1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveBuilder.hpp"
  26 #include "cds/archiveUtils.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/aotCodeCache.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/compiledIC.hpp"
  35 #include "code/nmethod.inline.hpp"
  36 #include "code/scopeDesc.hpp"
  37 #include "code/vtableStubs.hpp"
  38 #include "compiler/abstractCompiler.hpp"
  39 #include "compiler/compileBroker.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/interpreterRuntime.hpp"
  45 #include "jfr/jfrEvents.hpp"
  46 #include "jvm.h"
  47 #include "logging/log.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "metaprogramming/primitiveConversions.hpp"
  51 #include "oops/klass.hpp"
  52 #include "oops/method.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "prims/forte.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/methodHandles.hpp"
  59 #include "prims/nativeLookup.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/atomicAccess.hpp"
  62 #include "runtime/basicLock.inline.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/init.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/jniHandles.inline.hpp"
  70 #include "runtime/osThread.hpp"
  71 #include "runtime/perfData.inline.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/synchronizer.inline.hpp"
  76 #include "runtime/timerTrace.hpp"
  77 #include "runtime/vframe.inline.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vm_version.hpp"
  80 #include "services/management.hpp"
  81 #include "utilities/copy.hpp"
  82 #include "utilities/dtrace.hpp"
  83 #include "utilities/events.hpp"
  84 #include "utilities/globalDefinitions.hpp"
  85 #include "utilities/hashTable.hpp"
  86 #include "utilities/macros.hpp"
  87 #include "utilities/xmlstream.hpp"
  88 #ifdef COMPILER1
  89 #include "c1/c1_Runtime1.hpp"
  90 #endif
  91 #if INCLUDE_JFR
  92 #include "jfr/jfr.inline.hpp"
  93 #endif
  94 
  95 // Shared runtime stub routines reside in their own unique blob with a
  96 // single entry point
  97 
  98 
  99 #define SHARED_STUB_FIELD_DEFINE(name, type) \
 100   type*       SharedRuntime::BLOB_FIELD_NAME(name);
 101   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
 102 #undef SHARED_STUB_FIELD_DEFINE
 103 
 104 nmethod*            SharedRuntime::_cont_doYield_stub;
 105 
 106 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr;
 107 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time     = nullptr;
 108 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time      = nullptr;
 109 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr;
 110 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time             = nullptr;
 111 
 112 #if 0
 113 // TODO tweak global stub name generation to match this
 114 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 115 const char *SharedRuntime::_stub_names[] = {
 116   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 117 };
 118 #endif
 119 
 120 //----------------------------generate_stubs-----------------------------------
 121 void SharedRuntime::generate_initial_stubs() {
 122   // Build this early so it's available for the interpreter.
 123   _throw_StackOverflowError_blob =
 124     generate_throw_exception(StubId::shared_throw_StackOverflowError_id,
 125                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 126 }
 127 
 128 void SharedRuntime::generate_stubs() {
 129   _wrong_method_blob =
 130     generate_resolve_blob(StubId::shared_wrong_method_id,
 131                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 132   _wrong_method_abstract_blob =
 133     generate_resolve_blob(StubId::shared_wrong_method_abstract_id,
 134                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 135   _ic_miss_blob =
 136     generate_resolve_blob(StubId::shared_ic_miss_id,
 137                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 138   _resolve_opt_virtual_call_blob =
 139     generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id,
 140                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 141   _resolve_virtual_call_blob =
 142     generate_resolve_blob(StubId::shared_resolve_virtual_call_id,
 143                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 144   _resolve_static_call_blob =
 145     generate_resolve_blob(StubId::shared_resolve_static_call_id,
 146                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 147 
 148   _throw_delayed_StackOverflowError_blob =
 149     generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id,
 150                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 151 
 152   _throw_AbstractMethodError_blob =
 153     generate_throw_exception(StubId::shared_throw_AbstractMethodError_id,
 154                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 155 
 156   _throw_IncompatibleClassChangeError_blob =
 157     generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id,
 158                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 159 
 160   _throw_NullPointerException_at_call_blob =
 161     generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id,
 162                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 163 
 164 #if COMPILER2_OR_JVMCI
 165   // Vectors are generated only by C2 and JVMCI.
 166   bool support_wide = is_wide_vector(MaxVectorSize);
 167   if (support_wide) {
 168     _polling_page_vectors_safepoint_handler_blob =
 169       generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id,
 170                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 171   }
 172 #endif // COMPILER2_OR_JVMCI
 173   _polling_page_safepoint_handler_blob =
 174     generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id,
 175                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 176   _polling_page_return_handler_blob =
 177     generate_handler_blob(StubId::shared_polling_page_return_handler_id,
 178                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 179 
 180   generate_deopt_blob();
 181 
 182   if (UsePerfData) {
 183     EXCEPTION_MARK;
 184     NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call");
 185     NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time,     SUN_CI, "resovle_virtual_call");
 186     NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time,      SUN_CI, "resovle_static_call");
 187     NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method");
 188     NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time ,            SUN_CI, "ic_miss");
 189     if (HAS_PENDING_EXCEPTION) {
 190       vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly");
 191     }
 192   }
 193 }
 194 
 195 void SharedRuntime::init_adapter_library() {
 196   AdapterHandlerLibrary::initialize();
 197 }
 198 
 199 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) {
 200   st->print("  %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us());
 201   if (TraceThreadTime) {
 202     st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us());
 203   }
 204   st->print(" / %5d events", cnt);
 205   st->cr();
 206 }
 207 
 208 void SharedRuntime::print_counters_on(outputStream* st) {
 209   st->print_cr("SharedRuntime:");
 210   if (UsePerfData) {
 211     print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr);
 212     print_counter_on(st, "resolve_virtual_call:",     _perf_resolve_virtual_total_time,     _resolve_virtual_ctr);
 213     print_counter_on(st, "resolve_static_call:",      _perf_resolve_static_total_time,      _resolve_static_ctr);
 214     print_counter_on(st, "handle_wrong_method:",      _perf_handle_wrong_method_total_time, _wrong_method_ctr);
 215     print_counter_on(st, "ic_miss:",                  _perf_ic_miss_total_time,             _ic_miss_ctr);
 216 
 217     jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() +
 218                                                           _perf_resolve_virtual_total_time->elapsed_counter_value() +
 219                                                           _perf_resolve_static_total_time->elapsed_counter_value() +
 220                                                           _perf_handle_wrong_method_total_time->elapsed_counter_value() +
 221                                                           _perf_ic_miss_total_time->elapsed_counter_value());
 222     st->print("Total:                      " JLONG_FORMAT_W(5) "us", total_elapsed_time_us);
 223     if (TraceThreadTime) {
 224       jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() +
 225                                                            _perf_resolve_virtual_total_time->thread_counter_value() +
 226                                                            _perf_resolve_static_total_time->thread_counter_value() +
 227                                                            _perf_handle_wrong_method_total_time->thread_counter_value() +
 228                                                            _perf_ic_miss_total_time->thread_counter_value());
 229       st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us);
 230 
 231     }
 232     st->cr();
 233   } else {
 234     st->print_cr("  no data (UsePerfData is turned off)");
 235   }
 236 }
 237 
 238 #if INCLUDE_JFR
 239 //------------------------------generate jfr runtime stubs ------
 240 void SharedRuntime::generate_jfr_stubs() {
 241   ResourceMark rm;
 242   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 243   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 244 
 245   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 246   _jfr_return_lease_blob = generate_jfr_return_lease();
 247 }
 248 
 249 #endif // INCLUDE_JFR
 250 
 251 #include <math.h>
 252 
 253 // Implementation of SharedRuntime
 254 

 255 // For statistics
 256 uint SharedRuntime::_ic_miss_ctr = 0;
 257 uint SharedRuntime::_wrong_method_ctr = 0;
 258 uint SharedRuntime::_resolve_static_ctr = 0;
 259 uint SharedRuntime::_resolve_virtual_ctr = 0;
 260 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
 261 
 262 #ifndef PRODUCT
 263 uint SharedRuntime::_implicit_null_throws = 0;
 264 uint SharedRuntime::_implicit_div0_throws = 0;
 265 
 266 int64_t SharedRuntime::_nof_normal_calls = 0;
 267 int64_t SharedRuntime::_nof_inlined_calls = 0;
 268 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 269 int64_t SharedRuntime::_nof_static_calls = 0;
 270 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 271 int64_t SharedRuntime::_nof_interface_calls = 0;
 272 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 273 
 274 uint SharedRuntime::_new_instance_ctr=0;
 275 uint SharedRuntime::_new_array_ctr=0;
 276 uint SharedRuntime::_multi2_ctr=0;
 277 uint SharedRuntime::_multi3_ctr=0;
 278 uint SharedRuntime::_multi4_ctr=0;
 279 uint SharedRuntime::_multi5_ctr=0;
 280 uint SharedRuntime::_mon_enter_stub_ctr=0;
 281 uint SharedRuntime::_mon_exit_stub_ctr=0;
 282 uint SharedRuntime::_mon_enter_ctr=0;
 283 uint SharedRuntime::_mon_exit_ctr=0;
 284 uint SharedRuntime::_partial_subtype_ctr=0;
 285 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 286 uint SharedRuntime::_jshort_array_copy_ctr=0;
 287 uint SharedRuntime::_jint_array_copy_ctr=0;
 288 uint SharedRuntime::_jlong_array_copy_ctr=0;
 289 uint SharedRuntime::_oop_array_copy_ctr=0;
 290 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 291 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 292 uint SharedRuntime::_generic_array_copy_ctr=0;
 293 uint SharedRuntime::_slow_array_copy_ctr=0;
 294 uint SharedRuntime::_find_handler_ctr=0;
 295 uint SharedRuntime::_rethrow_ctr=0;
 296 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 297 
 298 int     SharedRuntime::_ICmiss_index                    = 0;
 299 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 300 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 301 
 302 
 303 void SharedRuntime::trace_ic_miss(address at) {
 304   for (int i = 0; i < _ICmiss_index; i++) {
 305     if (_ICmiss_at[i] == at) {
 306       _ICmiss_count[i]++;
 307       return;
 308     }
 309   }
 310   int index = _ICmiss_index++;
 311   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 312   _ICmiss_at[index] = at;
 313   _ICmiss_count[index] = 1;
 314 }
 315 
 316 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) {
 317   if (ICMissHistogram) {
 318     st->print_cr("IC Miss Histogram:");
 319     int tot_misses = 0;
 320     for (int i = 0; i < _ICmiss_index; i++) {
 321       st->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 322       tot_misses += _ICmiss_count[i];
 323     }
 324     st->print_cr("Total IC misses: %7d", tot_misses);
 325   }
 326 }
 327 
 328 #ifdef COMPILER2
 329 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for)
 330 void SharedRuntime::debug_print_value(jboolean x) {
 331   tty->print_cr("boolean %d", x);
 332 }
 333 
 334 void SharedRuntime::debug_print_value(jbyte x) {
 335   tty->print_cr("byte %d", x);
 336 }
 337 
 338 void SharedRuntime::debug_print_value(jshort x) {
 339   tty->print_cr("short %d", x);
 340 }
 341 
 342 void SharedRuntime::debug_print_value(jchar x) {
 343   tty->print_cr("char %c %d", isprint(x) ? x : ' ', x);
 344 }
 345 
 346 void SharedRuntime::debug_print_value(jint x) {
 347   tty->print_cr("int %d", x);
 348 }
 349 
 350 void SharedRuntime::debug_print_value(jlong x) {
 351   tty->print_cr("long " JLONG_FORMAT, x);
 352 }
 353 
 354 void SharedRuntime::debug_print_value(jfloat x) {
 355   tty->print_cr("float %f", x);
 356 }
 357 
 358 void SharedRuntime::debug_print_value(jdouble x) {
 359   tty->print_cr("double %lf", x);
 360 }
 361 
 362 void SharedRuntime::debug_print_value(oopDesc* x) {
 363   x->print();
 364 }
 365 #endif // COMPILER2
 366 
 367 #endif // PRODUCT
 368 
 369 
 370 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 371   return x * y;
 372 JRT_END
 373 
 374 
 375 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 376   if (x == min_jlong && y == CONST64(-1)) {
 377     return x;
 378   } else {
 379     return x / y;
 380   }
 381 JRT_END
 382 
 383 
 384 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 385   if (x == min_jlong && y == CONST64(-1)) {
 386     return 0;
 387   } else {
 388     return x % y;
 389   }
 390 JRT_END
 391 
 392 
 393 #ifdef _WIN64
 394 const juint  float_sign_mask  = 0x7FFFFFFF;
 395 const juint  float_infinity   = 0x7F800000;
 396 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 397 const julong double_infinity  = CONST64(0x7FF0000000000000);
 398 #endif
 399 
 400 #if !defined(X86)
 401 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 402 #ifdef _WIN64
 403   // 64-bit Windows on amd64 returns the wrong values for
 404   // infinity operands.
 405   juint xbits = PrimitiveConversions::cast<juint>(x);
 406   juint ybits = PrimitiveConversions::cast<juint>(y);
 407   // x Mod Infinity == x unless x is infinity
 408   if (((xbits & float_sign_mask) != float_infinity) &&
 409        ((ybits & float_sign_mask) == float_infinity) ) {
 410     return x;
 411   }
 412   return ((jfloat)fmod_winx64((double)x, (double)y));
 413 #else
 414   return ((jfloat)fmod((double)x,(double)y));
 415 #endif
 416 JRT_END
 417 
 418 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 419 #ifdef _WIN64
 420   julong xbits = PrimitiveConversions::cast<julong>(x);
 421   julong ybits = PrimitiveConversions::cast<julong>(y);
 422   // x Mod Infinity == x unless x is infinity
 423   if (((xbits & double_sign_mask) != double_infinity) &&
 424        ((ybits & double_sign_mask) == double_infinity) ) {
 425     return x;
 426   }
 427   return ((jdouble)fmod_winx64((double)x, (double)y));
 428 #else
 429   return ((jdouble)fmod((double)x,(double)y));
 430 #endif
 431 JRT_END
 432 #endif // !X86
 433 
 434 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 435   return (jfloat)x;
 436 JRT_END
 437 
 438 #ifdef __SOFTFP__
 439 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 440   return x + y;
 441 JRT_END
 442 
 443 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 444   return x - y;
 445 JRT_END
 446 
 447 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 448   return x * y;
 449 JRT_END
 450 
 451 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 452   return x / y;
 453 JRT_END
 454 
 455 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 456   return x + y;
 457 JRT_END
 458 
 459 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 460   return x - y;
 461 JRT_END
 462 
 463 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 464   return x * y;
 465 JRT_END
 466 
 467 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 468   return x / y;
 469 JRT_END
 470 
 471 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 472   return (jdouble)x;
 473 JRT_END
 474 
 475 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 476   return (jdouble)x;
 477 JRT_END
 478 
 479 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 480   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 481 JRT_END
 482 
 483 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 484   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 485 JRT_END
 486 
 487 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 488   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 489 JRT_END
 490 
 491 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 492   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 493 JRT_END
 494 
 495 // Functions to return the opposite of the aeabi functions for nan.
