1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/nmethod.inline.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/abstractCompiler.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jvm.h"
  45 #include "jfr/jfrEvents.hpp"
  46 #include "logging/log.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "metaprogramming/primitiveConversions.hpp"
  50 #include "oops/klass.hpp"
  51 #include "oops/method.inline.hpp"
  52 #include "oops/objArrayKlass.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "prims/forte.hpp"
  55 #include "prims/jvmtiExport.hpp"
  56 #include "prims/jvmtiThreadState.hpp"
  57 #include "prims/methodHandles.hpp"
  58 #include "prims/nativeLookup.hpp"
  59 #include "runtime/atomic.hpp"
  60 #include "runtime/frame.inline.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/init.hpp"
  63 #include "runtime/interfaceSupport.inline.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/jniHandles.inline.hpp"
  67 #include "runtime/perfData.inline.hpp"
  68 #include "runtime/sharedRuntime.hpp"
  69 #include "runtime/stackWatermarkSet.hpp"
  70 #include "runtime/stubRoutines.hpp"
  71 #include "runtime/synchronizer.hpp"
  72 #include "runtime/vframe.inline.hpp"
  73 #include "runtime/vframeArray.hpp"
  74 #include "runtime/vm_version.hpp"
  75 #include "services/management.hpp"
  76 #include "utilities/copy.hpp"
  77 #include "utilities/dtrace.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/resourceHash.hpp"
  80 #include "utilities/macros.hpp"
  81 #include "utilities/xmlstream.hpp"
  82 #ifdef COMPILER1
  83 #include "c1/c1_Runtime1.hpp"
  84 #endif
  85 #if INCLUDE_JFR
  86 #include "jfr/jfr.hpp"
  87 #endif
  88 
  89 // Shared stub locations
  90 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  91 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  92 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  93 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  94 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  95 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  96 address             SharedRuntime::_resolve_static_call_entry;
  97 
  98 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  99 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
 100 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
 101 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
 102 
 103 #ifdef COMPILER2
 104 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 105 #endif // COMPILER2
 106 
 107 nmethod*            SharedRuntime::_cont_doYield_stub;
 108 
 109 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr;
 110 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time     = nullptr;
 111 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time      = nullptr;
 112 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr;
 113 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time             = nullptr;
 114 
 115 //----------------------------generate_stubs-----------------------------------
 116 void SharedRuntime::generate_stubs() {
 117   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 118   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 119   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 120   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 121   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 122   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 123   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 124 
 125   AdapterHandlerLibrary::initialize();
 126 
 127 #if COMPILER2_OR_JVMCI
 128   // Vectors are generated only by C2 and JVMCI.
 129   bool support_wide = is_wide_vector(MaxVectorSize);
 130   if (support_wide) {
 131     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 132   }
 133 #endif // COMPILER2_OR_JVMCI
 134   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 135   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 136 
 137   generate_deopt_blob();
 138 
 139 #ifdef COMPILER2
 140   generate_uncommon_trap_blob();
 141 #endif // COMPILER2
 142   if (UsePerfData) {
 143     EXCEPTION_MARK;
 144     NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call");
 145     NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time,     SUN_CI, "resovle_virtual_call");
 146     NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time,      SUN_CI, "resovle_static_call");
 147     NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method");
 148     NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time ,            SUN_CI, "ic_miss");
 149     if (HAS_PENDING_EXCEPTION) {
 150       vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly");
 151     }
 152   }
 153 }
 154 
 155 void SharedRuntime::print_counters_on(outputStream* st) {
 156   st->print_cr("SharedRuntime:");
 157   if (UsePerfData) {
 158     st->print_cr("  resolve_opt_virtual_call: %5ldms (elapsed) %5ldms (thread) / %5d events",
 159                  _perf_resolve_opt_virtual_total_time->elapsed_counter_value_ms(),
 160                  _perf_resolve_opt_virtual_total_time->thread_counter_value_ms(),
 161                  _resolve_opt_virtual_ctr);
 162     st->print_cr("  resolve_virtual_call:     %5ldms (elapsed) %5ldms (thread) / %5d events",
 163                  _perf_resolve_virtual_total_time->elapsed_counter_value_ms(),
 164                  _perf_resolve_virtual_total_time->thread_counter_value_ms(),
 165                  _resolve_virtual_ctr);
 166     st->print_cr("  resolve_static_call:      %5ldms (elapsed) %5ldms (thread) / %5d events",
 167                  _perf_resolve_static_total_time->elapsed_counter_value_ms(),
 168                  _perf_resolve_static_total_time->thread_counter_value_ms(),
 169                  _resolve_static_ctr);
 170     st->print_cr("  handle_wrong_method:      %5ldms (elapsed) %5ldms (thread) / %5d events",
 171                  _perf_handle_wrong_method_total_time->elapsed_counter_value_ms(),
 172                  _perf_handle_wrong_method_total_time->thread_counter_value_ms(),
 173                  _wrong_method_ctr);
 174     st->print_cr("  ic_miss:                  %5ldms (elapsed) %5ldms (thread) / %5d events",
 175                  _perf_ic_miss_total_time->elapsed_counter_value_ms(),
 176                  _perf_ic_miss_total_time->thread_counter_value_ms(),
 177                  _ic_miss_ctr);
 178 
 179     jlong total_elapsed_time_ms = Management::ticks_to_ms(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() +
 180                                                           _perf_resolve_virtual_total_time->elapsed_counter_value() +
 181                                                           _perf_resolve_static_total_time->elapsed_counter_value() +
 182                                                           _perf_handle_wrong_method_total_time->elapsed_counter_value() +
 183                                                           _perf_ic_miss_total_time->elapsed_counter_value());
 184     jlong total_thread_time_ms = Management::ticks_to_ms(_perf_resolve_opt_virtual_total_time->thread_counter_value() +
 185                                                           _perf_resolve_virtual_total_time->thread_counter_value() +
 186                                                           _perf_resolve_static_total_time->thread_counter_value() +
 187                                                           _perf_handle_wrong_method_total_time->thread_counter_value() +
 188                                                           _perf_ic_miss_total_time->thread_counter_value());
 189     st->print_cr("Total:                      %5ldms (elapsed) %5ldms (thread)", total_elapsed_time_ms, total_thread_time_ms);
 190   } else {
 191     st->print_cr("  no data (UsePerfData is turned off)");
 192   }
 193 }
 194 
 195 #include <math.h>
 196 
 197 // Implementation of SharedRuntime
 198 

 199 // For statistics
 200 uint SharedRuntime::_ic_miss_ctr = 0;
 201 uint SharedRuntime::_wrong_method_ctr = 0;
 202 uint SharedRuntime::_resolve_static_ctr = 0;
 203 uint SharedRuntime::_resolve_virtual_ctr = 0;
 204 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
 205 
 206 #ifndef PRODUCT
 207 uint SharedRuntime::_implicit_null_throws = 0;
 208 uint SharedRuntime::_implicit_div0_throws = 0;
 209 
 210 int64_t SharedRuntime::_nof_normal_calls = 0;
 211 int64_t SharedRuntime::_nof_inlined_calls = 0;
 212 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 213 int64_t SharedRuntime::_nof_static_calls = 0;
 214 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 215 int64_t SharedRuntime::_nof_interface_calls = 0;
 216 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 217 
 218 uint SharedRuntime::_new_instance_ctr=0;
 219 uint SharedRuntime::_new_array_ctr=0;
 220 uint SharedRuntime::_multi2_ctr=0;
 221 uint SharedRuntime::_multi3_ctr=0;
 222 uint SharedRuntime::_multi4_ctr=0;
 223 uint SharedRuntime::_multi5_ctr=0;
 224 uint SharedRuntime::_mon_enter_stub_ctr=0;
 225 uint SharedRuntime::_mon_exit_stub_ctr=0;
 226 uint SharedRuntime::_mon_enter_ctr=0;
 227 uint SharedRuntime::_mon_exit_ctr=0;
 228 uint SharedRuntime::_partial_subtype_ctr=0;
 229 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 230 uint SharedRuntime::_jshort_array_copy_ctr=0;
 231 uint SharedRuntime::_jint_array_copy_ctr=0;
 232 uint SharedRuntime::_jlong_array_copy_ctr=0;
 233 uint SharedRuntime::_oop_array_copy_ctr=0;
 234 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 235 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 236 uint SharedRuntime::_generic_array_copy_ctr=0;
 237 uint SharedRuntime::_slow_array_copy_ctr=0;
 238 uint SharedRuntime::_find_handler_ctr=0;
 239 uint SharedRuntime::_rethrow_ctr=0;
 240 
 241 int     SharedRuntime::_ICmiss_index                    = 0;
 242 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 243 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 244 
 245 
 246 void SharedRuntime::trace_ic_miss(address at) {
 247   for (int i = 0; i < _ICmiss_index; i++) {
 248     if (_ICmiss_at[i] == at) {
 249       _ICmiss_count[i]++;
 250       return;
 251     }
 252   }
 253   int index = _ICmiss_index++;
 254   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 255   _ICmiss_at[index] = at;
 256   _ICmiss_count[index] = 1;
 257 }
 258 
 259 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) {
 260   if (ICMissHistogram) {
 261     st->print_cr("IC Miss Histogram:");
 262     int tot_misses = 0;
 263     for (int i = 0; i < _ICmiss_index; i++) {
 264       st->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 265       tot_misses += _ICmiss_count[i];
 266     }
 267     st->print_cr("Total IC misses: %7d", tot_misses);
 268   }
 269 }
 270 #endif // !PRODUCT
 271 
 272 
 273 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 274   return x * y;
 275 JRT_END
 276 
 277 
 278 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 279   if (x == min_jlong && y == CONST64(-1)) {
 280     return x;
 281   } else {
 282     return x / y;
 283   }
 284 JRT_END
 285 
 286 
 287 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 288   if (x == min_jlong && y == CONST64(-1)) {
 289     return 0;
 290   } else {
 291     return x % y;
 292   }
 293 JRT_END
 294 
 295 
 296 #ifdef _WIN64
 297 const juint  float_sign_mask  = 0x7FFFFFFF;
 298 const juint  float_infinity   = 0x7F800000;
 299 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 300 const julong double_infinity  = CONST64(0x7FF0000000000000);
 301 #endif
 302 
 303 #if !defined(X86)
 304 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 305 #ifdef _WIN64
 306   // 64-bit Windows on amd64 returns the wrong values for
 307   // infinity operands.
 308   juint xbits = PrimitiveConversions::cast<juint>(x);
 309   juint ybits = PrimitiveConversions::cast<juint>(y);
 310   // x Mod Infinity == x unless x is infinity
 311   if (((xbits & float_sign_mask) != float_infinity) &&
 312        ((ybits & float_sign_mask) == float_infinity) ) {
 313     return x;
 314   }
 315   return ((jfloat)fmod_winx64((double)x, (double)y));
 316 #else
 317   return ((jfloat)fmod((double)x,(double)y));
 318 #endif
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 322 #ifdef _WIN64
 323   julong xbits = PrimitiveConversions::cast<julong>(x);
 324   julong ybits = PrimitiveConversions::cast<julong>(y);
 325   // x Mod Infinity == x unless x is infinity
 326   if (((xbits & double_sign_mask) != double_infinity) &&
 327        ((ybits & double_sign_mask) == double_infinity) ) {
 328     return x;
 329   }
 330   return ((jdouble)fmod_winx64((double)x, (double)y));
 331 #else
 332   return ((jdouble)fmod((double)x,(double)y));
 333 #endif
 334 JRT_END
 335 #endif // !X86
 336 
 337 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 338   return (jfloat)x;
 339 JRT_END
 340 
 341 #ifdef __SOFTFP__
 342 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 343   return x + y;
 344 JRT_END
 345 
 346 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 347   return x - y;
 348 JRT_END
 349 
 350 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 351   return x * y;
 352 JRT_END
 353 
 354 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 355   return x / y;
 356 JRT_END
 357 
 358 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 359   return x + y;
 360 JRT_END
 361 
 362 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 363   return x - y;
 364 JRT_END
 365 
 366 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 367   return x * y;
 368 JRT_END
 369 
 370 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 371   return x / y;
 372 JRT_END
 373 
 374 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 375   return (jdouble)x;
 376 JRT_END
 377 
 378 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 379   return (jdouble)x;
 380 JRT_END
 381 
 382 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 383   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 384 JRT_END
 385 
 386 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 387   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 388 JRT_END
 389 
 390 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 391   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 392 JRT_END
 393 
 394 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 395   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 396 JRT_END
 397 
 398 // Functions to return the opposite of the aeabi functions for nan.
