1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 



  25 #include "classfile/classLoader.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/vmClasses.hpp"
  29 #include "classfile/vmSymbols.hpp"

  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/nmethod.inline.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/abstractCompiler.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/interpreterRuntime.hpp"
  43 #include "jvm.h"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.hpp"
  48 #include "metaprogramming/primitiveConversions.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/methodHandles.hpp"
  57 #include "prims/nativeLookup.hpp"
  58 #include "runtime/arguments.hpp"
  59 #include "runtime/atomic.hpp"
  60 #include "runtime/basicLock.inline.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/jniHandles.inline.hpp"
  68 #include "runtime/perfData.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/stackWatermarkSet.hpp"
  71 #include "runtime/stubRoutines.hpp"
  72 #include "runtime/synchronizer.inline.hpp"
  73 #include "runtime/timerTrace.hpp"
  74 #include "runtime/vframe.inline.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "runtime/vm_version.hpp"

  77 #include "utilities/copy.hpp"
  78 #include "utilities/dtrace.hpp"
  79 #include "utilities/events.hpp"
  80 #include "utilities/globalDefinitions.hpp"
  81 #include "utilities/resourceHash.hpp"
  82 #include "utilities/macros.hpp"
  83 #include "utilities/xmlstream.hpp"
  84 #ifdef COMPILER1
  85 #include "c1/c1_Runtime1.hpp"
  86 #endif
  87 #if INCLUDE_JFR
  88 #include "jfr/jfr.hpp"
  89 #endif
  90 
  91 // Shared runtime stub routines reside in their own unique blob with a
  92 // single entry point
  93 
  94 
  95 #define SHARED_STUB_FIELD_DEFINE(name, type) \
  96   type        SharedRuntime::BLOB_FIELD_NAME(name);
  97   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
  98 #undef SHARED_STUB_FIELD_DEFINE
  99 
 100 nmethod*            SharedRuntime::_cont_doYield_stub;
 101 






 102 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 103 const char *SharedRuntime::_stub_names[] = {
 104   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 105 };
 106 
 107 //----------------------------generate_stubs-----------------------------------
 108 void SharedRuntime::generate_initial_stubs() {
 109   // Build this early so it's available for the interpreter.
 110   _throw_StackOverflowError_blob =
 111     generate_throw_exception(SharedStubId::throw_StackOverflowError_id,
 112                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 113 }
 114 
 115 void SharedRuntime::generate_stubs() {
 116   _wrong_method_blob =
 117     generate_resolve_blob(SharedStubId::wrong_method_id,
 118                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 119   _wrong_method_abstract_blob =
 120     generate_resolve_blob(SharedStubId::wrong_method_abstract_id,
 121                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 122   _ic_miss_blob =
 123     generate_resolve_blob(SharedStubId::ic_miss_id,
 124                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 125   _resolve_opt_virtual_call_blob =
 126     generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id,
 127                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 128   _resolve_virtual_call_blob =
 129     generate_resolve_blob(SharedStubId::resolve_virtual_call_id,
 130                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 131   _resolve_static_call_blob =
 132     generate_resolve_blob(SharedStubId::resolve_static_call_id,
 133                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 134 
 135   _throw_delayed_StackOverflowError_blob =
 136     generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id,
 137                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 138 
 139   _throw_AbstractMethodError_blob =
 140     generate_throw_exception(SharedStubId::throw_AbstractMethodError_id,
 141                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 142 
 143   _throw_IncompatibleClassChangeError_blob =
 144     generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id,
 145                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 146 
 147   _throw_NullPointerException_at_call_blob =
 148     generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id,
 149                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 150 
 151   AdapterHandlerLibrary::initialize();
 152 
 153 #if COMPILER2_OR_JVMCI
 154   // Vectors are generated only by C2 and JVMCI.
 155   bool support_wide = is_wide_vector(MaxVectorSize);
 156   if (support_wide) {
 157     _polling_page_vectors_safepoint_handler_blob =
 158       generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id,
 159                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 160   }
 161 #endif // COMPILER2_OR_JVMCI
 162   _polling_page_safepoint_handler_blob =
 163     generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id,
 164                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 165   _polling_page_return_handler_blob =
 166     generate_handler_blob(SharedStubId::polling_page_return_handler_id,
 167                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 168 
 169   generate_deopt_blob();























































 170 }
 171 
 172 #if INCLUDE_JFR
 173 //------------------------------generate jfr runtime stubs ------
 174 void SharedRuntime::generate_jfr_stubs() {
 175   ResourceMark rm;
 176   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 177   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 178 
 179   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 180   _jfr_return_lease_blob = generate_jfr_return_lease();
 181 }
 182 
 183 #endif // INCLUDE_JFR
 184 
 185 #include <math.h>
 186 
 187 // Implementation of SharedRuntime
 188 
 189 #ifndef PRODUCT
 190 // For statistics
 191 uint SharedRuntime::_ic_miss_ctr = 0;
 192 uint SharedRuntime::_wrong_method_ctr = 0;
 193 uint SharedRuntime::_resolve_static_ctr = 0;
 194 uint SharedRuntime::_resolve_virtual_ctr = 0;
 195 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;


