (entry == nullptr) {
2514     assert_lock_strong(AdapterHandlerLibrary_lock);
2515     AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2516     if (entry_p != nullptr) {
2517       entry = *entry_p;
2518       assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2519              entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2520              fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2521   #ifndef PRODUCT
2522       _runtime_hits++;
2523   #endif
2524     }
2525   }
2526   AdapterFingerPrint::deallocate(fp);
2527   return entry;
2528 }
2529 
2530 #ifndef PRODUCT
2531 static void print_table_statistics() {
2532   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2533     return sizeof(*key) + sizeof(*a);
2534   };
2535   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2536   ts.print(tty, "AdapterHandlerTable");
2537   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2538                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2539   int total_hits = _archived_hits + _runtime_hits;
2540   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2541                 _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2542 }
2543 #endif
2544 
2545 // ---------------------------------------------------------------------------
2546 // Implementation of AdapterHandlerLibrary
2547 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2548 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2549 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2550 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2551 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2552 #if INCLUDE_CDS
2553 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2554 #endif // INCLUDE_CDS
2555 static const int AdapterHandlerLibrary_size = 16*K;
2556 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2557 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2558 
2559 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2560   assert(_buffer != nullptr, "should be initialized");
2561   return _buffer;
2562 }
2563 
2564 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2565   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2566     AdapterBlob* adapter_blob = entry->adapter_blob();
2567     char blob_id[256];
2568     jio_snprintf(blob_id,
2569                  sizeof(blob_id),
2570                  "%s(%s)",
2571                  adapter_blob->name(),
2572                  entry->fingerprint()->as_string());
2573     if (Forte::is_enabled()) {
2574       Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2575     }
2576 
2577     if (JvmtiExport::should_post_dynamic_code_generated()) {
2578       JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2579     }
2580   }
2581 }
2582 
2583 void AdapterHandlerLibrary::initialize() {
2584   {
2585     ResourceMark rm;
2586     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2587     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2588   }
2589 
2590 #if INCLUDE_CDS
2591   // Link adapters in AOT Cache to their code in AOT Code Cache
2592   if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2593     link_aot_adapters();
2594     lookup_simple_adapters();
2595     return;
2596   }
2597 #endif // INCLUDE_CDS
2598 
2599   ResourceMark rm;
2600   {
2601     MutexLocker mu(AdapterHandlerLibrary_lock);
2602 
2603     _no_arg_handler = create_adapter(0, nullptr);
2604 
2605     BasicType obj_args[] = { T_OBJECT };
2606     _obj_arg_handler = create_adapter(1, obj_args);
2607 
2608     BasicType int_args[] = { T_INT };
2609     _int_arg_handler = create_adapter(1, int_args);
2610 
2611     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2612     _obj_int_arg_handler = create_adapter(2, obj_int_args);
2613 
2614     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2615     _obj_obj_arg_handler = create_adapter(2, obj_obj_args);
2616 
2617     // we should always get an entry back but we don't have any
2618     // associated blob on Zero
2619     assert(_no_arg_handler != nullptr &&
2620            _obj_arg_handler != nullptr &&
2621            _int_arg_handler != nullptr &&
2622            _obj_int_arg_handler != nullptr &&
2623            _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2624   }
2625 
2626   // Outside of the lock
2627 #ifndef ZERO
2628   // no blobs to register when we are on Zero