 399 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 400   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 401 JRT_END
 402 
 403 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 404   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 405 JRT_END
 406 
 407 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 408   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 409 JRT_END
 410 
 411 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 412   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 413 JRT_END
 414 
 415 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 416   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 417 JRT_END
 418 
 419 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 420   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 421 JRT_END
 422 
 423 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 424   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 425 JRT_END
 426 
 427 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 428   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 429 JRT_END
 430 
 431 // Intrinsics make gcc generate code for these.
 432 float  SharedRuntime::fneg(float f)   {
 433   return -f;
 434 }
 435 
 436 double SharedRuntime::dneg(double f)  {
 437   return -f;
 438 }
 439 
 440 #endif // __SOFTFP__
 441 
 442 #if defined(__SOFTFP__) || defined(E500V2)
 443 // Intrinsics make gcc generate code for these.
 444 double SharedRuntime::dabs(double f)  {
 445   return (f <= (double)0.0) ? (double)0.0 - f : f;
 446 }
 447 
 448 #endif
 449 
 450 #if defined(__SOFTFP__) || defined(PPC)
 451 double SharedRuntime::dsqrt(double f) {
 452   return sqrt(f);
 453 }
 454 #endif
 455 
 456 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 457   if (g_isnan(x))
 458     return 0;
 459   if (x >= (jfloat) max_jint)
 460     return max_jint;
 461   if (x <= (jfloat) min_jint)
 462     return min_jint;
 463   return (jint) x;
 464 JRT_END
 465 
 466 
 467 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 468   if (g_isnan(x))
 469     return 0;
 470   if (x >= (jfloat) max_jlong)
 471     return max_jlong;
 472   if (x <= (jfloat) min_jlong)
 473     return min_jlong;
 474   return (jlong) x;
 475 JRT_END
 476 
 477 
 478 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 479   if (g_isnan(x))
 480     return 0;
 481   if (x >= (jdouble) max_jint)
 482     return max_jint;
 483   if (x <= (jdouble) min_jint)
 484     return min_jint;
 485   return (jint) x;
 486 JRT_END
 487 
 488 
 489 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 490   if (g_isnan(x))
 491     return 0;
 492   if (x >= (jdouble) max_jlong)
 493     return max_jlong;
 494   if (x <= (jdouble) min_jlong)
 495     return min_jlong;
 496   return (jlong) x;
 497 JRT_END
 498 
 499 
 500 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 501   return (jfloat)x;
 502 JRT_END
 503 
 504 
 505 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 506   return (jfloat)x;
 507 JRT_END
 508 
 509 
 510 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 511   return (jdouble)x;
 512 JRT_END
 513 
 514 
 515 // Exception handling across interpreter/compiler boundaries
 516 //
 517 // exception_handler_for_return_address(...) returns the continuation address.
 518 // The continuation address is the entry point of the exception handler of the
 519 // previous frame depending on the return address.
 520 
 521 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 522   // Note: This is called when we have unwound the frame of the callee that did
 523   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 524   // Notably, the stack is not walkable at this point, and hence the check must
 525   // be deferred until later. Specifically, any of the handlers returned here in
 526   // this function, will get dispatched to, and call deferred checks to
 527   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 528   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 529   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 530 
 531   // Reset method handle flag.
 532   current->set_is_method_handle_return(false);
 533 
 534 #if INCLUDE_JVMCI
 535   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 536   // and other exception handler continuations do not read it
 537   current->set_exception_pc(nullptr);
 538 #endif // INCLUDE_JVMCI
 539 
 540   if (Continuation::is_return_barrier_entry(return_address)) {
 541     return StubRoutines::cont_returnBarrierExc();
 542   }
 543 
 544   // write lock needed because we might update the pc desc cache via PcDescCache::add_pc_desc
 545   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
 546 
 547   // The fastest case first
 548   CodeBlob* blob = CodeCache::find_blob(return_address);
 549   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 550   if (nm != nullptr) {
 551     // Set flag if return address is a method handle call site.
 552     current->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 553     // native nmethods don't have exception handlers
 554     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 555     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 556     if (nm->is_deopt_pc(return_address)) {
 557       // If we come here because of a stack overflow, the stack may be
 558       // unguarded. Reguard the stack otherwise if we return to the
 559       // deopt blob and the stack bang causes a stack overflow we
 560       // crash.
 561       StackOverflow* overflow_state = current->stack_overflow_state();
 562       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 563       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 564         overflow_state->set_reserved_stack_activation(current->stack_base());
 565       }
 566       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 567       // The deferred StackWatermarkSet::after_unwind check will be performed in
 568       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 569       return SharedRuntime::deopt_blob()->unpack_with_exception();
 570     } else {
 571       // The deferred StackWatermarkSet::after_unwind check will be performed in
 572       // * OptoRuntime::handle_exception_C_helper for C2 code
 573       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 574       return nm->exception_begin();
 575     }
 576   }
 577 
 578   // Entry code
 579   if (StubRoutines::returns_to_call_stub(return_address)) {
 580     // The deferred StackWatermarkSet::after_unwind check will be performed in
 581     // JavaCallWrapper::~JavaCallWrapper
 582     return StubRoutines::catch_exception_entry();
 583   }
 584   if (blob != nullptr && blob->is_upcall_stub()) {
 585     return StubRoutines::upcall_stub_exception_handler();
 586   }
 587   // Interpreted code
 588   if (Interpreter::contains(return_address)) {
 589     // The deferred StackWatermarkSet::after_unwind check will be performed in
 590     // InterpreterRuntime::exception_handler_for_exception
 591     return Interpreter::rethrow_exception_entry();
 592   }
 593 
 594   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 595   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 596 
 597 #ifndef PRODUCT
 598   { ResourceMark rm;
 599     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 600     os::print_location(tty, (intptr_t)return_address);
 601     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 602     tty->print_cr("b) other problem");
 603   }
 604 #endif // PRODUCT
 605 
 606   ShouldNotReachHere();
 607   return nullptr;
 608 }
 609 
 610 
 611 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 612   return raw_exception_handler_for_return_address(current, return_address);
 613 JRT_END
 614 
 615 
 616 address SharedRuntime::get_poll_stub(address pc) {
 617   address stub;
 618   // Look up the code blob
 619   CodeBlob *cb = CodeCache::find_blob(pc);
 620 
 621   // Should be an nmethod
 622   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 623 
 624   // Look up the relocation information
 625   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 626       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 627 
 628 #ifdef ASSERT
 629   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 630     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 631     Disassembler::decode(cb);
 632     fatal("Only polling locations are used for safepoint");
 633   }
 634 #endif
 635 
 636   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 637   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 638   if (at_poll_return) {
 639     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 640            "polling page return stub not created yet");
 641     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 642   } else if (has_wide_vectors) {
 643     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 644            "polling page vectors safepoint stub not created yet");
 645     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 646   } else {
 647     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 648            "polling page safepoint stub not created yet");
 649     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 650   }
 651   log_debug(safepoint)("... found polling page %s exception at pc = "
 652                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 653                        at_poll_return ? "return" : "loop",
 654                        (intptr_t)pc, (intptr_t)stub);
 655   return stub;
 656 }
 657 
 658 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 659   if (JvmtiExport::can_post_on_exceptions()) {
 660     vframeStream vfst(current, true);
 661     methodHandle method = methodHandle(current, vfst.method());
 662     address bcp = method()->bcp_from(vfst.bci());
 663     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 664   }
 665 
 666 #if INCLUDE_JVMCI
 667   if (EnableJVMCI && UseJVMCICompiler) {
 668     vframeStream vfst(current, true);
 669     methodHandle method = methodHandle(current, vfst.method());
 670     int bci = vfst.bci();
 671     MethodData* trap_mdo = method->method_data();
 672     if (trap_mdo != nullptr) {
 673       // Set exception_seen if the exceptional bytecode is an invoke
 674       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 675       if (call.is_valid()) {
 676         ResourceMark rm(current);
 677 
 678         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 679         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 680 
 681         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 682         if (pdata != nullptr && pdata->is_BitData()) {
 683           BitData* bit_data = (BitData*) pdata;
 684           bit_data->set_exception_seen();
 685         }
 686       }
 687     }
 688   }
 689 #endif
 690 
 691   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 692 }
 693 
 694 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 695   Handle h_exception = Exceptions::new_exception(current, name, message);
 696   throw_and_post_jvmti_exception(current, h_exception);
 697 }
 698 
 699 #if INCLUDE_JVMTI
 700 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 701   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 702   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 703   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 704   JNIHandles::destroy_local(vthread);
 705 JRT_END
 706 
 707 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 708   assert(hide == JNI_TRUE, "must be VTMS transition start");
 709   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 710   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 711   JNIHandles::destroy_local(vthread);
 712 JRT_END
 713 
 714 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 715   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 716   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 717   JNIHandles::destroy_local(vthread);
 718 JRT_END
 719 
 720 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 721   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 722   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 723   JNIHandles::destroy_local(vthread);
 724 JRT_END
 725 #endif // INCLUDE_JVMTI
 726 
 727 // The interpreter code to call this tracing function is only
 728 // called/generated when UL is on for redefine, class and has the right level
 729 // and tags. Since obsolete methods are never compiled, we don't have
 730 // to modify the compilers to generate calls to this function.
 731 //
 732 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 733     JavaThread* thread, Method* method))
 734   if (method->is_obsolete()) {
 735     // We are calling an obsolete method, but this is not necessarily
 736     // an error. Our method could have been redefined just after we
 737     // fetched the Method* from the constant pool.
 738     ResourceMark rm;
 739     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 740   }
 741 
 742   LogStreamHandle(Trace, interpreter, bytecode) log;
 743   if (log.is_enabled()) {
 744     ResourceMark rm;
 745     log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s",
 746               p2i(thread),
 747               (method->is_static() ? "static" : "virtual"),
 748               method->name_and_sig_as_C_string(),
 749               (method->is_native() ? " native" : ""),
 750               (thread->class_being_initialized() != nullptr ? " clinit" : ""),
 751               (method->method_holder()->is_initialized() ? "" : " being_initialized"));
 752   }
 753   return 0;
 754 JRT_END
 755 
 756 // ret_pc points into caller; we are returning caller's exception handler
 757 // for given exception
 758 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 759 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 760                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 761   assert(nm != nullptr, "must exist");
 762   ResourceMark rm;
 763 
 764 #if INCLUDE_JVMCI
 765   if (nm->is_compiled_by_jvmci()) {
 766     // lookup exception handler for this pc
 767     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 768     ExceptionHandlerTable table(nm);
 769     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 770     if (t != nullptr) {
 771       return nm->code_begin() + t->pco();
 772     } else {
 773       return Deoptimization::deoptimize_for_missing_exception_handler(nm);
 774     }
 775   }
 776 #endif // INCLUDE_JVMCI
 777 
 778   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 779   // determine handler bci, if any
 780   EXCEPTION_MARK;
 781 
 782   int handler_bci = -1;
 783   int scope_depth = 0;
 784   if (!force_unwind) {
 785     int bci = sd->bci();
 786     bool recursive_exception = false;
 787     do {
 788       bool skip_scope_increment = false;
 789       // exception handler lookup
 790       Klass* ek = exception->klass();
 791       methodHandle mh(THREAD, sd->method());
 792       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 793       if (HAS_PENDING_EXCEPTION) {
 794         recursive_exception = true;
 795         // We threw an exception while trying to find the exception handler.
 796         // Transfer the new exception to the exception handle which will
 797         // be set into thread local storage, and do another lookup for an
 798         // exception handler for this exception, this time starting at the
 799         // BCI of the exception handler which caused the exception to be
 800         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 801         // argument to ensure that the correct exception is thrown (4870175).
 802         recursive_exception_occurred = true;
 803         exception = Handle(THREAD, PENDING_EXCEPTION);
 804         CLEAR_PENDING_EXCEPTION;
 805         if (handler_bci >= 0) {
 806           bci = handler_bci;
 807           handler_bci = -1;
 808           skip_scope_increment = true;
 809         }
 810       }
 811       else {
 812         recursive_exception = false;
 813       }
 814       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 815         sd = sd->sender();
 816         if (sd != nullptr) {
 817           bci = sd->bci();
 818         }
 819         ++scope_depth;
 820       }
 821     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 822   }
 823 
 824   // found handling method => lookup exception handler
 825   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 826 
 827   ExceptionHandlerTable table(nm);
 828   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 829   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 830     // Allow abbreviated catch tables.  The idea is to allow a method
 831     // to materialize its exceptions without committing to the exact
 832     // routing of exceptions.  In particular this is needed for adding
 833     // a synthetic handler to unlock monitors when inlining
 834     // synchronized methods since the unlock path isn't represented in
 835     // the bytecodes.