 196 uint SharedRuntime::_implicit_null_throws = 0;
 197 uint SharedRuntime::_implicit_div0_throws = 0;
 198 
 199 int64_t SharedRuntime::_nof_normal_calls = 0;
 200 int64_t SharedRuntime::_nof_inlined_calls = 0;
 201 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 202 int64_t SharedRuntime::_nof_static_calls = 0;
 203 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 204 int64_t SharedRuntime::_nof_interface_calls = 0;
 205 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 206 
 207 uint SharedRuntime::_new_instance_ctr=0;
 208 uint SharedRuntime::_new_array_ctr=0;
 209 uint SharedRuntime::_multi2_ctr=0;
 210 uint SharedRuntime::_multi3_ctr=0;
 211 uint SharedRuntime::_multi4_ctr=0;
 212 uint SharedRuntime::_multi5_ctr=0;
 213 uint SharedRuntime::_mon_enter_stub_ctr=0;
 214 uint SharedRuntime::_mon_exit_stub_ctr=0;
 215 uint SharedRuntime::_mon_enter_ctr=0;
 216 uint SharedRuntime::_mon_exit_ctr=0;
 217 uint SharedRuntime::_partial_subtype_ctr=0;
 218 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 219 uint SharedRuntime::_jshort_array_copy_ctr=0;
 220 uint SharedRuntime::_jint_array_copy_ctr=0;
 221 uint SharedRuntime::_jlong_array_copy_ctr=0;
 222 uint SharedRuntime::_oop_array_copy_ctr=0;
 223 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 224 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 225 uint SharedRuntime::_generic_array_copy_ctr=0;
 226 uint SharedRuntime::_slow_array_copy_ctr=0;
 227 uint SharedRuntime::_find_handler_ctr=0;
 228 uint SharedRuntime::_rethrow_ctr=0;
 229 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 230 
 231 int     SharedRuntime::_ICmiss_index                    = 0;
 232 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 233 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 234 
 235 
 236 void SharedRuntime::trace_ic_miss(address at) {
 237   for (int i = 0; i < _ICmiss_index; i++) {
 238     if (_ICmiss_at[i] == at) {
 239       _ICmiss_count[i]++;
 240       return;
 241     }
 242   }
 243   int index = _ICmiss_index++;
 244   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 245   _ICmiss_at[index] = at;
 246   _ICmiss_count[index] = 1;
 247 }
 248 
 249 void SharedRuntime::print_ic_miss_histogram() {
 250   if (ICMissHistogram) {
 251     tty->print_cr("IC Miss Histogram:");
 252     int tot_misses = 0;
 253     for (int i = 0; i < _ICmiss_index; i++) {
 254       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 255       tot_misses += _ICmiss_count[i];
 256     }
 257     tty->print_cr("Total IC misses: %7d", tot_misses);
 258   }
 259 }
 260 #endif // PRODUCT
 261 
 262 
 263 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 264   return x * y;
 265 JRT_END
 266 
 267 
 268 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 269   if (x == min_jlong && y == CONST64(-1)) {
 270     return x;
 271   } else {
 272     return x / y;
 273   }
 274 JRT_END
 275 
 276 
 277 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 278   if (x == min_jlong && y == CONST64(-1)) {
 279     return 0;
 280   } else {
 281     return x % y;
 282   }
 283 JRT_END
 284 
 285 
 286 #ifdef _WIN64
 287 const juint  float_sign_mask  = 0x7FFFFFFF;
 288 const juint  float_infinity   = 0x7F800000;
 289 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 290 const julong double_infinity  = CONST64(0x7FF0000000000000);
 291 #endif
 292 
 293 #if !defined(X86)
 294 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 295 #ifdef _WIN64
 296   // 64-bit Windows on amd64 returns the wrong values for
 297   // infinity operands.
 298   juint xbits = PrimitiveConversions::cast<juint>(x);
 299   juint ybits = PrimitiveConversions::cast<juint>(y);
 300   // x Mod Infinity == x unless x is infinity
 301   if (((xbits & float_sign_mask) != float_infinity) &&
 302        ((ybits & float_sign_mask) == float_infinity) ) {
 303     return x;
 304   }
 305   return ((jfloat)fmod_winx64((double)x, (double)y));
 306 #else
 307   return ((jfloat)fmod((double)x,(double)y));
 308 #endif
 309 JRT_END
 310 
 311 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 312 #ifdef _WIN64
 313   julong xbits = PrimitiveConversions::cast<julong>(x);
 314   julong ybits = PrimitiveConversions::cast<julong>(y);
 315   // x Mod Infinity == x unless x is infinity
 316   if (((xbits & double_sign_mask) != double_infinity) &&
 317        ((ybits & double_sign_mask) == double_infinity) ) {
 318     return x;
 319   }
 320   return ((jdouble)fmod_winx64((double)x, (double)y));
 321 #else
 322   return ((jdouble)fmod((double)x,(double)y));
 323 #endif
 324 JRT_END
 325 #endif // !X86
 326 
 327 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 328   return (jfloat)x;
 329 JRT_END
 330 
 331 #ifdef __SOFTFP__
 332 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 333   return x + y;
 334 JRT_END
 335 
 336 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 337   return x - y;
 338 JRT_END
 339 
 340 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 341   return x * y;
 342 JRT_END
 343 
 344 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 345   return x / y;
 346 JRT_END
 347 
 348 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 349   return x + y;
 350 JRT_END
 351 
 352 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 353   return x - y;
 354 JRT_END
 355 
 356 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 357   return x * y;
 358 JRT_END
 359 
 360 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 361   return x / y;
 362 JRT_END
 363 
 364 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 365   return (jdouble)x;
 366 JRT_END
 367 
 368 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 369   return (jdouble)x;
 370 JRT_END
 371 
 372 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 373   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 374 JRT_END
 375 
 376 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 377   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 378 JRT_END
 379 
 380 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 381   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 382 JRT_END
 383 
 384 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 385   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 386 JRT_END
 387 
 388 // Functions to return the opposite of the aeabi functions for nan.
 389 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 390   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 391 JRT_END
 392 
 393 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 394   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 395 JRT_END
 396 
 397 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 398   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 399 JRT_END
 400 
 401 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 402   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 403 JRT_END
 404 
 405 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 406   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 407 JRT_END
 408 
 409 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 410   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 411 JRT_END
 412 
 413 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 414   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 415 JRT_END
 416 
 417 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 418   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 419 JRT_END
 420 
 421 // Intrinsics make gcc generate code for these.
 422 float  SharedRuntime::fneg(float f)   {
 423   return -f;
 424 }
 425 
 426 double SharedRuntime::dneg(double f)  {
 427   return -f;
 428 }
 429 
 430 #endif // __SOFTFP__
 431 
 432 #if defined(__SOFTFP__) || defined(E500V2)
 433 // Intrinsics make gcc generate code for these.
 434 double SharedRuntime::dabs(double f)  {
 435   return (f <= (double)0.0) ? (double)0.0 - f : f;
 436 }
 437 
 438 #endif
 439 
 440 #if defined(__SOFTFP__) || defined(PPC)
 441 double SharedRuntime::dsqrt(double f) {
 442   return sqrt(f);
 443 }
 444 #endif
 445 
 446 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 447   if (g_isnan(x))
 448     return 0;
 449   if (x >= (jfloat) max_jint)
 450     return max_jint;
 451   if (x <= (jfloat) min_jint)
 452     return min_jint;
 453   return (jint) x;
 454 JRT_END
 455 
 456 
 457 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 458   if (g_isnan(x))
 459     return 0;
 460   if (x >= (jfloat) max_jlong)
 461     return max_jlong;
 462   if (x <= (jfloat) min_jlong)
 463     return min_jlong;
 464   return (jlong) x;
 465 JRT_END
 466 
 467 
 468 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 469   if (g_isnan(x))
 470     return 0;
 471   if (x >= (jdouble) max_jint)
 472     return max_jint;
 473   if (x <= (jdouble) min_jint)
 474     return min_jint;
 475   return (jint) x;
 476 JRT_END
 477 
 478 
 479 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 480   if (g_isnan(x))
 481     return 0;
 482   if (x >= (jdouble) max_jlong)
 483     return max_jlong;
 484   if (x <= (jdouble) min_jlong)
 485     return min_jlong;
 486   return (jlong) x;
 487 JRT_END
 488 
 489 
 490 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 491   return (jfloat)x;
 492 JRT_END
 493 
 494 
 495 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 496   return (jfloat)x;
 497 JRT_END
 498 
 499 
 500 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 501   return (jdouble)x;
 502 JRT_END
 503 
 504 
 505 // Exception handling across interpreter/compiler boundaries
 506 //
 507 // exception_handler_for_return_address(...) returns the continuation address.
 508 // The continuation address is the entry point of the exception handler of the
 509 // previous frame depending on the return address.
 510 
 511 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 512   // Note: This is called when we have unwound the frame of the callee that did
 513   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 514   // Notably, the stack is not walkable at this point, and hence the check must
 515   // be deferred until later. Specifically, any of the handlers returned here in
 516   // this function, will get dispatched to, and call deferred checks to
 517   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 518   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 519   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 520 
 521   // Reset method handle flag.
 522   current->set_is_method_handle_return(false);
 523 
 524 #if INCLUDE_JVMCI
 525   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 526   // and other exception handler continuations do not read it
 527   current->set_exception_pc(nullptr);
 528 #endif // INCLUDE_JVMCI
 529 
 530   if (Continuation::is_return_barrier_entry(return_address)) {
 531     return StubRoutines::cont_returnBarrierExc();
 532   }
 533 
 534   // The fastest case first
 535   CodeBlob* blob = CodeCache::find_blob(return_address);
 536   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 537   if (nm != nullptr) {
 538     // Set flag if return address is a method handle call site.
 539     current->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 540     // native nmethods don't have exception handlers
 541     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 542     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 543     if (nm->is_deopt_pc(return_address)) {
 544       // If we come here because of a stack overflow, the stack may be
 545       // unguarded. Reguard the stack otherwise if we return to the
 546       // deopt blob and the stack bang causes a stack overflow we
 547       // crash.
 548       StackOverflow* overflow_state = current->stack_overflow_state();
 549       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 550       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 551         overflow_state->set_reserved_stack_activation(current->stack_base());
 552       }
 553       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 554       // The deferred StackWatermarkSet::after_unwind check will be performed in
 555       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 556       return SharedRuntime::deopt_blob()->unpack_with_exception();
 557     } else {
 558       // The deferred StackWatermarkSet::after_unwind check will be performed in
 559       // * OptoRuntime::handle_exception_C_helper for C2 code
 560       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 561       return nm->exception_begin();
 562     }
 563   }
 564 
 565   // Entry code
 566   if (StubRoutines::returns_to_call_stub(return_address)) {
 567     // The deferred StackWatermarkSet::after_unwind check will be performed in
 568     // JavaCallWrapper::~JavaCallWrapper
 569     return StubRoutines::catch_exception_entry();
 570   }
 571   if (blob != nullptr && blob->is_upcall_stub()) {
 572     return StubRoutines::upcall_stub_exception_handler();
 573   }
 574   // Interpreted code
 575   if (Interpreter::contains(return_address)) {
 576     // The deferred StackWatermarkSet::after_unwind check will be performed in
 577     // InterpreterRuntime::exception_handler_for_exception
 578     return Interpreter::rethrow_exception_entry();
 579   }
 580 
 581   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 582   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 583 
 584 #ifndef PRODUCT
 585   { ResourceMark rm;
 586     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 587     os::print_location(tty, (intptr_t)return_address);
 588     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 589     tty->print_cr("b) other problem");
 590   }
 591 #endif // PRODUCT
 592   ShouldNotReachHere();
 593   return nullptr;
 594 }
 595 
 596 
 597 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 598   return raw_exception_handler_for_return_address(current, return_address);
 599 JRT_END
 600 
 601 
 602 address SharedRuntime::get_poll_stub(address pc) {
 603   address stub;
 604   // Look up the code blob
 605   CodeBlob *cb = CodeCache::find_blob(pc);
 606 
 607   // Should be an nmethod
 608   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 609 
 610   // Look up the relocation information
 611   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 612       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 613 
 614 #ifdef ASSERT
 615   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 616     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 617     Disassembler::decode(cb);
 618     fatal("Only polling locations are used for safepoint");
 619   }
 620 #endif
 621 
 622   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 623   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 624   if (at_poll_return) {
 625     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 626            "polling page return stub not created yet");
 627     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 628   } else if (has_wide_vectors) {
 629     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 630            "polling page vectors safepoint stub not created yet");
 631     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 632   } else {
 633     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 634            "polling page safepoint stub not created yet");
 635     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 636   }
 637   log_debug(safepoint)("... found polling page %s exception at pc = "
 638                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 639                        at_poll_return ? "return" : "loop",
 640                        (intptr_t)pc, (intptr_t)stub);
 641   return stub;
 642 }
 643 
 644 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 645   if (JvmtiExport::can_post_on_exceptions()) {
 646     vframeStream vfst(current, true);
 647     methodHandle method = methodHandle(current, vfst.method());
 648     address bcp = method()->bcp_from(vfst.bci());
 649     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 650   }
 651 
 652 #if INCLUDE_JVMCI
 653   if (EnableJVMCI) {
 654     vframeStream vfst(current, true);
 655     methodHandle method = methodHandle(current, vfst.method());
 656     int bci = vfst.bci();
 657     MethodData* trap_mdo = method->method_data();
 658     if (trap_mdo != nullptr) {
 659       // Set exception_seen if the exceptional bytecode is an invoke
 660       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 661       if (call.is_valid()) {
 662         ResourceMark rm(current);
 663 
 664         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 665         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 666 
 667         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 668         if (pdata != nullptr && pdata->is_BitData()) {
 669           BitData* bit_data = (BitData*) pdata;
 670           bit_data->set_exception_seen();
 671         }
 672       }
 673     }
 674   }
 675 #endif
 676 
 677   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 678 }
 679 
 680 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 681   Handle h_exception = Exceptions::new_exception(current, name, message);
 682   throw_and_post_jvmti_exception(current, h_exception);
 683 }
 684 
 685 #if INCLUDE_JVMTI
 686 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 687   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 688   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 689   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 690   JNIHandles::destroy_local(vthread);
 691 JRT_END
 692 
 693 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 694   assert(hide == JNI_TRUE, "must be VTMS transition start");
 695   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 696   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 697   JNIHandles::destroy_local(vthread);
 698 JRT_END
 699 
 700 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 701   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 702   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 703   JNIHandles::destroy_local(vthread);
 704 JRT_END
 705 
 706 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 707   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 708   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 709   JNIHandles::destroy_local(vthread);
 710 JRT_END
 711 #endif // INCLUDE_JVMTI
 712 
 713 // The interpreter code to call this tracing function is only
 714 // called/generated when UL is on for redefine, class and has the right level
 715 // and tags. Since obsolete methods are never compiled, we don't have
 716 // to modify the compilers to generate calls to this function.
 717 //
 718 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 719     JavaThread* thread, Method* method))
 720   if (method->is_obsolete()) {
 721     // We are calling an obsolete method, but this is not necessarily
 722     // an error. Our method could have been redefined just after we
 723     // fetched the Method* from the constant pool.
 724     ResourceMark rm;
 725     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 726   }