2629   post_adapter_creation(_no_arg_handler);
2630   post_adapter_creation(_obj_arg_handler);
2631   post_adapter_creation(_int_arg_handler);
2632   post_adapter_creation(_obj_int_arg_handler);
2633   post_adapter_creation(_obj_obj_arg_handler);
2634 #endif // ZERO
2635 }
2636 
2637 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2638   uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2639   assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2640   return AdapterHandlerEntry::allocate(id, fingerprint);
2641 }
2642 
2643 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2644   int total_args_passed = method->size_of_parameters(); // All args on stack
2645   if (total_args_passed == 0) {
2646     return _no_arg_handler;
2647   } else if (total_args_passed == 1) {
2648     if (!method->is_static()) {
2649       return _obj_arg_handler;
2650     }
2651     switch (method->signature()->char_at(1)) {
2652       case JVM_SIGNATURE_CLASS:
2653       case JVM_SIGNATURE_ARRAY:
2654         return _obj_arg_handler;
2655       case JVM_SIGNATURE_INT:
2656       case JVM_SIGNATURE_BOOLEAN:
2657       case JVM_SIGNATURE_CHAR:
2658       case JVM_SIGNATURE_BYTE:
2659       case JVM_SIGNATURE_SHORT:
2660         return _int_arg_handler;
2661     }
2662   } else if (total_args_passed == 2 &&
2663              !method->is_static()) {
2664     switch (method->signature()->char_at(1)) {
2665       case JVM_SIGNATURE_CLASS:
2666       case JVM_SIGNATURE_ARRAY:
2667         return _obj_obj_arg_handler;
2668       case JVM_SIGNATURE_INT:
2669       case JVM_SIGNATURE_BOOLEAN:
2670       case JVM_SIGNATURE_CHAR:
2671       case JVM_SIGNATURE_BYTE:
2672       case JVM_SIGNATURE_SHORT:
2673         return _obj_int_arg_handler;
2674     }
2675   }
2676   return nullptr;
2677 }
2678 
2679 class AdapterSignatureIterator : public SignatureIterator {
2680  private:
2681   BasicType stack_sig_bt[16];
2682   BasicType* sig_bt;
2683   int index;
2684 
2685  public:
2686   AdapterSignatureIterator(Symbol* signature,
2687                            fingerprint_t fingerprint,
2688                            bool is_static,
2689                            int total_args_passed) :
2690     SignatureIterator(signature, fingerprint),
2691     index(0)
2692   {
2693     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2694     if (!is_static) { // Pass in receiver first
2695       sig_bt[index++] = T_OBJECT;
2696     }
2697     do_parameters_on(this);
2698   }
2699 
2700   BasicType* basic_types() {
2701     return sig_bt;
2702   }
2703 
2704 #ifdef ASSERT
2705   int slots() {
2706     return index;
2707   }
2708 #endif
2709 
2710  private:
2711 
2712   friend class SignatureIterator;  // so do_parameters_on can call do_type
2713   void do_type(BasicType type) {
2714     sig_bt[index++] = type;
2715     if (type == T_LONG || type == T_DOUBLE) {
2716       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2717     }
2718   }
2719 };
2720 
2721 
2722 const char* AdapterHandlerEntry::_entry_names[] = {
2723   "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2724 };
2725 
2726 #ifdef ASSERT
2727 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2728   // we can only check for the same code if there is any
2729 #ifndef ZERO
2730   AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true);
2731   assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
2732   assert(comparison_entry->compare_code(cached_entry), "code must match");
2733   // Release the one just created
2734   AdapterHandlerEntry::deallocate(comparison_entry);
2735 # endif // ZERO
2736 }
2737 #endif /* ASSERT*/
2738 
2739 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2740   assert(!method->is_abstract(), "abstract methods do not have adapters");
2741   // Use customized signature handler.  Need to lock around updates to
2742   // the _adapter_handler_table (it is not safe for concurrent readers
2743   // and a single writer: this could be fixed if it becomes a
2744   // problem).
2745 
2746   // Fast-path for trivial adapters
2747   AdapterHandlerEntry* entry = get_simple_adapter(method);
2748   if (entry != nullptr) {
2749     return entry;
2750   }
2751 
2752   ResourceMark rm;
2753   bool new_entry = false;
2754 
2755   // Fill in the signature array, for the calling-convention call.
