1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jfr/jfrEvents.hpp" 46 #include "jvm.h" 47 #include "logging/log.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "metaprogramming/primitiveConversions.hpp" 51 #include "oops/klass.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/forte.hpp" 56 #include "prims/jvmtiExport.hpp" 57 #include "prims/jvmtiThreadState.hpp" 58 #include "prims/methodHandles.hpp" 59 #include "prims/nativeLookup.hpp" 60 #include "runtime/arguments.hpp" 61 #include "runtime/atomicAccess.hpp" 62 #include "runtime/basicLock.inline.hpp" 63 #include "runtime/frame.inline.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/init.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/java.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/jniHandles.inline.hpp" 70 #include "runtime/osThread.hpp" 71 #include "runtime/perfData.inline.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/stubRoutines.hpp" 75 #include "runtime/synchronizer.inline.hpp" 76 #include "runtime/timerTrace.hpp" 77 #include "runtime/vframe.inline.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "runtime/vm_version.hpp" 80 #include "services/management.hpp" 81 #include "utilities/copy.hpp" 82 #include "utilities/dtrace.hpp" 83 #include "utilities/events.hpp" 84 #include "utilities/globalDefinitions.hpp" 85 #include "utilities/hashTable.hpp" 86 #include "utilities/macros.hpp" 87 #include "utilities/xmlstream.hpp" 88 #ifdef COMPILER1 89 #include "c1/c1_Runtime1.hpp" 90 #endif 91 #if INCLUDE_JFR 92 #include "jfr/jfr.inline.hpp" 93 #endif 94 95 // Shared runtime stub routines reside in their own unique blob with a 96 // single entry point 97 98 99 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 100 type* SharedRuntime::BLOB_FIELD_NAME(name); 101 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 102 #undef SHARED_STUB_FIELD_DEFINE 103 104 nmethod* SharedRuntime::_cont_doYield_stub; 105 106 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr; 107 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time = nullptr; 108 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time = nullptr; 109 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr; 110 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time = nullptr; 111 112 #if 0 113 // TODO tweak global stub name generation to match this 114 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 115 const char *SharedRuntime::_stub_names[] = { 116 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 117 }; 118 #endif 119 120 //----------------------------generate_stubs----------------------------------- 121 void SharedRuntime::generate_initial_stubs() { 122 // Build this early so it's available for the interpreter. 123 _throw_StackOverflowError_blob = 124 generate_throw_exception(StubId::shared_throw_StackOverflowError_id, 125 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 126 } 127 128 void SharedRuntime::generate_stubs() { 129 _wrong_method_blob = 130 generate_resolve_blob(StubId::shared_wrong_method_id, 131 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 132 _wrong_method_abstract_blob = 133 generate_resolve_blob(StubId::shared_wrong_method_abstract_id, 134 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 135 _ic_miss_blob = 136 generate_resolve_blob(StubId::shared_ic_miss_id, 137 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 138 _resolve_opt_virtual_call_blob = 139 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id, 140 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 141 _resolve_virtual_call_blob = 142 generate_resolve_blob(StubId::shared_resolve_virtual_call_id, 143 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 144 _resolve_static_call_blob = 145 generate_resolve_blob(StubId::shared_resolve_static_call_id, 146 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 147 148 _throw_delayed_StackOverflowError_blob = 149 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id, 150 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 151 152 _throw_AbstractMethodError_blob = 153 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id, 154 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 155 156 _throw_IncompatibleClassChangeError_blob = 157 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id, 158 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 159 160 _throw_NullPointerException_at_call_blob = 161 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id, 162 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 163 164 #if COMPILER2_OR_JVMCI 165 // Vectors are generated only by C2 and JVMCI. 166 bool support_wide = is_wide_vector(MaxVectorSize); 167 if (support_wide) { 168 _polling_page_vectors_safepoint_handler_blob = 169 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id, 170 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 171 } 172 #endif // COMPILER2_OR_JVMCI 173 _polling_page_safepoint_handler_blob = 174 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id, 175 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 176 _polling_page_return_handler_blob = 177 generate_handler_blob(StubId::shared_polling_page_return_handler_id, 178 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 179 180 generate_deopt_blob(); 181 182 if (UsePerfData) { 183 EXCEPTION_MARK; 184 NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call"); 185 NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time, SUN_CI, "resovle_virtual_call"); 186 NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time, SUN_CI, "resovle_static_call"); 187 NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method"); 188 NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time , SUN_CI, "ic_miss"); 189 if (HAS_PENDING_EXCEPTION) { 190 vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly"); 191 } 192 } 193 } 194 195 void SharedRuntime::init_adapter_library() { 196 AdapterHandlerLibrary::initialize(); 197 } 198 199 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) { 200 st->print(" %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us()); 201 if (TraceThreadTime) { 202 st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us()); 203 } 204 st->print(" / %5d events", cnt); 205 st->cr(); 206 } 207 208 void SharedRuntime::print_counters_on(outputStream* st) { 209 st->print_cr("SharedRuntime:"); 210 if (UsePerfData) { 211 print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr); 212 print_counter_on(st, "resolve_virtual_call:", _perf_resolve_virtual_total_time, _resolve_virtual_ctr); 213 print_counter_on(st, "resolve_static_call:", _perf_resolve_static_total_time, _resolve_static_ctr); 214 print_counter_on(st, "handle_wrong_method:", _perf_handle_wrong_method_total_time, _wrong_method_ctr); 215 print_counter_on(st, "ic_miss:", _perf_ic_miss_total_time, _ic_miss_ctr); 216 217 jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() + 218 _perf_resolve_virtual_total_time->elapsed_counter_value() + 