 727   return 0;
 728 JRT_END
 729 
 730 // ret_pc points into caller; we are returning caller's exception handler
 731 // for given exception
 732 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 733 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 734                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 735   assert(nm != nullptr, "must exist");
 736   ResourceMark rm;
 737 
 738 #if INCLUDE_JVMCI
 739   if (nm->is_compiled_by_jvmci()) {
 740     // lookup exception handler for this pc
 741     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 742     ExceptionHandlerTable table(nm);
 743     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 744     if (t != nullptr) {
 745       return nm->code_begin() + t->pco();
 746     } else {
 747       return Deoptimization::deoptimize_for_missing_exception_handler(nm);
 748     }
 749   }
 750 #endif // INCLUDE_JVMCI
 751 
 752   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 753   // determine handler bci, if any
 754   EXCEPTION_MARK;
 755 
 756   int handler_bci = -1;
 757   int scope_depth = 0;
 758   if (!force_unwind) {
 759     int bci = sd->bci();
 760     bool recursive_exception = false;
 761     do {
 762       bool skip_scope_increment = false;
 763       // exception handler lookup
 764       Klass* ek = exception->klass();
 765       methodHandle mh(THREAD, sd->method());
 766       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 767       if (HAS_PENDING_EXCEPTION) {
 768         recursive_exception = true;
 769         // We threw an exception while trying to find the exception handler.
 770         // Transfer the new exception to the exception handle which will
 771         // be set into thread local storage, and do another lookup for an
 772         // exception handler for this exception, this time starting at the
 773         // BCI of the exception handler which caused the exception to be
 774         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 775         // argument to ensure that the correct exception is thrown (4870175).
 776         recursive_exception_occurred = true;
 777         exception = Handle(THREAD, PENDING_EXCEPTION);
 778         CLEAR_PENDING_EXCEPTION;
 779         if (handler_bci >= 0) {
 780           bci = handler_bci;
 781           handler_bci = -1;
 782           skip_scope_increment = true;
 783         }
 784       }
 785       else {
 786         recursive_exception = false;
 787       }
 788       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 789         sd = sd->sender();
 790         if (sd != nullptr) {
 791           bci = sd->bci();
 792         }
 793         ++scope_depth;
 794       }
 795     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 796   }
 797 
 798   // found handling method => lookup exception handler
 799   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 800 
 801   ExceptionHandlerTable table(nm);
 802   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 803   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 804     // Allow abbreviated catch tables.  The idea is to allow a method
 805     // to materialize its exceptions without committing to the exact
 806     // routing of exceptions.  In particular this is needed for adding
 807     // a synthetic handler to unlock monitors when inlining
 808     // synchronized methods since the unlock path isn't represented in
 809     // the bytecodes.
 810     t = table.entry_for(catch_pco, -1, 0);
 811   }
 812 
 813 #ifdef COMPILER1
 814   if (t == nullptr && nm->is_compiled_by_c1()) {
 815     assert(nm->unwind_handler_begin() != nullptr, "");
 816     return nm->unwind_handler_begin();
 817   }
 818 #endif
 819 
 820   if (t == nullptr) {
 821     ttyLocker ttyl;
 822     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 823     tty->print_cr("   Exception:");
 824     exception->print();
 825     tty->cr();
 826     tty->print_cr(" Compiled exception table :");
 827     table.print();
 828     nm->print();
 829     nm->print_code();
 830     guarantee(false, "missing exception handler");
 831     return nullptr;
 832   }
 833 
 834   if (handler_bci != -1) { // did we find a handler in this method?
 835     sd->method()->set_exception_handler_entered(handler_bci); // profile
 836   }
 837   return nm->code_begin() + t->pco();
 838 }
 839 
 840 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 841   // These errors occur only at call sites
 842   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 843 JRT_END
 844 
 845 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 846   // These errors occur only at call sites
 847   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 848 JRT_END
 849 
 850 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 851   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 852 JRT_END
 853 
 854 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 855   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 856 JRT_END
 857 
 858 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 859   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 860   // cache sites (when the callee activation is not yet set up) so we are at a call site
 861   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 862 JRT_END
 863 
 864 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 865   throw_StackOverflowError_common(current, false);
 866 JRT_END
 867 
 868 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 869   throw_StackOverflowError_common(current, true);
 870 JRT_END
 871 
 872 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 873   // We avoid using the normal exception construction in this case because
 874   // it performs an upcall to Java, and we're already out of stack space.
 875   JavaThread* THREAD = current; // For exception macros.
 876   Klass* k = vmClasses::StackOverflowError_klass();
 877   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 878   if (delayed) {
 879     java_lang_Throwable::set_message(exception_oop,
 880                                      Universe::delayed_stack_overflow_error_message());
 881   }
 882   Handle exception (current, exception_oop);
 883   if (StackTraceInThrowable) {
 884     java_lang_Throwable::fill_in_stack_trace(exception);
 885   }
 886   // Remove the ScopedValue bindings in case we got a
 887   // StackOverflowError while we were trying to remove ScopedValue
 888   // bindings.
 889   current->clear_scopedValueBindings();
 890   // Increment counter for hs_err file reporting
 891   Atomic::inc(&Exceptions::_stack_overflow_errors);
 892   throw_and_post_jvmti_exception(current, exception);
 893 }
 894 
 895 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 896                                                            address pc,
 897                                                            ImplicitExceptionKind exception_kind)
 898 {
 899   address target_pc = nullptr;
 900 
 901   if (Interpreter::contains(pc)) {
 902     switch (exception_kind) {
 903       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 904       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 905       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 906       default:                      ShouldNotReachHere();
 907     }
 908   } else {
 909     switch (exception_kind) {
 910       case STACK_OVERFLOW: {
 911         // Stack overflow only occurs upon frame setup; the callee is
 912         // going to be unwound. Dispatch to a shared runtime stub
 913         // which will cause the StackOverflowError to be fabricated
 914         // and processed.
 915         // Stack overflow should never occur during deoptimization:
 916         // the compiled method bangs the stack by as much as the
 917         // interpreter would need in case of a deoptimization. The
 918         // deoptimization blob and uncommon trap blob bang the stack
 919         // in a debug VM to verify the correctness of the compiled
 920         // method stack banging.
 921         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 922         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 923         return SharedRuntime::throw_StackOverflowError_entry();
 924       }
 925 
 926       case IMPLICIT_NULL: {
 927         if (VtableStubs::contains(pc)) {
 928           // We haven't yet entered the callee frame. Fabricate an
 929           // exception and begin dispatching it in the caller. Since
 930           // the caller was at a call site, it's safe to destroy all
 931           // caller-saved registers, as these entry points do.
 932           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 933 
 934           // If vt_stub is null, then return null to signal handler to report the SEGV error.
 935           if (vt_stub == nullptr) return nullptr;
 936 
 937           if (vt_stub->is_abstract_method_error(pc)) {
 938             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 939             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 940             // Instead of throwing the abstract method error here directly, we re-resolve
 941             // and will throw the AbstractMethodError during resolve. As a result, we'll
 942             // get a more detailed error message.
 943             return SharedRuntime::get_handle_wrong_method_stub();
 944           } else {
 945             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 946             // Assert that the signal comes from the expected location in stub code.
 947             assert(vt_stub->is_null_pointer_exception(pc),
 948                    "obtained signal from unexpected location in stub code");
 949             return SharedRuntime::throw_NullPointerException_at_call_entry();
 950           }
 951         } else {
 952           CodeBlob* cb = CodeCache::find_blob(pc);
 953 
 954           // If code blob is null, then return null to signal handler to report the SEGV error.
 955           if (cb == nullptr) return nullptr;
 956 
 957           // Exception happened in CodeCache. Must be either:
 958           // 1. Inline-cache check in C2I handler blob,
 959           // 2. Inline-cache check in nmethod, or
 960           // 3. Implicit null exception in nmethod
 961 
 962           if (!cb->is_nmethod()) {
 963             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 964             if (!is_in_blob) {
 965               // Allow normal crash reporting to handle this
 966               return nullptr;
 967             }
 968             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 969             // There is no handler here, so we will simply unwind.
 970             return SharedRuntime::throw_NullPointerException_at_call_entry();
 971           }
 972 
 973           // Otherwise, it's a compiled method.  Consult its exception handlers.
 974           nmethod* nm = cb->as_nmethod();
 975           if (nm->inlinecache_check_contains(pc)) {
 976             // exception happened inside inline-cache check code
 977             // => the nmethod is not yet active (i.e., the frame
 978             // is not set up yet) => use return address pushed by
 979             // caller => don't push another return address
 980             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 981             return SharedRuntime::throw_NullPointerException_at_call_entry();
 982           }
 983 
 984           if (nm->method()->is_method_handle_intrinsic()) {
 985             // exception happened inside MH dispatch code, similar to a vtable stub
 986             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 987             return SharedRuntime::throw_NullPointerException_at_call_entry();
 988           }
 989 
 990 #ifndef PRODUCT
 991           _implicit_null_throws++;
 992 #endif
 993           target_pc = nm->continuation_for_implicit_null_exception(pc);
 994           // If there's an unexpected fault, target_pc might be null,
 995           // in which case we want to fall through into the normal
 996           // error handling code.
 997         }
 998 
 999         break; // fall through
1000       }
1001 
1002 
1003       case IMPLICIT_DIVIDE_BY_ZERO: {
1004         nmethod* nm = CodeCache::find_nmethod(pc);
1005         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1006 #ifndef PRODUCT
1007         _implicit_div0_throws++;
1008 #endif
1009         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1010         // If there's an unexpected fault, target_pc might be null,
1011         // in which case we want to fall through into the normal
1012         // error handling code.
1013         break; // fall through
1014       }
1015 
1016       default: ShouldNotReachHere();
1017     }
1018 
1019     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1020 
1021     if (exception_kind == IMPLICIT_NULL) {
1022 #ifndef PRODUCT
1023       // for AbortVMOnException flag
1024       Exceptions::debug_check_abort("java.lang.NullPointerException");
1025 #endif //PRODUCT
1026       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1027     } else {
1028 #ifndef PRODUCT
1029       // for AbortVMOnException flag
1030       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1031 #endif //PRODUCT
1032       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1033     }
1034     return target_pc;
1035   }
1036 
1037   ShouldNotReachHere();
1038   return nullptr;
1039 }
1040 
1041 
1042 /**
1043  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1044  * installed in the native function entry of all native Java methods before
1045  * they get linked to their actual native methods.
1046  *
1047  * \note
1048  * This method actually never gets called!  The reason is because
1049  * the interpreter's native entries call NativeLookup::lookup() which
1050  * throws the exception when the lookup fails.  The exception is then
1051  * caught and forwarded on the return from NativeLookup::lookup() call
1052  * before the call to the native function.  This might change in the future.
1053  */
1054 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1055 {
1056   // We return a bad value here to make sure that the exception is
1057   // forwarded before we look at the return value.
1058   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1059 }
1060 JNI_END
1061 
1062 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1063   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1064 }
1065 
1066 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1067 #if INCLUDE_JVMCI
1068   if (!obj->klass()->has_finalizer()) {
1069     return;
1070   }
1071 #endif // INCLUDE_JVMCI
1072   assert(oopDesc::is_oop(obj), "must be a valid oop");
1073   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1074   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1075 JRT_END
1076 
1077 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1078   assert(thread != nullptr, "No thread");
1079   if (thread == nullptr) {
1080     return 0;
1081   }
1082   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1083             "current cannot touch oops after its GC barrier is detached.");
1084   oop obj = thread->threadObj();
1085   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1086 }
1087 
1088 /**
1089  * This function ought to be a void function, but cannot be because
1090  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1091  * 6254741.  Once that is fixed we can remove the dummy return value.
1092  */
1093 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1094   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1095 }
1096 
1097 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1098   return dtrace_object_alloc(thread, o, o->size());
1099 }
1100 
1101 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1102   assert(DTraceAllocProbes, "wrong call");
1103   Klass* klass = o->klass();
1104   Symbol* name = klass->name();
1105   HOTSPOT_OBJECT_ALLOC(
1106                    get_java_tid(thread),
1107                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1108   return 0;
1109 }
1110 
1111 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1112     JavaThread* current, Method* method))
1113   assert(current == JavaThread::current(), "pre-condition");
1114 
1115   assert(DTraceMethodProbes, "wrong call");
1116   Symbol* kname = method->klass_name();
1117   Symbol* name = method->name();
1118   Symbol* sig = method->signature();
1119   HOTSPOT_METHOD_ENTRY(
1120       get_java_tid(current),
1121       (char *) kname->bytes(), kname->utf8_length(),
1122       (char *) name->bytes(), name->utf8_length(),
1123       (char *) sig->bytes(), sig->utf8_length());
1124   return 0;
1125 JRT_END
1126 
1127 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1128     JavaThread* current, Method* method))
1129   assert(current == JavaThread::current(), "pre-condition");
1130   assert(DTraceMethodProbes, "wrong call");
1131   Symbol* kname = method->klass_name();
1132   Symbol* name = method->name();
1133   Symbol* sig = method->signature();
1134   HOTSPOT_METHOD_RETURN(
1135       get_java_tid(current),
1136       (char *) kname->bytes(), kname->utf8_length(),
1137       (char *) name->bytes(), name->utf8_length(),
1138       (char *) sig->bytes(), sig->utf8_length());
1139   return 0;
1140 JRT_END
1141 
1142 
1143 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1144 // for a call current in progress, i.e., arguments has been pushed on stack
1145 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1146 // vtable updates, etc.  Caller frame must be compiled.
1147 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1148   JavaThread* current = THREAD;
1149   ResourceMark rm(current);
1150 
1151   // last java frame on stack (which includes native call frames)
1152   vframeStream vfst(current, true);  // Do not skip and javaCalls
1153 
1154   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1155 }
1156 
1157 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1158   nmethod* caller = vfst.nm();
1159 
1160   address pc = vfst.frame_pc();
1161   { // Get call instruction under lock because another thread may be busy patching it.
1162     CompiledICLocker ic_locker(caller);
1163     return caller->attached_method_before_pc(pc);
1164   }
1165   return nullptr;
1166 }
1167 
1168 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1169 // for a call current in progress, i.e., arguments has been pushed on stack
1170 // but callee has not been invoked yet.  Caller frame must be compiled.
1171 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1172                                               CallInfo& callinfo, TRAPS) {
1173   Handle receiver;
1174   Handle nullHandle;  // create a handy null handle for exception returns
1175   JavaThread* current = THREAD;
1176 
1177   assert(!vfst.at_end(), "Java frame must exist");
1178 
1179   // Find caller and bci from vframe
1180   methodHandle caller(current, vfst.method());
1181   int          bci   = vfst.bci();
1182 
1183   if (caller->is_continuation_enter_intrinsic()) {
1184     bc = Bytecodes::_invokestatic;
1185     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1186     return receiver;
1187   }
1188 
1189   Bytecode_invoke bytecode(caller, bci);
1190   int bytecode_index = bytecode.index();
1191   bc = bytecode.invoke_code();
1192 
1193   methodHandle attached_method(current, extract_attached_method(vfst));
1194   if (attached_method.not_null()) {
1195     Method* callee = bytecode.static_target(CHECK_NH);
1196     vmIntrinsics::ID id = callee->intrinsic_id();
1197     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1198     // it attaches statically resolved method to the call site.
1199     if (MethodHandles::is_signature_polymorphic(id) &&
1200         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1201       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1202 
1203       // Adjust invocation mode according to the attached method.
1204       switch (bc) {
1205         case Bytecodes::_invokevirtual:
1206           if (attached_method->method_holder()->is_interface()) {
1207             bc = Bytecodes::_invokeinterface;
1208           }
1209           break;
1210         case Bytecodes::_invokeinterface:
1211           if (!attached_method->method_holder()->is_interface()) {
1212             bc = Bytecodes::_invokevirtual;
1213           }
1214           break;
1215         case Bytecodes::_invokehandle:
1216           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1217             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1218                                               : Bytecodes::_invokevirtual;
1219           }
1220           break;
1221         default:
1222           break;
1223       }
1224     }
1225   }
1226 
1227   assert(bc != Bytecodes::_illegal, "not initialized");
1228 
1229   bool has_receiver = bc != Bytecodes::_invokestatic &&
1230                       bc != Bytecodes::_invokedynamic &&
1231                       bc != Bytecodes::_invokehandle;
1232 
1233   // Find receiver for non-static call
1234   if (has_receiver) {
1235     // This register map must be update since we need to find the receiver for
1236     // compiled frames. The receiver might be in a register.
1237     RegisterMap reg_map2(current,
1238                          RegisterMap::UpdateMap::include,
1239                          RegisterMap::ProcessFrames::include,
1240                          RegisterMap::WalkContinuation::skip);
1241     frame stubFrame   = current->last_frame();
1242     // Caller-frame is a compiled frame
1243     frame callerFrame = stubFrame.sender(&reg_map2);
1244 
1245     if (attached_method.is_null()) {
1246       Method* callee = bytecode.static_target(CHECK_NH);
1247       if (callee == nullptr) {
1248         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1249       }
1250     }
1251 
1252     // Retrieve from a compiled argument list
1253     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1254     assert(oopDesc::is_oop_or_null(receiver()), "");
1255 
1256     if (receiver.is_null()) {
1257       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1258     }
1259   }
1260 
1261   // Resolve method
1262   if (attached_method.not_null()) {
1263     // Parameterized by attached method.
1264     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1265   } else {
1266     // Parameterized by bytecode.
1267     constantPoolHandle constants(current, caller->constants());
1268     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1269   }
1270 
1271 #ifdef ASSERT
1272   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1273   if (has_receiver) {
1274     assert(receiver.not_null(), "should have thrown exception");
1275     Klass* receiver_klass = receiver->klass();
1276     Klass* rk = nullptr;
1277     if (attached_method.not_null()) {
1278       // In case there's resolved method attached, use its holder during the check.
1279       rk = attached_method->method_holder();
1280     } else {
1281       // Klass is already loaded.
1282       constantPoolHandle constants(current, caller->constants());
1283       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1284     }
1285     Klass* static_receiver_klass = rk;
1286     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1287            "actual receiver must be subclass of static receiver klass");
1288     if (receiver_klass->is_instance_klass()) {
1289       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1290         tty->print_cr("ERROR: Klass not yet initialized!!");
1291         receiver_klass->print();
1292       }
1293       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1294     }
1295   }
1296 #endif
1297 
1298   return receiver;
1299 }
1300 
1301 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1302   JavaThread* current = THREAD;
1303   ResourceMark rm(current);
1304   // We need first to check if any Java activations (compiled, interpreted)
1305   // exist on the stack since last JavaCall.  If not, we need
1306   // to get the target method from the JavaCall wrapper.
1307   vframeStream vfst(current, true);  // Do not skip any javaCalls
1308   methodHandle callee_method;
1309   if (vfst.at_end()) {
1310     // No Java frames were found on stack since we did the JavaCall.
1311     // Hence the stack can only contain an entry_frame.  We need to
1312     // find the target method from the stub frame.
1313     RegisterMap reg_map(current,
1314                         RegisterMap::UpdateMap::skip,
1315                         RegisterMap::ProcessFrames::include,
1316                         RegisterMap::WalkContinuation::skip);
1317     frame fr = current->last_frame();
1318     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1319     fr = fr.sender(&reg_map);
1320     assert(fr.is_entry_frame(), "must be");
1321     // fr is now pointing to the entry frame.
1322     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1323   } else {
1324     Bytecodes::Code bc;
1325     CallInfo callinfo;
1326     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1327     callee_method = methodHandle(current, callinfo.selected_method());
1328   }
1329   assert(callee_method()->is_method(), "must be");
1330   return callee_method;
1331 }
1332 
1333 // Resolves a call.
1334 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1335   JavaThread* current = THREAD;
1336   ResourceMark rm(current);
1337   RegisterMap cbl_map(current,
1338                       RegisterMap::UpdateMap::skip,
1339                       RegisterMap::ProcessFrames::include,
1340                       RegisterMap::WalkContinuation::skip);
1341   frame caller_frame = current->last_frame().sender(&cbl_map);
1342 
1343   CodeBlob* caller_cb = caller_frame.cb();
1344   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1345   nmethod* caller_nm = caller_cb->as_nmethod();
1346 
1347   // determine call info & receiver
1348   // note: a) receiver is null for static calls
1349   //       b) an exception is thrown if receiver is null for non-static calls
1350   CallInfo call_info;
1351   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1352   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1353 
1354   NoSafepointVerifier nsv;
1355 
1356   methodHandle callee_method(current, call_info.selected_method());
1357 
1358   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1359          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1360          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1361          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1362          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1363 
1364   assert(!caller_nm->is_unloading(), "It should not be unloading");
1365 
1366 #ifndef PRODUCT
1367   // tracing/debugging/statistics
1368   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1369                  (is_virtual) ? (&_resolve_virtual_ctr) :
1370                                 (&_resolve_static_ctr);
1371   Atomic::inc(addr);
1372 

