1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"

  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/nmethod.inline.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/abstractCompiler.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/interpreterRuntime.hpp"
  43 #include "jvm.h"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.hpp"
  48 #include "metaprogramming/primitiveConversions.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/methodHandles.hpp"
  57 #include "prims/nativeLookup.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/frame.inline.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/init.hpp"
  62 #include "runtime/interfaceSupport.inline.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/jniHandles.inline.hpp"

  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/stackWatermarkSet.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/synchronizer.hpp"
  70 #include "runtime/vframe.inline.hpp"
  71 #include "runtime/vframeArray.hpp"
  72 #include "runtime/vm_version.hpp"

  73 #include "utilities/copy.hpp"
  74 #include "utilities/dtrace.hpp"
  75 #include "utilities/events.hpp"
  76 #include "utilities/resourceHash.hpp"
  77 #include "utilities/macros.hpp"
  78 #include "utilities/xmlstream.hpp"
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 #if INCLUDE_JFR
  83 #include "jfr/jfr.hpp"
  84 #endif
  85 
  86 // Shared stub locations
  87 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  88 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  89 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  93 address             SharedRuntime::_resolve_static_call_entry;
  94 
  95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  99 
 100 #ifdef COMPILER2
 101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 102 #endif // COMPILER2
 103 
 104 nmethod*            SharedRuntime::_cont_doYield_stub;
 105 






 106 //----------------------------generate_stubs-----------------------------------
 107 void SharedRuntime::generate_stubs() {
 108   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 109   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 110   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 111   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 112   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 113   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 114   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 115 
 116   AdapterHandlerLibrary::initialize();
 117 
 118 #if COMPILER2_OR_JVMCI
 119   // Vectors are generated only by C2 and JVMCI.
 120   bool support_wide = is_wide_vector(MaxVectorSize);
 121   if (support_wide) {
 122     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 123   }
 124 #endif // COMPILER2_OR_JVMCI
 125   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 126   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 127 
 128   generate_deopt_blob();
 129 
 130 #ifdef COMPILER2
 131   generate_uncommon_trap_blob();
 132 #endif // COMPILER2



















































 133 }
 134 
 135 #include <math.h>
 136 
 137 // Implementation of SharedRuntime
 138 
 139 #ifndef PRODUCT
 140 // For statistics
 141 uint SharedRuntime::_ic_miss_ctr = 0;
 142 uint SharedRuntime::_wrong_method_ctr = 0;
 143 uint SharedRuntime::_resolve_static_ctr = 0;
 144 uint SharedRuntime::_resolve_virtual_ctr = 0;
 145 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;


 146 uint SharedRuntime::_implicit_null_throws = 0;
 147 uint SharedRuntime::_implicit_div0_throws = 0;
 148 
 149 int64_t SharedRuntime::_nof_normal_calls = 0;
 150 int64_t SharedRuntime::_nof_inlined_calls = 0;
 151 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 152 int64_t SharedRuntime::_nof_static_calls = 0;
 153 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 154 int64_t SharedRuntime::_nof_interface_calls = 0;
 155 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 156 
 157 uint SharedRuntime::_new_instance_ctr=0;
 158 uint SharedRuntime::_new_array_ctr=0;
 159 uint SharedRuntime::_multi2_ctr=0;
 160 uint SharedRuntime::_multi3_ctr=0;
 161 uint SharedRuntime::_multi4_ctr=0;
 162 uint SharedRuntime::_multi5_ctr=0;
 163 uint SharedRuntime::_mon_enter_stub_ctr=0;
 164 uint SharedRuntime::_mon_exit_stub_ctr=0;
 165 uint SharedRuntime::_mon_enter_ctr=0;
 166 uint SharedRuntime::_mon_exit_ctr=0;
 167 uint SharedRuntime::_partial_subtype_ctr=0;
 168 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 169 uint SharedRuntime::_jshort_array_copy_ctr=0;
 170 uint SharedRuntime::_jint_array_copy_ctr=0;
 171 uint SharedRuntime::_jlong_array_copy_ctr=0;
 172 uint SharedRuntime::_oop_array_copy_ctr=0;
 173 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 174 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 175 uint SharedRuntime::_generic_array_copy_ctr=0;
 176 uint SharedRuntime::_slow_array_copy_ctr=0;
 177 uint SharedRuntime::_find_handler_ctr=0;
 178 uint SharedRuntime::_rethrow_ctr=0;
 179 
 180 int     SharedRuntime::_ICmiss_index                    = 0;
 181 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 182 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 183 
 184 
 185 void SharedRuntime::trace_ic_miss(address at) {
 186   for (int i = 0; i < _ICmiss_index; i++) {
 187     if (_ICmiss_at[i] == at) {
 188       _ICmiss_count[i]++;
 189       return;
 190     }
 191   }
 192   int index = _ICmiss_index++;
 193   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 194   _ICmiss_at[index] = at;
 195   _ICmiss_count[index] = 1;
 196 }
 197 
 198 void SharedRuntime::print_ic_miss_histogram() {
 199   if (ICMissHistogram) {
 200     tty->print_cr("IC Miss Histogram:");
 201     int tot_misses = 0;
 202     for (int i = 0; i < _ICmiss_index; i++) {
 203       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 204       tot_misses += _ICmiss_count[i];
 205     }
 206     tty->print_cr("Total IC misses: %7d", tot_misses);
 207   }
 208 }
 209 #endif // PRODUCT
 210 
 211 
 212 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 213   return x * y;
 214 JRT_END
 215 
 216 
 217 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 218   if (x == min_jlong && y == CONST64(-1)) {
 219     return x;
 220   } else {
 221     return x / y;
 222   }
 223 JRT_END
 224 
 225 
 226 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 227   if (x == min_jlong && y == CONST64(-1)) {
 228     return 0;
 229   } else {
 230     return x % y;
 231   }
 232 JRT_END
 233 
 234 
 235 #ifdef _WIN64
 236 const juint  float_sign_mask  = 0x7FFFFFFF;
 237 const juint  float_infinity   = 0x7F800000;
 238 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 239 const julong double_infinity  = CONST64(0x7FF0000000000000);
 240 #endif
 241 
 242 #if !defined(X86)
 243 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 244 #ifdef _WIN64
 245   // 64-bit Windows on amd64 returns the wrong values for
 246   // infinity operands.
 247   juint xbits = PrimitiveConversions::cast<juint>(x);
 248   juint ybits = PrimitiveConversions::cast<juint>(y);
 249   // x Mod Infinity == x unless x is infinity
 250   if (((xbits & float_sign_mask) != float_infinity) &&
 251        ((ybits & float_sign_mask) == float_infinity) ) {
 252     return x;
 253   }
 254   return ((jfloat)fmod_winx64((double)x, (double)y));
 255 #else
 256   return ((jfloat)fmod((double)x,(double)y));
 257 #endif
 258 JRT_END
 259 
 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 261 #ifdef _WIN64
 262   julong xbits = PrimitiveConversions::cast<julong>(x);
 263   julong ybits = PrimitiveConversions::cast<julong>(y);
 264   // x Mod Infinity == x unless x is infinity
 265   if (((xbits & double_sign_mask) != double_infinity) &&
 266        ((ybits & double_sign_mask) == double_infinity) ) {
 267     return x;
 268   }
 269   return ((jdouble)fmod_winx64((double)x, (double)y));
 270 #else
 271   return ((jdouble)fmod((double)x,(double)y));
 272 #endif
 273 JRT_END
 274 #endif // !X86
 275 
 276 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 277   return (jfloat)x;
 278 JRT_END
 279 
 280 #ifdef __SOFTFP__
 281 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 282   return x + y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 286   return x - y;
 287 JRT_END
 288 
 289 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 290   return x * y;
 291 JRT_END
 292 
 293 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 294   return x / y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 298   return x + y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 302   return x - y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 306   return x * y;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 310   return x / y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 318   return (jdouble)x;
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 322   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 326   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 330   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 334   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 335 JRT_END
 336 
 337 // Functions to return the opposite of the aeabi functions for nan.
 338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 343   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 351   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 359   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 367   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 // Intrinsics make gcc generate code for these.
 371 float  SharedRuntime::fneg(float f)   {
 372   return -f;
 373 }
 374 
 375 double SharedRuntime::dneg(double f)  {
 376   return -f;
 377 }
 378 
 379 #endif // __SOFTFP__
 380 
 381 #if defined(__SOFTFP__) || defined(E500V2)
 382 // Intrinsics make gcc generate code for these.
 383 double SharedRuntime::dabs(double f)  {
 384   return (f <= (double)0.0) ? (double)0.0 - f : f;
 385 }
 386 
 387 #endif
 388 
 389 #if defined(__SOFTFP__) || defined(PPC)
 390 double SharedRuntime::dsqrt(double f) {
 391   return sqrt(f);
 392 }
 393 #endif
 394 
 395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 396   if (g_isnan(x))
 397     return 0;
 398   if (x >= (jfloat) max_jint)
 399     return max_jint;
 400   if (x <= (jfloat) min_jint)
 401     return min_jint;
 402   return (jint) x;
 403 JRT_END
 404 
 405 
 406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jlong)
 410     return max_jlong;
 411   if (x <= (jfloat) min_jlong)
 412     return min_jlong;
 413   return (jlong) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jdouble) max_jint)
 421     return max_jint;
 422   if (x <= (jdouble) min_jint)
 423     return min_jint;
 424   return (jint) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jlong)
 432     return max_jlong;
 433   if (x <= (jdouble) min_jlong)
 434     return min_jlong;
 435   return (jlong) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 440   return (jfloat)x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 445   return (jfloat)x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 450   return (jdouble)x;
 451 JRT_END
 452 
 453 
 454 // Exception handling across interpreter/compiler boundaries
 455 //
 456 // exception_handler_for_return_address(...) returns the continuation address.
 457 // The continuation address is the entry point of the exception handler of the
 458 // previous frame depending on the return address.
 459 
 460 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 461   // Note: This is called when we have unwound the frame of the callee that did
 462   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 463   // Notably, the stack is not walkable at this point, and hence the check must
 464   // be deferred until later. Specifically, any of the handlers returned here in
 465   // this function, will get dispatched to, and call deferred checks to
 466   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 467   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 468   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 469 
 470   // Reset method handle flag.
 471   current->set_is_method_handle_return(false);
 472 
 473 #if INCLUDE_JVMCI
 474   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 475   // and other exception handler continuations do not read it
 476   current->set_exception_pc(nullptr);
 477 #endif // INCLUDE_JVMCI
 478 
 479   if (Continuation::is_return_barrier_entry(return_address)) {
 480     return StubRoutines::cont_returnBarrierExc();
 481   }
 482 
 483   // write lock needed because we might update the pc desc cache via PcDescCache::add_pc_desc
 484   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
 485 
 486   // The fastest case first
 487   CodeBlob* blob = CodeCache::find_blob(return_address);
 488   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 489   if (nm != nullptr) {
 490     // Set flag if return address is a method handle call site.
 491     current->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 492     // native nmethods don't have exception handlers
 493     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 494     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 495     if (nm->is_deopt_pc(return_address)) {
 496       // If we come here because of a stack overflow, the stack may be
 497       // unguarded. Reguard the stack otherwise if we return to the
 498       // deopt blob and the stack bang causes a stack overflow we
 499       // crash.
 500       StackOverflow* overflow_state = current->stack_overflow_state();
 501       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 502       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 503         overflow_state->set_reserved_stack_activation(current->stack_base());
 504       }
 505       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 506       // The deferred StackWatermarkSet::after_unwind check will be performed in
 507       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 508       return SharedRuntime::deopt_blob()->unpack_with_exception();
 509     } else {
 510       // The deferred StackWatermarkSet::after_unwind check will be performed in
 511       // * OptoRuntime::handle_exception_C_helper for C2 code
 512       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 513       return nm->exception_begin();
 514     }
 515   }
 516 
 517   // Entry code
 518   if (StubRoutines::returns_to_call_stub(return_address)) {
 519     // The deferred StackWatermarkSet::after_unwind check will be performed in
 520     // JavaCallWrapper::~JavaCallWrapper
 521     return StubRoutines::catch_exception_entry();
 522   }
 523   if (blob != nullptr && blob->is_upcall_stub()) {
 524     return StubRoutines::upcall_stub_exception_handler();
 525   }
 526   // Interpreted code
 527   if (Interpreter::contains(return_address)) {
 528     // The deferred StackWatermarkSet::after_unwind check will be performed in
 529     // InterpreterRuntime::exception_handler_for_exception
 530     return Interpreter::rethrow_exception_entry();
 531   }
 532 
 533   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 534   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 535 
 536 #ifndef PRODUCT
 537   { ResourceMark rm;
 538     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 539     os::print_location(tty, (intptr_t)return_address);
 540     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 541     tty->print_cr("b) other problem");
 542   }
 543 #endif // PRODUCT
 544 
 545   ShouldNotReachHere();
 546   return nullptr;
 547 }
 548 
 549 
 550 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 551   return raw_exception_handler_for_return_address(current, return_address);
 552 JRT_END
 553 
 554 
 555 address SharedRuntime::get_poll_stub(address pc) {
 556   address stub;
 557   // Look up the code blob
 558   CodeBlob *cb = CodeCache::find_blob(pc);
 559 
 560   // Should be an nmethod
 561   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 562 
 563   // Look up the relocation information
 564   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 565       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 566 
 567 #ifdef ASSERT
 568   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 569     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 570     Disassembler::decode(cb);
 571     fatal("Only polling locations are used for safepoint");
 572   }
 573 #endif
 574 
 575   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 576   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 577   if (at_poll_return) {
 578     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 579            "polling page return stub not created yet");
 580     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 581   } else if (has_wide_vectors) {
 582     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 583            "polling page vectors safepoint stub not created yet");
 584     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 585   } else {
 586     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 587            "polling page safepoint stub not created yet");
 588     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 589   }
 590   log_debug(safepoint)("... found polling page %s exception at pc = "
 591                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 592                        at_poll_return ? "return" : "loop",
 593                        (intptr_t)pc, (intptr_t)stub);
 594   return stub;
 595 }
 596 
 597 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 598   if (JvmtiExport::can_post_on_exceptions()) {
 599     vframeStream vfst(current, true);
 600     methodHandle method = methodHandle(current, vfst.method());
 601     address bcp = method()->bcp_from(vfst.bci());
 602     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 603   }
 604 
 605 #if INCLUDE_JVMCI
 606   if (EnableJVMCI && UseJVMCICompiler) {
 607     vframeStream vfst(current, true);
 608     methodHandle method = methodHandle(current, vfst.method());
 609     int bci = vfst.bci();
 610     MethodData* trap_mdo = method->method_data();
 611     if (trap_mdo != nullptr) {
 612       // Set exception_seen if the exceptional bytecode is an invoke
 613       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 614       if (call.is_valid()) {
 615         ResourceMark rm(current);
 616 
 617         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 618         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 619 
 620         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 621         if (pdata != nullptr && pdata->is_BitData()) {
 622           BitData* bit_data = (BitData*) pdata;
 623           bit_data->set_exception_seen();
 624         }
 625       }
 626     }
 627   }
 628 #endif
 629 
 630   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 631 }
 632 
 633 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 634   Handle h_exception = Exceptions::new_exception(current, name, message);
 635   throw_and_post_jvmti_exception(current, h_exception);
 636 }
 637 
 638 #if INCLUDE_JVMTI
 639 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 640   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 641   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 642   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 643   JNIHandles::destroy_local(vthread);
 644 JRT_END
 645 
 646 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 647   assert(hide == JNI_TRUE, "must be VTMS transition start");
 648   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 649   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 650   JNIHandles::destroy_local(vthread);
 651 JRT_END
 652 
 653 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 654   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 655   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 656   JNIHandles::destroy_local(vthread);
 657 JRT_END
 658 
 659 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 660   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 661   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 662   JNIHandles::destroy_local(vthread);
 663 JRT_END
 664 #endif // INCLUDE_JVMTI
 665 
 666 // The interpreter code to call this tracing function is only
 667 // called/generated when UL is on for redefine, class and has the right level
 668 // and tags. Since obsolete methods are never compiled, we don't have
 669 // to modify the compilers to generate calls to this function.
 670 //
 671 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 672     JavaThread* thread, Method* method))
 673   if (method->is_obsolete()) {
 674     // We are calling an obsolete method, but this is not necessarily
 675     // an error. Our method could have been redefined just after we
 676     // fetched the Method* from the constant pool.
 677     ResourceMark rm;
 678     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 679   }