 836     t = table.entry_for(catch_pco, -1, 0);
 837   }
 838 
 839 #ifdef COMPILER1
 840   if (t == nullptr && nm->is_compiled_by_c1()) {
 841     assert(nm->unwind_handler_begin() != nullptr, "");
 842     return nm->unwind_handler_begin();
 843   }
 844 #endif
 845 
 846   if (t == nullptr) {
 847     ttyLocker ttyl;
 848     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 849     tty->print_cr("   Exception:");
 850     exception->print();
 851     tty->cr();
 852     tty->print_cr(" Compiled exception table :");
 853     table.print();
 854     nm->print();
 855     nm->print_code();
 856     guarantee(false, "missing exception handler");
 857     return nullptr;
 858   }
 859 
 860   if (handler_bci != -1) { // did we find a handler in this method?
 861     sd->method()->set_exception_handler_entered(handler_bci); // profile
 862   }
 863   return nm->code_begin() + t->pco();
 864 }
 865 
 866 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 867   // These errors occur only at call sites
 868   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 869 JRT_END
 870 
 871 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 872   // These errors occur only at call sites
 873   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 874 JRT_END
 875 
 876 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 877   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 878 JRT_END
 879 
 880 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 881   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 882 JRT_END
 883 
 884 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 885   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 886   // cache sites (when the callee activation is not yet set up) so we are at a call site
 887   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 888 JRT_END
 889 
 890 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 891   throw_StackOverflowError_common(current, false);
 892 JRT_END
 893 
 894 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 895   throw_StackOverflowError_common(current, true);
 896 JRT_END
 897 
 898 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 899   // We avoid using the normal exception construction in this case because
 900   // it performs an upcall to Java, and we're already out of stack space.
 901   JavaThread* THREAD = current; // For exception macros.
 902   Klass* k = vmClasses::StackOverflowError_klass();
 903   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 904   if (delayed) {
 905     java_lang_Throwable::set_message(exception_oop,
 906                                      Universe::delayed_stack_overflow_error_message());
 907   }
 908   Handle exception (current, exception_oop);
 909   if (StackTraceInThrowable) {
 910     java_lang_Throwable::fill_in_stack_trace(exception);
 911   }
 912   // Remove the ScopedValue bindings in case we got a
 913   // StackOverflowError while we were trying to remove ScopedValue
 914   // bindings.
 915   current->clear_scopedValueBindings();
 916   // Increment counter for hs_err file reporting
 917   Atomic::inc(&Exceptions::_stack_overflow_errors);
 918   throw_and_post_jvmti_exception(current, exception);
 919 }
 920 
 921 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 922                                                            address pc,
 923                                                            ImplicitExceptionKind exception_kind)
 924 {
 925   address target_pc = nullptr;
 926 
 927   if (Interpreter::contains(pc)) {
 928     switch (exception_kind) {
 929       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 930       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 931       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 932       default:                      ShouldNotReachHere();
 933     }
 934   } else {
 935     switch (exception_kind) {
 936       case STACK_OVERFLOW: {
 937         // Stack overflow only occurs upon frame setup; the callee is
 938         // going to be unwound. Dispatch to a shared runtime stub
 939         // which will cause the StackOverflowError to be fabricated
 940         // and processed.
 941         // Stack overflow should never occur during deoptimization:
 942         // the compiled method bangs the stack by as much as the
 943         // interpreter would need in case of a deoptimization. The
 944         // deoptimization blob and uncommon trap blob bang the stack
 945         // in a debug VM to verify the correctness of the compiled
 946         // method stack banging.
 947         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 948         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 949         return StubRoutines::throw_StackOverflowError_entry();
 950       }
 951 
 952       case IMPLICIT_NULL: {
 953         if (VtableStubs::contains(pc)) {
 954           // We haven't yet entered the callee frame. Fabricate an
 955           // exception and begin dispatching it in the caller. Since
 956           // the caller was at a call site, it's safe to destroy all
 957           // caller-saved registers, as these entry points do.
 958           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 959 
 960           // If vt_stub is null, then return null to signal handler to report the SEGV error.
 961           if (vt_stub == nullptr) return nullptr;
 962 
 963           if (vt_stub->is_abstract_method_error(pc)) {
 964             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 965             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 966             // Instead of throwing the abstract method error here directly, we re-resolve
 967             // and will throw the AbstractMethodError during resolve. As a result, we'll
 968             // get a more detailed error message.
 969             return SharedRuntime::get_handle_wrong_method_stub();
 970           } else {
 971             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 972             // Assert that the signal comes from the expected location in stub code.
 973             assert(vt_stub->is_null_pointer_exception(pc),
 974                    "obtained signal from unexpected location in stub code");
 975             return StubRoutines::throw_NullPointerException_at_call_entry();
 976           }
 977         } else {
 978           CodeBlob* cb = CodeCache::find_blob(pc);
 979 
 980           // If code blob is null, then return null to signal handler to report the SEGV error.
 981           if (cb == nullptr) return nullptr;
 982 
 983           // Exception happened in CodeCache. Must be either:
 984           // 1. Inline-cache check in C2I handler blob,
 985           // 2. Inline-cache check in nmethod, or
 986           // 3. Implicit null exception in nmethod
 987 
 988           if (!cb->is_nmethod()) {
 989             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 990             if (!is_in_blob) {
 991               // Allow normal crash reporting to handle this
 992               return nullptr;
 993             }
 994             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 995             // There is no handler here, so we will simply unwind.
 996             return StubRoutines::throw_NullPointerException_at_call_entry();
 997           }
 998 
 999           // Otherwise, it's a compiled method.  Consult its exception handlers.
1000           nmethod* nm = cb->as_nmethod();
1001           if (nm->inlinecache_check_contains(pc)) {
1002             // exception happened inside inline-cache check code
1003             // => the nmethod is not yet active (i.e., the frame
1004             // is not set up yet) => use return address pushed by
1005             // caller => don't push another return address
1006             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1007             return StubRoutines::throw_NullPointerException_at_call_entry();
1008           }
1009 
1010           if (nm->method()->is_method_handle_intrinsic()) {
1011             // exception happened inside MH dispatch code, similar to a vtable stub
1012             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1013             return StubRoutines::throw_NullPointerException_at_call_entry();
1014           }
1015 
1016 #ifndef PRODUCT
1017           _implicit_null_throws++;
1018 #endif
1019           target_pc = nm->continuation_for_implicit_null_exception(pc);
1020           // If there's an unexpected fault, target_pc might be null,
1021           // in which case we want to fall through into the normal
1022           // error handling code.
1023         }
1024 
1025         break; // fall through
1026       }
1027 
1028 
1029       case IMPLICIT_DIVIDE_BY_ZERO: {
1030         nmethod* nm = CodeCache::find_nmethod(pc);
1031         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1032 #ifndef PRODUCT
1033         _implicit_div0_throws++;
1034 #endif
1035         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1036         // If there's an unexpected fault, target_pc might be null,
1037         // in which case we want to fall through into the normal
1038         // error handling code.
1039         break; // fall through
1040       }
1041 
1042       default: ShouldNotReachHere();
1043     }
1044 
1045     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1046 
1047     if (exception_kind == IMPLICIT_NULL) {
1048 #ifndef PRODUCT
1049       // for AbortVMOnException flag
1050       Exceptions::debug_check_abort("java.lang.NullPointerException");
1051 #endif //PRODUCT
1052       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1053     } else {
1054 #ifndef PRODUCT
1055       // for AbortVMOnException flag
1056       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1057 #endif //PRODUCT
1058       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1059     }
1060     return target_pc;
1061   }
1062 
1063   ShouldNotReachHere();
1064   return nullptr;
1065 }
1066 
1067 
1068 /**
1069  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1070  * installed in the native function entry of all native Java methods before
1071  * they get linked to their actual native methods.
1072  *
1073  * \note
1074  * This method actually never gets called!  The reason is because
1075  * the interpreter's native entries call NativeLookup::lookup() which
1076  * throws the exception when the lookup fails.  The exception is then
1077  * caught and forwarded on the return from NativeLookup::lookup() call
1078  * before the call to the native function.  This might change in the future.
1079  */
1080 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1081 {
1082   // We return a bad value here to make sure that the exception is
1083   // forwarded before we look at the return value.
1084   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1085 }
1086 JNI_END
1087 
1088 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1089   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1090 }
1091 
1092 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1093 #if INCLUDE_JVMCI
1094   if (!obj->klass()->has_finalizer()) {
1095     return;
1096   }
1097 #endif // INCLUDE_JVMCI
1098   assert(oopDesc::is_oop(obj), "must be a valid oop");
1099   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1100   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1101 JRT_END
1102 
1103 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1104   assert(thread != nullptr, "No thread");
1105   if (thread == nullptr) {
1106     return 0;
1107   }
1108   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1109             "current cannot touch oops after its GC barrier is detached.");
1110   oop obj = thread->threadObj();
1111   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1112 }
1113 
1114 /**
1115  * This function ought to be a void function, but cannot be because
1116  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1117  * 6254741.  Once that is fixed we can remove the dummy return value.
1118  */
1119 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1120   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1121 }
1122 
1123 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1124   return dtrace_object_alloc(thread, o, o->size());
1125 }
1126 
1127 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1128   assert(DTraceAllocProbes, "wrong call");
1129   Klass* klass = o->klass();
1130   Symbol* name = klass->name();
1131   HOTSPOT_OBJECT_ALLOC(
1132                    get_java_tid(thread),
1133                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1134   return 0;
1135 }
1136 
1137 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1138     JavaThread* current, Method* method))
1139   assert(current == JavaThread::current(), "pre-condition");
1140 
1141   assert(DTraceMethodProbes, "wrong call");
1142   Symbol* kname = method->klass_name();
1143   Symbol* name = method->name();
1144   Symbol* sig = method->signature();
1145   HOTSPOT_METHOD_ENTRY(
1146       get_java_tid(current),
1147       (char *) kname->bytes(), kname->utf8_length(),
1148       (char *) name->bytes(), name->utf8_length(),
1149       (char *) sig->bytes(), sig->utf8_length());
1150   return 0;
1151 JRT_END
1152 
1153 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1154     JavaThread* current, Method* method))
1155   assert(current == JavaThread::current(), "pre-condition");
1156   assert(DTraceMethodProbes, "wrong call");
1157   Symbol* kname = method->klass_name();
1158   Symbol* name = method->name();
1159   Symbol* sig = method->signature();
1160   HOTSPOT_METHOD_RETURN(
1161       get_java_tid(current),
1162       (char *) kname->bytes(), kname->utf8_length(),
1163       (char *) name->bytes(), name->utf8_length(),
1164       (char *) sig->bytes(), sig->utf8_length());
1165   return 0;
1166 JRT_END
1167 
1168 
1169 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1170 // for a call current in progress, i.e., arguments has been pushed on stack
1171 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1172 // vtable updates, etc.  Caller frame must be compiled.
1173 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1174   JavaThread* current = THREAD;
1175   ResourceMark rm(current);
1176 
1177   // last java frame on stack (which includes native call frames)
1178   vframeStream vfst(current, true);  // Do not skip and javaCalls
1179 
1180   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1181 }
1182 
1183 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1184   nmethod* caller = vfst.nm();
1185 
1186   address pc = vfst.frame_pc();
1187   { // Get call instruction under lock because another thread may be busy patching it.
1188     CompiledICLocker ic_locker(caller);
1189     return caller->attached_method_before_pc(pc);
1190   }
1191   return nullptr;
1192 }
1193 
1194 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1195 // for a call current in progress, i.e., arguments has been pushed on stack
1196 // but callee has not been invoked yet.  Caller frame must be compiled.
1197 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1198                                               CallInfo& callinfo, TRAPS) {
1199   Handle receiver;
1200   Handle nullHandle;  // create a handy null handle for exception returns
1201   JavaThread* current = THREAD;
1202 
1203   assert(!vfst.at_end(), "Java frame must exist");
1204 
1205   // Find caller and bci from vframe
1206   methodHandle caller(current, vfst.method());
1207   int          bci   = vfst.bci();
1208 
1209   if (caller->is_continuation_enter_intrinsic()) {
1210     bc = Bytecodes::_invokestatic;
1211     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1212     return receiver;
1213   }
1214 
1215   Bytecode_invoke bytecode(caller, bci);
1216   int bytecode_index = bytecode.index();
1217   bc = bytecode.invoke_code();
1218 
1219   methodHandle attached_method(current, extract_attached_method(vfst));
1220   if (attached_method.not_null()) {
1221     Method* callee = bytecode.static_target(CHECK_NH);
1222     vmIntrinsics::ID id = callee->intrinsic_id();
1223     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1224     // it attaches statically resolved method to the call site.
1225     if (MethodHandles::is_signature_polymorphic(id) &&
1226         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1227       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1228 
1229       // Adjust invocation mode according to the attached method.