2756   int total_args_passed = method->size_of_parameters(); // All args on stack
2757 
2758   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2759                               method->is_static(), total_args_passed);
2760   assert(si.slots() == total_args_passed, "");
2761   BasicType* sig_bt = si.basic_types();
2762   {
2763     MutexLocker mu(AdapterHandlerLibrary_lock);
2764 
2765     // Lookup method signature's fingerprint
2766     entry = lookup(total_args_passed, sig_bt);
2767 
2768     if (entry != nullptr) {
2769 #ifndef ZERO
2770       assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2771 #endif
2772 #ifdef ASSERT
2773       if (!entry->in_aot_cache() && VerifyAdapterSharing) {
2774         verify_adapter_sharing(total_args_passed, sig_bt, entry);
2775       }
2776 #endif
2777     } else {
2778       entry = create_adapter(total_args_passed, sig_bt);
2779       if (entry != nullptr) {
2780         new_entry = true;
2781       }
2782     }
2783   }
2784 
2785   // Outside of the lock
2786   if (new_entry) {
2787     post_adapter_creation(entry);
2788   }
2789   return entry;
2790 }
2791 
2792 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2793   ResourceMark rm;
2794   const char* name = AdapterHandlerLibrary::name(handler);
2795   const uint32_t id = AdapterHandlerLibrary::id(handler);
2796 
2797   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
2798   if (blob != nullptr) {
2799     handler->set_adapter_blob(blob->as_adapter_blob());
2800   }
2801 }
2802 
2803 #ifndef PRODUCT
2804 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
2805   ttyLocker ttyl;
2806   ResourceMark rm;
2807   int insts_size;
2808   // on Zero the blob may be null
2809   handler->print_adapter_on(tty);
2810   AdapterBlob* adapter_blob = handler->adapter_blob();
2811   if (adapter_blob == nullptr) {
2812     return;
2813   }
2814   insts_size = adapter_blob->code_size();
2815   st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2816                 handler->fingerprint()->as_basic_args_string(),
2817                 handler->fingerprint()->as_string(), insts_size);
2818   st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2819   if (Verbose || PrintStubCode) {
2820     address first_pc = adapter_blob->content_begin();
2821     if (first_pc != nullptr) {
2822       Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2823       st->cr();
2824     }
2825   }
2826 }
2827 #endif // PRODUCT
2828 
2829 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
2830                                               int entry_offset[AdapterBlob::ENTRY_COUNT]) {
2831   entry_offset[AdapterBlob::I2C] = 0;
2832   entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
2833   entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
2834   if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
2835     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
2836   } else {
2837     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
2838   }
2839 }
2840 
2841 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
2842                                                   int total_args_passed,
2843                                                   BasicType* sig_bt,
2844                                                   bool is_transient) {
2845   if (log_is_enabled(Info, perf, class, link)) {
2846     ClassLoader::perf_method_adapters_count()->inc();
2847   }
2848 
2849 #ifndef ZERO
2850   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2851   CodeBuffer buffer(buf);
2852   short buffer_locs[20];
2853   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2854                                          sizeof(buffer_locs)/sizeof(relocInfo));
2855   MacroAssembler masm(&buffer);
2856   VMRegPair stack_regs[16];
2857   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2858 
2859   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2860   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2861   address entry_address[AdapterBlob::ENTRY_COUNT];
2862   SharedRuntime::generate_i2c2i_adapters(&masm,
2863                                          total_args_passed,
2864                                          comp_args_on_stack,
2865                                          sig_bt,
2866                                          regs,
2867                                          entry_address);
2868   // On zero there is no code to save and no need to create a blob and
2869   // or relocate the handler.
2870   int entry_offset[AdapterBlob::ENTRY_COUNT];
2871   address_to_offset(entry_address, entry_offset);
2872 #ifdef ASSERT
2873   if (VerifyAdapterSharing) {
2874     handler->save_code(buf->code_begin(), buffer.insts_size());
2875     if (is_transient) {
2876       return true;
2877     }
2878   }
2879 #endif
2880   AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset);
2881   if (adapter_blob == nullptr) {
2882     // CodeCache is full, disable compilation
2883     // Ought to log this but compile log is only per compile thread
2884     // and we're some non descript Java thread.