 680   return 0;
 681 JRT_END
 682 
 683 // ret_pc points into caller; we are returning caller's exception handler
 684 // for given exception
 685 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 686 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 687                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 688   assert(nm != nullptr, "must exist");
 689   ResourceMark rm;
 690 
 691 #if INCLUDE_JVMCI
 692   if (nm->is_compiled_by_jvmci()) {
 693     // lookup exception handler for this pc
 694     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 695     ExceptionHandlerTable table(nm);
 696     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 697     if (t != nullptr) {
 698       return nm->code_begin() + t->pco();
 699     } else {
 700       return Deoptimization::deoptimize_for_missing_exception_handler(nm);
 701     }
 702   }
 703 #endif // INCLUDE_JVMCI
 704 
 705   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 706   // determine handler bci, if any
 707   EXCEPTION_MARK;
 708 
 709   int handler_bci = -1;
 710   int scope_depth = 0;
 711   if (!force_unwind) {
 712     int bci = sd->bci();
 713     bool recursive_exception = false;
 714     do {
 715       bool skip_scope_increment = false;
 716       // exception handler lookup
 717       Klass* ek = exception->klass();
 718       methodHandle mh(THREAD, sd->method());
 719       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 720       if (HAS_PENDING_EXCEPTION) {
 721         recursive_exception = true;
 722         // We threw an exception while trying to find the exception handler.
 723         // Transfer the new exception to the exception handle which will
 724         // be set into thread local storage, and do another lookup for an
 725         // exception handler for this exception, this time starting at the
 726         // BCI of the exception handler which caused the exception to be
 727         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 728         // argument to ensure that the correct exception is thrown (4870175).
 729         recursive_exception_occurred = true;
 730         exception = Handle(THREAD, PENDING_EXCEPTION);
 731         CLEAR_PENDING_EXCEPTION;
 732         if (handler_bci >= 0) {
 733           bci = handler_bci;
 734           handler_bci = -1;
 735           skip_scope_increment = true;
 736         }
 737       }
 738       else {
 739         recursive_exception = false;
 740       }
 741       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 742         sd = sd->sender();
 743         if (sd != nullptr) {
 744           bci = sd->bci();
 745         }
 746         ++scope_depth;
 747       }
 748     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 749   }
 750 
 751   // found handling method => lookup exception handler
 752   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 753 
 754   ExceptionHandlerTable table(nm);
 755   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 756   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 757     // Allow abbreviated catch tables.  The idea is to allow a method
 758     // to materialize its exceptions without committing to the exact
 759     // routing of exceptions.  In particular this is needed for adding
 760     // a synthetic handler to unlock monitors when inlining
 761     // synchronized methods since the unlock path isn't represented in
 762     // the bytecodes.
 763     t = table.entry_for(catch_pco, -1, 0);
 764   }
 765 
 766 #ifdef COMPILER1
 767   if (t == nullptr && nm->is_compiled_by_c1()) {
 768     assert(nm->unwind_handler_begin() != nullptr, "");
 769     return nm->unwind_handler_begin();
 770   }
 771 #endif
 772 
 773   if (t == nullptr) {
 774     ttyLocker ttyl;
 775     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 776     tty->print_cr("   Exception:");
 777     exception->print();
 778     tty->cr();
 779     tty->print_cr(" Compiled exception table :");
 780     table.print();
 781     nm->print();
 782     nm->print_code();
 783     guarantee(false, "missing exception handler");
 784     return nullptr;
 785   }
 786 
 787   if (handler_bci != -1) { // did we find a handler in this method?
 788     sd->method()->set_exception_handler_entered(handler_bci); // profile
 789   }
 790   return nm->code_begin() + t->pco();
 791 }
 792 
 793 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 794   // These errors occur only at call sites
 795   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 796 JRT_END
 797 
 798 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 799   // These errors occur only at call sites
 800   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 801 JRT_END
 802 
 803 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 804   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 805 JRT_END
 806 
 807 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 808   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 809 JRT_END
 810 
 811 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 812   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 813   // cache sites (when the callee activation is not yet set up) so we are at a call site
 814   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 815 JRT_END
 816 
 817 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 818   throw_StackOverflowError_common(current, false);
 819 JRT_END
 820 
 821 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 822   throw_StackOverflowError_common(current, true);
 823 JRT_END
 824 
 825 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 826   // We avoid using the normal exception construction in this case because
 827   // it performs an upcall to Java, and we're already out of stack space.
 828   JavaThread* THREAD = current; // For exception macros.
 829   Klass* k = vmClasses::StackOverflowError_klass();
 830   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 831   if (delayed) {
 832     java_lang_Throwable::set_message(exception_oop,
 833                                      Universe::delayed_stack_overflow_error_message());
 834   }
 835   Handle exception (current, exception_oop);
 836   if (StackTraceInThrowable) {
 837     java_lang_Throwable::fill_in_stack_trace(exception);
 838   }
 839   // Remove the ScopedValue bindings in case we got a
 840   // StackOverflowError while we were trying to remove ScopedValue
 841   // bindings.
 842   current->clear_scopedValueBindings();
 843   // Increment counter for hs_err file reporting
 844   Atomic::inc(&Exceptions::_stack_overflow_errors);
 845   throw_and_post_jvmti_exception(current, exception);
 846 }
 847 
 848 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 849                                                            address pc,
 850                                                            ImplicitExceptionKind exception_kind)
 851 {
 852   address target_pc = nullptr;
 853 
 854   if (Interpreter::contains(pc)) {
 855     switch (exception_kind) {
 856       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 857       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 858       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 859       default:                      ShouldNotReachHere();
 860     }
 861   } else {
 862     switch (exception_kind) {
 863       case STACK_OVERFLOW: {
 864         // Stack overflow only occurs upon frame setup; the callee is
 865         // going to be unwound. Dispatch to a shared runtime stub
 866         // which will cause the StackOverflowError to be fabricated
 867         // and processed.
 868         // Stack overflow should never occur during deoptimization:
 869         // the compiled method bangs the stack by as much as the
 870         // interpreter would need in case of a deoptimization. The
 871         // deoptimization blob and uncommon trap blob bang the stack
 872         // in a debug VM to verify the correctness of the compiled
 873         // method stack banging.
 874         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 875         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 876         return StubRoutines::throw_StackOverflowError_entry();
 877       }
 878 
 879       case IMPLICIT_NULL: {
 880         if (VtableStubs::contains(pc)) {
 881           // We haven't yet entered the callee frame. Fabricate an
 882           // exception and begin dispatching it in the caller. Since
 883           // the caller was at a call site, it's safe to destroy all
 884           // caller-saved registers, as these entry points do.
 885           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 886 
 887           // If vt_stub is null, then return null to signal handler to report the SEGV error.
 888           if (vt_stub == nullptr) return nullptr;
 889 
 890           if (vt_stub->is_abstract_method_error(pc)) {
 891             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 892             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 893             // Instead of throwing the abstract method error here directly, we re-resolve
 894             // and will throw the AbstractMethodError during resolve. As a result, we'll
 895             // get a more detailed error message.
 896             return SharedRuntime::get_handle_wrong_method_stub();
 897           } else {
 898             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 899             // Assert that the signal comes from the expected location in stub code.
 900             assert(vt_stub->is_null_pointer_exception(pc),
 901                    "obtained signal from unexpected location in stub code");
 902             return StubRoutines::throw_NullPointerException_at_call_entry();
 903           }
 904         } else {
 905           CodeBlob* cb = CodeCache::find_blob(pc);
 906 
 907           // If code blob is null, then return null to signal handler to report the SEGV error.
 908           if (cb == nullptr) return nullptr;
 909 
 910           // Exception happened in CodeCache. Must be either:
 911           // 1. Inline-cache check in C2I handler blob,
 912           // 2. Inline-cache check in nmethod, or
 913           // 3. Implicit null exception in nmethod
 914 
 915           if (!cb->is_nmethod()) {
 916             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 917             if (!is_in_blob) {
 918               // Allow normal crash reporting to handle this
 919               return nullptr;
 920             }
 921             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 922             // There is no handler here, so we will simply unwind.
 923             return StubRoutines::throw_NullPointerException_at_call_entry();
 924           }
 925 
 926           // Otherwise, it's a compiled method.  Consult its exception handlers.
 927           nmethod* nm = cb->as_nmethod();
 928           if (nm->inlinecache_check_contains(pc)) {
 929             // exception happened inside inline-cache check code
 930             // => the nmethod is not yet active (i.e., the frame
 931             // is not set up yet) => use return address pushed by
 932             // caller => don't push another return address
 933             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 934             return StubRoutines::throw_NullPointerException_at_call_entry();
 935           }
 936 
 937           if (nm->method()->is_method_handle_intrinsic()) {
 938             // exception happened inside MH dispatch code, similar to a vtable stub
 939             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 940             return StubRoutines::throw_NullPointerException_at_call_entry();
 941           }
 942 
 943 #ifndef PRODUCT
 944           _implicit_null_throws++;
 945 #endif
 946           target_pc = nm->continuation_for_implicit_null_exception(pc);
 947           // If there's an unexpected fault, target_pc might be null,
 948           // in which case we want to fall through into the normal
 949           // error handling code.
 950         }
 951 
 952         break; // fall through
 953       }
 954 
 955 
 956       case IMPLICIT_DIVIDE_BY_ZERO: {
 957         nmethod* nm = CodeCache::find_nmethod(pc);
 958         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
 959 #ifndef PRODUCT
 960         _implicit_div0_throws++;
 961 #endif
 962         target_pc = nm->continuation_for_implicit_div0_exception(pc);
 963         // If there's an unexpected fault, target_pc might be null,
 964         // in which case we want to fall through into the normal
 965         // error handling code.
 966         break; // fall through
 967       }
 968 
 969       default: ShouldNotReachHere();
 970     }
 971 
 972     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 973 
 974     if (exception_kind == IMPLICIT_NULL) {
 975 #ifndef PRODUCT
 976       // for AbortVMOnException flag
 977       Exceptions::debug_check_abort("java.lang.NullPointerException");
 978 #endif //PRODUCT
 979       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 980     } else {
 981 #ifndef PRODUCT
 982       // for AbortVMOnException flag
 983       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 984 #endif //PRODUCT
 985       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 986     }
 987     return target_pc;
 988   }
 989 
 990   ShouldNotReachHere();
 991   return nullptr;
 992 }
 993 
 994 
 995 /**