1230       switch (bc) {
1231         case Bytecodes::_invokevirtual:
1232           if (attached_method->method_holder()->is_interface()) {
1233             bc = Bytecodes::_invokeinterface;
1234           }
1235           break;
1236         case Bytecodes::_invokeinterface:
1237           if (!attached_method->method_holder()->is_interface()) {
1238             bc = Bytecodes::_invokevirtual;
1239           }
1240           break;
1241         case Bytecodes::_invokehandle:
1242           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1243             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1244                                               : Bytecodes::_invokevirtual;
1245           }
1246           break;
1247         default:
1248           break;
1249       }
1250     }
1251   }
1252 
1253   assert(bc != Bytecodes::_illegal, "not initialized");
1254 
1255   bool has_receiver = bc != Bytecodes::_invokestatic &&
1256                       bc != Bytecodes::_invokedynamic &&
1257                       bc != Bytecodes::_invokehandle;
1258 
1259   // Find receiver for non-static call
1260   if (has_receiver) {
1261     // This register map must be update since we need to find the receiver for
1262     // compiled frames. The receiver might be in a register.
1263     RegisterMap reg_map2(current,
1264                          RegisterMap::UpdateMap::include,
1265                          RegisterMap::ProcessFrames::include,
1266                          RegisterMap::WalkContinuation::skip);
1267     frame stubFrame   = current->last_frame();
1268     // Caller-frame is a compiled frame
1269     frame callerFrame = stubFrame.sender(&reg_map2);
1270 
1271     if (attached_method.is_null()) {
1272       Method* callee = bytecode.static_target(CHECK_NH);
1273       if (callee == nullptr) {
1274         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1275       }
1276     }
1277 
1278     // Retrieve from a compiled argument list
1279     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1280     assert(oopDesc::is_oop_or_null(receiver()), "");
1281 
1282     if (receiver.is_null()) {
1283       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1284     }
1285   }
1286 
1287   // Resolve method
1288   if (attached_method.not_null()) {
1289     // Parameterized by attached method.
1290     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1291   } else {
1292     // Parameterized by bytecode.
1293     constantPoolHandle constants(current, caller->constants());
1294     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1295   }
1296 
1297 #ifdef ASSERT
1298   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1299   if (has_receiver) {
1300     assert(receiver.not_null(), "should have thrown exception");
1301     Klass* receiver_klass = receiver->klass();
1302     Klass* rk = nullptr;
1303     if (attached_method.not_null()) {
1304       // In case there's resolved method attached, use its holder during the check.
1305       rk = attached_method->method_holder();
1306     } else {
1307       // Klass is already loaded.
1308       constantPoolHandle constants(current, caller->constants());
1309       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1310     }
1311     Klass* static_receiver_klass = rk;
1312     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1313            "actual receiver must be subclass of static receiver klass");
1314     if (receiver_klass->is_instance_klass()) {
1315       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1316         tty->print_cr("ERROR: Klass not yet initialized!!");
1317         receiver_klass->print();
1318       }
1319       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1320     }
1321   }
1322 #endif
1323 
1324   return receiver;
1325 }
1326 
1327 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1328   JavaThread* current = THREAD;
1329   ResourceMark rm(current);
1330   // We need first to check if any Java activations (compiled, interpreted)
1331   // exist on the stack since last JavaCall.  If not, we need
1332   // to get the target method from the JavaCall wrapper.
1333   vframeStream vfst(current, true);  // Do not skip any javaCalls
1334   methodHandle callee_method;
1335   if (vfst.at_end()) {
1336     // No Java frames were found on stack since we did the JavaCall.
1337     // Hence the stack can only contain an entry_frame.  We need to
1338     // find the target method from the stub frame.
1339     RegisterMap reg_map(current,
1340                         RegisterMap::UpdateMap::skip,
1341                         RegisterMap::ProcessFrames::include,
1342                         RegisterMap::WalkContinuation::skip);
1343     frame fr = current->last_frame();
1344     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1345     fr = fr.sender(&reg_map);
1346     assert(fr.is_entry_frame(), "must be");
1347     // fr is now pointing to the entry frame.
1348     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1349   } else {
1350     Bytecodes::Code bc;
1351     CallInfo callinfo;
1352     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1353     callee_method = methodHandle(current, callinfo.selected_method());
1354   }
1355   assert(callee_method()->is_method(), "must be");
1356   return callee_method;
1357 }
1358 
1359 // Resolves a call.
1360 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1361   JavaThread* current = THREAD;
1362   ResourceMark rm(current);
1363   RegisterMap cbl_map(current,
1364                       RegisterMap::UpdateMap::skip,
1365                       RegisterMap::ProcessFrames::include,
1366                       RegisterMap::WalkContinuation::skip);
1367   frame caller_frame = current->last_frame().sender(&cbl_map);
1368 
1369   CodeBlob* caller_cb = caller_frame.cb();
1370   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1371   nmethod* caller_nm = caller_cb->as_nmethod();
1372 
1373   // determine call info & receiver
1374   // note: a) receiver is null for static calls
1375   //       b) an exception is thrown if receiver is null for non-static calls
1376   CallInfo call_info;
1377   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1378   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1379 
1380   NoSafepointVerifier nsv;
1381 
1382   methodHandle callee_method(current, call_info.selected_method());
1383 
1384   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1385          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1386          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1387          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1388          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1389 
1390   assert(!caller_nm->is_unloading(), "It should not be unloading");
1391 

1392   // tracing/debugging/statistics
1393   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1394                  (is_virtual) ? (&_resolve_virtual_ctr) :
1395                                 (&_resolve_static_ctr);
1396   Atomic::inc(addr);
1397 
1398 #ifndef PRODUCT
1399   if (TraceCallFixup) {
1400     ResourceMark rm(current);
1401     tty->print("resolving %s%s (%s) call to",
1402                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1403                Bytecodes::name(invoke_code));
1404     callee_method->print_short_name(tty);
1405     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1406                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1407   }
1408 #endif
1409 
1410   if (invoke_code == Bytecodes::_invokestatic) {
1411     assert(callee_method->method_holder()->is_initialized() ||
1412            callee_method->method_holder()->is_init_thread(current),
1413            "invalid class initialization state for invoke_static");
1414     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1415       // In order to keep class initialization check, do not patch call
1416       // site for static call when the class is not fully initialized.
1417       // Proper check is enforced by call site re-resolution on every invocation.
1418       //
1419       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1420       // explicit class initialization check is put in nmethod entry (VEP).
1421       assert(callee_method->method_holder()->is_linked(), "must be");
1422       return callee_method;
1423     }
1424   }
1425 
1426 
1427   // JSR 292 key invariant:
1428   // If the resolved method is a MethodHandle invoke target, the call
1429   // site must be a MethodHandle call site, because the lambda form might tail-call
1430   // leaving the stack in a state unknown to either caller or callee
1431 
1432   // Compute entry points. The computation of the entry points is independent of
1433   // patching the call.
1434 
1435   // Make sure the callee nmethod does not get deoptimized and removed before
1436   // we are done patching the code.
1437 
1438 
1439   CompiledICLocker ml(caller_nm);
1440   if (is_virtual && !is_optimized) {
1441     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1442     inline_cache->update(&call_info, receiver->klass());
1443   } else {
1444     // Callsite is a direct call - set it to the destination method
1445     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1446     callsite->set(callee_method);
1447   }
1448 
1449   return callee_method;
1450 }
1451 
1452 // Inline caches exist only in compiled code
1453 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1454   PerfTraceTime timer(_perf_ic_miss_total_time);
1455 
1456 #ifdef ASSERT
1457   RegisterMap reg_map(current,
1458                       RegisterMap::UpdateMap::skip,
1459                       RegisterMap::ProcessFrames::include,
1460                       RegisterMap::WalkContinuation::skip);
1461   frame stub_frame = current->last_frame();
1462   assert(stub_frame.is_runtime_frame(), "sanity check");
1463   frame caller_frame = stub_frame.sender(&reg_map);
1464   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1465 #endif /* ASSERT */
1466 
1467   methodHandle callee_method;
1468   JRT_BLOCK
1469     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1470     // Return Method* through TLS
1471     current->set_vm_result_2(callee_method());
1472   JRT_BLOCK_END
1473   // return compiled code entry point after potential safepoints
1474   return get_resolved_entry(current, callee_method);
1475 JRT_END
1476 
1477 
1478 // Handle call site that has been made non-entrant
1479 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1480   PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1481 
1482   // 6243940 We might end up in here if the callee is deoptimized
1483   // as we race to call it.  We don't want to take a safepoint if
1484   // the caller was interpreted because the caller frame will look
1485   // interpreted to the stack walkers and arguments are now
1486   // "compiled" so it is much better to make this transition
1487   // invisible to the stack walking code. The i2c path will
1488   // place the callee method in the callee_target. It is stashed
1489   // there because if we try and find the callee by normal means a
1490   // safepoint is possible and have trouble gc'ing the compiled args.
1491   RegisterMap reg_map(current,
1492                       RegisterMap::UpdateMap::skip,
1493                       RegisterMap::ProcessFrames::include,
1494                       RegisterMap::WalkContinuation::skip);
1495   frame stub_frame = current->last_frame();
1496   assert(stub_frame.is_runtime_frame(), "sanity check");
1497   frame caller_frame = stub_frame.sender(&reg_map);
1498 
1499   if (caller_frame.is_interpreted_frame() ||
1500       caller_frame.is_entry_frame() ||
1501       caller_frame.is_upcall_stub_frame()) {
1502     Method* callee = current->callee_target();
1503     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1504     current->set_vm_result_2(callee);
1505     current->set_callee_target(nullptr);
1506     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1507       // Bypass class initialization checks in c2i when caller is in native.
1508       // JNI calls to static methods don't have class initialization checks.
1509       // Fast class initialization checks are present in c2i adapters and call into
1510       // SharedRuntime::handle_wrong_method() on the slow path.
1511       //
1512       // JVM upcalls may land here as well, but there's a proper check present in
1513       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1514       // so bypassing it in c2i adapter is benign.
1515       return callee->get_c2i_no_clinit_check_entry();
1516     } else {
1517       return callee->get_c2i_entry();
1518     }
1519   }
1520 
1521   // Must be compiled to compiled path which is safe to stackwalk
1522   methodHandle callee_method;
1523   JRT_BLOCK
1524     // Force resolving of caller (if we called from compiled frame)
1525     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1526     current->set_vm_result_2(callee_method());
1527   JRT_BLOCK_END
1528   // return compiled code entry point after potential safepoints
1529   return get_resolved_entry(current, callee_method);
1530 JRT_END
1531 
1532 // Handle abstract method call
1533 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1534   PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1535 
1536   // Verbose error message for AbstractMethodError.
1537   // Get the called method from the invoke bytecode.
1538   vframeStream vfst(current, true);
1539   assert(!vfst.at_end(), "Java frame must exist");
1540   methodHandle caller(current, vfst.method());
1541   Bytecode_invoke invoke(caller, vfst.bci());
1542   DEBUG_ONLY( invoke.verify(); )
1543 
1544   // Find the compiled caller frame.
1545   RegisterMap reg_map(current,
1546                       RegisterMap::UpdateMap::include,
1547                       RegisterMap::ProcessFrames::include,
1548                       RegisterMap::WalkContinuation::skip);
1549   frame stubFrame = current->last_frame();
1550   assert(stubFrame.is_runtime_frame(), "must be");
1551   frame callerFrame = stubFrame.sender(&reg_map);
1552   assert(callerFrame.is_compiled_frame(), "must be");
1553 
1554   // Install exception and return forward entry.
1555   address res = StubRoutines::throw_AbstractMethodError_entry();
1556   JRT_BLOCK
1557     methodHandle callee(current, invoke.static_target(current));
1558     if (!callee.is_null()) {
1559       oop recv = callerFrame.retrieve_receiver(&reg_map);
1560       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1561       res = StubRoutines::forward_exception_entry();
1562       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1563     }
1564   JRT_BLOCK_END
1565   return res;
1566 JRT_END
1567 
1568 // return verified_code_entry if interp_only_mode is not set for the current thread;
1569 // otherwise return c2i entry.