1373   if (TraceCallFixup) {
1374     ResourceMark rm(current);
1375     tty->print("resolving %s%s (%s) call to",
1376                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1377                Bytecodes::name(invoke_code));
1378     callee_method->print_short_name(tty);
1379     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1380                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1381   }
1382 #endif
1383 
1384   if (invoke_code == Bytecodes::_invokestatic) {
1385     assert(callee_method->method_holder()->is_initialized() ||
1386            callee_method->method_holder()->is_reentrant_initialization(current),
1387            "invalid class initialization state for invoke_static");
1388     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1389       // In order to keep class initialization check, do not patch call
1390       // site for static call when the class is not fully initialized.
1391       // Proper check is enforced by call site re-resolution on every invocation.
1392       //
1393       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1394       // explicit class initialization check is put in nmethod entry (VEP).
1395       assert(callee_method->method_holder()->is_linked(), "must be");
1396       return callee_method;
1397     }
1398   }
1399 
1400 
1401   // JSR 292 key invariant:
1402   // If the resolved method is a MethodHandle invoke target, the call
1403   // site must be a MethodHandle call site, because the lambda form might tail-call
1404   // leaving the stack in a state unknown to either caller or callee
1405 
1406   // Compute entry points. The computation of the entry points is independent of
1407   // patching the call.
1408 
1409   // Make sure the callee nmethod does not get deoptimized and removed before
1410   // we are done patching the code.
1411 
1412 
1413   CompiledICLocker ml(caller_nm);
1414   if (is_virtual && !is_optimized) {
1415     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1416     inline_cache->update(&call_info, receiver->klass());
1417   } else {
1418     // Callsite is a direct call - set it to the destination method
1419     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1420     callsite->set(callee_method);
1421   }
1422 
1423   return callee_method;
1424 }
1425 
1426 // Inline caches exist only in compiled code
1427 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))


1428 #ifdef ASSERT
1429   RegisterMap reg_map(current,
1430                       RegisterMap::UpdateMap::skip,
1431                       RegisterMap::ProcessFrames::include,
1432                       RegisterMap::WalkContinuation::skip);
1433   frame stub_frame = current->last_frame();
1434   assert(stub_frame.is_runtime_frame(), "sanity check");
1435   frame caller_frame = stub_frame.sender(&reg_map);
1436   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1437 #endif /* ASSERT */
1438 
1439   methodHandle callee_method;
1440   JRT_BLOCK
1441     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1442     // Return Method* through TLS
1443     current->set_vm_result_2(callee_method());
1444   JRT_BLOCK_END
1445   // return compiled code entry point after potential safepoints
1446   return get_resolved_entry(current, callee_method);
1447 JRT_END
1448 
1449 
1450 // Handle call site that has been made non-entrant
1451 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))


1452   // 6243940 We might end up in here if the callee is deoptimized
1453   // as we race to call it.  We don't want to take a safepoint if
1454   // the caller was interpreted because the caller frame will look
1455   // interpreted to the stack walkers and arguments are now
1456   // "compiled" so it is much better to make this transition
1457   // invisible to the stack walking code. The i2c path will
1458   // place the callee method in the callee_target. It is stashed
1459   // there because if we try and find the callee by normal means a
1460   // safepoint is possible and have trouble gc'ing the compiled args.
1461   RegisterMap reg_map(current,
1462                       RegisterMap::UpdateMap::skip,
1463                       RegisterMap::ProcessFrames::include,
1464                       RegisterMap::WalkContinuation::skip);
1465   frame stub_frame = current->last_frame();
1466   assert(stub_frame.is_runtime_frame(), "sanity check");
1467   frame caller_frame = stub_frame.sender(&reg_map);
1468 
1469   if (caller_frame.is_interpreted_frame() ||
1470       caller_frame.is_entry_frame() ||
1471       caller_frame.is_upcall_stub_frame()) {
1472     Method* callee = current->callee_target();
1473     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1474     current->set_vm_result_2(callee);
1475     current->set_callee_target(nullptr);
1476     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1477       // Bypass class initialization checks in c2i when caller is in native.
1478       // JNI calls to static methods don't have class initialization checks.
1479       // Fast class initialization checks are present in c2i adapters and call into
1480       // SharedRuntime::handle_wrong_method() on the slow path.
1481       //
1482       // JVM upcalls may land here as well, but there's a proper check present in
1483       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1484       // so bypassing it in c2i adapter is benign.
1485       return callee->get_c2i_no_clinit_check_entry();
1486     } else {
1487       return callee->get_c2i_entry();
1488     }
1489   }
1490 
1491   // Must be compiled to compiled path which is safe to stackwalk
1492   methodHandle callee_method;
1493   JRT_BLOCK
1494     // Force resolving of caller (if we called from compiled frame)
1495     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1496     current->set_vm_result_2(callee_method());
1497   JRT_BLOCK_END
1498   // return compiled code entry point after potential safepoints
1499   return get_resolved_entry(current, callee_method);
1500 JRT_END
1501 
1502 // Handle abstract method call
1503 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))


1504   // Verbose error message for AbstractMethodError.
1505   // Get the called method from the invoke bytecode.
1506   vframeStream vfst(current, true);
1507   assert(!vfst.at_end(), "Java frame must exist");
1508   methodHandle caller(current, vfst.method());
1509   Bytecode_invoke invoke(caller, vfst.bci());
1510   DEBUG_ONLY( invoke.verify(); )
1511 
1512   // Find the compiled caller frame.
1513   RegisterMap reg_map(current,
1514                       RegisterMap::UpdateMap::include,
1515                       RegisterMap::ProcessFrames::include,
1516                       RegisterMap::WalkContinuation::skip);
1517   frame stubFrame = current->last_frame();
1518   assert(stubFrame.is_runtime_frame(), "must be");
1519   frame callerFrame = stubFrame.sender(&reg_map);
1520   assert(callerFrame.is_compiled_frame(), "must be");
1521 
1522   // Install exception and return forward entry.
1523   address res = SharedRuntime::throw_AbstractMethodError_entry();
1524   JRT_BLOCK
1525     methodHandle callee(current, invoke.static_target(current));
1526     if (!callee.is_null()) {
1527       oop recv = callerFrame.retrieve_receiver(&reg_map);
1528       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1529       res = StubRoutines::forward_exception_entry();
1530       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1531     }
1532   JRT_BLOCK_END
1533   return res;
1534 JRT_END
1535 
1536 // return verified_code_entry if interp_only_mode is not set for the current thread;
1537 // otherwise return c2i entry.
1538 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1539   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1540     // In interp_only_mode we need to go to the interpreted entry
1541     // The c2i won't patch in this mode -- see fixup_callers_callsite
1542     return callee_method->get_c2i_entry();
1543   }
1544   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1545   return callee_method->verified_code_entry();
1546 }
1547 
1548 // resolve a static call and patch code
1549 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))


1550   methodHandle callee_method;
1551   bool enter_special = false;
1552   JRT_BLOCK
1553     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1554     current->set_vm_result_2(callee_method());
1555   JRT_BLOCK_END
1556   // return compiled code entry point after potential safepoints
1557   return get_resolved_entry(current, callee_method);
1558 JRT_END
1559 
1560 // resolve virtual call and update inline cache to monomorphic
1561 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))


1562   methodHandle callee_method;
1563   JRT_BLOCK
1564     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1565     current->set_vm_result_2(callee_method());
1566   JRT_BLOCK_END
1567   // return compiled code entry point after potential safepoints
1568   return get_resolved_entry(current, callee_method);
1569 JRT_END
1570 
1571 
1572 // Resolve a virtual call that can be statically bound (e.g., always
1573 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1574 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))


1575   methodHandle callee_method;
1576   JRT_BLOCK
1577     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1578     current->set_vm_result_2(callee_method());
1579   JRT_BLOCK_END
1580   // return compiled code entry point after potential safepoints
1581   return get_resolved_entry(current, callee_method);
1582 JRT_END
1583 
1584 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1585   JavaThread* current = THREAD;
1586   ResourceMark rm(current);
1587   CallInfo call_info;
1588   Bytecodes::Code bc;
1589 
1590   // receiver is null for static calls. An exception is thrown for null
1591   // receivers for non-static calls
1592   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1593 
1594   methodHandle callee_method(current, call_info.selected_method());
1595 
1596 #ifndef PRODUCT
1597   Atomic::inc(&_ic_miss_ctr);
1598 

