1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "cds/archiveBuilder.hpp"
  26 #include "cds/archiveUtils.inline.hpp"
  27 #include "cds/cdsConfig.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.inline.hpp"
  30 #include "classfile/stringTable.hpp"
  31 #include "classfile/vmClasses.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/SCCache.hpp"
  34 #include "code/codeCache.hpp"
  35 #include "code/compiledIC.hpp"
  36 #include "code/nmethod.inline.hpp"
  37 #include "code/scopeDesc.hpp"
  38 #include "code/vtableStubs.hpp"
  39 #include "compiler/abstractCompiler.hpp"
  40 #include "compiler/compileBroker.hpp"
  41 #include "compiler/disassembler.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "gc/shared/gcLocker.inline.hpp"
  45 #include "interpreter/interpreter.hpp"
  46 #include "interpreter/interpreterRuntime.hpp"
  47 #include "jvm.h"
  48 #include "jfr/jfrEvents.hpp"
  49 #include "logging/log.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "metaprogramming/primitiveConversions.hpp"
  53 #include "oops/klass.hpp"
  54 #include "oops/method.inline.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "prims/forte.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "prims/jvmtiThreadState.hpp"
  60 #include "prims/methodHandles.hpp"
  61 #include "prims/nativeLookup.hpp"
  62 #include "runtime/arguments.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/basicLock.inline.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/jniHandles.inline.hpp"
  72 #include "runtime/perfData.inline.hpp"
  73 #include "runtime/sharedRuntime.hpp"
  74 #include "runtime/stackWatermarkSet.hpp"
  75 #include "runtime/stubRoutines.hpp"
  76 #include "runtime/synchronizer.inline.hpp"
  77 #include "runtime/timerTrace.hpp"
  78 #include "runtime/vframe.inline.hpp"
  79 #include "runtime/vframeArray.hpp"
  80 #include "runtime/vm_version.hpp"
  81 #include "services/management.hpp"
  82 #include "utilities/copy.hpp"
  83 #include "utilities/dtrace.hpp"
  84 #include "utilities/events.hpp"
  85 #include "utilities/globalDefinitions.hpp"
  86 #include "utilities/resourceHash.hpp"
  87 #include "utilities/macros.hpp"
  88 #include "utilities/xmlstream.hpp"
  89 #ifdef COMPILER1
  90 #include "c1/c1_Runtime1.hpp"
  91 #endif
  92 #if INCLUDE_JFR
  93 #include "jfr/jfr.hpp"
  94 #endif
  95 
  96 // Shared runtime stub routines reside in their own unique blob with a
  97 // single entry point
  98 
  99 
 100 #define SHARED_STUB_FIELD_DEFINE(name, type) \
 101   type        SharedRuntime::BLOB_FIELD_NAME(name);
 102   SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE)
 103 #undef SHARED_STUB_FIELD_DEFINE
 104 
 105 nmethod*            SharedRuntime::_cont_doYield_stub;
 106 
 107 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr;
 108 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time     = nullptr;
 109 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time      = nullptr;
 110 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr;
 111 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time             = nullptr;
 112 
 113 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob",
 114 const char *SharedRuntime::_stub_names[] = {
 115   SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE)
 116 };
 117 
 118 //----------------------------generate_stubs-----------------------------------
 119 void SharedRuntime::generate_initial_stubs() {
 120   // Build this early so it's available for the interpreter.
 121   _throw_StackOverflowError_blob =
 122     generate_throw_exception(SharedStubId::throw_StackOverflowError_id,
 123                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
 124 }
 125 
 126 void SharedRuntime::generate_stubs() {
 127   _wrong_method_blob =
 128     generate_resolve_blob(SharedStubId::wrong_method_id,
 129                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method));
 130   _wrong_method_abstract_blob =
 131     generate_resolve_blob(SharedStubId::wrong_method_abstract_id,
 132                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract));
 133   _ic_miss_blob =
 134     generate_resolve_blob(SharedStubId::ic_miss_id,
 135                           CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss));
 136   _resolve_opt_virtual_call_blob =
 137     generate_resolve_blob(SharedStubId::resolve_opt_virtual_call_id,
 138                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C));
 139   _resolve_virtual_call_blob =
 140     generate_resolve_blob(SharedStubId::resolve_virtual_call_id,
 141                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C));
 142   _resolve_static_call_blob =
 143     generate_resolve_blob(SharedStubId::resolve_static_call_id,
 144                           CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C));
 145 
 146   _throw_delayed_StackOverflowError_blob =
 147     generate_throw_exception(SharedStubId::throw_delayed_StackOverflowError_id,
 148                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
 149 
 150   _throw_AbstractMethodError_blob =
 151     generate_throw_exception(SharedStubId::throw_AbstractMethodError_id,
 152                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
 153 
 154   _throw_IncompatibleClassChangeError_blob =
 155     generate_throw_exception(SharedStubId::throw_IncompatibleClassChangeError_id,
 156                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
 157 
 158   _throw_NullPointerException_at_call_blob =
 159     generate_throw_exception(SharedStubId::throw_NullPointerException_at_call_id,
 160                              CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
 161 


 162 #if COMPILER2_OR_JVMCI
 163   // Vectors are generated only by C2 and JVMCI.
 164   bool support_wide = is_wide_vector(MaxVectorSize);
 165   if (support_wide) {
 166     _polling_page_vectors_safepoint_handler_blob =
 167       generate_handler_blob(SharedStubId::polling_page_vectors_safepoint_handler_id,
 168                             CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 169   }
 170 #endif // COMPILER2_OR_JVMCI
 171   _polling_page_safepoint_handler_blob =
 172     generate_handler_blob(SharedStubId::polling_page_safepoint_handler_id,
 173                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 174   _polling_page_return_handler_blob =
 175     generate_handler_blob(SharedStubId::polling_page_return_handler_id,
 176                           CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception));
 177 
 178   generate_deopt_blob();
 179 
 180   if (UsePerfData) {
 181     EXCEPTION_MARK;
 182     NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call");
 183     NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time,     SUN_CI, "resovle_virtual_call");
 184     NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time,      SUN_CI, "resovle_static_call");
 185     NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method");
 186     NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time ,            SUN_CI, "ic_miss");
 187     if (HAS_PENDING_EXCEPTION) {
 188       vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly");
 189     }
 190   }
 191 }
 192 
 193 void SharedRuntime::init_adapter_library() {
 194   AdapterHandlerLibrary::initialize();
 195 }
 196 
 197 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) {
 198   st->print("  %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us());
 199   if (TraceThreadTime) {
 200     st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us());
 201   }
 202   st->print(" / %5d events", cnt);
 203   st->cr();
 204 }
 205 
 206 void SharedRuntime::print_counters_on(outputStream* st) {
 207   st->print_cr("SharedRuntime:");
 208   if (UsePerfData) {
 209     print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr);
 210     print_counter_on(st, "resolve_virtual_call:",     _perf_resolve_virtual_total_time,     _resolve_virtual_ctr);
 211     print_counter_on(st, "resolve_static_call:",      _perf_resolve_static_total_time,      _resolve_static_ctr);
 212     print_counter_on(st, "handle_wrong_method:",      _perf_handle_wrong_method_total_time, _wrong_method_ctr);
 213     print_counter_on(st, "ic_miss:",                  _perf_ic_miss_total_time,             _ic_miss_ctr);
 214 
 215     jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() +
 216                                                           _perf_resolve_virtual_total_time->elapsed_counter_value() +
 217                                                           _perf_resolve_static_total_time->elapsed_counter_value() +
 218                                                           _perf_handle_wrong_method_total_time->elapsed_counter_value() +
 219                                                           _perf_ic_miss_total_time->elapsed_counter_value());
 220     st->print("Total:                      " JLONG_FORMAT_W(5) "us", total_elapsed_time_us);
 221     if (TraceThreadTime) {
 222       jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() +
 223                                                            _perf_resolve_virtual_total_time->thread_counter_value() +
 224                                                            _perf_resolve_static_total_time->thread_counter_value() +
 225                                                            _perf_handle_wrong_method_total_time->thread_counter_value() +
 226                                                            _perf_ic_miss_total_time->thread_counter_value());
 227       st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us);
 228 
 229     }
 230     st->cr();
 231   } else {
 232     st->print_cr("  no data (UsePerfData is turned off)");
 233   }
 234 }
 235 
 236 #if INCLUDE_JFR
 237 //------------------------------generate jfr runtime stubs ------
 238 void SharedRuntime::generate_jfr_stubs() {
 239   ResourceMark rm;
 240   const char* timer_msg = "SharedRuntime generate_jfr_stubs";
 241   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
 242 
 243   _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint();
 244   _jfr_return_lease_blob = generate_jfr_return_lease();
 245 }
 246 
 247 #endif // INCLUDE_JFR
 248 
 249 #include <math.h>
 250 
 251 // Implementation of SharedRuntime
 252 