2885     return false;
2886   }
2887   handler->set_adapter_blob(adapter_blob);
2888   if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2889     // try to save generated code
2890     const char* name = AdapterHandlerLibrary::name(handler);
2891     const uint32_t id = AdapterHandlerLibrary::id(handler);
2892     bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
2893     assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2894   }
2895 #endif // ZERO
2896 
2897 #ifndef PRODUCT
2898   // debugging support
2899   if (PrintAdapterHandlers || PrintStubCode) {
2900     print_adapter_handler_info(tty, handler);
2901   }
2902 #endif
2903 
2904   return true;
2905 }
2906 
2907 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed,
2908                                                            BasicType* sig_bt,
2909                                                            bool is_transient) {
2910   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2911   AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2912   if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) {
2913     AdapterHandlerEntry::deallocate(handler);
2914     return nullptr;
2915   }
2916   if (!is_transient) {
2917     assert_lock_strong(AdapterHandlerLibrary_lock);
2918     _adapter_handler_table->put(fp, handler);
2919   }
2920   return handler;
2921 }
2922 
2923 #if INCLUDE_CDS
2924 void AdapterHandlerEntry::remove_unshareable_info() {
2925 #ifdef ASSERT
2926    _saved_code = nullptr;
2927    _saved_code_length = 0;
2928 #endif // ASSERT
2929    _adapter_blob = nullptr;
2930    _linked = false;
2931 }
2932 
2933 class CopyAdapterTableToArchive : StackObj {
2934 private:
2935   CompactHashtableWriter* _writer;
2936   ArchiveBuilder* _builder;
2937 public:
2938   CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
2939                                                              _builder(ArchiveBuilder::current())
2940   {}
2941 
2942   bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
2943     LogStreamHandle(Trace, aot) lsh;
2944     if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
2945       assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
2946       AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
2947       assert(buffered_fp != nullptr,"sanity check");
2948       AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
2949       assert(buffered_entry != nullptr,"sanity check");
2950 
2951       uint hash = fp->compute_hash();
2952       u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
2953       _writer->add(hash, delta);
2954       if (lsh.is_enabled()) {
2955         address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
2956         address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
2957         log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
2958       }
2959     } else {
2960       if (lsh.is_enabled()) {
2961         log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
2962       }
2963     }
2964     return true;
2965   }
2966 };
2967 
2968 void AdapterHandlerLibrary::dump_aot_adapter_table() {
2969   CompactHashtableStats stats;
2970   CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
2971   CopyAdapterTableToArchive copy(&writer);
2972   _adapter_handler_table->iterate(&copy);
2973   writer.dump(&_aot_adapter_handler_table, "archived adapter table");
2974 }
2975 
2976 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
2977   _aot_adapter_handler_table.serialize_header(soc);
2978 }
2979 
2980 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
2981 #ifdef ASSERT
2982   if (TestAOTAdapterLinkFailure) {
2983     return;
2984   }
2985 #endif
2986   lookup_aot_cache(handler);
2987 #ifndef PRODUCT
2988   // debugging support
2989   if (PrintAdapterHandlers || PrintStubCode) {
2990     print_adapter_handler_info(tty, handler);
2991   }
2992 #endif
2993 }
2994 
2995 // This method is used during production run to link archived adapters (stored in AOT Cache)
2996 // to their code in AOT Code Cache
2997 void AdapterHandlerEntry::link() {
2998   ResourceMark rm;
2999   assert(_fingerprint != nullptr, "_fingerprint must not be null");
3000   bool generate_code = false;
3001   // Generate code only if AOTCodeCache is not available, or
3002   // caching adapters is disabled, or we fail to link
3003   // the AdapterHandlerEntry to its code in the AOTCodeCache
3004   if (AOTCodeCache::is_using_adapter()) {
3005     AdapterHandlerLibrary::link_aot_adapter_handler(this);
3006     // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
3007     if (_adapter_blob == nullptr) {
3008       log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
3009       generate_code = true;
3010     }
3011   } else {
3012     generate_code = true;
3013   }
3014   if (generate_code) {
3015     int nargs;
3016     BasicType* bt = _fingerprint->as_basic_type(nargs);
3017     if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) {
3018       // Don't throw exceptions during VM initialization because java.lang.* classes
3019       // might not have been initialized, causing problems when constructing the
3020       // Java exception object.