1599   // Statistics & Tracing
1600   if (TraceCallFixup) {
1601     ResourceMark rm(current);
1602     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1603     callee_method->print_short_name(tty);
1604     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1605   }
1606 
1607   if (ICMissHistogram) {
1608     MutexLocker m(VMStatistic_lock);
1609     RegisterMap reg_map(current,
1610                         RegisterMap::UpdateMap::skip,
1611                         RegisterMap::ProcessFrames::include,
1612                         RegisterMap::WalkContinuation::skip);
1613     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1614     // produce statistics under the lock
1615     trace_ic_miss(f.pc());
1616   }
1617 #endif
1618 
1619   // install an event collector so that when a vtable stub is created the
1620   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1621   // event can't be posted when the stub is created as locks are held
1622   // - instead the event will be deferred until the event collector goes
1623   // out of scope.
1624   JvmtiDynamicCodeEventCollector event_collector;
1625 
1626   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1627   RegisterMap reg_map(current,
1628                       RegisterMap::UpdateMap::skip,
1629                       RegisterMap::ProcessFrames::include,
1630                       RegisterMap::WalkContinuation::skip);
1631   frame caller_frame = current->last_frame().sender(&reg_map);
1632   CodeBlob* cb = caller_frame.cb();
1633   nmethod* caller_nm = cb->as_nmethod();
1634 
1635   CompiledICLocker ml(caller_nm);
1636   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1637   inline_cache->update(&call_info, receiver()->klass());
1638 
1639   return callee_method;
1640 }
1641 
1642 //
1643 // Resets a call-site in compiled code so it will get resolved again.
1644 // This routines handles both virtual call sites, optimized virtual call
1645 // sites, and static call sites. Typically used to change a call sites
1646 // destination from compiled to interpreted.
1647 //
1648 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1649   JavaThread* current = THREAD;
1650   ResourceMark rm(current);
1651   RegisterMap reg_map(current,
1652                       RegisterMap::UpdateMap::skip,
1653                       RegisterMap::ProcessFrames::include,
1654                       RegisterMap::WalkContinuation::skip);
1655   frame stub_frame = current->last_frame();
1656   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1657   frame caller = stub_frame.sender(&reg_map);
1658 
1659   // Do nothing if the frame isn't a live compiled frame.
1660   // nmethod could be deoptimized by the time we get here
1661   // so no update to the caller is needed.
1662 
1663   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1664       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1665 
1666     address pc = caller.pc();
1667 
1668     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1669     assert(caller_nm != nullptr, "did not find caller nmethod");
1670 
1671     // Default call_addr is the location of the "basic" call.
1672     // Determine the address of the call we a reresolving. With
1673     // Inline Caches we will always find a recognizable call.
1674     // With Inline Caches disabled we may or may not find a
1675     // recognizable call. We will always find a call for static
1676     // calls and for optimized virtual calls. For vanilla virtual
1677     // calls it depends on the state of the UseInlineCaches switch.
1678     //
1679     // With Inline Caches disabled we can get here for a virtual call
1680     // for two reasons:
1681     //   1 - calling an abstract method. The vtable for abstract methods
1682     //       will run us thru handle_wrong_method and we will eventually
1683     //       end up in the interpreter to throw the ame.
1684     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1685     //       call and between the time we fetch the entry address and
1686     //       we jump to it the target gets deoptimized. Similar to 1
1687     //       we will wind up in the interprter (thru a c2i with c2).
1688     //
1689     CompiledICLocker ml(caller_nm);
1690     address call_addr = caller_nm->call_instruction_address(pc);
1691 
1692     if (call_addr != nullptr) {
1693       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1694       // bytes back in the instruction stream so we must also check for reloc info.
1695       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1696       bool ret = iter.next(); // Get item
1697       if (ret) {
1698         switch (iter.type()) {
1699           case relocInfo::static_call_type:
1700           case relocInfo::opt_virtual_call_type: {
1701             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1702             cdc->set_to_clean();
1703             break;
1704           }
1705 
1706           case relocInfo::virtual_call_type: {
1707             // compiled, dispatched call (which used to call an interpreted method)
1708             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1709             inline_cache->set_to_clean();
1710             break;
1711           }
1712           default:
1713             break;
1714         }
1715       }
1716     }
1717   }
1718 
1719   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1720 
1721 
1722 #ifndef PRODUCT
1723   Atomic::inc(&_wrong_method_ctr);
1724 

1725   if (TraceCallFixup) {
1726     ResourceMark rm(current);
1727     tty->print("handle_wrong_method reresolving call to");
1728     callee_method->print_short_name(tty);
1729     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1730   }
1731 #endif
1732 
1733   return callee_method;
1734 }
1735 
1736 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1737   // The faulting unsafe accesses should be changed to throw the error
1738   // synchronously instead. Meanwhile the faulting instruction will be
1739   // skipped over (effectively turning it into a no-op) and an
1740   // asynchronous exception will be raised which the thread will
1741   // handle at a later point. If the instruction is a load it will
1742   // return garbage.
1743 
1744   // Request an async exception.
1745   thread->set_pending_unsafe_access_error();
1746 
1747   // Return address of next instruction to execute.
1748   return next_pc;
1749 }
1750 
1751 #ifdef ASSERT
1752 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1753                                                                 const BasicType* sig_bt,
1754                                                                 const VMRegPair* regs) {
1755   ResourceMark rm;
1756   const int total_args_passed = method->size_of_parameters();
1757   const VMRegPair*    regs_with_member_name = regs;
1758         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1759 
1760   const int member_arg_pos = total_args_passed - 1;
1761   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1762   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1763 
1764   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1765 
1766   for (int i = 0; i < member_arg_pos; i++) {
1767     VMReg a =    regs_with_member_name[i].first();
1768     VMReg b = regs_without_member_name[i].first();
1769     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1770   }
1771   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1772 }
1773 #endif
1774 
1775 // ---------------------------------------------------------------------------
1776 // We are calling the interpreter via a c2i. Normally this would mean that
1777 // we were called by a compiled method. However we could have lost a race
1778 // where we went int -> i2c -> c2i and so the caller could in fact be
1779 // interpreted. If the caller is compiled we attempt to patch the caller
1780 // so he no longer calls into the interpreter.
1781 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1782   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1783 
1784   // It's possible that deoptimization can occur at a call site which hasn't
1785   // been resolved yet, in which case this function will be called from
1786   // an nmethod that has been patched for deopt and we can ignore the
1787   // request for a fixup.
1788   // Also it is possible that we lost a race in that from_compiled_entry
1789   // is now back to the i2c in that case we don't need to patch and if
1790   // we did we'd leap into space because the callsite needs to use
1791   // "to interpreter" stub in order to load up the Method*. Don't
1792   // ask me how I know this...
1793 
1794   // Result from nmethod::is_unloading is not stable across safepoints.
1795   NoSafepointVerifier nsv;
1796 
1797   nmethod* callee = method->code();
1798   if (callee == nullptr) {
1799     return;
1800   }
1801 
1802   // write lock needed because we might patch call site by set_to_clean()
1803   // and is_unloading() can modify nmethod's state
1804   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1805 
1806   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1807   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1808     return;
1809   }
1810 
1811   // The check above makes sure this is an nmethod.
1812   nmethod* caller = cb->as_nmethod();
1813 
1814   // Get the return PC for the passed caller PC.
1815   address return_pc = caller_pc + frame::pc_return_offset;
1816 
1817   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1818     return;
1819   }
1820 
1821   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1822   CompiledICLocker ic_locker(caller);
1823   ResourceMark rm;
1824 
1825   // If we got here through a static call or opt_virtual call, then we know where the
1826   // call address would be; let's peek at it
1827   address callsite_addr = (address)nativeCall_before(return_pc);
1828   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1829   if (!iter.next()) {
1830     // No reloc entry found; not a static or optimized virtual call
1831     return;
1832   }
1833 
1834   relocInfo::relocType type = iter.reloc()->type();
1835   if (type != relocInfo::static_call_type &&
1836       type != relocInfo::opt_virtual_call_type) {
1837     return;
1838   }
1839 
1840   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1841   callsite->set_to_clean();
1842 JRT_END
1843 
1844 
1845 // same as JVM_Arraycopy, but called directly from compiled code
1846 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1847                                                 oopDesc* dest, jint dest_pos,
1848                                                 jint length,
1849                                                 JavaThread* current)) {
1850 #ifndef PRODUCT
1851   _slow_array_copy_ctr++;
1852 #endif
1853   // Check if we have null pointers
1854   if (src == nullptr || dest == nullptr) {
1855     THROW(vmSymbols::java_lang_NullPointerException());
1856   }
1857   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1858   // even though the copy_array API also performs dynamic checks to ensure
1859   // that src and dest are truly arrays (and are conformable).
1860   // The copy_array mechanism is awkward and could be removed, but
1861   // the compilers don't call this function except as a last resort,
1862   // so it probably doesn't matter.
1863   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1864                                         (arrayOopDesc*)dest, dest_pos,
1865                                         length, current);
1866 }
1867 JRT_END
1868 
1869 // The caller of generate_class_cast_message() (or one of its callers)
1870 // must use a ResourceMark in order to correctly free the result.
1871 char* SharedRuntime::generate_class_cast_message(
1872     JavaThread* thread, Klass* caster_klass) {
1873 
1874   // Get target class name from the checkcast instruction
1875   vframeStream vfst(thread, true);
1876   assert(!vfst.at_end(), "Java frame must exist");
1877   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1878   constantPoolHandle cpool(thread, vfst.method()->constants());
1879   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1880   Symbol* target_klass_name = nullptr;
1881   if (target_klass == nullptr) {
1882     // This klass should be resolved, but just in case, get the name in the klass slot.
1883     target_klass_name = cpool->klass_name_at(cc.index());
1884   }
1885   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1886 }
1887 
1888 
1889 // The caller of generate_class_cast_message() (or one of its callers)
1890 // must use a ResourceMark in order to correctly free the result.
1891 char* SharedRuntime::generate_class_cast_message(
1892     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1893   const char* caster_name = caster_klass->external_name();
1894 
1895   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
1896   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
1897                                                    target_klass->external_name();
1898 
1899   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1900 
1901   const char* caster_klass_description = "";
1902   const char* target_klass_description = "";
1903   const char* klass_separator = "";
1904   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
1905     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1906   } else {
1907     caster_klass_description = caster_klass->class_in_module_of_loader();
1908     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
1909     klass_separator = (target_klass != nullptr) ? "; " : "";
1910   }
1911 
1912   // add 3 for parenthesis and preceding space
1913   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1914 
1915   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1916   if (message == nullptr) {
1917     // Shouldn't happen, but don't cause even more problems if it does
1918     message = const_cast<char*>(caster_klass->external_name());
1919   } else {
1920     jio_snprintf(message,
1921                  msglen,
1922                  "class %s cannot be cast to class %s (%s%s%s)",
1923                  caster_name,
1924                  target_name,
1925                  caster_klass_description,
1926                  klass_separator,
1927                  target_klass_description
1928                  );
1929   }
1930   return message;
1931 }
1932 
1933 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1934   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
1935 JRT_END
1936 
1937 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1938   if (!SafepointSynchronize::is_synchronizing()) {
1939     // Only try quick_enter() if we're not trying to reach a safepoint
1940     // so that the calling thread reaches the safepoint more quickly.
1941     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
1942       return;
1943     }
1944   }
1945   // NO_ASYNC required because an async exception on the state transition destructor
1946   // would leave you with the lock held and it would never be released.
1947   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1948   // and the model is that an exception implies the method failed.
1949   JRT_BLOCK_NO_ASYNC
1950   Handle h_obj(THREAD, obj);
1951   ObjectSynchronizer::enter(h_obj, lock, current);
1952   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1953   JRT_BLOCK_END
1954 }
1955 
1956 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1957 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
1958   SharedRuntime::monitor_enter_helper(obj, lock, current);
1959 JRT_END
1960 
1961 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1962   assert(JavaThread::current() == current, "invariant");
1963   // Exit must be non-blocking, and therefore no exceptions can be thrown.
1964   ExceptionMark em(current);
1965 
1966   // Check if C2_MacroAssembler::fast_unlock() or
1967   // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated
1968   // monitor before going slow path.  Since there is no safepoint
1969   // polling when calling into the VM, we can be sure that the monitor
1970   // hasn't been deallocated.
1971   ObjectMonitor* m = current->unlocked_inflated_monitor();
1972   if (m != nullptr) {
1973     assert(!m->has_owner(current), "must be");
1974     current->clear_unlocked_inflated_monitor();
1975 
1976     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
1977     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
1978       // Some other thread acquired the lock (or the monitor was
1979       // deflated). Either way we are done.
1980       current->dec_held_monitor_count();
1981       return;
1982     }
1983   }
1984 
1985   // The object could become unlocked through a JNI call, which we have no other checks for.
1986   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
1987   if (obj->is_unlocked()) {
1988     if (CheckJNICalls) {
1989       fatal("Object has been unlocked by JNI");
1990     }
1991     return;
1992   }
1993   ObjectSynchronizer::exit(obj, lock, current);
1994 }
1995 
1996 // Handles the uncommon cases of monitor unlocking in compiled code
1997 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
1998   assert(current == JavaThread::current(), "pre-condition");
1999   SharedRuntime::monitor_exit_helper(obj, lock, current);
2000 JRT_END
2001 
2002 // This is only called when CheckJNICalls is true, and only
2003 // for virtual thread termination.
2004 JRT_LEAF(void,  SharedRuntime::log_jni_monitor_still_held())
2005   assert(CheckJNICalls, "Only call this when checking JNI usage");
2006   if (log_is_enabled(Debug, jni)) {
2007     JavaThread* current = JavaThread::current();
2008     int64_t vthread_id = java_lang_Thread::thread_id(current->vthread());
2009     int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj());
2010     log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT
2011                    ") exiting with Objects still locked by JNI MonitorEnter.",
2012                    vthread_id, carrier_id);
2013   }
2014 JRT_END
2015 
2016 #ifndef PRODUCT
2017 
2018 void SharedRuntime::print_statistics() {
2019   ttyLocker ttyl;
2020   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2021 
2022   SharedRuntime::print_ic_miss_histogram();
2023 
2024   // Dump the JRT_ENTRY counters
2025   if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr);
2026   if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr);
2027   if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2028   if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2029   if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2030   if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2031 
2032   tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2033   tty->print_cr("%5u wrong method", _wrong_method_ctr);
2034   tty->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2035   tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2036   tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2037 
2038   if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2039   if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2040   if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2041   if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2042   if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2043   if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2044   if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2045   if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr);
2046   if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2047   if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2048   if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2049   if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2050   if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2051   if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2052   if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr);
2053   if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr);
2054   if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2055 
2056   AdapterHandlerLibrary::print_statistics();
2057 
2058   if (xtty != nullptr)  xtty->tail("statistics");
2059 }
2060 


