 253 // For statistics
 254 uint SharedRuntime::_ic_miss_ctr = 0;
 255 uint SharedRuntime::_wrong_method_ctr = 0;
 256 uint SharedRuntime::_resolve_static_ctr = 0;
 257 uint SharedRuntime::_resolve_virtual_ctr = 0;
 258 uint SharedRuntime::_resolve_opt_virtual_ctr = 0;
 259 
 260 #ifndef PRODUCT
 261 uint SharedRuntime::_implicit_null_throws = 0;
 262 uint SharedRuntime::_implicit_div0_throws = 0;
 263 
 264 int64_t SharedRuntime::_nof_normal_calls = 0;
 265 int64_t SharedRuntime::_nof_inlined_calls = 0;
 266 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
 267 int64_t SharedRuntime::_nof_static_calls = 0;
 268 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
 269 int64_t SharedRuntime::_nof_interface_calls = 0;
 270 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
 271 
 272 uint SharedRuntime::_new_instance_ctr=0;
 273 uint SharedRuntime::_new_array_ctr=0;
 274 uint SharedRuntime::_multi2_ctr=0;
 275 uint SharedRuntime::_multi3_ctr=0;
 276 uint SharedRuntime::_multi4_ctr=0;
 277 uint SharedRuntime::_multi5_ctr=0;
 278 uint SharedRuntime::_mon_enter_stub_ctr=0;
 279 uint SharedRuntime::_mon_exit_stub_ctr=0;
 280 uint SharedRuntime::_mon_enter_ctr=0;
 281 uint SharedRuntime::_mon_exit_ctr=0;
 282 uint SharedRuntime::_partial_subtype_ctr=0;
 283 uint SharedRuntime::_jbyte_array_copy_ctr=0;
 284 uint SharedRuntime::_jshort_array_copy_ctr=0;
 285 uint SharedRuntime::_jint_array_copy_ctr=0;
 286 uint SharedRuntime::_jlong_array_copy_ctr=0;
 287 uint SharedRuntime::_oop_array_copy_ctr=0;
 288 uint SharedRuntime::_checkcast_array_copy_ctr=0;
 289 uint SharedRuntime::_unsafe_array_copy_ctr=0;
 290 uint SharedRuntime::_generic_array_copy_ctr=0;
 291 uint SharedRuntime::_slow_array_copy_ctr=0;
 292 uint SharedRuntime::_find_handler_ctr=0;
 293 uint SharedRuntime::_rethrow_ctr=0;
 294 uint SharedRuntime::_unsafe_set_memory_ctr=0;
 295 
 296 int     SharedRuntime::_ICmiss_index                    = 0;
 297 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 298 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 299 
 300 
 301 void SharedRuntime::trace_ic_miss(address at) {
 302   for (int i = 0; i < _ICmiss_index; i++) {
 303     if (_ICmiss_at[i] == at) {
 304       _ICmiss_count[i]++;
 305       return;
 306     }
 307   }
 308   int index = _ICmiss_index++;
 309   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 310   _ICmiss_at[index] = at;
 311   _ICmiss_count[index] = 1;
 312 }
 313 
 314 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) {
 315   if (ICMissHistogram) {
 316     st->print_cr("IC Miss Histogram:");
 317     int tot_misses = 0;
 318     for (int i = 0; i < _ICmiss_index; i++) {
 319       st->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 320       tot_misses += _ICmiss_count[i];
 321     }
 322     st->print_cr("Total IC misses: %7d", tot_misses);
 323   }
 324 }
 325 #endif // !PRODUCT
 326 
 327 
 328 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 329   return x * y;
 330 JRT_END
 331 
 332 
 333 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 334   if (x == min_jlong && y == CONST64(-1)) {
 335     return x;
 336   } else {
 337     return x / y;
 338   }
 339 JRT_END
 340 
 341 
 342 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 343   if (x == min_jlong && y == CONST64(-1)) {
 344     return 0;
 345   } else {
 346     return x % y;
 347   }
 348 JRT_END
 349 
 350 
 351 #ifdef _WIN64
 352 const juint  float_sign_mask  = 0x7FFFFFFF;
 353 const juint  float_infinity   = 0x7F800000;
 354 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 355 const julong double_infinity  = CONST64(0x7FF0000000000000);
 356 #endif
 357 
 358 #if !defined(X86)
 359 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
 360 #ifdef _WIN64
 361   // 64-bit Windows on amd64 returns the wrong values for
 362   // infinity operands.
 363   juint xbits = PrimitiveConversions::cast<juint>(x);
 364   juint ybits = PrimitiveConversions::cast<juint>(y);
 365   // x Mod Infinity == x unless x is infinity
 366   if (((xbits & float_sign_mask) != float_infinity) &&
 367        ((ybits & float_sign_mask) == float_infinity) ) {
 368     return x;
 369   }
 370   return ((jfloat)fmod_winx64((double)x, (double)y));
 371 #else
 372   return ((jfloat)fmod((double)x,(double)y));
 373 #endif
 374 JRT_END
 375 
 376 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 377 #ifdef _WIN64
 378   julong xbits = PrimitiveConversions::cast<julong>(x);
 379   julong ybits = PrimitiveConversions::cast<julong>(y);
 380   // x Mod Infinity == x unless x is infinity
 381   if (((xbits & double_sign_mask) != double_infinity) &&
 382        ((ybits & double_sign_mask) == double_infinity) ) {
 383     return x;
 384   }
 385   return ((jdouble)fmod_winx64((double)x, (double)y));
 386 #else
 387   return ((jdouble)fmod((double)x,(double)y));
 388 #endif
 389 JRT_END
 390 #endif // !X86
 391 
 392 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 393   return (jfloat)x;
 394 JRT_END
 395 
 396 #ifdef __SOFTFP__
 397 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 398   return x + y;
 399 JRT_END
 400 
 401 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 402   return x - y;
 403 JRT_END
 404 
 405 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 406   return x * y;
 407 JRT_END
 408 
 409 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 410   return x / y;
 411 JRT_END
 412 
 413 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 414   return x + y;
 415 JRT_END
 416 
 417 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 418   return x - y;
 419 JRT_END
 420 
 421 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 422   return x * y;
 423 JRT_END
 424 
 425 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 426   return x / y;
 427 JRT_END
 428 
 429 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 430   return (jdouble)x;
 431 JRT_END
 432 
 433 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 434   return (jdouble)x;
 435 JRT_END
 436 
 437 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 438   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 439 JRT_END
 440 
 441 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 442   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 443 JRT_END
 444 
 445 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 446   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 447 JRT_END
 448 
 449 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 450   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 451 JRT_END
 452 
 453 // Functions to return the opposite of the aeabi functions for nan.
 454 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 455   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 456 JRT_END
 457 
 458 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 459   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 460 JRT_END
 461 
 462 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 463   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 464 JRT_END
 465 
 466 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 467   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 468 JRT_END
 469 
 470 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 471   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 472 JRT_END
 473 
 474 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 475   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 476 JRT_END
 477 
 478 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 479   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 480 JRT_END
 481 
 482 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 483   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 484 JRT_END
 485 
 486 // Intrinsics make gcc generate code for these.
 487 float  SharedRuntime::fneg(float f)   {
 488   return -f;
 489 }
 490 
 491 double SharedRuntime::dneg(double f)  {
 492   return -f;
 493 }
 494 
 495 #endif // __SOFTFP__
 496 
 497 #if defined(__SOFTFP__) || defined(E500V2)
 498 // Intrinsics make gcc generate code for these.
 499 double SharedRuntime::dabs(double f)  {
 500   return (f <= (double)0.0) ? (double)0.0 - f : f;
 501 }
 502 
 503 #endif
 504 
 505 #if defined(__SOFTFP__) || defined(PPC)
 506 double SharedRuntime::dsqrt(double f) {
 507   return sqrt(f);
 508 }
 509 #endif
 510 
 511 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 512   if (g_isnan(x))
 513     return 0;
 514   if (x >= (jfloat) max_jint)
 515     return max_jint;
 516   if (x <= (jfloat) min_jint)
 517     return min_jint;
 518   return (jint) x;
 519 JRT_END
 520 
 521 
 522 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 523   if (g_isnan(x))
 524     return 0;
 525   if (x >= (jfloat) max_jlong)
 526     return max_jlong;
 527   if (x <= (jfloat) min_jlong)
 528     return min_jlong;
 529   return (jlong) x;
 530 JRT_END
 531 
 532 
 533 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 534   if (g_isnan(x))
 535     return 0;
 536   if (x >= (jdouble) max_jint)
 537     return max_jint;
 538   if (x <= (jdouble) min_jint)
 539     return min_jint;
 540   return (jint) x;
 541 JRT_END
 542 
 543 
 544 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 545   if (g_isnan(x))
 546     return 0;
 547   if (x >= (jdouble) max_jlong)
 548     return max_jlong;
 549   if (x <= (jdouble) min_jlong)
 550     return min_jlong;
 551   return (jlong) x;
 552 JRT_END
 553 
 554 
 555 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 556   return (jfloat)x;
 557 JRT_END
 558 
 559 
 560 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 561   return (jfloat)x;
 562 JRT_END
 563 
 564 
 565 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 566   return (jdouble)x;
 567 JRT_END
 568 
 569 
 570 // Exception handling across interpreter/compiler boundaries
 571 //
 572 // exception_handler_for_return_address(...) returns the continuation address.
 573 // The continuation address is the entry point of the exception handler of the
 574 // previous frame depending on the return address.
 575 
 576 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
 577   // Note: This is called when we have unwound the frame of the callee that did
 578   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
 579   // Notably, the stack is not walkable at this point, and hence the check must
 580   // be deferred until later. Specifically, any of the handlers returned here in
 581   // this function, will get dispatched to, and call deferred checks to
 582   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
 583   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 584   assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 585 
 586   // Reset method handle flag.
 587   current->set_is_method_handle_return(false);
 588 
 589 #if INCLUDE_JVMCI
 590   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 591   // and other exception handler continuations do not read it
 592   current->set_exception_pc(nullptr);
 593 #endif // INCLUDE_JVMCI
 594 
 595   if (Continuation::is_return_barrier_entry(return_address)) {
 596     return StubRoutines::cont_returnBarrierExc();
 597   }
 598 
 599   // The fastest case first
 600   CodeBlob* blob = CodeCache::find_blob(return_address);
 601   nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr;
 602   if (nm != nullptr) {
 603     // Set flag if return address is a method handle call site.
 604     current->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 605     // native nmethods don't have exception handlers
 606     assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
 607     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 608     if (nm->is_deopt_pc(return_address)) {
 609       // If we come here because of a stack overflow, the stack may be
 610       // unguarded. Reguard the stack otherwise if we return to the
 611       // deopt blob and the stack bang causes a stack overflow we
 612       // crash.
 613       StackOverflow* overflow_state = current->stack_overflow_state();
 614       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
 615       if (overflow_state->reserved_stack_activation() != current->stack_base()) {
 616         overflow_state->set_reserved_stack_activation(current->stack_base());
 617       }
 618       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 619       // The deferred StackWatermarkSet::after_unwind check will be performed in
 620       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
 621       return SharedRuntime::deopt_blob()->unpack_with_exception();
 622     } else {
 623       // The deferred StackWatermarkSet::after_unwind check will be performed in
 624       // * OptoRuntime::handle_exception_C_helper for C2 code
 625       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
 626       return nm->exception_begin();
 627     }
 628   }
 629 
 630   // Entry code
 631   if (StubRoutines::returns_to_call_stub(return_address)) {
 632     // The deferred StackWatermarkSet::after_unwind check will be performed in
 633     // JavaCallWrapper::~JavaCallWrapper
 634     return StubRoutines::catch_exception_entry();
 635   }
 636   if (blob != nullptr && blob->is_upcall_stub()) {
 637     return StubRoutines::upcall_stub_exception_handler();
 638   }
 639   // Interpreted code
 640   if (Interpreter::contains(return_address)) {
 641     // The deferred StackWatermarkSet::after_unwind check will be performed in
 642     // InterpreterRuntime::exception_handler_for_exception
 643     return Interpreter::rethrow_exception_entry();
 644   }
 645 
 646   guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub");
 647   guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!");
 648 
 649 #ifndef PRODUCT
 650   { ResourceMark rm;
 651     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 652     os::print_location(tty, (intptr_t)return_address);
 653     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 654     tty->print_cr("b) other problem");
 655   }
 656 #endif // PRODUCT
 657   ShouldNotReachHere();
 658   return nullptr;
 659 }
 660 
 661 
 662 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
 663   return raw_exception_handler_for_return_address(current, return_address);
 664 JRT_END
 665 
 666 
 667 address SharedRuntime::get_poll_stub(address pc) {
 668   address stub;
 669   // Look up the code blob
 670   CodeBlob *cb = CodeCache::find_blob(pc);
 671 
 672   // Should be an nmethod
 673   guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 674 
 675   // Look up the relocation information
 676   assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc),
 677       "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
 678 
 679 #ifdef ASSERT
 680   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 681     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 682     Disassembler::decode(cb);
 683     fatal("Only polling locations are used for safepoint");
 684   }
 685 #endif
 686 
 687   bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc);
 688   bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors();
 689   if (at_poll_return) {
 690     assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
 691            "polling page return stub not created yet");
 692     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 693   } else if (has_wide_vectors) {
 694     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr,
 695            "polling page vectors safepoint stub not created yet");
 696     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 697   } else {
 698     assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr,
 699            "polling page safepoint stub not created yet");
 700     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 701   }
 702   log_debug(safepoint)("... found polling page %s exception at pc = "
 703                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 704                        at_poll_return ? "return" : "loop",
 705                        (intptr_t)pc, (intptr_t)stub);
 706   return stub;
 707 }
 708 
 709 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
 710   if (JvmtiExport::can_post_on_exceptions()) {
 711     vframeStream vfst(current, true);
 712     methodHandle method = methodHandle(current, vfst.method());
 713     address bcp = method()->bcp_from(vfst.bci());
 714     JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
 715   }
 716 
 717 #if INCLUDE_JVMCI
 718   if (EnableJVMCI) {
 719     vframeStream vfst(current, true);
 720     methodHandle method = methodHandle(current, vfst.method());
 721     int bci = vfst.bci();
 722     MethodData* trap_mdo = method->method_data();
 723     if (trap_mdo != nullptr) {
 724       // Set exception_seen if the exceptional bytecode is an invoke
 725       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 726       if (call.is_valid()) {
 727         ResourceMark rm(current);
 728 
 729         // Lock to read ProfileData, and ensure lock is not broken by a safepoint
 730         MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
 731 
 732         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr);
 733         if (pdata != nullptr && pdata->is_BitData()) {
 734           BitData* bit_data = (BitData*) pdata;
 735           bit_data->set_exception_seen();
 736         }
 737       }
 738     }
 739   }
 740 #endif
 741 
 742   Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
 743 }
 744 
 745 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
 746   Handle h_exception = Exceptions::new_exception(current, name, message);
 747   throw_and_post_jvmti_exception(current, h_exception);
 748 }
 749 
 750 #if INCLUDE_JVMTI
 751 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current))
 752   assert(hide == JNI_FALSE, "must be VTMS transition finish");
 753   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 754   JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread);
 755   JNIHandles::destroy_local(vthread);
 756 JRT_END
 757 
 758 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current))
 759   assert(hide == JNI_TRUE, "must be VTMS transition start");
 760   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 761   JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread);
 762   JNIHandles::destroy_local(vthread);
 763 JRT_END
 764 
 765 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current))
 766   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 767   JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide);
 768   JNIHandles::destroy_local(vthread);
 769 JRT_END
 770 
 771 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current))
 772   jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt));
 773   JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide);
 774   JNIHandles::destroy_local(vthread);
 775 JRT_END
 776 #endif // INCLUDE_JVMTI
 777 
 778 // The interpreter code to call this tracing function is only
 779 // called/generated when UL is on for redefine, class and has the right level
 780 // and tags. Since obsolete methods are never compiled, we don't have
 781 // to modify the compilers to generate calls to this function.
 782 //
 783 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 784     JavaThread* thread, Method* method))
 785   if (method->is_obsolete()) {
 786     // We are calling an obsolete method, but this is not necessarily
 787     // an error. Our method could have been redefined just after we
 788     // fetched the Method* from the constant pool.
 789     ResourceMark rm;
 790     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 791   }
 792 
 793   LogStreamHandle(Trace, interpreter, bytecode) log;
 794   if (log.is_enabled()) {
 795     ResourceMark rm;
 796     log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s",
 797               p2i(thread),
 798               (method->is_static() ? "static" : "virtual"),
 799               method->name_and_sig_as_C_string(),
 800               (method->is_native() ? " native" : ""),
 801               (thread->class_being_initialized() != nullptr ? " clinit" : ""),
 802               (method->method_holder()->is_initialized() ? "" : " being_initialized"));
 803   }
 804   return 0;
 805 JRT_END
 806 
 807 // ret_pc points into caller; we are returning caller's exception handler
 808 // for given exception
 809 // Note that the implementation of this method assumes it's only called when an exception has actually occured
 810 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 811                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 812   assert(nm != nullptr, "must exist");
 813   ResourceMark rm;
 814 
 815 #if INCLUDE_JVMCI
 816   if (nm->is_compiled_by_jvmci()) {
 817     // lookup exception handler for this pc
 818     int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 819     ExceptionHandlerTable table(nm);
 820     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 821     if (t != nullptr) {
 822       return nm->code_begin() + t->pco();
 823     } else {
 824       return Deoptimization::deoptimize_for_missing_exception_handler(nm);
 825     }
 826   }
 827 #endif // INCLUDE_JVMCI
 828 
 829   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 830   // determine handler bci, if any
 831   EXCEPTION_MARK;
 832 
 833   int handler_bci = -1;
 834   int scope_depth = 0;
 835   if (!force_unwind) {
 836     int bci = sd->bci();
 837     bool recursive_exception = false;
 838     do {
 839       bool skip_scope_increment = false;
 840       // exception handler lookup
 841       Klass* ek = exception->klass();
 842       methodHandle mh(THREAD, sd->method());
 843       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 844       if (HAS_PENDING_EXCEPTION) {
 845         recursive_exception = true;
 846         // We threw an exception while trying to find the exception handler.
 847         // Transfer the new exception to the exception handle which will
 848         // be set into thread local storage, and do another lookup for an
 849         // exception handler for this exception, this time starting at the
 850         // BCI of the exception handler which caused the exception to be
 851         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 852         // argument to ensure that the correct exception is thrown (4870175).
 853         recursive_exception_occurred = true;
 854         exception = Handle(THREAD, PENDING_EXCEPTION);
 855         CLEAR_PENDING_EXCEPTION;
 856         if (handler_bci >= 0) {
 857           bci = handler_bci;
 858           handler_bci = -1;
 859           skip_scope_increment = true;
 860         }
 861       }
 862       else {
 863         recursive_exception = false;
 864       }
 865       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 866         sd = sd->sender();
 867         if (sd != nullptr) {
 868           bci = sd->bci();
 869         }
 870         ++scope_depth;
 871       }
 872     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr));
 873   }
 874 
 875   // found handling method => lookup exception handler
 876   int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin());
 877 
 878   ExceptionHandlerTable table(nm);
 879   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 880   if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 881     // Allow abbreviated catch tables.  The idea is to allow a method
 882     // to materialize its exceptions without committing to the exact
 883     // routing of exceptions.  In particular this is needed for adding
 884     // a synthetic handler to unlock monitors when inlining
 885     // synchronized methods since the unlock path isn't represented in
 886     // the bytecodes.
 887     t = table.entry_for(catch_pco, -1, 0);
 888   }
 889 
 890 #ifdef COMPILER1
 891   if (t == nullptr && nm->is_compiled_by_c1()) {
 892     assert(nm->unwind_handler_begin() != nullptr, "");
 893     return nm->unwind_handler_begin();
 894   }
 895 #endif
 896 
 897   if (t == nullptr) {
 898     ttyLocker ttyl;
 899     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
 900     tty->print_cr("   Exception:");
 901     exception->print();
 902     tty->cr();
 903     tty->print_cr(" Compiled exception table :");
 904     table.print();
 905     nm->print();
 906     nm->print_code();
 907     guarantee(false, "missing exception handler");
 908     return nullptr;
 909   }
 910 
 911   if (handler_bci != -1) { // did we find a handler in this method?
 912     sd->method()->set_exception_handler_entered(handler_bci); // profile
 913   }
 914   return nm->code_begin() + t->pco();
 915 }
 916 
 917 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
 918   // These errors occur only at call sites
 919   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
 920 JRT_END
 921 
 922 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
 923   // These errors occur only at call sites
 924   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 925 JRT_END
 926 
 927 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
 928   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 929 JRT_END
 930 
 931 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
 932   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 933 JRT_END
 934 
 935 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
 936   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 937   // cache sites (when the callee activation is not yet set up) so we are at a call site
 938   throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr);
 939 JRT_END
 940 
 941 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
 942   throw_StackOverflowError_common(current, false);
 943 JRT_END
 944 
 945 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
 946   throw_StackOverflowError_common(current, true);
 947 JRT_END
 948 
 949 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
 950   // We avoid using the normal exception construction in this case because
 951   // it performs an upcall to Java, and we're already out of stack space.
 952   JavaThread* THREAD = current; // For exception macros.
 953   Klass* k = vmClasses::StackOverflowError_klass();
 954   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 955   if (delayed) {
 956     java_lang_Throwable::set_message(exception_oop,
 957                                      Universe::delayed_stack_overflow_error_message());
 958   }
 959   Handle exception (current, exception_oop);
 960   if (StackTraceInThrowable) {
 961     java_lang_Throwable::fill_in_stack_trace(exception);
 962   }
 963   // Remove the ScopedValue bindings in case we got a
 964   // StackOverflowError while we were trying to remove ScopedValue
 965   // bindings.
 966   current->clear_scopedValueBindings();
 967   // Increment counter for hs_err file reporting
 968   Atomic::inc(&Exceptions::_stack_overflow_errors);
 969   throw_and_post_jvmti_exception(current, exception);
 970 }
 971 
 972 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
 973                                                            address pc,
 974                                                            ImplicitExceptionKind exception_kind)
 975 {
 976   address target_pc = nullptr;
 977 
 978   if (Interpreter::contains(pc)) {
 979     switch (exception_kind) {
 980       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 981       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 982       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 983       default:                      ShouldNotReachHere();
 984     }
 985   } else {
 986     switch (exception_kind) {
 987       case STACK_OVERFLOW: {
 988         // Stack overflow only occurs upon frame setup; the callee is
 989         // going to be unwound. Dispatch to a shared runtime stub
 990         // which will cause the StackOverflowError to be fabricated
 991         // and processed.
 992         // Stack overflow should never occur during deoptimization:
 993         // the compiled method bangs the stack by as much as the
 994         // interpreter would need in case of a deoptimization. The
 995         // deoptimization blob and uncommon trap blob bang the stack
 996         // in a debug VM to verify the correctness of the compiled
 997         // method stack banging.
 998         assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap");
 999         Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
1000         return SharedRuntime::throw_StackOverflowError_entry();
1001       }
1002 
1003       case IMPLICIT_NULL: {
1004         if (VtableStubs::contains(pc)) {
1005           // We haven't yet entered the callee frame. Fabricate an
1006           // exception and begin dispatching it in the caller. Since
1007           // the caller was at a call site, it's safe to destroy all
1008           // caller-saved registers, as these entry points do.
1009           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
1010 
1011           // If vt_stub is null, then return null to signal handler to report the SEGV error.
1012           if (vt_stub == nullptr) return nullptr;
1013 
1014           if (vt_stub->is_abstract_method_error(pc)) {
1015             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
1016             Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
1017             // Instead of throwing the abstract method error here directly, we re-resolve
1018             // and will throw the AbstractMethodError during resolve. As a result, we'll
1019             // get a more detailed error message.
1020             return SharedRuntime::get_handle_wrong_method_stub();
1021           } else {
1022             Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
1023             // Assert that the signal comes from the expected location in stub code.
1024             assert(vt_stub->is_null_pointer_exception(pc),
1025                    "obtained signal from unexpected location in stub code");
1026             return SharedRuntime::throw_NullPointerException_at_call_entry();
1027           }
1028         } else {
1029           CodeBlob* cb = CodeCache::find_blob(pc);
1030 
1031           // If code blob is null, then return null to signal handler to report the SEGV error.
1032           if (cb == nullptr) return nullptr;
1033 
1034           // Exception happened in CodeCache. Must be either:
1035           // 1. Inline-cache check in C2I handler blob,
1036           // 2. Inline-cache check in nmethod, or
1037           // 3. Implicit null exception in nmethod
1038 
1039           if (!cb->is_nmethod()) {
1040             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
1041             if (!is_in_blob) {
1042               // Allow normal crash reporting to handle this
1043               return nullptr;
1044             }
1045             Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
1046             // There is no handler here, so we will simply unwind.
1047             return SharedRuntime::throw_NullPointerException_at_call_entry();
1048           }
1049 
1050           // Otherwise, it's a compiled method.  Consult its exception handlers.
1051           nmethod* nm = cb->as_nmethod();
1052           if (nm->inlinecache_check_contains(pc)) {
1053             // exception happened inside inline-cache check code
1054             // => the nmethod is not yet active (i.e., the frame
1055             // is not set up yet) => use return address pushed by
1056             // caller => don't push another return address
1057             Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
1058             return SharedRuntime::throw_NullPointerException_at_call_entry();
1059           }
1060 
1061           if (nm->method()->is_method_handle_intrinsic()) {
1062             // exception happened inside MH dispatch code, similar to a vtable stub
1063             Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
1064             return SharedRuntime::throw_NullPointerException_at_call_entry();
1065           }
1066 
1067 #ifndef PRODUCT
1068           _implicit_null_throws++;
1069 #endif
1070           target_pc = nm->continuation_for_implicit_null_exception(pc);
1071           // If there's an unexpected fault, target_pc might be null,
1072           // in which case we want to fall through into the normal
1073           // error handling code.
1074         }
1075 
1076         break; // fall through
1077       }
1078 
1079 
1080       case IMPLICIT_DIVIDE_BY_ZERO: {
1081         nmethod* nm = CodeCache::find_nmethod(pc);
1082         guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions");
1083 #ifndef PRODUCT
1084         _implicit_div0_throws++;
1085 #endif
1086         target_pc = nm->continuation_for_implicit_div0_exception(pc);
1087         // If there's an unexpected fault, target_pc might be null,
1088         // in which case we want to fall through into the normal
1089         // error handling code.
1090         break; // fall through
1091       }
1092 
1093       default: ShouldNotReachHere();
1094     }
1095 
1096     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
1097 
1098     if (exception_kind == IMPLICIT_NULL) {
1099 #ifndef PRODUCT
1100       // for AbortVMOnException flag
1101       Exceptions::debug_check_abort("java.lang.NullPointerException");
1102 #endif //PRODUCT
1103       Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1104     } else {
1105 #ifndef PRODUCT
1106       // for AbortVMOnException flag
1107       Exceptions::debug_check_abort("java.lang.ArithmeticException");
1108 #endif //PRODUCT
1109       Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
1110     }
1111     return target_pc;
1112   }
1113 
1114   ShouldNotReachHere();
1115   return nullptr;
1116 }
1117 
1118 
1119 /**
1120  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
1121  * installed in the native function entry of all native Java methods before
1122  * they get linked to their actual native methods.
1123  *
1124  * \note
1125  * This method actually never gets called!  The reason is because
1126  * the interpreter's native entries call NativeLookup::lookup() which
1127  * throws the exception when the lookup fails.  The exception is then
1128  * caught and forwarded on the return from NativeLookup::lookup() call
1129  * before the call to the native function.  This might change in the future.
1130  */
1131 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
1132 {
1133   // We return a bad value here to make sure that the exception is
1134   // forwarded before we look at the return value.
1135   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
1136 }
1137 JNI_END
1138 
1139 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1140   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1141 }
1142 
1143 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
1144 #if INCLUDE_JVMCI
1145   if (!obj->klass()->has_finalizer()) {
1146     return;
1147   }
1148 #endif // INCLUDE_JVMCI
1149   assert(oopDesc::is_oop(obj), "must be a valid oop");
1150   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1151   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1152 JRT_END
1153 
1154 jlong SharedRuntime::get_java_tid(JavaThread* thread) {
1155   assert(thread != nullptr, "No thread");
1156   if (thread == nullptr) {
1157     return 0;
1158   }
1159   guarantee(Thread::current() != thread || thread->is_oop_safe(),
1160             "current cannot touch oops after its GC barrier is detached.");
1161   oop obj = thread->threadObj();
1162   return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj);
1163 }
1164 
1165 /**
1166  * This function ought to be a void function, but cannot be because
1167  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1168  * 6254741.  Once that is fixed we can remove the dummy return value.
1169  */
1170 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
1171   return dtrace_object_alloc(JavaThread::current(), o, o->size());
1172 }
1173 
1174 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
1175   return dtrace_object_alloc(thread, o, o->size());
1176 }
1177 
1178 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
1179   assert(DTraceAllocProbes, "wrong call");
1180   Klass* klass = o->klass();
1181   Symbol* name = klass->name();
1182   HOTSPOT_OBJECT_ALLOC(
1183                    get_java_tid(thread),
1184                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1185   return 0;
1186 }
1187 
1188 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1189     JavaThread* current, Method* method))
1190   assert(current == JavaThread::current(), "pre-condition");
1191 
1192   assert(DTraceMethodProbes, "wrong call");
1193   Symbol* kname = method->klass_name();
1194   Symbol* name = method->name();
1195   Symbol* sig = method->signature();
1196   HOTSPOT_METHOD_ENTRY(
1197       get_java_tid(current),
1198       (char *) kname->bytes(), kname->utf8_length(),
1199       (char *) name->bytes(), name->utf8_length(),
1200       (char *) sig->bytes(), sig->utf8_length());
1201   return 0;
1202 JRT_END
1203 
1204 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1205     JavaThread* current, Method* method))
1206   assert(current == JavaThread::current(), "pre-condition");
1207   assert(DTraceMethodProbes, "wrong call");
1208   Symbol* kname = method->klass_name();
1209   Symbol* name = method->name();
1210   Symbol* sig = method->signature();
1211   HOTSPOT_METHOD_RETURN(
1212       get_java_tid(current),
1213       (char *) kname->bytes(), kname->utf8_length(),
1214       (char *) name->bytes(), name->utf8_length(),
1215       (char *) sig->bytes(), sig->utf8_length());
1216   return 0;
1217 JRT_END
1218 
1219 
1220 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1221 // for a call current in progress, i.e., arguments has been pushed on stack
1222 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1223 // vtable updates, etc.  Caller frame must be compiled.
1224 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1225   JavaThread* current = THREAD;
1226   ResourceMark rm(current);
1227 
1228   // last java frame on stack (which includes native call frames)
1229   vframeStream vfst(current, true);  // Do not skip and javaCalls
1230 
1231   return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1232 }
1233 
1234 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1235   nmethod* caller = vfst.nm();
1236 
1237   address pc = vfst.frame_pc();
1238   { // Get call instruction under lock because another thread may be busy patching it.
1239     CompiledICLocker ic_locker(caller);
1240     return caller->attached_method_before_pc(pc);
1241   }
1242   return nullptr;
1243 }
1244 
1245 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1246 // for a call current in progress, i.e., arguments has been pushed on stack
1247 // but callee has not been invoked yet.  Caller frame must be compiled.
1248 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1249                                               CallInfo& callinfo, TRAPS) {
1250   Handle receiver;
1251   Handle nullHandle;  // create a handy null handle for exception returns
1252   JavaThread* current = THREAD;
1253 
1254   assert(!vfst.at_end(), "Java frame must exist");
1255 
1256   // Find caller and bci from vframe
1257   methodHandle caller(current, vfst.method());
1258   int          bci   = vfst.bci();
1259 
1260   if (caller->is_continuation_enter_intrinsic()) {
1261     bc = Bytecodes::_invokestatic;
1262     LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
1263     return receiver;
1264   }
1265 
1266   Bytecode_invoke bytecode(caller, bci);
1267   int bytecode_index = bytecode.index();
1268   bc = bytecode.invoke_code();
1269 
1270   methodHandle attached_method(current, extract_attached_method(vfst));
1271   if (attached_method.not_null()) {
1272     Method* callee = bytecode.static_target(CHECK_NH);
1273     vmIntrinsics::ID id = callee->intrinsic_id();
1274     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1275     // it attaches statically resolved method to the call site.
1276     if (MethodHandles::is_signature_polymorphic(id) &&
1277         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1278       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1279 
1280       // Adjust invocation mode according to the attached method.
1281       switch (bc) {
1282         case Bytecodes::_invokevirtual:
1283           if (attached_method->method_holder()->is_interface()) {
1284             bc = Bytecodes::_invokeinterface;
1285           }
1286           break;
1287         case Bytecodes::_invokeinterface:
1288           if (!attached_method->method_holder()->is_interface()) {
1289             bc = Bytecodes::_invokevirtual;
1290           }
1291           break;
1292         case Bytecodes::_invokehandle:
1293           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1294             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1295                                               : Bytecodes::_invokevirtual;
1296           }
1297           break;
1298         default:
1299           break;
1300       }
1301     }
1302   }
1303 
1304   assert(bc != Bytecodes::_illegal, "not initialized");
1305 
1306   bool has_receiver = bc != Bytecodes::_invokestatic &&
1307                       bc != Bytecodes::_invokedynamic &&
1308                       bc != Bytecodes::_invokehandle;
1309 
1310   // Find receiver for non-static call
1311   if (has_receiver) {
1312     // This register map must be update since we need to find the receiver for
1313     // compiled frames. The receiver might be in a register.
1314     RegisterMap reg_map2(current,
1315                          RegisterMap::UpdateMap::include,
1316                          RegisterMap::ProcessFrames::include,
1317                          RegisterMap::WalkContinuation::skip);
1318     frame stubFrame   = current->last_frame();
1319     // Caller-frame is a compiled frame
1320     frame callerFrame = stubFrame.sender(&reg_map2);
1321 
1322     if (attached_method.is_null()) {
1323       Method* callee = bytecode.static_target(CHECK_NH);
1324       if (callee == nullptr) {
1325         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1326       }
1327     }
1328 
1329     // Retrieve from a compiled argument list
1330     receiver = Handle(current, callerFrame.retrieve_receiver(&reg_map2));
1331     assert(oopDesc::is_oop_or_null(receiver()), "");
1332 
1333     if (receiver.is_null()) {
1334       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1335     }
1336   }
1337 
1338   // Resolve method
1339   if (attached_method.not_null()) {
1340     // Parameterized by attached method.
1341     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1342   } else {
1343     // Parameterized by bytecode.
1344     constantPoolHandle constants(current, caller->constants());
1345     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1346   }
1347 
1348 #ifdef ASSERT
1349   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1350   if (has_receiver) {
1351     assert(receiver.not_null(), "should have thrown exception");
1352     Klass* receiver_klass = receiver->klass();
1353     Klass* rk = nullptr;
1354     if (attached_method.not_null()) {
1355       // In case there's resolved method attached, use its holder during the check.
1356       rk = attached_method->method_holder();
1357     } else {
1358       // Klass is already loaded.
1359       constantPoolHandle constants(current, caller->constants());
1360       rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH);
1361     }
1362     Klass* static_receiver_klass = rk;
1363     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1364            "actual receiver must be subclass of static receiver klass");
1365     if (receiver_klass->is_instance_klass()) {
1366       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1367         tty->print_cr("ERROR: Klass not yet initialized!!");
1368         receiver_klass->print();
1369       }
1370       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1371     }
1372   }
1373 #endif
1374 
1375   return receiver;
1376 }
1377 
1378 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1379   JavaThread* current = THREAD;
1380   ResourceMark rm(current);
1381   // We need first to check if any Java activations (compiled, interpreted)
1382   // exist on the stack since last JavaCall.  If not, we need
1383   // to get the target method from the JavaCall wrapper.
1384   vframeStream vfst(current, true);  // Do not skip any javaCalls
1385   methodHandle callee_method;
1386   if (vfst.at_end()) {
1387     // No Java frames were found on stack since we did the JavaCall.
1388     // Hence the stack can only contain an entry_frame.  We need to
1389     // find the target method from the stub frame.
1390     RegisterMap reg_map(current,
1391                         RegisterMap::UpdateMap::skip,
1392                         RegisterMap::ProcessFrames::include,
1393                         RegisterMap::WalkContinuation::skip);
1394     frame fr = current->last_frame();
1395     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1396     fr = fr.sender(&reg_map);
1397     assert(fr.is_entry_frame(), "must be");
1398     // fr is now pointing to the entry frame.
1399     callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1400   } else {
1401     Bytecodes::Code bc;
1402     CallInfo callinfo;
1403     find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1404     callee_method = methodHandle(current, callinfo.selected_method());
1405   }
1406   assert(callee_method()->is_method(), "must be");
1407   return callee_method;
1408 }
1409 
1410 // Resolves a call.
1411 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1412   JavaThread* current = THREAD;
1413   ResourceMark rm(current);
1414   RegisterMap cbl_map(current,
1415                       RegisterMap::UpdateMap::skip,
1416                       RegisterMap::ProcessFrames::include,
1417                       RegisterMap::WalkContinuation::skip);
1418   frame caller_frame = current->last_frame().sender(&cbl_map);
1419 
1420   CodeBlob* caller_cb = caller_frame.cb();
1421   guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method");
1422   nmethod* caller_nm = caller_cb->as_nmethod();
1423 
1424   // determine call info & receiver
1425   // note: a) receiver is null for static calls
1426   //       b) an exception is thrown if receiver is null for non-static calls
1427   CallInfo call_info;
1428   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1429   Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1430 
1431   NoSafepointVerifier nsv;
1432 
1433   methodHandle callee_method(current, call_info.selected_method());
1434 
1435   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1436          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1437          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1438          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1439          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1440 
1441   assert(!caller_nm->is_unloading(), "It should not be unloading");
1442 