 996  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 997  * installed in the native function entry of all native Java methods before
 998  * they get linked to their actual native methods.
 999  *
1000  * \note
1001  * This method actually never gets called!  The reason is because
1002  * the interpreter's native entries call NativeLookup::lookup() which
1003  * throws the exception when the lookup fails.  The exception is then
1004  * caught and forwarded on the return from NativeLookup::lookup() call
1005  * before the call to the native function.  This might change in the future.
1006  */
1007 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1008 {
1009   // We return a bad value here to make sure that the exception is
1010   // forwarded before we look at the return value.
1011   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1012 }
1013 JNI_END
1014 
1015 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1016   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1017 }
1018 
1019 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1020 #if INCLUDE_JVMCI
1021   if (!obj->klass()->has_finalizer()) {
1022     return;
1023   }
1024 #endif // INCLUDE_JVMCI
1025   assert(oopDesc::is_oop(obj), "must be a valid oop");
1026   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1027   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1028 JRT_END
1029 
1030 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1031   assert(thread != nullptr, "No thread");
1032   if (thread == nullptr) {
1033     return 0;
1034   }
1035   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1036             "current cannot touch oops after its GC barrier is detached.");
1037   oop obj = thread->threadObj();
1038   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1039 }
1040 
1041 /**
1042  * This function ought to be a void function, but cannot be because
1043  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1044  * 6254741.  Once that is fixed we can remove the dummy return value.
1045  */
1046 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1047   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1048 }
1049 
1050 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1051   return dtrace_object_alloc(thread, o, o->size());
1052 }
1053 
1054 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1055   assert(DTraceAllocProbes, "wrong call");
1056   Klass* klass = o->klass();
1057   Symbol* name = klass->name();
1058   HOTSPOT_OBJECT_ALLOC(
1059                    get_java_tid(thread),
1060                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1061   return 0;
1062 }
1063 
1064 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1065     JavaThread* current, Method* method))
1066   assert(current == JavaThread::current(), "pre-condition");
1067 
1068   assert(DTraceMethodProbes, "wrong call");
1069   Symbol* kname = method->klass_name();
1070   Symbol* name = method->name();
1071   Symbol* sig = method->signature();
1072   HOTSPOT_METHOD_ENTRY(
1073       get_java_tid(current),
1074       (char *) kname->bytes(), kname->utf8_length(),
1075       (char *) name->bytes(), name->utf8_length(),
1076       (char *) sig->bytes(), sig->utf8_length());
1077   return 0;
1078 JRT_END
1079 
1080 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1081     JavaThread* current, Method* method))
1082   assert(current == JavaThread::current(), "pre-condition");
1083   assert(DTraceMethodProbes, "wrong call");
1084   Symbol* kname = method->klass_name();
1085   Symbol* name = method->name();
1086   Symbol* sig = method->signature();
1087   HOTSPOT_METHOD_RETURN(
1088       get_java_tid(current),
1089       (char *) kname->bytes(), kname->utf8_length(),
1090       (char *) name->bytes(), name->utf8_length(),
1091       (char *) sig->bytes(), sig->utf8_length());
1092   return 0;
1093 JRT_END
1094 
1095 
1096 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1097 // for a call current in progress, i.e., arguments has been pushed on stack
1098 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1099 // vtable updates, etc.  Caller frame must be compiled.
1100 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1101   JavaThread* current = THREAD;
1102   ResourceMark rm(current);
1103 
1104   // last java frame on stack (which includes native call frames)
1105   vframeStream vfst(current, true);  // Do not skip and javaCalls
1106 
1107   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1108 }
1109 
1110 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1111   nmethod* caller = vfst.nm();
1112 
1113   address pc = vfst.frame_pc();
1114   { // Get call instruction under lock because another thread may be busy patching it.
1115     CompiledICLocker ic_locker(caller);
1116     return caller->attached_method_before_pc(pc);
1117   }
1118   return nullptr;
1119 }
1120 
1121 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1122 // for a call current in progress, i.e., arguments has been pushed on stack
1123 // but callee has not been invoked yet.  Caller frame must be compiled.
1124 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1125                                               CallInfo& callinfo, TRAPS) {
1126   Handle receiver;
1127   Handle nullHandle;  // create a handy null handle for exception returns
1128   JavaThread* current = THREAD;
1129 
1130   assert(!vfst.at_end(), "Java frame must exist");
1131 
1132   // Find caller and bci from vframe
1133   methodHandle caller(current, vfst.method());
1134   int          bci   = vfst.bci();
1135 
1136   if (caller->is_continuation_enter_intrinsic()) {
1137     bc = Bytecodes::_invokestatic;
1138     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1139     return receiver;
1140   }
1141 
1142   Bytecode_invoke bytecode(caller, bci);
1143   int bytecode_index = bytecode.index();
1144   bc = bytecode.invoke_code();
1145 
1146   methodHandle attached_method(current, extract_attached_method(vfst));
1147   if (attached_method.not_null()) {
1148     Method* callee = bytecode.static_target(CHECK_NH);
1149     vmIntrinsics::ID id = callee->intrinsic_id();
1150     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1151     // it attaches statically resolved method to the call site.
1152     if (MethodHandles::is_signature_polymorphic(id) &&
1153         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1154       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1155 
1156       // Adjust invocation mode according to the attached method.
1157       switch (bc) {
1158         case Bytecodes::_invokevirtual:
1159           if (attached_method->method_holder()->is_interface()) {
1160             bc = Bytecodes::_invokeinterface;
1161           }
1162           break;
1163         case Bytecodes::_invokeinterface:
1164           if (!attached_method->method_holder()->is_interface()) {
1165             bc = Bytecodes::_invokevirtual;
1166           }
1167           break;
1168         case Bytecodes::_invokehandle:
1169           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1170             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1171                                               : Bytecodes::_invokevirtual;
1172           }
1173           break;
1174         default:
1175           break;
1176       }
1177     }
1178   }
1179 
1180   assert(bc != Bytecodes::_illegal, "not initialized");
1181 
1182   bool has_receiver = bc != Bytecodes::_invokestatic &&
1183                       bc != Bytecodes::_invokedynamic &&
1184                       bc != Bytecodes::_invokehandle;
1185 
1186   // Find receiver for non-static call
1187   if (has_receiver) {
1188     // This register map must be update since we need to find the receiver for
1189     // compiled frames. The receiver might be in a register.
1190     RegisterMap reg_map2(current,
1191                          RegisterMap::UpdateMap::include,
1192                          RegisterMap::ProcessFrames::include,
1193                          RegisterMap::WalkContinuation::skip);
1194     frame stubFrame   = current->last_frame();
1195     // Caller-frame is a compiled frame
1196     frame callerFrame = stubFrame.sender(&reg_map2);
1197 
1198     if (attached_method.is_null()) {
1199       Method* callee = bytecode.static_target(CHECK_NH);
1200       if (callee == nullptr) {
1201         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1202       }
1203     }
1204 
1205     // Retrieve from a compiled argument list
1206     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1207     assert(oopDesc::is_oop_or_null(receiver()), "");
1208 
1209     if (receiver.is_null()) {
1210       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1211     }
1212   }
1213 
1214   // Resolve method
1215   if (attached_method.not_null()) {
1216     // Parameterized by attached method.
1217     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1218   } else {
1219     // Parameterized by bytecode.
1220     constantPoolHandle constants(current, caller->constants());
1221     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1222   }
1223 
1224 #ifdef ASSERT
1225   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1226   if (has_receiver) {
1227     assert(receiver.not_null(), "should have thrown exception");
1228     Klass* receiver_klass = receiver->klass();
1229     Klass* rk = nullptr;
1230     if (attached_method.not_null()) {
1231       // In case there's resolved method attached, use its holder during the check.
1232       rk = attached_method->method_holder();
1233     } else {
1234       // Klass is already loaded.
1235       constantPoolHandle constants(current, caller->constants());
1236       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1237     }
1238     Klass* static_receiver_klass = rk;
1239     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1240            "actual receiver must be subclass of static receiver klass");
1241     if (receiver_klass->is_instance_klass()) {
1242       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1243         tty->print_cr("ERROR: Klass not yet initialized!!");
1244         receiver_klass->print();
1245       }
1246       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1247     }
1248   }
1249 #endif
1250 
1251   return receiver;
1252 }
1253 
1254 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1255   JavaThread* current = THREAD;
1256   ResourceMark rm(current);
1257   // We need first to check if any Java activations (compiled, interpreted)
1258   // exist on the stack since last JavaCall.  If not, we need
1259   // to get the target method from the JavaCall wrapper.
1260   vframeStream vfst(current, true);  // Do not skip any javaCalls
1261   methodHandle callee_method;
1262   if (vfst.at_end()) {
1263     // No Java frames were found on stack since we did the JavaCall.
1264     // Hence the stack can only contain an entry_frame.  We need to
1265     // find the target method from the stub frame.
1266     RegisterMap reg_map(current,
1267                         RegisterMap::UpdateMap::skip,
1268                         RegisterMap::ProcessFrames::include,
1269                         RegisterMap::WalkContinuation::skip);
1270     frame fr = current->last_frame();
1271     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1272     fr = fr.sender(&reg_map);
1273     assert(fr.is_entry_frame(), "must be");
1274     // fr is now pointing to the entry frame.
1275     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1276   } else {
1277     Bytecodes::Code bc;
1278     CallInfo callinfo;
1279     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1280     callee_method = methodHandle(current, callinfo.selected_method());
1281   }
1282   assert(callee_method()->is_method(), "must be");
1283   return callee_method;
1284 }
1285 
1286 // Resolves a call.
1287 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1288   JavaThread* current = THREAD;
1289   ResourceMark rm(current);
1290   RegisterMap cbl_map(current,
1291                       RegisterMap::UpdateMap::skip,
1292                       RegisterMap::ProcessFrames::include,
1293                       RegisterMap::WalkContinuation::skip);
1294   frame caller_frame = current->last_frame().sender(&cbl_map);
1295 
1296   CodeBlob* caller_cb = caller_frame.cb();
1297   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1298   nmethod* caller_nm = caller_cb->as_nmethod();
1299 
1300   // determine call info & receiver
1301   // note: a) receiver is null for static calls
1302   //       b) an exception is thrown if receiver is null for non-static calls
1303   CallInfo call_info;
1304   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1305   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1306 
1307   NoSafepointVerifier nsv;
1308 
1309   methodHandle callee_method(current, call_info.selected_method());
1310 
1311   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1312          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1313          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1314          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1315          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1316 
1317   assert(!caller_nm->is_unloading(), "It should not be unloading");
1318 
1319 #ifndef PRODUCT
1320   // tracing/debugging/statistics
1321   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1322                  (is_virtual) ? (&_resolve_virtual_ctr) :
1323                                 (&_resolve_static_ctr);
1324   Atomic::inc(addr);
1325 