2061 inline double percent(int64_t x, int64_t y) {
2062   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2063 }
2064 
2065 class MethodArityHistogram {
2066  public:
2067   enum { MAX_ARITY = 256 };
2068  private:
2069   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2070   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2071   static uint64_t _total_compiled_calls;
2072   static uint64_t _max_compiled_calls_per_method;
2073   static int _max_arity;                       // max. arity seen
2074   static int _max_size;                        // max. arg size seen
2075 
2076   static void add_method_to_histogram(nmethod* nm) {
2077     Method* method = (nm == nullptr) ? nullptr : nm->method();
2078     if (method != nullptr) {
2079       ArgumentCount args(method->signature());
2080       int arity   = args.size() + (method->is_static() ? 0 : 1);
2081       int argsize = method->size_of_parameters();
2082       arity   = MIN2(arity, MAX_ARITY-1);
2083       argsize = MIN2(argsize, MAX_ARITY-1);
2084       uint64_t count = (uint64_t)method->compiled_invocation_count();
2085       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2086       _total_compiled_calls    += count;
2087       _arity_histogram[arity]  += count;
2088       _size_histogram[argsize] += count;
2089       _max_arity = MAX2(_max_arity, arity);
2090       _max_size  = MAX2(_max_size, argsize);
2091     }
2092   }
2093 
2094   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2095     const int N = MIN2(9, n);
2096     double sum = 0;
2097     double weighted_sum = 0;
2098     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2099     if (sum >= 1) { // prevent divide by zero or divide overflow
2100       double rest = sum;
2101       double percent = sum / 100;
2102       for (int i = 0; i <= N; i++) {
2103         rest -= (double)histo[i];
2104         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2105       }
2106       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2107       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2108       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2109       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2110     } else {
2111       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2112     }
2113   }
2114 
2115   void print_histogram() {
2116     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2117     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2118     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2119     print_histogram_helper(_max_size, _size_histogram, "size");
2120     tty->cr();
2121   }
2122 
2123  public:
2124   MethodArityHistogram() {
2125     // Take the Compile_lock to protect against changes in the CodeBlob structures
2126     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2127     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2128     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2129     _max_arity = _max_size = 0;
2130     _total_compiled_calls = 0;
2131     _max_compiled_calls_per_method = 0;
2132     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2133     CodeCache::nmethods_do(add_method_to_histogram);
2134     print_histogram();
2135   }
2136 };
2137 
2138 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2139 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2140 uint64_t MethodArityHistogram::_total_compiled_calls;
2141 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2142 int MethodArityHistogram::_max_arity;
2143 int MethodArityHistogram::_max_size;
2144 
2145 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2146   tty->print_cr("Calls from compiled code:");
2147   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2148   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2149   int64_t mono_i = _nof_interface_calls;
2150   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2151   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2152   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2153   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2154   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2155   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2156   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2157   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2158   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2159   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2160   tty->cr();
2161   tty->print_cr("Note 1: counter updates are not MT-safe.");
2162   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2163   tty->print_cr("        %% in nested categories are relative to their category");
2164   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2165   tty->cr();
2166 
2167   MethodArityHistogram h;
2168 }
2169 #endif
2170 
2171 #ifndef PRODUCT
2172 static int _lookups; // number of calls to lookup
2173 static int _equals;  // number of buckets checked with matching hash
2174 static int _hits;    // number of successful lookups

2175 static int _compact; // number of equals calls with compact signature
2176 #endif
2177 
2178 // A simple wrapper class around the calling convention information
2179 // that allows sharing of adapters for the same calling convention.
2180 class AdapterFingerPrint : public CHeapObj<mtCode> {
2181  private:
2182   enum {
2183     _basic_type_bits = 4,
2184     _basic_type_mask = right_n_bits(_basic_type_bits),
2185     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2186     _compact_int_count = 3
2187   };
2188   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2189   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2190 
2191   union {
2192     int  _compact[_compact_int_count];
2193     int* _fingerprint;
2194   } _value;
2195   int _length; // A negative length indicates the fingerprint is in the compact form,
2196                // Otherwise _value._fingerprint is the array.

















2197 
2198   // Remap BasicTypes that are handled equivalently by the adapters.
2199   // These are correct for the current system but someday it might be
2200   // necessary to make this mapping platform dependent.
2201   static int adapter_encoding(BasicType in) {
2202     switch (in) {
2203       case T_BOOLEAN:
2204       case T_BYTE:
2205       case T_SHORT:
2206       case T_CHAR:
2207         // There are all promoted to T_INT in the calling convention
2208         return T_INT;
2209 
2210       case T_OBJECT:
2211       case T_ARRAY:
2212         // In other words, we assume that any register good enough for
2213         // an int or long is good enough for a managed pointer.
2214 #ifdef _LP64
2215         return T_LONG;
2216 #else
2217         return T_INT;
2218 #endif
2219 
2220       case T_INT:
2221       case T_LONG:
2222       case T_FLOAT:
2223       case T_DOUBLE:
2224       case T_VOID:
2225         return in;
2226 
2227       default:
2228         ShouldNotReachHere();
2229         return T_CONFLICT;
2230     }
2231   }
2232 
2233  public:
2234   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2235     // The fingerprint is based on the BasicType signature encoded
2236     // into an array of ints with eight entries per int.
2237     int* ptr;
2238     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2239     if (len <= _compact_int_count) {
2240       assert(_compact_int_count == 3, "else change next line");
2241       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2242       // Storing the signature encoded as signed chars hits about 98%
2243       // of the time.
2244       _length = -len;
2245       ptr = _value._compact;
2246     } else {
2247       _length = len;
2248       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2249       ptr = _value._fingerprint;
2250     }
2251 
2252     // Now pack the BasicTypes with 8 per int
2253     int sig_index = 0;
2254     for (int index = 0; index < len; index++) {
2255       int value = 0;
2256       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2257         int bt = adapter_encoding(sig_bt[sig_index++]);
2258         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2259         value = (value << _basic_type_bits) | bt;




2260       }
2261       ptr[index] = value;
2262     }
2263   }
2264 
2265   ~AdapterFingerPrint() {
2266     if (_length > 0) {
2267       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2268     }









2269   }
2270 
2271   int value(int index) {
2272     if (_length < 0) {
2273       return _value._compact[index];
2274     }
2275     return _value._fingerprint[index];
2276   }

2277   int length() {
2278     if (_length < 0) return -_length;
2279     return _length;
2280   }
2281 
2282   bool is_compact() {
2283     return _length <= 0;
2284   }
2285 
2286   unsigned int compute_hash() {
2287     int hash = 0;
2288     for (int i = 0; i < length(); i++) {
2289       int v = value(i);
2290       hash = (hash << 8) ^ v ^ (hash >> 5);

2291     }
2292     return (unsigned int)hash;
2293   }
2294 
2295   const char* as_string() {
2296     stringStream st;
2297     st.print("0x");
2298     for (int i = 0; i < length(); i++) {
2299       st.print("%x", value(i));
2300     }
2301     return st.as_string();
2302   }
2303 
2304 #ifndef PRODUCT
2305   // Reconstitutes the basic type arguments from the fingerprint,
2306   // producing strings like LIJDF
2307   const char* as_basic_args_string() {
2308     stringStream st;
2309     bool long_prev = false;
2310     for (int i = 0; i < length(); i++) {
2311       unsigned val = (unsigned)value(i);
2312       // args are packed so that first/lower arguments are in the highest
2313       // bits of each int value, so iterate from highest to the lowest
2314       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2315         unsigned v = (val >> j) & _basic_type_mask;
2316         if (v == 0) {
2317           assert(i == length() - 1, "Only expect zeroes in the last word");
2318           continue;
2319         }
2320         if (long_prev) {
2321           long_prev = false;
2322           if (v == T_VOID) {
2323             st.print("J");
2324           } else {
2325             st.print("L");
2326           }
2327         }
2328         switch (v) {
2329           case T_INT:    st.print("I");    break;
2330           case T_LONG:   long_prev = true; break;
2331           case T_FLOAT:  st.print("F");    break;
2332           case T_DOUBLE: st.print("D");    break;
2333           case T_VOID:   break;
2334           default: ShouldNotReachHere();
2335         }
2336       }
2337     }








2338     if (long_prev) {
2339       st.print("L");
2340     }
2341     return st.as_string();
2342   }
2343 #endif // !product


















































2344 
2345   bool equals(AdapterFingerPrint* other) {
2346     if (other->_length != _length) {
2347       return false;
2348     }
2349     if (_length < 0) {
2350       assert(_compact_int_count == 3, "else change next line");
2351       return _value._compact[0] == other->_value._compact[0] &&
2352              _value._compact[1] == other->_value._compact[1] &&
2353              _value._compact[2] == other->_value._compact[2];
2354     } else {
2355       for (int i = 0; i < _length; i++) {
2356         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2357           return false;
2358         }
2359       }
2360     }
2361     return true;
2362   }
2363 





2364   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2365     NOT_PRODUCT(_equals++);
2366     return fp1->equals(fp2);
2367   }
2368 
2369   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2370     return fp->compute_hash();
2371   }
2372 };
2373 











2374 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2375 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2376                   AnyObj::C_HEAP, mtCode,
2377                   AdapterFingerPrint::compute_hash,
2378                   AdapterFingerPrint::equals>;
2379 static AdapterHandlerTable* _adapter_handler_table;

2380 
2381 // Find a entry with the same fingerprint if it exists
2382 static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2383   NOT_PRODUCT(_lookups++);


















2384   assert_lock_strong(AdapterHandlerLibrary_lock);
2385   AdapterFingerPrint fp(total_args_passed, sig_bt);
2386   AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp);
2387   if (entry != nullptr) {



2388 #ifndef PRODUCT
2389     if (fp.is_compact()) _compact++;
2390     _hits++;
2391 #endif
2392     return *entry;
2393   }
2394   return nullptr;
2395 }
2396 
2397 #ifndef PRODUCT
2398 static void print_table_statistics() {
2399   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2400     return sizeof(*key) + sizeof(*a);
2401   };
2402   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2403   ts.print(tty, "AdapterHandlerTable");
2404   tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2405                 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2406   tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d",
2407                 _lookups, _equals, _hits, _compact);