1443   // tracing/debugging/statistics
1444   uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1445                  (is_virtual) ? (&_resolve_virtual_ctr) :
1446                                 (&_resolve_static_ctr);
1447   Atomic::inc(addr);
1448 
1449 #ifndef PRODUCT
1450   if (TraceCallFixup) {
1451     ResourceMark rm(current);
1452     tty->print("resolving %s%s (%s) call to",
1453                (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1454                Bytecodes::name(invoke_code));
1455     callee_method->print_short_name(tty);
1456     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1457                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1458   }
1459 #endif
1460 
1461   if (invoke_code == Bytecodes::_invokestatic) {
1462     assert(callee_method->method_holder()->is_initialized() ||
1463            callee_method->method_holder()->is_reentrant_initialization(current),
1464            "invalid class initialization state for invoke_static");
1465     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1466       // In order to keep class initialization check, do not patch call
1467       // site for static call when the class is not fully initialized.
1468       // Proper check is enforced by call site re-resolution on every invocation.
1469       //
1470       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1471       // explicit class initialization check is put in nmethod entry (VEP).
1472       assert(callee_method->method_holder()->is_linked(), "must be");
1473       return callee_method;
1474     }
1475   }
1476 
1477 
1478   // JSR 292 key invariant:
1479   // If the resolved method is a MethodHandle invoke target, the call
1480   // site must be a MethodHandle call site, because the lambda form might tail-call
1481   // leaving the stack in a state unknown to either caller or callee
1482 
1483   // Compute entry points. The computation of the entry points is independent of
1484   // patching the call.
1485 
1486   // Make sure the callee nmethod does not get deoptimized and removed before
1487   // we are done patching the code.
1488 
1489 
1490   CompiledICLocker ml(caller_nm);
1491   if (is_virtual && !is_optimized) {
1492     CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1493     inline_cache->update(&call_info, receiver->klass());
1494   } else {
1495     // Callsite is a direct call - set it to the destination method
1496     CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc());
1497     callsite->set(callee_method);
1498   }
1499 
1500   return callee_method;
1501 }
1502 
1503 // Inline caches exist only in compiled code
1504 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1505   PerfTraceTime timer(_perf_ic_miss_total_time);
1506 
1507 #ifdef ASSERT
1508   RegisterMap reg_map(current,
1509                       RegisterMap::UpdateMap::skip,
1510                       RegisterMap::ProcessFrames::include,
1511                       RegisterMap::WalkContinuation::skip);
1512   frame stub_frame = current->last_frame();
1513   assert(stub_frame.is_runtime_frame(), "sanity check");
1514   frame caller_frame = stub_frame.sender(&reg_map);
1515   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
1516 #endif /* ASSERT */
1517 
1518   methodHandle callee_method;
1519   JRT_BLOCK
1520     callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1521     // Return Method* through TLS
1522     current->set_vm_result_2(callee_method());
1523   JRT_BLOCK_END
1524   // return compiled code entry point after potential safepoints
1525   return get_resolved_entry(current, callee_method);
1526 JRT_END
1527 
1528 
1529 // Handle call site that has been made non-entrant
1530 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1531   PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1532 
1533   // 6243940 We might end up in here if the callee is deoptimized
1534   // as we race to call it.  We don't want to take a safepoint if
1535   // the caller was interpreted because the caller frame will look
1536   // interpreted to the stack walkers and arguments are now
1537   // "compiled" so it is much better to make this transition
1538   // invisible to the stack walking code. The i2c path will
1539   // place the callee method in the callee_target. It is stashed
1540   // there because if we try and find the callee by normal means a
1541   // safepoint is possible and have trouble gc'ing the compiled args.
1542   RegisterMap reg_map(current,
1543                       RegisterMap::UpdateMap::skip,
1544                       RegisterMap::ProcessFrames::include,
1545                       RegisterMap::WalkContinuation::skip);
1546   frame stub_frame = current->last_frame();
1547   assert(stub_frame.is_runtime_frame(), "sanity check");
1548   frame caller_frame = stub_frame.sender(&reg_map);
1549 
1550   if (caller_frame.is_interpreted_frame() ||
1551       caller_frame.is_entry_frame() ||
1552       caller_frame.is_upcall_stub_frame()) {
1553     Method* callee = current->callee_target();
1554     guarantee(callee != nullptr && callee->is_method(), "bad handshake");
1555     current->set_vm_result_2(callee);
1556     current->set_callee_target(nullptr);
1557     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1558       // Bypass class initialization checks in c2i when caller is in native.
1559       // JNI calls to static methods don't have class initialization checks.
1560       // Fast class initialization checks are present in c2i adapters and call into
1561       // SharedRuntime::handle_wrong_method() on the slow path.
1562       //
1563       // JVM upcalls may land here as well, but there's a proper check present in
1564       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1565       // so bypassing it in c2i adapter is benign.
1566       return callee->get_c2i_no_clinit_check_entry();
1567     } else {
1568       return callee->get_c2i_entry();
1569     }
1570   }
1571 
1572   // Must be compiled to compiled path which is safe to stackwalk
1573   methodHandle callee_method;
1574   JRT_BLOCK
1575     // Force resolving of caller (if we called from compiled frame)
1576     callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1577     current->set_vm_result_2(callee_method());
1578   JRT_BLOCK_END
1579   // return compiled code entry point after potential safepoints
1580   return get_resolved_entry(current, callee_method);
1581 JRT_END
1582 
1583 // Handle abstract method call
1584 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1585   PerfTraceTime timer(_perf_handle_wrong_method_total_time);
1586 
1587   // Verbose error message for AbstractMethodError.
1588   // Get the called method from the invoke bytecode.
1589   vframeStream vfst(current, true);
1590   assert(!vfst.at_end(), "Java frame must exist");
1591   methodHandle caller(current, vfst.method());
1592   Bytecode_invoke invoke(caller, vfst.bci());
1593   DEBUG_ONLY( invoke.verify(); )
1594 
1595   // Find the compiled caller frame.
1596   RegisterMap reg_map(current,
1597                       RegisterMap::UpdateMap::include,
1598                       RegisterMap::ProcessFrames::include,
1599                       RegisterMap::WalkContinuation::skip);
1600   frame stubFrame = current->last_frame();
1601   assert(stubFrame.is_runtime_frame(), "must be");
1602   frame callerFrame = stubFrame.sender(&reg_map);
1603   assert(callerFrame.is_compiled_frame(), "must be");
1604 
1605   // Install exception and return forward entry.
1606   address res = SharedRuntime::throw_AbstractMethodError_entry();
1607   JRT_BLOCK
1608     methodHandle callee(current, invoke.static_target(current));
1609     if (!callee.is_null()) {
1610       oop recv = callerFrame.retrieve_receiver(&reg_map);
1611       Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr;
1612       res = StubRoutines::forward_exception_entry();
1613       LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1614     }
1615   JRT_BLOCK_END
1616   return res;
1617 JRT_END
1618 
1619 // return verified_code_entry if interp_only_mode is not set for the current thread;
1620 // otherwise return c2i entry.
1621 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) {
1622   if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) {
1623     // In interp_only_mode we need to go to the interpreted entry
1624     // The c2i won't patch in this mode -- see fixup_callers_callsite
1625     return callee_method->get_c2i_entry();
1626   }
1627   assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!");
1628   return callee_method->verified_code_entry();
1629 }
1630 
1631 // resolve a static call and patch code
1632 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1633   PerfTraceTime timer(_perf_resolve_static_total_time);
1634 
1635   methodHandle callee_method;
1636   bool enter_special = false;
1637   JRT_BLOCK
1638     callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1639     current->set_vm_result_2(callee_method());
1640   JRT_BLOCK_END
1641   // return compiled code entry point after potential safepoints
1642   return get_resolved_entry(current, callee_method);
1643 JRT_END
1644 
1645 // resolve virtual call and update inline cache to monomorphic
1646 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1647   PerfTraceTime timer(_perf_resolve_virtual_total_time);
1648 
1649   methodHandle callee_method;
1650   JRT_BLOCK
1651     callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1652     current->set_vm_result_2(callee_method());
1653   JRT_BLOCK_END
1654   // return compiled code entry point after potential safepoints
1655   return get_resolved_entry(current, callee_method);
1656 JRT_END
1657 
1658 
1659 // Resolve a virtual call that can be statically bound (e.g., always
1660 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1661 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1662   PerfTraceTime timer(_perf_resolve_opt_virtual_total_time);
1663 
1664   methodHandle callee_method;
1665   JRT_BLOCK
1666     callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1667     current->set_vm_result_2(callee_method());
1668   JRT_BLOCK_END
1669   // return compiled code entry point after potential safepoints
1670   return get_resolved_entry(current, callee_method);
1671 JRT_END
1672 
1673 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1674   JavaThread* current = THREAD;
1675   ResourceMark rm(current);
1676   CallInfo call_info;
1677   Bytecodes::Code bc;
1678 
1679   // receiver is null for static calls. An exception is thrown for null
1680   // receivers for non-static calls
1681   Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1682 
1683   methodHandle callee_method(current, call_info.selected_method());
1684 