3021       vm_exit_during_initialization("Out of space in CodeCache for adapters");
3022     }
3023   }
3024   if (_adapter_blob != nullptr) {
3025     post_adapter_creation(this);
3026   }
3027   assert(_linked, "AdapterHandlerEntry must now be linked");
3028 }
3029 
3030 void AdapterHandlerLibrary::link_aot_adapters() {
3031   uint max_id = 0;
3032   assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3033   /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3034    * That implies adapter ids of the adapters in the cache may not be contiguous.
3035    * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3036    * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3037    * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3038    */
3039   _aot_adapter_handler_table.iterate([&](AdapterHandlerEntry* entry) {
3040     assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3041     entry->link();
3042     max_id = MAX2(max_id, entry->id());
3043   });
3044   // Set adapter id to the maximum id found in the AOTCache
3045   assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3046   _id_counter = max_id;
3047 }
3048 
3049 // This method is called during production run to lookup simple adapters
3050 // in the archived adapter handler table
3051 void AdapterHandlerLibrary::lookup_simple_adapters() {
3052   assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3053 
3054   MutexLocker mu(AdapterHandlerLibrary_lock);
3055   _no_arg_handler = lookup(0, nullptr);
3056 
3057   BasicType obj_args[] = { T_OBJECT };
3058   _obj_arg_handler = lookup(1, obj_args);
3059 
3060   BasicType int_args[] = { T_INT };
3061   _int_arg_handler = lookup(1, int_args);
3062 
3063   BasicType obj_int_args[] = { T_OBJECT, T_INT };
3064   _obj_int_arg_handler = lookup(2, obj_int_args);
3065 
3066   BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3067   _obj_obj_arg_handler = lookup(2, obj_obj_args);
3068 
3069   assert(_no_arg_handler != nullptr &&
3070          _obj_arg_handler != nullptr &&
3071          _int_arg_handler != nullptr &&
3072          _obj_int_arg_handler != nullptr &&
3073          _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3074   assert(_no_arg_handler->is_linked() &&
3075          _obj_arg_handler->is_linked() &&
3076          _int_arg_handler->is_linked() &&
3077          _obj_int_arg_handler->is_linked() &&
3078          _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3079 }
3080 #endif // INCLUDE_CDS
3081 
3082 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3083   LogStreamHandle(Trace, aot) lsh;
3084   if (lsh.is_enabled()) {
3085     lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3086     lsh.cr();
3087   }
3088   it->push(&_fingerprint);
3089 }
3090 
3091 AdapterHandlerEntry::~AdapterHandlerEntry() {
3092   if (_fingerprint != nullptr) {
3093     AdapterFingerPrint::deallocate(_fingerprint);
3094     _fingerprint = nullptr;
3095   }
3096 #ifdef ASSERT
3097   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3098 #endif
3099   FreeHeap(this);
3100 }
3101 
3102 
3103 #ifdef ASSERT
3104 // Capture the code before relocation so that it can be compared
3105 // against other versions.  If the code is captured after relocation
3106 // then relative instructions won't be equivalent.
3107 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3108   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3109   _saved_code_length = length;
3110   memcpy(_saved_code, buffer, length);
3111 }
3112 
3113 
3114 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3115   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3116 
3117   if (other->_saved_code_length != _saved_code_length) {
3118     return false;
3119   }
3120 
3121   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3122 }
3123 #endif
3124 
3125 
3126 /**
3127  * Create a native wrapper for this native method.  The wrapper converts the
3128  * Java-compiled calling convention to the native convention, handles
3129  * arguments, and transitions to native.  On return from the native we transition
3130  * back to java blocking if a safepoint is in progress.