219 _perf_resolve_static_total_time->elapsed_counter_value() + 220 _perf_handle_wrong_method_total_time->elapsed_counter_value() + 221 _perf_ic_miss_total_time->elapsed_counter_value()); 222 st->print("Total: " JLONG_FORMAT_W(5) "us", total_elapsed_time_us); 223 if (TraceThreadTime) { 224 jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() + 225 _perf_resolve_virtual_total_time->thread_counter_value() + 226 _perf_resolve_static_total_time->thread_counter_value() + 227 _perf_handle_wrong_method_total_time->thread_counter_value() + 228 _perf_ic_miss_total_time->thread_counter_value()); 229 st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us); 230 231 } 232 st->cr(); 233 } else { 234 st->print_cr(" no data (UsePerfData is turned off)"); 235 } 236 } 237 238 #if INCLUDE_JFR 239 //------------------------------generate jfr runtime stubs ------ 240 void SharedRuntime::generate_jfr_stubs() { 241 ResourceMark rm; 242 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 243 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 244 245 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 246 _jfr_return_lease_blob = generate_jfr_return_lease(); 247 } 248 249 #endif // INCLUDE_JFR 250 251 #include <math.h> 252 253 // Implementation of SharedRuntime 254 255 // For statistics 256 uint SharedRuntime::_ic_miss_ctr = 0; 257 uint SharedRuntime::_wrong_method_ctr = 0; 258 uint SharedRuntime::_resolve_static_ctr = 0; 259 uint SharedRuntime::_resolve_virtual_ctr = 0; 260 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 261 262 #ifndef PRODUCT 263 uint SharedRuntime::_implicit_null_throws = 0; 264 uint SharedRuntime::_implicit_div0_throws = 0; 265 266 int64_t SharedRuntime::_nof_normal_calls = 0; 267 int64_t SharedRuntime::_nof_inlined_calls = 0; 268 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 269 int64_t SharedRuntime::_nof_static_calls = 0; 270 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 271 int64_t SharedRuntime::_nof_interface_calls = 0; 272 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 273 274 uint SharedRuntime::_new_instance_ctr=0; 275 uint SharedRuntime::_new_array_ctr=0; 276 uint SharedRuntime::_multi2_ctr=0; 277 uint SharedRuntime::_multi3_ctr=0; 278 uint SharedRuntime::_multi4_ctr=0; 279 uint SharedRuntime::_multi5_ctr=0; 280 uint SharedRuntime::_mon_enter_stub_ctr=0; 281 uint SharedRuntime::_mon_exit_stub_ctr=0; 282 uint SharedRuntime::_mon_enter_ctr=0; 283 uint SharedRuntime::_mon_exit_ctr=0; 284 uint SharedRuntime::_partial_subtype_ctr=0; 285 uint SharedRuntime::_jbyte_array_copy_ctr=0; 286 uint SharedRuntime::_jshort_array_copy_ctr=0; 287 uint SharedRuntime::_jint_array_copy_ctr=0; 288 uint SharedRuntime::_jlong_array_copy_ctr=0; 289 uint SharedRuntime::_oop_array_copy_ctr=0; 290 uint SharedRuntime::_checkcast_array_copy_ctr=0; 291 uint SharedRuntime::_unsafe_array_copy_ctr=0; 292 uint SharedRuntime::_generic_array_copy_ctr=0; 293 uint SharedRuntime::_slow_array_copy_ctr=0; 294 uint SharedRuntime::_find_handler_ctr=0; 295 uint SharedRuntime::_rethrow_ctr=0; 296 uint SharedRuntime::_unsafe_set_memory_ctr=0; 297 298 int SharedRuntime::_ICmiss_index = 0; 299 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 300 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 301 302 303 void SharedRuntime::trace_ic_miss(address at) { 304 for (int i = 0; i < _ICmiss_index; i++) { 305 if (_ICmiss_at[i] == at) { 306 _ICmiss_count[i]++; 307 return; 308 } 309 } 310 int index = _ICmiss_index++; 311 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 312 _ICmiss_at[index] = at; 313 _ICmiss_count[index] = 1; 314 } 315 316 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) { 317 if (ICMissHistogram) { 318 st->print_cr("IC Miss Histogram:"); 319 int tot_misses = 0; 320 for (int i = 0; i < _ICmiss_index; i++) { 321 st->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 322 tot_misses += _ICmiss_count[i]; 323 } 324 st->print_cr("Total IC misses: %7d", tot_misses); 325 } 326 } 327 328 #ifdef COMPILER2 329 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for) 330 void SharedRuntime::debug_print_value(jboolean x) { 331 tty->print_cr("boolean %d", x); 332 } 333 334 void SharedRuntime::debug_print_value(jbyte x) { 335 tty->print_cr("byte %d", x); 336 } 337 338 void SharedRuntime::debug_print_value(jshort x) { 339 tty->print_cr("short %d", x); 340 } 341 342 void SharedRuntime::debug_print_value(jchar x) { 343 tty->print_cr("char %c %d", isprint(x) ? x : ' ', x); 344 } 345 346 void SharedRuntime::debug_print_value(jint x) { 347 tty->print_cr("int %d", x); 348 } 349 350 void SharedRuntime::debug_print_value(jlong x) { 351 tty->print_cr("long " JLONG_FORMAT, x); 352 } 353 354 void SharedRuntime::debug_print_value(jfloat x) { 355 tty->print_cr("float %f", x); 356 } 357 358 void SharedRuntime::debug_print_value(jdouble x) { 359 tty->print_cr("double %lf", x); 360 } 361 362 void SharedRuntime::debug_print_value(oopDesc* x) { 363 x->print(); 364 } 365 #endif // COMPILER2 366 367 #endif // PRODUCT 368 369 370 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 371 return x * y; 372 JRT_END 373 374 375 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 376 if (x == min_jlong && y == CONST64(-1)) { 377 return x; 378 } else { 379 return x / y; 380 } 381 JRT_END 382 383 384 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 385 if (x == min_jlong && y == CONST64(-1)) { 386 return 0; 387 } else { 388 return x % y; 389 } 390 JRT_END 391 392 393 #ifdef _WIN64 394 const juint float_sign_mask = 0x7FFFFFFF; 395 const juint float_infinity = 0x7F800000; 396 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 397 const julong double_infinity = CONST64(0x7FF0000000000000); 398 #endif 399 400 #if !defined(X86) 401 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 402 #ifdef _WIN64 403 // 64-bit Windows on amd64 returns the wrong values for 404 // infinity operands. 