1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jfr/jfrEvents.hpp" 46 #include "jvm.h" 47 #include "logging/log.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "metaprogramming/primitiveConversions.hpp" 51 #include "oops/klass.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/forte.hpp" 56 #include "prims/jvmtiExport.hpp" 57 #include "prims/jvmtiThreadState.hpp" 58 #include "prims/methodHandles.hpp" 59 #include "prims/nativeLookup.hpp" 60 #include "runtime/arguments.hpp" 61 #include "runtime/atomicAccess.hpp" 62 #include "runtime/basicLock.inline.hpp" 63 #include "runtime/frame.inline.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/init.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/java.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/jniHandles.inline.hpp" 70 #include "runtime/osThread.hpp" 71 #include "runtime/perfData.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/stubRoutines.hpp" 75 #include "runtime/synchronizer.hpp" 76 #include "runtime/timerTrace.hpp" 77 #include "runtime/vframe.inline.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "runtime/vm_version.hpp" 80 #include "utilities/copy.hpp" 81 #include "utilities/dtrace.hpp" 82 #include "utilities/events.hpp" 83 #include "utilities/globalDefinitions.hpp" 84 #include "utilities/hashTable.hpp" 85 #include "utilities/macros.hpp" 86 #include "utilities/xmlstream.hpp" 87 #ifdef COMPILER1 88 #include "c1/c1_Runtime1.hpp" 89 #endif 90 #if INCLUDE_JFR 91 #include "jfr/jfr.inline.hpp" 92 #endif 93 94 // Shared runtime stub routines reside in their own unique blob with a 95 // single entry point 96 97 98 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 99 type* SharedRuntime::BLOB_FIELD_NAME(name); 100 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 101 #undef SHARED_STUB_FIELD_DEFINE 102 103 nmethod* SharedRuntime::_cont_doYield_stub; 104 105 #if 0 106 // TODO tweak global stub name generation to match this 107 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 108 const char *SharedRuntime::_stub_names[] = { 109 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 110 }; 111 #endif 112 113 //----------------------------generate_stubs----------------------------------- 114 void SharedRuntime::generate_initial_stubs() { 115 // Build this early so it's available for the interpreter. 116 _throw_StackOverflowError_blob = 117 generate_throw_exception(StubId::shared_throw_StackOverflowError_id, 118 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 119 } 120 121 void SharedRuntime::generate_stubs() { 122 _wrong_method_blob = 123 generate_resolve_blob(StubId::shared_wrong_method_id, 124 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 125 _wrong_method_abstract_blob = 126 generate_resolve_blob(StubId::shared_wrong_method_abstract_id, 127 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 128 _ic_miss_blob = 129 generate_resolve_blob(StubId::shared_ic_miss_id, 130 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 131 _resolve_opt_virtual_call_blob = 132 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id, 133 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 134 _resolve_virtual_call_blob = 135 generate_resolve_blob(StubId::shared_resolve_virtual_call_id, 136 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 137 _resolve_static_call_blob = 138 generate_resolve_blob(StubId::shared_resolve_static_call_id, 139 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 140 141 _throw_delayed_StackOverflowError_blob = 142 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id, 143 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 144 145 _throw_AbstractMethodError_blob = 146 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id, 147 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 148 149 _throw_IncompatibleClassChangeError_blob = 150 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id, 151 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 152 153 _throw_NullPointerException_at_call_blob = 154 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id, 155 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 156 157 #if COMPILER2_OR_JVMCI 158 // Vectors are generated only by C2 and JVMCI. 159 bool support_wide = is_wide_vector(MaxVectorSize); 160 if (support_wide) { 161 _polling_page_vectors_safepoint_handler_blob = 162 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id, 163 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 164 } 165 #endif // COMPILER2_OR_JVMCI 166 _polling_page_safepoint_handler_blob = 167 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id, 168 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 169 _polling_page_return_handler_blob = 170 generate_handler_blob(StubId::shared_polling_page_return_handler_id, 171 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 172 173 generate_deopt_blob(); 174 } 175 176 void SharedRuntime::init_adapter_library() { 177 AdapterHandlerLibrary::initialize(); 178 } 179 180 #if INCLUDE_JFR 181 //------------------------------generate jfr runtime stubs ------ 182 void SharedRuntime::generate_jfr_stubs() { 183 ResourceMark rm; 184 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 185 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 186 187 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 188 _jfr_return_lease_blob = generate_jfr_return_lease(); 189 } 190 191 #endif // INCLUDE_JFR 192 193 #include <math.h> 194 195 // Implementation of SharedRuntime 196 197 #ifndef PRODUCT 198 // For statistics 199 uint SharedRuntime::_ic_miss_ctr = 0; 200 uint SharedRuntime::_wrong_method_ctr = 0; 201 uint SharedRuntime::_resolve_static_ctr = 0; 202 uint SharedRuntime::_resolve_virtual_ctr = 0; 203 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 204 uint SharedRuntime::_implicit_null_throws = 0; 205 uint SharedRuntime::_implicit_div0_throws = 0; 206 207 int64_t SharedRuntime::_nof_normal_calls = 0; 208 int64_t SharedRuntime::_nof_inlined_calls = 0; 209 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 210 int64_t SharedRuntime::_nof_static_calls = 0; 211 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 212 int64_t SharedRuntime::_nof_interface_calls = 0; 213 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 214 215 uint SharedRuntime::_new_instance_ctr=0; 216 uint SharedRuntime::_new_array_ctr=0; 217 uint SharedRuntime::_multi2_ctr=0; 218 uint SharedRuntime::_multi3_ctr=0; 219 uint SharedRuntime::_multi4_ctr=0; 220 uint SharedRuntime::_multi5_ctr=0; 221 uint SharedRuntime::_mon_enter_stub_ctr=0; 222 uint SharedRuntime::_mon_exit_stub_ctr=0; 223 uint SharedRuntime::_mon_enter_ctr=0; 224 uint SharedRuntime::_mon_exit_ctr=0; 225 uint SharedRuntime::_partial_subtype_ctr=0; 226 uint SharedRuntime::_jbyte_array_copy_ctr=0; 227 uint SharedRuntime::_jshort_array_copy_ctr=0; 228 uint SharedRuntime::_jint_array_copy_ctr=0; 229 uint SharedRuntime::_jlong_array_copy_ctr=0; 230 uint SharedRuntime::_oop_array_copy_ctr=0; 231 uint SharedRuntime::_checkcast_array_copy_ctr=0; 232 uint SharedRuntime::_unsafe_array_copy_ctr=0; 233 uint SharedRuntime::_generic_array_copy_ctr=0; 234 uint SharedRuntime::_slow_array_copy_ctr=0; 235 uint SharedRuntime::_find_handler_ctr=0; 236 uint SharedRuntime::_rethrow_ctr=0; 237 uint SharedRuntime::_unsafe_set_memory_ctr=0; 238 239 int SharedRuntime::_ICmiss_index = 0; 240 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 241 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 242 243 244 void SharedRuntime::trace_ic_miss(address at) { 245 for (int i = 0; i < _ICmiss_index; i++) { 246 if (_ICmiss_at[i] == at) { 247 _ICmiss_count[i]++; 248 return; 249 } 250 } 251 int index = _ICmiss_index++; 252 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 253 _ICmiss_at[index] = at; 254 _ICmiss_count[index] = 1; 255 } 256 257 void SharedRuntime::print_ic_miss_histogram() { 258 if (ICMissHistogram) { 259 tty->print_cr("IC Miss Histogram:"); 260 int tot_misses = 0; 261 for (int i = 0; i < _ICmiss_index; i++) { 262 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 263 tot_misses += _ICmiss_count[i]; 264 } 265 tty->print_cr("Total IC misses: %7d", tot_misses); 266 } 267 } 268 269 #ifdef COMPILER2 270 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for) 271 void SharedRuntime::debug_print_value(jboolean x) { 272 tty->print_cr("boolean %d", x); 273 } 274 275 void SharedRuntime::debug_print_value(jbyte x) { 276 tty->print_cr("byte %d", x); 277 } 278 279 void SharedRuntime::debug_print_value(jshort x) { 280 tty->print_cr("short %d", x); 281 } 282 283 void SharedRuntime::debug_print_value(jchar x) { 284 tty->print_cr("char %c %d", isprint(x) ? x : ' ', x); 285 } 286 287 void SharedRuntime::debug_print_value(jint x) { 288 tty->print_cr("int %d", x); 289 } 290 291 void SharedRuntime::debug_print_value(jlong x) { 292 tty->print_cr("long " JLONG_FORMAT, x); 293 } 294 295 void SharedRuntime::debug_print_value(jfloat x) { 296 tty->print_cr("float %f", x); 297 } 298 299 void SharedRuntime::debug_print_value(jdouble x) { 300 tty->print_cr("double %lf", x); 301 } 302 303 void SharedRuntime::debug_print_value(oopDesc* x) { 304 x->print(); 305 } 306 #endif // COMPILER2 307 308 #endif // PRODUCT 309 310 311 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 312 return x * y; 313 JRT_END 314 315 316 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 317 if (x == min_jlong && y == CONST64(-1)) { 318 return x; 319 } else { 320 return x / y; 321 } 322 JRT_END 323 324 325 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 326 if (x == min_jlong && y == CONST64(-1)) { 327 return 0; 328 } else { 329 return x % y; 330 } 331 JRT_END 332 333 334 #ifdef _WIN64 335 const juint float_sign_mask = 0x7FFFFFFF; 336 const juint float_infinity = 0x7F800000; 337 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 338 const julong double_infinity = CONST64(0x7FF0000000000000); 339 #endif 340 341 #if !defined(X86) 342 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 343 #ifdef _WIN64 344 // 64-bit Windows on amd64 returns the wrong values for 345 // infinity operands. 346 juint xbits = PrimitiveConversions::cast<juint>(x); 347 juint ybits = PrimitiveConversions::cast<juint>(y); 348 // x Mod Infinity == x unless x is infinity 349 if (((xbits & float_sign_mask) != float_infinity) && 350 ((ybits & float_sign_mask) == float_infinity) ) { 351 return x; 352 } 353 return ((jfloat)fmod_winx64((double)x, (double)y)); 354 #else 355 return ((jfloat)fmod((double)x,(double)y)); 356 #endif 357 JRT_END 358 359 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 360 #ifdef _WIN64 361 julong xbits = PrimitiveConversions::cast<julong>(x); 362 julong ybits = PrimitiveConversions::cast<julong>(y); 363 // x Mod Infinity == x unless x is infinity 364 if (((xbits & double_sign_mask) != double_infinity) && 365 ((ybits & double_sign_mask) == double_infinity) ) { 366 return x; 367 } 368 return ((jdouble)fmod_winx64((double)x, (double)y)); 369 #else 370 return ((jdouble)fmod((double)x,(double)y)); 371 #endif 372 JRT_END 373 #endif // !X86 374 375 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 376 return (jfloat)x; 377 JRT_END 378 379 #ifdef __SOFTFP__ 380 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 381 return x + y; 382 JRT_END 383 384 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 385 return x - y; 386 JRT_END 387 388 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 389 return x * y; 390 JRT_END 391 392 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 393 return x / y; 394 JRT_END 395 396 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 397 return x + y; 398 JRT_END 399 400 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 401 return x - y; 402 JRT_END 403 404 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 405 return x * y; 406 JRT_END 407 408 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 409 return x / y; 410 JRT_END 411 412 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 413 return (jdouble)x; 414 JRT_END 415 416 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 417 return (jdouble)x; 418 JRT_END 419 420 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 421 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 422 JRT_END 423 424 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 425 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 426 JRT_END 427 428 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 429 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 430 JRT_END 431 432 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 433 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 434 JRT_END 435 436 // Functions to return the opposite of the aeabi functions for nan. 437 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 438 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 439 JRT_END 440 441 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 442 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 443 JRT_END 444 445 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 446 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 447 JRT_END 448 449 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 450 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 451 JRT_END 452 453 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 454 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 455 JRT_END 456 457 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 458 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 459 JRT_END 460 461 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 462 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 463 JRT_END 464 465 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 466 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 467 JRT_END 468 469 // Intrinsics make gcc generate code for these. 470 float SharedRuntime::fneg(float f) { 471 return -f; 472 } 473 474 double SharedRuntime::dneg(double f) { 475 return -f; 476 } 477 478 #endif // __SOFTFP__ 479 480 #if defined(__SOFTFP__) || defined(E500V2) 481 // Intrinsics make gcc generate code for these. 482 double SharedRuntime::dabs(double f) { 483 return (f <= (double)0.0) ? (double)0.0 - f : f; 484 } 485 486 #endif 487 488 #if defined(__SOFTFP__) 489 double SharedRuntime::dsqrt(double f) { 490 return sqrt(f); 491 } 492 #endif 493 494 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 495 if (g_isnan(x)) 496 return 0; 497 if (x >= (jfloat) max_jint) 498 return max_jint; 499 if (x <= (jfloat) min_jint) 500 return min_jint; 501 return (jint) x; 502 JRT_END 503 504 505 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 506 if (g_isnan(x)) 507 return 0; 508 if (x >= (jfloat) max_jlong) 509 return max_jlong; 510 if (x <= (jfloat) min_jlong) 511 return min_jlong; 512 return (jlong) x; 513 JRT_END 514 515 516 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 517 if (g_isnan(x)) 518 return 0; 519 if (x >= (jdouble) max_jint) 520 return max_jint; 521 if (x <= (jdouble) min_jint) 522 return min_jint; 523 return (jint) x; 524 JRT_END 525 526 527 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 528 if (g_isnan(x)) 529 return 0; 530 if (x >= (jdouble) max_jlong) 531 return max_jlong; 532 if (x <= (jdouble) min_jlong) 533 return min_jlong; 534 return (jlong) x; 535 JRT_END 536 537 538 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 539 return (jfloat)x; 540 JRT_END 541 542 543 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 544 return (jfloat)x; 545 JRT_END 546 547 548 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 549 return (jdouble)x; 550 JRT_END 551 552 553 // Exception handling across interpreter/compiler boundaries 554 // 555 // exception_handler_for_return_address(...) returns the continuation address. 