 496 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 497   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 498 JRT_END
 499 
 500 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 501   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 502 JRT_END
 503 
 504 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 505   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 506 JRT_END
 507 
 508 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 509   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 510 JRT_END
 511 
 512 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 513   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 514 JRT_END
 515 
 516 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 517   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 518 JRT_END
 519 
 520 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 521   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 522 JRT_END
 523 
 524 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 525   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 526 JRT_END
 527 
 528 // Intrinsics make gcc generate code for these.
 529 float  SharedRuntime::fneg(float f)   {
 530   return -f;
 531 }
 532 
 533 double SharedRuntime::dneg(double f)  {
 534   return -f;
 535 }
 536 
 537 #endif // __SOFTFP__
 538 
 539 #if defined(__SOFTFP__) || defined(E500V2)
 540 // Intrinsics make gcc generate code for these.
 541 double SharedRuntime::dabs(double f)  {
 542   return (f <= (double)0.0) ? (double)0.0 - f : f;
 543 }
 544 
 545 #endif
 546 
 547 #if defined(__SOFTFP__)
 548 double SharedRuntime::dsqrt(double f) {
 549   return sqrt(f);
 550 }
 551 #endif
 552 
 553 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 554   if (g_isnan(x))
 555     return 0;
 556   if (x >= (jfloat) max_jint)
 557     return max_jint;
 558   if (x <= (jfloat) min_jint)
 559     return min_jint;
 560   return (jint) x;
 561 JRT_END
 562 
 563 
 564 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 565   if (g_isnan(x))
 566     return 0;
 567   if (x >= (jfloat) max_jlong)
 568     return max_jlong;
 569   if (x <= (jfloat) min_jlong)
 570     return min_jlong;
 571   return (jlong) x;
 572 JRT_END
 573 
 574 
 575 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 576   if (g_isnan(x))
 577     return 0;
 578   if (x >= (jdouble) max_jint)
 579     return max_jint;
 580   if (x <= (jdouble) min_jint)
 581     return min_jint;
 582   return (jint) x;
 583 JRT_END
 584 
 585 
 586 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 587   if (g_isnan(x))
 588     return 0;
 589   if (x >= (jdouble) max_jlong)
 590     return max_jlong;
 591   if (x <= (jdouble) min_jlong)
 592     return min_jlong;
 593   return (jlong) x;
 594 JRT_END
 595 
 596 
 597 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 598   return (jfloat)x;
 599 JRT_END
 600 
 601 
 602 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 603   return (jfloat)x;
 604 JRT_END
 605 
 606 
 607 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 608   return (jdouble)x;
 609 JRT_END
 610 
 611 
 612 // Exception handling across interpreter/compiler boundaries
 613 //
 614 // exception_handler_for_return_address(...) returns the continuation address.
 615 // The continuation address is the entry point of the exception handler of the
 616 // previous frame depending on the return address.
 617 
 618 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 619   // Note: This is called when we have unwound the frame of the callee that did
 620   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 621   // Notably, the stack is not walkable at this point, and hence the check must
 622   // be deferred until later. Specifically, any of the handlers returned here in
 623   // this function, will get dispatched to, and call deferred checks to
 624   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 625   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 626   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 627 
 628 #if INCLUDE_JVMCI
 629   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 630   // and other exception handler continuations do not read it
 631   current->set_exception_pc(nullptr);
 632 #endif // INCLUDE_JVMCI
 633 
 634   if (Continuation::is_return_barrier_entry(return_address)) {
 635     return StubRoutines::cont_returnBarrierExc();
 636   }
 637 
 638   // The fastest case first
 639   CodeBlob* blob = CodeCache::find_blob(return_address);
 640   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 641   if (nm != nullptr) {
 642     // native nmethods don't have exception handlers
 643     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 644     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 645     if (nm->is_deopt_pc(return_address)) {
 646       // If we come here because of a stack overflow, the stack may be
 647       // unguarded. Reguard the stack otherwise if we return to the
 648       // deopt blob and the stack bang causes a stack overflow we
 649       // crash.
 650       StackOverflow* overflow_state = current->stack_overflow_state();
 651       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 652       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 653         overflow_state->set_reserved_stack_activation(current->stack_base());
 654       }
 655       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 656       // The deferred StackWatermarkSet::after_unwind check will be performed in
 657       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 658       return SharedRuntime::deopt_blob()->unpack_with_exception();
 659     } else {
 660       // The deferred StackWatermarkSet::after_unwind check will be performed in
 661       // * OptoRuntime::handle_exception_C_helper for C2 code
 662       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 663       return nm->exception_begin();
 664     }
 665   }
 666 
 667   // Entry code
 668   if (StubRoutines::returns_to_call_stub(return_address)) {
 669     // The deferred StackWatermarkSet::after_unwind check will be performed in
 670     // JavaCallWrapper::~JavaCallWrapper
 671     assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before");
 672     return StubRoutines::catch_exception_entry();
 673   }
 674   if (blob != nullptr && blob->is_upcall_stub()) {
 675     return StubRoutines::upcall_stub_exception_handler();
 676   }
 677   // Interpreted code
 678   if (Interpreter::contains(return_address)) {
 679     // The deferred StackWatermarkSet::after_unwind check will be performed in
 680     // InterpreterRuntime::exception_handler_for_exception
 681     return Interpreter::rethrow_exception_entry();
 682   }
 683 
 684   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 685   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 686 
 687 #ifndef PRODUCT
 688   { ResourceMark rm;
 689     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 690     os::print_location(tty, (intptr_t)return_address);
 691     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 692     tty->print_cr("b) other problem");
 693   }
 694 #endif // PRODUCT
 695   ShouldNotReachHere();
 696   return nullptr;
 697 }
 698 
 699 
 700 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 701   return raw_exception_handler_for_return_address(current, return_address);
 702 JRT_END
 703 
 704 
 705 address SharedRuntime::get_poll_stub(address pc) {
 706   address stub;
 707   // Look up the code blob
 708   CodeBlob *cb = CodeCache::find_blob(pc);
 709 
 710   // Should be an nmethod
 711   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 712 
 713   // Look up the relocation information
 714   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 715       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 716 
 717 #ifdef ASSERT
 718   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 719     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 720     Disassembler::decode(cb);
 721     fatal("Only polling locations are used for safepoint");
 722   }
 723 #endif
 724 
 725   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 726   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 727   if (at_poll_return) {
 728     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 729            "polling page return stub not created yet");
 730     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 731   } else if (has_wide_vectors) {
 732     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 733            "polling page vectors safepoint stub not created yet");
 734     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 735   } else {
 736     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 737            "polling page safepoint stub not created yet");
 738     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 739   }
 740   log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = "
 741                        INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT,
 742                        p2i(Thread::current()),
 743                        Thread::current()->osthread()->thread_id(),
 744                        p2i(pc),
 745                        at_poll_return ? "return" : "loop",
 746                        p2i(stub));
 747   return stub;
 748 }
 749 
 750 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 751   if (JvmtiExport::can_post_on_exceptions()) {
 752     vframeStream vfst(current, true);
 753     methodHandle method = methodHandle(current, vfst.method());
 754     address bcp = method()->bcp_from(vfst.bci());
 755     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 756   }
 757 
 758 #if INCLUDE_JVMCI
 759   if (EnableJVMCI) {
 760     vframeStream vfst(current, true);
 761     methodHandle method = methodHandle(current, vfst.method());
 762     int bci = vfst.bci();
 763     MethodData* trap_mdo = method->method_data();
 764     if (trap_mdo != nullptr) {
 765       // Set exception_seen if the exceptional bytecode is an invoke
 766       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 767       if (call.is_valid()) {
 768         ResourceMark rm(current);
 769 
 770         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 771         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 772 
 773         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 774         if (pdata != nullptr && pdata->is_BitData()) {
 775           BitData* bit_data = (BitData*) pdata;
 776           bit_data->set_exception_seen();
 777         }
 778       }
 779     }
 780   }
 781 #endif
 782 
 783   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 784 }
 785 
 786 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 787   Handle h_exception = Exceptions::new_exception(current, name, message);
 788   throw_and_post_jvmti_exception(current, h_exception);
 789 }
 790 
 791 #if INCLUDE_JVMTI
 792 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 793   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 794   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 795   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 796   JNIHandles::destroy_local(vthread);
 797 JRT_END
 798 
 799 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 800   assert(hide == JNI_TRUE, "must be VTMS transition start");
 801   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 802   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 803   JNIHandles::destroy_local(vthread);
 804 JRT_END
 805 
 806 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 807   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 808   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 809   JNIHandles::destroy_local(vthread);
 810 JRT_END
 811 
 812 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 813   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 814   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 815   JNIHandles::destroy_local(vthread);
 816 JRT_END
 817 #endif // INCLUDE_JVMTI
 818 
 819 // The interpreter code to call this tracing function is only
 820 // called/generated when UL is on for redefine, class and has the right level
 821 // and tags. Since obsolete methods are never compiled, we don't have
 822 // to modify the compilers to generate calls to this function.
 823 //
 824 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 825     JavaThread* thread, Method* method))
 826   if (method->is_obsolete()) {
 827     // We are calling an obsolete method, but this is not necessarily
 828     // an error. Our method could have been redefined just after we
 829     // fetched the Method* from the constant pool.
 830     ResourceMark rm;
 831     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 832   }
 833 
 834   LogStreamHandle(Trace, interpreter, bytecode) log;
 835   if (log.is_enabled()) {
 836     ResourceMark rm;
 837     log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s",
 838               p2i(thread),
 839               (method->is_static() ? "static" : "virtual"),
 840               method->name_and_sig_as_C_string(),
 841               (method->is_native() ? " native" : ""),
 842               (thread->class_being_initialized() != nullptr ? " clinit" : ""),
 843               (method->method_holder()->is_initialized() ? "" : " being_initialized"));
 844   }
 845   return 0;
 846 JRT_END
 847 
 848 // ret_pc points into caller; we are returning caller's exception handler
 849 // for given exception
 850 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 851 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 852                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 853   assert(nm != nullptr, "must exist");
 854   ResourceMark rm;
 855 
 856 #if INCLUDE_JVMCI
 857   if (nm->is_compiled_by_jvmci()) {
 858     // lookup exception handler for this pc
 859     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 860     ExceptionHandlerTable table(nm);
 861     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 862     if (t != nullptr) {
 863       return nm->code_begin() + t->pco();
 864     } else {
 865       return Deoptimization::deoptimize_for_missing_exception_handler(nm);
 866     }
 867   }
 868 #endif // INCLUDE_JVMCI
 869 
 870   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 871   // determine handler bci, if any
 872   EXCEPTION_MARK;
 873 
 874   int handler_bci = -1;
 875   int scope_depth = 0;
 876   if (!force_unwind) {
 877     int bci = sd->bci();
 878     bool recursive_exception = false;
 879     do {
 880       bool skip_scope_increment = false;
 881       // exception handler lookup
 882       Klass* ek = exception->klass();
 883       methodHandle mh(THREAD, sd->method());
 884       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 885       if (HAS_PENDING_EXCEPTION) {
 886         recursive_exception = true;
 887         // We threw an exception while trying to find the exception handler.
 888         // Transfer the new exception to the exception handle which will
 889         // be set into thread local storage, and do another lookup for an
 890         // exception handler for this exception, this time starting at the
 891         // BCI of the exception handler which caused the exception to be
 892         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 893         // argument to ensure that the correct exception is thrown (4870175).
 894         recursive_exception_occurred = true;
 895         exception = Handle(THREAD, PENDING_EXCEPTION);
 896         CLEAR_PENDING_EXCEPTION;
 897         if (handler_bci >= 0) {
 898           bci = handler_bci;
 899           handler_bci = -1;
 900           skip_scope_increment = true;
 901         }
 902       }
 903       else {
 904         recursive_exception = false;
 905       }
 906       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 907         sd = sd->sender();
 908         if (sd != nullptr) {
 909           bci = sd->bci();
 910         }
 911         ++scope_depth;
 912       }
 913     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 914   }
 915 
 916   // found handling method => lookup exception handler
 917   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 918 
 919   ExceptionHandlerTable table(nm);
 920   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 921   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 922     // Allow abbreviated catch tables.  The idea is to allow a method
 923     // to materialize its exceptions without committing to the exact
 924     // routing of exceptions.  In particular this is needed for adding
 925     // a synthetic handler to unlock monitors when inlining
 926     // synchronized methods since the unlock path isn't represented in
 927     // the bytecodes.
 928     t = table.entry_for(catch_pco, -1, 0);
 929   }
 930 
 931 #ifdef COMPILER1
 932   if (t == nullptr && nm->is_compiled_by_c1()) {
 933     assert(nm->unwind_handler_begin() != nullptr, "");
 934     return nm->unwind_handler_begin();
 935   }
 936 #endif
 937 
 938   if (t == nullptr) {
 939     ttyLocker ttyl;
 940     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 941     tty->print_cr("   Exception:");
 942     exception->print();
 943     tty->cr();
 944     tty->print_cr(" Compiled exception table :");
 945     table.print();
 946     nm->print();
 947     nm->print_code();
 948     guarantee(false, "missing exception handler");
 949     return nullptr;
 950   }
 951 
 952   if (handler_bci != -1) { // did we find a handler in this method?