1685   Atomic::inc(&_ic_miss_ctr);
1686 
1687 #ifndef PRODUCT
1688   // Statistics & Tracing
1689   if (TraceCallFixup) {
1690     ResourceMark rm(current);
1691     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1692     callee_method->print_short_name(tty);
1693     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1694   }
1695 
1696   if (ICMissHistogram) {
1697     MutexLocker m(VMStatistic_lock);
1698     RegisterMap reg_map(current,
1699                         RegisterMap::UpdateMap::skip,
1700                         RegisterMap::ProcessFrames::include,
1701                         RegisterMap::WalkContinuation::skip);
1702     frame f = current->last_frame().real_sender(&reg_map);// skip runtime stub
1703     // produce statistics under the lock
1704     trace_ic_miss(f.pc());
1705   }
1706 #endif
1707 
1708   // install an event collector so that when a vtable stub is created the
1709   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1710   // event can't be posted when the stub is created as locks are held
1711   // - instead the event will be deferred until the event collector goes
1712   // out of scope.
1713   JvmtiDynamicCodeEventCollector event_collector;
1714 
1715   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1716   RegisterMap reg_map(current,
1717                       RegisterMap::UpdateMap::skip,
1718                       RegisterMap::ProcessFrames::include,
1719                       RegisterMap::WalkContinuation::skip);
1720   frame caller_frame = current->last_frame().sender(&reg_map);
1721   CodeBlob* cb = caller_frame.cb();
1722   nmethod* caller_nm = cb->as_nmethod();
1723 
1724   CompiledICLocker ml(caller_nm);
1725   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1726   inline_cache->update(&call_info, receiver()->klass());
1727 
1728   return callee_method;
1729 }
1730 
1731 //
1732 // Resets a call-site in compiled code so it will get resolved again.
1733 // This routines handles both virtual call sites, optimized virtual call
1734 // sites, and static call sites. Typically used to change a call sites
1735 // destination from compiled to interpreted.
1736 //
1737 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1738   JavaThread* current = THREAD;
1739   ResourceMark rm(current);
1740   RegisterMap reg_map(current,
1741                       RegisterMap::UpdateMap::skip,
1742                       RegisterMap::ProcessFrames::include,
1743                       RegisterMap::WalkContinuation::skip);
1744   frame stub_frame = current->last_frame();
1745   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1746   frame caller = stub_frame.sender(&reg_map);
1747 
1748   // Do nothing if the frame isn't a live compiled frame.
1749   // nmethod could be deoptimized by the time we get here
1750   // so no update to the caller is needed.
1751 
1752   if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) ||
1753       (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) {
1754 
1755     address pc = caller.pc();
1756 
1757     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1758     assert(caller_nm != nullptr, "did not find caller nmethod");
1759 
1760     // Default call_addr is the location of the "basic" call.
1761     // Determine the address of the call we a reresolving. With
1762     // Inline Caches we will always find a recognizable call.
1763     // With Inline Caches disabled we may or may not find a
1764     // recognizable call. We will always find a call for static
1765     // calls and for optimized virtual calls. For vanilla virtual
1766     // calls it depends on the state of the UseInlineCaches switch.
1767     //
1768     // With Inline Caches disabled we can get here for a virtual call
1769     // for two reasons:
1770     //   1 - calling an abstract method. The vtable for abstract methods
1771     //       will run us thru handle_wrong_method and we will eventually
1772     //       end up in the interpreter to throw the ame.
1773     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1774     //       call and between the time we fetch the entry address and
1775     //       we jump to it the target gets deoptimized. Similar to 1
1776     //       we will wind up in the interprter (thru a c2i with c2).
1777     //
1778     CompiledICLocker ml(caller_nm);
1779     address call_addr = caller_nm->call_instruction_address(pc);
1780 
1781     if (call_addr != nullptr) {
1782       // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
1783       // bytes back in the instruction stream so we must also check for reloc info.
1784       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1785       bool ret = iter.next(); // Get item
1786       if (ret) {
1787         switch (iter.type()) {
1788           case relocInfo::static_call_type:
1789           case relocInfo::opt_virtual_call_type: {
1790             CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr);
1791             cdc->set_to_clean();
1792             break;
1793           }
1794 
1795           case relocInfo::virtual_call_type: {
1796             // compiled, dispatched call (which used to call an interpreted method)
1797             CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1798             inline_cache->set_to_clean();
1799             break;
1800           }
1801           default:
1802             break;
1803         }
1804       }
1805     }
1806   }
1807 
1808   methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1809 