405 juint xbits = PrimitiveConversions::cast<juint>(x); 406 juint ybits = PrimitiveConversions::cast<juint>(y); 407 // x Mod Infinity == x unless x is infinity 408 if (((xbits & float_sign_mask) != float_infinity) && 409 ((ybits & float_sign_mask) == float_infinity) ) { 410 return x; 411 } 412 return ((jfloat)fmod_winx64((double)x, (double)y)); 413 #else 414 return ((jfloat)fmod((double)x,(double)y)); 415 #endif 416 JRT_END 417 418 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 419 #ifdef _WIN64 420 julong xbits = PrimitiveConversions::cast<julong>(x); 421 julong ybits = PrimitiveConversions::cast<julong>(y); 422 // x Mod Infinity == x unless x is infinity 423 if (((xbits & double_sign_mask) != double_infinity) && 424 ((ybits & double_sign_mask) == double_infinity) ) { 425 return x; 426 } 427 return ((jdouble)fmod_winx64((double)x, (double)y)); 428 #else 429 return ((jdouble)fmod((double)x,(double)y)); 430 #endif 431 JRT_END 432 #endif // !X86 433 434 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 435 return (jfloat)x; 436 JRT_END 437 438 #ifdef __SOFTFP__ 439 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 440 return x + y; 441 JRT_END 442 443 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 444 return x - y; 445 JRT_END 446 447 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 448 return x * y; 449 JRT_END 450 451 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 452 return x / y; 453 JRT_END 454 455 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 456 return x + y; 457 JRT_END 458 459 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 460 return x - y; 461 JRT_END 462 463 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 464 return x * y; 465 JRT_END 466 467 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 468 return x / y; 469 JRT_END 470 471 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 472 return (jdouble)x; 473 JRT_END 474 475 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 476 return (jdouble)x; 477 JRT_END 478 479 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 480 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 481 JRT_END 482 483 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 484 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 485 JRT_END 486 487 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 488 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 489 JRT_END 490 491 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 492 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 493 JRT_END 494 495 // Functions to return the opposite of the aeabi functions for nan. 496 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 497 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 498 JRT_END 499 500 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 501 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 502 JRT_END 503 504 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 505 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 506 JRT_END 507 508 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 509 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 510 JRT_END 511 512 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 513 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 514 JRT_END 515 516 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 517 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 518 JRT_END 519 520 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 521 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 522 JRT_END 523 524 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 525 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 526 JRT_END 527 528 // Intrinsics make gcc generate code for these. 529 float SharedRuntime::fneg(float f) { 530 return -f; 531 } 532 533 double SharedRuntime::dneg(double f) { 534 return -f; 535 } 536 537 #endif // __SOFTFP__ 538 539 #if defined(__SOFTFP__) || defined(E500V2) 540 // Intrinsics make gcc generate code for these. 541 double SharedRuntime::dabs(double f) { 542 return (f <= (double)0.0) ? (double)0.0 - f : f; 543 } 544 545 #endif 546 547 #if defined(__SOFTFP__) 548 double SharedRuntime::dsqrt(double f) { 549 return sqrt(f); 550 } 551 #endif 552 553 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 554 if (g_isnan(x)) 555 return 0; 556 if (x >= (jfloat) max_jint) 557 return max_jint; 558 if (x <= (jfloat) min_jint) 559 return min_jint; 560 return (jint) x; 561 JRT_END 562 563 564 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 565 if (g_isnan(x)) 566 return 0; 567 if (x >= (jfloat) max_jlong) 568 return max_jlong; 569 if (x <= (jfloat) min_jlong) 570 return min_jlong; 571 return (jlong) x; 572 JRT_END 573 574 575 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 576 if (g_isnan(x)) 577 return 0; 578 if (x >= (jdouble) max_jint) 579 return max_jint; 580 if (x <= (jdouble) min_jint) 581 return min_jint; 582 return (jint) x; 583 JRT_END 584 585 586 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 587 if (g_isnan(x)) 588 return 0; 589 if (x >= (jdouble) max_jlong) 590 return max_jlong; 591 if (x <= (jdouble) min_jlong) 592 return min_jlong; 593 return (jlong) x; 594 JRT_END 595 596 597 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 598 return (jfloat)x; 599 JRT_END 600 601 602 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 603 return (jfloat)x; 604 JRT_END 605 606 607 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 608 return (jdouble)x; 609 JRT_END 610 611 612 // Exception handling across interpreter/compiler boundaries 613 // 614 // exception_handler_for_return_address(...) returns the continuation address. 615 // The continuation address is the entry point of the exception handler of the 616 // previous frame depending on the return address. 617 618 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 619 // Note: This is called when we have unwound the frame of the callee that did 620 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 621 // Notably, the stack is not walkable at this point, and hence the check must 622 // be deferred until later. Specifically, any of the handlers returned here in 623 // this function, will get dispatched to, and call deferred checks to 624 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 625 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 626 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 627 628 #if INCLUDE_JVMCI 629 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 630 // and other exception handler continuations do not read it 631 current->set_exception_pc(nullptr); 632 #endif // INCLUDE_JVMCI 633 634 if (Continuation::is_return_barrier_entry(return_address)) { 635 return StubRoutines::cont_returnBarrierExc(); 636 } 637 638 // The fastest case first 639 CodeBlob* blob = CodeCache::find_blob(return_address); 640 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 641 if (nm != nullptr) { 642 // native nmethods don't have exception handlers 643 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 644 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 645 if (nm->is_deopt_pc(return_address)) { 646 // If we come here because of a stack overflow, the stack may be 647 // unguarded. Reguard the stack otherwise if we return to the 648 // deopt blob and the stack bang causes a stack overflow we 649 // crash. 