1326   if (TraceCallFixup) {
1327     ResourceMark rm(current);
1328     tty->print("resolving %s%s (%s) call to",
1329                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1330                Bytecodes::name(invoke_code));
1331     callee_method->print_short_name(tty);
1332     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1333                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1334   }
1335 #endif
1336 
1337   if (invoke_code == Bytecodes::_invokestatic) {
1338     assert(callee_method->method_holder()->is_initialized() ||
1339            callee_method->method_holder()->is_init_thread(current),
1340            "invalid class initialization state for invoke_static");
1341     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1342       // In order to keep class initialization check, do not patch call
1343       // site for static call when the class is not fully initialized.
1344       // Proper check is enforced by call site re-resolution on every invocation.
1345       //
1346       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1347       // explicit class initialization check is put in nmethod entry (VEP).
1348       assert(callee_method->method_holder()->is_linked(), "must be");
1349       return callee_method;
1350     }
1351   }
1352 
1353 
1354   // JSR 292 key invariant:
1355   // If the resolved method is a MethodHandle invoke target, the call
1356   // site must be a MethodHandle call site, because the lambda form might tail-call
1357   // leaving the stack in a state unknown to either caller or callee
1358 
1359   // Compute entry points. The computation of the entry points is independent of
1360   // patching the call.
1361 
1362   // Make sure the callee nmethod does not get deoptimized and removed before
1363   // we are done patching the code.
1364 
1365 
1366   CompiledICLocker ml(caller_nm);
1367   if (is_virtual && !is_optimized) {
1368     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1369     inline_cache->update(&call_info, receiver->klass());
1370   } else {
1371     // Callsite is a direct call - set it to the destination method
1372     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1373     callsite->set(callee_method);
1374   }
1375 
1376   return callee_method;
1377 }
1378 
1379 // Inline caches exist only in compiled code
1380 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))