556 // The continuation address is the entry point of the exception handler of the 557 // previous frame depending on the return address. 558 559 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 560 // Note: This is called when we have unwound the frame of the callee that did 561 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 562 // Notably, the stack is not walkable at this point, and hence the check must 563 // be deferred until later. Specifically, any of the handlers returned here in 564 // this function, will get dispatched to, and call deferred checks to 565 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 566 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 567 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 568 569 #if INCLUDE_JVMCI 570 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 571 // and other exception handler continuations do not read it 572 current->set_exception_pc(nullptr); 573 #endif // INCLUDE_JVMCI 574 575 if (Continuation::is_return_barrier_entry(return_address)) { 576 return StubRoutines::cont_returnBarrierExc(); 577 } 578 579 // The fastest case first 580 CodeBlob* blob = CodeCache::find_blob(return_address); 581 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 582 if (nm != nullptr) { 583 // native nmethods don't have exception handlers 584 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 585 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 586 if (nm->is_deopt_pc(return_address)) { 587 // If we come here because of a stack overflow, the stack may be 588 // unguarded. Reguard the stack otherwise if we return to the 589 // deopt blob and the stack bang causes a stack overflow we 590 // crash. 591 StackOverflow* overflow_state = current->stack_overflow_state(); 592 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 593 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 594 overflow_state->set_reserved_stack_activation(current->stack_base()); 595 } 596 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 597 // The deferred StackWatermarkSet::after_unwind check will be performed in 598 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 599 return SharedRuntime::deopt_blob()->unpack_with_exception(); 600 } else { 601 // The deferred StackWatermarkSet::after_unwind check will be performed in 602 // * OptoRuntime::handle_exception_C_helper for C2 code 603 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 604 return nm->exception_begin(); 605 } 606 } 607 608 // Entry code 609 if (StubRoutines::returns_to_call_stub(return_address)) { 610 // The deferred StackWatermarkSet::after_unwind check will be performed in 611 // JavaCallWrapper::~JavaCallWrapper 612 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before"); 613 return StubRoutines::catch_exception_entry(); 614 } 615 if (blob != nullptr && blob->is_upcall_stub()) { 616 return StubRoutines::upcall_stub_exception_handler(); 617 } 618 // Interpreted code 619 if (Interpreter::contains(return_address)) { 620 // The deferred StackWatermarkSet::after_unwind check will be performed in 621 // InterpreterRuntime::exception_handler_for_exception 622 return Interpreter::rethrow_exception_entry(); 623 } 624 625 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 626 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 627 628 #ifndef PRODUCT 629 { ResourceMark rm; 630 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 631 os::print_location(tty, (intptr_t)return_address); 632 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 633 tty->print_cr("b) other problem"); 634 } 635 #endif // PRODUCT 636 ShouldNotReachHere(); 637 return nullptr; 638 } 639 640 641 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 642 return raw_exception_handler_for_return_address(current, return_address); 643 JRT_END 644 645 646 address SharedRuntime::get_poll_stub(address pc) { 647 address stub; 648 // Look up the code blob 649 CodeBlob *cb = CodeCache::find_blob(pc); 650 651 // Should be an nmethod 652 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 653 654 // Look up the relocation information 655 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 656 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 657 658 #ifdef ASSERT 659 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 660 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 661 Disassembler::decode(cb); 662 fatal("Only polling locations are used for safepoint"); 663 } 664 #endif 665 666 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 667 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 668 if (at_poll_return) { 669 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 670 "polling page return stub not created yet"); 671 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 672 } else if (has_wide_vectors) { 673 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 674 "polling page vectors safepoint stub not created yet"); 675 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 676 } else { 677 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 678 "polling page safepoint stub not created yet"); 679 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 680 } 681 log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = " 682 INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT, 683 p2i(Thread::current()), 684 Thread::current()->osthread()->thread_id(), 685 p2i(pc), 686 at_poll_return ? "return" : "loop", 687 p2i(stub)); 688 return stub; 689 } 690 691 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 692 if (JvmtiExport::can_post_on_exceptions()) { 693 vframeStream vfst(current, true); 694 methodHandle method = methodHandle(current, vfst.method()); 695 address bcp = method()->bcp_from(vfst.bci()); 696 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 697 } 698 699 #if INCLUDE_JVMCI 700 if (EnableJVMCI) { 701 vframeStream vfst(current, true); 702 methodHandle method = methodHandle(current, vfst.method()); 703 int bci = vfst.bci(); 704 MethodData* trap_mdo = method->method_data(); 705 if (trap_mdo != nullptr) { 706 // Set exception_seen if the exceptional bytecode is an invoke 707 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 708 if (call.is_valid()) { 709 ResourceMark rm(current); 710 711 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 712 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 713 714 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 715 if (pdata != nullptr && pdata->is_BitData()) { 716 BitData* bit_data = (BitData*) pdata; 717 bit_data->set_exception_seen(); 718 } 719 } 720 } 721 } 722 #endif 723 724 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 725 } 726 727 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 728 Handle h_exception = Exceptions::new_exception(current, name, message); 729 throw_and_post_jvmti_exception(current, h_exception); 730 } 731 732 #if INCLUDE_JVMTI 733 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 734 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 735 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 736 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 737 JNIHandles::destroy_local(vthread); 738 JRT_END 739 740 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 741 assert(hide == JNI_TRUE, "must be VTMS transition start"); 742 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 743 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 744 JNIHandles::destroy_local(vthread); 745 JRT_END 746 747 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 748 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 749 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 750 JNIHandles::destroy_local(vthread); 751 JRT_END 752 753 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 754 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 755 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 756 JNIHandles::destroy_local(vthread); 757 JRT_END 758 #endif // INCLUDE_JVMTI 759 760 // The interpreter code to call this tracing function is only 761 // called/generated when UL is on for redefine, class and has the right level 762 // and tags. Since obsolete methods are never compiled, we don't have 763 // to modify the compilers to generate calls to this function. 764 // 765 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 766 JavaThread* thread, Method* method)) 767 if (method->is_obsolete()) { 768 // We are calling an obsolete method, but this is not necessarily 769 // an error. Our method could have been redefined just after we 770 // fetched the Method* from the constant pool. 771 ResourceMark rm; 772 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 773 } 774 return 0; 775 JRT_END 776 777 // ret_pc points into caller; we are returning caller's exception handler 778 // for given exception 779 // Note that the implementation of this method assumes it's only called when an exception has actually occured 780 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 781 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 782 assert(nm != nullptr, "must exist"); 783 ResourceMark rm; 784 785 #if INCLUDE_JVMCI 786 if (nm->is_compiled_by_jvmci()) { 787 // lookup exception handler for this pc 788 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 789 ExceptionHandlerTable table(nm); 790 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 791 if (t != nullptr) { 792 return nm->code_begin() + t->pco(); 793 } else { 794 bool make_not_entrant = true; 795 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant); 796 } 797 } 798 #endif // INCLUDE_JVMCI 799 800 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 801 // determine handler bci, if any 802 EXCEPTION_MARK; 803 804 int handler_bci = -1; 805 int scope_depth = 0; 806 if (!force_unwind) { 807 int bci = sd->bci(); 808 bool recursive_exception = false; 809 do { 810 bool skip_scope_increment = false; 811 // exception handler lookup 812 Klass* ek = exception->klass(); 813 methodHandle mh(THREAD, sd->method()); 814 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 815 if (HAS_PENDING_EXCEPTION) { 816 recursive_exception = true; 817 // We threw an exception while trying to find the exception handler. 818 // Transfer the new exception to the exception handle which will 819 // be set into thread local storage, and do another lookup for an 820 // exception handler for this exception, this time starting at the 821 // BCI of the exception handler which caused the exception to be 822 // thrown (bugs 4307310 and 4546590). Set "exception" reference 823 // argument to ensure that the correct exception is thrown (4870175). 824 recursive_exception_occurred = true; 825 exception = Handle(THREAD, PENDING_EXCEPTION); 826 CLEAR_PENDING_EXCEPTION; 827 if (handler_bci >= 0) { 828 bci = handler_bci; 829 handler_bci = -1; 830 skip_scope_increment = true; 831 } 832 } 833 else { 834 recursive_exception = false; 835 } 836 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 837 sd = sd->sender(); 838 if (sd != nullptr) { 839 bci = sd->bci(); 840 } 841 ++scope_depth; 842 } 843 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 844 } 845 846 // found handling method => lookup exception handler 847 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 848 849 ExceptionHandlerTable table(nm); 850 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 851 852 // If the compiler did not anticipate a recursive exception, resulting in an exception 853 // thrown from the catch bci, then the compiled exception handler might be missing. 854 // This is rare. Just deoptimize and let the interpreter handle it. 855 if (t == nullptr && recursive_exception_occurred) { 856 bool make_not_entrant = false; 857 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant); 858 } 859 860 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 861 // Allow abbreviated catch tables. The idea is to allow a method 862 // to materialize its exceptions without committing to the exact 863 // routing of exceptions. In particular this is needed for adding 864 // a synthetic handler to unlock monitors when inlining 865 // synchronized methods since the unlock path isn't represented in 866 // the bytecodes. 867 t = table.entry_for(catch_pco, -1, 0); 868 } 869 870 #ifdef COMPILER1 871 if (t == nullptr && nm->is_compiled_by_c1()) { 872 assert(nm->unwind_handler_begin() != nullptr, ""); 873 return nm->unwind_handler_begin(); 874 } 875 #endif 876 877 if (t == nullptr) { 878 ttyLocker ttyl; 879 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 880 tty->print_cr(" Exception:"); 881 exception->print(); 882 tty->cr(); 883 tty->print_cr(" Compiled exception table :"); 884 table.print(); 885 nm->print(); 886 nm->print_code(); 887 guarantee(false, "missing exception handler"); 888 return nullptr; 889 } 890 891 if (handler_bci != -1) { // did we find a handler in this method? 892 sd->method()->set_exception_handler_entered(handler_bci); // profile 893 } 894 return nm->code_begin() + t->pco(); 895 } 896 897 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 898 // These errors occur only at call sites 899 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 900 JRT_END 901 902 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 903 // These errors occur only at call sites 904 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 905 JRT_END 906 907 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 908 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 909 JRT_END 910 911 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 912 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 913 JRT_END 914 915 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 916 // This entry point is effectively only used for NullPointerExceptions which occur at inline 917 // cache sites (when the callee activation is not yet set up) so we are at a call site 918 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 919 JRT_END 920 921 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 922 throw_StackOverflowError_common(current, false); 923 JRT_END 924 925 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 926 throw_StackOverflowError_common(current, true); 927 JRT_END 928 929 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 930 // We avoid using the normal exception construction in this case because 931 // it performs an upcall to Java, and we're already out of stack space. 932 JavaThread* THREAD = current; // For exception macros. 933 InstanceKlass* k = vmClasses::StackOverflowError_klass(); 934 oop exception_oop = k->allocate_instance(CHECK); 935 if (delayed) { 936 java_lang_Throwable::set_message(exception_oop, 937 Universe::delayed_stack_overflow_error_message()); 938 } 939 Handle exception (current, exception_oop); 940 if (StackTraceInThrowable) { 941 java_lang_Throwable::fill_in_stack_trace(exception); 942 } 943 // Remove the ScopedValue bindings in case we got a 944 // StackOverflowError while we were trying to remove ScopedValue 945 // bindings. 