650 StackOverflow* overflow_state = current->stack_overflow_state(); 651 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 652 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 653 overflow_state->set_reserved_stack_activation(current->stack_base()); 654 } 655 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 656 // The deferred StackWatermarkSet::after_unwind check will be performed in 657 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 658 return SharedRuntime::deopt_blob()->unpack_with_exception(); 659 } else { 660 // The deferred StackWatermarkSet::after_unwind check will be performed in 661 // * OptoRuntime::handle_exception_C_helper for C2 code 662 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 663 return nm->exception_begin(); 664 } 665 } 666 667 // Entry code 668 if (StubRoutines::returns_to_call_stub(return_address)) { 669 // The deferred StackWatermarkSet::after_unwind check will be performed in 670 // JavaCallWrapper::~JavaCallWrapper 671 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before"); 672 return StubRoutines::catch_exception_entry(); 673 } 674 if (blob != nullptr && blob->is_upcall_stub()) { 675 return StubRoutines::upcall_stub_exception_handler(); 676 } 677 // Interpreted code 678 if (Interpreter::contains(return_address)) { 679 // The deferred StackWatermarkSet::after_unwind check will be performed in 680 // InterpreterRuntime::exception_handler_for_exception 681 return Interpreter::rethrow_exception_entry(); 682 } 683 684 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 685 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 686 687 #ifndef PRODUCT 688 { ResourceMark rm; 689 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 690 os::print_location(tty, (intptr_t)return_address); 691 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 692 tty->print_cr("b) other problem"); 693 } 694 #endif // PRODUCT 695 ShouldNotReachHere(); 696 return nullptr; 697 } 698 699 700 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 701 return raw_exception_handler_for_return_address(current, return_address); 702 JRT_END 703 704 705 address SharedRuntime::get_poll_stub(address pc) { 706 address stub; 707 // Look up the code blob 708 CodeBlob *cb = CodeCache::find_blob(pc); 709 710 // Should be an nmethod 711 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 712 713 // Look up the relocation information 714 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 715 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 716 717 #ifdef ASSERT 718 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 719 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 720 Disassembler::decode(cb); 721 fatal("Only polling locations are used for safepoint"); 722 } 723 #endif 724 725 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 726 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 727 if (at_poll_return) { 728 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 729 "polling page return stub not created yet"); 730 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 731 } else if (has_wide_vectors) { 732 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 733 "polling page vectors safepoint stub not created yet"); 734 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 735 } else { 736 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 737 "polling page safepoint stub not created yet"); 738 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 739 } 740 log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = " 741 INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT, 742 p2i(Thread::current()), 743 Thread::current()->osthread()->thread_id(), 744 p2i(pc), 745 at_poll_return ? "return" : "loop", 746 p2i(stub)); 747 return stub; 748 } 749 750 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 751 if (JvmtiExport::can_post_on_exceptions()) { 752 vframeStream vfst(current, true); 753 methodHandle method = methodHandle(current, vfst.method()); 754 address bcp = method()->bcp_from(vfst.bci()); 755 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 756 } 757 758 #if INCLUDE_JVMCI 759 if (EnableJVMCI) { 760 vframeStream vfst(current, true); 761 methodHandle method = methodHandle(current, vfst.method()); 762 int bci = vfst.bci(); 763 MethodData* trap_mdo = method->method_data(); 764 if (trap_mdo != nullptr) { 765 // Set exception_seen if the exceptional bytecode is an invoke 766 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 767 if (call.is_valid()) { 768 ResourceMark rm(current); 769 770 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 771 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 772 773 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 774 if (pdata != nullptr && pdata->is_BitData()) { 775 BitData* bit_data = (BitData*) pdata; 776 bit_data->set_exception_seen(); 777 } 778 } 779 } 780 } 781 #endif 782 783 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 784 } 785 786 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 787 Handle h_exception = Exceptions::new_exception(current, name, message); 788 throw_and_post_jvmti_exception(current, h_exception); 789 } 790 791 #if INCLUDE_JVMTI 792 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 793 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 794 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 795 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 796 JNIHandles::destroy_local(vthread); 797 JRT_END 798 799 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 800 assert(hide == JNI_TRUE, "must be VTMS transition start"); 801 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 802 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 803 JNIHandles::destroy_local(vthread); 804 JRT_END 805 806 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 807 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 808 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 809 JNIHandles::destroy_local(vthread); 810 JRT_END 811 812 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 813 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 814 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 815 JNIHandles::destroy_local(vthread); 816 JRT_END 817 #endif // INCLUDE_JVMTI 818 819 // The interpreter code to call this tracing function is only 820 // called/generated when UL is on for redefine, class and has the right level 821 // and tags. Since obsolete methods are never compiled, we don't have 822 // to modify the compilers to generate calls to this function. 