1381 #ifdef ASSERT
1382   RegisterMap reg_map(current,
1383                       RegisterMap::UpdateMap::skip,
1384                       RegisterMap::ProcessFrames::include,
1385                       RegisterMap::WalkContinuation::skip);
1386   frame stub_frame = current->last_frame();
1387   assert(stub_frame.is_runtime_frame(), "sanity check");
1388   frame caller_frame = stub_frame.sender(&reg_map);
1389   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1390 #endif /* ASSERT */
1391 
1392   methodHandle callee_method;
1393   JRT_BLOCK
1394     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1395     // Return Method* through TLS
1396     current->set_vm_result_2(callee_method());
1397   JRT_BLOCK_END
1398   // return compiled code entry point after potential safepoints
1399   return get_resolved_entry(current, callee_method);
1400 JRT_END
1401 
1402 
1403 // Handle call site that has been made non-entrant
1404 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))


1405   // 6243940 We might end up in here if the callee is deoptimized
1406   // as we race to call it.  We don't want to take a safepoint if
1407   // the caller was interpreted because the caller frame will look
1408   // interpreted to the stack walkers and arguments are now
1409   // "compiled" so it is much better to make this transition
1410   // invisible to the stack walking code. The i2c path will
1411   // place the callee method in the callee_target. It is stashed
1412   // there because if we try and find the callee by normal means a
1413   // safepoint is possible and have trouble gc'ing the compiled args.
1414   RegisterMap reg_map(current,
1415                       RegisterMap::UpdateMap::skip,
1416                       RegisterMap::ProcessFrames::include,
1417                       RegisterMap::WalkContinuation::skip);
1418   frame stub_frame = current->last_frame();
1419   assert(stub_frame.is_runtime_frame(), "sanity check");
1420   frame caller_frame = stub_frame.sender(&reg_map);
1421 
1422   if (caller_frame.is_interpreted_frame() ||
1423       caller_frame.is_entry_frame() ||
1424       caller_frame.is_upcall_stub_frame()) {
1425     Method* callee = current->callee_target();
1426     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1427     current->set_vm_result_2(callee);
1428     current->set_callee_target(nullptr);
1429     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1430       // Bypass class initialization checks in c2i when caller is in native.
1431       // JNI calls to static methods don't have class initialization checks.
1432       // Fast class initialization checks are present in c2i adapters and call into
1433       // SharedRuntime::handle_wrong_method() on the slow path.
1434       //
1435       // JVM upcalls may land here as well, but there's a proper check present in
1436       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1437       // so bypassing it in c2i adapter is benign.
1438       return callee->get_c2i_no_clinit_check_entry();
1439     } else {
1440       return callee->get_c2i_entry();
1441     }
1442   }
1443 
1444   // Must be compiled to compiled path which is safe to stackwalk
1445   methodHandle callee_method;
1446   JRT_BLOCK
1447     // Force resolving of caller (if we called from compiled frame)
1448     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1449     current->set_vm_result_2(callee_method());
1450   JRT_BLOCK_END
1451   // return compiled code entry point after potential safepoints
1452   return get_resolved_entry(current, callee_method);
1453 JRT_END
1454 
1455 // Handle abstract method call
1456 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))


1457   // Verbose error message for AbstractMethodError.
1458   // Get the called method from the invoke bytecode.
1459   vframeStream vfst(current, true);
1460   assert(!vfst.at_end(), "Java frame must exist");
1461   methodHandle caller(current, vfst.method());
1462   Bytecode_invoke invoke(caller, vfst.bci());
1463   DEBUG_ONLY( invoke.verify(); )
1464 
1465   // Find the compiled caller frame.
1466   RegisterMap reg_map(current,
1467                       RegisterMap::UpdateMap::include,
1468                       RegisterMap::ProcessFrames::include,
1469                       RegisterMap::WalkContinuation::skip);
1470   frame stubFrame = current->last_frame();
1471   assert(stubFrame.is_runtime_frame(), "must be");
1472   frame callerFrame = stubFrame.sender(&reg_map);
1473   assert(callerFrame.is_compiled_frame(), "must be");
1474 
1475   // Install exception and return forward entry.
1476   address res = StubRoutines::throw_AbstractMethodError_entry();
1477   JRT_BLOCK
1478     methodHandle callee(current, invoke.static_target(current));
1479     if (!callee.is_null()) {
1480       oop recv = callerFrame.retrieve_receiver(&reg_map);
1481       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1482       res = StubRoutines::forward_exception_entry();
1483       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1484     }
1485   JRT_BLOCK_END
1486   return res;
1487 JRT_END
1488 
1489 // return verified_code_entry if interp_only_mode is not set for the current thread;
1490 // otherwise return c2i entry.
1491 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1492   if (current->is_interp_only_mode()) {
1493     // In interp_only_mode we need to go to the interpreted entry
1494     // The c2i won't patch in this mode -- see fixup_callers_callsite
1495     return callee_method->get_c2i_entry();
1496   }
1497   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1498   return callee_method->verified_code_entry();
1499 }
1500 
1501 // resolve a static call and patch code
1502 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))


1503   methodHandle callee_method;
1504   bool enter_special = false;
1505   JRT_BLOCK
1506     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1507     current->set_vm_result_2(callee_method());
1508   JRT_BLOCK_END
1509   // return compiled code entry point after potential safepoints
1510   return get_resolved_entry(current, callee_method);
1511 JRT_END
1512 
1513 // resolve virtual call and update inline cache to monomorphic
1514 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))


1515   methodHandle callee_method;
1516   JRT_BLOCK
1517     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1518     current->set_vm_result_2(callee_method());
1519   JRT_BLOCK_END
1520   // return compiled code entry point after potential safepoints
1521   return get_resolved_entry(current, callee_method);
1522 JRT_END
1523 
1524 
1525 // Resolve a virtual call that can be statically bound (e.g., always
1526 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1527 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))


1528   methodHandle callee_method;
1529   JRT_BLOCK
1530     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1531     current->set_vm_result_2(callee_method());
1532   JRT_BLOCK_END
1533   // return compiled code entry point after potential safepoints
1534   return get_resolved_entry(current, callee_method);
1535 JRT_END
1536 
1537 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1538   JavaThread* current = THREAD;
1539   ResourceMark rm(current);
1540   CallInfo call_info;
1541   Bytecodes::Code bc;
1542 
1543   // receiver is null for static calls. An exception is thrown for null
1544   // receivers for non-static calls
1545   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1546 
1547   methodHandle callee_method(current, call_info.selected_method());
1548 
1549 #ifndef PRODUCT
1550   Atomic::inc(&_ic_miss_ctr);
1551 