1570 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1571   if (current->is_interp_only_mode()) {
1572     // In interp_only_mode we need to go to the interpreted entry
1573     // The c2i won't patch in this mode -- see fixup_callers_callsite
1574     return callee_method->get_c2i_entry();
1575   }
1576   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1577   return callee_method->verified_code_entry();
1578 }
1579 
1580 // resolve a static call and patch code
1581 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1582   PerfTraceTime timer(_perf_resolve_static_total_time);
1583 
1584   methodHandle callee_method;
1585   bool enter_special = false;
1586   JRT_BLOCK
1587     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1588     current->set_vm_result_2(callee_method());
1589   JRT_BLOCK_END
1590   // return compiled code entry point after potential safepoints
1591   return get_resolved_entry(current, callee_method);
1592 JRT_END
1593 
1594 // resolve virtual call and update inline cache to monomorphic
1595 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1596   PerfTraceTime timer(_perf_resolve_virtual_total_time);
1597 
1598   methodHandle callee_method;
1599   JRT_BLOCK
1600     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1601     current->set_vm_result_2(callee_method());
1602   JRT_BLOCK_END
1603   // return compiled code entry point after potential safepoints
1604   return get_resolved_entry(current, callee_method);
1605 JRT_END
1606 
1607 
1608 // Resolve a virtual call that can be statically bound (e.g., always
1609 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1610 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1611   PerfTraceTime timer(_perf_resolve_opt_virtual_total_time);
1612 
1613   methodHandle callee_method;
1614   JRT_BLOCK
1615     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1616     current->set_vm_result_2(callee_method());
1617   JRT_BLOCK_END
1618   // return compiled code entry point after potential safepoints
1619   return get_resolved_entry(current, callee_method);
1620 JRT_END
1621 
1622 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1623   JavaThread* current = THREAD;
1624   ResourceMark rm(current);
1625   CallInfo call_info;
1626   Bytecodes::Code bc;
1627 
1628   // receiver is null for static calls. An exception is thrown for null
1629   // receivers for non-static calls
1630   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1631 
1632   methodHandle callee_method(current, call_info.selected_method());
1633 

1634   Atomic::inc(&_ic_miss_ctr);
1635 
1636 #ifndef PRODUCT
1637   // Statistics & Tracing
1638   if (TraceCallFixup) {
1639     ResourceMark rm(current);
1640     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1641     callee_method->print_short_name(tty);
1642     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1643   }
1644 
1645   if (ICMissHistogram) {
1646     MutexLocker m(VMStatistic_lock);
1647     RegisterMap reg_map(current,
1648                         RegisterMap::UpdateMap::skip,
1649                         RegisterMap::ProcessFrames::include,
1650                         RegisterMap::WalkContinuation::skip);
1651     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1652     // produce statistics under the lock
1653     trace_ic_miss(f.pc());
1654   }
1655 #endif
1656 
1657   // install an event collector so that when a vtable stub is created the
1658   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1659   // event can't be posted when the stub is created as locks are held
1660   // - instead the event will be deferred until the event collector goes
1661   // out of scope.
1662   JvmtiDynamicCodeEventCollector event_collector;
1663 
1664   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1665   RegisterMap reg_map(current,
1666                       RegisterMap::UpdateMap::skip,
1667                       RegisterMap::ProcessFrames::include,
1668                       RegisterMap::WalkContinuation::skip);
1669   frame caller_frame = current->last_frame().sender(&reg_map);
1670   CodeBlob* cb = caller_frame.cb();
1671   nmethod* caller_nm = cb->as_nmethod();
1672 
1673   CompiledICLocker ml(caller_nm);
1674   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1675   inline_cache->update(&call_info, receiver()->klass());
1676 
1677   return callee_method;
1678 }
1679 
1680 //
1681 // Resets a call-site in compiled code so it will get resolved again.
1682 // This routines handles both virtual call sites, optimized virtual call
1683 // sites, and static call sites. Typically used to change a call sites
1684 // destination from compiled to interpreted.
1685 //
1686 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1687   JavaThread* current = THREAD;
1688   ResourceMark rm(current);
1689   RegisterMap reg_map(current,
1690                       RegisterMap::UpdateMap::skip,
1691                       RegisterMap::ProcessFrames::include,
1692                       RegisterMap::WalkContinuation::skip);
1693   frame stub_frame = current->last_frame();
1694   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1695   frame caller = stub_frame.sender(&reg_map);
1696 
1697   // Do nothing if the frame isn't a live compiled frame.
1698   // nmethod could be deoptimized by the time we get here
1699   // so no update to the caller is needed.
1700 
1701   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1702       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1703 
1704     address pc = caller.pc();
1705 
1706     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1707     assert(caller_nm != nullptr, "did not find caller nmethod");
1708 
1709     // Default call_addr is the location of the "basic" call.
1710     // Determine the address of the call we a reresolving. With
1711     // Inline Caches we will always find a recognizable call.
1712     // With Inline Caches disabled we may or may not find a
1713     // recognizable call. We will always find a call for static
1714     // calls and for optimized virtual calls. For vanilla virtual
1715     // calls it depends on the state of the UseInlineCaches switch.
1716     //
1717     // With Inline Caches disabled we can get here for a virtual call
1718     // for two reasons:
1719     //   1 - calling an abstract method. The vtable for abstract methods
1720     //       will run us thru handle_wrong_method and we will eventually
1721     //       end up in the interpreter to throw the ame.
1722     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1723     //       call and between the time we fetch the entry address and
1724     //       we jump to it the target gets deoptimized. Similar to 1
1725     //       we will wind up in the interprter (thru a c2i with c2).
1726     //
1727     CompiledICLocker ml(caller_nm);
1728     address call_addr = caller_nm->call_instruction_address(pc);
1729 
1730     if (call_addr != nullptr) {
1731       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1732       // bytes back in the instruction stream so we must also check for reloc info.
1733       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1734       bool ret = iter.next(); // Get item
1735       if (ret) {
1736         switch (iter.type()) {
1737           case relocInfo::static_call_type:
1738           case relocInfo::opt_virtual_call_type: {
1739             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1740             cdc->set_to_clean();
1741             break;
1742           }
1743 
1744           case relocInfo::virtual_call_type: {
1745             // compiled, dispatched call (which used to call an interpreted method)
1746             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1747             inline_cache->set_to_clean();
1748             break;
1749           }
1750           default:
1751             break;
1752         }
1753       }
1754     }
1755   }
1756 
1757   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1758 


1759   Atomic::inc(&_wrong_method_ctr);
1760 
1761 #ifndef PRODUCT
1762   if (TraceCallFixup) {
1763     ResourceMark rm(current);
1764     tty->print("handle_wrong_method reresolving call to");
1765     callee_method->print_short_name(tty);
1766     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1767   }
1768 #endif
1769 
1770   return callee_method;
1771 }
1772 
1773 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1774   // The faulting unsafe accesses should be changed to throw the error
1775   // synchronously instead. Meanwhile the faulting instruction will be
1776   // skipped over (effectively turning it into a no-op) and an
1777   // asynchronous exception will be raised which the thread will
1778   // handle at a later point. If the instruction is a load it will
1779   // return garbage.
1780 
1781   // Request an async exception.
1782   thread->set_pending_unsafe_access_error();
1783 
1784   // Return address of next instruction to execute.
1785   return next_pc;
1786 }
1787 
1788 #ifdef ASSERT
1789 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1790                                                                 const BasicType* sig_bt,
1791                                                                 const VMRegPair* regs) {
1792   ResourceMark rm;
1793   const int total_args_passed = method->size_of_parameters();
1794   const VMRegPair*    regs_with_member_name = regs;
1795         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1796 
1797   const int member_arg_pos = total_args_passed - 1;
1798   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1799   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1800 
1801   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1802 
1803   for (int i = 0; i < member_arg_pos; i++) {
1804     VMReg a =    regs_with_member_name[i].first();
1805     VMReg b = regs_without_member_name[i].first();
1806     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1807   }
1808   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1809 }
1810 #endif
1811 
1812 // ---------------------------------------------------------------------------
1813 // We are calling the interpreter via a c2i. Normally this would mean that
1814 // we were called by a compiled method. However we could have lost a race
1815 // where we went int -> i2c -> c2i and so the caller could in fact be
1816 // interpreted. If the caller is compiled we attempt to patch the caller
1817 // so he no longer calls into the interpreter.
1818 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1819   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1820 
1821   // It's possible that deoptimization can occur at a call site which hasn't
1822   // been resolved yet, in which case this function will be called from
1823   // an nmethod that has been patched for deopt and we can ignore the
1824   // request for a fixup.
1825   // Also it is possible that we lost a race in that from_compiled_entry
1826   // is now back to the i2c in that case we don't need to patch and if
1827   // we did we'd leap into space because the callsite needs to use
1828   // "to interpreter" stub in order to load up the Method*. Don't
1829   // ask me how I know this...
1830 
1831   // Result from nmethod::is_unloading is not stable across safepoints.
1832   NoSafepointVerifier nsv;
1833 
1834   nmethod* callee = method->code();
1835   if (callee == nullptr) {
1836     return;
1837   }
1838 
1839   // write lock needed because we might update the pc desc cache via PcDescCache::add_pc_desc
1840   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1841 
1842   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1843   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1844     return;
1845   }
1846 
1847   // The check above makes sure this is an nmethod.
1848   nmethod* caller = cb->as_nmethod();
1849 
1850   // Get the return PC for the passed caller PC.
1851   address return_pc = caller_pc + frame::pc_return_offset;
1852 
1853   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1854     return;
1855   }
1856 
1857   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1858   CompiledICLocker ic_locker(caller);
1859   ResourceMark rm;
1860 
1861   // If we got here through a static call or opt_virtual call, then we know where the
1862   // call address would be; let's peek at it
1863   address callsite_addr = (address)nativeCall_before(return_pc);
1864   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1865   if (!iter.next()) {
1866     // No reloc entry found; not a static or optimized virtual call
1867     return;
1868   }
1869 
1870   relocInfo::relocType type = iter.reloc()->type();
1871   if (type != relocInfo::static_call_type &&
1872       type != relocInfo::opt_virtual_call_type) {
1873     return;
1874   }
1875 
1876   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1877   callsite->set_to_clean();
1878 JRT_END
1879 
1880 
1881 // same as JVM_Arraycopy, but called directly from compiled code
1882 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1883                                                 oopDesc* dest, jint dest_pos,
1884                                                 jint length,
1885                                                 JavaThread* current)) {
1886 #ifndef PRODUCT
1887   _slow_array_copy_ctr++;
1888 #endif
1889   // Check if we have null pointers
1890   if (src == nullptr || dest == nullptr) {
1891     THROW(vmSymbols::java_lang_NullPointerException());
1892   }
1893   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1894   // even though the copy_array API also performs dynamic checks to ensure
1895   // that src and dest are truly arrays (and are conformable).
1896   // The copy_array mechanism is awkward and could be removed, but
1897   // the compilers don't call this function except as a last resort,
1898   // so it probably doesn't matter.
1899   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1900                                         (arrayOopDesc*)dest, dest_pos,
1901                                         length, current);
1902 }
1903 JRT_END
1904 
1905 // The caller of generate_class_cast_message() (or one of its callers)
1906 // must use a ResourceMark in order to correctly free the result.
1907 char* SharedRuntime::generate_class_cast_message(
1908     JavaThread* thread, Klass* caster_klass) {
1909 
1910   // Get target class name from the checkcast instruction
1911   vframeStream vfst(thread, true);
1912   assert(!vfst.at_end(), "Java frame must exist");
1913   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1914   constantPoolHandle cpool(thread, vfst.method()->constants());
1915   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1916   Symbol* target_klass_name = nullptr;
1917   if (target_klass == nullptr) {
1918     // This klass should be resolved, but just in case, get the name in the klass slot.
1919     target_klass_name = cpool->klass_name_at(cc.index());
1920   }
1921   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1922 }
1923 
1924 
1925 // The caller of generate_class_cast_message() (or one of its callers)
1926 // must use a ResourceMark in order to correctly free the result.
1927 char* SharedRuntime::generate_class_cast_message(
1928     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1929   const char* caster_name = caster_klass->external_name();
1930 
1931   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
1932   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
1933                                                    target_klass->external_name();
1934 
1935   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1936 
1937   const char* caster_klass_description = "";
1938   const char* target_klass_description = "";
1939   const char* klass_separator = "";
1940   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
1941     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1942   } else {
1943     caster_klass_description = caster_klass->class_in_module_of_loader();
1944     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
1945     klass_separator = (target_klass != nullptr) ? "; " : "";
1946   }
1947 
1948   // add 3 for parenthesis and preceding space
1949   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1950 
1951   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1952   if (message == nullptr) {
1953     // Shouldn't happen, but don't cause even more problems if it does
1954     message = const_cast<char*>(caster_klass->external_name());
1955   } else {
1956     jio_snprintf(message,
1957                  msglen,
1958                  "class %s cannot be cast to class %s (%s%s%s)",
1959                  caster_name,
1960                  target_name,
1961                  caster_klass_description,
1962                  klass_separator,
1963                  target_klass_description
1964                  );
1965   }
1966   return message;
1967 }
1968 
1969 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1970   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
1971 JRT_END
1972 
1973 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1974   if (!SafepointSynchronize::is_synchronizing()) {
1975     // Only try quick_enter() if we're not trying to reach a safepoint
1976     // so that the calling thread reaches the safepoint more quickly.
1977     if (ObjectSynchronizer::quick_enter(obj, current, lock)) {
1978       return;
1979     }
1980   }
1981   // NO_ASYNC required because an async exception on the state transition destructor
1982   // would leave you with the lock held and it would never be released.