823 // 824 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 825 JavaThread* thread, Method* method)) 826 if (method->is_obsolete()) { 827 // We are calling an obsolete method, but this is not necessarily 828 // an error. Our method could have been redefined just after we 829 // fetched the Method* from the constant pool. 830 ResourceMark rm; 831 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 832 } 833 834 LogStreamHandle(Trace, interpreter, bytecode) log; 835 if (log.is_enabled()) { 836 ResourceMark rm; 837 log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s", 838 p2i(thread), 839 (method->is_static() ? "static" : "virtual"), 840 method->name_and_sig_as_C_string(), 841 (method->is_native() ? " native" : ""), 842 (thread->class_being_initialized() != nullptr ? " clinit" : ""), 843 (method->method_holder()->is_initialized() ? "" : " being_initialized")); 844 } 845 return 0; 846 JRT_END 847 848 // ret_pc points into caller; we are returning caller's exception handler 849 // for given exception 850 // Note that the implementation of this method assumes it's only called when an exception has actually occured 851 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 852 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 853 assert(nm != nullptr, "must exist"); 854 ResourceMark rm; 855 856 #if INCLUDE_JVMCI 857 if (nm->is_compiled_by_jvmci()) { 858 // lookup exception handler for this pc 859 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 860 ExceptionHandlerTable table(nm); 861 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 862 if (t != nullptr) { 863 return nm->code_begin() + t->pco(); 864 } else { 865 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 866 } 867 } 868 #endif // INCLUDE_JVMCI 869 870 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 871 // determine handler bci, if any 872 EXCEPTION_MARK; 873 874 int handler_bci = -1; 875 int scope_depth = 0; 876 if (!force_unwind) { 877 int bci = sd->bci(); 878 bool recursive_exception = false; 879 do { 880 bool skip_scope_increment = false; 881 // exception handler lookup 882 Klass* ek = exception->klass(); 883 methodHandle mh(THREAD, sd->method()); 884 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 885 if (HAS_PENDING_EXCEPTION) { 886 recursive_exception = true; 887 // We threw an exception while trying to find the exception handler. 888 // Transfer the new exception to the exception handle which will 889 // be set into thread local storage, and do another lookup for an 890 // exception handler for this exception, this time starting at the 891 // BCI of the exception handler which caused the exception to be 892 // thrown (bugs 4307310 and 4546590). Set "exception" reference 893 // argument to ensure that the correct exception is thrown (4870175). 894 recursive_exception_occurred = true; 895 exception = Handle(THREAD, PENDING_EXCEPTION); 896 CLEAR_PENDING_EXCEPTION; 897 if (handler_bci >= 0) { 898 bci = handler_bci; 899 handler_bci = -1; 900 skip_scope_increment = true; 901 } 902 } 903 else { 904 recursive_exception = false; 905 } 906 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 907 sd = sd->sender(); 908 if (sd != nullptr) { 909 bci = sd->bci(); 910 } 911 ++scope_depth; 912 } 913 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 914 } 915 916 // found handling method => lookup exception handler 917 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 918 919 ExceptionHandlerTable table(nm); 920 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 921 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 922 // Allow abbreviated catch tables. The idea is to allow a method 923 // to materialize its exceptions without committing to the exact 924 // routing of exceptions. In particular this is needed for adding 925 // a synthetic handler to unlock monitors when inlining 926 // synchronized methods since the unlock path isn't represented in 927 // the bytecodes. 928 t = table.entry_for(catch_pco, -1, 0); 929 } 930 931 #ifdef COMPILER1 932 if (t == nullptr && nm->is_compiled_by_c1()) { 933 assert(nm->unwind_handler_begin() != nullptr, ""); 934 return nm->unwind_handler_begin(); 935 } 936 #endif 937 938 if (t == nullptr) { 939 ttyLocker ttyl; 940 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 941 tty->print_cr(" Exception:"); 942 exception->print(); 943 tty->cr(); 944 tty->print_cr(" Compiled exception table :"); 945 table.print(); 946 nm->print(); 947 nm->print_code(); 948 guarantee(false, "missing exception handler"); 949 return nullptr; 950 } 951 952 if (handler_bci != -1) { // did we find a handler in this method? 953 sd->method()->set_exception_handler_entered(handler_bci); // profile 954 } 955 return nm->code_begin() + t->pco(); 956 } 957 958 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 959 // These errors occur only at call sites 960 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 961 JRT_END 962 963 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 964 // These errors occur only at call sites 965 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 966 JRT_END 967 968 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 969 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 970 JRT_END 971 972 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 973 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 974 JRT_END 975 976 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 977 // This entry point is effectively only used for NullPointerExceptions which occur at inline 978 // cache sites (when the callee activation is not yet set up) so we are at a call site 979 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 980 JRT_END 981 982 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 983 throw_StackOverflowError_common(current, false); 984 JRT_END 985 986 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 987 throw_StackOverflowError_common(current, true); 988 JRT_END 989 990 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 991 // We avoid using the normal exception construction in this case because 992 // it performs an upcall to Java, and we're already out of stack space. 993 JavaThread* THREAD = current; // For exception macros. 994 InstanceKlass* k = vmClasses::StackOverflowError_klass(); 995 oop exception_oop = k->allocate_instance(CHECK); 996 if (delayed) { 997 java_lang_Throwable::set_message(exception_oop, 998 Universe::delayed_stack_overflow_error_message()); 999 } 1000 Handle exception (current, exception_oop); 1001 if (StackTraceInThrowable) { 1002 java_lang_Throwable::fill_in_stack_trace(exception); 1003 } 1004 // Remove the ScopedValue bindings in case we got a 1005 // StackOverflowError while we were trying to remove ScopedValue 1006 // bindings. 1007 current->clear_scopedValueBindings(); 1008 // Increment counter for hs_err file reporting 1009 AtomicAccess::inc(&Exceptions::_stack_overflow_errors); 1010 throw_and_post_jvmti_exception(current, exception); 1011 } 1012 1013 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 1014 address pc, 1015 ImplicitExceptionKind exception_kind) 1016 { 1017 address target_pc = nullptr; 1018 1019 if (Interpreter::contains(pc)) { 1020 switch (exception_kind) { 1021 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 1022 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 1023 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 1024 default: ShouldNotReachHere(); 1025 } 1026 } else { 1027 switch (exception_kind) { 1028 case STACK_OVERFLOW: { 1029 // Stack overflow only occurs upon frame setup; the callee is 1030 // going to be unwound. Dispatch to a shared runtime stub 1031 // which will cause the StackOverflowError to be fabricated 1032 // and processed. 1033 // Stack overflow should never occur during deoptimization: 1034 // the compiled method bangs the stack by as much as the 1035 // interpreter would need in case of a deoptimization. The 1036 // deoptimization blob and uncommon trap blob bang the stack 1037 // in a debug VM to verify the correctness of the compiled 1038 // method stack banging. 