946 current->clear_scopedValueBindings(); 947 // Increment counter for hs_err file reporting 948 AtomicAccess::inc(&Exceptions::_stack_overflow_errors); 949 throw_and_post_jvmti_exception(current, exception); 950 } 951 952 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 953 address pc, 954 ImplicitExceptionKind exception_kind) 955 { 956 address target_pc = nullptr; 957 958 if (Interpreter::contains(pc)) { 959 switch (exception_kind) { 960 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 961 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 962 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 963 default: ShouldNotReachHere(); 964 } 965 } else { 966 switch (exception_kind) { 967 case STACK_OVERFLOW: { 968 // Stack overflow only occurs upon frame setup; the callee is 969 // going to be unwound. Dispatch to a shared runtime stub 970 // which will cause the StackOverflowError to be fabricated 971 // and processed. 972 // Stack overflow should never occur during deoptimization: 973 // the compiled method bangs the stack by as much as the 974 // interpreter would need in case of a deoptimization. The 975 // deoptimization blob and uncommon trap blob bang the stack 976 // in a debug VM to verify the correctness of the compiled 977 // method stack banging. 978 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 979 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 980 return SharedRuntime::throw_StackOverflowError_entry(); 981 } 982 983 case IMPLICIT_NULL: { 984 if (VtableStubs::contains(pc)) { 985 // We haven't yet entered the callee frame. Fabricate an 986 // exception and begin dispatching it in the caller. Since 987 // the caller was at a call site, it's safe to destroy all 988 // caller-saved registers, as these entry points do. 989 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 990 991 // If vt_stub is null, then return null to signal handler to report the SEGV error. 992 if (vt_stub == nullptr) return nullptr; 993 994 if (vt_stub->is_abstract_method_error(pc)) { 995 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 996 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 997 // Instead of throwing the abstract method error here directly, we re-resolve 998 // and will throw the AbstractMethodError during resolve. As a result, we'll 999 // get a more detailed error message. 1000 return SharedRuntime::get_handle_wrong_method_stub(); 1001 } else { 1002 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 1003 // Assert that the signal comes from the expected location in stub code. 1004 assert(vt_stub->is_null_pointer_exception(pc), 1005 "obtained signal from unexpected location in stub code"); 1006 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1007 } 1008 } else { 1009 CodeBlob* cb = CodeCache::find_blob(pc); 1010 1011 // If code blob is null, then return null to signal handler to report the SEGV error. 1012 if (cb == nullptr) return nullptr; 1013 1014 // Exception happened in CodeCache. Must be either: 1015 // 1. Inline-cache check in C2I handler blob, 1016 // 2. Inline-cache check in nmethod, or 1017 // 3. Implicit null exception in nmethod 1018 1019 if (!cb->is_nmethod()) { 1020 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 1021 if (!is_in_blob) { 1022 // Allow normal crash reporting to handle this 1023 return nullptr; 1024 } 1025 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 1026 // There is no handler here, so we will simply unwind. 1027 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1028 } 1029 1030 // Otherwise, it's a compiled method. Consult its exception handlers. 1031 nmethod* nm = cb->as_nmethod(); 1032 if (nm->inlinecache_check_contains(pc)) { 1033 // exception happened inside inline-cache check code 1034 // => the nmethod is not yet active (i.e., the frame 1035 // is not set up yet) => use return address pushed by 1036 // caller => don't push another return address 1037 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 1038 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1039 } 1040 1041 if (nm->method()->is_method_handle_intrinsic()) { 1042 // exception happened inside MH dispatch code, similar to a vtable stub 1043 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 1044 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1045 } 1046 1047 #ifndef PRODUCT 1048 _implicit_null_throws++; 1049 #endif 1050 target_pc = nm->continuation_for_implicit_null_exception(pc); 1051 // If there's an unexpected fault, target_pc might be null, 1052 // in which case we want to fall through into the normal 1053 // error handling code. 1054 } 1055 1056 break; // fall through 1057 } 1058 1059 1060 case IMPLICIT_DIVIDE_BY_ZERO: { 1061 nmethod* nm = CodeCache::find_nmethod(pc); 1062 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1063 #ifndef PRODUCT 1064 _implicit_div0_throws++; 1065 #endif 1066 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1067 // If there's an unexpected fault, target_pc might be null, 1068 // in which case we want to fall through into the normal 1069 // error handling code. 1070 break; // fall through 1071 } 1072 1073 default: ShouldNotReachHere(); 1074 } 1075 1076 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1077 1078 if (exception_kind == IMPLICIT_NULL) { 1079 #ifndef PRODUCT 1080 // for AbortVMOnException flag 1081 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1082 #endif //PRODUCT 1083 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1084 } else { 1085 #ifndef PRODUCT 1086 // for AbortVMOnException flag 1087 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1088 #endif //PRODUCT 1089 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1090 } 1091 return target_pc; 1092 } 1093 1094 ShouldNotReachHere(); 1095 return nullptr; 1096 } 1097 1098 1099 /** 1100 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1101 * installed in the native function entry of all native Java methods before 1102 * they get linked to their actual native methods. 1103 * 1104 * \note 1105 * This method actually never gets called! The reason is because 1106 * the interpreter's native entries call NativeLookup::lookup() which 1107 * throws the exception when the lookup fails. The exception is then 1108 * caught and forwarded on the return from NativeLookup::lookup() call 1109 * before the call to the native function. This might change in the future. 1110 */ 1111 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1112 { 1113 // We return a bad value here to make sure that the exception is 1114 // forwarded before we look at the return value. 1115 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1116 } 1117 JNI_END 1118 1119 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1120 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1121 } 1122 1123 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1124 #if INCLUDE_JVMCI 1125 if (!obj->klass()->has_finalizer()) { 1126 return; 1127 } 1128 #endif // INCLUDE_JVMCI 1129 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1130 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1131 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1132 JRT_END 1133 1134 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1135 assert(thread != nullptr, "No thread"); 1136 if (thread == nullptr) { 1137 return 0; 1138 } 1139 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1140 "current cannot touch oops after its GC barrier is detached."); 1141 oop obj = thread->threadObj(); 1142 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1143 } 1144 1145 /** 1146 * This function ought to be a void function, but cannot be because 1147 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1148 * 6254741. Once that is fixed we can remove the dummy return value. 1149 */ 1150 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1151 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1152 } 1153 1154 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1155 return dtrace_object_alloc(thread, o, o->size()); 1156 } 1157 1158 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1159 assert(DTraceAllocProbes, "wrong call"); 1160 Klass* klass = o->klass(); 1161 Symbol* name = klass->name(); 1162 HOTSPOT_OBJECT_ALLOC( 1163 get_java_tid(thread), 1164 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1165 return 0; 1166 } 1167 1168 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1169 JavaThread* current, Method* method)) 1170 assert(current == JavaThread::current(), "pre-condition"); 1171 1172 assert(DTraceMethodProbes, "wrong call"); 1173 Symbol* kname = method->klass_name(); 1174 Symbol* name = method->name(); 1175 Symbol* sig = method->signature(); 1176 HOTSPOT_METHOD_ENTRY( 1177 get_java_tid(current), 1178 (char *) kname->bytes(), kname->utf8_length(), 1179 (char *) name->bytes(), name->utf8_length(), 1180 (char *) sig->bytes(), sig->utf8_length()); 1181 return 0; 1182 JRT_END 1183 1184 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1185 JavaThread* current, Method* method)) 1186 assert(current == JavaThread::current(), "pre-condition"); 1187 assert(DTraceMethodProbes, "wrong call"); 1188 Symbol* kname = method->klass_name(); 1189 Symbol* name = method->name(); 1190 Symbol* sig = method->signature(); 1191 HOTSPOT_METHOD_RETURN( 1192 get_java_tid(current), 1193 (char *) kname->bytes(), kname->utf8_length(), 1194 (char *) name->bytes(), name->utf8_length(), 1195 (char *) sig->bytes(), sig->utf8_length()); 1196 return 0; 1197 JRT_END 1198 1199 1200 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1201 // for a call current in progress, i.e., arguments has been pushed on stack 1202 // put callee has not been invoked yet. Used by: resolve virtual/static, 1203 // vtable updates, etc. Caller frame must be compiled. 1204 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1205 JavaThread* current = THREAD; 1206 ResourceMark rm(current); 1207 1208 // last java frame on stack (which includes native call frames) 1209 vframeStream vfst(current, true); // Do not skip and javaCalls 1210 1211 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1212 } 1213 1214 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1215 nmethod* caller = vfst.nm(); 1216 1217 address pc = vfst.frame_pc(); 1218 { // Get call instruction under lock because another thread may be busy patching it. 1219 CompiledICLocker ic_locker(caller); 1220 return caller->attached_method_before_pc(pc); 1221 } 1222 return nullptr; 1223 } 1224 1225 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1226 // for a call current in progress, i.e., arguments has been pushed on stack 1227 // but callee has not been invoked yet. Caller frame must be compiled. 1228 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1229 CallInfo& callinfo, TRAPS) { 1230 Handle receiver; 1231 Handle nullHandle; // create a handy null handle for exception returns 1232 JavaThread* current = THREAD; 1233 1234 assert(!vfst.at_end(), "Java frame must exist"); 1235 1236 // Find caller and bci from vframe 1237 methodHandle caller(current, vfst.method()); 1238 int bci = vfst.bci(); 1239 1240 if (caller->is_continuation_enter_intrinsic()) { 1241 bc = Bytecodes::_invokestatic; 1242 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1243 return receiver; 1244 } 1245 1246 Bytecode_invoke bytecode(caller, bci); 1247 int bytecode_index = bytecode.index(); 1248 bc = bytecode.invoke_code(); 1249 1250 methodHandle attached_method(current, extract_attached_method(vfst)); 1251 if (attached_method.not_null()) { 1252 Method* callee = bytecode.static_target(CHECK_NH); 1253 vmIntrinsics::ID id = callee->intrinsic_id(); 1254 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1255 // it attaches statically resolved method to the call site. 1256 if (MethodHandles::is_signature_polymorphic(id) && 1257 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1258 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1259 1260 // Adjust invocation mode according to the attached method. 1261 switch (bc) { 1262 case Bytecodes::_invokevirtual: 1263 if (attached_method->method_holder()->is_interface()) { 1264 bc = Bytecodes::_invokeinterface; 1265 } 1266 break; 1267 case Bytecodes::_invokeinterface: 1268 if (!attached_method->method_holder()->is_interface()) { 1269 bc = Bytecodes::_invokevirtual; 1270 } 1271 break; 1272 case Bytecodes::_invokehandle: 1273 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1274 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1275 : Bytecodes::_invokevirtual; 1276 } 1277 break; 1278 default: 1279 break; 1280 } 1281 } 1282 } 1283 1284 assert(bc != Bytecodes::_illegal, "not initialized"); 1285 1286 bool has_receiver = bc != Bytecodes::_invokestatic && 1287 bc != Bytecodes::_invokedynamic && 1288 bc != Bytecodes::_invokehandle; 1289 1290 // Find receiver for non-static call 1291 if (has_receiver) { 1292 // This register map must be update since we need to find the receiver for 1293 // compiled frames. The receiver might be in a register. 1294 RegisterMap reg_map2(current, 1295 RegisterMap::UpdateMap::include, 1296 RegisterMap::ProcessFrames::include, 1297 RegisterMap::WalkContinuation::skip); 1298 frame stubFrame = current->last_frame(); 1299 // Caller-frame is a compiled frame 1300 frame callerFrame = stubFrame.sender(®_map2); 1301 1302 if (attached_method.is_null()) { 1303 Method* callee = bytecode.static_target(CHECK_NH); 1304 if (callee == nullptr) { 1305 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1306 } 1307 } 1308 1309 // Retrieve from a compiled argument list 1310 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1311 assert(oopDesc::is_oop_or_null(receiver()), ""); 1312 1313 if (receiver.is_null()) { 1314 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1315 } 1316 } 1317 1318 // Resolve method 1319 if (attached_method.not_null()) { 1320 // Parameterized by attached method. 1321 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1322 } else { 1323 // Parameterized by bytecode. 1324 constantPoolHandle constants(current, caller->constants()); 1325 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1326 } 1327 1328 #ifdef ASSERT 1329 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1330 if (has_receiver) { 1331 assert(receiver.not_null(), "should have thrown exception"); 1332 Klass* receiver_klass = receiver->klass(); 1333 Klass* rk = nullptr; 1334 if (attached_method.not_null()) { 1335 // In case there's resolved method attached, use its holder during the check. 1336 rk = attached_method->method_holder(); 1337 } else { 1338 // Klass is already loaded. 1339 constantPoolHandle constants(current, caller->constants()); 1340 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1341 } 1342 Klass* static_receiver_klass = rk; 1343 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1344 "actual receiver must be subclass of static receiver klass"); 1345 if (receiver_klass->is_instance_klass()) { 1346 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1347 tty->print_cr("ERROR: Klass not yet initialized!!"); 1348 receiver_klass->print(); 1349 } 1350 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1351 } 1352 } 1353 #endif 1354 1355 return receiver; 1356 } 1357 1358 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1359 JavaThread* current = THREAD; 1360 ResourceMark rm(current); 1361 // We need first to check if any Java activations (compiled, interpreted) 1362 // exist on the stack since last JavaCall. If not, we need 1363 // to get the target method from the JavaCall wrapper. 1364 vframeStream vfst(current, true); // Do not skip any javaCalls 1365 methodHandle callee_method; 1366 if (vfst.at_end()) { 1367 // No Java frames were found on stack since we did the JavaCall. 1368 // Hence the stack can only contain an entry_frame. We need to 1369 // find the target method from the stub frame. 