3131  */
3132 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3133   ResourceMark rm;
3134   nmethod* nm = nullptr;
3135 
3136   // Check if memory should be freed before allocation
3137   CodeCache::gc_on_allocation();
3138 
3139   assert(method->is_native(), "must be native");
3140   assert(method->is_special_native_intrinsic() ||
3141          method->has_native_function(), "must have something valid to call!");
3142 
3143   {
3144     // Perform the work while holding the lock, but perform any printing outside the lock
3145     MutexLocker mu(AdapterHandlerLibrary_lock);
3146     // See if somebody beat us to it
3147     if (method->code() != nullptr) {
3148       return;
3149     }
3150 
3151     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3152     assert(compile_id > 0, "Must generate native wrapper");
3153 
3154 
3155     ResourceMark rm;
3156     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3157     if (buf != nullptr) {
3158       CodeBuffer buffer(buf);
3159 
3160       if (method->is_continuation_enter_intrinsic()) {
3161         buffer.initialize_stubs_size(192);
3162       }
3163 
3164       struct { double data[20]; } locs_buf;
3165       struct { double data[20]; } stubs_locs_buf;
3166       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3167 #if defined(AARCH64) || defined(PPC64)
3168       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3169       // in the constant pool to ensure ordering between the barrier and oops
3170       // accesses. For native_wrappers we need a constant.
3171       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3172       // static java call that is resolved in the runtime.
3173       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3174         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3175       }
3176 #endif
3177       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3178       MacroAssembler _masm(&buffer);
3179 
3180       // Fill in the signature array, for the calling-convention call.
3181       const int total_args_passed = method->size_of_parameters();
3182 
3183       VMRegPair stack_regs[16];
3184       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3185 
3186       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3187                               method->is_static(), total_args_passed);
3188       BasicType* sig_bt = si.basic_types();
3189       assert(si.slots() == total_args_passed, "");
3190       BasicType ret_type = si.return_type();
3191 
3192       // Now get the compiled-Java arguments layout.
3193       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3194 
3195       // Generate the compiled-to-native wrapper code
3196       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3197 
3198       if (nm != nullptr) {
3199         {
3200           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3201           if (nm->make_in_use()) {
3202             method->set_code(method, nm);
3203           }
3204         }
3205 
3206         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3207         if (directive->PrintAssemblyOption) {
3208           nm->print_code();
3209         }
3210         DirectivesStack::release(directive);
3211       }
3212     }
3213   } // Unlock AdapterHandlerLibrary_lock
3214 
3215 
3216   // Install the generated code.
3217   if (nm != nullptr) {
3218     const char *msg = method->is_static() ? "(static)" : "";
3219     CompileTask::print_ul(nm, msg);
3220     if (PrintCompilation) {
3221       ttyLocker ttyl;
3222       CompileTask::print(tty, nm, msg);
3223     }
3224     nm->post_compiled_method_load_event();
3225   }
3226 }
3227 
3228 // -------------------------------------------------------------------------
3229 // Java-Java calling convention
3230 // (what you use when Java calls Java)
3231 
3232 //------------------------------name_for_receiver----------------------------------
3233 // For a given signature, return the VMReg for parameter 0.
3234 VMReg SharedRuntime::name_for_receiver() {
3235   VMRegPair regs;
3236   BasicType sig_bt = T_OBJECT;
3237   (void) java_calling_convention(&sig_bt, &regs, 1);
3238   // Return argument 0 register.  In the LP64 build pointers
3239   // take 2 registers, but the VM wants only the 'main' name.
3240   return regs.first();
3241 }
3242 
3243 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3244   // This method is returning a data structure allocating as a
3245   // ResourceObject, so do not put any ResourceMarks in here.
3246 
3247   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3248   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3249   int cnt = 0;
3250   if (has_receiver) {
3251     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3252   }
3253 
3254   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3255     BasicType type = ss.type();
3256     sig_bt[cnt++] = type;
3257     if (is_double_word_type(type))
3258       sig_bt[cnt++] = T_VOID;
3259   }
3260 
3261   if (has_appendix) {
3262     sig_bt[cnt++] = T_OBJECT;
3263   }
3264 
3265   assert(cnt < 256, "grow table size");
3266 
3267   int comp_args_on_stack;
3268   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3269 
3270   // the calling convention doesn't count out_preserve_stack_slots so
3271   // we must add that in to get "true" stack offsets.