1039 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 1040 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 1041 return SharedRuntime::throw_StackOverflowError_entry(); 1042 } 1043 1044 case IMPLICIT_NULL: { 1045 if (VtableStubs::contains(pc)) { 1046 // We haven't yet entered the callee frame. Fabricate an 1047 // exception and begin dispatching it in the caller. Since 1048 // the caller was at a call site, it's safe to destroy all 1049 // caller-saved registers, as these entry points do. 1050 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 1051 1052 // If vt_stub is null, then return null to signal handler to report the SEGV error. 1053 if (vt_stub == nullptr) return nullptr; 1054 1055 if (vt_stub->is_abstract_method_error(pc)) { 1056 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 1057 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 1058 // Instead of throwing the abstract method error here directly, we re-resolve 1059 // and will throw the AbstractMethodError during resolve. As a result, we'll 1060 // get a more detailed error message. 1061 return SharedRuntime::get_handle_wrong_method_stub(); 1062 } else { 1063 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 1064 // Assert that the signal comes from the expected location in stub code. 1065 assert(vt_stub->is_null_pointer_exception(pc), 1066 "obtained signal from unexpected location in stub code"); 1067 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1068 } 1069 } else { 1070 CodeBlob* cb = CodeCache::find_blob(pc); 1071 1072 // If code blob is null, then return null to signal handler to report the SEGV error. 1073 if (cb == nullptr) return nullptr; 1074 1075 // Exception happened in CodeCache. Must be either: 1076 // 1. Inline-cache check in C2I handler blob, 1077 // 2. Inline-cache check in nmethod, or 1078 // 3. Implicit null exception in nmethod 1079 1080 if (!cb->is_nmethod()) { 1081 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 1082 if (!is_in_blob) { 1083 // Allow normal crash reporting to handle this 1084 return nullptr; 1085 } 1086 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 1087 // There is no handler here, so we will simply unwind. 1088 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1089 } 1090 1091 // Otherwise, it's a compiled method. Consult its exception handlers. 1092 nmethod* nm = cb->as_nmethod(); 1093 if (nm->inlinecache_check_contains(pc)) { 1094 // exception happened inside inline-cache check code 1095 // => the nmethod is not yet active (i.e., the frame 1096 // is not set up yet) => use return address pushed by 1097 // caller => don't push another return address 1098 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 1099 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1100 } 1101 1102 if (nm->method()->is_method_handle_intrinsic()) { 1103 // exception happened inside MH dispatch code, similar to a vtable stub 1104 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 1105 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1106 } 1107 1108 #ifndef PRODUCT 1109 _implicit_null_throws++; 1110 #endif 1111 target_pc = nm->continuation_for_implicit_null_exception(pc); 1112 // If there's an unexpected fault, target_pc might be null, 1113 // in which case we want to fall through into the normal 1114 // error handling code. 1115 } 1116 1117 break; // fall through 1118 } 1119 1120 1121 case IMPLICIT_DIVIDE_BY_ZERO: { 1122 nmethod* nm = CodeCache::find_nmethod(pc); 1123 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1124 #ifndef PRODUCT 1125 _implicit_div0_throws++; 1126 #endif 1127 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1128 // If there's an unexpected fault, target_pc might be null, 1129 // in which case we want to fall through into the normal 1130 // error handling code. 1131 break; // fall through 1132 } 1133 1134 default: ShouldNotReachHere(); 1135 } 1136 1137 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1138 1139 if (exception_kind == IMPLICIT_NULL) { 1140 #ifndef PRODUCT 1141 // for AbortVMOnException flag 1142 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1143 #endif //PRODUCT 1144 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1145 } else { 1146 #ifndef PRODUCT 1147 // for AbortVMOnException flag 1148 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1149 #endif //PRODUCT 1150 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1151 } 1152 return target_pc; 1153 } 1154 1155 ShouldNotReachHere(); 1156 return nullptr; 1157 } 1158 1159 1160 /** 1161 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1162 * installed in the native function entry of all native Java methods before 1163 * they get linked to their actual native methods. 1164 * 1165 * \note 1166 * This method actually never gets called! The reason is because 1167 * the interpreter's native entries call NativeLookup::lookup() which 1168 * throws the exception when the lookup fails. The exception is then 1169 * caught and forwarded on the return from NativeLookup::lookup() call 1170 * before the call to the native function. This might change in the future. 1171 */ 1172 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1173 { 1174 // We return a bad value here to make sure that the exception is 1175 // forwarded before we look at the return value. 1176 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1177 } 1178 JNI_END 1179 1180 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1181 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1182 } 1183 1184 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1185 #if INCLUDE_JVMCI 1186 if (!obj->klass()->has_finalizer()) { 1187 return; 1188 } 1189 #endif // INCLUDE_JVMCI 1190 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1191 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1192 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1193 JRT_END 1194 1195 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1196 assert(thread != nullptr, "No thread"); 1197 if (thread == nullptr) { 1198 return 0; 1199 } 1200 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1201 "current cannot touch oops after its GC barrier is detached."); 1202 oop obj = thread->threadObj(); 1203 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1204 } 1205 1206 /** 1207 * This function ought to be a void function, but cannot be because 1208 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1209 * 6254741. Once that is fixed we can remove the dummy return value. 