1983   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1984   // and the model is that an exception implies the method failed.
1985   JRT_BLOCK_NO_ASYNC
1986   Handle h_obj(THREAD, obj);
1987   ObjectSynchronizer::enter(h_obj, lock, current);
1988   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1989   JRT_BLOCK_END
1990 }
1991 
1992 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1993 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
1994   SharedRuntime::monitor_enter_helper(obj, lock, current);
1995 JRT_END
1996 
1997 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
1998   assert(JavaThread::current() == current, "invariant");
1999   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2000   ExceptionMark em(current);
2001   // The object could become unlocked through a JNI call, which we have no other checks for.
2002   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2003   if (obj->is_unlocked()) {
2004     if (CheckJNICalls) {
2005       fatal("Object has been unlocked by JNI");
2006     }
2007     return;
2008   }
2009   ObjectSynchronizer::exit(obj, lock, current);
2010 }
2011 
2012 // Handles the uncommon cases of monitor unlocking in compiled code
2013 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2014   assert(current == JavaThread::current(), "pre-condition");
2015   SharedRuntime::monitor_exit_helper(obj, lock, current);
2016 JRT_END
2017 
2018 // This is only called when CheckJNICalls is true, and only
2019 // for virtual thread termination.
2020 JRT_LEAF(void,  SharedRuntime::log_jni_monitor_still_held())
2021   assert(CheckJNICalls, "Only call this when checking JNI usage");
2022   if (log_is_enabled(Debug, jni)) {
2023     JavaThread* current = JavaThread::current();
2024     int64_t vthread_id = java_lang_Thread::thread_id(current->vthread());
2025     int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj());
2026     log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT
2027                    ") exiting with Objects still locked by JNI MonitorEnter.",
2028                    vthread_id, carrier_id);
2029   }
2030 JRT_END
2031 
2032 #ifndef PRODUCT
2033 
2034 void SharedRuntime::print_statistics() {
2035   ttyLocker ttyl;
2036   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2037 
2038   SharedRuntime::print_ic_miss_histogram_on(tty);
2039   SharedRuntime::print_counters_on(tty);
2040   AdapterHandlerLibrary::print_statistics_on(tty);































2041 
2042   if (xtty != nullptr)  xtty->tail("statistics");
2043 }
2044 
2045 //void SharedRuntime::print_counters_on(outputStream* st) {
2046 //  // Dump the JRT_ENTRY counters
2047 //  if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr);
2048 //  if (_new_array_ctr)    st->print_cr("%5u new array requires GC", _new_array_ctr);
2049 //  if (_multi2_ctr)       st->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2050 //  if (_multi3_ctr)       st->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2051 //  if (_multi4_ctr)       st->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2052 //  if (_multi5_ctr)       st->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2053 //
2054 //  st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2055 //  st->print_cr("%5u wrong method", _wrong_method_ctr);
2056 //  st->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2057 //  st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2058 //  st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2059 //
2060 //  if (_mon_enter_stub_ctr)       st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2061 //  if (_mon_exit_stub_ctr)        st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2062 //  if (_mon_enter_ctr)            st->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2063 //  if (_mon_exit_ctr)             st->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2064 //  if (_partial_subtype_ctr)      st->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2065 //  if (_jbyte_array_copy_ctr)     st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2066 //  if (_jshort_array_copy_ctr)    st->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2067 //  if (_jint_array_copy_ctr)      st->print_cr("%5u int array copies", _jint_array_copy_ctr);
2068 //  if (_jlong_array_copy_ctr)     st->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2069 //  if (_oop_array_copy_ctr)       st->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2070 //  if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2071 //  if (_unsafe_array_copy_ctr)    st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2072 //  if (_generic_array_copy_ctr)   st->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2073 //  if (_slow_array_copy_ctr)      st->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2074 //  if (_find_handler_ctr)         st->print_cr("%5u find exception handler", _find_handler_ctr);
2075 //  if (_rethrow_ctr)              st->print_cr("%5u rethrow handler", _rethrow_ctr);
2076 //}
2077 
2078 inline double percent(int64_t x, int64_t y) {
2079   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2080 }
2081 
2082 class MethodArityHistogram {
2083  public:
2084   enum { MAX_ARITY = 256 };
2085  private:
2086   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2087   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2088   static uint64_t _total_compiled_calls;
2089   static uint64_t _max_compiled_calls_per_method;
2090   static int _max_arity;                       // max. arity seen
2091   static int _max_size;                        // max. arg size seen
2092 
2093   static void add_method_to_histogram(nmethod* nm) {
2094     Method* method = (nm == nullptr) ? nullptr : nm->method();
2095     if (method != nullptr) {
2096       ArgumentCount args(method->signature());
2097       int arity   = args.size() + (method->is_static() ? 0 : 1);
2098       int argsize = method->size_of_parameters();
2099       arity   = MIN2(arity, MAX_ARITY-1);
2100       argsize = MIN2(argsize, MAX_ARITY-1);
2101       uint64_t count = (uint64_t)method->compiled_invocation_count();
2102       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2103       _total_compiled_calls    += count;
2104       _arity_histogram[arity]  += count;
2105       _size_histogram[argsize] += count;
2106       _max_arity = MAX2(_max_arity, arity);
2107       _max_size  = MAX2(_max_size, argsize);
2108     }
2109   }
2110 
2111   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2112     const int N = MIN2(9, n);
2113     double sum = 0;
2114     double weighted_sum = 0;
2115     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2116     if (sum >= 1) { // prevent divide by zero or divide overflow
2117       double rest = sum;
2118       double percent = sum / 100;
2119       for (int i = 0; i <= N; i++) {
2120         rest -= (double)histo[i];
2121         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2122       }
2123       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2124       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2125       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2126       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2127     } else {
2128       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2129     }
2130   }
2131 
2132   void print_histogram() {
2133     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2134     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2135     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2136     print_histogram_helper(_max_size, _size_histogram, "size");
2137     tty->cr();
2138   }
2139 
2140  public:
2141   MethodArityHistogram() {
2142     // Take the Compile_lock to protect against changes in the CodeBlob structures
2143     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2144     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2145     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2146     _max_arity = _max_size = 0;
2147     _total_compiled_calls = 0;
2148     _max_compiled_calls_per_method = 0;
2149     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2150     CodeCache::nmethods_do(add_method_to_histogram);
2151     print_histogram();
2152   }
2153 };
2154 
2155 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2156 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2157 uint64_t MethodArityHistogram::_total_compiled_calls;
2158 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2159 int MethodArityHistogram::_max_arity;
2160 int MethodArityHistogram::_max_size;
2161 
2162 void SharedRuntime::print_call_statistics_on(outputStream* st) {
2163   tty->print_cr("Calls from compiled code:");
2164   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2165   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2166   int64_t mono_i = _nof_interface_calls;
2167   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2168   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2169   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2170   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2171   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2172   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2173   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2174   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2175   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2176   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2177   tty->cr();
2178   tty->print_cr("Note 1: counter updates are not MT-safe.");
2179   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2180   tty->print_cr("        %% in nested categories are relative to their category");
2181   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2182   tty->cr();
2183 
2184   MethodArityHistogram h;
2185 }
2186 #endif
2187 
2188 #ifndef PRODUCT
2189 static int _lookups; // number of calls to lookup
2190 static int _equals;  // number of buckets checked with matching hash
2191 static int _hits;    // number of successful lookups
2192 static int _compact; // number of equals calls with compact signature
2193 #endif
2194 
2195 // A simple wrapper class around the calling convention information
2196 // that allows sharing of adapters for the same calling convention.
2197 class AdapterFingerPrint : public CHeapObj<mtCode> {
2198  private:
2199   enum {
2200     _basic_type_bits = 4,
2201     _basic_type_mask = right_n_bits(_basic_type_bits),
2202     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2203     _compact_int_count = 3
2204   };
2205   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2206   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2207 
2208   union {
2209     int  _compact[_compact_int_count];
2210     int* _fingerprint;
2211   } _value;
2212   int _length; // A negative length indicates the fingerprint is in the compact form,
2213                // Otherwise _value._fingerprint is the array.
2214 
2215   // Remap BasicTypes that are handled equivalently by the adapters.
2216   // These are correct for the current system but someday it might be
2217   // necessary to make this mapping platform dependent.
2218   static int adapter_encoding(BasicType in) {
2219     switch (in) {
2220       case T_BOOLEAN:
2221       case T_BYTE:
2222       case T_SHORT:
2223       case T_CHAR:
2224         // There are all promoted to T_INT in the calling convention
2225         return T_INT;
2226 
2227       case T_OBJECT:
2228       case T_ARRAY:
2229         // In other words, we assume that any register good enough for
2230         // an int or long is good enough for a managed pointer.
2231 #ifdef _LP64
2232         return T_LONG;
2233 #else
2234         return T_INT;
2235 #endif
2236 
2237       case T_INT:
2238       case T_LONG:
2239       case T_FLOAT:
2240       case T_DOUBLE:
2241       case T_VOID:
2242         return in;
2243 
2244       default:
2245         ShouldNotReachHere();
2246         return T_CONFLICT;
2247     }
2248   }
2249 
2250  public:
2251   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2252     // The fingerprint is based on the BasicType signature encoded
2253     // into an array of ints with eight entries per int.
2254     int* ptr;
2255     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2256     if (len <= _compact_int_count) {
2257       assert(_compact_int_count == 3, "else change next line");
2258       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2259       // Storing the signature encoded as signed chars hits about 98%
2260       // of the time.
2261       _length = -len;
2262       ptr = _value._compact;
2263     } else {
2264       _length = len;
2265       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2266       ptr = _value._fingerprint;
2267     }
2268 
2269     // Now pack the BasicTypes with 8 per int
2270     int sig_index = 0;
2271     for (int index = 0; index < len; index++) {
2272       int value = 0;
2273       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2274         int bt = adapter_encoding(sig_bt[sig_index++]);
2275         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2276         value = (value << _basic_type_bits) | bt;
2277       }
2278       ptr[index] = value;
2279     }
2280   }
2281 
2282   ~AdapterFingerPrint() {
2283     if (_length > 0) {
2284       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2285     }
2286   }
2287 
2288   int value(int index) {
2289     if (_length < 0) {
2290       return _value._compact[index];
2291     }
2292     return _value._fingerprint[index];
2293   }
2294   int length() {
2295     if (_length < 0) return -_length;
2296     return _length;
2297   }
2298 
2299   bool is_compact() {
2300     return _length <= 0;
2301   }
2302 
2303   unsigned int compute_hash() {
2304     int hash = 0;
2305     for (int i = 0; i < length(); i++) {
2306       int v = value(i);
2307       hash = (hash << 8) ^ v ^ (hash >> 5);
2308     }
2309     return (unsigned int)hash;
2310   }
2311 
2312   const char* as_string() {
2313     stringStream st;
2314     st.print("0x");
2315     for (int i = 0; i < length(); i++) {
2316       st.print("%x", value(i));
2317     }
2318     return st.as_string();
2319   }
2320 
2321 #ifndef PRODUCT
2322   // Reconstitutes the basic type arguments from the fingerprint,
2323   // producing strings like LIJDF
2324   const char* as_basic_args_string() {
2325     stringStream st;
2326     bool long_prev = false;
2327     for (int i = 0; i < length(); i++) {
2328       unsigned val = (unsigned)value(i);
2329       // args are packed so that first/lower arguments are in the highest
2330       // bits of each int value, so iterate from highest to the lowest
2331       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2332         unsigned v = (val >> j) & _basic_type_mask;
2333         if (v == 0) {
2334           assert(i == length() - 1, "Only expect zeroes in the last word");
2335           continue;
2336         }
2337         if (long_prev) {
2338           long_prev = false;
2339           if (v == T_VOID) {
2340             st.print("J");
2341           } else {
2342             st.print("L");
2343           }
2344         }
2345         switch (v) {
2346           case T_INT:    st.print("I");    break;
2347           case T_LONG:   long_prev = true; break;
2348           case T_FLOAT:  st.print("F");    break;
2349           case T_DOUBLE: st.print("D");    break;
2350           case T_VOID:   break;
2351           default: ShouldNotReachHere();
2352         }
2353       }
2354     }
2355     if (long_prev) {
2356       st.print("L");
2357     }
2358     return st.as_string();
2359   }
2360 #endif // !product
2361 
2362   bool equals(AdapterFingerPrint* other) {
2363     if (other->_length != _length) {
2364       return false;
2365     }
2366     if (_length < 0) {
2367       assert(_compact_int_count == 3, "else change next line");
2368       return _value._compact[0] == other->_value._compact[0] &&
2369              _value._compact[1] == other->_value._compact[1] &&
2370              _value._compact[2] == other->_value._compact[2];
2371     } else {
2372       for (int i = 0; i < _length; i++) {
2373         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2374           return false;
2375         }
2376       }
2377     }
2378     return true;
2379   }
2380 
2381   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2382     NOT_PRODUCT(_equals++);
2383     return fp1->equals(fp2);
2384   }
2385 
2386   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2387     return fp->compute_hash();
2388   }
2389 };
2390 
2391 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2392 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2393                   AnyObj::C_HEAP, mtCode,
2394                   AdapterFingerPrint::compute_hash,
2395                   AdapterFingerPrint::equals>;
2396 static AdapterHandlerTable* _adapter_handler_table;
2397 
2398 // Find a entry with the same fingerprint if it exists
2399 static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2400   NOT_PRODUCT(_lookups++);
2401   assert_lock_strong(AdapterHandlerLibrary_lock);
2402   AdapterFingerPrint fp(total_args_passed, sig_bt);
2403   AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp);
2404   if (entry != nullptr) {
2405 #ifndef PRODUCT
2406     if (fp.is_compact()) _compact++;
2407     _hits++;
2408 #endif
2409     return *entry;
2410   }
2411   return nullptr;
2412 }
2413 
2414 #ifndef PRODUCT
2415 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) {
2416   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2417     return sizeof(*key) + sizeof(*a);
2418   };
2419   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2420   ts.print(st, "AdapterHandlerTable");
2421   st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2422                _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2423   st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d",
2424                _lookups, _equals, _hits, _compact);
2425 }
2426 #endif // !PRODUCT
2427 
2428 // ---------------------------------------------------------------------------
2429 // Implementation of AdapterHandlerLibrary
2430 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr;
2431 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2432 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2433 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2434 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2435 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2436 const int AdapterHandlerLibrary_size = 16*K;
2437 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2438 
2439 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2440   return _buffer;
2441 }
2442 
2443 static void post_adapter_creation(const AdapterBlob* new_adapter,
2444                                   const AdapterHandlerEntry* entry) {
2445   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2446     char blob_id[256];
2447     jio_snprintf(blob_id,
2448                  sizeof(blob_id),
2449                  "%s(%s)",
2450                  new_adapter->name(),
2451                  entry->fingerprint()->as_string());
2452     if (Forte::is_enabled()) {
2453       Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2454     }
2455 
2456     if (JvmtiExport::should_post_dynamic_code_generated()) {
2457       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2458     }
2459   }
2460 }
2461 
2462 void AdapterHandlerLibrary::initialize() {
2463   ResourceMark rm;
2464   AdapterBlob* no_arg_blob = nullptr;
2465   AdapterBlob* int_arg_blob = nullptr;
2466   AdapterBlob* obj_arg_blob = nullptr;
2467   AdapterBlob* obj_int_arg_blob = nullptr;
2468   AdapterBlob* obj_obj_arg_blob = nullptr;
2469   {
2470     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2471     MutexLocker mu(AdapterHandlerLibrary_lock);
2472 
2473     // Create a special handler for abstract methods.  Abstract methods
2474     // are never compiled so an i2c entry is somewhat meaningless, but
2475     // throw AbstractMethodError just in case.