1552   // Statistics & Tracing
1553   if (TraceCallFixup) {
1554     ResourceMark rm(current);
1555     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1556     callee_method->print_short_name(tty);
1557     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1558   }
1559 
1560   if (ICMissHistogram) {
1561     MutexLocker m(VMStatistic_lock);
1562     RegisterMap reg_map(current,
1563                         RegisterMap::UpdateMap::skip,
1564                         RegisterMap::ProcessFrames::include,
1565                         RegisterMap::WalkContinuation::skip);
1566     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1567     // produce statistics under the lock
1568     trace_ic_miss(f.pc());
1569   }
1570 #endif
1571 
1572   // install an event collector so that when a vtable stub is created the
1573   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1574   // event can't be posted when the stub is created as locks are held
1575   // - instead the event will be deferred until the event collector goes
1576   // out of scope.
1577   JvmtiDynamicCodeEventCollector event_collector;
1578 
1579   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1580   RegisterMap reg_map(current,
1581                       RegisterMap::UpdateMap::skip,
1582                       RegisterMap::ProcessFrames::include,
1583                       RegisterMap::WalkContinuation::skip);
1584   frame caller_frame = current->last_frame().sender(&reg_map);
1585   CodeBlob* cb = caller_frame.cb();
1586   nmethod* caller_nm = cb->as_nmethod();
1587 
1588   CompiledICLocker ml(caller_nm);
1589   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1590   inline_cache->update(&call_info, receiver()->klass());
1591 
1592   return callee_method;
1593 }
1594 
1595 //
1596 // Resets a call-site in compiled code so it will get resolved again.
1597 // This routines handles both virtual call sites, optimized virtual call
1598 // sites, and static call sites. Typically used to change a call sites
1599 // destination from compiled to interpreted.
1600 //
1601 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1602   JavaThread* current = THREAD;
1603   ResourceMark rm(current);
1604   RegisterMap reg_map(current,
1605                       RegisterMap::UpdateMap::skip,
1606                       RegisterMap::ProcessFrames::include,
1607                       RegisterMap::WalkContinuation::skip);
1608   frame stub_frame = current->last_frame();
1609   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1610   frame caller = stub_frame.sender(&reg_map);
1611 
1612   // Do nothing if the frame isn't a live compiled frame.
1613   // nmethod could be deoptimized by the time we get here
1614   // so no update to the caller is needed.
1615 
1616   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1617       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1618 
1619     address pc = caller.pc();
1620 
1621     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1622     assert(caller_nm != nullptr, "did not find caller nmethod");
1623 
1624     // Default call_addr is the location of the "basic" call.
1625     // Determine the address of the call we a reresolving. With
1626     // Inline Caches we will always find a recognizable call.
1627     // With Inline Caches disabled we may or may not find a
1628     // recognizable call. We will always find a call for static
1629     // calls and for optimized virtual calls. For vanilla virtual
1630     // calls it depends on the state of the UseInlineCaches switch.
1631     //
1632     // With Inline Caches disabled we can get here for a virtual call
1633     // for two reasons:
1634     //   1 - calling an abstract method. The vtable for abstract methods
1635     //       will run us thru handle_wrong_method and we will eventually
1636     //       end up in the interpreter to throw the ame.
1637     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1638     //       call and between the time we fetch the entry address and
1639     //       we jump to it the target gets deoptimized. Similar to 1
1640     //       we will wind up in the interprter (thru a c2i with c2).
1641     //
1642     CompiledICLocker ml(caller_nm);
1643     address call_addr = caller_nm->call_instruction_address(pc);
1644 
1645     if (call_addr != nullptr) {
1646       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1647       // bytes back in the instruction stream so we must also check for reloc info.
1648       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1649       bool ret = iter.next(); // Get item
1650       if (ret) {
1651         switch (iter.type()) {
1652           case relocInfo::static_call_type:
1653           case relocInfo::opt_virtual_call_type: {
1654             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1655             cdc->set_to_clean();
1656             break;
1657           }
1658 
1659           case relocInfo::virtual_call_type: {
1660             // compiled, dispatched call (which used to call an interpreted method)
1661             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1662             inline_cache->set_to_clean();
1663             break;
1664           }
1665           default:
1666             break;
1667         }
1668       }
1669     }
1670   }
1671 
1672   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1673 
1674 
1675 #ifndef PRODUCT
1676   Atomic::inc(&_wrong_method_ctr);
1677 

1678   if (TraceCallFixup) {
1679     ResourceMark rm(current);
1680     tty->print("handle_wrong_method reresolving call to");
1681     callee_method->print_short_name(tty);
1682     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1683   }
1684 #endif
1685 
1686   return callee_method;
1687 }
1688 
1689 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1690   // The faulting unsafe accesses should be changed to throw the error
1691   // synchronously instead. Meanwhile the faulting instruction will be
1692   // skipped over (effectively turning it into a no-op) and an
1693   // asynchronous exception will be raised which the thread will
1694   // handle at a later point. If the instruction is a load it will
1695   // return garbage.
1696 
1697   // Request an async exception.
1698   thread->set_pending_unsafe_access_error();
1699 
1700   // Return address of next instruction to execute.
1701   return next_pc;
1702 }
1703 
1704 #ifdef ASSERT
1705 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1706                                                                 const BasicType* sig_bt,
1707                                                                 const VMRegPair* regs) {
1708   ResourceMark rm;
1709   const int total_args_passed = method->size_of_parameters();
1710   const VMRegPair*    regs_with_member_name = regs;
1711         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1712 
1713   const int member_arg_pos = total_args_passed - 1;
1714   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1715   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1716 
1717   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1718 
1719   for (int i = 0; i < member_arg_pos; i++) {
1720     VMReg a =    regs_with_member_name[i].first();
1721     VMReg b = regs_without_member_name[i].first();
1722     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1723   }
1724   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1725 }
1726 #endif
1727 
1728 // ---------------------------------------------------------------------------
1729 // We are calling the interpreter via a c2i. Normally this would mean that
1730 // we were called by a compiled method. However we could have lost a race
1731 // where we went int -> i2c -> c2i and so the caller could in fact be
1732 // interpreted. If the caller is compiled we attempt to patch the caller
1733 // so he no longer calls into the interpreter.
1734 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1735   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1736 
1737   // It's possible that deoptimization can occur at a call site which hasn't
1738   // been resolved yet, in which case this function will be called from
1739   // an nmethod that has been patched for deopt and we can ignore the
1740   // request for a fixup.
1741   // Also it is possible that we lost a race in that from_compiled_entry
1742   // is now back to the i2c in that case we don't need to patch and if
1743   // we did we'd leap into space because the callsite needs to use
1744   // "to interpreter" stub in order to load up the Method*. Don't
1745   // ask me how I know this...
1746 
1747   // Result from nmethod::is_unloading is not stable across safepoints.
1748   NoSafepointVerifier nsv;
1749 
1750   nmethod* callee = method->code();
1751   if (callee == nullptr) {
1752     return;
1753   }
1754 
1755   // write lock needed because we might update the pc desc cache via PcDescCache::add_pc_desc
1756   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1757 
1758   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1759   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1760     return;
1761   }
1762 
1763   // The check above makes sure this is an nmethod.
1764   nmethod* caller = cb->as_nmethod();
1765 
1766   // Get the return PC for the passed caller PC.
1767   address return_pc = caller_pc + frame::pc_return_offset;
1768 
1769   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1770     return;
1771   }
1772 
1773   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1774   CompiledICLocker ic_locker(caller);
1775   ResourceMark rm;
1776 
1777   // If we got here through a static call or opt_virtual call, then we know where the
1778   // call address would be; let's peek at it
1779   address callsite_addr = (address)nativeCall_before(return_pc);
1780   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1781   if (!iter.next()) {
1782     // No reloc entry found; not a static or optimized virtual call
1783     return;
1784   }
1785 
1786   relocInfo::relocType type = iter.reloc()->type();
1787   if (type != relocInfo::static_call_type &&
1788       type != relocInfo::opt_virtual_call_type) {
1789     return;
1790   }
1791 
1792   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1793   callsite->set_to_clean();
1794 JRT_END
1795 
1796 
1797 // same as JVM_Arraycopy, but called directly from compiled code
1798 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1799                                                 oopDesc* dest, jint dest_pos,
1800                                                 jint length,
1801                                                 JavaThread* current)) {
1802 #ifndef PRODUCT
1803   _slow_array_copy_ctr++;
1804 #endif
1805   // Check if we have null pointers
1806   if (src == nullptr || dest == nullptr) {
1807     THROW(vmSymbols::java_lang_NullPointerException());
1808   }
1809   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1810   // even though the copy_array API also performs dynamic checks to ensure
1811   // that src and dest are truly arrays (and are conformable).
1812   // The copy_array mechanism is awkward and could be removed, but
1813   // the compilers don't call this function except as a last resort,
1814   // so it probably doesn't matter.
1815   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1816                                         (arrayOopDesc*)dest, dest_pos,
1817                                         length, current);
1818 }
1819 JRT_END
1820 
1821 // The caller of generate_class_cast_message() (or one of its callers)
1822 // must use a ResourceMark in order to correctly free the result.
1823 char* SharedRuntime::generate_class_cast_message(
1824     JavaThread* thread, Klass* caster_klass) {
1825 
1826   // Get target class name from the checkcast instruction
1827   vframeStream vfst(thread, true);
1828   assert(!vfst.at_end(), "Java frame must exist");
1829   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1830   constantPoolHandle cpool(thread, vfst.method()->constants());
1831   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1832   Symbol* target_klass_name = nullptr;
1833   if (target_klass == nullptr) {
1834     // This klass should be resolved, but just in case, get the name in the klass slot.
1835     target_klass_name = cpool->klass_name_at(cc.index());
1836   }
1837   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1838 }
1839 
1840 
1841 // The caller of generate_class_cast_message() (or one of its callers)
1842 // must use a ResourceMark in order to correctly free the result.
1843 char* SharedRuntime::generate_class_cast_message(
1844     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1845   const char* caster_name = caster_klass->external_name();
1846 
1847   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
1848   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
1849                                                    target_klass->external_name();
1850 
1851   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1852 
1853   const char* caster_klass_description = "";
1854   const char* target_klass_description = "";
1855   const char* klass_separator = "";
1856   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
1857     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1858   } else {
1859     caster_klass_description = caster_klass->class_in_module_of_loader();
1860     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
1861     klass_separator = (target_klass != nullptr) ? "; " : "";
1862   }
1863 
1864   // add 3 for parenthesis and preceding space
1865   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1866 
1867   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1868   if (message == nullptr) {
1869     // Shouldn't happen, but don't cause even more problems if it does
1870     message = const_cast<char*>(caster_klass->external_name());
1871   } else {
1872     jio_snprintf(message,
1873                  msglen,
1874                  "class %s cannot be cast to class %s (%s%s%s)",
1875                  caster_name,
1876                  target_name,
1877                  caster_klass_description,
1878                  klass_separator,
1879                  target_klass_description
1880                  );
1881   }
1882   return message;
1883 }
1884 
1885 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1886   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
1887 JRT_END
1888 
1889 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1890   if (!SafepointSynchronize::is_synchronizing()) {
1891     // Only try quick_enter() if we're not trying to reach a safepoint
1892     // so that the calling thread reaches the safepoint more quickly.
1893     if (ObjectSynchronizer::quick_enter(obj, current, lock)) {
1894       return;
1895     }
1896   }
1897   // NO_ASYNC required because an async exception on the state transition destructor
1898   // would leave you with the lock held and it would never be released.
1899   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1900   // and the model is that an exception implies the method failed.
1901   JRT_BLOCK_NO_ASYNC
1902   Handle h_obj(THREAD, obj);
1903   ObjectSynchronizer::enter(h_obj, lock, current);
1904   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1905   JRT_BLOCK_END
1906 }
1907 
1908 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1909 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
1910   SharedRuntime::monitor_enter_helper(obj, lock, current);
1911 JRT_END
1912 
1913 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1914   assert(JavaThread::current() == current, "invariant");
1915   // Exit must be non-blocking, and therefore no exceptions can be thrown.
1916   ExceptionMark em(current);
1917   // The object could become unlocked through a JNI call, which we have no other checks for.
1918   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
1919   if (obj->is_unlocked()) {
1920     if (CheckJNICalls) {
1921       fatal("Object has been unlocked by JNI");
1922     }
1923     return;
1924   }
1925   ObjectSynchronizer::exit(obj, lock, current);
1926 }
1927 
1928 // Handles the uncommon cases of monitor unlocking in compiled code
1929 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
1930   assert(current == JavaThread::current(), "pre-condition");
1931   SharedRuntime::monitor_exit_helper(obj, lock, current);
1932 JRT_END
1933 
1934 // This is only called when CheckJNICalls is true, and only
1935 // for virtual thread termination.
1936 JRT_LEAF(void,  SharedRuntime::log_jni_monitor_still_held())
1937   assert(CheckJNICalls, "Only call this when checking JNI usage");
1938   if (log_is_enabled(Debug, jni)) {
1939     JavaThread* current = JavaThread::current();
1940     int64_t vthread_id = java_lang_Thread::thread_id(current->vthread());
1941     int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj());
1942     log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT
1943                    ") exiting with Objects still locked by JNI MonitorEnter.",
1944                    vthread_id, carrier_id);
1945   }
1946 JRT_END
1947 
1948 #ifndef PRODUCT
1949 
1950 void SharedRuntime::print_statistics() {
1951   ttyLocker ttyl;
1952   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
1953 
1954   SharedRuntime::print_ic_miss_histogram();
1955 
1956   // Dump the JRT_ENTRY counters
1957   if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
1958   if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
1959   if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
1960   if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
1961   if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
1962   if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
1963 
1964   tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
1965   tty->print_cr("%5u wrong method", _wrong_method_ctr);
1966   tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
1967   tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
1968   tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
1969 
1970   if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
1971   if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
1972   if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
1973   if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
1974   if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
1975   if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
1976   if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
1977   if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
1978   if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
1979   if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
1980   if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
1981   if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
1982   if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
1983   if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
1984   if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
1985   if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
1986 
1987   AdapterHandlerLibrary::print_statistics();
1988 
1989   if (xtty != nullptr)  xtty->tail("statistics");
1990 }
1991 

