1370 RegisterMap reg_map(current, 1371 RegisterMap::UpdateMap::skip, 1372 RegisterMap::ProcessFrames::include, 1373 RegisterMap::WalkContinuation::skip); 1374 frame fr = current->last_frame(); 1375 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1376 fr = fr.sender(®_map); 1377 assert(fr.is_entry_frame(), "must be"); 1378 // fr is now pointing to the entry frame. 1379 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1380 } else { 1381 Bytecodes::Code bc; 1382 CallInfo callinfo; 1383 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1384 callee_method = methodHandle(current, callinfo.selected_method()); 1385 } 1386 assert(callee_method()->is_method(), "must be"); 1387 return callee_method; 1388 } 1389 1390 // Resolves a call. 1391 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1392 JavaThread* current = THREAD; 1393 ResourceMark rm(current); 1394 RegisterMap cbl_map(current, 1395 RegisterMap::UpdateMap::skip, 1396 RegisterMap::ProcessFrames::include, 1397 RegisterMap::WalkContinuation::skip); 1398 frame caller_frame = current->last_frame().sender(&cbl_map); 1399 1400 CodeBlob* caller_cb = caller_frame.cb(); 1401 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1402 nmethod* caller_nm = caller_cb->as_nmethod(); 1403 1404 // determine call info & receiver 1405 // note: a) receiver is null for static calls 1406 // b) an exception is thrown if receiver is null for non-static calls 1407 CallInfo call_info; 1408 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1409 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1410 1411 NoSafepointVerifier nsv; 1412 1413 methodHandle callee_method(current, call_info.selected_method()); 1414 1415 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1416 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1417 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1418 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1419 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1420 1421 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1422 1423 #ifndef PRODUCT 1424 // tracing/debugging/statistics 1425 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1426 (is_virtual) ? (&_resolve_virtual_ctr) : 1427 (&_resolve_static_ctr); 1428 AtomicAccess::inc(addr); 1429 1430 if (TraceCallFixup) { 1431 ResourceMark rm(current); 1432 tty->print("resolving %s%s (%s) call to", 1433 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1434 Bytecodes::name(invoke_code)); 1435 callee_method->print_short_name(tty); 1436 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1437 p2i(caller_frame.pc()), p2i(callee_method->code())); 1438 } 1439 #endif 1440 1441 if (invoke_code == Bytecodes::_invokestatic) { 1442 assert(callee_method->method_holder()->is_initialized() || 1443 callee_method->method_holder()->is_reentrant_initialization(current), 1444 "invalid class initialization state for invoke_static"); 1445 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1446 // In order to keep class initialization check, do not patch call 1447 // site for static call when the class is not fully initialized. 1448 // Proper check is enforced by call site re-resolution on every invocation. 1449 // 1450 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1451 // explicit class initialization check is put in nmethod entry (VEP). 1452 assert(callee_method->method_holder()->is_linked(), "must be"); 1453 return callee_method; 1454 } 1455 } 1456 1457 1458 // JSR 292 key invariant: 1459 // If the resolved method is a MethodHandle invoke target, the call 1460 // site must be a MethodHandle call site, because the lambda form might tail-call 1461 // leaving the stack in a state unknown to either caller or callee 1462 1463 // Compute entry points. The computation of the entry points is independent of 1464 // patching the call. 1465 1466 // Make sure the callee nmethod does not get deoptimized and removed before 1467 // we are done patching the code. 1468 1469 1470 CompiledICLocker ml(caller_nm); 1471 if (is_virtual && !is_optimized) { 1472 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1473 inline_cache->update(&call_info, receiver->klass()); 1474 } else { 1475 // Callsite is a direct call - set it to the destination method 1476 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1477 callsite->set(callee_method); 1478 } 1479 1480 return callee_method; 1481 } 1482 1483 // Inline caches exist only in compiled code 1484 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1485 #ifdef ASSERT 1486 RegisterMap reg_map(current, 1487 RegisterMap::UpdateMap::skip, 1488 RegisterMap::ProcessFrames::include, 1489 RegisterMap::WalkContinuation::skip); 1490 frame stub_frame = current->last_frame(); 1491 assert(stub_frame.is_runtime_frame(), "sanity check"); 1492 frame caller_frame = stub_frame.sender(®_map); 1493 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1494 #endif /* ASSERT */ 1495 1496 methodHandle callee_method; 1497 JRT_BLOCK 1498 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1499 // Return Method* through TLS 1500 current->set_vm_result_metadata(callee_method()); 1501 JRT_BLOCK_END 1502 // return compiled code entry point after potential safepoints 1503 return get_resolved_entry(current, callee_method); 1504 JRT_END 1505 1506 1507 // Handle call site that has been made non-entrant 1508 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1509 // 6243940 We might end up in here if the callee is deoptimized 1510 // as we race to call it. We don't want to take a safepoint if 1511 // the caller was interpreted because the caller frame will look 1512 // interpreted to the stack walkers and arguments are now 1513 // "compiled" so it is much better to make this transition 1514 // invisible to the stack walking code. The i2c path will 1515 // place the callee method in the callee_target. It is stashed 1516 // there because if we try and find the callee by normal means a 1517 // safepoint is possible and have trouble gc'ing the compiled args. 1518 RegisterMap reg_map(current, 1519 RegisterMap::UpdateMap::skip, 1520 RegisterMap::ProcessFrames::include, 1521 RegisterMap::WalkContinuation::skip); 1522 frame stub_frame = current->last_frame(); 1523 assert(stub_frame.is_runtime_frame(), "sanity check"); 1524 frame caller_frame = stub_frame.sender(®_map); 1525 1526 if (caller_frame.is_interpreted_frame() || 1527 caller_frame.is_entry_frame() || 1528 caller_frame.is_upcall_stub_frame()) { 1529 Method* callee = current->callee_target(); 1530 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1531 current->set_vm_result_metadata(callee); 1532 current->set_callee_target(nullptr); 1533 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1534 // Bypass class initialization checks in c2i when caller is in native. 1535 // JNI calls to static methods don't have class initialization checks. 1536 // Fast class initialization checks are present in c2i adapters and call into 1537 // SharedRuntime::handle_wrong_method() on the slow path. 1538 // 1539 // JVM upcalls may land here as well, but there's a proper check present in 1540 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1541 // so bypassing it in c2i adapter is benign. 1542 return callee->get_c2i_no_clinit_check_entry(); 1543 } else { 1544 return callee->get_c2i_entry(); 1545 } 1546 } 1547 1548 // Must be compiled to compiled path which is safe to stackwalk 1549 methodHandle callee_method; 1550 JRT_BLOCK 1551 // Force resolving of caller (if we called from compiled frame) 1552 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1553 current->set_vm_result_metadata(callee_method()); 1554 JRT_BLOCK_END 1555 // return compiled code entry point after potential safepoints 1556 return get_resolved_entry(current, callee_method); 1557 JRT_END 1558 1559 // Handle abstract method call 1560 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1561 // Verbose error message for AbstractMethodError. 1562 // Get the called method from the invoke bytecode. 1563 vframeStream vfst(current, true); 1564 assert(!vfst.at_end(), "Java frame must exist"); 1565 methodHandle caller(current, vfst.method()); 1566 Bytecode_invoke invoke(caller, vfst.bci()); 1567 DEBUG_ONLY( invoke.verify(); ) 1568 1569 // Find the compiled caller frame. 1570 RegisterMap reg_map(current, 1571 RegisterMap::UpdateMap::include, 1572 RegisterMap::ProcessFrames::include, 1573 RegisterMap::WalkContinuation::skip); 1574 frame stubFrame = current->last_frame(); 1575 assert(stubFrame.is_runtime_frame(), "must be"); 1576 frame callerFrame = stubFrame.sender(®_map); 1577 assert(callerFrame.is_compiled_frame(), "must be"); 1578 1579 // Install exception and return forward entry. 1580 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1581 JRT_BLOCK 1582 methodHandle callee(current, invoke.static_target(current)); 1583 if (!callee.is_null()) { 1584 oop recv = callerFrame.retrieve_receiver(®_map); 1585 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1586 res = StubRoutines::forward_exception_entry(); 1587 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1588 } 1589 JRT_BLOCK_END 1590 return res; 1591 JRT_END 1592 1593 // return verified_code_entry if interp_only_mode is not set for the current thread; 1594 // otherwise return c2i entry. 1595 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1596 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1597 // In interp_only_mode we need to go to the interpreted entry 1598 // The c2i won't patch in this mode -- see fixup_callers_callsite 1599 return callee_method->get_c2i_entry(); 1600 } 1601 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1602 return callee_method->verified_code_entry(); 1603 } 1604 1605 // resolve a static call and patch code 1606 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1607 methodHandle callee_method; 1608 bool enter_special = false; 1609 JRT_BLOCK 1610 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1611 current->set_vm_result_metadata(callee_method()); 1612 JRT_BLOCK_END 1613 // return compiled code entry point after potential safepoints 1614 return get_resolved_entry(current, callee_method); 1615 JRT_END 1616 1617 // resolve virtual call and update inline cache to monomorphic 1618 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1619 methodHandle callee_method; 1620 JRT_BLOCK 1621 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1622 current->set_vm_result_metadata(callee_method()); 1623 JRT_BLOCK_END 1624 // return compiled code entry point after potential safepoints 1625 return get_resolved_entry(current, callee_method); 1626 JRT_END 1627 1628 1629 // Resolve a virtual call that can be statically bound (e.g., always 1630 // monomorphic, so it has no inline cache). Patch code to resolved target. 1631 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1632 methodHandle callee_method; 1633 JRT_BLOCK 1634 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1635 current->set_vm_result_metadata(callee_method()); 1636 JRT_BLOCK_END 1637 // return compiled code entry point after potential safepoints 1638 return get_resolved_entry(current, callee_method); 1639 JRT_END 1640 1641 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1642 JavaThread* current = THREAD; 1643 ResourceMark rm(current); 1644 CallInfo call_info; 1645 Bytecodes::Code bc; 1646 1647 // receiver is null for static calls. An exception is thrown for null 1648 // receivers for non-static calls 1649 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1650 1651 methodHandle callee_method(current, call_info.selected_method()); 1652 1653 #ifndef PRODUCT 1654 AtomicAccess::inc(&_ic_miss_ctr); 1655 1656 // Statistics & Tracing 1657 if (TraceCallFixup) { 1658 ResourceMark rm(current); 1659 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1660 callee_method->print_short_name(tty); 1661 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1662 } 1663 1664 if (ICMissHistogram) { 1665 MutexLocker m(VMStatistic_lock); 1666 RegisterMap reg_map(current, 1667 RegisterMap::UpdateMap::skip, 1668 RegisterMap::ProcessFrames::include, 1669 RegisterMap::WalkContinuation::skip); 1670 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1671 // produce statistics under the lock 1672 trace_ic_miss(f.pc()); 1673 } 1674 #endif 1675 1676 // install an event collector so that when a vtable stub is created the 1677 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1678 // event can't be posted when the stub is created as locks are held 1679 // - instead the event will be deferred until the event collector goes 1680 // out of scope. 1681 JvmtiDynamicCodeEventCollector event_collector; 1682 1683 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1684 RegisterMap reg_map(current, 1685 RegisterMap::UpdateMap::skip, 1686 RegisterMap::ProcessFrames::include, 1687 RegisterMap::WalkContinuation::skip); 1688 frame caller_frame = current->last_frame().sender(®_map); 1689 CodeBlob* cb = caller_frame.cb(); 1690 nmethod* caller_nm = cb->as_nmethod(); 1691 1692 CompiledICLocker ml(caller_nm); 1693 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1694 inline_cache->update(&call_info, receiver()->klass()); 1695 1696 return callee_method; 1697 } 1698 1699 // 1700 // Resets a call-site in compiled code so it will get resolved again. 1701 // This routines handles both virtual call sites, optimized virtual call 1702 // sites, and static call sites. Typically used to change a call sites 1703 // destination from compiled to interpreted. 1704 // 1705 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1706 JavaThread* current = THREAD; 1707 ResourceMark rm(current); 1708 RegisterMap reg_map(current, 1709 RegisterMap::UpdateMap::skip, 1710 RegisterMap::ProcessFrames::include, 1711 RegisterMap::WalkContinuation::skip); 1712 frame stub_frame = current->last_frame(); 1713 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1714 frame caller = stub_frame.sender(®_map); 1715 1716 // Do nothing if the frame isn't a live compiled frame. 1717 // nmethod could be deoptimized by the time we get here 1718 // so no update to the caller is needed. 1719 1720 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1721 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1722 1723 address pc = caller.pc(); 1724 1725 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1726 assert(caller_nm != nullptr, "did not find caller nmethod"); 1727 1728 // Default call_addr is the location of the "basic" call. 1729 // Determine the address of the call we a reresolving. With 1730 // Inline Caches we will always find a recognizable call. 1731 // With Inline Caches disabled we may or may not find a 1732 // recognizable call. We will always find a call for static 1733 // calls and for optimized virtual calls. For vanilla virtual 1734 // calls it depends on the state of the UseInlineCaches switch. 1735 // 1736 // With Inline Caches disabled we can get here for a virtual call 1737 // for two reasons: 1738 // 1 - calling an abstract method. The vtable for abstract methods 1739 // will run us thru handle_wrong_method and we will eventually 1740 // end up in the interpreter to throw the ame. 1741 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1742 // call and between the time we fetch the entry address and 1743 // we jump to it the target gets deoptimized. Similar to 1 1744 // we will wind up in the interprter (thru a c2i with c2). 