 953     sd->method()->set_exception_handler_entered(handler_bci); // profile
 954   }
 955   return nm->code_begin() + t->pco();
 956 }
 957 
 958 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 959   // These errors occur only at call sites
 960   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 961 JRT_END
 962 
 963 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 964   // These errors occur only at call sites
 965   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 966 JRT_END
 967 
 968 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 969   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 970 JRT_END
 971 
 972 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 973   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 974 JRT_END
 975 
 976 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 977   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 978   // cache sites (when the callee activation is not yet set up) so we are at a call site
 979   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 980 JRT_END
 981 
 982 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 983   throw_StackOverflowError_common(current, false);
 984 JRT_END
 985 
 986 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 987   throw_StackOverflowError_common(current, true);
 988 JRT_END
 989 
 990 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 991   // We avoid using the normal exception construction in this case because
 992   // it performs an upcall to Java, and we're already out of stack space.
 993   JavaThread* THREAD = current; // For exception macros.
 994   InstanceKlass* k = vmClasses::StackOverflowError_klass();
 995   oop exception_oop = k->allocate_instance(CHECK);
 996   if (delayed) {
 997     java_lang_Throwable::set_message(exception_oop,
 998                                      Universe::delayed_stack_overflow_error_message());
 999   }
1000   Handle exception (current, exception_oop);
1001   if (StackTraceInThrowable) {
1002     java_lang_Throwable::fill_in_stack_trace(exception);
1003   }
1004   // Remove the ScopedValue bindings in case we got a
1005   // StackOverflowError while we were trying to remove ScopedValue
1006   // bindings.
1007   current->clear_scopedValueBindings();
1008   // Increment counter for hs_err file reporting
1009   AtomicAccess::inc(&Exceptions::_stack_overflow_errors);
1010   throw_and_post_jvmti_exception(current, exception);
1011 }
1012 
1013 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
1014                                                            address pc,
1015                                                            ImplicitExceptionKind exception_kind)
1016 {
1017   address target_pc = nullptr;
1018 
1019   if (Interpreter::contains(pc)) {
1020     switch (exception_kind) {
1021       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
1022       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
1023       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
1024       default:                      ShouldNotReachHere();
1025     }
1026   } else {
1027     switch (exception_kind) {
1028       case STACK_OVERFLOW: {
1029         // Stack overflow only occurs upon frame setup; the callee is
1030         // going to be unwound. Dispatch to a shared runtime stub
1031         // which will cause the StackOverflowError to be fabricated
1032         // and processed.
1033         // Stack overflow should never occur during deoptimization:
1034         // the compiled method bangs the stack by as much as the
1035         // interpreter would need in case of a deoptimization. The
1036         // deoptimization blob and uncommon trap blob bang the stack
1037         // in a debug VM to verify the correctness of the compiled
1038         // method stack banging.
1039         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
1040         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
1041         return SharedRuntime::throw_StackOverflowError_entry();
1042       }
1043 
1044       case IMPLICIT_NULL: {
1045         if (VtableStubs::contains(pc)) {
1046           // We haven't yet entered the callee frame. Fabricate an
1047           // exception and begin dispatching it in the caller. Since
1048           // the caller was at a call site, it's safe to destroy all
1049           // caller-saved registers, as these entry points do.
1050           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
1051 
1052           // If vt_stub is null, then return null to signal handler to report the SEGV error.
1053           if (vt_stub == nullptr) return nullptr;
1054 
1055           if (vt_stub->is_abstract_method_error(pc)) {
1056             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
1057             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
1058             // Instead of throwing the abstract method error here directly, we re-resolve
1059             // and will throw the AbstractMethodError during resolve. As a result, we'll
1060             // get a more detailed error message.
1061             return SharedRuntime::get_handle_wrong_method_stub();
1062           } else {
1063             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
1064             // Assert that the signal comes from the expected location in stub code.
1065             assert(vt_stub->is_null_pointer_exception(pc),
1066                    "obtained signal from unexpected location in stub code");
1067             return SharedRuntime::throw_NullPointerException_at_call_entry();
1068           }
1069         } else {
1070           CodeBlob* cb = CodeCache::find_blob(pc);
1071 
1072           // If code blob is null, then return null to signal handler to report the SEGV error.
1073           if (cb == nullptr) return nullptr;
1074 
1075           // Exception happened in CodeCache. Must be either:
1076           // 1. Inline-cache check in C2I handler blob,
1077           // 2. Inline-cache check in nmethod, or
1078           // 3. Implicit null exception in nmethod
1079 
1080           if (!cb->is_nmethod()) {
1081             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1082             if (!is_in_blob) {
1083               // Allow normal crash reporting to handle this
1084               return nullptr;
1085             }
1086             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1087             // There is no handler here, so we will simply unwind.
1088             return SharedRuntime::throw_NullPointerException_at_call_entry();
1089           }
1090 
1091           // Otherwise, it's a compiled method.  Consult its exception handlers.
1092           nmethod* nm = cb->as_nmethod();
1093           if (nm->inlinecache_check_contains(pc)) {
1094             // exception happened inside inline-cache check code
1095             // => the nmethod is not yet active (i.e., the frame
1096             // is not set up yet) => use return address pushed by
1097             // caller => don't push another return address
1098             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1099             return SharedRuntime::throw_NullPointerException_at_call_entry();
1100           }
1101 
1102           if (nm->method()->is_method_handle_intrinsic()) {
1103             // exception happened inside MH dispatch code, similar to a vtable stub
1104             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1105             return SharedRuntime::throw_NullPointerException_at_call_entry();
1106           }
1107 
1108 #ifndef PRODUCT
1109           _implicit_null_throws++;
1110 #endif
1111           target_pc = nm->continuation_for_implicit_null_exception(pc);
1112           // If there's an unexpected fault, target_pc might be null,
1113           // in which case we want to fall through into the normal
1114           // error handling code.
1115         }
1116 
1117         break; // fall through
1118       }
1119 
1120 
1121       case IMPLICIT_DIVIDE_BY_ZERO: {
1122         nmethod* nm = CodeCache::find_nmethod(pc);
1123         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1124 #ifndef PRODUCT
1125         _implicit_div0_throws++;
1126 #endif
1127         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1128         // If there's an unexpected fault, target_pc might be null,
1129         // in which case we want to fall through into the normal
1130         // error handling code.
1131         break; // fall through
1132       }
1133 
1134       default: ShouldNotReachHere();
1135     }
1136 
1137     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1138 
1139     if (exception_kind == IMPLICIT_NULL) {
1140 #ifndef PRODUCT
1141       // for AbortVMOnException flag
1142       Exceptions::debug_check_abort("java.lang.NullPointerException");
1143 #endif //PRODUCT
1144       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1145     } else {
1146 #ifndef PRODUCT
1147       // for AbortVMOnException flag
1148       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1149 #endif //PRODUCT
1150       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1151     }
1152     return target_pc;
1153   }
1154 
1155   ShouldNotReachHere();
1156   return nullptr;
1157 }
1158 
1159 
1160 /**
1161  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1162  * installed in the native function entry of all native Java methods before
1163  * they get linked to their actual native methods.
1164  *
1165  * \note
1166  * This method actually never gets called!  The reason is because
1167  * the interpreter's native entries call NativeLookup::lookup() which
1168  * throws the exception when the lookup fails.  The exception is then
1169  * caught and forwarded on the return from NativeLookup::lookup() call
1170  * before the call to the native function.  This might change in the future.
1171  */
1172 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1173 {
1174   // We return a bad value here to make sure that the exception is
1175   // forwarded before we look at the return value.
1176   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1177 }
1178 JNI_END
1179 
1180 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1181   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1182 }
1183 
1184 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1185 #if INCLUDE_JVMCI
1186   if (!obj->klass()->has_finalizer()) {
1187     return;
1188   }
1189 #endif // INCLUDE_JVMCI
1190   assert(oopDesc::is_oop(obj), "must be a valid oop");
1191   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1192   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1193 JRT_END
1194 
1195 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1196   assert(thread != nullptr, "No thread");
1197   if (thread == nullptr) {
1198     return 0;
1199   }
1200   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1201             "current cannot touch oops after its GC barrier is detached.");
1202   oop obj = thread->threadObj();
1203   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1204 }
1205 
1206 /**
1207  * This function ought to be a void function, but cannot be because
1208  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1209  * 6254741.  Once that is fixed we can remove the dummy return value.
1210  */
1211 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1212   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1213 }
1214 
1215 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1216   return dtrace_object_alloc(thread, o, o->size());
1217 }
1218 
1219 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1220   assert(DTraceAllocProbes, "wrong call");
1221   Klass* klass = o->klass();
1222   Symbol* name = klass->name();
1223   HOTSPOT_OBJECT_ALLOC(
1224                    get_java_tid(thread),
1225                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1226   return 0;
1227 }
1228 
1229 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1230     JavaThread* current, Method* method))
1231   assert(current == JavaThread::current(), "pre-condition");
1232 
1233   assert(DTraceMethodProbes, "wrong call");
1234   Symbol* kname = method->klass_name();
1235   Symbol* name = method->name();
1236   Symbol* sig = method->signature();
1237   HOTSPOT_METHOD_ENTRY(
1238       get_java_tid(current),
1239       (char *) kname->bytes(), kname->utf8_length(),
1240       (char *) name->bytes(), name->utf8_length(),
1241       (char *) sig->bytes(), sig->utf8_length());
1242   return 0;
1243 JRT_END
1244 
1245 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1246     JavaThread* current, Method* method))
1247   assert(current == JavaThread::current(), "pre-condition");
1248   assert(DTraceMethodProbes, "wrong call");
1249   Symbol* kname = method->klass_name();
1250   Symbol* name = method->name();
1251   Symbol* sig = method->signature();
1252   HOTSPOT_METHOD_RETURN(
1253       get_java_tid(current),
1254       (char *) kname->bytes(), kname->utf8_length(),
1255       (char *) name->bytes(), name->utf8_length(),
1256       (char *) sig->bytes(), sig->utf8_length());
1257   return 0;
1258 JRT_END
1259 
1260 
1261 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1262 // for a call current in progress, i.e., arguments has been pushed on stack
1263 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1264 // vtable updates, etc.  Caller frame must be compiled.
1265 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1266   JavaThread* current = THREAD;
1267   ResourceMark rm(current);
1268 
1269   // last java frame on stack (which includes native call frames)
1270   vframeStream vfst(current, true);  // Do not skip and javaCalls
1271 
1272   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1273 }
1274 
1275 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1276   nmethod* caller = vfst.nm();
1277 
1278   address pc = vfst.frame_pc();
1279   { // Get call instruction under lock because another thread may be busy patching it.
1280     CompiledICLocker ic_locker(caller);
1281     return caller->attached_method_before_pc(pc);
1282   }
1283   return nullptr;
1284 }
1285 
1286 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1287 // for a call current in progress, i.e., arguments has been pushed on stack
1288 // but callee has not been invoked yet.  Caller frame must be compiled.
1289 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1290                                               CallInfo& callinfo, TRAPS) {
1291   Handle receiver;
1292   Handle nullHandle;  // create a handy null handle for exception returns
1293   JavaThread* current = THREAD;
1294 
1295   assert(!vfst.at_end(), "Java frame must exist");
1296 
1297   // Find caller and bci from vframe
1298   methodHandle caller(current, vfst.method());
1299   int          bci   = vfst.bci();
1300 
1301   if (caller->is_continuation_enter_intrinsic()) {
1302     bc = Bytecodes::_invokestatic;
1303     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1304     return receiver;
1305   }
1306 
1307   Bytecode_invoke bytecode(caller, bci);
1308   int bytecode_index = bytecode.index();
1309   bc = bytecode.invoke_code();
1310 
1311   methodHandle attached_method(current, extract_attached_method(vfst));
1312   if (attached_method.not_null()) {
1313     Method* callee = bytecode.static_target(CHECK_NH);
1314     vmIntrinsics::ID id = callee->intrinsic_id();
1315     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1316     // it attaches statically resolved method to the call site.
1317     if (MethodHandles::is_signature_polymorphic(id) &&
1318         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1319       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1320 
1321       // Adjust invocation mode according to the attached method.
1322       switch (bc) {
1323         case Bytecodes::_invokevirtual:
1324           if (attached_method->method_holder()->is_interface()) {
1325             bc = Bytecodes::_invokeinterface;
1326           }
1327           break;
1328         case Bytecodes::_invokeinterface:
1329           if (!attached_method->method_holder()->is_interface()) {
1330             bc = Bytecodes::_invokevirtual;
1331           }
1332           break;
1333         case Bytecodes::_invokehandle:
1334           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1335             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1336                                               : Bytecodes::_invokevirtual;
1337           }
1338           break;
1339         default:
1340           break;
1341       }
1342     }
1343   }
1344 
1345   assert(bc != Bytecodes::_illegal, "not initialized");
1346 
1347   bool has_receiver = bc != Bytecodes::_invokestatic &&
1348                       bc != Bytecodes::_invokedynamic &&
1349                       bc != Bytecodes::_invokehandle;
1350 
1351   // Find receiver for non-static call
1352   if (has_receiver) {
1353     // This register map must be update since we need to find the receiver for
1354     // compiled frames. The receiver might be in a register.
1355     RegisterMap reg_map2(current,
1356                          RegisterMap::UpdateMap::include,
1357                          RegisterMap::ProcessFrames::include,
1358                          RegisterMap::WalkContinuation::skip);
1359     frame stubFrame   = current->last_frame();
1360     // Caller-frame is a compiled frame
1361     frame callerFrame = stubFrame.sender(&reg_map2);
1362 
1363     if (attached_method.is_null()) {
1364       Method* callee = bytecode.static_target(CHECK_NH);
1365       if (callee == nullptr) {
1366         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1367       }
1368     }
1369 
1370     // Retrieve from a compiled argument list
1371     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1372     assert(oopDesc::is_oop_or_null(receiver()), "");
1373 
1374     if (receiver.is_null()) {
1375       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1376     }
1377   }
1378 
1379   // Resolve method
1380   if (attached_method.not_null()) {
1381     // Parameterized by attached method.
1382     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1383   } else {
1384     // Parameterized by bytecode.
1385     constantPoolHandle constants(current, caller->constants());
1386     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1387   }
1388 
1389 #ifdef ASSERT
1390   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1391   if (has_receiver) {
1392     assert(receiver.not_null(), "should have thrown exception");
1393     Klass* receiver_klass = receiver->klass();
1394     Klass* rk = nullptr;
1395     if (attached_method.not_null()) {
1396       // In case there's resolved method attached, use its holder during the check.
1397       rk = attached_method->method_holder();
1398     } else {
1399       // Klass is already loaded.