1992 inline double percent(int64_t x, int64_t y) {
1993   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
1994 }
1995 
1996 class MethodArityHistogram {
1997  public:
1998   enum { MAX_ARITY = 256 };
1999  private:
2000   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2001   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2002   static uint64_t _total_compiled_calls;
2003   static uint64_t _max_compiled_calls_per_method;
2004   static int _max_arity;                       // max. arity seen
2005   static int _max_size;                        // max. arg size seen
2006 
2007   static void add_method_to_histogram(nmethod* nm) {
2008     Method* method = (nm == nullptr) ? nullptr : nm->method();
2009     if (method != nullptr) {
2010       ArgumentCount args(method->signature());
2011       int arity   = args.size() + (method->is_static() ? 0 : 1);
2012       int argsize = method->size_of_parameters();
2013       arity   = MIN2(arity, MAX_ARITY-1);
2014       argsize = MIN2(argsize, MAX_ARITY-1);
2015       uint64_t count = (uint64_t)method->compiled_invocation_count();
2016       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2017       _total_compiled_calls    += count;
2018       _arity_histogram[arity]  += count;
2019       _size_histogram[argsize] += count;
2020       _max_arity = MAX2(_max_arity, arity);
2021       _max_size  = MAX2(_max_size, argsize);
2022     }
2023   }
2024 
2025   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2026     const int N = MIN2(9, n);
2027     double sum = 0;
2028     double weighted_sum = 0;
2029     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2030     if (sum >= 1) { // prevent divide by zero or divide overflow
2031       double rest = sum;
2032       double percent = sum / 100;
2033       for (int i = 0; i <= N; i++) {
2034         rest -= (double)histo[i];
2035         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2036       }
2037       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2038       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2039       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2040       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2041     } else {
2042       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2043     }
2044   }
2045 
2046   void print_histogram() {
2047     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2048     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2049     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2050     print_histogram_helper(_max_size, _size_histogram, "size");
2051     tty->cr();
2052   }
2053 
2054  public:
2055   MethodArityHistogram() {
2056     // Take the Compile_lock to protect against changes in the CodeBlob structures
2057     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2058     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2059     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2060     _max_arity = _max_size = 0;
2061     _total_compiled_calls = 0;
2062     _max_compiled_calls_per_method = 0;
2063     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2064     CodeCache::nmethods_do(add_method_to_histogram);
2065     print_histogram();
2066   }
2067 };
2068 
2069 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2070 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2071 uint64_t MethodArityHistogram::_total_compiled_calls;
2072 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2073 int MethodArityHistogram::_max_arity;
2074 int MethodArityHistogram::_max_size;
2075 
2076 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2077   tty->print_cr("Calls from compiled code:");
2078   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2079   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2080   int64_t mono_i = _nof_interface_calls;
2081   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2082   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2083   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2084   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2085   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2086   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2087   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2088   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2089   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2090   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2091   tty->cr();
2092   tty->print_cr("Note 1: counter updates are not MT-safe.");
2093   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2094   tty->print_cr("        %% in nested categories are relative to their category");
2095   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2096   tty->cr();
2097 
2098   MethodArityHistogram h;
2099 }
2100 #endif
2101 
2102 #ifndef PRODUCT
2103 static int _lookups; // number of calls to lookup
2104 static int _equals;  // number of buckets checked with matching hash
2105 static int _hits;    // number of successful lookups
2106 static int _compact; // number of equals calls with compact signature
2107 #endif
2108 
2109 // A simple wrapper class around the calling convention information
2110 // that allows sharing of adapters for the same calling convention.
2111 class AdapterFingerPrint : public CHeapObj<mtCode> {
2112  private:
2113   enum {
2114     _basic_type_bits = 4,
2115     _basic_type_mask = right_n_bits(_basic_type_bits),
2116     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2117     _compact_int_count = 3
2118   };
2119   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2120   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2121 
2122   union {
2123     int  _compact[_compact_int_count];
2124     int* _fingerprint;
2125   } _value;
2126   int _length; // A negative length indicates the fingerprint is in the compact form,
2127                // Otherwise _value._fingerprint is the array.
2128 
2129   // Remap BasicTypes that are handled equivalently by the adapters.
2130   // These are correct for the current system but someday it might be
2131   // necessary to make this mapping platform dependent.
2132   static int adapter_encoding(BasicType in) {
2133     switch (in) {
2134       case T_BOOLEAN:
2135       case T_BYTE:
2136       case T_SHORT:
2137       case T_CHAR:
2138         // There are all promoted to T_INT in the calling convention
2139         return T_INT;
2140 
2141       case T_OBJECT:
2142       case T_ARRAY:
2143         // In other words, we assume that any register good enough for
2144         // an int or long is good enough for a managed pointer.
2145 #ifdef _LP64
2146         return T_LONG;
2147 #else
2148         return T_INT;
2149 #endif
2150 
2151       case T_INT:
2152       case T_LONG:
2153       case T_FLOAT:
2154       case T_DOUBLE:
2155       case T_VOID:
2156         return in;
2157 
2158       default:
2159         ShouldNotReachHere();
2160         return T_CONFLICT;
2161     }
2162   }
2163 
2164  public:
2165   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2166     // The fingerprint is based on the BasicType signature encoded
2167     // into an array of ints with eight entries per int.
2168     int* ptr;
2169     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2170     if (len <= _compact_int_count) {
2171       assert(_compact_int_count == 3, "else change next line");
2172       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2173       // Storing the signature encoded as signed chars hits about 98%
2174       // of the time.
2175       _length = -len;
2176       ptr = _value._compact;
2177     } else {
2178       _length = len;
2179       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2180       ptr = _value._fingerprint;
2181     }
2182 
2183     // Now pack the BasicTypes with 8 per int
2184     int sig_index = 0;
2185     for (int index = 0; index < len; index++) {
2186       int value = 0;
2187       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2188         int bt = adapter_encoding(sig_bt[sig_index++]);
2189         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2190         value = (value << _basic_type_bits) | bt;
2191       }
2192       ptr[index] = value;
2193     }
2194   }
2195 
2196   ~AdapterFingerPrint() {
2197     if (_length > 0) {
2198       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2199     }
2200   }
2201 
2202   int value(int index) {
2203     if (_length < 0) {
2204       return _value._compact[index];
2205     }
2206     return _value._fingerprint[index];
2207   }
2208   int length() {
2209     if (_length < 0) return -_length;
2210     return _length;
2211   }
2212 
2213   bool is_compact() {
2214     return _length <= 0;
2215   }
2216 
2217   unsigned int compute_hash() {
2218     int hash = 0;
2219     for (int i = 0; i < length(); i++) {
2220       int v = value(i);
2221       hash = (hash << 8) ^ v ^ (hash >> 5);
2222     }
2223     return (unsigned int)hash;
2224   }
2225 
2226   const char* as_string() {
2227     stringStream st;
2228     st.print("0x");
2229     for (int i = 0; i < length(); i++) {
2230       st.print("%x", value(i));
2231     }
2232     return st.as_string();
2233   }
2234 
2235 #ifndef PRODUCT
2236   // Reconstitutes the basic type arguments from the fingerprint,
2237   // producing strings like LIJDF
2238   const char* as_basic_args_string() {
2239     stringStream st;
2240     bool long_prev = false;
2241     for (int i = 0; i < length(); i++) {
2242       unsigned val = (unsigned)value(i);
2243       // args are packed so that first/lower arguments are in the highest
2244       // bits of each int value, so iterate from highest to the lowest
2245       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2246         unsigned v = (val >> j) & _basic_type_mask;
2247         if (v == 0) {
2248           assert(i == length() - 1, "Only expect zeroes in the last word");
2249           continue;
2250         }
2251         if (long_prev) {
2252           long_prev = false;
2253           if (v == T_VOID) {
2254             st.print("J");
2255           } else {
2256             st.print("L");
2257           }
2258         }
2259         switch (v) {
2260           case T_INT:    st.print("I");    break;
2261           case T_LONG:   long_prev = true; break;
2262           case T_FLOAT:  st.print("F");    break;
2263           case T_DOUBLE: st.print("D");    break;
2264           case T_VOID:   break;
2265           default: ShouldNotReachHere();
2266         }
2267       }
2268     }
2269     if (long_prev) {
2270       st.print("L");
2271     }
2272     return st.as_string();
2273   }
2274 #endif // !product
2275 
2276   bool equals(AdapterFingerPrint* other) {
2277     if (other->_length != _length) {
2278       return false;
2279     }
2280     if (_length < 0) {
2281       assert(_compact_int_count == 3, "else change next line");
2282       return _value._compact[0] == other->_value._compact[0] &&
2283              _value._compact[1] == other->_value._compact[1] &&
2284              _value._compact[2] == other->_value._compact[2];
2285     } else {
2286       for (int i = 0; i < _length; i++) {
2287         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2288           return false;
2289         }
2290       }
2291     }
2292     return true;
2293   }
2294 
2295   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2296     NOT_PRODUCT(_equals++);
2297     return fp1->equals(fp2);
2298   }
2299 
2300   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2301     return fp->compute_hash();
2302   }
2303 };
2304 
2305 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2306 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2307                   AnyObj::C_HEAP, mtCode,
2308                   AdapterFingerPrint::compute_hash,
2309                   AdapterFingerPrint::equals>;
2310 static AdapterHandlerTable* _adapter_handler_table;
2311 
2312 // Find a entry with the same fingerprint if it exists
2313 static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2314   NOT_PRODUCT(_lookups++);
2315   assert_lock_strong(AdapterHandlerLibrary_lock);
2316   AdapterFingerPrint fp(total_args_passed, sig_bt);
2317   AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp);
2318   if (entry != nullptr) {
2319 #ifndef PRODUCT
2320     if (fp.is_compact()) _compact++;
2321     _hits++;
2322 #endif
2323     return *entry;
2324   }
2325   return nullptr;
2326 }
2327 
2328 #ifndef PRODUCT
2329 static void print_table_statistics() {
2330   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2331     return sizeof(*key) + sizeof(*a);
2332   };
2333   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2334   ts.print(tty, "AdapterHandlerTable");
2335   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2336                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2337   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d",
2338                 _lookups, _equals, _hits, _compact);
2339 }
2340 #endif
2341 
2342 // ---------------------------------------------------------------------------
2343 // Implementation of AdapterHandlerLibrary
2344 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr;
2345 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2346 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2347 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2348 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2349 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2350 const int AdapterHandlerLibrary_size = 16*K;
2351 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2352 
2353 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2354   return _buffer;
2355 }
2356 
2357 static void post_adapter_creation(const AdapterBlob* new_adapter,
2358                                   const AdapterHandlerEntry* entry) {
2359   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2360     char blob_id[256];
2361     jio_snprintf(blob_id,
2362                  sizeof(blob_id),
2363                  "%s(%s)",
2364                  new_adapter->name(),
2365                  entry->fingerprint()->as_string());
2366     if (Forte::is_enabled()) {
2367       Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2368     }
2369 
2370     if (JvmtiExport::should_post_dynamic_code_generated()) {
2371       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2372     }
2373   }
2374 }
2375 
2376 void AdapterHandlerLibrary::initialize() {
2377   ResourceMark rm;
2378   AdapterBlob* no_arg_blob = nullptr;
2379   AdapterBlob* int_arg_blob = nullptr;
2380   AdapterBlob* obj_arg_blob = nullptr;
2381   AdapterBlob* obj_int_arg_blob = nullptr;
2382   AdapterBlob* obj_obj_arg_blob = nullptr;
2383   {
2384     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2385     MutexLocker mu(AdapterHandlerLibrary_lock);
2386 
2387     // Create a special handler for abstract methods.  Abstract methods
2388     // are never compiled so an i2c entry is somewhat meaningless, but
2389     // throw AbstractMethodError just in case.
2390     // Pass wrong_method_abstract for the c2i transitions to return
2391     // AbstractMethodError for invalid invocations.
2392     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2393     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, nullptr),
2394                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2395                                                                 wrong_method_abstract, wrong_method_abstract);
2396 
2397     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2398     _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr, true);
2399 
2400     BasicType obj_args[] = { T_OBJECT };
2401     _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true);
2402 
2403     BasicType int_args[] = { T_INT };
2404     _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true);
2405 
2406     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2407     _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true);
2408 
2409     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2410     _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true);
2411 
2412     assert(no_arg_blob != nullptr &&
2413           obj_arg_blob != nullptr &&
2414           int_arg_blob != nullptr &&
2415           obj_int_arg_blob != nullptr &&
2416           obj_obj_arg_blob != nullptr, "Initial adapters must be properly created");
2417   }
2418 
2419   // Outside of the lock
2420   post_adapter_creation(no_arg_blob, _no_arg_handler);
2421   post_adapter_creation(obj_arg_blob, _obj_arg_handler);
2422   post_adapter_creation(int_arg_blob, _int_arg_handler);
2423   post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
2424   post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
2425 }
2426 
2427 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2428                                                       address i2c_entry,
2429                                                       address c2i_entry,
2430                                                       address c2i_unverified_entry,
2431                                                       address c2i_no_clinit_check_entry) {
2432   // Insert an entry into the table
2433   return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry,
2434                                  c2i_no_clinit_check_entry);
2435 }
2436 
2437 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2438   if (method->is_abstract()) {
2439     return _abstract_method_handler;
2440   }
2441   int total_args_passed = method->size_of_parameters(); // All args on stack
2442   if (total_args_passed == 0) {
2443     return _no_arg_handler;
2444   } else if (total_args_passed == 1) {
2445     if (!method->is_static()) {
2446       return _obj_arg_handler;
2447     }
2448     switch (method->signature()->char_at(1)) {
2449       case JVM_SIGNATURE_CLASS:
2450       case JVM_SIGNATURE_ARRAY:
2451         return _obj_arg_handler;
2452       case JVM_SIGNATURE_INT:
2453       case JVM_SIGNATURE_BOOLEAN:
2454       case JVM_SIGNATURE_CHAR:
2455       case JVM_SIGNATURE_BYTE:
2456       case JVM_SIGNATURE_SHORT:
2457         return _int_arg_handler;
2458     }
2459   } else if (total_args_passed == 2 &&
2460              !method->is_static()) {
2461     switch (method->signature()->char_at(1)) {
2462       case JVM_SIGNATURE_CLASS:
2463       case JVM_SIGNATURE_ARRAY:
2464         return _obj_obj_arg_handler;
2465       case JVM_SIGNATURE_INT:
2466       case JVM_SIGNATURE_BOOLEAN:
2467       case JVM_SIGNATURE_CHAR:
2468       case JVM_SIGNATURE_BYTE:
2469       case JVM_SIGNATURE_SHORT:
2470         return _obj_int_arg_handler;
2471     }
2472   }
2473   return nullptr;
2474 }
2475 
2476 class AdapterSignatureIterator : public SignatureIterator {
2477  private:
2478   BasicType stack_sig_bt[16];
2479   BasicType* sig_bt;
2480   int index;
2481 
2482  public:
2483   AdapterSignatureIterator(Symbol* signature,
2484                            fingerprint_t fingerprint,
2485                            bool is_static,
2486                            int total_args_passed) :
2487     SignatureIterator(signature, fingerprint),
2488     index(0)
2489   {
2490     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2491     if (!is_static) { // Pass in receiver first
2492       sig_bt[index++] = T_OBJECT;
2493     }
2494     do_parameters_on(this);
2495   }
2496 
2497   BasicType* basic_types() {
2498     return sig_bt;
2499   }
2500 
2501 #ifdef ASSERT
2502   int slots() {
2503     return index;
2504   }
2505 #endif
2506 
2507  private:
2508 
2509   friend class SignatureIterator;  // so do_parameters_on can call do_type
2510   void do_type(BasicType type) {
2511     sig_bt[index++] = type;
2512     if (type == T_LONG || type == T_DOUBLE) {
2513       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2514     }
2515   }
2516 };
2517 
2518 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2519   // Use customized signature handler.  Need to lock around updates to
2520   // the _adapter_handler_table (it is not safe for concurrent readers
2521   // and a single writer: this could be fixed if it becomes a
2522   // problem).
2523 
2524   // Fast-path for trivial adapters
2525   AdapterHandlerEntry* entry = get_simple_adapter(method);
2526   if (entry != nullptr) {
2527     return entry;
2528   }
2529 
2530   ResourceMark rm;
2531   AdapterBlob* new_adapter = nullptr;
2532 
2533   // Fill in the signature array, for the calling-convention call.
2534   int total_args_passed = method->size_of_parameters(); // All args on stack
2535 
2536   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2537                               method->is_static(), total_args_passed);
2538   assert(si.slots() == total_args_passed, "");
2539   BasicType* sig_bt = si.basic_types();
2540   {
2541     MutexLocker mu(AdapterHandlerLibrary_lock);
2542 
2543     // Lookup method signature's fingerprint
2544     entry = lookup(total_args_passed, sig_bt);
2545 
2546     if (entry != nullptr) {
2547 #ifdef ASSERT
2548       if (VerifyAdapterSharing) {
2549         AdapterBlob* comparison_blob = nullptr;
2550         AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false);
2551         assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison");
2552         assert(comparison_entry->compare_code(entry), "code must match");
2553         // Release the one just created and return the original
2554         delete comparison_entry;
2555       }
2556 #endif
2557       return entry;
2558     }
2559 
2560     entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true);
2561   }
2562 
2563   // Outside of the lock
2564   if (new_adapter != nullptr) {
2565     post_adapter_creation(new_adapter, entry);
2566   }
2567   return entry;
2568 }
2569 
2570 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter,
2571                                                            int total_args_passed,
2572                                                            BasicType* sig_bt,
2573                                                            bool allocate_code_blob) {