1810   Atomic::inc(&_wrong_method_ctr);
1811 
1812 #ifndef PRODUCT
1813   if (TraceCallFixup) {
1814     ResourceMark rm(current);
1815     tty->print("handle_wrong_method reresolving call to");
1816     callee_method->print_short_name(tty);
1817     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1818   }
1819 #endif
1820 
1821   return callee_method;
1822 }
1823 
1824 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1825   // The faulting unsafe accesses should be changed to throw the error
1826   // synchronously instead. Meanwhile the faulting instruction will be
1827   // skipped over (effectively turning it into a no-op) and an
1828   // asynchronous exception will be raised which the thread will
1829   // handle at a later point. If the instruction is a load it will
1830   // return garbage.
1831 
1832   // Request an async exception.
1833   thread->set_pending_unsafe_access_error();
1834 
1835   // Return address of next instruction to execute.
1836   return next_pc;
1837 }
1838 
1839 #ifdef ASSERT
1840 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1841                                                                 const BasicType* sig_bt,
1842                                                                 const VMRegPair* regs) {
1843   ResourceMark rm;
1844   const int total_args_passed = method->size_of_parameters();
1845   const VMRegPair*    regs_with_member_name = regs;
1846         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1847 
1848   const int member_arg_pos = total_args_passed - 1;
1849   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1850   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1851 
1852   java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1853 
1854   for (int i = 0; i < member_arg_pos; i++) {
1855     VMReg a =    regs_with_member_name[i].first();
1856     VMReg b = regs_without_member_name[i].first();
1857     assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value());
1858   }
1859   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1860 }
1861 #endif
1862 
1863 // ---------------------------------------------------------------------------
1864 // We are calling the interpreter via a c2i. Normally this would mean that
1865 // we were called by a compiled method. However we could have lost a race
1866 // where we went int -> i2c -> c2i and so the caller could in fact be
1867 // interpreted. If the caller is compiled we attempt to patch the caller
1868 // so he no longer calls into the interpreter.
1869 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1870   AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
1871 
1872   // It's possible that deoptimization can occur at a call site which hasn't
1873   // been resolved yet, in which case this function will be called from
1874   // an nmethod that has been patched for deopt and we can ignore the
1875   // request for a fixup.
1876   // Also it is possible that we lost a race in that from_compiled_entry
1877   // is now back to the i2c in that case we don't need to patch and if
1878   // we did we'd leap into space because the callsite needs to use
1879   // "to interpreter" stub in order to load up the Method*. Don't
1880   // ask me how I know this...
1881 
1882   // Result from nmethod::is_unloading is not stable across safepoints.
1883   NoSafepointVerifier nsv;
1884 
1885   nmethod* callee = method->code();
1886   if (callee == nullptr) {
1887     return;
1888   }
1889 
1890   // write lock needed because we might patch call site by set_to_clean()
1891   // and is_unloading() can modify nmethod's state
1892   MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1893 
1894   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1895   if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) {
1896     return;
1897   }
1898 
1899   // The check above makes sure this is an nmethod.
1900   nmethod* caller = cb->as_nmethod();
1901 
1902   // Get the return PC for the passed caller PC.
1903   address return_pc = caller_pc + frame::pc_return_offset;
1904 
1905   if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) {
1906     return;
1907   }
1908 
1909   // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1910   CompiledICLocker ic_locker(caller);
1911   ResourceMark rm;
1912 
1913   // If we got here through a static call or opt_virtual call, then we know where the
1914   // call address would be; let's peek at it
1915   address callsite_addr = (address)nativeCall_before(return_pc);
1916   RelocIterator iter(caller, callsite_addr, callsite_addr + 1);
1917   if (!iter.next()) {
1918     // No reloc entry found; not a static or optimized virtual call
1919     return;
1920   }
1921 
1922   relocInfo::relocType type = iter.reloc()->type();
1923   if (type != relocInfo::static_call_type &&
1924       type != relocInfo::opt_virtual_call_type) {
1925     return;
1926   }
1927 
1928   CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc);
1929   callsite->set_to_clean();
1930 JRT_END
1931 
1932 
1933 // same as JVM_Arraycopy, but called directly from compiled code
1934 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1935                                                 oopDesc* dest, jint dest_pos,
1936                                                 jint length,
1937                                                 JavaThread* current)) {
1938 #ifndef PRODUCT
1939   _slow_array_copy_ctr++;
1940 #endif
1941   // Check if we have null pointers
1942   if (src == nullptr || dest == nullptr) {
1943     THROW(vmSymbols::java_lang_NullPointerException());
1944   }
1945   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1946   // even though the copy_array API also performs dynamic checks to ensure
1947   // that src and dest are truly arrays (and are conformable).
1948   // The copy_array mechanism is awkward and could be removed, but
1949   // the compilers don't call this function except as a last resort,
1950   // so it probably doesn't matter.
1951   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1952                                         (arrayOopDesc*)dest, dest_pos,
1953                                         length, current);
1954 }
1955 JRT_END
1956 
1957 // The caller of generate_class_cast_message() (or one of its callers)
1958 // must use a ResourceMark in order to correctly free the result.
1959 char* SharedRuntime::generate_class_cast_message(
1960     JavaThread* thread, Klass* caster_klass) {
1961 
1962   // Get target class name from the checkcast instruction
1963   vframeStream vfst(thread, true);
1964   assert(!vfst.at_end(), "Java frame must exist");
1965   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1966   constantPoolHandle cpool(thread, vfst.method()->constants());
1967   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1968   Symbol* target_klass_name = nullptr;
1969   if (target_klass == nullptr) {
1970     // This klass should be resolved, but just in case, get the name in the klass slot.
1971     target_klass_name = cpool->klass_name_at(cc.index());
1972   }
1973   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1974 }
1975 
1976 
1977 // The caller of generate_class_cast_message() (or one of its callers)
1978 // must use a ResourceMark in order to correctly free the result.
1979 char* SharedRuntime::generate_class_cast_message(
1980     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1981   const char* caster_name = caster_klass->external_name();
1982 
1983   assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided");
1984   const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() :
1985                                                    target_klass->external_name();
1986 
1987   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1988 
1989   const char* caster_klass_description = "";
1990   const char* target_klass_description = "";
1991   const char* klass_separator = "";
1992   if (target_klass != nullptr && caster_klass->module() == target_klass->module()) {
1993     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1994   } else {
1995     caster_klass_description = caster_klass->class_in_module_of_loader();
1996     target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : "";
1997     klass_separator = (target_klass != nullptr) ? "; " : "";
1998   }
1999 
2000   // add 3 for parenthesis and preceding space
2001   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2002 
2003   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2004   if (message == nullptr) {
2005     // Shouldn't happen, but don't cause even more problems if it does
2006     message = const_cast<char*>(caster_klass->external_name());
2007   } else {
2008     jio_snprintf(message,
2009                  msglen,
2010                  "class %s cannot be cast to class %s (%s%s%s)",
2011                  caster_name,
2012                  target_name,
2013                  caster_klass_description,
2014                  klass_separator,
2015                  target_klass_description
2016                  );
2017   }
2018   return message;
2019 }
2020 
2021 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2022   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2023 JRT_END
2024 
2025 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2026   if (!SafepointSynchronize::is_synchronizing()) {
2027     // Only try quick_enter() if we're not trying to reach a safepoint
2028     // so that the calling thread reaches the safepoint more quickly.
2029     if (ObjectSynchronizer::quick_enter(obj, lock, current)) {
2030       return;
2031     }
2032   }
2033   // NO_ASYNC required because an async exception on the state transition destructor
2034   // would leave you with the lock held and it would never be released.
2035   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2036   // and the model is that an exception implies the method failed.
2037   JRT_BLOCK_NO_ASYNC
2038   Handle h_obj(THREAD, obj);
2039   ObjectSynchronizer::enter(h_obj, lock, current);
2040   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2041   JRT_BLOCK_END
2042 }
2043 
2044 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2045 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2046   SharedRuntime::monitor_enter_helper(obj, lock, current);
2047 JRT_END
2048 
2049 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2050   assert(JavaThread::current() == current, "invariant");
2051   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2052   ExceptionMark em(current);
2053 
2054   // Check if C2_MacroAssembler::fast_unlock() or
2055   // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated
2056   // monitor before going slow path.  Since there is no safepoint
2057   // polling when calling into the VM, we can be sure that the monitor
2058   // hasn't been deallocated.
2059   ObjectMonitor* m = current->unlocked_inflated_monitor();
2060   if (m != nullptr) {
2061     assert(!m->has_owner(current), "must be");
2062     current->clear_unlocked_inflated_monitor();
2063 
2064     // We need to reacquire the lock before we can call ObjectSynchronizer::exit().
2065     if (!m->try_enter(current, /*check_for_recursion*/ false)) {
2066       // Some other thread acquired the lock (or the monitor was
2067       // deflated). Either way we are done.
2068       current->dec_held_monitor_count();
2069       return;
2070     }
2071   }
2072 
2073   // The object could become unlocked through a JNI call, which we have no other checks for.
2074   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2075   if (obj->is_unlocked()) {
2076     if (CheckJNICalls) {
2077       fatal("Object has been unlocked by JNI");
2078     }
2079     return;
2080   }
2081   ObjectSynchronizer::exit(obj, lock, current);
2082 }
2083 
2084 // Handles the uncommon cases of monitor unlocking in compiled code
2085 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2086   assert(current == JavaThread::current(), "pre-condition");
2087   SharedRuntime::monitor_exit_helper(obj, lock, current);
2088 JRT_END
2089 
2090 // This is only called when CheckJNICalls is true, and only
2091 // for virtual thread termination.
2092 JRT_LEAF(void,  SharedRuntime::log_jni_monitor_still_held())
2093   assert(CheckJNICalls, "Only call this when checking JNI usage");
2094   if (log_is_enabled(Debug, jni)) {
2095     JavaThread* current = JavaThread::current();
2096     int64_t vthread_id = java_lang_Thread::thread_id(current->vthread());
2097     int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj());
2098     log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT
2099                    ") exiting with Objects still locked by JNI MonitorEnter.",
2100                    vthread_id, carrier_id);
2101   }
2102 JRT_END
2103 
2104 #ifndef PRODUCT
2105 
2106 void SharedRuntime::print_statistics() {
2107   ttyLocker ttyl;
2108   if (xtty != nullptr)  xtty->head("statistics type='SharedRuntime'");
2109 
2110   SharedRuntime::print_ic_miss_histogram_on(tty);
2111   SharedRuntime::print_counters_on(tty);
2112   AdapterHandlerLibrary::print_statistics_on(tty);
































2113 
2114   if (xtty != nullptr)  xtty->tail("statistics");
2115 }
2116 
2117 //void SharedRuntime::print_counters_on(outputStream* st) {
2118 //  // Dump the JRT_ENTRY counters
2119 //  if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr);
2120 //  if (_new_array_ctr)    st->print_cr("%5u new array requires GC", _new_array_ctr);
2121 //  if (_multi2_ctr)       st->print_cr("%5u multianewarray 2 dim", _multi2_ctr);
2122 //  if (_multi3_ctr)       st->print_cr("%5u multianewarray 3 dim", _multi3_ctr);
2123 //  if (_multi4_ctr)       st->print_cr("%5u multianewarray 4 dim", _multi4_ctr);
2124 //  if (_multi5_ctr)       st->print_cr("%5u multianewarray 5 dim", _multi5_ctr);
2125 //
2126 //  st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr);
2127 //  st->print_cr("%5u wrong method", _wrong_method_ctr);
2128 //  st->print_cr("%5u unresolved static call site", _resolve_static_ctr);
2129 //  st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr);
2130 //  st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2131 //
2132 //  if (_mon_enter_stub_ctr)       st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr);
2133 //  if (_mon_exit_stub_ctr)        st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr);
2134 //  if (_mon_enter_ctr)            st->print_cr("%5u monitor enter slow", _mon_enter_ctr);
2135 //  if (_mon_exit_ctr)             st->print_cr("%5u monitor exit slow", _mon_exit_ctr);
2136 //  if (_partial_subtype_ctr)      st->print_cr("%5u slow partial subtype", _partial_subtype_ctr);
2137 //  if (_jbyte_array_copy_ctr)     st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr);
2138 //  if (_jshort_array_copy_ctr)    st->print_cr("%5u short array copies", _jshort_array_copy_ctr);
2139 //  if (_jint_array_copy_ctr)      st->print_cr("%5u int array copies", _jint_array_copy_ctr);
2140 //  if (_jlong_array_copy_ctr)     st->print_cr("%5u long array copies", _jlong_array_copy_ctr);
2141 //  if (_oop_array_copy_ctr)       st->print_cr("%5u oop array copies", _oop_array_copy_ctr);
2142 //  if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr);
2143 //  if (_unsafe_array_copy_ctr)    st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr);
2144 //  if (_generic_array_copy_ctr)   st->print_cr("%5u generic array copies", _generic_array_copy_ctr);
2145 //  if (_slow_array_copy_ctr)      st->print_cr("%5u slow array copies", _slow_array_copy_ctr);
2146 //  if (_find_handler_ctr)         st->print_cr("%5u find exception handler", _find_handler_ctr);
2147 //  if (_rethrow_ctr)              st->print_cr("%5u rethrow handler", _rethrow_ctr);
2148 //  if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr);
2149 //}
2150 
2151 inline double percent(int64_t x, int64_t y) {
2152   return 100.0 * (double)x / (double)MAX2(y, (int64_t)1);
2153 }
2154 
2155 class MethodArityHistogram {
2156  public:
2157   enum { MAX_ARITY = 256 };
2158  private:
2159   static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2160   static uint64_t _size_histogram[MAX_ARITY];  // histogram of arg size in words
2161   static uint64_t _total_compiled_calls;
2162   static uint64_t _max_compiled_calls_per_method;
2163   static int _max_arity;                       // max. arity seen
2164   static int _max_size;                        // max. arg size seen
2165 
2166   static void add_method_to_histogram(nmethod* nm) {
2167     Method* method = (nm == nullptr) ? nullptr : nm->method();
2168     if (method != nullptr) {
2169       ArgumentCount args(method->signature());
2170       int arity   = args.size() + (method->is_static() ? 0 : 1);
2171       int argsize = method->size_of_parameters();
2172       arity   = MIN2(arity, MAX_ARITY-1);
2173       argsize = MIN2(argsize, MAX_ARITY-1);
2174       uint64_t count = (uint64_t)method->compiled_invocation_count();
2175       _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2176       _total_compiled_calls    += count;
2177       _arity_histogram[arity]  += count;
2178       _size_histogram[argsize] += count;
2179       _max_arity = MAX2(_max_arity, arity);
2180       _max_size  = MAX2(_max_size, argsize);
2181     }
2182   }
2183 
2184   void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2185     const int N = MIN2(9, n);
2186     double sum = 0;
2187     double weighted_sum = 0;
2188     for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); }
2189     if (sum >= 1) { // prevent divide by zero or divide overflow
2190       double rest = sum;
2191       double percent = sum / 100;
2192       for (int i = 0; i <= N; i++) {
2193         rest -= (double)histo[i];
2194         tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent);
2195       }
2196       tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2197       tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2198       tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2199       tty->print_cr("(max # of compiled calls   = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2200     } else {
2201       tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2202     }
2203   }
2204 
2205   void print_histogram() {
2206     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2207     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2208     tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2209     print_histogram_helper(_max_size, _size_histogram, "size");
2210     tty->cr();
2211   }
2212 
2213  public:
2214   MethodArityHistogram() {
2215     // Take the Compile_lock to protect against changes in the CodeBlob structures
2216     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2217     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2218     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2219     _max_arity = _max_size = 0;
2220     _total_compiled_calls = 0;
2221     _max_compiled_calls_per_method = 0;
2222     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2223     CodeCache::nmethods_do(add_method_to_histogram);
2224     print_histogram();
2225   }
2226 };
2227 
2228 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2229 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2230 uint64_t MethodArityHistogram::_total_compiled_calls;
2231 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2232 int MethodArityHistogram::_max_arity;
2233 int MethodArityHistogram::_max_size;
2234 
2235 void SharedRuntime::print_call_statistics_on(outputStream* st) {
2236   tty->print_cr("Calls from compiled code:");
2237   int64_t total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2238   int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls;
2239   int64_t mono_i = _nof_interface_calls;
2240   tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%)  total non-inlined   ", total);
2241   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2242   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2243   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2244   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2245   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2246   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2247   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2248   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2249   tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) |  |- inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2250   tty->cr();
2251   tty->print_cr("Note 1: counter updates are not MT-safe.");
2252   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2253   tty->print_cr("        %% in nested categories are relative to their category");
2254   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2255   tty->cr();
2256 
2257   MethodArityHistogram h;
2258 }
2259 #endif
2260 
2261 #ifndef PRODUCT
2262 static int _lookups; // number of calls to lookup
2263 static int _equals;  // number of buckets checked with matching hash
2264 static int _archived_hits;    // number of successful lookups in archived table
2265 static int _runtime_hits; // number of successful lookups in runtime table
2266 static int _compact; // number of equals calls with compact signature
2267 #endif
2268 
2269 // A simple wrapper class around the calling convention information
2270 // that allows sharing of adapters for the same calling convention.
2271 class AdapterFingerPrint : public MetaspaceObj {
2272  private:
2273   enum {
2274     _basic_type_bits = 4,
2275     _basic_type_mask = right_n_bits(_basic_type_bits),
2276     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2277     _compact_int_count = 3
2278   };
2279   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2280   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2281 
2282   int _length;
2283   int _value[_compact_int_count];
2284 
2285   // Private construtor. Use allocate() to get an instance.
2286   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2287     // Pack the BasicTypes with 8 per int
2288     _length = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2289     int sig_index = 0;
2290     for (int index = 0; index < _length; index++) {
2291       int value = 0;
2292       for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2293         int bt = adapter_encoding(sig_bt[sig_index++]);
2294         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2295         value = (value << _basic_type_bits) | bt;
2296       }
2297       _value[index] = value;
2298     }
2299   }
2300 
2301   // Call deallocate instead
2302   ~AdapterFingerPrint() {
2303     FreeHeap(this);
2304   }
2305 
2306   // Remap BasicTypes that are handled equivalently by the adapters.
2307   // These are correct for the current system but someday it might be
2308   // necessary to make this mapping platform dependent.
2309   static int adapter_encoding(BasicType in) {
2310     switch (in) {
2311       case T_BOOLEAN:
2312       case T_BYTE:
2313       case T_SHORT:
2314       case T_CHAR:
2315         // There are all promoted to T_INT in the calling convention
2316         return T_INT;
2317 
2318       case T_OBJECT:
2319       case T_ARRAY:
2320         // In other words, we assume that any register good enough for
2321         // an int or long is good enough for a managed pointer.
2322 #ifdef _LP64
2323         return T_LONG;
2324 #else
2325         return T_INT;
2326 #endif
2327 
2328       case T_INT:
2329       case T_LONG:
2330       case T_FLOAT:
2331       case T_DOUBLE:
2332       case T_VOID:
2333         return in;
2334 
2335       default:
2336         ShouldNotReachHere();
2337         return T_CONFLICT;
2338     }
2339   }
2340 
2341   void* operator new(size_t size, size_t fp_size) throw() {
2342     assert(fp_size >= size, "sanity check");
2343     void* p = AllocateHeap(fp_size, mtCode);
2344     memset(p, 0, fp_size);
2345     return p;
2346   }