2408 }
2409 #endif
2410 
2411 // ---------------------------------------------------------------------------
2412 // Implementation of AdapterHandlerLibrary
2413 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr;
2414 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2415 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2416 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2417 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2418 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;



2419 const int AdapterHandlerLibrary_size = 16*K;
2420 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2421 
2422 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2423   return _buffer;
2424 }
2425 
2426 static void post_adapter_creation(const AdapterBlob* new_adapter,
2427                                   const AdapterHandlerEntry* entry) {
2428   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2429     char blob_id[256];
2430     jio_snprintf(blob_id,
2431                  sizeof(blob_id),
2432                  "%s(%s)",
2433                  new_adapter->name(),
2434                  entry->fingerprint()->as_string());
2435     if (Forte::is_enabled()) {
2436       Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2437     }
2438 
2439     if (JvmtiExport::should_post_dynamic_code_generated()) {
2440       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2441     }
2442   }
2443 }
2444 
2445 void AdapterHandlerLibrary::initialize() {
2446   ResourceMark rm;
2447   AdapterBlob* no_arg_blob = nullptr;
2448   AdapterBlob* int_arg_blob = nullptr;
2449   AdapterBlob* obj_arg_blob = nullptr;
2450   AdapterBlob* obj_int_arg_blob = nullptr;
2451   AdapterBlob* obj_obj_arg_blob = nullptr;
2452   {
2453     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2454     MutexLocker mu(AdapterHandlerLibrary_lock);
2455 
2456     // Create a special handler for abstract methods.  Abstract methods
2457     // are never compiled so an i2c entry is somewhat meaningless, but
2458     // throw AbstractMethodError just in case.
2459     // Pass wrong_method_abstract for the c2i transitions to return
2460     // AbstractMethodError for invalid invocations.
2461     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2462     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, nullptr),
2463                                                                 SharedRuntime::throw_AbstractMethodError_entry(),
2464                                                                 wrong_method_abstract, wrong_method_abstract);
2465 
2466     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2467     _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr, true);
2468 
2469     BasicType obj_args[] = { T_OBJECT };
2470     _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true);
2471 
2472     BasicType int_args[] = { T_INT };
2473     _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true);
2474 
2475     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2476     _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true);
2477 
2478     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2479     _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true);
2480 
2481     assert(no_arg_blob != nullptr &&
2482           obj_arg_blob != nullptr &&
2483           int_arg_blob != nullptr &&
2484           obj_int_arg_blob != nullptr &&
2485           obj_obj_arg_blob != nullptr, "Initial adapters must be properly created");
2486   }
2487 
2488   // Outside of the lock
2489   post_adapter_creation(no_arg_blob, _no_arg_handler);
2490   post_adapter_creation(obj_arg_blob, _obj_arg_handler);
2491   post_adapter_creation(int_arg_blob, _int_arg_handler);
2492   post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
2493   post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
2494 }
2495 





















2496 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2497                                                       address i2c_entry,
2498                                                       address c2i_entry,
2499                                                       address c2i_unverified_entry,
2500                                                       address c2i_no_clinit_check_entry) {
2501   // Insert an entry into the table
2502   return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry,
2503                                  c2i_no_clinit_check_entry);
2504 }
2505 
2506 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2507   if (method->is_abstract()) {
2508     return _abstract_method_handler;
2509   }
2510   int total_args_passed = method->size_of_parameters(); // All args on stack
2511   if (total_args_passed == 0) {
2512     return _no_arg_handler;
2513   } else if (total_args_passed == 1) {
2514     if (!method->is_static()) {
2515       return _obj_arg_handler;
2516     }
2517     switch (method->signature()->char_at(1)) {
2518       case JVM_SIGNATURE_CLASS:
2519       case JVM_SIGNATURE_ARRAY:
2520         return _obj_arg_handler;
2521       case JVM_SIGNATURE_INT:
2522       case JVM_SIGNATURE_BOOLEAN:
2523       case JVM_SIGNATURE_CHAR:
2524       case JVM_SIGNATURE_BYTE:
2525       case JVM_SIGNATURE_SHORT:
2526         return _int_arg_handler;
2527     }
2528   } else if (total_args_passed == 2 &&
2529              !method->is_static()) {
2530     switch (method->signature()->char_at(1)) {
2531       case JVM_SIGNATURE_CLASS:
2532       case JVM_SIGNATURE_ARRAY:
2533         return _obj_obj_arg_handler;
2534       case JVM_SIGNATURE_INT:
2535       case JVM_SIGNATURE_BOOLEAN:
2536       case JVM_SIGNATURE_CHAR:
2537       case JVM_SIGNATURE_BYTE:
2538       case JVM_SIGNATURE_SHORT:
2539         return _obj_int_arg_handler;
2540     }
2541   }
2542   return nullptr;
2543 }
2544 
2545 class AdapterSignatureIterator : public SignatureIterator {
2546  private:
2547   BasicType stack_sig_bt[16];
2548   BasicType* sig_bt;
2549   int index;
2550 
2551  public:
2552   AdapterSignatureIterator(Symbol* signature,
2553                            fingerprint_t fingerprint,
2554                            bool is_static,
2555                            int total_args_passed) :
2556     SignatureIterator(signature, fingerprint),
2557     index(0)
2558   {
2559     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2560     if (!is_static) { // Pass in receiver first
2561       sig_bt[index++] = T_OBJECT;
2562     }
2563     do_parameters_on(this);
2564   }
2565 
2566   BasicType* basic_types() {
2567     return sig_bt;
2568   }
2569 
2570 #ifdef ASSERT
2571   int slots() {
2572     return index;
2573   }
2574 #endif
2575 
2576  private:
2577 
2578   friend class SignatureIterator;  // so do_parameters_on can call do_type
2579   void do_type(BasicType type) {
2580     sig_bt[index++] = type;
2581     if (type == T_LONG || type == T_DOUBLE) {
2582       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2583     }
2584   }
2585 };
2586 
2587 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2588   // Use customized signature handler.  Need to lock around updates to
2589   // the _adapter_handler_table (it is not safe for concurrent readers
2590   // and a single writer: this could be fixed if it becomes a
2591   // problem).
2592 
2593   // Fast-path for trivial adapters
2594   AdapterHandlerEntry* entry = get_simple_adapter(method);
2595   if (entry != nullptr) {
2596     return entry;
2597   }
2598 
2599   ResourceMark rm;
2600   AdapterBlob* new_adapter = nullptr;
2601 
2602   // Fill in the signature array, for the calling-convention call.
2603   int total_args_passed = method->size_of_parameters(); // All args on stack
2604 
2605   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2606                               method->is_static(), total_args_passed);
2607   assert(si.slots() == total_args_passed, "");
2608   BasicType* sig_bt = si.basic_types();
2609   {
2610     MutexLocker mu(AdapterHandlerLibrary_lock);
2611 
2612     // Lookup method signature's fingerprint
2613     entry = lookup(total_args_passed, sig_bt);

2614 
2615     if (entry != nullptr) {
2616 #ifdef ASSERT
2617       if (VerifyAdapterSharing) {
2618         AdapterBlob* comparison_blob = nullptr;
2619         AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false);

2620         assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison");
2621         assert(comparison_entry->compare_code(entry), "code must match");

2622         // Release the one just created and return the original
2623         delete comparison_entry;
2624       }
2625 #endif

2626       return entry;
2627     }
2628 
2629     entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true);
2630   }
2631 
2632   // Outside of the lock
2633   if (new_adapter != nullptr) {
2634     post_adapter_creation(new_adapter, entry);
2635   }
2636   return entry;
2637 }
2638 
2639 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter,
2640                                                            int total_args_passed,
2641                                                            BasicType* sig_bt,
2642                                                            bool allocate_code_blob) {
2643   if (log_is_enabled(Info, perf, class, link)) {
2644     ClassLoader::perf_method_adapters_count()->inc();




2645   }


2646 
2647   // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result,
2648   // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior
2649   // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated
2650   // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs.
2651   bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr;














2652 
2653   VMRegPair stack_regs[16];
2654   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);






2655 
2656   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2657   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2658   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2659   CodeBuffer buffer(buf);
2660   short buffer_locs[20];
2661   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2662                                           sizeof(buffer_locs)/sizeof(relocInfo));
2663 
2664   // Make a C heap allocated version of the fingerprint to store in the adapter
2665   AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2666   MacroAssembler _masm(&buffer);
2667   AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2668                                                 total_args_passed,
2669                                                 comp_args_on_stack,
2670                                                 sig_bt,
2671                                                 regs,
2672                                                 fingerprint);
2673 



















2674 #ifdef ASSERT
2675   if (VerifyAdapterSharing) {
2676     entry->save_code(buf->code_begin(), buffer.insts_size());
2677     if (!allocate_code_blob) {
2678       return entry;
2679     }
2680   }
2681 #endif
2682 
2683   new_adapter = AdapterBlob::create(&buffer);
2684   NOT_PRODUCT(int insts_size = buffer.insts_size());
2685   if (new_adapter == nullptr) {
2686     // CodeCache is full, disable compilation
2687     // Ought to log this but compile log is only per compile thread
2688     // and we're some non descript Java thread.
2689     return nullptr;
2690   }
2691   entry->relocate(new_adapter->content_begin());
2692 #ifndef PRODUCT
2693   // debugging support
2694   if (PrintAdapterHandlers || PrintStubCode) {
2695     ttyLocker ttyl;
2696     entry->print_adapter_on(tty);
2697     tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2698                   _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(),
2699                   fingerprint->as_string(), insts_size);
2700     tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry()));
2701     if (Verbose || PrintStubCode) {
2702       address first_pc = entry->base_address();
2703       if (first_pc != nullptr) {
2704         Disassembler::decode(first_pc, first_pc + insts_size, tty
2705                              NOT_PRODUCT(COMMA &new_adapter->asm_remarks()));
2706         tty->cr();
2707       }
2708     }
2709   }
2710 #endif


2711 
2712   // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2713   // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2714   if (contains_all_checks || !VerifyAdapterCalls) {







2715     assert_lock_strong(AdapterHandlerLibrary_lock);
2716     _adapter_handler_table->put(fingerprint, entry);
2717   }
2718   return entry;




















































































2719 }

2720 
2721 address AdapterHandlerEntry::base_address() {
2722   address base = _i2c_entry;
2723   if (base == nullptr)  base = _c2i_entry;
2724   assert(base <= _c2i_entry || _c2i_entry == nullptr, "");
2725   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, "");
2726   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, "");
2727   return base;
2728 }
2729 
2730 void AdapterHandlerEntry::relocate(address new_base) {
2731   address old_base = base_address();
2732   assert(old_base != nullptr, "");
2733   ptrdiff_t delta = new_base - old_base;
2734   if (_i2c_entry != nullptr)
2735     _i2c_entry += delta;
2736   if (_c2i_entry != nullptr)
2737     _c2i_entry += delta;
2738   if (_c2i_unverified_entry != nullptr)
2739     _c2i_unverified_entry += delta;
2740   if (_c2i_no_clinit_check_entry != nullptr)
2741     _c2i_no_clinit_check_entry += delta;
2742   assert(base_address() == new_base, "");
2743 }
2744 






















































2745 
2746 AdapterHandlerEntry::~AdapterHandlerEntry() {
2747   delete _fingerprint;
2748 #ifdef ASSERT
2749   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2750 #endif