1210 */ 1211 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1212 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1213 } 1214 1215 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1216 return dtrace_object_alloc(thread, o, o->size()); 1217 } 1218 1219 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1220 assert(DTraceAllocProbes, "wrong call"); 1221 Klass* klass = o->klass(); 1222 Symbol* name = klass->name(); 1223 HOTSPOT_OBJECT_ALLOC( 1224 get_java_tid(thread), 1225 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1226 return 0; 1227 } 1228 1229 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1230 JavaThread* current, Method* method)) 1231 assert(current == JavaThread::current(), "pre-condition"); 1232 1233 assert(DTraceMethodProbes, "wrong call"); 1234 Symbol* kname = method->klass_name(); 1235 Symbol* name = method->name(); 1236 Symbol* sig = method->signature(); 1237 HOTSPOT_METHOD_ENTRY( 1238 get_java_tid(current), 1239 (char *) kname->bytes(), kname->utf8_length(), 1240 (char *) name->bytes(), name->utf8_length(), 1241 (char *) sig->bytes(), sig->utf8_length()); 1242 return 0; 1243 JRT_END 1244 1245 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1246 JavaThread* current, Method* method)) 1247 assert(current == JavaThread::current(), "pre-condition"); 1248 assert(DTraceMethodProbes, "wrong call"); 1249 Symbol* kname = method->klass_name(); 1250 Symbol* name = method->name(); 1251 Symbol* sig = method->signature(); 1252 HOTSPOT_METHOD_RETURN( 1253 get_java_tid(current), 1254 (char *) kname->bytes(), kname->utf8_length(), 1255 (char *) name->bytes(), name->utf8_length(), 1256 (char *) sig->bytes(), sig->utf8_length()); 1257 return 0; 1258 JRT_END 1259 1260 1261 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1262 // for a call current in progress, i.e., arguments has been pushed on stack 1263 // put callee has not been invoked yet. Used by: resolve virtual/static, 1264 // vtable updates, etc. Caller frame must be compiled. 1265 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1266 JavaThread* current = THREAD; 1267 ResourceMark rm(current); 1268 1269 // last java frame on stack (which includes native call frames) 1270 vframeStream vfst(current, true); // Do not skip and javaCalls 1271 1272 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1273 } 1274 1275 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1276 nmethod* caller = vfst.nm(); 1277 1278 address pc = vfst.frame_pc(); 1279 { // Get call instruction under lock because another thread may be busy patching it. 1280 CompiledICLocker ic_locker(caller); 1281 return caller->attached_method_before_pc(pc); 1282 } 1283 return nullptr; 1284 } 1285 1286 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1287 // for a call current in progress, i.e., arguments has been pushed on stack 1288 // but callee has not been invoked yet. Caller frame must be compiled. 1289 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1290 CallInfo& callinfo, TRAPS) { 1291 Handle receiver; 1292 Handle nullHandle; // create a handy null handle for exception returns 1293 JavaThread* current = THREAD; 1294 1295 assert(!vfst.at_end(), "Java frame must exist"); 1296 1297 // Find caller and bci from vframe 1298 methodHandle caller(current, vfst.method()); 1299 int bci = vfst.bci(); 1300 1301 if (caller->is_continuation_enter_intrinsic()) { 1302 bc = Bytecodes::_invokestatic; 1303 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1304 return receiver; 1305 } 1306 1307 Bytecode_invoke bytecode(caller, bci); 1308 int bytecode_index = bytecode.index(); 1309 bc = bytecode.invoke_code(); 1310 1311 methodHandle attached_method(current, extract_attached_method(vfst)); 1312 if (attached_method.not_null()) { 1313 Method* callee = bytecode.static_target(CHECK_NH); 1314 vmIntrinsics::ID id = callee->intrinsic_id(); 1315 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1316 // it attaches statically resolved method to the call site. 1317 if (MethodHandles::is_signature_polymorphic(id) && 1318 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1319 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1320 1321 // Adjust invocation mode according to the attached method. 1322 switch (bc) { 1323 case Bytecodes::_invokevirtual: 1324 if (attached_method->method_holder()->is_interface()) { 1325 bc = Bytecodes::_invokeinterface; 1326 } 1327 break; 1328 case Bytecodes::_invokeinterface: 1329 if (!attached_method->method_holder()->is_interface()) { 1330 bc = Bytecodes::_invokevirtual; 1331 } 1332 break; 1333 case Bytecodes::_invokehandle: 1334 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1335 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1336 : Bytecodes::_invokevirtual; 1337 } 1338 break; 1339 default: 1340 break; 1341 } 1342 } 1343 } 1344 1345 assert(bc != Bytecodes::_illegal, "not initialized"); 1346 1347 bool has_receiver = bc != Bytecodes::_invokestatic && 1348 bc != Bytecodes::_invokedynamic && 1349 bc != Bytecodes::_invokehandle; 1350 1351 // Find receiver for non-static call 1352 if (has_receiver) { 1353 // This register map must be update since we need to find the receiver for 1354 // compiled frames. The receiver might be in a register. 1355 RegisterMap reg_map2(current, 1356 RegisterMap::UpdateMap::include, 1357 RegisterMap::ProcessFrames::include, 1358 RegisterMap::WalkContinuation::skip); 1359 frame stubFrame = current->last_frame(); 1360 // Caller-frame is a compiled frame 1361 frame callerFrame = stubFrame.sender(®_map2); 1362 1363 if (attached_method.is_null()) { 1364 Method* callee = bytecode.static_target(CHECK_NH); 1365 if (callee == nullptr) { 1366 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1367 } 1368 } 1369 1370 // Retrieve from a compiled argument list 1371 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1372 assert(oopDesc::is_oop_or_null(receiver()), ""); 1373 1374 if (receiver.is_null()) { 1375 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1376 } 1377 } 1378 1379 // Resolve method 1380 if (attached_method.not_null()) { 1381 // Parameterized by attached method. 1382 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1383 } else { 1384 // Parameterized by bytecode. 1385 constantPoolHandle constants(current, caller->constants()); 1386 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1387 } 1388 1389 #ifdef ASSERT 1390 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1391 if (has_receiver) { 1392 assert(receiver.not_null(), "should have thrown exception"); 1393 Klass* receiver_klass = receiver->klass(); 1394 Klass* rk = nullptr; 1395 if (attached_method.not_null()) { 1396 // In case there's resolved method attached, use its holder during the check. 1397 rk = attached_method->method_holder(); 1398 } else { 1399 // Klass is already loaded. 1400 constantPoolHandle constants(current, caller->constants()); 1401 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1402 } 1403 Klass* static_receiver_klass = rk; 1404 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1405 "actual receiver must be subclass of static receiver klass"); 1406 if (receiver_klass->is_instance_klass()) { 1407 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1408 tty->print_cr("ERROR: Klass not yet initialized!!"); 1409 receiver_klass->print(); 1410 } 1411 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1412 } 1413 } 1414 #endif 1415 1416 return receiver; 1417 } 1418 1419 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1420 JavaThread* current = THREAD; 1421 ResourceMark rm(current); 1422 // We need first to check if any Java activations (compiled, interpreted) 1423 // exist on the stack since last JavaCall. If not, we need 1424 // to get the target method from the JavaCall wrapper. 