2476     // Pass wrong_method_abstract for the c2i transitions to return
2477     // AbstractMethodError for invalid invocations.
2478     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2479     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, nullptr),
2480                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2481                                                                 wrong_method_abstract, wrong_method_abstract);
2482 
2483     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2484     _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr, true);
2485 
2486     BasicType obj_args[] = { T_OBJECT };
2487     _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true);
2488 
2489     BasicType int_args[] = { T_INT };
2490     _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true);
2491 
2492     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2493     _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true);
2494 
2495     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2496     _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true);
2497 
2498     assert(no_arg_blob != nullptr &&
2499           obj_arg_blob != nullptr &&
2500           int_arg_blob != nullptr &&
2501           obj_int_arg_blob != nullptr &&
2502           obj_obj_arg_blob != nullptr, "Initial adapters must be properly created");
2503   }
2504 
2505   // Outside of the lock
2506   post_adapter_creation(no_arg_blob, _no_arg_handler);
2507   post_adapter_creation(obj_arg_blob, _obj_arg_handler);
2508   post_adapter_creation(int_arg_blob, _int_arg_handler);
2509   post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
2510   post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
2511 }
2512 
2513 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2514                                                       address i2c_entry,
2515                                                       address c2i_entry,
2516                                                       address c2i_unverified_entry,
2517                                                       address c2i_no_clinit_check_entry) {
2518   // Insert an entry into the table
2519   return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry,
2520                                  c2i_no_clinit_check_entry);
2521 }
2522 
2523 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2524   if (method->is_abstract()) {
2525     return _abstract_method_handler;
2526   }
2527   int total_args_passed = method->size_of_parameters(); // All args on stack
2528   if (total_args_passed == 0) {
2529     return _no_arg_handler;
2530   } else if (total_args_passed == 1) {
2531     if (!method->is_static()) {
2532       return _obj_arg_handler;
2533     }
2534     switch (method->signature()->char_at(1)) {
2535       case JVM_SIGNATURE_CLASS:
2536       case JVM_SIGNATURE_ARRAY:
2537         return _obj_arg_handler;
2538       case JVM_SIGNATURE_INT:
2539       case JVM_SIGNATURE_BOOLEAN:
2540       case JVM_SIGNATURE_CHAR:
2541       case JVM_SIGNATURE_BYTE:
2542       case JVM_SIGNATURE_SHORT:
2543         return _int_arg_handler;
2544     }
2545   } else if (total_args_passed == 2 &&
2546              !method->is_static()) {
2547     switch (method->signature()->char_at(1)) {
2548       case JVM_SIGNATURE_CLASS:
2549       case JVM_SIGNATURE_ARRAY:
2550         return _obj_obj_arg_handler;
2551       case JVM_SIGNATURE_INT:
2552       case JVM_SIGNATURE_BOOLEAN:
2553       case JVM_SIGNATURE_CHAR:
2554       case JVM_SIGNATURE_BYTE:
2555       case JVM_SIGNATURE_SHORT:
2556         return _obj_int_arg_handler;
2557     }
2558   }
2559   return nullptr;
2560 }
2561 
2562 class AdapterSignatureIterator : public SignatureIterator {
2563  private:
2564   BasicType stack_sig_bt[16];
2565   BasicType* sig_bt;
2566   int index;
2567 
2568  public:
2569   AdapterSignatureIterator(Symbol* signature,
2570                            fingerprint_t fingerprint,
2571                            bool is_static,
2572                            int total_args_passed) :
2573     SignatureIterator(signature, fingerprint),
2574     index(0)
2575   {
2576     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2577     if (!is_static) { // Pass in receiver first
2578       sig_bt[index++] = T_OBJECT;
2579     }
2580     do_parameters_on(this);
2581   }
2582 
2583   BasicType* basic_types() {
2584     return sig_bt;
2585   }
2586 
2587 #ifdef ASSERT
2588   int slots() {
2589     return index;
2590   }
2591 #endif
2592 
2593  private:
2594 
2595   friend class SignatureIterator;  // so do_parameters_on can call do_type
2596   void do_type(BasicType type) {
2597     sig_bt[index++] = type;
2598     if (type == T_LONG || type == T_DOUBLE) {
2599       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2600     }
2601   }
2602 };
2603 
2604 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2605   // Use customized signature handler.  Need to lock around updates to
2606   // the _adapter_handler_table (it is not safe for concurrent readers
2607   // and a single writer: this could be fixed if it becomes a
2608   // problem).
2609 
2610   // Fast-path for trivial adapters
2611   AdapterHandlerEntry* entry = get_simple_adapter(method);
2612   if (entry != nullptr) {
2613     return entry;
2614   }
2615 
2616   ResourceMark rm;
2617   AdapterBlob* new_adapter = nullptr;
2618 
2619   // Fill in the signature array, for the calling-convention call.
2620   int total_args_passed = method->size_of_parameters(); // All args on stack
2621 
2622   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2623                               method->is_static(), total_args_passed);
2624   assert(si.slots() == total_args_passed, "");
2625   BasicType* sig_bt = si.basic_types();
2626   {
2627     MutexLocker mu(AdapterHandlerLibrary_lock);
2628 
2629     // Lookup method signature's fingerprint
2630     entry = lookup(total_args_passed, sig_bt);
2631 
2632     if (entry != nullptr) {
2633 #ifdef ASSERT
2634       if (VerifyAdapterSharing) {
2635         AdapterBlob* comparison_blob = nullptr;
2636         AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false);
2637         assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison");
2638         assert(comparison_entry->compare_code(entry), "code must match");
2639         // Release the one just created and return the original
2640         delete comparison_entry;
2641       }
2642 #endif
2643       return entry;
2644     }
2645 
2646     entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true);
2647   }
2648 
2649   // Outside of the lock
2650   if (new_adapter != nullptr) {
2651     post_adapter_creation(new_adapter, entry);
2652   }
2653   return entry;
2654 }
2655 
2656 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter,
2657                                                            int total_args_passed,
2658                                                            BasicType* sig_bt,
2659                                                            bool allocate_code_blob) {
2660   if (UsePerfData) {
2661     ClassLoader::perf_method_adapters_count()->inc();
2662   }
2663 
2664   // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result,
2665   // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior
2666   // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated
2667   // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs.
2668   bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr;
2669 
2670   VMRegPair stack_regs[16];
2671   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2672 
2673   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2674   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2675   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2676   CodeBuffer buffer(buf);
2677   short buffer_locs[20];
2678   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2679                                           sizeof(buffer_locs)/sizeof(relocInfo));
2680 
2681   // Make a C heap allocated version of the fingerprint to store in the adapter
2682   AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2683   MacroAssembler _masm(&buffer);
2684   AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2685                                                 total_args_passed,
2686                                                 comp_args_on_stack,
2687                                                 sig_bt,
2688                                                 regs,
2689                                                 fingerprint);
2690 
2691 #ifdef ASSERT
2692   if (VerifyAdapterSharing) {
2693     entry->save_code(buf->code_begin(), buffer.insts_size());
2694     if (!allocate_code_blob) {
2695       return entry;
2696     }
2697   }
2698 #endif
2699 
2700   new_adapter = AdapterBlob::create(&buffer);
2701   NOT_PRODUCT(int insts_size = buffer.insts_size());
2702   if (new_adapter == nullptr) {
2703     // CodeCache is full, disable compilation
2704     // Ought to log this but compile log is only per compile thread
2705     // and we're some non descript Java thread.
2706     return nullptr;
2707   }
2708   entry->relocate(new_adapter->content_begin());
2709 #ifndef PRODUCT
2710   // debugging support
2711   if (PrintAdapterHandlers || PrintStubCode) {
2712     ttyLocker ttyl;
2713     entry->print_adapter_on(tty);
2714     tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2715                   _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(),
2716                   fingerprint->as_string(), insts_size);
2717     tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry()));
2718     if (Verbose || PrintStubCode) {
2719       address first_pc = entry->base_address();
2720       if (first_pc != nullptr) {
2721         Disassembler::decode(first_pc, first_pc + insts_size, tty
2722                              NOT_PRODUCT(COMMA &new_adapter->asm_remarks()));
2723         tty->cr();
2724       }
2725     }
2726   }
2727 #endif
2728 
2729   // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2730   // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2731   if (contains_all_checks || !VerifyAdapterCalls) {
2732     assert_lock_strong(AdapterHandlerLibrary_lock);
2733     _adapter_handler_table->put(fingerprint, entry);
2734   }
2735   return entry;
2736 }
2737 
2738 address AdapterHandlerEntry::base_address() {
2739   address base = _i2c_entry;
2740   if (base == nullptr)  base = _c2i_entry;
2741   assert(base <= _c2i_entry || _c2i_entry == nullptr, "");
2742   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, "");
2743   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, "");
2744   return base;
2745 }
2746 
2747 void AdapterHandlerEntry::relocate(address new_base) {
2748   address old_base = base_address();
2749   assert(old_base != nullptr, "");
2750   ptrdiff_t delta = new_base - old_base;
2751   if (_i2c_entry != nullptr)
2752     _i2c_entry += delta;
2753   if (_c2i_entry != nullptr)
2754     _c2i_entry += delta;
2755   if (_c2i_unverified_entry != nullptr)
2756     _c2i_unverified_entry += delta;
2757   if (_c2i_no_clinit_check_entry != nullptr)
2758     _c2i_no_clinit_check_entry += delta;
2759   assert(base_address() == new_base, "");
2760 }
2761 
2762 
2763 AdapterHandlerEntry::~AdapterHandlerEntry() {
2764   delete _fingerprint;
2765 #ifdef ASSERT
2766   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2767 #endif
2768 }
2769 
2770 
2771 #ifdef ASSERT
2772 // Capture the code before relocation so that it can be compared
2773 // against other versions.  If the code is captured after relocation
2774 // then relative instructions won't be equivalent.