2347 
2348   template<typename Function>
2349   void iterate_args(Function function) {
2350     for (int i = 0; i < length(); i++) {
2351       unsigned val = (unsigned)value(i);
2352       // args are packed so that first/lower arguments are in the highest
2353       // bits of each int value, so iterate from highest to the lowest
2354       for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2355         unsigned v = (val >> j) & _basic_type_mask;
2356         if (v == 0) {
2357           continue;
2358         }
2359         function(v);
2360       }

2361     }
2362   }
2363 
2364  public:
2365   static int allocation_size(int total_args_passed, BasicType* sig_bt) {
2366     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2367     return sizeof(AdapterFingerPrint) + (len > _compact_int_count ? (len - _compact_int_count) * sizeof(int) : 0);
2368   }
2369 
2370   static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) {
2371     int size_in_bytes = allocation_size(total_args_passed, sig_bt);
2372     return new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt);
2373   }
2374 
2375   static void deallocate(AdapterFingerPrint* fp) {
2376     fp->~AdapterFingerPrint();
2377   }
2378 
2379   int value(int index) {
2380     return _value[index];



2381   }
2382 
2383   int length() {
2384     if (_length < 0) return -_length;
2385     return _length;
2386   }
2387 
2388   bool is_compact() {
2389     return _length <= _compact_int_count;
2390   }
2391 
2392   unsigned int compute_hash() {
2393     int hash = 0;
2394     for (int i = 0; i < length(); i++) {
2395       int v = value(i);
2396       //Add arithmetic operation to the hash, like +3 to improve hashing
2397       hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3;
2398     }
2399     return (unsigned int)hash;
2400   }
2401 
2402   const char* as_string() {
2403     stringStream st;
2404     st.print("0x");
2405     for (int i = 0; i < length(); i++) {
2406       st.print("%x", value(i));
2407     }
2408     return st.as_string();
2409   }
2410 



2411   const char* as_basic_args_string() {
2412     stringStream st;
2413     bool long_prev = false;
2414     iterate_args([&] (int arg) {
2415       if (long_prev) {
2416         long_prev = false;
2417         if (arg == T_VOID) {
2418           st.print("J");
2419         } else {
2420           st.print("L");


















2421         }
2422       }
2423       switch (arg) {
2424         case T_INT:    st.print("I");    break;
2425         case T_LONG:   long_prev = true; break;
2426         case T_FLOAT:  st.print("F");    break;
2427         case T_DOUBLE: st.print("D");    break;
2428         case T_VOID:   break;
2429         default: ShouldNotReachHere();
2430       }
2431     });
2432     if (long_prev) {
2433       st.print("L");
2434     }
2435     return st.as_string();
2436   }
2437 
2438   BasicType* as_basic_type(int& nargs) {
2439     nargs = 0;
2440     GrowableArray<BasicType> btarray;
2441     bool long_prev = false;
2442 
2443     iterate_args([&] (int arg) {
2444       if (long_prev) {
2445         long_prev = false;
2446         if (arg == T_VOID) {
2447           btarray.append(T_LONG);
2448         } else {
2449           btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter
2450         }
2451       }
2452       switch (arg) {
2453         case T_INT: // fallthrough
2454         case T_FLOAT: // fallthrough
2455         case T_DOUBLE:
2456         case T_VOID:
2457           btarray.append((BasicType)arg);
2458           break;
2459         case T_LONG:
2460           long_prev = true;
2461           break;
2462         default: ShouldNotReachHere();
2463       }
2464     });
2465 
2466     if (long_prev) {
2467       btarray.append(T_OBJECT);
2468     }
2469 
2470     nargs = btarray.length();
2471     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs);
2472     int index = 0;
2473     GrowableArrayIterator<BasicType> iter = btarray.begin();
2474     while (iter != btarray.end()) {
2475       sig_bt[index++] = *iter;
2476       ++iter;
2477     }
2478     assert(index == btarray.length(), "sanity check");
2479 #ifdef ASSERT
2480     {
2481       AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt);
2482       assert(this->equals(compare_fp), "sanity check");
2483       AdapterFingerPrint::deallocate(compare_fp);
2484     }
2485 #endif
2486     return sig_bt;
2487   }
2488 
2489   bool equals(AdapterFingerPrint* other) {
2490     if (other->_length != _length) {
2491       return false;






2492     } else {
2493       for (int i = 0; i < _length; i++) {
2494         if (_value[i] != other->_value[i]) {
2495           return false;
2496         }
2497       }
2498     }
2499     return true;
2500   }
2501 
2502   // methods required by virtue of being a MetaspaceObj
2503   void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ }
2504   int size() const { return (int)heap_word_size(sizeof(AdapterFingerPrint) + (_length > _compact_int_count ? (_length - _compact_int_count) * sizeof(int) : 0)); }
2505   MetaspaceObj::Type type() const { return AdapterFingerPrintType; }
2506 
2507   static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
2508     NOT_PRODUCT(_equals++);
2509     return fp1->equals(fp2);
2510   }
2511 
2512   static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
2513     return fp->compute_hash();
2514   }
2515 };
2516 
2517 #if INCLUDE_CDS
2518 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) {
2519   return AdapterFingerPrint::equals(entry->fingerprint(), fp);
2520 }
2521 
2522 class ArchivedAdapterTable : public OffsetCompactHashtable<
2523   AdapterFingerPrint*,
2524   AdapterHandlerEntry*,
2525   adapter_fp_equals_compact_hashtable_entry> {};
2526 #endif // INCLUDE_CDS
2527 
2528 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2529 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
2530                   AnyObj::C_HEAP, mtCode,
2531                   AdapterFingerPrint::compute_hash,
2532                   AdapterFingerPrint::equals>;
2533 static AdapterHandlerTable* _adapter_handler_table;
2534 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr;
2535 
2536 // Find a entry with the same fingerprint if it exists
2537 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(AdapterFingerPrint* fp) {
2538   NOT_PRODUCT(_lookups++);
2539   AdapterHandlerEntry* entry = nullptr;
2540 #if INCLUDE_CDS
2541   // if we are building the archive then the archived adapter table is
2542   // not valid and we need to use the ones added to the runtime table
2543   if (!CDSConfig::is_dumping_adapters()) {
2544     // Search archived table first. It is read-only table so can be searched without lock
2545     entry = _archived_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */);
2546     if (entry != nullptr) {
2547 #ifndef PRODUCT
2548       if (fp->is_compact()) {
2549         _compact++;
2550       }
2551       _archived_hits++;
2552 #endif
2553       return entry;
2554     }
2555   }
2556 #endif // INCLUDE_CDS
2557   assert_lock_strong(AdapterHandlerLibrary_lock);
2558   AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp);
2559   if (entry_p != nullptr) {
2560     entry = *entry_p;
2561     assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)",
2562            entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(),
2563            fp->as_basic_args_string(), fp->as_string(), fp->compute_hash());
2564 #ifndef PRODUCT
2565     if (fp->is_compact()) _compact++;
2566     _runtime_hits++;
2567 #endif
2568     return entry;
2569   }
2570   return nullptr;
2571 }
2572 
2573 #ifndef PRODUCT
2574 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) {
2575   auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
2576     return sizeof(*key) + sizeof(*a);
2577   };
2578   TableStatistics ts = _adapter_handler_table->statistics_calculate(size);
2579   ts.print(st, "AdapterHandlerTable");
2580   st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
2581                _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries());
2582   int total_hits = _archived_hits + _runtime_hits;
2583   st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d) compact %d",
2584                _lookups, _equals, total_hits, _archived_hits, _runtime_hits, _compact);
2585 }
2586 #endif // !PRODUCT
2587 
2588 // ---------------------------------------------------------------------------
2589 // Implementation of AdapterHandlerLibrary
2590 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr;
2591 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr;
2592 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr;
2593 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr;
2594 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr;
2595 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr;
2596 #if INCLUDE_CDS
2597 ArchivedAdapterTable AdapterHandlerLibrary::_archived_adapter_handler_table;
2598 #endif // INCLUDE_CDS
2599 const int AdapterHandlerLibrary_size = 16*K;
2600 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr;
2601 
2602 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2603   return _buffer;
2604 }
2605 
2606 static void post_adapter_creation(const AdapterBlob* new_adapter,
2607                                   const AdapterHandlerEntry* entry) {
2608   if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
2609     char blob_id[256];
2610     jio_snprintf(blob_id,
2611                  sizeof(blob_id),
2612                  "%s(%s)",
2613                  new_adapter->name(),
2614                  entry->fingerprint()->as_string());
2615     if (Forte::is_enabled()) {
2616       Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2617     }
2618 
2619     if (JvmtiExport::should_post_dynamic_code_generated()) {
2620       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2621     }
2622   }
2623 }
2624 
2625 void AdapterHandlerLibrary::initialize() {
2626   ResourceMark rm;
2627   AdapterBlob* no_arg_blob = nullptr;
2628   AdapterBlob* int_arg_blob = nullptr;
2629   AdapterBlob* obj_arg_blob = nullptr;
2630   AdapterBlob* obj_int_arg_blob = nullptr;
2631   AdapterBlob* obj_obj_arg_blob = nullptr;
2632   {
2633     _adapter_handler_table = new (mtCode) AdapterHandlerTable();
2634     MutexLocker mu(AdapterHandlerLibrary_lock);
2635 
2636     // Create a special handler for abstract methods.  Abstract methods
2637     // are never compiled so an i2c entry is somewhat meaningless, but
2638     // throw AbstractMethodError just in case.
2639     // Pass wrong_method_abstract for the c2i transitions to return
2640     // AbstractMethodError for invalid invocations.
2641     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2642     _abstract_method_handler = AdapterHandlerLibrary::new_entry(AdapterFingerPrint::allocate(0, nullptr),
2643                                                                 SharedRuntime::throw_AbstractMethodError_entry(),
2644                                                                 wrong_method_abstract, wrong_method_abstract);
2645 
2646     _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2647     _no_arg_handler = create_simple_adapter(no_arg_blob, 0, nullptr);
2648 
2649     BasicType obj_args[] = { T_OBJECT };
2650     _obj_arg_handler = create_simple_adapter(obj_arg_blob, 1, obj_args);
2651 
2652     BasicType int_args[] = { T_INT };
2653     _int_arg_handler = create_simple_adapter(int_arg_blob, 1, int_args);
2654 
2655     BasicType obj_int_args[] = { T_OBJECT, T_INT };
2656     _obj_int_arg_handler = create_simple_adapter(obj_int_arg_blob, 2, obj_int_args);
2657 
2658     BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2659     _obj_obj_arg_handler = create_simple_adapter(obj_obj_arg_blob, 2, obj_obj_args);
2660 
2661     assert(no_arg_blob != nullptr &&
2662            obj_arg_blob != nullptr &&
2663            int_arg_blob != nullptr &&
2664            obj_int_arg_blob != nullptr &&
2665            obj_obj_arg_blob != nullptr, "Initial adapters must be properly created");
2666   }
2667 
2668   // Outside of the lock
2669   post_adapter_creation(no_arg_blob, _no_arg_handler);
2670   post_adapter_creation(obj_arg_blob, _obj_arg_handler);
2671   post_adapter_creation(int_arg_blob, _int_arg_handler);
2672   post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
2673   post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
2674 }
2675 
2676 AdapterHandlerEntry* AdapterHandlerLibrary::create_simple_adapter(AdapterBlob*& adapter_blob,
2677                                                                   int total_args_passed,
2678                                                                   BasicType* sig_bt) {
2679   AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2680   // We may find the adapter in the table if it is loaded from the AOT cache
2681   AdapterHandlerEntry* entry = lookup(fp);
2682   if (entry != nullptr) {
2683     assert(entry->is_shared() && !entry->is_linked(), "Non null AdapterHandlerEntry should be in the AOT cache in unlinked state");
2684     if (!link_adapter_handler(entry, adapter_blob)) {
2685       if (!generate_adapter_code(adapter_blob, entry, total_args_passed, sig_bt, /* is_transient */ false)) {
2686         return nullptr;
2687       }
2688     }
2689     // AdapterFingerPrint is already in the cache, no need to keep this one
2690     AdapterFingerPrint::deallocate(fp);
2691   } else {
2692     entry = create_adapter(adapter_blob, fp, total_args_passed, sig_bt, /* is_transient */ false);
2693   }
2694   return entry;
2695 }
2696 
2697 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2698                                                       address i2c_entry,
2699                                                       address c2i_entry,
2700                                                       address c2i_unverified_entry,
2701                                                       address c2i_no_clinit_check_entry) {
2702   // Insert an entry into the table
2703   return AdapterHandlerEntry::allocate(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry,
2704                                        c2i_no_clinit_check_entry);
2705 }
2706 
2707 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2708   if (method->is_abstract()) {
2709     return _abstract_method_handler;
2710   }
2711   int total_args_passed = method->size_of_parameters(); // All args on stack
2712   if (total_args_passed == 0) {
2713     return _no_arg_handler;
2714   } else if (total_args_passed == 1) {
2715     if (!method->is_static()) {
2716       return _obj_arg_handler;
2717     }
2718     switch (method->signature()->char_at(1)) {
2719       case JVM_SIGNATURE_CLASS:
2720       case JVM_SIGNATURE_ARRAY:
2721         return _obj_arg_handler;
2722       case JVM_SIGNATURE_INT:
2723       case JVM_SIGNATURE_BOOLEAN:
2724       case JVM_SIGNATURE_CHAR:
2725       case JVM_SIGNATURE_BYTE:
2726       case JVM_SIGNATURE_SHORT:
2727         return _int_arg_handler;
2728     }
2729   } else if (total_args_passed == 2 &&
2730              !method->is_static()) {
2731     switch (method->signature()->char_at(1)) {
2732       case JVM_SIGNATURE_CLASS:
2733       case JVM_SIGNATURE_ARRAY:
2734         return _obj_obj_arg_handler;
2735       case JVM_SIGNATURE_INT:
2736       case JVM_SIGNATURE_BOOLEAN:
2737       case JVM_SIGNATURE_CHAR:
2738       case JVM_SIGNATURE_BYTE:
2739       case JVM_SIGNATURE_SHORT:
2740         return _obj_int_arg_handler;
2741     }
2742   }
2743   return nullptr;
2744 }
2745 
2746 class AdapterSignatureIterator : public SignatureIterator {
2747  private:
2748   BasicType stack_sig_bt[16];
2749   BasicType* sig_bt;
2750   int index;
2751 
2752  public:
2753   AdapterSignatureIterator(Symbol* signature,
2754                            fingerprint_t fingerprint,
2755                            bool is_static,
2756                            int total_args_passed) :
2757     SignatureIterator(signature, fingerprint),
2758     index(0)
2759   {
2760     sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2761     if (!is_static) { // Pass in receiver first
2762       sig_bt[index++] = T_OBJECT;
2763     }
2764     do_parameters_on(this);
2765   }
2766 
2767   BasicType* basic_types() {
2768     return sig_bt;
2769   }
2770 
2771 #ifdef ASSERT
2772   int slots() {
2773     return index;
2774   }
2775 #endif
2776 
2777  private:
2778 
2779   friend class SignatureIterator;  // so do_parameters_on can call do_type
2780   void do_type(BasicType type) {
2781     sig_bt[index++] = type;
2782     if (type == T_LONG || type == T_DOUBLE) {
2783       sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2784     }
2785   }
2786 };
2787 
2788 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2789   // Use customized signature handler.  Need to lock around updates to
2790   // the _adapter_handler_table (it is not safe for concurrent readers
2791   // and a single writer: this could be fixed if it becomes a
2792   // problem).
2793 
2794   // Fast-path for trivial adapters
2795   AdapterHandlerEntry* entry = get_simple_adapter(method);
2796   if (entry != nullptr) {
2797     return entry;
2798   }
2799 
2800   ResourceMark rm;
2801   AdapterBlob* new_adapter = nullptr;
2802 
2803   // Fill in the signature array, for the calling-convention call.
2804   int total_args_passed = method->size_of_parameters(); // All args on stack
2805 
2806   AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2807                               method->is_static(), total_args_passed);
2808   assert(si.slots() == total_args_passed, "");
2809   BasicType* sig_bt = si.basic_types();
2810   {
2811     MutexLocker mu(AdapterHandlerLibrary_lock);
2812 
2813     // Lookup method signature's fingerprint
2814     AdapterFingerPrint *fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2815     entry = lookup(fp);
2816 
2817     if (entry != nullptr) {
2818 #ifdef ASSERT
2819       if (VerifyAdapterSharing) {
2820         AdapterBlob* comparison_blob = nullptr;
2821         AdapterFingerPrint* comparison_fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt);
2822         AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, comparison_fp, total_args_passed, sig_bt, true);
2823         assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison");
2824         assert(comparison_entry->compare_code(entry), "code must match");
2825         AdapterFingerPrint::deallocate(comparison_fp);
2826         // Release the one just created and return the original
2827         AdapterHandlerEntry::deallocate(comparison_entry);
2828       }
2829 #endif
2830       AdapterFingerPrint::deallocate(fp);
2831       return entry;
2832     }
2833 
2834     entry = create_adapter(new_adapter, fp, total_args_passed, sig_bt, /* is_transient */ false);
2835   }
2836 
2837   // Outside of the lock
2838   if (new_adapter != nullptr) {
2839     post_adapter_creation(new_adapter, entry);
2840   }
2841   return entry;
2842 }
2843 
2844 bool AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler, CodeBuffer* buffer) {
2845   ResourceMark rm;
2846   const char* name = AdapterHandlerLibrary::name(handler->fingerprint());
2847   const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint());
2848   uint32_t offsets[4];
2849   if (SCCache::load_adapter(buffer, id, name, offsets)) {
2850     address i2c_entry = buffer->insts_begin();
2851     assert(offsets[0] == 0, "sanity check");
2852     handler->set_entry_points(i2c_entry, i2c_entry + offsets[1], i2c_entry + offsets[2], i2c_entry + offsets[3]);
2853     return true;
2854   }
2855   return false;
2856 }
2857 
2858 #ifndef PRODUCT
2859 void AdapterHandlerLibrary::print_adapter_handler_info(AdapterHandlerEntry* handler, AdapterBlob* adapter_blob) {
2860   ttyLocker ttyl;
2861   ResourceMark rm;
2862   int insts_size = adapter_blob->code_size();
2863   handler->print_adapter_on(tty);
2864   tty->print_cr("i2c argument handler for: %s %s (%d bytes generated)",
2865                 handler->fingerprint()->as_basic_args_string(),
2866                 handler->fingerprint()->as_string(), insts_size);
2867   tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry()));
2868   if (Verbose || PrintStubCode) {
2869     address first_pc = handler->base_address();
2870     if (first_pc != nullptr) {
2871       Disassembler::decode(first_pc, first_pc + insts_size, tty, &adapter_blob->asm_remarks());
2872       tty->cr();
2873     }
2874   }
2875 }
2876 #endif // PRODUCT
2877 
2878 bool AdapterHandlerLibrary::generate_adapter_code(AdapterBlob*& adapter_blob,
2879                                                   AdapterHandlerEntry* handler,
2880                                                   int total_args_passed,
2881                                                   BasicType* sig_bt,
2882                                                   bool is_transient) {
2883   if (log_is_enabled(Info, perf, class, link)) {
2884     ClassLoader::perf_method_adapters_count()->inc();
2885   }
2886 