1400       constantPoolHandle constants(current, caller->constants());
1401       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1402     }
1403     Klass* static_receiver_klass = rk;
1404     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1405            "actual receiver must be subclass of static receiver klass");
1406     if (receiver_klass->is_instance_klass()) {
1407       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1408         tty->print_cr("ERROR: Klass not yet initialized!!");
1409         receiver_klass->print();
1410       }
1411       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1412     }
1413   }
1414 #endif
1415 
1416   return receiver;
1417 }
1418 
1419 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1420   JavaThread* current = THREAD;
1421   ResourceMark rm(current);
1422   // We need first to check if any Java activations (compiled, interpreted)
1423   // exist on the stack since last JavaCall.  If not, we need
1424   // to get the target method from the JavaCall wrapper.
1425   vframeStream vfst(current, true);  // Do not skip any javaCalls
1426   methodHandle callee_method;
1427   if (vfst.at_end()) {
1428     // No Java frames were found on stack since we did the JavaCall.
1429     // Hence the stack can only contain an entry_frame.  We need to
1430     // find the target method from the stub frame.
1431     RegisterMap reg_map(current,
1432                         RegisterMap::UpdateMap::skip,
1433                         RegisterMap::ProcessFrames::include,
1434                         RegisterMap::WalkContinuation::skip);
1435     frame fr = current->last_frame();
1436     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1437     fr = fr.sender(&reg_map);
1438     assert(fr.is_entry_frame(), "must be");
1439     // fr is now pointing to the entry frame.
1440     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1441   } else {
1442     Bytecodes::Code bc;
1443     CallInfo callinfo;
1444     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1445     callee_method = methodHandle(current, callinfo.selected_method());
1446   }
1447   assert(callee_method()->is_method(), "must be");
1448   return callee_method;
1449 }
1450 
1451 // Resolves a call.
1452 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1453   JavaThread* current = THREAD;
1454   ResourceMark rm(current);
1455   RegisterMap cbl_map(current,
1456                       RegisterMap::UpdateMap::skip,
1457                       RegisterMap::ProcessFrames::include,
1458                       RegisterMap::WalkContinuation::skip);
1459   frame caller_frame = current->last_frame().sender(&cbl_map);
1460 
1461   CodeBlob* caller_cb = caller_frame.cb();
1462   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1463   nmethod* caller_nm = caller_cb->as_nmethod();
1464 
1465   // determine call info & receiver
1466   // note: a) receiver is null for static calls
1467   //       b) an exception is thrown if receiver is null for non-static calls
1468   CallInfo call_info;
1469   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1470   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1471 
1472   NoSafepointVerifier nsv;
1473 
1474   methodHandle callee_method(current, call_info.selected_method());
1475 
1476   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1477          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1478          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1479          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1480          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1481 
1482   assert(!caller_nm->is_unloading(), "It should not be unloading");
1483 

1484   // tracing/debugging/statistics
1485   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1486                  (is_virtual) ? (&_resolve_virtual_ctr) :
1487                                 (&_resolve_static_ctr);
1488   AtomicAccess::inc(addr);
1489 
1490 #ifndef PRODUCT
1491   if (TraceCallFixup) {
1492     ResourceMark rm(current);
1493     tty->print("resolving %s%s (%s) call to",
1494                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1495                Bytecodes::name(invoke_code));
1496     callee_method->print_short_name(tty);
1497     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1498                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1499   }
1500 #endif
1501 
1502   if (invoke_code == Bytecodes::_invokestatic) {
1503     assert(callee_method->method_holder()->is_initialized() ||
1504            callee_method->method_holder()->is_reentrant_initialization(current),
1505            "invalid class initialization state for invoke_static");
1506     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1507       // In order to keep class initialization check, do not patch call
1508       // site for static call when the class is not fully initialized.
1509       // Proper check is enforced by call site re-resolution on every invocation.
1510       //
1511       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1512       // explicit class initialization check is put in nmethod entry (VEP).
1513       assert(callee_method->method_holder()->is_linked(), "must be");
1514       return callee_method;
1515     }
1516   }
1517 
1518 
1519   // JSR 292 key invariant:
1520   // If the resolved method is a MethodHandle invoke target, the call
1521   // site must be a MethodHandle call site, because the lambda form might tail-call
1522   // leaving the stack in a state unknown to either caller or callee
1523 
1524   // Compute entry points. The computation of the entry points is independent of
1525   // patching the call.
1526 
1527   // Make sure the callee nmethod does not get deoptimized and removed before
1528   // we are done patching the code.
1529 
1530 
1531   CompiledICLocker ml(caller_nm);
1532   if (is_virtual && !is_optimized) {
1533     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1534     inline_cache->update(&call_info, receiver->klass());
1535   } else {
1536     // Callsite is a direct call - set it to the destination method
1537     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1538     callsite->set(callee_method);
1539   }
1540 
1541   return callee_method;
1542 }
1543 
1544 // Inline caches exist only in compiled code
1545 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1546   PerfTraceTime timer(_perf_ic_miss_total_time);
1547 
1548 #ifdef ASSERT
1549   RegisterMap reg_map(current,
1550                       RegisterMap::UpdateMap::skip,
1551                       RegisterMap::ProcessFrames::include,
1552                       RegisterMap::WalkContinuation::skip);
1553   frame stub_frame = current->last_frame();
1554   assert(stub_frame.is_runtime_frame(), "sanity check");
1555   frame caller_frame = stub_frame.sender(&reg_map);
1556   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1557 #endif /* ASSERT */
1558 
1559   methodHandle callee_method;
1560   JRT_BLOCK
1561     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1562     // Return Method* through TLS
1563     current->set_vm_result_metadata(callee_method());
1564   JRT_BLOCK_END
1565   // return compiled code entry point after potential safepoints
1566   return get_resolved_entry(current, callee_method);
1567 JRT_END
1568 
1569 
1570 // Handle call site that has been made non-entrant
1571 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1572   PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1573 
1574   // 6243940 We might end up in here if the callee is deoptimized
1575   // as we race to call it.  We don't want to take a safepoint if
1576   // the caller was interpreted because the caller frame will look
1577   // interpreted to the stack walkers and arguments are now
1578   // "compiled" so it is much better to make this transition
1579   // invisible to the stack walking code. The i2c path will
1580   // place the callee method in the callee_target. It is stashed
1581   // there because if we try and find the callee by normal means a
1582   // safepoint is possible and have trouble gc'ing the compiled args.
1583   RegisterMap reg_map(current,
1584                       RegisterMap::UpdateMap::skip,
1585                       RegisterMap::ProcessFrames::include,
1586                       RegisterMap::WalkContinuation::skip);
1587   frame stub_frame = current->last_frame();
1588   assert(stub_frame.is_runtime_frame(), "sanity check");
1589   frame caller_frame = stub_frame.sender(&reg_map);
1590 
1591   if (caller_frame.is_interpreted_frame() ||
1592       caller_frame.is_entry_frame() ||
1593       caller_frame.is_upcall_stub_frame()) {
1594     Method* callee = current->callee_target();
1595     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1596     current->set_vm_result_metadata(callee);
1597     current->set_callee_target(nullptr);
1598     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1599       // Bypass class initialization checks in c2i when caller is in native.
1600       // JNI calls to static methods don't have class initialization checks.
1601       // Fast class initialization checks are present in c2i adapters and call into
1602       // SharedRuntime::handle_wrong_method() on the slow path.
1603       //
1604       // JVM upcalls may land here as well, but there's a proper check present in
1605       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1606       // so bypassing it in c2i adapter is benign.
1607       return callee->get_c2i_no_clinit_check_entry();
1608     } else {
1609       return callee->get_c2i_entry();
1610     }
1611   }
1612 
1613   // Must be compiled to compiled path which is safe to stackwalk
1614   methodHandle callee_method;
1615   JRT_BLOCK
1616     // Force resolving of caller (if we called from compiled frame)
1617     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1618     current->set_vm_result_metadata(callee_method());
1619   JRT_BLOCK_END
1620   // return compiled code entry point after potential safepoints
1621   return get_resolved_entry(current, callee_method);
1622 JRT_END
1623 
1624 // Handle abstract method call
1625 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1626   PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1627 
1628   // Verbose error message for AbstractMethodError.
1629   // Get the called method from the invoke bytecode.
1630   vframeStream vfst(current, true);
1631   assert(!vfst.at_end(), "Java frame must exist");
1632   methodHandle caller(current, vfst.method());
1633   Bytecode_invoke invoke(caller, vfst.bci());
1634   DEBUG_ONLY( invoke.verify(); )
1635 
1636   // Find the compiled caller frame.
1637   RegisterMap reg_map(current,
1638                       RegisterMap::UpdateMap::include,
1639                       RegisterMap::ProcessFrames::include,
1640                       RegisterMap::WalkContinuation::skip);
1641   frame stubFrame = current->last_frame();
1642   assert(stubFrame.is_runtime_frame(), "must be");
1643   frame callerFrame = stubFrame.sender(&reg_map);
1644   assert(callerFrame.is_compiled_frame(), "must be");
1645 
1646   // Install exception and return forward entry.
1647   address res = SharedRuntime::throw_AbstractMethodError_entry();
1648   JRT_BLOCK
1649     methodHandle callee(current, invoke.static_target(current));
1650     if (!callee.is_null()) {
1651       oop recv = callerFrame.retrieve_receiver(&reg_map);
1652       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1653       res = StubRoutines::forward_exception_entry();
1654       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1655     }
1656   JRT_BLOCK_END
1657   return res;
1658 JRT_END
1659 
1660 // return verified_code_entry if interp_only_mode is not set for the current thread;
1661 // otherwise return c2i entry.
1662 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1663   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1664     // In interp_only_mode we need to go to the interpreted entry
1665     // The c2i won't patch in this mode -- see fixup_callers_callsite
1666     return callee_method->get_c2i_entry();
1667   }
1668   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1669   return callee_method->verified_code_entry();
1670 }
1671 
1672 // resolve a static call and patch code
1673 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1674   PerfTraceTime timer(_perf_resolve_static_total_time);
1675 
1676   methodHandle callee_method;
1677   bool enter_special = false;
1678   JRT_BLOCK
1679     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1680     current->set_vm_result_metadata(callee_method());
1681   JRT_BLOCK_END
1682   // return compiled code entry point after potential safepoints
1683   return get_resolved_entry(current, callee_method);
1684 JRT_END
1685 
1686 // resolve virtual call and update inline cache to monomorphic
1687 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1688   PerfTraceTime timer(_perf_resolve_virtual_total_time);
1689 
1690   methodHandle callee_method;
1691   JRT_BLOCK
1692     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1693     current->set_vm_result_metadata(callee_method());
1694   JRT_BLOCK_END
1695   // return compiled code entry point after potential safepoints
1696   return get_resolved_entry(current, callee_method);
1697 JRT_END
1698 
1699 
1700 // Resolve a virtual call that can be statically bound (e.g., always
1701 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1702 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1703   PerfTraceTime timer(_perf_resolve_opt_virtual_total_time);
1704 
1705   methodHandle callee_method;
1706   JRT_BLOCK
1707     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1708     current->set_vm_result_metadata(callee_method());
1709   JRT_BLOCK_END
1710   // return compiled code entry point after potential safepoints
1711   return get_resolved_entry(current, callee_method);
1712 JRT_END
1713 
1714 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1715   JavaThread* current = THREAD;
1716   ResourceMark rm(current);
1717   CallInfo call_info;
1718   Bytecodes::Code bc;
1719 
1720   // receiver is null for static calls. An exception is thrown for null
1721   // receivers for non-static calls
1722   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1723 
1724   methodHandle callee_method(current, call_info.selected_method());
1725 

1726   AtomicAccess::inc(&_ic_miss_ctr);
1727 
1728 #ifndef PRODUCT
1729   // Statistics & Tracing
1730   if (TraceCallFixup) {
1731     ResourceMark rm(current);
1732     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1733     callee_method->print_short_name(tty);
1734     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1735   }
1736 
1737   if (ICMissHistogram) {
1738     MutexLocker m(VMStatistic_lock);
1739     RegisterMap reg_map(current,
1740                         RegisterMap::UpdateMap::skip,
1741                         RegisterMap::ProcessFrames::include,
1742                         RegisterMap::WalkContinuation::skip);
1743     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1744     // produce statistics under the lock
1745     trace_ic_miss(f.pc());
1746   }
1747 #endif
1748 
1749   // install an event collector so that when a vtable stub is created the
1750   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1751   // event can't be posted when the stub is created as locks are held
1752   // - instead the event will be deferred until the event collector goes
1753   // out of scope.
1754   JvmtiDynamicCodeEventCollector event_collector;
1755 
1756   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1757   RegisterMap reg_map(current,
1758                       RegisterMap::UpdateMap::skip,
1759                       RegisterMap::ProcessFrames::include,
1760                       RegisterMap::WalkContinuation::skip);
1761   frame caller_frame = current->last_frame().sender(&reg_map);
1762   CodeBlob* cb = caller_frame.cb();
1763   nmethod* caller_nm = cb->as_nmethod();
1764 
1765   CompiledICLocker ml(caller_nm);
1766   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1767   inline_cache->update(&call_info, receiver()->klass());
1768 
1769   return callee_method;
1770 }
1771 
1772 //
1773 // Resets a call-site in compiled code so it will get resolved again.
1774 // This routines handles both virtual call sites, optimized virtual call
1775 // sites, and static call sites. Typically used to change a call sites
1776 // destination from compiled to interpreted.
1777 //
1778 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1779   JavaThread* current = THREAD;
1780   ResourceMark rm(current);
1781   RegisterMap reg_map(current,
1782                       RegisterMap::UpdateMap::skip,
1783                       RegisterMap::ProcessFrames::include,
1784                       RegisterMap::WalkContinuation::skip);
1785   frame stub_frame = current->last_frame();
1786   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1787   frame caller = stub_frame.sender(&reg_map);
1788 
1789   // Do nothing if the frame isn't a live compiled frame.
1790   // nmethod could be deoptimized by the time we get here
1791   // so no update to the caller is needed.
1792 
1793   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1794       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1795 
1796     address pc = caller.pc();
1797 
1798     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1799     assert(caller_nm != nullptr, "did not find caller nmethod");
1800 
1801     // Default call_addr is the location of the "basic" call.
1802     // Determine the address of the call we a reresolving. With
1803     // Inline Caches we will always find a recognizable call.