1745 // 1746 CompiledICLocker ml(caller_nm); 1747 address call_addr = caller_nm->call_instruction_address(pc); 1748 1749 if (call_addr != nullptr) { 1750 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1751 // bytes back in the instruction stream so we must also check for reloc info. 1752 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1753 bool ret = iter.next(); // Get item 1754 if (ret) { 1755 switch (iter.type()) { 1756 case relocInfo::static_call_type: 1757 case relocInfo::opt_virtual_call_type: { 1758 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1759 cdc->set_to_clean(); 1760 break; 1761 } 1762 1763 case relocInfo::virtual_call_type: { 1764 // compiled, dispatched call (which used to call an interpreted method) 1765 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1766 inline_cache->set_to_clean(); 1767 break; 1768 } 1769 default: 1770 break; 1771 } 1772 } 1773 } 1774 } 1775 1776 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1777 1778 1779 #ifndef PRODUCT 1780 AtomicAccess::inc(&_wrong_method_ctr); 1781 1782 if (TraceCallFixup) { 1783 ResourceMark rm(current); 1784 tty->print("handle_wrong_method reresolving call to"); 1785 callee_method->print_short_name(tty); 1786 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1787 } 1788 #endif 1789 1790 return callee_method; 1791 } 1792 1793 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1794 // The faulting unsafe accesses should be changed to throw the error 1795 // synchronously instead. Meanwhile the faulting instruction will be 1796 // skipped over (effectively turning it into a no-op) and an 1797 // asynchronous exception will be raised which the thread will 1798 // handle at a later point. If the instruction is a load it will 1799 // return garbage. 1800 1801 // Request an async exception. 1802 thread->set_pending_unsafe_access_error(); 1803 1804 // Return address of next instruction to execute. 1805 return next_pc; 1806 } 1807 1808 #ifdef ASSERT 1809 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1810 const BasicType* sig_bt, 1811 const VMRegPair* regs) { 1812 ResourceMark rm; 1813 const int total_args_passed = method->size_of_parameters(); 1814 const VMRegPair* regs_with_member_name = regs; 1815 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1816 1817 const int member_arg_pos = total_args_passed - 1; 1818 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1819 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1820 1821 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1822 1823 for (int i = 0; i < member_arg_pos; i++) { 1824 VMReg a = regs_with_member_name[i].first(); 1825 VMReg b = regs_without_member_name[i].first(); 1826 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1827 } 1828 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1829 } 1830 #endif 1831 1832 // --------------------------------------------------------------------------- 1833 // We are calling the interpreter via a c2i. Normally this would mean that 1834 // we were called by a compiled method. However we could have lost a race 1835 // where we went int -> i2c -> c2i and so the caller could in fact be 1836 // interpreted. If the caller is compiled we attempt to patch the caller 1837 // so he no longer calls into the interpreter. 1838 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1839 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1840 1841 // It's possible that deoptimization can occur at a call site which hasn't 1842 // been resolved yet, in which case this function will be called from 1843 // an nmethod that has been patched for deopt and we can ignore the 1844 // request for a fixup. 1845 // Also it is possible that we lost a race in that from_compiled_entry 1846 // is now back to the i2c in that case we don't need to patch and if 1847 // we did we'd leap into space because the callsite needs to use 1848 // "to interpreter" stub in order to load up the Method*. Don't 1849 // ask me how I know this... 1850 1851 // Result from nmethod::is_unloading is not stable across safepoints. 1852 NoSafepointVerifier nsv; 1853 1854 nmethod* callee = method->code(); 1855 if (callee == nullptr) { 1856 return; 1857 } 1858 1859 // write lock needed because we might patch call site by set_to_clean() 1860 // and is_unloading() can modify nmethod's state 1861 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1862 1863 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1864 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1865 return; 1866 } 1867 1868 // The check above makes sure this is an nmethod. 1869 nmethod* caller = cb->as_nmethod(); 1870 1871 // Get the return PC for the passed caller PC. 1872 address return_pc = caller_pc + frame::pc_return_offset; 1873 1874 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1875 return; 1876 } 1877 1878 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1879 CompiledICLocker ic_locker(caller); 1880 ResourceMark rm; 1881 1882 // If we got here through a static call or opt_virtual call, then we know where the 1883 // call address would be; let's peek at it 1884 address callsite_addr = (address)nativeCall_before(return_pc); 1885 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1886 if (!iter.next()) { 1887 // No reloc entry found; not a static or optimized virtual call 1888 return; 1889 } 1890 1891 relocInfo::relocType type = iter.reloc()->type(); 1892 if (type != relocInfo::static_call_type && 1893 type != relocInfo::opt_virtual_call_type) { 1894 return; 1895 } 1896 1897 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1898 callsite->set_to_clean(); 1899 JRT_END 1900 1901 1902 // same as JVM_Arraycopy, but called directly from compiled code 1903 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1904 oopDesc* dest, jint dest_pos, 1905 jint length, 1906 JavaThread* current)) { 1907 #ifndef PRODUCT 1908 _slow_array_copy_ctr++; 1909 #endif 1910 // Check if we have null pointers 1911 if (src == nullptr || dest == nullptr) { 1912 THROW(vmSymbols::java_lang_NullPointerException()); 1913 } 1914 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1915 // even though the copy_array API also performs dynamic checks to ensure 1916 // that src and dest are truly arrays (and are conformable). 1917 // The copy_array mechanism is awkward and could be removed, but 1918 // the compilers don't call this function except as a last resort, 1919 // so it probably doesn't matter. 1920 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1921 (arrayOopDesc*)dest, dest_pos, 1922 length, current); 1923 } 1924 JRT_END 1925 1926 // The caller of generate_class_cast_message() (or one of its callers) 1927 // must use a ResourceMark in order to correctly free the result. 1928 char* SharedRuntime::generate_class_cast_message( 1929 JavaThread* thread, Klass* caster_klass) { 1930 1931 // Get target class name from the checkcast instruction 1932 vframeStream vfst(thread, true); 1933 assert(!vfst.at_end(), "Java frame must exist"); 1934 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1935 constantPoolHandle cpool(thread, vfst.method()->constants()); 1936 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1937 Symbol* target_klass_name = nullptr; 1938 if (target_klass == nullptr) { 1939 // This klass should be resolved, but just in case, get the name in the klass slot. 1940 target_klass_name = cpool->klass_name_at(cc.index()); 1941 } 1942 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1943 } 1944 1945 1946 // The caller of generate_class_cast_message() (or one of its callers) 1947 // must use a ResourceMark in order to correctly free the result. 1948 char* SharedRuntime::generate_class_cast_message( 1949 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1950 const char* caster_name = caster_klass->external_name(); 1951 1952 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1953 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1954 target_klass->external_name(); 1955 1956 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1957 1958 const char* caster_klass_description = ""; 1959 const char* target_klass_description = ""; 1960 const char* klass_separator = ""; 1961 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1962 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1963 } else { 1964 caster_klass_description = caster_klass->class_in_module_of_loader(); 1965 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1966 klass_separator = (target_klass != nullptr) ? "; " : ""; 1967 } 1968 1969 // add 3 for parenthesis and preceding space 1970 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1971 1972 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1973 if (message == nullptr) { 1974 // Shouldn't happen, but don't cause even more problems if it does 1975 message = const_cast<char*>(caster_klass->external_name()); 1976 } else { 1977 jio_snprintf(message, 1978 msglen, 1979 "class %s cannot be cast to class %s (%s%s%s)", 1980 caster_name, 1981 target_name, 1982 caster_klass_description, 1983 klass_separator, 1984 target_klass_description 1985 ); 1986 } 1987 return message; 1988 } 1989 1990 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1991 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 1992 JRT_END 1993 1994 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1995 if (!SafepointSynchronize::is_synchronizing()) { 1996 // Only try quick_enter() if we're not trying to reach a safepoint 1997 // so that the calling thread reaches the safepoint more quickly. 1998 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 1999 return; 2000 } 2001 } 2002 // NO_ASYNC required because an async exception on the state transition destructor 2003 // would leave you with the lock held and it would never be released. 2004 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2005 // and the model is that an exception implies the method failed. 2006 JRT_BLOCK_NO_ASYNC 2007 Handle h_obj(THREAD, obj); 2008 ObjectSynchronizer::enter(h_obj, lock, current); 2009 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2010 JRT_BLOCK_END 2011 } 2012 2013 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2014 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2015 SharedRuntime::monitor_enter_helper(obj, lock, current); 2016 JRT_END 2017 2018 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2019 assert(JavaThread::current() == current, "invariant"); 2020 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2021 ExceptionMark em(current); 2022 2023 // Check if C2_MacroAssembler::fast_unlock() or 2024 // C2_MacroAssembler::fast_unlock() unlocked an inflated 2025 // monitor before going slow path. Since there is no safepoint 2026 // polling when calling into the VM, we can be sure that the monitor 2027 // hasn't been deallocated. 2028 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2029 if (m != nullptr) { 2030 assert(!m->has_owner(current), "must be"); 2031 current->clear_unlocked_inflated_monitor(); 2032 2033 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2034 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2035 // Some other thread acquired the lock (or the monitor was 2036 // deflated). Either way we are done. 2037 return; 2038 } 2039 } 2040 2041 // The object could become unlocked through a JNI call, which we have no other checks for. 2042 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2043 if (obj->is_unlocked()) { 2044 if (CheckJNICalls) { 2045 fatal("Object has been unlocked by JNI"); 2046 } 2047 return; 2048 } 2049 ObjectSynchronizer::exit(obj, lock, current); 2050 } 2051 2052 // Handles the uncommon cases of monitor unlocking in compiled code 2053 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2054 assert(current == JavaThread::current(), "pre-condition"); 2055 SharedRuntime::monitor_exit_helper(obj, lock, current); 2056 JRT_END 2057 2058 #ifndef PRODUCT 2059 2060 void SharedRuntime::print_statistics() { 2061 ttyLocker ttyl; 2062 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2063 2064 SharedRuntime::print_ic_miss_histogram(); 2065 2066 // Dump the JRT_ENTRY counters 2067 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 2068 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 2069 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2070 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2071 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2072 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2073 2074 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2075 tty->print_cr("%5u wrong method", _wrong_method_ctr); 2076 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2077 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2078 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2079 2080 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2081 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2082 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2083 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2084 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2085 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2086 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2087 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 2088 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2089 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2090 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2091 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2092 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2093 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2094 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 2095 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 2096 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2097 2098 AdapterHandlerLibrary::print_statistics(); 2099 2100 if (xtty != nullptr) xtty->tail("statistics"); 2101 } 2102 2103 inline double percent(int64_t x, int64_t y) { 2104 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2105 } 2106 2107 class MethodArityHistogram { 2108 public: 2109 enum { MAX_ARITY = 256 }; 2110 private: 2111 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2112 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2113 static uint64_t _total_compiled_calls; 2114 static uint64_t _max_compiled_calls_per_method; 2115 static int _max_arity; // max. arity seen 2116 static int _max_size; // max. arg size seen 2117 2118 static void add_method_to_histogram(nmethod* nm) { 2119 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2120 if (method != nullptr) { 2121 ArgumentCount args(method->signature()); 2122 int arity = args.size() + (method->is_static() ? 