2887   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2888   CodeBuffer buffer(buf);
2889   short buffer_locs[20];
2890   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2891                                          sizeof(buffer_locs)/sizeof(relocInfo));
2892   MacroAssembler masm(&buffer);
2893   VMRegPair stack_regs[16];
2894   VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);







2895 
2896   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2897   int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2898   SharedRuntime::generate_i2c2i_adapters(&masm,
2899                                          total_args_passed,
2900                                          comp_args_on_stack,
2901                                          sig_bt,
2902                                          regs,
2903                                          handler);
2904   if (CDSConfig::is_dumping_adapters()) {
2905     // try to save generated code
2906     const char* name = AdapterHandlerLibrary::name(handler->fingerprint());
2907     const uint32_t id = AdapterHandlerLibrary::id(handler->fingerprint());
2908     uint32_t offsets[4];
2909     offsets[0] = 0;
2910     offsets[1] = handler->get_c2i_entry() - handler->get_i2c_entry();
2911     offsets[2] = handler->get_c2i_unverified_entry() - handler->get_i2c_entry();
2912     offsets[3] = handler->get_c2i_no_clinit_check_entry() - handler->get_i2c_entry();
2913     SCCache::store_adapter(&buffer, id, name, offsets);
2914   }
2915 #ifdef ASSERT
2916   if (VerifyAdapterSharing) {
2917     handler->save_code(buf->code_begin(), buffer.insts_size());
2918     if (is_transient) {
2919       return true;
2920     }
2921   }
2922 #endif
2923 
2924   adapter_blob = AdapterBlob::create(&buffer);
2925   if (adapter_blob == nullptr) {

2926     // CodeCache is full, disable compilation
2927     // Ought to log this but compile log is only per compile thread
2928     // and we're some non descript Java thread.
2929     return false;
2930   }
2931   handler->relocate(adapter_blob->content_begin());
2932 #ifndef PRODUCT
2933   // debugging support
2934   if (PrintAdapterHandlers || PrintStubCode) {
2935     print_adapter_handler_info(handler, adapter_blob);













2936   }
2937 #endif
2938   return true;
2939 }
2940 
2941 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& adapter_blob,
2942                                                            AdapterFingerPrint* fingerprint,
2943                                                            int total_args_passed,
2944                                                            BasicType* sig_bt,
2945                                                            bool is_transient) {
2946   AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fingerprint);
2947   if (!generate_adapter_code(adapter_blob, handler, total_args_passed, sig_bt, is_transient)) {
2948     return nullptr;
2949   }
2950   if (!is_transient) {
2951     assert_lock_strong(AdapterHandlerLibrary_lock);
2952     _adapter_handler_table->put(fingerprint, handler);
2953   }
2954   return handler;
2955 }
2956 
2957 #if INCLUDE_CDS
2958 bool AdapterHandlerLibrary::link_adapter_handler(AdapterHandlerEntry* handler, AdapterBlob*& adapter_blob) {
2959 #ifndef PRODUCT
2960   if (TestAdapterLinkFailure) {
2961     return false;
2962   }
2963 #endif
2964   BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2965   CodeBuffer buffer(buf);
2966   short buffer_locs[20];
2967   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2968                                          sizeof(buffer_locs)/sizeof(relocInfo));
2969 
2970   if (!lookup_aot_cache(handler, &buffer)) {
2971     return false;
2972   }
2973   adapter_blob = AdapterBlob::create(&buffer);
2974   if (adapter_blob == nullptr) {
2975     // CodeCache is full, disable compilation
2976     // Ought to log this but compile log is only per compile thread
2977     // and we're some non descript Java thread.
2978     return false;
2979   }
2980   handler->relocate(adapter_blob->content_begin());
2981 #ifndef PRODUCT
2982   // debugging support
2983   if (PrintAdapterHandlers || PrintStubCode) {
2984     print_adapter_handler_info(handler, adapter_blob);
2985   }
2986 #endif
2987   return true;
2988 }
2989 
2990 class CopyAdapterTableToArchive : StackObj {
2991 private:
2992   CompactHashtableWriter* _writer;
2993   ArchiveBuilder* _builder;
2994 public:
2995   CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer),
2996                                                              _builder(ArchiveBuilder::current())
2997   {}
2998 
2999   bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) {
3000     LogStreamHandle(Trace, cds) lsh;
3001     if (ArchiveBuilder::current()->has_been_archived((address)entry)) {
3002       assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be");
3003       AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp);
3004       assert(buffered_fp != nullptr,"sanity check");
3005       AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry);
3006       assert(buffered_entry != nullptr,"sanity check");
3007 
3008       uint hash = fp->compute_hash();
3009       u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry);
3010       _writer->add(hash, delta);
3011       if (lsh.is_enabled()) {
3012         address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta();
3013         address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta();
3014         log_trace(cds)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry);
3015       }
3016     } else {
3017       if (lsh.is_enabled()) {
3018         log_trace(cds)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string());
3019       }
3020     }
3021     return true;
3022   }
3023 };
3024 
3025 size_t AdapterHandlerLibrary::estimate_size_for_archive() {
3026   return CompactHashtableWriter::estimate_size(_adapter_handler_table->number_of_entries());
3027 }
3028 
3029 void AdapterHandlerLibrary::archive_adapter_table() {
3030   CompactHashtableStats stats;
3031   CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats);
3032   CopyAdapterTableToArchive copy(&writer);
3033   _adapter_handler_table->iterate(&copy);
3034   writer.dump(&_archived_adapter_handler_table, "archived adapter table");
3035 }
3036 
3037 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) {
3038   _archived_adapter_handler_table.serialize_header(soc);
3039 }
3040 #endif // INCLUDE_CDS
3041 
3042 address AdapterHandlerEntry::base_address() {
3043   address base = _i2c_entry;
3044   if (base == nullptr)  base = _c2i_entry;
3045   assert(base <= _c2i_entry || _c2i_entry == nullptr, "");
3046   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, "");
3047   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, "");
3048   return base;
3049 }
3050 
3051 void AdapterHandlerEntry::relocate(address new_base) {
3052   address old_base = base_address();
3053   assert(old_base != nullptr, "");
3054   ptrdiff_t delta = new_base - old_base;
3055   if (_i2c_entry != nullptr)
3056     _i2c_entry += delta;
3057   if (_c2i_entry != nullptr)
3058     _c2i_entry += delta;
3059   if (_c2i_unverified_entry != nullptr)
3060     _c2i_unverified_entry += delta;
3061   if (_c2i_no_clinit_check_entry != nullptr)
3062     _c2i_no_clinit_check_entry += delta;
3063   assert(base_address() == new_base, "");
3064 }
3065 
3066 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) {
3067   LogStreamHandle(Trace, cds) lsh;
3068   if (lsh.is_enabled()) {
3069     lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string());
3070     lsh.cr();
3071   }
3072   it->push(&_fingerprint);
3073 }
3074 
3075 #if INCLUDE_CDS
3076 void AdapterHandlerEntry::remove_unshareable_info() {
3077   set_entry_points(nullptr, nullptr, nullptr, nullptr, false);
3078 }
3079 
3080 void AdapterHandlerEntry::restore_unshareable_info(TRAPS) {
3081   PerfTraceElapsedTime timer(ClassLoader::perf_method_adapters_time());
3082   // A fixed set of simple adapters are eagerly linked during JVM initialization
3083   // in AdapterHandlerTable::initialize().
3084   // Others may already have been linked because they are shared by other methods.
3085   if (is_linked()) {
3086     return;
3087   }
3088   AdapterBlob* adapter_blob = nullptr;
3089   {
3090     MutexLocker mu(AdapterHandlerLibrary_lock);
3091     assert(_fingerprint != nullptr, "_fingerprint must not be null");
3092 #ifdef ASSERT
3093     AdapterHandlerEntry* entry = AdapterHandlerLibrary::lookup(_fingerprint);
3094     assert(entry == this, "sanity check");
3095 #endif
3096     if (!AdapterHandlerLibrary::link_adapter_handler(this, adapter_blob)) {
3097       ResourceMark rm;
3098       log_warning(cds)("Failed to link AdapterHandlerEntry to its code in the AOT code cache");
3099       int nargs;
3100       BasicType* bt = _fingerprint->as_basic_type(nargs);
3101       if (!AdapterHandlerLibrary::generate_adapter_code(adapter_blob, this, nargs, bt, /* is_transient */ false)) {
3102         if (!is_init_completed()) {
3103           // Don't throw exceptions during VM initialization because java.lang.* classes
3104           // might not have been initialized, causing problems when constructing the
3105           // Java exception object.
3106           vm_exit_during_initialization("Out of space in CodeCache for adapters");
3107         } else {
3108           THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(), "Out of space in CodeCache for adapters");
3109         }
3110       }
3111     }
3112   }
3113   // Outside of the lock
3114   if (adapter_blob != nullptr) {
3115     post_adapter_creation(adapter_blob, this);
3116   }
3117   assert(_linked, "AdapterHandlerEntry must now be linked");
3118 }
3119 #endif // INCLUDE_CDS
3120 
3121 AdapterHandlerEntry::~AdapterHandlerEntry() {