1804     // With Inline Caches disabled we may or may not find a
1805     // recognizable call. We will always find a call for static
1806     // calls and for optimized virtual calls. For vanilla virtual
1807     // calls it depends on the state of the UseInlineCaches switch.
1808     //
1809     // With Inline Caches disabled we can get here for a virtual call
1810     // for two reasons:
1811     //   1 - calling an abstract method. The vtable for abstract methods
1812     //       will run us thru handle_wrong_method and we will eventually
1813     //       end up in the interpreter to throw the ame.
1814     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1815     //       call and between the time we fetch the entry address and
1816     //       we jump to it the target gets deoptimized. Similar to 1
1817     //       we will wind up in the interprter (thru a c2i with c2).
1818     //
1819     CompiledICLocker ml(caller_nm);
1820     address call_addr = caller_nm->call_instruction_address(pc);
1821 
1822     if (call_addr != nullptr) {
1823       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1824       // bytes back in the instruction stream so we must also check for reloc info.
1825       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1826       bool ret = iter.next(); // Get item
1827       if (ret) {
1828         switch (iter.type()) {
1829           case relocInfo::static_call_type:
1830           case relocInfo::opt_virtual_call_type: {
1831             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1832             cdc->set_to_clean();
1833             break;
1834           }
1835 
1836           case relocInfo::virtual_call_type: {
1837             // compiled, dispatched call (which used to call an interpreted method)
1838             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1839             inline_cache->set_to_clean();
1840             break;
1841           }
1842           default:
1843             break;
1844         }
1845       }
1846     }
1847   }
1848 
1849   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1850 


1851   AtomicAccess::inc(&_wrong_method_ctr);
1852 
1853 #ifndef PRODUCT
1854   if (TraceCallFixup) {
1855     ResourceMark rm(current);
1856     tty->print("handle_wrong_method reresolving call to");
1857     callee_method->print_short_name(tty);
1858     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1859   }
1860 #endif
1861 
1862   return callee_method;
1863 }
1864 
1865 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1866   // The faulting unsafe accesses should be changed to throw the error
1867   // synchronously instead. Meanwhile the faulting instruction will be
1868   // skipped over (effectively turning it into a no-op) and an
1869   // asynchronous exception will be raised which the thread will
1870   // handle at a later point. If the instruction is a load it will
1871   // return garbage.
1872 
1873   // Request an async exception.
1874   thread->set_pending_unsafe_access_error();
1875 
1876   // Return address of next instruction to execute.
1877   return next_pc;
1878 }
1879 
1880 #ifdef ASSERT
1881 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1882                                                                 const BasicType* sig_bt,
1883                                                                 const VMRegPair* regs) {
1884   ResourceMark rm;
1885   const int total_args_passed = method->size_of_parameters();
1886   const VMRegPair*    regs_with_member_name = regs;
1887         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1888 
1889   const int member_arg_pos = total_args_passed - 1;
1890   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1891   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1892 
1893   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1894 
1895   for (int i = 0; i < member_arg_pos; i++) {
1896     VMReg a =    regs_with_member_name[i].first();
1897     VMReg b = regs_without_member_name[i].first();
1898     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1899   }
1900   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1901 }
1902 #endif
1903 
1904 // ---------------------------------------------------------------------------
1905 // We are calling the interpreter via a c2i. Normally this would mean that
1906 // we were called by a compiled method. However we could have lost a race
1907 // where we went int -> i2c -> c2i and so the caller could in fact be
1908 // interpreted. If the caller is compiled we attempt to patch the caller
1909 // so he no longer calls into the interpreter.
1910 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1911   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1912 
1913   // It's possible that deoptimization can occur at a call site which hasn't
1914   // been resolved yet, in which case this function will be called from
1915   // an nmethod that has been patched for deopt and we can ignore the
1916   // request for a fixup.
1917   // Also it is possible that we lost a race in that from_compiled_entry
1918   // is now back to the i2c in that case we don't need to patch and if
1919   // we did we'd leap into space because the callsite needs to use
1920   // "to interpreter" stub in order to load up the Method*. Don't
1921   // ask me how I know this...
1922 
1923   // Result from nmethod::is_unloading is not stable across safepoints.
1924   NoSafepointVerifier nsv;
1925 
1926   nmethod* callee = method->code();
1927   if (callee == nullptr) {
1928     return;
1929   }
1930 
1931   // write lock needed because we might patch call site by set_to_clean()
1932   // and is_unloading() can modify nmethod's state
1933   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1934 
1935   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1936   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1937     return;
1938   }
1939 
1940   // The check above makes sure this is an nmethod.
1941   nmethod* caller = cb->as_nmethod();
1942 
1943   // Get the return PC for the passed caller PC.
1944   address return_pc = caller_pc + frame::pc_return_offset;
1945 
1946   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1947     return;
1948   }
1949 
1950   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1951   CompiledICLocker ic_locker(caller);
1952   ResourceMark rm;
1953 
1954   // If we got here through a static call or opt_virtual call, then we know where the
1955   // call address would be; let's peek at it
1956   address callsite_addr = (address)nativeCall_before(return_pc);
1957   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1958   if (!iter.next()) {
1959     // No reloc entry found; not a static or optimized virtual call
1960     return;
1961   }
1962 
1963   relocInfo::relocType type = iter.reloc()->type();
1964   if (type != relocInfo::static_call_type &&
1965       type != relocInfo::opt_virtual_call_type) {
1966     return;
1967   }
1968 
1969   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1970   callsite->set_to_clean();
1971 JRT_END
1972 
1973 
1974 // same as JVM_Arraycopy, but called directly from compiled code
1975 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1976                                                 oopDesc* dest, jint dest_pos,
1977                                                 jint length,
1978                                                 JavaThread* current)) {
1979 #ifndef PRODUCT
1980   _slow_array_copy_ctr++;
1981 #endif
1982   // Check if we have null pointers
1983   if (src == nullptr || dest == nullptr) {
1984     THROW(vmSymbols::java_lang_NullPointerException());
1985   }
1986   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1987   // even though the copy_array API also performs dynamic checks to ensure
1988   // that src and dest are truly arrays (and are conformable).
1989   // The copy_array mechanism is awkward and could be removed, but
1990   // the compilers don't call this function except as a last resort,
1991   // so it probably doesn't matter.
1992   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1993                                         (arrayOopDesc*)dest, dest_pos,
1994                                         length, current);
1995 }
1996 JRT_END
1997 
1998 // The caller of generate_class_cast_message() (or one of its callers)
1999 // must use a ResourceMark in order to correctly free the result.
2000 char* SharedRuntime::generate_class_cast_message(
2001     JavaThread* thread, Klass* caster_klass) {
2002 
2003   // Get target class name from the checkcast instruction
2004   vframeStream vfst(thread, true);
2005   assert(!vfst.at_end(), "Java frame must exist");
2006   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2007   constantPoolHandle cpool(thread, vfst.method()->constants());
2008   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2009   Symbol* target_klass_name = nullptr;
2010   if (target_klass == nullptr) {
2011     // This klass should be resolved, but just in case, get the name in the klass slot.
2012     target_klass_name = cpool->klass_name_at(cc.index());
2013   }
2014   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2015 }
2016 
2017 
2018 // The caller of generate_class_cast_message() (or one of its callers)
2019 // must use a ResourceMark in order to correctly free the result.
2020 char* SharedRuntime::generate_class_cast_message(
2021     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2022   const char* caster_name = caster_klass->external_name();
2023 
2024   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
2025   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
2026                                                    target_klass->external_name();
2027 
2028   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2029 
2030   const char* caster_klass_description = "";
2031   const char* target_klass_description = "";
2032   const char* klass_separator = "";
2033   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
2034     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2035   } else {
2036     caster_klass_description = caster_klass->class_in_module_of_loader();
2037     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
2038     klass_separator = (target_klass != nullptr) ? "; " : "";
2039   }
2040 
2041   // add 3 for parenthesis and preceding space
2042   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2043 
2044   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2045   if (message == nullptr) {
2046     // Shouldn't happen, but don't cause even more problems if it does
2047     message = const_cast<char*>(caster_klass->external_name());
2048   } else {
2049     jio_snprintf(message,
2050                  msglen,
2051                  "class %s cannot be cast to class %s (%s%s%s)",
2052                  caster_name,
2053                  target_name,
2054                  caster_klass_description,
2055                  klass_separator,
2056                  target_klass_description
2057                  );
2058   }
2059   return message;
2060 }
2061 
2062 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2063   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2064 JRT_END
2065 
2066 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2067   if (!SafepointSynchronize::is_synchronizing()) {
2068     // Only try quick_enter() if we're not trying to reach a safepoint
2069     // so that the calling thread reaches the safepoint more quickly.
2070     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
2071       return;
2072     }
2073   }
2074   // NO_ASYNC required because an async exception on the state transition destructor
2075   // would leave you with the lock held and it would never be released.
2076   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2077   // and the model is that an exception implies the method failed.
2078   JRT_BLOCK_NO_ASYNC
2079   Handle h_obj(THREAD, obj);
2080   ObjectSynchronizer::enter(h_obj, lock, current);
2081   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2082   JRT_BLOCK_END
2083 }
2084 
2085 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2086 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2087   SharedRuntime::monitor_enter_helper(obj, lock, current);
2088 JRT_END
2089 
2090 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2091   assert(JavaThread::current() == current, "invariant");
2092   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2093   ExceptionMark em(current);
2094 
2095   // Check if C2_MacroAssembler::fast_unlock() or
2096   // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated
2097   // monitor before going slow path.  Since there is no safepoint
2098   // polling when calling into the VM, we can be sure that the monitor
2099   // hasn't been deallocated.
2100   ObjectMonitor* m = current->unlocked_inflated_monitor();
2101   if (m != nullptr) {
2102     assert(!m->has_owner(current), "must be");
2103     current->clear_unlocked_inflated_monitor();
2104 
2105     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2106     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2107       // Some other thread acquired the lock (or the monitor was
2108       // deflated). Either way we are done.
2109       return;
2110     }
2111   }
2112 
2113   // The object could become unlocked through a JNI call, which we have no other checks for.
2114   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2115   if (obj->is_unlocked()) {
2116     if (CheckJNICalls) {
2117       fatal("Object has been unlocked by JNI");
2118     }
2119     return;
2120   }
2121   ObjectSynchronizer::exit(obj, lock, current);
2122 }
2123 
2124 // Handles the uncommon cases of monitor unlocking in compiled code
2125 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2126   assert(current == JavaThread::current(), "pre-condition");
2127   SharedRuntime::monitor_exit_helper(obj, lock, current);
2128 JRT_END
2129 
2130 #ifndef PRODUCT
2131 
2132 void SharedRuntime::print_statistics() {
2133   ttyLocker ttyl;
2134   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2135 
2136   SharedRuntime::print_ic_miss_histogram_on(tty);
2137   SharedRuntime::print_counters_on(tty);
2138   AdapterHandlerLibrary::print_statistics_on(tty);
































2139 
2140   if (xtty != nullptr)  xtty->tail("statistics");
2141 }
2142 
2143 //void SharedRuntime::print_counters_on(outputStream* st) {
2144 //  // Dump the JRT_ENTRY counters
2145 //  if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr);
2146 //  if (_new_array_ctr)    st->print_cr("%5u new array requires GC", _new_array_ctr);
2147 //  if (_multi2_ctr)       st->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2148 //  if (_multi3_ctr)       st->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2149 //  if (_multi4_ctr)       st->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2150 //  if (_multi5_ctr)       st->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2151 //
2152 //  st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2153 //  st->print_cr("%5u wrong method", _wrong_method_ctr);
2154 //  st->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2155 //  st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2156 //  st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2157 //
2158 //  if (_mon_enter_stub_ctr)       st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2159 //  if (_mon_exit_stub_ctr)        st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2160 //  if (_mon_enter_ctr)            st->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2161 //  if (_mon_exit_ctr)             st->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2162 //  if (_partial_subtype_ctr)      st->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2163 //  if (_jbyte_array_copy_ctr)     st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2164 //  if (_jshort_array_copy_ctr)    st->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2165 //  if (_jint_array_copy_ctr)      st->print_cr("%5u int array copies", _jint_array_copy_ctr);
2166 //  if (_jlong_array_copy_ctr)     st->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2167 //  if (_oop_array_copy_ctr)       st->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2168 //  if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2169 //  if (_unsafe_array_copy_ctr)    st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2170 //  if (_generic_array_copy_ctr)   st->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2171 //  if (_slow_array_copy_ctr)      st->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2172 //  if (_find_handler_ctr)         st->print_cr("%5u find exception handler", _find_handler_ctr);
2173 //  if (_rethrow_ctr)              st->print_cr("%5u rethrow handler", _rethrow_ctr);
2174 //  if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2175 //}
2176 
2177 inline double percent(int64_t x, int64_t y) {
2178   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2179 }
2180 
2181 class MethodArityHistogram {
2182  public:
2183   enum { MAX_ARITY = 256 };
2184  private:
2185   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2186   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2187   static uint64_t _total_compiled_calls;
2188   static uint64_t _max_compiled_calls_per_method;
2189   static int _max_arity;                       // max. arity seen
2190   static int _max_size;                        // max. arg size seen
2191 
2192   static void add_method_to_histogram(nmethod* nm) {
2193     Method* method = (nm == nullptr) ? nullptr : nm->method();
2194     if (method != nullptr) {
2195       ArgumentCount args(method->signature());
2196       int arity   = args.size() + (method->is_static() ? 0 : 1);
2197       int argsize = method->size_of_parameters();
2198       arity   = MIN2(arity, MAX_ARITY-1);
2199       argsize = MIN2(argsize, MAX_ARITY-1);
2200       uint64_t count = (uint64_t)method->compiled_invocation_count();
2201       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2202       _total_compiled_calls    += count;
2203       _arity_histogram[arity]  += count;
2204       _size_histogram[argsize] += count;
2205       _max_arity = MAX2(_max_arity, arity);
2206       _max_size  = MAX2(_max_size, argsize);
2207     }
2208   }
2209 
2210   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2211     const int N = MIN2(9, n);
2212     double sum = 0;
2213     double weighted_sum = 0;
2214     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2215     if (sum >= 1) { // prevent divide by zero or divide overflow
2216       double rest = sum;
2217       double percent = sum / 100;
2218       for (int i = 0; i <= N; i++) {
2219         rest -= (double)histo[i];
2220         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2221       }
2222       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2223       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2224       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2225       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2226     } else {
2227       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2228     }
2229   }
2230 
2231   void print_histogram() {
2232     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2233     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2234     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2235     print_histogram_helper(_max_size, _size_histogram, "size");
2236     tty->cr();
2237   }
2238 
2239  public:
2240   MethodArityHistogram() {
2241     // Take the Compile_lock to protect against changes in the CodeBlob structures
2242     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2243     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2244     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2245     _max_arity = _max_size = 0;
2246     _total_compiled_calls = 0;
2247     _max_compiled_calls_per_method = 0;
2248     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2249     CodeCache::nmethods_do(add_method_to_histogram);
2250     print_histogram();
2251   }
2252 };
2253 
2254 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2255 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2256 uint64_t MethodArityHistogram::_total_compiled_calls;
2257 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2258 int MethodArityHistogram::_max_arity;
2259 int MethodArityHistogram::_max_size;
2260 
2261 void SharedRuntime::print_call_statistics_on(outputStream* st) {
2262   tty->print_cr("Calls from compiled code:");
2263   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2264   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2265   int64_t mono_i = _nof_interface_calls;
2266   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2267   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2268   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2269   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2270   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2271   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2272   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2273   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2274   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2275   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2276   tty->cr();
2277   tty->print_cr("Note 1: counter updates are not MT-safe.");
2278   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2279   tty->print_cr("        %% in nested categories are relative to their category");
2280   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2281   tty->cr();
2282 
2283   MethodArityHistogram h;
2284 }
2285 #endif
2286 
2287 #ifndef PRODUCT
2288 static int _lookups; // number of calls to lookup
2289 static int _equals;  // number of buckets checked with matching hash
2290 static int _archived_hits; // number of successful lookups in archived table
2291 static int _runtime_hits;  // number of successful lookups in runtime table
2292 #endif
2293 
2294 // A simple wrapper class around the calling convention information
2295 // that allows sharing of adapters for the same calling convention.