0 : 1); 2123 int argsize = method->size_of_parameters(); 2124 arity = MIN2(arity, MAX_ARITY-1); 2125 argsize = MIN2(argsize, MAX_ARITY-1); 2126 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2127 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2128 _total_compiled_calls += count; 2129 _arity_histogram[arity] += count; 2130 _size_histogram[argsize] += count; 2131 _max_arity = MAX2(_max_arity, arity); 2132 _max_size = MAX2(_max_size, argsize); 2133 } 2134 } 2135 2136 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2137 const int N = MIN2(9, n); 2138 double sum = 0; 2139 double weighted_sum = 0; 2140 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2141 if (sum >= 1) { // prevent divide by zero or divide overflow 2142 double rest = sum; 2143 double percent = sum / 100; 2144 for (int i = 0; i <= N; i++) { 2145 rest -= (double)histo[i]; 2146 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2147 } 2148 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2149 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2150 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2151 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2152 } else { 2153 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2154 } 2155 } 2156 2157 void print_histogram() { 2158 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2159 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2160 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2161 print_histogram_helper(_max_size, _size_histogram, "size"); 2162 tty->cr(); 2163 } 2164 2165 public: 2166 MethodArityHistogram() { 2167 // Take the Compile_lock to protect against changes in the CodeBlob structures 2168 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2169 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2170 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2171 _max_arity = _max_size = 0; 2172 _total_compiled_calls = 0; 2173 _max_compiled_calls_per_method = 0; 2174 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2175 CodeCache::nmethods_do(add_method_to_histogram); 2176 print_histogram(); 2177 } 2178 }; 2179 2180 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2181 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2182 uint64_t MethodArityHistogram::_total_compiled_calls; 2183 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2184 int MethodArityHistogram::_max_arity; 2185 int MethodArityHistogram::_max_size; 2186 2187 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2188 tty->print_cr("Calls from compiled code:"); 2189 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2190 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2191 int64_t mono_i = _nof_interface_calls; 2192 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2193 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2194 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2195 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2196 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2197 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2198 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2199 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2200 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2201 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2202 tty->cr(); 2203 tty->print_cr("Note 1: counter updates are not MT-safe."); 2204 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2205 tty->print_cr(" %% in nested categories are relative to their category"); 2206 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2207 tty->cr(); 2208 2209 MethodArityHistogram h; 2210 } 2211 #endif 2212 2213 #ifndef PRODUCT 2214 static int _lookups; // number of calls to lookup 2215 static int _equals; // number of buckets checked with matching hash 2216 static int _archived_hits; // number of successful lookups in archived table 2217 static int _runtime_hits; // number of successful lookups in runtime table 2218 #endif 2219 2220 // A simple wrapper class around the calling convention information 2221 // that allows sharing of adapters for the same calling convention. 2222 class AdapterFingerPrint : public MetaspaceObj { 2223 private: 2224 enum { 2225 _basic_type_bits = 4, 2226 _basic_type_mask = right_n_bits(_basic_type_bits), 2227 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2228 }; 2229 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2230 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2231 2232 int _length; 2233 2234 static int data_offset() { return sizeof(AdapterFingerPrint); } 2235 int* data_pointer() { 2236 return (int*)((address)this + data_offset()); 2237 } 2238 2239 // Private construtor. Use allocate() to get an instance. 2240 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) { 2241 int* data = data_pointer(); 2242 // Pack the BasicTypes with 8 per int 2243 assert(len == length(total_args_passed), "sanity"); 2244 _length = len; 2245 int sig_index = 0; 2246 for (int index = 0; index < _length; index++) { 2247 int value = 0; 2248 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2249 int bt = adapter_encoding(sig_bt[sig_index++]); 2250 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2251 value = (value << _basic_type_bits) | bt; 2252 } 2253 data[index] = value; 2254 } 2255 } 2256 2257 // Call deallocate instead 2258 ~AdapterFingerPrint() { 2259 ShouldNotCallThis(); 2260 } 2261 2262 static int length(int total_args) { 2263 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int; 2264 } 2265 2266 static int compute_size_in_words(int len) { 2267 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int))); 2268 } 2269 2270 // Remap BasicTypes that are handled equivalently by the adapters. 2271 // These are correct for the current system but someday it might be 2272 // necessary to make this mapping platform dependent. 2273 static int adapter_encoding(BasicType in) { 2274 switch (in) { 2275 case T_BOOLEAN: 2276 case T_BYTE: 2277 case T_SHORT: 2278 case T_CHAR: 2279 // There are all promoted to T_INT in the calling convention 2280 return T_INT; 2281 2282 case T_OBJECT: 2283 case T_ARRAY: 2284 // In other words, we assume that any register good enough for 2285 // an int or long is good enough for a managed pointer. 2286 #ifdef _LP64 2287 return T_LONG; 2288 #else 2289 return T_INT; 2290 #endif 2291 2292 case T_INT: 2293 case T_LONG: 2294 case T_FLOAT: 2295 case T_DOUBLE: 2296 case T_VOID: 2297 return in; 2298 2299 default: 2300 ShouldNotReachHere(); 2301 return T_CONFLICT; 2302 } 2303 } 2304 2305 void* operator new(size_t size, size_t fp_size) throw() { 2306 assert(fp_size >= size, "sanity check"); 2307 void* p = AllocateHeap(fp_size, mtCode); 2308 memset(p, 0, fp_size); 2309 return p; 2310 } 2311 2312 template<typename Function> 2313 void iterate_args(Function function) { 2314 for (int i = 0; i < length(); i++) { 2315 unsigned val = (unsigned)value(i); 2316 // args are packed so that first/lower arguments are in the highest 2317 // bits of each int value, so iterate from highest to the lowest 2318 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2319 unsigned v = (val >> j) & _basic_type_mask; 2320 if (v == 0) { 2321 continue; 2322 } 2323 function(v); 2324 } 2325 } 2326 } 2327 2328 public: 2329 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) { 2330 int len = length(total_args_passed); 2331 int size_in_bytes = BytesPerWord * compute_size_in_words(len); 2332 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len); 2333 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match"); 2334 return afp; 2335 } 2336 2337 static void deallocate(AdapterFingerPrint* fp) { 2338 FreeHeap(fp); 2339 } 2340 2341 int value(int index) { 2342 int* data = data_pointer(); 2343 return data[index]; 2344 } 2345 2346 int length() { 2347 return _length; 2348 } 2349 2350 unsigned int compute_hash() { 2351 int hash = 0; 2352 for (int i = 0; i < length(); i++) { 2353 int v = value(i); 2354 //Add arithmetic operation to the hash, like +3 to improve hashing 2355 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2356 } 2357 return (unsigned int)hash; 2358 } 2359 2360 const char* as_string() { 2361 stringStream st; 2362 st.print("0x"); 2363 for (int i = 0; i < length(); i++) { 2364 st.print("%x", value(i)); 2365 } 2366 return st.as_string(); 2367 } 2368 2369 const char* as_basic_args_string() { 2370 stringStream st; 2371 bool long_prev = false; 2372 iterate_args([&] (int arg) { 2373 if (long_prev) { 2374 long_prev = false; 2375 if (arg == T_VOID) { 2376 st.print("J"); 2377 } else { 2378 st.print("L"); 2379 } 2380 } 2381 switch (arg) { 2382 case T_INT: st.print("I"); break; 2383 case T_LONG: long_prev = true; break; 2384 case T_FLOAT: st.print("F"); break; 2385 case T_DOUBLE: st.print("D"); break; 2386 case T_VOID: break; 2387 default: ShouldNotReachHere(); 2388 } 2389 }); 2390 if (long_prev) { 2391 st.print("L"); 2392 } 2393 return st.as_string(); 2394 } 2395 2396 BasicType* as_basic_type(int& nargs) { 2397 nargs = 0; 2398 GrowableArray<BasicType> btarray; 2399 bool long_prev = false; 2400 2401 iterate_args([&] (int arg) { 2402 if (long_prev) { 2403 long_prev = false; 2404 if (arg == T_VOID) { 2405 btarray.append(T_LONG); 2406 } else { 2407 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter 2408 } 2409 } 2410 switch (arg) { 2411 case T_INT: // fallthrough 2412 case T_FLOAT: // fallthrough 2413 case T_DOUBLE: 2414 case T_VOID: 2415 btarray.append((BasicType)arg); 2416 break; 2417 case T_LONG: 2418 long_prev = true; 2419 break; 2420 default: ShouldNotReachHere(); 2421 } 2422 }); 2423 2424 if (long_prev) { 2425 btarray.append(T_OBJECT); 2426 } 2427 2428 nargs = btarray.length(); 2429 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs); 2430 int index = 0; 2431 GrowableArrayIterator<BasicType> iter = btarray.begin(); 2432 while (iter != btarray.end()) { 2433 sig_bt[index++] = *iter; 2434 ++iter; 2435 } 2436 assert(index == btarray.length(), "sanity check"); 2437 #ifdef ASSERT 2438 { 2439 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt); 2440 assert(this->equals(compare_fp), "sanity check"); 2441 AdapterFingerPrint::deallocate(compare_fp); 2442 } 2443 #endif 2444 return sig_bt; 2445 } 2446 2447 bool equals(AdapterFingerPrint* other) { 2448 if (other->_length != _length) { 2449 return false; 2450 } else { 2451 for (int i = 0; i < _length; i++) { 2452 if (value(i) != other->value(i)) { 2453 return false; 2454 } 2455 } 2456 } 2457 return true; 2458 } 2459 2460 // methods required by virtue of being a MetaspaceObj 2461 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2462 int size() const { return compute_size_in_words(_length); } 2463 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2464 2465 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2466 NOT_PRODUCT(_equals++); 2467 return fp1->equals(fp2); 2468 } 2469 2470 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2471 return fp->compute_hash(); 2472 } 2473 }; 2474 2475 #if INCLUDE_CDS 2476 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2477 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2478 } 2479 2480 class ArchivedAdapterTable : public OffsetCompactHashtable< 2481 AdapterFingerPrint*, 2482 AdapterHandlerEntry*, 2483 adapter_fp_equals_compact_hashtable_entry> {}; 2484 #endif // INCLUDE_CDS 2485 2486 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2487 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2488 AnyObj::C_HEAP, mtCode, 2489 AdapterFingerPrint::compute_hash, 2490 AdapterFingerPrint::equals>; 2491 static AdapterHandlerTable* _adapter_handler_table; 2492 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2493 2494 // Find a entry with the same fingerprint if it exists 2495 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) { 2496 NOT_PRODUCT(_lookups++); 2497 assert_lock_strong(AdapterHandlerLibrary_lock); 2498 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2499 AdapterHandlerEntry* entry = nullptr; 2500 #if INCLUDE_CDS 2501 // if we are building the archive then the archived adapter table is 2502 // not valid and we need to use the ones added to the runtime table 2503 if (AOTCodeCache::is_using_adapter()) { 2504 // Search archived table first. It is read-only table so can be searched without lock 2505 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2506 #ifndef PRODUCT 2507 if (entry != nullptr) { 2508 _archived_hits++; 2509 } 2510 #endif 2511 } 2512 #endif // INCLUDE_CDS 2513 if (entry == nullptr) { 2514 assert_lock_strong(AdapterHandlerLibrary_lock); 2515 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2516 if (entry_p != nullptr) { 2517 entry = *entry_p; 2518 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2519 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2520 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2521 #ifndef PRODUCT 2522 _runtime_hits++; 2523 #endif 2524 } 2525 } 2526 AdapterFingerPrint::deallocate(fp); 2527 return entry; 2528 } 2529 2530 #ifndef PRODUCT 2531 static void print_table_statistics() { 2532 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2533 return sizeof(*key) + sizeof(*a); 2534 }; 2535 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2536 ts.print(tty, "AdapterHandlerTable"); 2537 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2538 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2539 int total_hits = _archived_hits + _runtime_hits; 2540 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)", 2541 _lookups, _equals, total_hits, _archived_hits, _runtime_hits); 2542 } 2543 #endif 2544 2545 // --------------------------------------------------------------------------- 2546 // Implementation of AdapterHandlerLibrary 2547 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2548 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2549 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2550 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2551 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2552 #if INCLUDE_CDS 2553 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2554 #endif // INCLUDE_CDS 2555 static const int AdapterHandlerLibrary_size = 16*K; 2556 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2557 volatile uint AdapterHandlerLibrary::_id_counter = 0; 2558 2559 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2560 assert(_buffer != nullptr, "should be initialized"); 2561 return _buffer; 2562 } 2563 2564 static void post_adapter_creation(const AdapterHandlerEntry* entry) { 2565 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2566 AdapterBlob* adapter_blob = entry->adapter_blob(); 2567 char blob_id[256]; 2568 jio_snprintf(blob_id, 2569 sizeof(blob_id), 2570 "%s(%s)", 2571 adapter_blob->name(), 2572 entry->fingerprint()->as_string()); 2573 if (Forte::is_enabled()) { 2574 Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end()); 2575 } 2576 2577 if (JvmtiExport::should_post_dynamic_code_generated()) { 2578 JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end()); 2579 } 2580 } 2581 } 2582 2583 void AdapterHandlerLibrary::initialize() { 2584 { 2585 ResourceMark rm; 2586 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2587 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2588 } 2589 2590 #if INCLUDE_CDS 2591 // Link adapters in AOT Cache to their code in AOT Code Cache 2592 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) { 2593 link_aot_adapters(); 2594 lookup_simple_adapters(); 2595 return; 2596 } 2597 #endif // INCLUDE_CDS 2598 2599 ResourceMark rm; 2600 { 2601 MutexLocker mu(AdapterHandlerLibrary_lock); 2602 2603 _no_arg_handler = create_adapter(0, nullptr); 2604 2605 BasicType obj_args[] = { T_OBJECT }; 2606 _obj_arg_handler = create_adapter(1, obj_args); 2607 2608 BasicType int_args[] = { T_INT }; 2609 _int_arg_handler = create_adapter(1, int_args); 2610 2611 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2612 _obj_int_arg_handler = create_adapter(2, obj_int_args); 2613 2614 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2615 _obj_obj_arg_handler = create_adapter(2, obj_obj_args); 2616 2617 // we should always get an entry back but we don't have any 2618 // associated blob on Zero 2619 assert(_no_arg_handler != nullptr && 2620 _obj_arg_handler != nullptr && 2621 _int_arg_handler != nullptr && 2622 _obj_int_arg_handler != nullptr && 2623 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created"); 2624 } 2625 2626 // Outside of the lock 2627 #ifndef ZERO 2628 // no blobs to register when we are on Zero 2629 post_adapter_creation(_no_arg_handler); 2630 post_adapter_creation(_obj_arg_handler); 2631 post_adapter_creation(_int_arg_handler); 2632 post_adapter_creation(_obj_int_arg_handler); 2633 