2775 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2776   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2777   _saved_code_length = length;
2778   memcpy(_saved_code, buffer, length);
2779 }
2780 
2781 
2782 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
2783   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
2784 
2785   if (other->_saved_code_length != _saved_code_length) {
2786     return false;
2787   }
2788 
2789   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
2790 }
2791 #endif
2792 
2793 
2794 /**
2795  * Create a native wrapper for this native method.  The wrapper converts the
2796  * Java-compiled calling convention to the native convention, handles
2797  * arguments, and transitions to native.  On return from the native we transition
2798  * back to java blocking if a safepoint is in progress.
2799  */
2800 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2801   ResourceMark rm;
2802   nmethod* nm = nullptr;
2803 
2804   // Check if memory should be freed before allocation
2805   CodeCache::gc_on_allocation();
2806 
2807   assert(method->is_native(), "must be native");
2808   assert(method->is_special_native_intrinsic() ||
2809          method->has_native_function(), "must have something valid to call!");
2810 
2811   {
2812     // Perform the work while holding the lock, but perform any printing outside the lock
2813     MutexLocker mu(AdapterHandlerLibrary_lock);
2814     // See if somebody beat us to it
2815     if (method->code() != nullptr) {
2816       return;
2817     }
2818 
2819     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2820     assert(compile_id > 0, "Must generate native wrapper");
2821 
2822 
2823     ResourceMark rm;
2824     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2825     if (buf != nullptr) {
2826       CodeBuffer buffer(buf);
2827 
2828       if (method->is_continuation_enter_intrinsic()) {
2829         buffer.initialize_stubs_size(192);
2830       }
2831 
2832       struct { double data[20]; } locs_buf;
2833       struct { double data[20]; } stubs_locs_buf;
2834       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2835 #if defined(AARCH64) || defined(PPC64)
2836       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
2837       // in the constant pool to ensure ordering between the barrier and oops
2838       // accesses. For native_wrappers we need a constant.
2839       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
2840       // static java call that is resolved in the runtime.
2841       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
2842         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
2843       }
2844 #endif
2845       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
2846       MacroAssembler _masm(&buffer);
2847 
2848       // Fill in the signature array, for the calling-convention call.
2849       const int total_args_passed = method->size_of_parameters();
2850 
2851       VMRegPair stack_regs[16];
2852       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2853 
2854       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2855                               method->is_static(), total_args_passed);
2856       BasicType* sig_bt = si.basic_types();
2857       assert(si.slots() == total_args_passed, "");
2858       BasicType ret_type = si.return_type();
2859 
2860       // Now get the compiled-Java arguments layout.
2861       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2862 
2863       // Generate the compiled-to-native wrapper code
2864       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2865 
2866       if (nm != nullptr) {
2867         {
2868           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2869           if (nm->make_in_use()) {
2870             method->set_code(method, nm);
2871           }
2872         }
2873 
2874         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
2875         if (directive->PrintAssemblyOption) {
2876           nm->print_code();
2877         }
2878         DirectivesStack::release(directive);
2879       }
2880     }
2881   } // Unlock AdapterHandlerLibrary_lock
2882 
2883 
2884   // Install the generated code.
2885   if (nm != nullptr) {
2886     const char *msg = method->is_static() ? "(static)" : "";
2887     CompileTask::print_ul(nm, msg);
2888     if (PrintCompilation) {
2889       ttyLocker ttyl;
2890       CompileTask::print(tty, nm, msg);
2891     }
2892     nm->post_compiled_method_load_event();
2893   }
2894 }
2895 
2896 // -------------------------------------------------------------------------
2897 // Java-Java calling convention
2898 // (what you use when Java calls Java)
2899 
2900 //------------------------------name_for_receiver----------------------------------
2901 // For a given signature, return the VMReg for parameter 0.
2902 VMReg SharedRuntime::name_for_receiver() {
2903   VMRegPair regs;
2904   BasicType sig_bt = T_OBJECT;
2905   (void) java_calling_convention(&sig_bt, &regs, 1);
2906   // Return argument 0 register.  In the LP64 build pointers
2907   // take 2 registers, but the VM wants only the 'main' name.
2908   return regs.first();
2909 }
2910 
2911 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2912   // This method is returning a data structure allocating as a
2913   // ResourceObject, so do not put any ResourceMarks in here.
2914 
2915   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2916   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2917   int cnt = 0;
2918   if (has_receiver) {
2919     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2920   }
2921 
2922   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
2923     BasicType type = ss.type();
2924     sig_bt[cnt++] = type;
2925     if (is_double_word_type(type))
2926       sig_bt[cnt++] = T_VOID;
2927   }
2928 
2929   if (has_appendix) {
2930     sig_bt[cnt++] = T_OBJECT;
2931   }
2932 
2933   assert(cnt < 256, "grow table size");
2934 
2935   int comp_args_on_stack;
2936   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
2937 
2938   // the calling convention doesn't count out_preserve_stack_slots so
2939   // we must add that in to get "true" stack offsets.
2940 
2941   if (comp_args_on_stack) {
2942     for (int i = 0; i < cnt; i++) {
2943       VMReg reg1 = regs[i].first();
2944       if (reg1->is_stack()) {
2945         // Yuck
2946         reg1 = reg1->bias(out_preserve_stack_slots());
2947       }
2948       VMReg reg2 = regs[i].second();
2949       if (reg2->is_stack()) {
2950         // Yuck
2951         reg2 = reg2->bias(out_preserve_stack_slots());
2952       }
2953       regs[i].set_pair(reg2, reg1);
2954     }
2955   }
2956 
2957   // results
2958   *arg_size = cnt;
2959   return regs;
2960 }
2961 
2962 // OSR Migration Code
2963 //
2964 // This code is used convert interpreter frames into compiled frames.  It is
2965 // called from very start of a compiled OSR nmethod.  A temp array is
2966 // allocated to hold the interesting bits of the interpreter frame.  All
2967 // active locks are inflated to allow them to move.  The displaced headers and
2968 // active interpreter locals are copied into the temp buffer.  Then we return
2969 // back to the compiled code.  The compiled code then pops the current
2970 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2971 // copies the interpreter locals and displaced headers where it wants.
2972 // Finally it calls back to free the temp buffer.
2973 //
2974 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2975 
2976 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
2977   assert(current == JavaThread::current(), "pre-condition");
2978 
2979   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
2980   // frame. The stack watermark code below ensures that the interpreted frame is processed
2981   // before it gets unwound. This is helpful as the size of the compiled frame could be
2982   // larger than the interpreted frame, which could result in the new frame not being
2983   // processed correctly.
2984   StackWatermarkSet::before_unwind(current);
2985 
2986   //
2987   // This code is dependent on the memory layout of the interpreter local
2988   // array and the monitors. On all of our platforms the layout is identical
2989   // so this code is shared. If some platform lays the their arrays out
2990   // differently then this code could move to platform specific code or
2991   // the code here could be modified to copy items one at a time using
2992   // frame accessor methods and be platform independent.
2993 
2994   frame fr = current->last_frame();
2995   assert(fr.is_interpreted_frame(), "");
2996   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2997 
2998   // Figure out how many monitors are active.
2999   int active_monitor_count = 0;
3000   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3001        kptr < fr.interpreter_frame_monitor_begin();
3002        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3003     if (kptr->obj() != nullptr) active_monitor_count++;
3004   }
3005 
3006   // QQQ we could place number of active monitors in the array so that compiled code
3007   // could double check it.
3008 
3009   Method* moop = fr.interpreter_frame_method();
3010   int max_locals = moop->max_locals();
3011   // Allocate temp buffer, 1 word per local & 2 per active monitor
3012   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3013   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3014 
3015   // Copy the locals.  Order is preserved so that loading of longs works.
3016   // Since there's no GC I can copy the oops blindly.
3017   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3018   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3019                        (HeapWord*)&buf[0],
3020                        max_locals);
3021 
3022   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3023   int i = max_locals;
3024   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3025        kptr2 < fr.interpreter_frame_monitor_begin();
3026        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3027     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3028       BasicLock *lock = kptr2->lock();
3029       if (LockingMode == LM_LEGACY) {
3030         // Inflate so the object's header no longer refers to the BasicLock.
3031         if (lock->displaced_header().is_unlocked()) {
3032           // The object is locked and the resulting ObjectMonitor* will also be
3033           // locked so it can't be async deflated until ownership is dropped.
3034           // See the big comment in basicLock.cpp: BasicLock::move_to().
3035           ObjectSynchronizer::inflate_helper(kptr2->obj());
3036         }
3037         // Now the displaced header is free to move because the
3038         // object's header no longer refers to it.
3039         buf[i] = (intptr_t)lock->displaced_header().value();
3040       }
3041 #ifdef ASSERT
3042       else {
3043         buf[i] = badDispHeaderOSR;
3044       }
3045 #endif
3046       i++;
3047       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3048     }
3049   }
3050   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3051 
3052   RegisterMap map(current,
3053                   RegisterMap::UpdateMap::skip,
3054                   RegisterMap::ProcessFrames::include,
3055                   RegisterMap::WalkContinuation::skip);
3056   frame sender = fr.sender(&map);
3057   if (sender.is_interpreted_frame()) {
3058     current->push_cont_fastpath(sender.sp());
3059   }
3060 
3061   return buf;
3062 JRT_END
3063 
3064 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3065   FREE_C_HEAP_ARRAY(intptr_t, buf);
3066 JRT_END
3067 
3068 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3069   bool found = false;
3070   auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3071     return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3072   };
3073   assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3074   _adapter_handler_table->iterate(findblob);
3075   return found;
3076 }
3077 
3078 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3079   bool found = false;
3080   auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3081     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3082       found = true;
3083       st->print("Adapter for signature: ");
3084       a->print_adapter_on(st);
3085       return true;
3086     } else {
3087       return false; // keep looking
3088     }
3089   };
3090   assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3091   _adapter_handler_table->iterate(findblob);
3092   assert(found, "Should have found handler");
3093 }
3094 
3095 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3096   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3097   if (get_i2c_entry() != nullptr) {
3098     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3099   }
3100   if (get_c2i_entry() != nullptr) {
3101     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3102   }
3103   if (get_c2i_unverified_entry() != nullptr) {
3104     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3105   }
3106   if (get_c2i_no_clinit_check_entry() != nullptr) {
3107     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3108   }
3109   st->cr();
3110 }
3111 








3112 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3113   assert(current == JavaThread::current(), "pre-condition");
3114   StackOverflow* overflow_state = current->stack_overflow_state();
3115   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3116   overflow_state->set_reserved_stack_activation(current->stack_base());
3117 JRT_END
3118 
3119 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3120   ResourceMark rm(current);
3121   frame activation;
3122   nmethod* nm = nullptr;
3123   int count = 1;
3124 
3125   assert(fr.is_java_frame(), "Must start on Java frame");
3126 
3127   RegisterMap map(JavaThread::current(),
3128                   RegisterMap::UpdateMap::skip,
3129                   RegisterMap::ProcessFrames::skip,
3130                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3131   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3132     if (!fr.is_java_frame()) {
3133       continue;
3134     }
3135 
3136     Method* method = nullptr;
3137     bool found = false;
3138     if (fr.is_interpreted_frame()) {
3139       method = fr.interpreter_frame_method();
3140       if (method != nullptr && method->has_reserved_stack_access()) {
3141         found = true;
3142       }
3143     } else {
3144       CodeBlob* cb = fr.cb();
3145       if (cb != nullptr && cb->is_nmethod()) {
3146         nm = cb->as_nmethod();
3147         method = nm->method();
3148         // scope_desc_near() must be used, instead of scope_desc_at() because on
3149         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3150         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3151           method = sd->method();
3152           if (method != nullptr && method->has_reserved_stack_access()) {
3153             found = true;
3154           }
3155         }
3156       }
3157     }
3158     if (found) {
3159       activation = fr;
3160       warning("Potentially dangerous stack overflow in "
3161               "ReservedStackAccess annotated method %s [%d]",
3162               method->name_and_sig_as_C_string(), count++);
3163       EventReservedStackActivation event;
3164       if (event.should_commit()) {
3165         event.set_method(method);
3166         event.commit();
3167       }
3168     }
3169   }
3170   return activation;
3171 }
3172 
3173 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3174   // After any safepoint, just before going back to compiled code,
3175   // we inform the GC that we will be doing initializing writes to
3176   // this object in the future without emitting card-marks, so
3177   // GC may take any compensating steps.
3178 
3179   oop new_obj = current->vm_result();
3180   if (new_obj == nullptr) return;
3181 
3182   BarrierSet *bs = BarrierSet::barrier_set();
3183   bs->on_slowpath_allocation_exit(current, new_obj);
3184 }
--- EOF ---