2296 class AdapterFingerPrint : public MetaspaceObj {
2297  private:
2298   enum {
2299     _basic_type_bits = 4,
2300     _basic_type_mask = right_n_bits(_basic_type_bits),
2301     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2302   };
2303   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2304   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2305 
2306   int _length;
2307 
2308   static int data_offset() { return sizeof(AdapterFingerPrint); }
2309   int* data_pointer() {
2310     return (int*)((address)this + data_offset());
2311   }
2312 
2313   // Private construtor. Use allocate() to get an instance.
2314   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) {
2315     int* data = data_pointer();
2316     // Pack the BasicTypes with 8 per int
2317     assert(len == length(total_args_passed), "sanity");
2318     _length = len;
2319     int sig_index = 0;
2320     for (int index = 0; index < _length; index++) {
2321       int value = 0;
2322       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2323         int bt = adapter_encoding(sig_bt[sig_index++]);
2324         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2325         value = (value << _basic_type_bits) | bt;
2326       }
2327       data[index] = value;
2328     }
2329   }
2330 
2331   // Call deallocate instead
2332   ~AdapterFingerPrint() {
2333     ShouldNotCallThis();
2334   }
2335 
2336   static int length(int total_args) {
2337     return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int;
2338   }
2339 
2340   static int compute_size_in_words(int len) {
2341     return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int)));
2342   }
2343 
2344   // Remap BasicTypes that are handled equivalently by the adapters.
2345   // These are correct for the current system but someday it might be
2346   // necessary to make this mapping platform dependent.
2347   static int adapter_encoding(BasicType in) {
2348     switch (in) {
2349       case T_BOOLEAN:
2350       case T_BYTE:
2351       case T_SHORT:
2352       case T_CHAR:
2353         // There are all promoted to T_INT in the calling convention
2354         return T_INT;
2355 
2356       case T_OBJECT:
2357       case T_ARRAY:
2358         // In other words, we assume that any register good enough for
2359         // an int or long is good enough for a managed pointer.
2360 #ifdef _LP64
2361         return T_LONG;
2362 #else
2363         return T_INT;
2364 #endif
2365 
2366       case T_INT:
2367       case T_LONG:
2368       case T_FLOAT:
2369       case T_DOUBLE:
2370       case T_VOID:
2371         return in;
2372 
2373       default:
2374         ShouldNotReachHere();
2375         return T_CONFLICT;
2376     }
2377   }
2378 
2379   void* operator new(size_t size, size_t fp_size) throw() {
2380     assert(fp_size >= size, "sanity check");
2381     void* p = AllocateHeap(fp_size, mtCode);
2382     memset(p, 0, fp_size);
2383     return p;
2384   }
2385 
2386   template<typename Function>
2387   void iterate_args(Function function) {
2388     for (int i = 0; i < length(); i++) {
2389       unsigned val = (unsigned)value(i);
2390       // args are packed so that first/lower arguments are in the highest
2391       // bits of each int value, so iterate from highest to the lowest
2392       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2393         unsigned v = (val >> j) & _basic_type_mask;
2394         if (v == 0) {
2395           continue;
2396         }
2397         function(v);
2398       }
2399     }
2400   }
2401 
2402  public:
2403   static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2404     int len = length(total_args_passed);
2405     int size_in_bytes = BytesPerWord * compute_size_in_words(len);
2406     AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len);
2407     assert((afp->size() * BytesPerWord) == size_in_bytes, "should match");
2408     return afp;
2409   }
2410 
2411   static void deallocate(AdapterFingerPrint* fp) {
2412     FreeHeap(fp);
2413   }
2414 
2415   int value(int index) {
2416     int* data = data_pointer();
2417     return data[index];
2418   }
2419 
2420   int length() {
2421     return _length;
2422   }
2423 
2424   unsigned int compute_hash() {
2425     int hash = 0;
2426     for (int i = 0; i < length(); i++) {
2427       int v = value(i);
2428       //Add arithmetic operation to the hash, like +3 to improve hashing
2429       hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2430     }
2431     return (unsigned int)hash;
2432   }
2433 
2434   const char* as_string() {
2435     stringStream st;
2436     st.print("0x");
2437     for (int i = 0; i < length(); i++) {
2438       st.print("%x", value(i));
2439     }
2440     return st.as_string();
2441   }
2442 
2443   const char* as_basic_args_string() {
2444     stringStream st;
2445     bool long_prev = false;
2446     iterate_args([&] (int arg) {
2447       if (long_prev) {
2448         long_prev = false;
2449         if (arg == T_VOID) {
2450           st.print("J");
2451         } else {
2452           st.print("L");
2453         }
2454       }
2455       switch (arg) {
2456         case T_INT:    st.print("I");    break;
2457         case T_LONG:   long_prev = true; break;
2458         case T_FLOAT:  st.print("F");    break;
2459         case T_DOUBLE: st.print("D");    break;
2460         case T_VOID:   break;
2461         default: ShouldNotReachHere();
2462       }
2463     });
2464     if (long_prev) {
2465       st.print("L");
2466     }
2467     return st.as_string();
2468   }
2469 
2470   BasicType* as_basic_type(int& nargs) {
2471     nargs = 0;
2472     GrowableArray<BasicType> btarray;
2473     bool long_prev = false;
2474 
2475     iterate_args([&] (int arg) {
2476       if (long_prev) {
2477         long_prev = false;
2478         if (arg == T_VOID) {
2479           btarray.append(T_LONG);
2480         } else {
2481           btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2482         }
2483       }
2484       switch (arg) {
2485         case T_INT: // fallthrough
2486         case T_FLOAT: // fallthrough
2487         case T_DOUBLE:
2488         case T_VOID:
2489           btarray.append((BasicType)arg);
2490           break;
2491         case T_LONG:
2492           long_prev = true;
2493           break;
2494         default: ShouldNotReachHere();
2495       }
2496     });
2497 
2498     if (long_prev) {
2499       btarray.append(T_OBJECT);
2500     }
2501 
2502     nargs = btarray.length();
2503     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2504     int index = 0;
2505     GrowableArrayIterator<BasicType> iter = btarray.begin();
2506     while (iter != btarray.end()) {
2507       sig_bt[index++] = *iter;
2508       ++iter;
2509     }
2510     assert(index == btarray.length(), "sanity check");
2511 #ifdef ASSERT
2512     {
2513       AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2514       assert(this->equals(compare_fp), "sanity check");
2515       AdapterFingerPrint::deallocate(compare_fp);
2516     }
2517 #endif
2518     return sig_bt;
2519   }
2520 
2521   bool equals(AdapterFingerPrint* other) {
2522     if (other->_length != _length) {
2523       return false;
2524     } else {
2525       for (int i = 0; i < _length; i++) {
2526         if (value(i) != other->value(i)) {
2527           return false;
2528         }
2529       }
2530     }
2531     return true;
2532   }
2533 
2534   // methods required by virtue of being a MetaspaceObj
2535   void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2536   int size() const { return compute_size_in_words(_length); }
2537   MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2538 
2539   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2540     NOT_PRODUCT(_equals++);
2541     return fp1->equals(fp2);
2542   }
2543 
2544   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2545     return fp->compute_hash();
2546   }
2547 };
2548 
2549 #if INCLUDE_CDS
2550 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2551   return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2552 }
2553 
2554 class ArchivedAdapterTable : public OffsetCompactHashtable<
2555   AdapterFingerPrint*,
2556   AdapterHandlerEntry*,
2557   adapter_fp_equals_compact_hashtable_entry> {};
2558 #endif // INCLUDE_CDS
2559 
2560 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2561 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2562                   AnyObj::C_HEAP, mtCode,
2563                   AdapterFingerPrint::compute_hash,
2564                   AdapterFingerPrint::equals>;
2565 static AdapterHandlerTable* _adapter_handler_table;
2566 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2567 
2568 // Find a entry with the same fingerprint if it exists
2569 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) {
2570   NOT_PRODUCT(_lookups++);
2571   assert_lock_strong(AdapterHandlerLibrary_lock);
2572   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2573   AdapterHandlerEntry* entry = nullptr;
2574 #if INCLUDE_CDS
2575   // if we are building the archive then the archived adapter table is
2576   // not valid and we need to use the ones added to the runtime table
2577   if (AOTCodeCache::is_using_adapter()) {
2578     // Search archived table first. It is read-only table so can be searched without lock
2579     entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2580 #ifndef PRODUCT
2581     if (entry != nullptr) {
2582       _archived_hits++;
2583     }
2584 #endif
2585   }
2586 #endif // INCLUDE_CDS
2587   if (entry == nullptr) {
2588     assert_lock_strong(AdapterHandlerLibrary_lock);
2589     AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2590     if (entry_p != nullptr) {
2591       entry = *entry_p;
2592       assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2593              entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2594              fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2595   #ifndef PRODUCT
2596       _runtime_hits++;
2597   #endif
2598     }
2599   }
2600   AdapterFingerPrint::deallocate(fp);
2601   return entry;
2602 }
2603 
2604 #ifndef PRODUCT
2605 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) {
2606   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2607     return sizeof(*key) + sizeof(*a);
2608   };
2609   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2610   ts.print(st, "AdapterHandlerTable");
2611   st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2612                _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2613   int total_hits = _archived_hits + _runtime_hits;
2614   st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)",
2615                _lookups, _equals, total_hits, _archived_hits, _runtime_hits);
2616 }
2617 #endif // !PRODUCT
2618 
2619 // ---------------------------------------------------------------------------
2620 // Implementation of AdapterHandlerLibrary
2621 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2622 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2623 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2624 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2625 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2626 #if INCLUDE_CDS
2627 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table;
2628 #endif // INCLUDE_CDS
2629 static const int AdapterHandlerLibrary_size = 16*K;
2630 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2631 volatile uint AdapterHandlerLibrary::_id_counter = 0;
2632 
2633 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2634   assert(_buffer != nullptr, "should be initialized");
2635   return _buffer;
2636 }
2637 
2638 static void post_adapter_creation(const AdapterHandlerEntry* entry) {
2639   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2640     AdapterBlob* adapter_blob = entry->adapter_blob();
2641     char blob_id[256];
2642     jio_snprintf(blob_id,
2643                  sizeof(blob_id),
2644                  "%s(%s)",
2645                  adapter_blob->name(),
2646                  entry->fingerprint()->as_string());
2647     if (Forte::is_enabled()) {
2648       Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2649     }
2650 
2651     if (JvmtiExport::should_post_dynamic_code_generated()) {
2652       JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end());
2653     }
2654   }
2655 }
2656 
2657 void AdapterHandlerLibrary::initialize() {
2658   {
2659     ResourceMark rm;
2660     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2661     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2662   }
2663 
2664 #if INCLUDE_CDS
2665   // Link adapters in AOT Cache to their code in AOT Code Cache
2666   if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) {
2667     link_aot_adapters();
2668     lookup_simple_adapters();
2669     return;
2670   }
2671 #endif // INCLUDE_CDS
2672 
2673   ResourceMark rm;
2674   {
2675     MutexLocker mu(AdapterHandlerLibrary_lock);
2676 
2677     _no_arg_handler = create_adapter(0, nullptr);
2678 
2679     BasicType obj_args[] = { T_OBJECT };
2680     _obj_arg_handler = create_adapter(1, obj_args);
2681 
2682     BasicType int_args[] = { T_INT };
2683     _int_arg_handler = create_adapter(1, int_args);
2684 
2685     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2686     _obj_int_arg_handler = create_adapter(2, obj_int_args);
2687 
2688     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2689     _obj_obj_arg_handler = create_adapter(2, obj_obj_args);
2690 
2691     // we should always get an entry back but we don't have any
2692     // associated blob on Zero
2693     assert(_no_arg_handler != nullptr &&
2694            _obj_arg_handler != nullptr &&
2695            _int_arg_handler != nullptr &&
2696            _obj_int_arg_handler != nullptr &&
2697            _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created");
2698   }
2699 
2700   // Outside of the lock
2701 #ifndef ZERO
2702   // no blobs to register when we are on Zero
2703   post_adapter_creation(_no_arg_handler);
2704   post_adapter_creation(_obj_arg_handler);
2705   post_adapter_creation(_int_arg_handler);
2706   post_adapter_creation(_obj_int_arg_handler);
2707   post_adapter_creation(_obj_obj_arg_handler);
2708 #endif // ZERO
2709 }
2710 
2711 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) {
2712   uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1);
2713   assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods");
2714   return AdapterHandlerEntry::allocate(id, fingerprint);
2715 }
2716 
2717 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2718   int total_args_passed = method->size_of_parameters(); // All args on stack
2719   if (total_args_passed == 0) {
2720     return _no_arg_handler;
2721   } else if (total_args_passed == 1) {
2722     if (!method->is_static()) {
2723       return _obj_arg_handler;
2724     }
2725     switch (method->signature()->char_at(1)) {
2726       case JVM_SIGNATURE_CLASS:
2727       case JVM_SIGNATURE_ARRAY:
2728         return _obj_arg_handler;
2729       case JVM_SIGNATURE_INT:
2730       case JVM_SIGNATURE_BOOLEAN:
2731       case JVM_SIGNATURE_CHAR:
2732       case JVM_SIGNATURE_BYTE:
2733       case JVM_SIGNATURE_SHORT:
2734         return _int_arg_handler;
2735     }
2736   } else if (total_args_passed == 2 &&
2737              !method->is_static()) {
2738     switch (method->signature()->char_at(1)) {
2739       case JVM_SIGNATURE_CLASS:
2740       case JVM_SIGNATURE_ARRAY:
2741         return _obj_obj_arg_handler;
2742       case JVM_SIGNATURE_INT:
2743       case JVM_SIGNATURE_BOOLEAN:
2744       case JVM_SIGNATURE_CHAR:
2745       case JVM_SIGNATURE_BYTE:
2746       case JVM_SIGNATURE_SHORT:
2747         return _obj_int_arg_handler;
2748     }
2749   }
2750   return nullptr;
2751 }
2752 
2753 class AdapterSignatureIterator : public SignatureIterator {
2754  private:
2755   BasicType stack_sig_bt[16];
2756   BasicType* sig_bt;
2757   int index;
2758 
2759  public:
2760   AdapterSignatureIterator(Symbol* signature,
2761                            fingerprint_t fingerprint,
2762                            bool is_static,
2763                            int total_args_passed) :
2764     SignatureIterator(signature, fingerprint),
2765     index(0)
2766   {
2767     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2768     if (!is_static) { // Pass in receiver first
2769       sig_bt[index++] = T_OBJECT;
2770     }
2771     do_parameters_on(this);
2772   }
2773 
2774   BasicType* basic_types() {
2775     return sig_bt;
2776   }
2777 
2778 #ifdef ASSERT
2779   int slots() {
2780     return index;
2781   }
2782 #endif
2783 
2784  private:
2785 
2786   friend class SignatureIterator;  // so do_parameters_on can call do_type
2787   void do_type(BasicType type) {
2788     sig_bt[index++] = type;
2789     if (type == T_LONG || type == T_DOUBLE) {
2790       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2791     }
2792   }
2793 };
2794 
2795 
2796 const char* AdapterHandlerEntry::_entry_names[] = {
2797   "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check"
2798 };
2799 
2800 #ifdef ASSERT
2801 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) {
2802   // we can only check for the same code if there is any
2803 #ifndef ZERO
2804   AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true);
2805   assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison");
2806   assert(comparison_entry->compare_code(cached_entry), "code must match");
2807   // Release the one just created
2808   AdapterHandlerEntry::deallocate(comparison_entry);
2809 # endif // ZERO
2810 }
2811 #endif /* ASSERT*/
2812 
2813 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2814   assert(!method->is_abstract(), "abstract methods do not have adapters");
2815   // Use customized signature handler.  Need to lock around updates to
2816   // the _adapter_handler_table (it is not safe for concurrent readers
2817   // and a single writer: this could be fixed if it becomes a
2818   // problem).