3272 
3273   if (comp_args_on_stack) {
3274     for (int i = 0; i < cnt; i++) {
3275       VMReg reg1 = regs[i].first();
3276       if (reg1->is_stack()) {
3277         // Yuck
3278         reg1 = reg1->bias(out_preserve_stack_slots());
3279       }
3280       VMReg reg2 = regs[i].second();
3281       if (reg2->is_stack()) {
3282         // Yuck
3283         reg2 = reg2->bias(out_preserve_stack_slots());
3284       }
3285       regs[i].set_pair(reg2, reg1);
3286     }
3287   }
3288 
3289   // results
3290   *arg_size = cnt;
3291   return regs;
3292 }
3293 
3294 // OSR Migration Code
3295 //
3296 // This code is used convert interpreter frames into compiled frames.  It is
3297 // called from very start of a compiled OSR nmethod.  A temp array is
3298 // allocated to hold the interesting bits of the interpreter frame.  All
3299 // active locks are inflated to allow them to move.  The displaced headers and
3300 // active interpreter locals are copied into the temp buffer.  Then we return
3301 // back to the compiled code.  The compiled code then pops the current
3302 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3303 // copies the interpreter locals and displaced headers where it wants.
3304 // Finally it calls back to free the temp buffer.
3305 //
3306 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3307 
3308 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3309   assert(current == JavaThread::current(), "pre-condition");
3310   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3311   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3312   // frame. The stack watermark code below ensures that the interpreted frame is processed
3313   // before it gets unwound. This is helpful as the size of the compiled frame could be
3314   // larger than the interpreted frame, which could result in the new frame not being
3315   // processed correctly.
3316   StackWatermarkSet::before_unwind(current);
3317 
3318   //
3319   // This code is dependent on the memory layout of the interpreter local
3320   // array and the monitors. On all of our platforms the layout is identical
3321   // so this code is shared. If some platform lays the their arrays out
3322   // differently then this code could move to platform specific code or
3323   // the code here could be modified to copy items one at a time using
3324   // frame accessor methods and be platform independent.
3325 
3326   frame fr = current->last_frame();
3327   assert(fr.is_interpreted_frame(), "");
3328   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3329 
3330   // Figure out how many monitors are active.
3331   int active_monitor_count = 0;
3332   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3333        kptr < fr.interpreter_frame_monitor_begin();
3334        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3335     if (kptr->obj() != nullptr) active_monitor_count++;
3336   }
3337 
3338   // QQQ we could place number of active monitors in the array so that compiled code
3339   // could double check it.
3340 
3341   Method* moop = fr.interpreter_frame_method();
3342   int max_locals = moop->max_locals();
3343   // Allocate temp buffer, 1 word per local & 2 per active monitor
3344   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3345   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3346 
3347   // Copy the locals.  Order is preserved so that loading of longs works.
3348   // Since there's no GC I can copy the oops blindly.
3349   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3350   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3351                        (HeapWord*)&buf[0],
3352                        max_locals);
3353 
3354   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3355   int i = max_locals;
3356   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3357        kptr2 < fr.interpreter_frame_monitor_begin();
3358        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3359     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3360       BasicLock *lock = kptr2->lock();
3361       if (UseObjectMonitorTable) {
3362         buf[i] = (intptr_t)lock->object_monitor_cache();
3363       }
3364 #ifdef ASSERT
3365       else {
3366         buf[i] = badDispHeaderOSR;
3367       }
3368 #endif
3369       i++;
3370       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3371     }
3372   }
3373   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3374 
3375   RegisterMap map(current,
3376                   RegisterMap::UpdateMap::skip,
3377                   RegisterMap::ProcessFrames::include,
3378                   RegisterMap::WalkContinuation::skip);
3379   frame sender = fr.sender(&map);
3380   if (sender.is_interpreted_frame()) {
3381     current->push_cont_fastpath(sender.sp());
3382   }
3383 
3384   return buf;
3385 JRT_END
3386 
3387 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3388   FREE_C_HEAP_ARRAY(intptr_t, buf);
3389 JRT_END
3390 
3391 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3392   bool found = false;
3393 #if INCLUDE_CDS
3394   if (AOTCodeCache::is_using_adapter()) {
3395     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3396       return (found = (b == CodeCache::find_blob(handler->get_i2c_entry())));