3122 #ifdef ASSERT
3123   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3124 #endif
3125   FreeHeap(this);
3126 }
3127 
3128 
3129 #ifdef ASSERT
3130 // Capture the code before relocation so that it can be compared
3131 // against other versions.  If the code is captured after relocation
3132 // then relative instructions won't be equivalent.
3133 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3134   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3135   _saved_code_length = length;
3136   memcpy(_saved_code, buffer, length);
3137 }
3138 
3139 
3140 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3141   assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved");
3142 
3143   if (other->_saved_code_length != _saved_code_length) {
3144     return false;
3145   }
3146 
3147   return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3148 }
3149 #endif
3150 
3151 
3152 /**
3153  * Create a native wrapper for this native method.  The wrapper converts the
3154  * Java-compiled calling convention to the native convention, handles
3155  * arguments, and transitions to native.  On return from the native we transition
3156  * back to java blocking if a safepoint is in progress.
3157  */
3158 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3159   ResourceMark rm;
3160   nmethod* nm = nullptr;
3161 
3162   // Check if memory should be freed before allocation
3163   CodeCache::gc_on_allocation();
3164 
3165   assert(method->is_native(), "must be native");
3166   assert(method->is_special_native_intrinsic() ||
3167          method->has_native_function(), "must have something valid to call!");
3168 
3169   {
3170     // Perform the work while holding the lock, but perform any printing outside the lock
3171     MutexLocker mu(AdapterHandlerLibrary_lock);
3172     // See if somebody beat us to it
3173     if (method->code() != nullptr) {
3174       return;
3175     }
3176 
3177     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3178     assert(compile_id > 0, "Must generate native wrapper");
3179 
3180 
3181     ResourceMark rm;
3182     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3183     if (buf != nullptr) {
3184       CodeBuffer buffer(buf);
3185 
3186       if (method->is_continuation_enter_intrinsic()) {
3187         buffer.initialize_stubs_size(192);
3188       }
3189 
3190       struct { double data[20]; } locs_buf;
3191       struct { double data[20]; } stubs_locs_buf;
3192       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3193 #if defined(AARCH64) || defined(PPC64)
3194       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3195       // in the constant pool to ensure ordering between the barrier and oops
3196       // accesses. For native_wrappers we need a constant.
3197       // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled
3198       // static java call that is resolved in the runtime.
3199       if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) {
3200         buffer.initialize_consts_size(8 PPC64_ONLY(+ 24));
3201       }
3202 #endif
3203       buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
3204       MacroAssembler _masm(&buffer);
3205 
3206       // Fill in the signature array, for the calling-convention call.
3207       const int total_args_passed = method->size_of_parameters();
3208 
3209       VMRegPair stack_regs[16];
3210       VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3211 
3212       AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3213                               method->is_static(), total_args_passed);
3214       BasicType* sig_bt = si.basic_types();
3215       assert(si.slots() == total_args_passed, "");
3216       BasicType ret_type = si.return_type();
3217 
3218       // Now get the compiled-Java arguments layout.
3219       SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3220 
3221       // Generate the compiled-to-native wrapper code
3222       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3223 
3224       if (nm != nullptr) {
3225         {
3226           MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag);
3227           if (nm->make_in_use()) {
3228             method->set_code(method, nm);
3229           }
3230         }
3231 
3232         DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple));
3233         if (directive->PrintAssemblyOption) {
3234           nm->print_code();
3235         }
3236         DirectivesStack::release(directive);
3237       }
3238     }
3239   } // Unlock AdapterHandlerLibrary_lock
3240 
3241 
3242   // Install the generated code.
3243   if (nm != nullptr) {
3244     const char *msg = method->is_static() ? "(static)" : "";
3245     CompileTask::print_ul(nm, msg);
3246     if (PrintCompilation) {
3247       ttyLocker ttyl;
3248       CompileTask::print(tty, nm, msg);
3249     }
3250     nm->post_compiled_method_load_event();
3251   }
3252 }
3253 
3254 // -------------------------------------------------------------------------
3255 // Java-Java calling convention
3256 // (what you use when Java calls Java)
3257 
3258 //------------------------------name_for_receiver----------------------------------
3259 // For a given signature, return the VMReg for parameter 0.
3260 VMReg SharedRuntime::name_for_receiver() {
3261   VMRegPair regs;
3262   BasicType sig_bt = T_OBJECT;
3263   (void) java_calling_convention(&sig_bt, &regs, 1);
3264   // Return argument 0 register.  In the LP64 build pointers
3265   // take 2 registers, but the VM wants only the 'main' name.
3266   return regs.first();
3267 }
3268 
3269 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3270   // This method is returning a data structure allocating as a
3271   // ResourceObject, so do not put any ResourceMarks in here.
3272 
3273   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3274   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3275   int cnt = 0;
3276   if (has_receiver) {
3277     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3278   }
3279 
3280   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3281     BasicType type = ss.type();
3282     sig_bt[cnt++] = type;
3283     if (is_double_word_type(type))
3284       sig_bt[cnt++] = T_VOID;
3285   }
3286 
3287   if (has_appendix) {
3288     sig_bt[cnt++] = T_OBJECT;
3289   }
3290 
3291   assert(cnt < 256, "grow table size");
3292 
3293   int comp_args_on_stack;
3294   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3295 
3296   // the calling convention doesn't count out_preserve_stack_slots so
3297   // we must add that in to get "true" stack offsets.
3298 
3299   if (comp_args_on_stack) {
3300     for (int i = 0; i < cnt; i++) {
3301       VMReg reg1 = regs[i].first();
3302       if (reg1->is_stack()) {
3303         // Yuck
3304         reg1 = reg1->bias(out_preserve_stack_slots());
3305       }
3306       VMReg reg2 = regs[i].second();
3307       if (reg2->is_stack()) {
3308         // Yuck
3309         reg2 = reg2->bias(out_preserve_stack_slots());
3310       }
3311       regs[i].set_pair(reg2, reg1);
3312     }
3313   }
3314 
3315   // results
3316   *arg_size = cnt;
3317   return regs;
3318 }
3319 
3320 // OSR Migration Code
3321 //
3322 // This code is used convert interpreter frames into compiled frames.  It is
3323 // called from very start of a compiled OSR nmethod.  A temp array is
3324 // allocated to hold the interesting bits of the interpreter frame.  All
3325 // active locks are inflated to allow them to move.  The displaced headers and
3326 // active interpreter locals are copied into the temp buffer.  Then we return
3327 // back to the compiled code.  The compiled code then pops the current
3328 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3329 // copies the interpreter locals and displaced headers where it wants.
3330 // Finally it calls back to free the temp buffer.
3331 //
3332 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3333 
3334 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3335   assert(current == JavaThread::current(), "pre-condition");
3336 
3337   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3338   // frame. The stack watermark code below ensures that the interpreted frame is processed
3339   // before it gets unwound. This is helpful as the size of the compiled frame could be
3340   // larger than the interpreted frame, which could result in the new frame not being
3341   // processed correctly.
3342   StackWatermarkSet::before_unwind(current);
3343 
3344   //
3345   // This code is dependent on the memory layout of the interpreter local
3346   // array and the monitors. On all of our platforms the layout is identical
3347   // so this code is shared. If some platform lays the their arrays out
3348   // differently then this code could move to platform specific code or
3349   // the code here could be modified to copy items one at a time using
3350   // frame accessor methods and be platform independent.
3351 
3352   frame fr = current->last_frame();
3353   assert(fr.is_interpreted_frame(), "");
3354   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3355 
3356   // Figure out how many monitors are active.
3357   int active_monitor_count = 0;
3358   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3359        kptr < fr.interpreter_frame_monitor_begin();
3360        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3361     if (kptr->obj() != nullptr) active_monitor_count++;
3362   }
3363 
3364   // QQQ we could place number of active monitors in the array so that compiled code
3365   // could double check it.
3366 
3367   Method* moop = fr.interpreter_frame_method();
3368   int max_locals = moop->max_locals();
3369   // Allocate temp buffer, 1 word per local & 2 per active monitor
3370   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3371   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3372 
3373   // Copy the locals.  Order is preserved so that loading of longs works.
3374   // Since there's no GC I can copy the oops blindly.
3375   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3376   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3377                        (HeapWord*)&buf[0],
3378                        max_locals);
3379 
3380   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3381   int i = max_locals;
3382   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3383        kptr2 < fr.interpreter_frame_monitor_begin();
3384        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3385     if (kptr2->obj() != nullptr) {         // Avoid 'holes' in the monitor array
3386       BasicLock *lock = kptr2->lock();
3387       if (LockingMode == LM_LEGACY) {
3388         // Inflate so the object's header no longer refers to the BasicLock.
3389         if (lock->displaced_header().is_unlocked()) {
3390           // The object is locked and the resulting ObjectMonitor* will also be
3391           // locked so it can't be async deflated until ownership is dropped.
3392           // See the big comment in basicLock.cpp: BasicLock::move_to().
3393           ObjectSynchronizer::inflate_helper(kptr2->obj());
3394         }
3395         // Now the displaced header is free to move because the
3396         // object's header no longer refers to it.
3397         buf[i] = (intptr_t)lock->displaced_header().value();
3398       } else if (UseObjectMonitorTable) {
3399         buf[i] = (intptr_t)lock->object_monitor_cache();
3400       }
3401 #ifdef ASSERT
3402       else {
3403         buf[i] = badDispHeaderOSR;
3404       }
3405 #endif
3406       i++;
3407       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3408     }
3409   }
3410   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3411 
3412   RegisterMap map(current,
3413                   RegisterMap::UpdateMap::skip,
3414                   RegisterMap::ProcessFrames::include,
3415                   RegisterMap::WalkContinuation::skip);
3416   frame sender = fr.sender(&map);
3417   if (sender.is_interpreted_frame()) {
3418     current->push_cont_fastpath(sender.sp());
3419   }
3420 
3421   return buf;
3422 JRT_END
3423 
3424 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3425   FREE_C_HEAP_ARRAY(intptr_t, buf);
3426 JRT_END
3427 
3428 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3429   bool found = false;
3430 #if INCLUDE_CDS
3431   auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3432     return (found = (b == CodeCache::find_blob(handler->get_i2c_entry())));
3433   };
3434   _archived_adapter_handler_table.iterate(findblob_archived_table);
3435 #endif // INCLUDE_CDS
3436   if (!found) {
3437     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3438       return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
3439     };
3440     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3441     _adapter_handler_table->iterate(findblob_runtime_table);
3442   }
3443   return found;
3444 }
3445 
3446 const char* AdapterHandlerLibrary::name(AdapterFingerPrint* fingerprint) {
3447   return fingerprint->as_basic_args_string();
3448 }
3449 
3450 uint32_t AdapterHandlerLibrary::id(AdapterFingerPrint* fingerprint) {
3451   unsigned int hash = fingerprint->compute_hash();
3452   return hash;
3453 }
3454 
3455 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3456   bool found = false;
3457 #if INCLUDE_CDS
3458   auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) {
3459     if (b == CodeCache::find_blob(handler->get_i2c_entry())) {
3460       found = true;
3461       st->print("Adapter for signature: ");
3462       handler->print_adapter_on(st);
3463       return true;
3464     } else {
3465       return false; // keep looking
3466 
3467     }
3468   };
3469   _archived_adapter_handler_table.iterate(findblob_archived_table);
3470 #endif // INCLUDE_CDS
3471   if (!found) {
3472     auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
3473       if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3474         found = true;
3475         st->print("Adapter for signature: ");
3476         a->print_adapter_on(st);
3477         return true;
3478       } else {
3479         return false; // keep looking
3480       }
3481     };
3482     assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
3483     _adapter_handler_table->iterate(findblob_runtime_table);
3484   }
3485   assert(found, "Should have found handler");
3486 }
3487 
3488 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3489   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3490   if (get_i2c_entry() != nullptr) {
3491     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3492   }
3493   if (get_c2i_entry() != nullptr) {
3494     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3495   }
3496   if (get_c2i_unverified_entry() != nullptr) {
3497     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3498   }
3499   if (get_c2i_no_clinit_check_entry() != nullptr) {
3500     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3501   }
3502   st->cr();
3503 }
3504 
3505 bool AdapterHandlerLibrary::is_abstract_method_adapter(AdapterHandlerEntry* entry) {
3506   if (entry == _abstract_method_handler) {
3507     return true;
3508   }
3509   return false;
3510 }
3511 


3512 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3513   assert(current == JavaThread::current(), "pre-condition");
3514   StackOverflow* overflow_state = current->stack_overflow_state();
3515   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3516   overflow_state->set_reserved_stack_activation(current->stack_base());
3517 JRT_END
3518 
3519 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3520   ResourceMark rm(current);
3521   frame activation;
3522   nmethod* nm = nullptr;
3523   int count = 1;
3524 
3525   assert(fr.is_java_frame(), "Must start on Java frame");
3526 
3527   RegisterMap map(JavaThread::current(),
3528                   RegisterMap::UpdateMap::skip,
3529                   RegisterMap::ProcessFrames::skip,
3530                   RegisterMap::WalkContinuation::skip); // don't walk continuations
3531   for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
3532     if (!fr.is_java_frame()) {
3533       continue;
3534     }
3535 
3536     Method* method = nullptr;
3537     bool found = false;
3538     if (fr.is_interpreted_frame()) {
3539       method = fr.interpreter_frame_method();
3540       if (method != nullptr && method->has_reserved_stack_access()) {
3541         found = true;
3542       }
3543     } else {
3544       CodeBlob* cb = fr.cb();
3545       if (cb != nullptr && cb->is_nmethod()) {
3546         nm = cb->as_nmethod();
3547         method = nm->method();
3548         // scope_desc_near() must be used, instead of scope_desc_at() because on
3549         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3550         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) {
3551           method = sd->method();
3552           if (method != nullptr && method->has_reserved_stack_access()) {
3553             found = true;
3554           }
3555         }
3556       }
3557     }
3558     if (found) {
3559       activation = fr;
3560       warning("Potentially dangerous stack overflow in "
3561               "ReservedStackAccess annotated method %s [%d]",
3562               method->name_and_sig_as_C_string(), count++);
3563       EventReservedStackActivation event;
3564       if (event.should_commit()) {
3565         event.set_method(method);
3566         event.commit();
3567       }
3568     }
3569   }
3570   return activation;
3571 }
3572 
3573 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3574   // After any safepoint, just before going back to compiled code,
3575   // we inform the GC that we will be doing initializing writes to
3576   // this object in the future without emitting card-marks, so
3577   // GC may take any compensating steps.
3578 
3579   oop new_obj = current->vm_result();
3580   if (new_obj == nullptr) return;
3581 
3582   BarrierSet *bs = BarrierSet::barrier_set();
3583   bs->on_slowpath_allocation_exit(current, new_obj);
3584 }
--- EOF ---