2574 
2575   // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result,
2576   // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior
2577   // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated
2578   // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs.
2579   bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr;
2580 
2581   VMRegPair stack_regs[16];
2582   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2583 
2584   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2585   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2586   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2587   CodeBuffer buffer(buf);
2588   short buffer_locs[20];
2589   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2590                                           sizeof(buffer_locs)/sizeof(relocInfo));
2591 
2592   // Make a C heap allocated version of the fingerprint to store in the adapter
2593   AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2594   MacroAssembler _masm(&buffer);
2595   AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2596                                                 total_args_passed,
2597                                                 comp_args_on_stack,
2598                                                 sig_bt,
2599                                                 regs,
2600                                                 fingerprint);
2601 
2602 #ifdef ASSERT
2603   if (VerifyAdapterSharing) {
2604     entry->save_code(buf->code_begin(), buffer.insts_size());
2605     if (!allocate_code_blob) {
2606       return entry;
2607     }
2608   }
2609 #endif
2610 
2611   new_adapter = AdapterBlob::create(&buffer);
2612   NOT_PRODUCT(int insts_size = buffer.insts_size());
2613   if (new_adapter == nullptr) {
2614     // CodeCache is full, disable compilation
2615     // Ought to log this but compile log is only per compile thread
2616     // and we're some non descript Java thread.
2617     return nullptr;
2618   }
2619   entry->relocate(new_adapter->content_begin());
2620 #ifndef PRODUCT
2621   // debugging support
2622   if (PrintAdapterHandlers || PrintStubCode) {
2623     ttyLocker ttyl;
2624     entry->print_adapter_on(tty);
2625     tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2626                   _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(),
2627                   fingerprint->as_string(), insts_size);
2628     tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry()));
2629     if (Verbose || PrintStubCode) {
2630       address first_pc = entry->base_address();
2631       if (first_pc != nullptr) {
2632         Disassembler::decode(first_pc, first_pc + insts_size, tty
2633                              NOT_PRODUCT(COMMA &new_adapter->asm_remarks()));
2634         tty->cr();
2635       }
2636     }
2637   }
2638 #endif
2639 
2640   // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2641   // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2642   if (contains_all_checks || !VerifyAdapterCalls) {
2643     assert_lock_strong(AdapterHandlerLibrary_lock);
2644     _adapter_handler_table->put(fingerprint, entry);
2645   }
2646   return entry;
2647 }
2648 
2649 address AdapterHandlerEntry::base_address() {
2650   address base = _i2c_entry;
2651   if (base == nullptr)  base = _c2i_entry;
2652   assert(base <= _c2i_entry || _c2i_entry == nullptr, "");
2653   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, "");
2654   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, "");
2655   return base;
2656 }
2657 
2658 void AdapterHandlerEntry::relocate(address new_base) {
2659   address old_base = base_address();
2660   assert(old_base != nullptr, "");
2661   ptrdiff_t delta = new_base - old_base;
2662   if (_i2c_entry != nullptr)
2663     _i2c_entry += delta;
2664   if (_c2i_entry != nullptr)
2665     _c2i_entry += delta;
2666   if (_c2i_unverified_entry != nullptr)
2667     _c2i_unverified_entry += delta;
2668   if (_c2i_no_clinit_check_entry != nullptr)
2669     _c2i_no_clinit_check_entry += delta;
2670   assert(base_address() == new_base, "");
2671 }
2672 
2673 
2674 AdapterHandlerEntry::~AdapterHandlerEntry() {
2675   delete _fingerprint;
2676 #ifdef ASSERT
2677   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2678 #endif
2679 }
2680 
2681 
2682 #ifdef ASSERT
2683 // Capture the code before relocation so that it can be compared
2684 // against other versions.  If the code is captured after relocation
2685 // then relative instructions won't be equivalent.
2686 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2687   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2688   _saved_code_length = length;
2689   memcpy(_saved_code, buffer, length);
2690 }
2691 
2692 
2693 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
2694   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
2695 
2696   if (other->_saved_code_length != _saved_code_length) {
2697     return false;
2698   }
2699 
2700   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
2701 }
2702 #endif
2703 
2704 
2705 /**
2706  * Create a native wrapper for this native method.  The wrapper converts the
2707  * Java-compiled calling convention to the native convention, handles
2708  * arguments, and transitions to native.  On return from the native we transition
2709  * back to java blocking if a safepoint is in progress.
2710  */
2711 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2712   ResourceMark rm;
2713   nmethod* nm = nullptr;
2714 
2715   // Check if memory should be freed before allocation
2716   CodeCache::gc_on_allocation();
2717 
2718   assert(method->is_native(), "must be native");
2719   assert(method->is_special_native_intrinsic() ||
2720          method->has_native_function(), "must have something valid to call!");
2721 
2722   {
2723     // Perform the work while holding the lock, but perform any printing outside the lock
2724     MutexLocker mu(AdapterHandlerLibrary_lock);
2725     // See if somebody beat us to it
2726     if (method->code() != nullptr) {
2727       return;
2728     }
2729 
2730     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2731     assert(compile_id > 0, "Must generate native wrapper");
2732 
2733 
2734     ResourceMark rm;
2735     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2736     if (buf != nullptr) {
2737       CodeBuffer buffer(buf);
2738 
2739       if (method->is_continuation_enter_intrinsic()) {
2740         buffer.initialize_stubs_size(192);
2741       }
2742 
2743       struct { double data[20]; } locs_buf;
2744       struct { double data[20]; } stubs_locs_buf;
2745       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2746 #if defined(AARCH64) || defined(PPC64)
2747       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
2748       // in the constant pool to ensure ordering between the barrier and oops
2749       // accesses. For native_wrappers we need a constant.
2750       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
2751       // static java call that is resolved in the runtime.
2752       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
2753         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
2754       }
2755 #endif
2756       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
2757       MacroAssembler _masm(&buffer);
2758 
2759       // Fill in the signature array, for the calling-convention call.
2760       const int total_args_passed = method->size_of_parameters();
2761 
2762       VMRegPair stack_regs[16];
2763       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2764 
2765       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2766                               method->is_static(), total_args_passed);
2767       BasicType* sig_bt = si.basic_types();
2768       assert(si.slots() == total_args_passed, "");
2769       BasicType ret_type = si.return_type();
2770 
2771       // Now get the compiled-Java arguments layout.
2772       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2773 
2774       // Generate the compiled-to-native wrapper code
2775       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2776 
2777       if (nm != nullptr) {
2778         {
2779           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2780           if (nm->make_in_use()) {
2781             method->set_code(method, nm);
2782           }
2783         }
2784 
2785         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
2786         if (directive->PrintAssemblyOption) {
2787           nm->print_code();
2788         }
2789         DirectivesStack::release(directive);
2790       }
2791     }
2792   } // Unlock AdapterHandlerLibrary_lock
2793 
2794 
2795   // Install the generated code.
2796   if (nm != nullptr) {
2797     const char *msg = method->is_static() ? "(static)" : "";
2798     CompileTask::print_ul(nm, msg);
2799     if (PrintCompilation) {
2800       ttyLocker ttyl;
2801       CompileTask::print(tty, nm, msg);
2802     }
2803     nm->post_compiled_method_load_event();
2804   }
2805 }
2806 
2807 // -------------------------------------------------------------------------
2808 // Java-Java calling convention
2809 // (what you use when Java calls Java)
2810 
2811 //------------------------------name_for_receiver----------------------------------
2812 // For a given signature, return the VMReg for parameter 0.
2813 VMReg SharedRuntime::name_for_receiver() {
2814   VMRegPair regs;
2815   BasicType sig_bt = T_OBJECT;
2816   (void) java_calling_convention(&sig_bt, &regs, 1);
2817   // Return argument 0 register.  In the LP64 build pointers
2818   // take 2 registers, but the VM wants only the 'main' name.
2819   return regs.first();
2820 }
2821 
2822 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2823   // This method is returning a data structure allocating as a
2824   // ResourceObject, so do not put any ResourceMarks in here.
2825 
2826   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2827   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2828   int cnt = 0;
2829   if (has_receiver) {
2830     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2831   }
2832 
2833   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
2834     BasicType type = ss.type();
2835     sig_bt[cnt++] = type;
2836     if (is_double_word_type(type))
2837       sig_bt[cnt++] = T_VOID;
2838   }
2839 
2840   if (has_appendix) {
2841     sig_bt[cnt++] = T_OBJECT;
2842   }
2843 
2844   assert(cnt < 256, "grow table size");
2845 
2846   int comp_args_on_stack;
2847   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
2848 
2849   // the calling convention doesn't count out_preserve_stack_slots so
2850   // we must add that in to get "true" stack offsets.
2851 
2852   if (comp_args_on_stack) {
2853     for (int i = 0; i < cnt; i++) {
2854       VMReg reg1 = regs[i].first();
2855       if (reg1->is_stack()) {
2856         // Yuck
2857         reg1 = reg1->bias(out_preserve_stack_slots());
2858       }
2859       VMReg reg2 = regs[i].second();
2860       if (reg2->is_stack()) {
2861         // Yuck
2862         reg2 = reg2->bias(out_preserve_stack_slots());
2863       }
2864       regs[i].set_pair(reg2, reg1);
2865     }
2866   }
2867 
2868   // results
2869   *arg_size = cnt;
2870   return regs;
2871 }
2872 
2873 // OSR Migration Code
2874 //
2875 // This code is used convert interpreter frames into compiled frames.  It is
2876 // called from very start of a compiled OSR nmethod.  A temp array is
2877 // allocated to hold the interesting bits of the interpreter frame.  All
2878 // active locks are inflated to allow them to move.  The displaced headers and
2879 // active interpreter locals are copied into the temp buffer.  Then we return
2880 // back to the compiled code.  The compiled code then pops the current
2881 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2882 // copies the interpreter locals and displaced headers where it wants.
2883 // Finally it calls back to free the temp buffer.
2884 //
2885 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2886 
2887 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
2888   assert(current == JavaThread::current(), "pre-condition");
2889 
2890   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
2891   // frame. The stack watermark code below ensures that the interpreted frame is processed
2892   // before it gets unwound. This is helpful as the size of the compiled frame could be
2893   // larger than the interpreted frame, which could result in the new frame not being
2894   // processed correctly.
2895   StackWatermarkSet::before_unwind(current);
2896 
2897   //
2898   // This code is dependent on the memory layout of the interpreter local
2899   // array and the monitors. On all of our platforms the layout is identical
2900   // so this code is shared. If some platform lays the their arrays out
2901   // differently then this code could move to platform specific code or
2902   // the code here could be modified to copy items one at a time using
2903   // frame accessor methods and be platform independent.
2904 
2905   frame fr = current->last_frame();
2906   assert(fr.is_interpreted_frame(), "");
2907   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2908 
2909   // Figure out how many monitors are active.
2910   int active_monitor_count = 0;
2911   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2912        kptr < fr.interpreter_frame_monitor_begin();
2913        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2914     if (kptr->obj() != nullptr) active_monitor_count++;
2915   }
2916 
2917   // QQQ we could place number of active monitors in the array so that compiled code
2918   // could double check it.
2919 
2920   Method* moop = fr.interpreter_frame_method();
2921   int max_locals = moop->max_locals();
2922   // Allocate temp buffer, 1 word per local & 2 per active monitor
2923   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
2924   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2925 
2926   // Copy the locals.  Order is preserved so that loading of longs works.
2927   // Since there's no GC I can copy the oops blindly.
2928   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2929   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2930                        (HeapWord*)&buf[0],
2931                        max_locals);
2932 
2933   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2934   int i = max_locals;
2935   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2936        kptr2 < fr.interpreter_frame_monitor_begin();
2937        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2938     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
2939       BasicLock *lock = kptr2->lock();
2940       if (LockingMode == LM_LEGACY) {
2941         // Inflate so the object's header no longer refers to the BasicLock.
2942         if (lock->displaced_header().is_unlocked()) {
2943           // The object is locked and the resulting ObjectMonitor* will also be
2944           // locked so it can't be async deflated until ownership is dropped.
2945           // See the big comment in basicLock.cpp: BasicLock::move_to().
2946           ObjectSynchronizer::inflate_helper(kptr2->obj());
2947         }
2948         // Now the displaced header is free to move because the
2949         // object's header no longer refers to it.
2950         buf[i] = (intptr_t)lock->displaced_header().value();
2951       }
2952 #ifdef ASSERT
2953       else {
2954         buf[i] = badDispHeaderOSR;
2955       }
2956 #endif
2957       i++;
2958       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2959     }
2960   }
2961   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2962 
2963   RegisterMap map(current,
2964                   RegisterMap::UpdateMap::skip,
2965                   RegisterMap::ProcessFrames::include,
2966                   RegisterMap::WalkContinuation::skip);
2967   frame sender = fr.sender(&map);
2968   if (sender.is_interpreted_frame()) {
2969     current->push_cont_fastpath(sender.sp());
2970   }
2971 
2972   return buf;
2973 JRT_END
2974 
2975 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2976   FREE_C_HEAP_ARRAY(intptr_t, buf);
2977 JRT_END
2978 
2979 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
2980   bool found = false;
2981   auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2982     return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
2983   };
2984   assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
2985   _adapter_handler_table->iterate(findblob);
2986   return found;
2987 }
2988 
2989 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
2990   bool found = false;
2991   auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2992     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2993       found = true;
2994       st->print("Adapter for signature: ");
2995       a->print_adapter_on(st);
2996       return true;
2997     } else {
2998       return false; // keep looking
2999     }
3000   };
3001   assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3002   _adapter_handler_table->iterate(findblob);
3003   assert(found, "Should have found handler");
3004 }
3005 
3006 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3007   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3008   if (get_i2c_entry() != nullptr) {
3009     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3010   }
3011   if (get_c2i_entry() != nullptr) {
3012     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3013   }
3014   if (get_c2i_unverified_entry() != nullptr) {
3015     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3016   }
3017   if (get_c2i_no_clinit_check_entry() != nullptr) {
3018     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3019   }
3020   st->cr();
3021 }
3022 
3023 #ifndef PRODUCT
3024 
3025 void AdapterHandlerLibrary::print_statistics() {
3026   print_table_statistics();
3027 }
3028 
3029 #endif /* PRODUCT */
3030 
3031 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3032   assert(current == JavaThread::current(), "pre-condition");
3033   StackOverflow* overflow_state = current->stack_overflow_state();
3034   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3035   overflow_state->set_reserved_stack_activation(current->stack_base());
3036 JRT_END
3037 
3038 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3039   ResourceMark rm(current);
3040   frame activation;
3041   nmethod* nm = nullptr;
3042   int count = 1;
3043 
3044   assert(fr.is_java_frame(), "Must start on Java frame");
3045 
3046   RegisterMap map(JavaThread::current(),
3047                   RegisterMap::UpdateMap::skip,
3048                   RegisterMap::ProcessFrames::skip,
3049                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3050   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3051     if (!fr.is_java_frame()) {
3052       continue;
3053     }
3054 
3055     Method* method = nullptr;
3056     bool found = false;
3057     if (fr.is_interpreted_frame()) {
3058       method = fr.interpreter_frame_method();
3059       if (method != nullptr && method->has_reserved_stack_access()) {
3060         found = true;
3061       }
3062     } else {
3063       CodeBlob* cb = fr.cb();
3064       if (cb != nullptr && cb->is_nmethod()) {
3065         nm = cb->as_nmethod();
3066         method = nm->method();
3067         // scope_desc_near() must be used, instead of scope_desc_at() because on
3068         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3069         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3070           method = sd->method();
3071           if (method != nullptr && method->has_reserved_stack_access()) {
3072             found = true;
3073           }
3074         }
3075       }
3076     }
3077     if (found) {
3078       activation = fr;
3079       warning("Potentially dangerous stack overflow in "
3080               "ReservedStackAccess annotated method %s [%d]",
3081               method->name_and_sig_as_C_string(), count++);
3082       EventReservedStackActivation event;
3083       if (event.should_commit()) {
3084         event.set_method(method);
3085         event.commit();
3086       }
3087     }
3088   }
3089   return activation;
3090 }
3091 
3092 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3093   // After any safepoint, just before going back to compiled code,
3094   // we inform the GC that we will be doing initializing writes to
3095   // this object in the future without emitting card-marks, so
3096   // GC may take any compensating steps.
3097 
3098   oop new_obj = current->vm_result();
3099   if (new_obj == nullptr) return;
3100 
3101   BarrierSet *bs = BarrierSet::barrier_set();
3102   bs->on_slowpath_allocation_exit(current, new_obj);
3103 }
--- EOF ---