3397     };
3398     _aot_adapter_handler_table.iterate(findblob_archived_table);
3399   }
3400 #endif // INCLUDE_CDS
3401   if (!found) {
3402     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3403       return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3404     };
3405     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3406     _adapter_handler_table->iterate(findblob_runtime_table);
3407   }
3408   return found;
3409 }
3410 
3411 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3412   return handler->fingerprint()->as_basic_args_string();
3413 }
3414 
3415 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3416   return handler->id();
3417 }
3418 
3419 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3420   bool found = false;
3421 #if INCLUDE_CDS
3422   if (AOTCodeCache::is_using_adapter()) {
3423     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3424       if (b == CodeCache::find_blob(handler->get_i2c_entry())) {
3425         found = true;
3426         st->print("Adapter for signature: ");
3427         handler->print_adapter_on(st);
3428         return true;
3429       } else {
3430         return false; // keep looking
3431       }
3432     };
3433     _aot_adapter_handler_table.iterate(findblob_archived_table);
3434   }
3435 #endif // INCLUDE_CDS
3436   if (!found) {
3437     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3438       if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3439         found = true;
3440         st->print("Adapter for signature: ");
3441         a->print_adapter_on(st);
3442         return true;
3443       } else {
3444         return false; // keep looking
3445       }
3446     };
3447     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3448     _adapter_handler_table->iterate(findblob_runtime_table);
3449   }
3450   assert(found, "Should have found handler");
3451 }
3452 
3453 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3454   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3455   if (adapter_blob() != nullptr) {
3456     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3457     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3458     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3459     if (get_c2i_no_clinit_check_entry() != nullptr) {
3460       st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3461     }
3462   }
3463   st->cr();
3464 }
3465 
3466 #ifndef PRODUCT
3467 
3468 void AdapterHandlerLibrary::print_statistics() {
3469   print_table_statistics();
3470 }
3471 
3472 #endif /* PRODUCT */
3473 
3474 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3475   assert(current == JavaThread::current(), "pre-condition");
3476   StackOverflow* overflow_state = current->stack_overflow_state();
3477   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3478   overflow_state->set_reserved_stack_activation(current->stack_base());
3479 JRT_END
3480 
3481 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3482   ResourceMark rm(current);
3483   frame activation;
3484   nmethod* nm = nullptr;
3485   int count = 1;
3486 
3487   assert(fr.is_java_frame(), "Must start on Java frame");
3488 
3489   RegisterMap map(JavaThread::current(),
3490                   RegisterMap::UpdateMap::skip,
3491                   RegisterMap::ProcessFrames::skip,
3492                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3493   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3494     if (!fr.is_java_frame()) {
3495       continue;
3496     }
3497 
3498     Method* method = nullptr;
3499     bool found = false;
3500     if (fr.is_interpreted_frame()) {
3501       method = fr.interpreter_frame_method();
3502       if (method != nullptr && method->has_reserved_stack_access()) {
3503         found = true;
3504       }
3505     } else {
3506       CodeBlob* cb = fr.cb();
3507       if (cb != nullptr && cb->is_nmethod()) {
3508         nm = cb->as_nmethod();
3509         method = nm->method();
3510         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3511           method = sd->method();
3512           if (method != nullptr && method->has_reserved_stack_access()) {
3513             found = true;
3514           }
3515         }
3516       }
3517     }
3518     if (found) {
3519       activation = fr;
3520       warning("Potentially dangerous stack overflow in "
3521               "ReservedStackAccess annotated method %s [%d]",
3522               method->name_and_sig_as_C_string(), count++);
3523       EventReservedStackActivation event;
3524       if (event.should_commit()) {
3525         event.set_method(method);
3526         event.commit();
3527       }
3528     }
3529   }
3530   return activation;
3531 }
3532 
3533 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3534   // After any safepoint, just before going back to compiled code,
3535   // we inform the GC that we will be doing initializing writes to
3536   // this object in the future without emitting card-marks, so
3537   // GC may take any compensating steps.
3538 
3539   oop new_obj = current->vm_result_oop();
3540   if (new_obj == nullptr) return;
3541 
3542   BarrierSet *bs = BarrierSet::barrier_set();
3543   bs->on_slowpath_allocation_exit(current, new_obj);
3544 }
--- EOF ---