post_adapter_creation(_obj_obj_arg_handler); 2634 #endif // ZERO 2635 } 2636 2637 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2638 uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1); 2639 assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods"); 2640 return AdapterHandlerEntry::allocate(id, fingerprint); 2641 } 2642 2643 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2644 int total_args_passed = method->size_of_parameters(); // All args on stack 2645 if (total_args_passed == 0) { 2646 return _no_arg_handler; 2647 } else if (total_args_passed == 1) { 2648 if (!method->is_static()) { 2649 return _obj_arg_handler; 2650 } 2651 switch (method->signature()->char_at(1)) { 2652 case JVM_SIGNATURE_CLASS: 2653 case JVM_SIGNATURE_ARRAY: 2654 return _obj_arg_handler; 2655 case JVM_SIGNATURE_INT: 2656 case JVM_SIGNATURE_BOOLEAN: 2657 case JVM_SIGNATURE_CHAR: 2658 case JVM_SIGNATURE_BYTE: 2659 case JVM_SIGNATURE_SHORT: 2660 return _int_arg_handler; 2661 } 2662 } else if (total_args_passed == 2 && 2663 !method->is_static()) { 2664 switch (method->signature()->char_at(1)) { 2665 case JVM_SIGNATURE_CLASS: 2666 case JVM_SIGNATURE_ARRAY: 2667 return _obj_obj_arg_handler; 2668 case JVM_SIGNATURE_INT: 2669 case JVM_SIGNATURE_BOOLEAN: 2670 case JVM_SIGNATURE_CHAR: 2671 case JVM_SIGNATURE_BYTE: 2672 case JVM_SIGNATURE_SHORT: 2673 return _obj_int_arg_handler; 2674 } 2675 } 2676 return nullptr; 2677 } 2678 2679 class AdapterSignatureIterator : public SignatureIterator { 2680 private: 2681 BasicType stack_sig_bt[16]; 2682 BasicType* sig_bt; 2683 int index; 2684 2685 public: 2686 AdapterSignatureIterator(Symbol* signature, 2687 fingerprint_t fingerprint, 2688 bool is_static, 2689 int total_args_passed) : 2690 SignatureIterator(signature, fingerprint), 2691 index(0) 2692 { 2693 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2694 if (!is_static) { // Pass in receiver first 2695 sig_bt[index++] = T_OBJECT; 2696 } 2697 do_parameters_on(this); 2698 } 2699 2700 BasicType* basic_types() { 2701 return sig_bt; 2702 } 2703 2704 #ifdef ASSERT 2705 int slots() { 2706 return index; 2707 } 2708 #endif 2709 2710 private: 2711 2712 friend class SignatureIterator; // so do_parameters_on can call do_type 2713 void do_type(BasicType type) { 2714 sig_bt[index++] = type; 2715 if (type == T_LONG || type == T_DOUBLE) { 2716 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2717 } 2718 } 2719 }; 2720 2721 2722 const char* AdapterHandlerEntry::_entry_names[] = { 2723 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 2724 }; 2725 2726 #ifdef ASSERT 2727 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) { 2728 // we can only check for the same code if there is any 2729 #ifndef ZERO 2730 AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true); 2731 assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison"); 2732 assert(comparison_entry->compare_code(cached_entry), "code must match"); 2733 // Release the one just created 2734 AdapterHandlerEntry::deallocate(comparison_entry); 2735 # endif // ZERO 2736 } 2737 #endif /* ASSERT*/ 2738 2739 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2740 assert(!method->is_abstract(), "abstract methods do not have adapters"); 2741 // Use customized signature handler. Need to lock around updates to 2742 // the _adapter_handler_table (it is not safe for concurrent readers 2743 // and a single writer: this could be fixed if it becomes a 2744 // problem). 2745 2746 // Fast-path for trivial adapters 2747 AdapterHandlerEntry* entry = get_simple_adapter(method); 2748 if (entry != nullptr) { 2749 return entry; 2750 } 2751 2752 ResourceMark rm; 2753 bool new_entry = false; 2754 2755 // Fill in the signature array, for the calling-convention call. 2756 int total_args_passed = method->size_of_parameters(); // All args on stack 2757 2758 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2759 method->is_static(), total_args_passed); 2760 assert(si.slots() == total_args_passed, ""); 2761 BasicType* sig_bt = si.basic_types(); 2762 { 2763 MutexLocker mu(AdapterHandlerLibrary_lock); 2764 2765 // Lookup method signature's fingerprint 2766 entry = lookup(total_args_passed, sig_bt); 2767 2768 if (entry != nullptr) { 2769 #ifndef ZERO 2770 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 2771 #endif 2772 #ifdef ASSERT 2773 if (!entry->in_aot_cache() && VerifyAdapterSharing) { 2774 verify_adapter_sharing(total_args_passed, sig_bt, entry); 2775 } 2776 #endif 2777 } else { 2778 entry = create_adapter(total_args_passed, sig_bt); 2779 if (entry != nullptr) { 2780 new_entry = true; 2781 } 2782 } 2783 } 2784 2785 // Outside of the lock 2786 if (new_entry) { 2787 post_adapter_creation(entry); 2788 } 2789 return entry; 2790 } 2791 2792 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 2793 ResourceMark rm; 2794 const char* name = AdapterHandlerLibrary::name(handler); 2795 const uint32_t id = AdapterHandlerLibrary::id(handler); 2796 2797 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name); 2798 if (blob != nullptr) { 2799 handler->set_adapter_blob(blob->as_adapter_blob()); 2800 } 2801 } 2802 2803 #ifndef PRODUCT 2804 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) { 2805 ttyLocker ttyl; 2806 ResourceMark rm; 2807 int insts_size; 2808 // on Zero the blob may be null 2809 handler->print_adapter_on(tty); 2810 AdapterBlob* adapter_blob = handler->adapter_blob(); 2811 if (adapter_blob == nullptr) { 2812 return; 2813 } 2814 insts_size = adapter_blob->code_size(); 2815 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 2816 handler->fingerprint()->as_basic_args_string(), 2817 handler->fingerprint()->as_string(), insts_size); 2818 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 2819 if (Verbose || PrintStubCode) { 2820 address first_pc = adapter_blob->content_begin(); 2821 if (first_pc != nullptr) { 2822 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 2823 st->cr(); 2824 } 2825 } 2826 } 2827 #endif // PRODUCT 2828 2829 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT], 2830 int entry_offset[AdapterBlob::ENTRY_COUNT]) { 2831 entry_offset[AdapterBlob::I2C] = 0; 2832 entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C]; 2833 entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C]; 2834 if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) { 2835 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1; 2836 } else { 2837 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C]; 2838 } 2839 } 2840 2841 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler, 2842 int total_args_passed, 2843 BasicType* sig_bt, 2844 bool is_transient) { 2845 if (log_is_enabled(Info, perf, class, link)) { 2846 ClassLoader::perf_method_adapters_count()->inc(); 2847 } 2848 2849 #ifndef ZERO 2850 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2851 CodeBuffer buffer(buf); 2852 short buffer_locs[20]; 2853 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2854 sizeof(buffer_locs)/sizeof(relocInfo)); 2855 MacroAssembler masm(&buffer); 2856 VMRegPair stack_regs[16]; 2857 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2858 2859 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2860 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2861 address entry_address[AdapterBlob::ENTRY_COUNT]; 2862 SharedRuntime::generate_i2c2i_adapters(&masm, 2863 total_args_passed, 2864 comp_args_on_stack, 2865 sig_bt, 2866 regs, 2867 entry_address); 2868 // On zero there is no code to save and no need to create a blob and 2869 // or relocate the handler. 2870 int entry_offset[AdapterBlob::ENTRY_COUNT]; 2871 address_to_offset(entry_address, entry_offset); 2872 #ifdef ASSERT 2873 if (VerifyAdapterSharing) { 2874 handler->save_code(buf->code_begin(), buffer.insts_size()); 2875 if (is_transient) { 2876 return true; 2877 } 2878 } 2879 #endif 2880 AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset); 2881 if (adapter_blob == nullptr) { 2882 // CodeCache is full, disable compilation 2883 // Ought to log this but compile log is only per compile thread 2884 // and we're some non descript Java thread. 2885 return false; 2886 } 2887 handler->set_adapter_blob(adapter_blob); 2888 if (!is_transient && AOTCodeCache::is_dumping_adapter()) { 2889 // try to save generated code 2890 const char* name = AdapterHandlerLibrary::name(handler); 2891 const uint32_t id = AdapterHandlerLibrary::id(handler); 2892 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name); 2893 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled"); 2894 } 2895 #endif // ZERO 2896 2897 #ifndef PRODUCT 2898 // debugging support 2899 if (PrintAdapterHandlers || PrintStubCode) { 2900 print_adapter_handler_info(tty, handler); 2901 } 2902 #endif 2903 2904 return true; 2905 } 2906 2907 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed, 2908 BasicType* sig_bt, 2909 bool is_transient) { 2910 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2911 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 2912 if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) { 2913 AdapterHandlerEntry::deallocate(handler); 2914 return nullptr; 2915 } 2916 if (!is_transient) { 2917 assert_lock_strong(AdapterHandlerLibrary_lock); 2918 _adapter_handler_table->put(fp, handler); 2919 } 2920 return handler; 2921 } 2922 2923 #if INCLUDE_CDS 2924 void AdapterHandlerEntry::remove_unshareable_info() { 2925 #ifdef ASSERT 2926 _saved_code = nullptr; 2927 _saved_code_length = 0; 2928 #endif // ASSERT 2929 _adapter_blob = nullptr; 2930 _linked = false; 2931 } 2932 2933 class CopyAdapterTableToArchive : StackObj { 2934 private: 2935 CompactHashtableWriter* _writer; 2936 ArchiveBuilder* _builder; 2937 public: 2938 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 2939 _builder(ArchiveBuilder::current()) 2940 {} 2941 2942 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 2943 LogStreamHandle(Trace, aot) lsh; 2944 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 2945 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 2946 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 2947 assert(buffered_fp != nullptr,"sanity check"); 2948 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 2949 assert(buffered_entry != nullptr,"sanity check"); 2950 2951 uint hash = fp->compute_hash(); 2952 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 2953 _writer->add(hash, delta); 2954 if (lsh.is_enabled()) { 2955 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 2956 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 2957 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 2958 } 2959 } else { 2960 if (lsh.is_enabled()) { 2961 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 2962 } 2963 } 2964 return true; 2965 } 2966 }; 2967 2968 void AdapterHandlerLibrary::dump_aot_adapter_table() { 2969 CompactHashtableStats stats; 2970 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 2971 CopyAdapterTableToArchive copy(&writer); 2972 _adapter_handler_table->iterate(©); 2973 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 2974 } 2975 2976 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 2977 _aot_adapter_handler_table.serialize_header(soc); 2978 } 2979 2980 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 2981 #ifdef ASSERT 2982 if (TestAOTAdapterLinkFailure) { 2983 return; 2984 } 2985 #endif 2986 lookup_aot_cache(handler); 2987 #ifndef PRODUCT 2988 // debugging support 2989 if (PrintAdapterHandlers || PrintStubCode) { 2990 print_adapter_handler_info(tty, handler); 2991 } 2992 #endif 2993 } 2994 2995 // This method is used during production run to link archived adapters (stored in AOT Cache) 2996 // to their code in AOT Code Cache 2997 void AdapterHandlerEntry::link() { 2998 ResourceMark rm; 2999 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 3000 bool generate_code = false; 3001 // Generate code only if AOTCodeCache is not available, or 3002 // caching adapters is disabled, or we fail to link 3003 // the AdapterHandlerEntry to its code in the AOTCodeCache 3004 if (AOTCodeCache::is_using_adapter()) { 3005 AdapterHandlerLibrary::link_aot_adapter_handler(this); 3006 // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null 3007 if (_adapter_blob == nullptr) { 3008 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 3009 generate_code = true; 3010 } 3011 } else { 3012 generate_code = true; 3013 } 3014 if (generate_code) { 3015 int nargs; 3016 BasicType* bt = _fingerprint->as_basic_type(nargs); 3017 if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) { 3018 // Don't throw exceptions during VM initialization because java.lang.* classes 3019 // might not have been initialized, causing problems when constructing the 3020 // Java exception object. 3021 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 3022 } 3023 } 3024 if (_adapter_blob != nullptr) { 3025 post_adapter_creation(this); 3026 } 3027 assert(_linked, "AdapterHandlerEntry must now be linked"); 3028 } 3029 3030 void AdapterHandlerLibrary::link_aot_adapters() { 3031 uint max_id = 0; 3032 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available"); 3033 /* It is possible that some adapters generated in assembly phase are not stored in the cache. 3034 * That implies adapter ids of the adapters in the cache may not be contiguous. 3035 * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may 3036 * result in collision of adapter ids between AOT stored handlers and runtime generated handlers. 3037 * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers. 3038 */ 3039 _aot_adapter_handler_table.iterate([&](AdapterHandlerEntry* entry) { 3040 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 3041 entry->link(); 3042 max_id = MAX2(max_id, entry->id()); 3043 }); 3044 // Set adapter id to the maximum id found in the AOTCache 3045 assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage"); 3046 _id_counter = max_id; 3047 } 3048 3049 // This method is called during production run to lookup simple adapters 3050 // in the archived adapter handler table 3051 void AdapterHandlerLibrary::lookup_simple_adapters() { 3052 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 3053 3054 MutexLocker mu(AdapterHandlerLibrary_lock); 3055 _no_arg_handler = lookup(0, nullptr); 3056 3057 BasicType obj_args[] = { T_OBJECT }; 3058 _obj_arg_handler = lookup(1, obj_args); 3059 3060 BasicType int_args[] = { T_INT }; 3061 _int_arg_handler = lookup(1, int_args); 3062 3063 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 3064 _obj_int_arg_handler = lookup(2, obj_int_args); 3065 3066 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 3067 _obj_obj_arg_handler = lookup(2, obj_obj_args); 3068 3069 assert(_no_arg_handler != nullptr && 3070 _obj_arg_handler != nullptr && 3071 _int_arg_handler != nullptr && 3072 _obj_int_arg_handler != nullptr && 3073 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3074 assert(_no_arg_handler->is_linked() && 3075 _obj_arg_handler->is_linked() && 3076 _int_arg_handler->is_linked() && 3077 _obj_int_arg_handler->is_linked() && 3078 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3079 } 3080 #endif // INCLUDE_CDS 3081 3082 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3083 LogStreamHandle(Trace, aot) lsh; 3084 if (lsh.is_enabled()) { 3085 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3086 lsh.cr(); 3087 } 3088 it->push(&_fingerprint); 3089 } 3090 3091 AdapterHandlerEntry::~AdapterHandlerEntry() { 3092 if (_fingerprint != nullptr) { 3093 AdapterFingerPrint::deallocate(_fingerprint); 3094 _fingerprint = nullptr; 3095 } 3096 #ifdef ASSERT 3097 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3098 #endif 3099 FreeHeap(this); 3100 } 3101 3102 3103 #ifdef ASSERT 3104 // Capture the code before relocation so that it can be compared 3105 // against other versions. If the code is captured after relocation 3106 // then relative instructions won't be equivalent. 