2819 
2820   // Fast-path for trivial adapters
2821   AdapterHandlerEntry* entry = get_simple_adapter(method);
2822   if (entry != nullptr) {
2823     return entry;
2824   }
2825 
2826   ResourceMark rm;
2827   bool new_entry = false;
2828 
2829   // Fill in the signature array, for the calling-convention call.
2830   int total_args_passed = method->size_of_parameters(); // All args on stack
2831 
2832   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2833                               method->is_static(), total_args_passed);
2834   assert(si.slots() == total_args_passed, "");
2835   BasicType* sig_bt = si.basic_types();
2836   {
2837     MutexLocker mu(AdapterHandlerLibrary_lock);
2838 
2839     // Lookup method signature's fingerprint
2840     entry = lookup(total_args_passed, sig_bt);
2841 
2842     if (entry != nullptr) {
2843 #ifndef ZERO
2844       assert(entry->is_linked(), "AdapterHandlerEntry must have been linked");
2845 #endif
2846 #ifdef ASSERT
2847       if (!entry->in_aot_cache() && VerifyAdapterSharing) {
2848         verify_adapter_sharing(total_args_passed, sig_bt, entry);
2849       }
2850 #endif
2851     } else {
2852       entry = create_adapter(total_args_passed, sig_bt);
2853       if (entry != nullptr) {
2854         new_entry = true;
2855       }
2856     }
2857   }
2858 
2859   // Outside of the lock
2860   if (new_entry) {
2861     post_adapter_creation(entry);
2862   }
2863   return entry;
2864 }
2865 
2866 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) {
2867   ResourceMark rm;
2868   const char* name = AdapterHandlerLibrary::name(handler);
2869   const uint32_t id = AdapterHandlerLibrary::id(handler);
2870 
2871   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name);
2872   if (blob != nullptr) {
2873     handler->set_adapter_blob(blob->as_adapter_blob());
2874   }
2875 }
2876 
2877 #ifndef PRODUCT
2878 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) {
2879   ttyLocker ttyl;
2880   ResourceMark rm;
2881   int insts_size;
2882   // on Zero the blob may be null
2883   handler->print_adapter_on(tty);
2884   AdapterBlob* adapter_blob = handler->adapter_blob();
2885   if (adapter_blob == nullptr) {
2886     return;
2887   }
2888   insts_size = adapter_blob->code_size();
2889   st->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2890                 handler->fingerprint()->as_basic_args_string(),
2891                 handler->fingerprint()->as_string(), insts_size);
2892   st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2893   if (Verbose || PrintStubCode) {
2894     address first_pc = adapter_blob->content_begin();
2895     if (first_pc != nullptr) {
2896       Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks());
2897       st->cr();
2898     }
2899   }
2900 }
2901 #endif // PRODUCT
2902 
2903 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT],
2904                                               int entry_offset[AdapterBlob::ENTRY_COUNT]) {
2905   entry_offset[AdapterBlob::I2C] = 0;
2906   entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C];
2907   entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C];
2908   if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) {
2909     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1;
2910   } else {
2911     entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C];
2912   }
2913 }
2914 
2915 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler,
2916                                                   int total_args_passed,
2917                                                   BasicType* sig_bt,
2918                                                   bool is_transient) {
2919   if (log_is_enabled(Info, perf, class, link)) {
2920     ClassLoader::perf_method_adapters_count()->inc();
2921   }
2922 
2923 #ifndef ZERO
2924   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2925   CodeBuffer buffer(buf);
2926   short buffer_locs[20];
2927   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2928                                          sizeof(buffer_locs)/sizeof(relocInfo));
2929   MacroAssembler masm(&buffer);
2930   VMRegPair stack_regs[16];
2931   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2932 
2933   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2934   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2935   address entry_address[AdapterBlob::ENTRY_COUNT];
2936   SharedRuntime::generate_i2c2i_adapters(&masm,
2937                                          total_args_passed,
2938                                          comp_args_on_stack,
2939                                          sig_bt,
2940                                          regs,
2941                                          entry_address);
2942   // On zero there is no code to save and no need to create a blob and
2943   // or relocate the handler.
2944   int entry_offset[AdapterBlob::ENTRY_COUNT];
2945   address_to_offset(entry_address, entry_offset);
2946 #ifdef ASSERT
2947   if (VerifyAdapterSharing) {
2948     handler->save_code(buf->code_begin(), buffer.insts_size());
2949     if (is_transient) {
2950       return true;
2951     }
2952   }
2953 #endif
2954   AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset);
2955   if (adapter_blob == nullptr) {
2956     // CodeCache is full, disable compilation
2957     // Ought to log this but compile log is only per compile thread
2958     // and we're some non descript Java thread.
2959     return false;
2960   }
2961   handler->set_adapter_blob(adapter_blob);
2962   if (!is_transient && AOTCodeCache::is_dumping_adapter()) {
2963     // try to save generated code
2964     const char* name = AdapterHandlerLibrary::name(handler);
2965     const uint32_t id = AdapterHandlerLibrary::id(handler);
2966     bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name);
2967     assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled");
2968   }
2969 #endif // ZERO
2970 
2971 #ifndef PRODUCT
2972   // debugging support
2973   if (PrintAdapterHandlers || PrintStubCode) {
2974     print_adapter_handler_info(tty, handler);
2975   }
2976 #endif
2977 
2978   return true;
2979 }
2980 
2981 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed,
2982                                                            BasicType* sig_bt,
2983                                                            bool is_transient) {
2984   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2985   AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp);
2986   if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) {
2987     AdapterHandlerEntry::deallocate(handler);
2988     return nullptr;
2989   }
2990   if (!is_transient) {
2991     assert_lock_strong(AdapterHandlerLibrary_lock);
2992     _adapter_handler_table->put(fp, handler);
2993   }
2994   return handler;
2995 }
2996 
2997 #if INCLUDE_CDS
2998 void AdapterHandlerEntry::remove_unshareable_info() {
2999 #ifdef ASSERT
3000    _saved_code = nullptr;
3001    _saved_code_length = 0;
3002 #endif // ASSERT
3003    _adapter_blob = nullptr;
3004    _linked = false;
3005 }
3006 
3007 class CopyAdapterTableToArchive : StackObj {
3008 private:
3009   CompactHashtableWriter* _writer;
3010   ArchiveBuilder* _builder;
3011 public:
3012   CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
3013                                                              _builder(ArchiveBuilder::current())
3014   {}
3015 
3016   bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
3017     LogStreamHandle(Trace, aot) lsh;
3018     if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
3019       assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
3020       AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
3021       assert(buffered_fp != nullptr,"sanity check");
3022       AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
3023       assert(buffered_entry != nullptr,"sanity check");
3024 
3025       uint hash = fp->compute_hash();
3026       u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
3027       _writer->add(hash, delta);
3028       if (lsh.is_enabled()) {
3029         address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
3030         address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
3031         log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
3032       }
3033     } else {
3034       if (lsh.is_enabled()) {
3035         log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
3036       }
3037     }
3038     return true;
3039   }
3040 };
3041 
3042 void AdapterHandlerLibrary::dump_aot_adapter_table() {
3043   CompactHashtableStats stats;
3044   CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
3045   CopyAdapterTableToArchive copy(&writer);
3046   _adapter_handler_table->iterate(&copy);
3047   writer.dump(&_aot_adapter_handler_table, "archived adapter table");
3048 }
3049 
3050 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
3051   _aot_adapter_handler_table.serialize_header(soc);
3052 }
3053 
3054 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) {
3055 #ifdef ASSERT
3056   if (TestAOTAdapterLinkFailure) {
3057     return;
3058   }
3059 #endif
3060   lookup_aot_cache(handler);
3061 #ifndef PRODUCT
3062   // debugging support
3063   if (PrintAdapterHandlers || PrintStubCode) {
3064     print_adapter_handler_info(tty, handler);
3065   }
3066 #endif
3067 }
3068 
3069 // This method is used during production run to link archived adapters (stored in AOT Cache)
3070 // to their code in AOT Code Cache
3071 void AdapterHandlerEntry::link() {
3072   ResourceMark rm;
3073   assert(_fingerprint != nullptr, "_fingerprint must not be null");
3074   bool generate_code = false;
3075   // Generate code only if AOTCodeCache is not available, or
3076   // caching adapters is disabled, or we fail to link
3077   // the AdapterHandlerEntry to its code in the AOTCodeCache
3078   if (AOTCodeCache::is_using_adapter()) {
3079     AdapterHandlerLibrary::link_aot_adapter_handler(this);
3080     // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null
3081     if (_adapter_blob == nullptr) {
3082       log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string());
3083       generate_code = true;
3084     }
3085   } else {
3086     generate_code = true;
3087   }
3088   if (generate_code) {
3089     int nargs;
3090     BasicType* bt = _fingerprint->as_basic_type(nargs);
3091     if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) {
3092       // Don't throw exceptions during VM initialization because java.lang.* classes
3093       // might not have been initialized, causing problems when constructing the
3094       // Java exception object.
3095       vm_exit_during_initialization("Out of space in CodeCache for adapters");
3096     }
3097   }
3098   if (_adapter_blob != nullptr) {
3099     post_adapter_creation(this);
3100   }
3101   assert(_linked, "AdapterHandlerEntry must now be linked");
3102 }
3103 
3104 void AdapterHandlerLibrary::link_aot_adapters() {
3105   uint max_id = 0;
3106   assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available");
3107   /* It is possible that some adapters generated in assembly phase are not stored in the cache.
3108    * That implies adapter ids of the adapters in the cache may not be contiguous.
3109    * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may
3110    * result in collision of adapter ids between AOT stored handlers and runtime generated handlers.
3111    * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers.