2751 }
2752 
2753 
2754 #ifdef ASSERT
2755 // Capture the code before relocation so that it can be compared
2756 // against other versions.  If the code is captured after relocation
2757 // then relative instructions won't be equivalent.
2758 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2759   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2760   _saved_code_length = length;
2761   memcpy(_saved_code, buffer, length);
2762 }
2763 
2764 
2765 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
2766   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
2767 
2768   if (other->_saved_code_length != _saved_code_length) {
2769     return false;
2770   }
2771 
2772   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
2773 }
2774 #endif
2775 
2776 
2777 /**
2778  * Create a native wrapper for this native method.  The wrapper converts the
2779  * Java-compiled calling convention to the native convention, handles
2780  * arguments, and transitions to native.  On return from the native we transition
2781  * back to java blocking if a safepoint is in progress.
2782  */
2783 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2784   ResourceMark rm;
2785   nmethod* nm = nullptr;
2786 
2787   // Check if memory should be freed before allocation
2788   CodeCache::gc_on_allocation();
2789 
2790   assert(method->is_native(), "must be native");
2791   assert(method->is_special_native_intrinsic() ||
2792          method->has_native_function(), "must have something valid to call!");
2793 
2794   {
2795     // Perform the work while holding the lock, but perform any printing outside the lock
2796     MutexLocker mu(AdapterHandlerLibrary_lock);
2797     // See if somebody beat us to it
2798     if (method->code() != nullptr) {
2799       return;
2800     }
2801 
2802     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2803     assert(compile_id > 0, "Must generate native wrapper");
2804 
2805 
2806     ResourceMark rm;
2807     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2808     if (buf != nullptr) {
2809       CodeBuffer buffer(buf);
2810 
2811       if (method->is_continuation_enter_intrinsic()) {
2812         buffer.initialize_stubs_size(192);
2813       }
2814 
2815       struct { double data[20]; } locs_buf;
2816       struct { double data[20]; } stubs_locs_buf;
2817       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2818 #if defined(AARCH64) || defined(PPC64)
2819       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
2820       // in the constant pool to ensure ordering between the barrier and oops
2821       // accesses. For native_wrappers we need a constant.
2822       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
2823       // static java call that is resolved in the runtime.
2824       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
2825         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
2826       }
2827 #endif
2828       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
2829       MacroAssembler _masm(&buffer);
2830 
2831       // Fill in the signature array, for the calling-convention call.
2832       const int total_args_passed = method->size_of_parameters();
2833 
2834       VMRegPair stack_regs[16];
2835       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2836 
2837       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2838                               method->is_static(), total_args_passed);
2839       BasicType* sig_bt = si.basic_types();
2840       assert(si.slots() == total_args_passed, "");
2841       BasicType ret_type = si.return_type();
2842 
2843       // Now get the compiled-Java arguments layout.
2844       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2845 
2846       // Generate the compiled-to-native wrapper code
2847       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2848 
2849       if (nm != nullptr) {
2850         {
2851           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2852           if (nm->make_in_use()) {
2853             method->set_code(method, nm);
2854           }
2855         }
2856 
2857         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
2858         if (directive->PrintAssemblyOption) {
2859           nm->print_code();
2860         }
2861         DirectivesStack::release(directive);
2862       }
2863     }
2864   } // Unlock AdapterHandlerLibrary_lock
2865 
2866 
2867   // Install the generated code.
2868   if (nm != nullptr) {
2869     const char *msg = method->is_static() ? "(static)" : "";
2870     CompileTask::print_ul(nm, msg);
2871     if (PrintCompilation) {
2872       ttyLocker ttyl;
2873       CompileTask::print(tty, nm, msg);
2874     }
2875     nm->post_compiled_method_load_event();
2876   }
2877 }
2878 
2879 // -------------------------------------------------------------------------
2880 // Java-Java calling convention
2881 // (what you use when Java calls Java)
2882 
2883 //------------------------------name_for_receiver----------------------------------
2884 // For a given signature, return the VMReg for parameter 0.
2885 VMReg SharedRuntime::name_for_receiver() {
2886   VMRegPair regs;
2887   BasicType sig_bt = T_OBJECT;
2888   (void) java_calling_convention(&sig_bt, &regs, 1);
2889   // Return argument 0 register.  In the LP64 build pointers
2890   // take 2 registers, but the VM wants only the 'main' name.
2891   return regs.first();
2892 }
2893 
2894 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2895   // This method is returning a data structure allocating as a
2896   // ResourceObject, so do not put any ResourceMarks in here.
2897 
2898   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2899   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2900   int cnt = 0;
2901   if (has_receiver) {
2902     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2903   }
2904 
2905   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
2906     BasicType type = ss.type();
2907     sig_bt[cnt++] = type;
2908     if (is_double_word_type(type))
2909       sig_bt[cnt++] = T_VOID;
2910   }
2911 
2912   if (has_appendix) {
2913     sig_bt[cnt++] = T_OBJECT;
2914   }
2915 
2916   assert(cnt < 256, "grow table size");
2917 
2918   int comp_args_on_stack;
2919   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
2920 
2921   // the calling convention doesn't count out_preserve_stack_slots so
2922   // we must add that in to get "true" stack offsets.
2923 
2924   if (comp_args_on_stack) {
2925     for (int i = 0; i < cnt; i++) {
2926       VMReg reg1 = regs[i].first();
2927       if (reg1->is_stack()) {
2928         // Yuck
2929         reg1 = reg1->bias(out_preserve_stack_slots());
2930       }
2931       VMReg reg2 = regs[i].second();
2932       if (reg2->is_stack()) {
2933         // Yuck
2934         reg2 = reg2->bias(out_preserve_stack_slots());
2935       }
2936       regs[i].set_pair(reg2, reg1);
2937     }
2938   }
2939 
2940   // results
2941   *arg_size = cnt;
2942   return regs;
2943 }
2944 
2945 // OSR Migration Code
2946 //
2947 // This code is used convert interpreter frames into compiled frames.  It is
2948 // called from very start of a compiled OSR nmethod.  A temp array is
2949 // allocated to hold the interesting bits of the interpreter frame.  All
2950 // active locks are inflated to allow them to move.  The displaced headers and
2951 // active interpreter locals are copied into the temp buffer.  Then we return
2952 // back to the compiled code.  The compiled code then pops the current
2953 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2954 // copies the interpreter locals and displaced headers where it wants.
2955 // Finally it calls back to free the temp buffer.
2956 //
2957 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2958 
2959 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
2960   assert(current == JavaThread::current(), "pre-condition");
2961 
2962   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
2963   // frame. The stack watermark code below ensures that the interpreted frame is processed
2964   // before it gets unwound. This is helpful as the size of the compiled frame could be
2965   // larger than the interpreted frame, which could result in the new frame not being
2966   // processed correctly.
2967   StackWatermarkSet::before_unwind(current);
2968 
2969   //
2970   // This code is dependent on the memory layout of the interpreter local
2971   // array and the monitors. On all of our platforms the layout is identical
2972   // so this code is shared. If some platform lays the their arrays out
2973   // differently then this code could move to platform specific code or
2974   // the code here could be modified to copy items one at a time using
2975   // frame accessor methods and be platform independent.
2976 
2977   frame fr = current->last_frame();
2978   assert(fr.is_interpreted_frame(), "");
2979   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2980 
2981   // Figure out how many monitors are active.
2982   int active_monitor_count = 0;
2983   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2984        kptr < fr.interpreter_frame_monitor_begin();
2985        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2986     if (kptr->obj() != nullptr) active_monitor_count++;
2987   }
2988 
2989   // QQQ we could place number of active monitors in the array so that compiled code
2990   // could double check it.
2991 
2992   Method* moop = fr.interpreter_frame_method();
2993   int max_locals = moop->max_locals();
2994   // Allocate temp buffer, 1 word per local & 2 per active monitor
2995   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
2996   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2997 
2998   // Copy the locals.  Order is preserved so that loading of longs works.
2999   // Since there's no GC I can copy the oops blindly.
3000   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3001   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3002                        (HeapWord*)&buf[0],
3003                        max_locals);
3004 
3005   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3006   int i = max_locals;
3007   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3008        kptr2 < fr.interpreter_frame_monitor_begin();
3009        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3010     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3011       BasicLock *lock = kptr2->lock();
3012       if (LockingMode == LM_LEGACY) {
3013         // Inflate so the object's header no longer refers to the BasicLock.
3014         if (lock->displaced_header().is_unlocked()) {
3015           // The object is locked and the resulting ObjectMonitor* will also be
3016           // locked so it can't be async deflated until ownership is dropped.
3017           // See the big comment in basicLock.cpp: BasicLock::move_to().
3018           ObjectSynchronizer::inflate_helper(kptr2->obj());
3019         }
3020         // Now the displaced header is free to move because the
3021         // object's header no longer refers to it.
3022         buf[i] = (intptr_t)lock->displaced_header().value();
3023       } else if (UseObjectMonitorTable) {
3024         buf[i] = (intptr_t)lock->object_monitor_cache();
3025       }
3026 #ifdef ASSERT
3027       else {
3028         buf[i] = badDispHeaderOSR;
3029       }
3030 #endif
3031       i++;
3032       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3033     }
3034   }
3035   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3036 
3037   RegisterMap map(current,
3038                   RegisterMap::UpdateMap::skip,
3039                   RegisterMap::ProcessFrames::include,
3040                   RegisterMap::WalkContinuation::skip);
3041   frame sender = fr.sender(&map);
3042   if (sender.is_interpreted_frame()) {
3043     current->push_cont_fastpath(sender.sp());
3044   }
3045 
3046   return buf;
3047 JRT_END
3048 
3049 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3050   FREE_C_HEAP_ARRAY(intptr_t, buf);
3051 JRT_END
3052 
3053 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3054   bool found = false;
3055   auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3056     return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));

3057   };
3058   assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3059   _adapter_handler_table->iterate(findblob);







3060   return found;
3061 }
3062 









3063 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3064   bool found = false;
3065   auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3066     if (b == CodeCache::find_blob(a->get_i2c_entry())) {

3067       found = true;
3068       st->print("Adapter for signature: ");
3069       a->print_adapter_on(st);
3070       return true;
3071     } else {
3072       return false; // keep looking

3073     }
3074   };
3075   assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3076   _adapter_handler_table->iterate(findblob);














3077   assert(found, "Should have found handler");
3078 }
3079 
3080 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3081   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3082   if (get_i2c_entry() != nullptr) {
3083     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3084   }
3085   if (get_c2i_entry() != nullptr) {
3086     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3087   }
3088   if (get_c2i_unverified_entry() != nullptr) {
3089     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3090   }
3091   if (get_c2i_no_clinit_check_entry() != nullptr) {
3092     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3093   }
3094   st->cr();
3095 }
3096 
3097 #ifndef PRODUCT
3098 
3099 void AdapterHandlerLibrary::print_statistics() {
3100   print_table_statistics();

3101 }
3102 
3103 #endif /* PRODUCT */
3104 
3105 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3106   assert(current == JavaThread::current(), "pre-condition");
3107   StackOverflow* overflow_state = current->stack_overflow_state();
3108   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3109   overflow_state->set_reserved_stack_activation(current->stack_base());
3110 JRT_END
3111 
3112 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3113   ResourceMark rm(current);
3114   frame activation;
3115   nmethod* nm = nullptr;
3116   int count = 1;
3117 
3118   assert(fr.is_java_frame(), "Must start on Java frame");
3119 
3120   RegisterMap map(JavaThread::current(),
3121                   RegisterMap::UpdateMap::skip,
3122                   RegisterMap::ProcessFrames::skip,
3123                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3124   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3125     if (!fr.is_java_frame()) {
3126       continue;
3127     }
3128 
3129     Method* method = nullptr;
3130     bool found = false;
3131     if (fr.is_interpreted_frame()) {
3132       method = fr.interpreter_frame_method();
3133       if (method != nullptr && method->has_reserved_stack_access()) {
3134         found = true;
3135       }
3136     } else {
3137       CodeBlob* cb = fr.cb();
3138       if (cb != nullptr && cb->is_nmethod()) {
3139         nm = cb->as_nmethod();
3140         method = nm->method();
3141         // scope_desc_near() must be used, instead of scope_desc_at() because on
3142         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3143         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3144           method = sd->method();
3145           if (method != nullptr && method->has_reserved_stack_access()) {
3146             found = true;
3147           }
3148         }
3149       }
3150     }
3151     if (found) {
3152       activation = fr;
3153       warning("Potentially dangerous stack overflow in "
3154               "ReservedStackAccess annotated method %s [%d]",
3155               method->name_and_sig_as_C_string(), count++);
3156       EventReservedStackActivation event;
3157       if (event.should_commit()) {
3158         event.set_method(method);
3159         event.commit();
3160       }
3161     }
3162   }
3163   return activation;
3164 }
3165 
3166 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3167   // After any safepoint, just before going back to compiled code,
3168   // we inform the GC that we will be doing initializing writes to
3169   // this object in the future without emitting card-marks, so
3170   // GC may take any compensating steps.
3171 
3172   oop new_obj = current->vm_result();
3173   if (new_obj == nullptr) return;
3174 
3175   BarrierSet *bs = BarrierSet::barrier_set();
3176   bs->on_slowpath_allocation_exit(current, new_obj);
3177 }
--- EOF ---