3107 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3108 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3109 _saved_code_length = length; 3110 memcpy(_saved_code, buffer, length); 3111 } 3112 3113 3114 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3115 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3116 3117 if (other->_saved_code_length != _saved_code_length) { 3118 return false; 3119 } 3120 3121 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3122 } 3123 #endif 3124 3125 3126 /** 3127 * Create a native wrapper for this native method. The wrapper converts the 3128 * Java-compiled calling convention to the native convention, handles 3129 * arguments, and transitions to native. On return from the native we transition 3130 * back to java blocking if a safepoint is in progress. 3131 */ 3132 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3133 ResourceMark rm; 3134 nmethod* nm = nullptr; 3135 3136 // Check if memory should be freed before allocation 3137 CodeCache::gc_on_allocation(); 3138 3139 assert(method->is_native(), "must be native"); 3140 assert(method->is_special_native_intrinsic() || 3141 method->has_native_function(), "must have something valid to call!"); 3142 3143 { 3144 // Perform the work while holding the lock, but perform any printing outside the lock 3145 MutexLocker mu(AdapterHandlerLibrary_lock); 3146 // See if somebody beat us to it 3147 if (method->code() != nullptr) { 3148 return; 3149 } 3150 3151 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3152 assert(compile_id > 0, "Must generate native wrapper"); 3153 3154 3155 ResourceMark rm; 3156 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3157 if (buf != nullptr) { 3158 CodeBuffer buffer(buf); 3159 3160 if (method->is_continuation_enter_intrinsic()) { 3161 buffer.initialize_stubs_size(192); 3162 } 3163 3164 struct { double data[20]; } locs_buf; 3165 struct { double data[20]; } stubs_locs_buf; 3166 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3167 #if defined(AARCH64) || defined(PPC64) 3168 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3169 // in the constant pool to ensure ordering between the barrier and oops 3170 // accesses. For native_wrappers we need a constant. 3171 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3172 // static java call that is resolved in the runtime. 3173 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3174 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3175 } 3176 #endif 3177 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3178 MacroAssembler _masm(&buffer); 3179 3180 // Fill in the signature array, for the calling-convention call. 3181 const int total_args_passed = method->size_of_parameters(); 3182 3183 VMRegPair stack_regs[16]; 3184 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3185 3186 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3187 method->is_static(), total_args_passed); 3188 BasicType* sig_bt = si.basic_types(); 3189 assert(si.slots() == total_args_passed, ""); 3190 BasicType ret_type = si.return_type(); 3191 3192 // Now get the compiled-Java arguments layout. 3193 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3194 3195 // Generate the compiled-to-native wrapper code 3196 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3197 3198 if (nm != nullptr) { 3199 { 3200 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3201 if (nm->make_in_use()) { 3202 method->set_code(method, nm); 3203 } 3204 } 3205 3206 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3207 if (directive->PrintAssemblyOption) { 3208 nm->print_code(); 3209 } 3210 DirectivesStack::release(directive); 3211 } 3212 } 3213 } // Unlock AdapterHandlerLibrary_lock 3214 3215 3216 // Install the generated code. 3217 if (nm != nullptr) { 3218 const char *msg = method->is_static() ? "(static)" : ""; 3219 CompileTask::print_ul(nm, msg); 3220 if (PrintCompilation) { 3221 ttyLocker ttyl; 3222 CompileTask::print(tty, nm, msg); 3223 } 3224 nm->post_compiled_method_load_event(); 3225 } 3226 } 3227 3228 // ------------------------------------------------------------------------- 3229 // Java-Java calling convention 3230 // (what you use when Java calls Java) 3231 3232 //------------------------------name_for_receiver---------------------------------- 3233 // For a given signature, return the VMReg for parameter 0. 3234 VMReg SharedRuntime::name_for_receiver() { 3235 VMRegPair regs; 3236 BasicType sig_bt = T_OBJECT; 3237 (void) java_calling_convention(&sig_bt, ®s, 1); 3238 // Return argument 0 register. In the LP64 build pointers 3239 // take 2 registers, but the VM wants only the 'main' name. 3240 return regs.first(); 3241 } 3242 3243 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3244 // This method is returning a data structure allocating as a 3245 // ResourceObject, so do not put any ResourceMarks in here. 3246 3247 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3248 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3249 int cnt = 0; 3250 if (has_receiver) { 3251 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3252 } 3253 3254 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3255 BasicType type = ss.type(); 3256 sig_bt[cnt++] = type; 3257 if (is_double_word_type(type)) 3258 sig_bt[cnt++] = T_VOID; 3259 } 3260 3261 if (has_appendix) { 3262 sig_bt[cnt++] = T_OBJECT; 3263 } 3264 3265 assert(cnt < 256, "grow table size"); 3266 3267 int comp_args_on_stack; 3268 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3269 3270 // the calling convention doesn't count out_preserve_stack_slots so 3271 // we must add that in to get "true" stack offsets. 3272 3273 if (comp_args_on_stack) { 3274 for (int i = 0; i < cnt; i++) { 3275 VMReg reg1 = regs[i].first(); 3276 if (reg1->is_stack()) { 3277 // Yuck 3278 reg1 = reg1->bias(out_preserve_stack_slots()); 3279 } 3280 VMReg reg2 = regs[i].second(); 3281 if (reg2->is_stack()) { 3282 // Yuck 3283 reg2 = reg2->bias(out_preserve_stack_slots()); 3284 } 3285 regs[i].set_pair(reg2, reg1); 3286 } 3287 } 3288 3289 // results 3290 *arg_size = cnt; 3291 return regs; 3292 } 3293 3294 // OSR Migration Code 3295 // 3296 // This code is used convert interpreter frames into compiled frames. It is 3297 // called from very start of a compiled OSR nmethod. A temp array is 3298 // allocated to hold the interesting bits of the interpreter frame. All 3299 // active locks are inflated to allow them to move. The displaced headers and 3300 // active interpreter locals are copied into the temp buffer. Then we return 3301 // back to the compiled code. The compiled code then pops the current 3302 // interpreter frame off the stack and pushes a new compiled frame. Then it 3303 // copies the interpreter locals and displaced headers where it wants. 3304 // Finally it calls back to free the temp buffer. 3305 // 3306 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3307 3308 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3309 assert(current == JavaThread::current(), "pre-condition"); 3310 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 3311 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3312 // frame. The stack watermark code below ensures that the interpreted frame is processed 3313 // before it gets unwound. This is helpful as the size of the compiled frame could be 3314 // larger than the interpreted frame, which could result in the new frame not being 3315 // processed correctly. 3316 StackWatermarkSet::before_unwind(current); 3317 3318 // 3319 // This code is dependent on the memory layout of the interpreter local 3320 // array and the monitors. On all of our platforms the layout is identical 3321 // so this code is shared. If some platform lays the their arrays out 3322 // differently then this code could move to platform specific code or 3323 // the code here could be modified to copy items one at a time using 3324 // frame accessor methods and be platform independent. 3325 3326 frame fr = current->last_frame(); 3327 assert(fr.is_interpreted_frame(), ""); 3328 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3329 3330 // Figure out how many monitors are active. 3331 int active_monitor_count = 0; 3332 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3333 kptr < fr.interpreter_frame_monitor_begin(); 3334 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3335 if (kptr->obj() != nullptr) active_monitor_count++; 3336 } 3337 3338 // QQQ we could place number of active monitors in the array so that compiled code 3339 // could double check it. 3340 3341 Method* moop = fr.interpreter_frame_method(); 3342 int max_locals = moop->max_locals(); 3343 // Allocate temp buffer, 1 word per local & 2 per active monitor 3344 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3345 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3346 3347 // Copy the locals. Order is preserved so that loading of longs works. 3348 // Since there's no GC I can copy the oops blindly. 3349 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3350 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3351 (HeapWord*)&buf[0], 3352 max_locals); 3353 3354 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3355 int i = max_locals; 3356 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3357 kptr2 < fr.interpreter_frame_monitor_begin(); 3358 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3359 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3360 BasicLock *lock = kptr2->lock(); 3361 if (UseObjectMonitorTable) { 3362 buf[i] = (intptr_t)lock->object_monitor_cache(); 3363 } 3364 #ifdef ASSERT 3365 else { 3366 buf[i] = badDispHeaderOSR; 3367 } 3368 #endif 3369 i++; 3370 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3371 } 3372 } 3373 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3374 3375 RegisterMap map(current, 3376 RegisterMap::UpdateMap::skip, 3377 RegisterMap::ProcessFrames::include, 3378 RegisterMap::WalkContinuation::skip); 3379 frame sender = fr.sender(&map); 3380 if (sender.is_interpreted_frame()) { 3381 current->push_cont_fastpath(sender.sp()); 3382 } 3383 3384 return buf; 3385 JRT_END 3386 3387 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3388 FREE_C_HEAP_ARRAY(intptr_t, buf); 3389 JRT_END 3390 3391 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3392 bool found = false; 3393 #if INCLUDE_CDS 3394 if (AOTCodeCache::is_using_adapter()) { 3395 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3396 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); 3397 }; 3398 _aot_adapter_handler_table.iterate(findblob_archived_table); 3399 } 3400 #endif // INCLUDE_CDS 3401 if (!found) { 3402 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3403 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3404 }; 3405 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3406 _adapter_handler_table->iterate(findblob_runtime_table); 3407 } 3408 return found; 3409 } 3410 3411 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) { 3412 return handler->fingerprint()->as_basic_args_string(); 3413 } 3414 3415 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) { 3416 return handler->id(); 3417 } 3418 3419 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3420 bool found = false; 3421 #if INCLUDE_CDS 3422 if (AOTCodeCache::is_using_adapter()) { 3423 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3424 if (b == CodeCache::find_blob(handler->get_i2c_entry())) { 3425 found = true; 3426 st->print("Adapter for signature: "); 3427 handler->print_adapter_on(st); 3428 return true; 3429 } else { 3430 return false; // keep looking 3431 } 3432 }; 3433 _aot_adapter_handler_table.iterate(findblob_archived_table); 3434 } 3435 #endif // INCLUDE_CDS 3436 if (!found) { 3437 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3438 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3439 found = true; 3440 st->print("Adapter for signature: "); 3441 a->print_adapter_on(st); 3442 return true; 3443 } else { 3444 return false; // keep looking 3445 } 3446 }; 3447 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3448 _adapter_handler_table->iterate(findblob_runtime_table); 3449 } 3450 assert(found, "Should have found handler"); 3451 } 3452 3453 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3454 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3455 if (adapter_blob() != nullptr) { 3456 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3457 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3458 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3459 if (get_c2i_no_clinit_check_entry() != nullptr) { 3460 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3461 } 3462 } 3463 st->cr(); 3464 } 3465 3466 #ifndef PRODUCT 3467 3468 void AdapterHandlerLibrary::print_statistics() { 3469 print_table_statistics(); 3470 } 3471 3472 #endif /* PRODUCT */ 3473 3474 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3475 assert(current == JavaThread::current(), "pre-condition"); 3476 StackOverflow* overflow_state = current->stack_overflow_state(); 3477 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3478 overflow_state->set_reserved_stack_activation(current->stack_base()); 3479 JRT_END 3480 3481 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3482 ResourceMark rm(current); 3483 frame activation; 3484 nmethod* nm = nullptr; 3485 int count = 1; 3486 3487 assert(fr.is_java_frame(), "Must start on Java frame"); 3488 3489 RegisterMap map(JavaThread::current(), 3490 RegisterMap::UpdateMap::skip, 3491 RegisterMap::ProcessFrames::skip, 3492 RegisterMap::WalkContinuation::skip); // don't walk continuations 3493 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3494 if (!fr.is_java_frame()) { 3495 continue; 3496 } 3497 3498 Method* method = nullptr; 3499 bool found = false; 3500 if (fr.is_interpreted_frame()) { 3501 method = fr.interpreter_frame_method(); 3502 if (method != nullptr && method->has_reserved_stack_access()) { 3503 found = true; 3504 } 3505 } else { 3506 CodeBlob* cb = fr.cb(); 3507 if (cb != nullptr && cb->is_nmethod()) { 3508 nm = cb->as_nmethod(); 3509 method = nm->method(); 3510 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3511 method = sd->method(); 3512 if (method != nullptr && method->has_reserved_stack_access()) { 3513 found = true; 3514 } 3515 } 3516 } 3517 } 3518 if (found) { 3519 activation = fr; 3520 warning("Potentially dangerous stack overflow in " 3521 "ReservedStackAccess annotated method %s [%d]", 3522 method->name_and_sig_as_C_string(), count++); 3523 EventReservedStackActivation event; 3524 if (event.should_commit()) { 3525 event.set_method(method); 3526 event.commit(); 3527 } 3528 } 3529 } 3530 return activation; 3531 } 3532 3533 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3534 // After any safepoint, just before going back to compiled code, 3535 // we inform the GC that we will be doing initializing writes to 3536 // this object in the future without emitting card-marks, so 3537 // GC may take any compensating steps. 3538 3539 oop new_obj = current->vm_result_oop(); 3540 if (new_obj == nullptr) return; 3541 3542 BarrierSet *bs = BarrierSet::barrier_set(); 3543 bs->on_slowpath_allocation_exit(current, new_obj); 3544 } --- EOF ---