3112    */
3113   _aot_adapter_handler_table.iterate([&](AdapterHandlerEntry* entry) {
3114     assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!");
3115     entry->link();
3116     max_id = MAX2(max_id, entry->id());
3117   });
3118   // Set adapter id to the maximum id found in the AOTCache
3119   assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage");
3120   _id_counter = max_id;
3121 }
3122 
3123 // This method is called during production run to lookup simple adapters
3124 // in the archived adapter handler table
3125 void AdapterHandlerLibrary::lookup_simple_adapters() {
3126   assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty");
3127 
3128   MutexLocker mu(AdapterHandlerLibrary_lock);
3129   _no_arg_handler = lookup(0, nullptr);
3130 
3131   BasicType obj_args[] = { T_OBJECT };
3132   _obj_arg_handler = lookup(1, obj_args);
3133 
3134   BasicType int_args[] = { T_INT };
3135   _int_arg_handler = lookup(1, int_args);
3136 
3137   BasicType obj_int_args[] = { T_OBJECT, T_INT };
3138   _obj_int_arg_handler = lookup(2, obj_int_args);
3139 
3140   BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
3141   _obj_obj_arg_handler = lookup(2, obj_obj_args);
3142 
3143   assert(_no_arg_handler != nullptr &&
3144          _obj_arg_handler != nullptr &&
3145          _int_arg_handler != nullptr &&
3146          _obj_int_arg_handler != nullptr &&
3147          _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table");
3148   assert(_no_arg_handler->is_linked() &&
3149          _obj_arg_handler->is_linked() &&
3150          _int_arg_handler->is_linked() &&
3151          _obj_int_arg_handler->is_linked() &&
3152          _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state");
3153 }
3154 #endif // INCLUDE_CDS
3155 
3156 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3157   LogStreamHandle(Trace, aot) lsh;
3158   if (lsh.is_enabled()) {
3159     lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3160     lsh.cr();
3161   }
3162   it->push(&_fingerprint);
3163 }
3164 
3165 AdapterHandlerEntry::~AdapterHandlerEntry() {
3166   if (_fingerprint != nullptr) {
3167     AdapterFingerPrint::deallocate(_fingerprint);
3168     _fingerprint = nullptr;
3169   }
3170 #ifdef ASSERT
3171   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3172 #endif
3173   FreeHeap(this);
3174 }
3175 
3176 
3177 #ifdef ASSERT
3178 // Capture the code before relocation so that it can be compared
3179 // against other versions.  If the code is captured after relocation
3180 // then relative instructions won't be equivalent.
3181 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3182   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3183   _saved_code_length = length;
3184   memcpy(_saved_code, buffer, length);
3185 }
3186 
3187 
3188 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3189   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3190 
3191   if (other->_saved_code_length != _saved_code_length) {
3192     return false;
3193   }
3194 
3195   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3196 }
3197 #endif
3198 
3199 
3200 /**
3201  * Create a native wrapper for this native method.  The wrapper converts the
3202  * Java-compiled calling convention to the native convention, handles
3203  * arguments, and transitions to native.  On return from the native we transition
3204  * back to java blocking if a safepoint is in progress.
3205  */
3206 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3207   ResourceMark rm;
3208   nmethod* nm = nullptr;
3209 
3210   // Check if memory should be freed before allocation
3211   CodeCache::gc_on_allocation();
3212 
3213   assert(method->is_native(), "must be native");
3214   assert(method->is_special_native_intrinsic() ||
3215          method->has_native_function(), "must have something valid to call!");
3216 
3217   {
3218     // Perform the work while holding the lock, but perform any printing outside the lock
3219     MutexLocker mu(AdapterHandlerLibrary_lock);
3220     // See if somebody beat us to it
3221     if (method->code() != nullptr) {
3222       return;
3223     }
3224 
3225     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3226     assert(compile_id > 0, "Must generate native wrapper");
3227 
3228 
3229     ResourceMark rm;
3230     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3231     if (buf != nullptr) {
3232       CodeBuffer buffer(buf);
3233 
3234       if (method->is_continuation_enter_intrinsic()) {
3235         buffer.initialize_stubs_size(192);
3236       }
3237 
3238       struct { double data[20]; } locs_buf;
3239       struct { double data[20]; } stubs_locs_buf;
3240       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3241 #if defined(AARCH64) || defined(PPC64)
3242       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3243       // in the constant pool to ensure ordering between the barrier and oops
3244       // accesses. For native_wrappers we need a constant.
3245       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3246       // static java call that is resolved in the runtime.
3247       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3248         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3249       }
3250 #endif
3251       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3252       MacroAssembler _masm(&buffer);
3253 
3254       // Fill in the signature array, for the calling-convention call.
3255       const int total_args_passed = method->size_of_parameters();
3256 
3257       VMRegPair stack_regs[16];
3258       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3259 
3260       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3261                               method->is_static(), total_args_passed);
3262       BasicType* sig_bt = si.basic_types();
3263       assert(si.slots() == total_args_passed, "");
3264       BasicType ret_type = si.return_type();
3265 
3266       // Now get the compiled-Java arguments layout.
3267       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3268 
3269       // Generate the compiled-to-native wrapper code
3270       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3271 
3272       if (nm != nullptr) {
3273         {
3274           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3275           if (nm->make_in_use()) {
3276             method->set_code(method, nm);
3277           }
3278         }
3279 
3280         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3281         if (directive->PrintAssemblyOption) {
3282           nm->print_code();
3283         }
3284         DirectivesStack::release(directive);
3285       }
3286     }
3287   } // Unlock AdapterHandlerLibrary_lock
3288 
3289 
3290   // Install the generated code.
3291   if (nm != nullptr) {
3292     const char *msg = method->is_static() ? "(static)" : "";
3293     CompileTask::print_ul(nm, msg);
3294     if (PrintCompilation) {
3295       ttyLocker ttyl;
3296       CompileTask::print(tty, nm, msg);
3297     }
3298     nm->post_compiled_method_load_event();
3299   }
3300 }
3301 
3302 // -------------------------------------------------------------------------
3303 // Java-Java calling convention
3304 // (what you use when Java calls Java)
3305 
3306 //------------------------------name_for_receiver----------------------------------
3307 // For a given signature, return the VMReg for parameter 0.
3308 VMReg SharedRuntime::name_for_receiver() {
3309   VMRegPair regs;
3310   BasicType sig_bt = T_OBJECT;
3311   (void) java_calling_convention(&sig_bt, &regs, 1);
3312   // Return argument 0 register.  In the LP64 build pointers
3313   // take 2 registers, but the VM wants only the 'main' name.
3314   return regs.first();
3315 }
3316 
3317 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3318   // This method is returning a data structure allocating as a
3319   // ResourceObject, so do not put any ResourceMarks in here.
3320 
3321   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3322   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3323   int cnt = 0;
3324   if (has_receiver) {
3325     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3326   }
3327 
3328   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3329     BasicType type = ss.type();
3330     sig_bt[cnt++] = type;
3331     if (is_double_word_type(type))
3332       sig_bt[cnt++] = T_VOID;
3333   }
3334 
3335   if (has_appendix) {
3336     sig_bt[cnt++] = T_OBJECT;
3337   }
3338 
3339   assert(cnt < 256, "grow table size");
3340 
3341   int comp_args_on_stack;
3342   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3343 
3344   // the calling convention doesn't count out_preserve_stack_slots so
3345   // we must add that in to get "true" stack offsets.
3346 
3347   if (comp_args_on_stack) {
3348     for (int i = 0; i < cnt; i++) {
3349       VMReg reg1 = regs[i].first();
3350       if (reg1->is_stack()) {
3351         // Yuck
3352         reg1 = reg1->bias(out_preserve_stack_slots());
3353       }
3354       VMReg reg2 = regs[i].second();
3355       if (reg2->is_stack()) {
3356         // Yuck
3357         reg2 = reg2->bias(out_preserve_stack_slots());
3358       }
3359       regs[i].set_pair(reg2, reg1);
3360     }
3361   }
3362 
3363   // results
3364   *arg_size = cnt;
3365   return regs;
3366 }
3367 
3368 // OSR Migration Code
3369 //
3370 // This code is used convert interpreter frames into compiled frames.  It is
3371 // called from very start of a compiled OSR nmethod.  A temp array is
3372 // allocated to hold the interesting bits of the interpreter frame.  All
3373 // active locks are inflated to allow them to move.  The displaced headers and
3374 // active interpreter locals are copied into the temp buffer.  Then we return
3375 // back to the compiled code.  The compiled code then pops the current
3376 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3377 // copies the interpreter locals and displaced headers where it wants.
3378 // Finally it calls back to free the temp buffer.
3379 //
3380 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3381 
3382 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3383   assert(current == JavaThread::current(), "pre-condition");
3384   JFR_ONLY(Jfr::check_and_process_sample_request(current);)
3385   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3386   // frame. The stack watermark code below ensures that the interpreted frame is processed
3387   // before it gets unwound. This is helpful as the size of the compiled frame could be
3388   // larger than the interpreted frame, which could result in the new frame not being
3389   // processed correctly.
3390   StackWatermarkSet::before_unwind(current);
3391 
3392   //
3393   // This code is dependent on the memory layout of the interpreter local
3394   // array and the monitors. On all of our platforms the layout is identical
3395   // so this code is shared. If some platform lays the their arrays out
3396   // differently then this code could move to platform specific code or
3397   // the code here could be modified to copy items one at a time using
3398   // frame accessor methods and be platform independent.
3399 
3400   frame fr = current->last_frame();
3401   assert(fr.is_interpreted_frame(), "");
3402   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3403 
3404   // Figure out how many monitors are active.
3405   int active_monitor_count = 0;
3406   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3407        kptr < fr.interpreter_frame_monitor_begin();
3408        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3409     if (kptr->obj() != nullptr) active_monitor_count++;
3410   }
3411 
3412   // QQQ we could place number of active monitors in the array so that compiled code
3413   // could double check it.
3414 
3415   Method* moop = fr.interpreter_frame_method();
3416   int max_locals = moop->max_locals();
3417   // Allocate temp buffer, 1 word per local & 2 per active monitor
3418   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3419   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3420 
3421   // Copy the locals.  Order is preserved so that loading of longs works.
3422   // Since there's no GC I can copy the oops blindly.
3423   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3424   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3425                        (HeapWord*)&buf[0],
3426                        max_locals);
3427 
3428   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3429   int i = max_locals;
3430   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3431        kptr2 < fr.interpreter_frame_monitor_begin();
3432        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3433     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3434       BasicLock *lock = kptr2->lock();
3435       if (UseObjectMonitorTable) {
3436         buf[i] = (intptr_t)lock->object_monitor_cache();
3437       }
3438 #ifdef ASSERT
3439       else {
3440         buf[i] = badDispHeaderOSR;
3441       }
3442 #endif
3443       i++;
3444       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3445     }
3446   }
3447   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3448 
3449   RegisterMap map(current,
3450                   RegisterMap::UpdateMap::skip,
3451                   RegisterMap::ProcessFrames::include,
3452                   RegisterMap::WalkContinuation::skip);
3453   frame sender = fr.sender(&map);
3454   if (sender.is_interpreted_frame()) {
3455     current->push_cont_fastpath(sender.sp());
3456   }
3457 
3458   return buf;
3459 JRT_END
3460 
3461 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3462   FREE_C_HEAP_ARRAY(intptr_t, buf);
3463 JRT_END
3464 
3465 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3466   bool found = false;
3467 #if INCLUDE_CDS
3468   if (AOTCodeCache::is_using_adapter()) {
3469     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3470       return (found = (b == CodeCache::find_blob(handler->get_i2c_entry())));
3471     };
3472     _aot_adapter_handler_table.iterate(findblob_archived_table);
3473   }
3474 #endif // INCLUDE_CDS
3475   if (!found) {
3476     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3477       return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3478     };
3479     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3480     _adapter_handler_table->iterate(findblob_runtime_table);
3481   }
3482   return found;
3483 }
3484 
3485 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) {
3486   return handler->fingerprint()->as_basic_args_string();
3487 }
3488 
3489 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) {
3490   return handler->id();
3491 }
3492 
3493 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3494   bool found = false;
3495 #if INCLUDE_CDS
3496   if (AOTCodeCache::is_using_adapter()) {
3497     auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3498       if (b == CodeCache::find_blob(handler->get_i2c_entry())) {
3499         found = true;
3500         st->print("Adapter for signature: ");
3501         handler->print_adapter_on(st);
3502         return true;
3503       } else {
3504         return false; // keep looking
3505       }
3506     };
3507     _aot_adapter_handler_table.iterate(findblob_archived_table);
3508   }
3509 #endif // INCLUDE_CDS
3510   if (!found) {
3511     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3512       if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3513         found = true;
3514         st->print("Adapter for signature: ");
3515         a->print_adapter_on(st);
3516         return true;
3517       } else {
3518         return false; // keep looking
3519       }
3520     };
3521     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3522     _adapter_handler_table->iterate(findblob_runtime_table);
3523   }
3524   assert(found, "Should have found handler");
3525 }
3526 
3527 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3528   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3529   if (adapter_blob() != nullptr) {
3530     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3531     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3532     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3533     if (get_c2i_no_clinit_check_entry() != nullptr) {
3534       st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3535     }
3536   }
3537   st->cr();
3538 }
3539 








3540 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3541   assert(current == JavaThread::current(), "pre-condition");
3542   StackOverflow* overflow_state = current->stack_overflow_state();
3543   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3544   overflow_state->set_reserved_stack_activation(current->stack_base());
3545 JRT_END
3546 
3547 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3548   ResourceMark rm(current);
3549   frame activation;
3550   nmethod* nm = nullptr;
3551   int count = 1;
3552 
3553   assert(fr.is_java_frame(), "Must start on Java frame");
3554 
3555   RegisterMap map(JavaThread::current(),
3556                   RegisterMap::UpdateMap::skip,
3557                   RegisterMap::ProcessFrames::skip,
3558                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3559   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3560     if (!fr.is_java_frame()) {
3561       continue;
3562     }
3563 
3564     Method* method = nullptr;
3565     bool found = false;
3566     if (fr.is_interpreted_frame()) {
3567       method = fr.interpreter_frame_method();
3568       if (method != nullptr && method->has_reserved_stack_access()) {
3569         found = true;
3570       }
3571     } else {
3572       CodeBlob* cb = fr.cb();
3573       if (cb != nullptr && cb->is_nmethod()) {
3574         nm = cb->as_nmethod();
3575         method = nm->method();
3576         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3577           method = sd->method();
3578           if (method != nullptr && method->has_reserved_stack_access()) {
3579             found = true;
3580           }
3581         }
3582       }
3583     }
3584     if (found) {
3585       activation = fr;
3586       warning("Potentially dangerous stack overflow in "
3587               "ReservedStackAccess annotated method %s [%d]",
3588               method->name_and_sig_as_C_string(), count++);
3589       EventReservedStackActivation event;
3590       if (event.should_commit()) {
3591         event.set_method(method);
3592         event.commit();
3593       }
3594     }
3595   }
3596   return activation;
3597 }
3598 
3599 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3600   // After any safepoint, just before going back to compiled code,
3601   // we inform the GC that we will be doing initializing writes to
3602   // this object in the future without emitting card-marks, so
3603   // GC may take any compensating steps.
3604 
3605   oop new_obj = current->vm_result_oop();
3606   if (new_obj == nullptr) return;
3607 
3608   BarrierSet *bs = BarrierSet::barrier_set();
3609   bs->on_slowpath_allocation_exit(current, new_obj);
3610 }
--- EOF ---