1425 vframeStream vfst(current, true); // Do not skip any javaCalls 1426 methodHandle callee_method; 1427 if (vfst.at_end()) { 1428 // No Java frames were found on stack since we did the JavaCall. 1429 // Hence the stack can only contain an entry_frame. We need to 1430 // find the target method from the stub frame. 1431 RegisterMap reg_map(current, 1432 RegisterMap::UpdateMap::skip, 1433 RegisterMap::ProcessFrames::include, 1434 RegisterMap::WalkContinuation::skip); 1435 frame fr = current->last_frame(); 1436 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1437 fr = fr.sender(®_map); 1438 assert(fr.is_entry_frame(), "must be"); 1439 // fr is now pointing to the entry frame. 1440 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1441 } else { 1442 Bytecodes::Code bc; 1443 CallInfo callinfo; 1444 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1445 callee_method = methodHandle(current, callinfo.selected_method()); 1446 } 1447 assert(callee_method()->is_method(), "must be"); 1448 return callee_method; 1449 } 1450 1451 // Resolves a call. 1452 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1453 JavaThread* current = THREAD; 1454 ResourceMark rm(current); 1455 RegisterMap cbl_map(current, 1456 RegisterMap::UpdateMap::skip, 1457 RegisterMap::ProcessFrames::include, 1458 RegisterMap::WalkContinuation::skip); 1459 frame caller_frame = current->last_frame().sender(&cbl_map); 1460 1461 CodeBlob* caller_cb = caller_frame.cb(); 1462 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1463 nmethod* caller_nm = caller_cb->as_nmethod(); 1464 1465 // determine call info & receiver 1466 // note: a) receiver is null for static calls 1467 // b) an exception is thrown if receiver is null for non-static calls 1468 CallInfo call_info; 1469 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1470 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1471 1472 NoSafepointVerifier nsv; 1473 1474 methodHandle callee_method(current, call_info.selected_method()); 1475 1476 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1477 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1478 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1479 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1480 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1481 1482 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1483 1484 // tracing/debugging/statistics 1485 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1486 (is_virtual) ? (&_resolve_virtual_ctr) : 1487 (&_resolve_static_ctr); 1488 AtomicAccess::inc(addr); 1489 1490 #ifndef PRODUCT 1491 if (TraceCallFixup) { 1492 ResourceMark rm(current); 1493 tty->print("resolving %s%s (%s) call to", 1494 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1495 Bytecodes::name(invoke_code)); 1496 callee_method->print_short_name(tty); 1497 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1498 p2i(caller_frame.pc()), p2i(callee_method->code())); 1499 } 1500 #endif 1501 1502 if (invoke_code == Bytecodes::_invokestatic) { 1503 assert(callee_method->method_holder()->is_initialized() || 1504 callee_method->method_holder()->is_reentrant_initialization(current), 1505 "invalid class initialization state for invoke_static"); 1506 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1507 // In order to keep class initialization check, do not patch call 1508 // site for static call when the class is not fully initialized. 1509 // Proper check is enforced by call site re-resolution on every invocation. 1510 // 1511 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1512 // explicit class initialization check is put in nmethod entry (VEP). 1513 assert(callee_method->method_holder()->is_linked(), "must be"); 1514 return callee_method; 1515 } 1516 } 1517 1518 1519 // JSR 292 key invariant: 1520 // If the resolved method is a MethodHandle invoke target, the call 1521 // site must be a MethodHandle call site, because the lambda form might tail-call 1522 // leaving the stack in a state unknown to either caller or callee 1523 1524 // Compute entry points. The computation of the entry points is independent of 1525 // patching the call. 1526 1527 // Make sure the callee nmethod does not get deoptimized and removed before 1528 // we are done patching the code. 1529 1530 1531 CompiledICLocker ml(caller_nm); 1532 if (is_virtual && !is_optimized) { 1533 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1534 inline_cache->update(&call_info, receiver->klass()); 1535 } else { 1536 // Callsite is a direct call - set it to the destination method 1537 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1538 callsite->set(callee_method); 1539 } 1540 1541 return callee_method; 1542 } 1543 1544 // Inline caches exist only in compiled code 1545 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1546 PerfTraceTime timer(_perf_ic_miss_total_time); 1547 1548 #ifdef ASSERT 1549 RegisterMap reg_map(current, 1550 RegisterMap::UpdateMap::skip, 1551 RegisterMap::ProcessFrames::include, 1552 RegisterMap::WalkContinuation::skip); 1553 frame stub_frame = current->last_frame(); 1554 assert(stub_frame.is_runtime_frame(), "sanity check"); 1555 frame caller_frame = stub_frame.sender(®_map); 1556 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1557 #endif /* ASSERT */ 1558 1559 methodHandle callee_method; 1560 JRT_BLOCK 1561 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1562 // Return Method* through TLS 1563 current->set_vm_result_metadata(callee_method()); 1564 JRT_BLOCK_END 1565 // return compiled code entry point after potential safepoints 1566 return get_resolved_entry(current, callee_method); 1567 JRT_END 1568 1569 1570 // Handle call site that has been made non-entrant 1571 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1572 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1573 1574 // 6243940 We might end up in here if the callee is deoptimized 1575 // as we race to call it. We don't want to take a safepoint if 1576 // the caller was interpreted because the caller frame will look 1577 // interpreted to the stack walkers and arguments are now 1578 // "compiled" so it is much better to make this transition 1579 // invisible to the stack walking code. The i2c path will 1580 // place the callee method in the callee_target. It is stashed 1581 // there because if we try and find the callee by normal means a 1582 // safepoint is possible and have trouble gc'ing the compiled args. 1583 RegisterMap reg_map(current, 1584 RegisterMap::UpdateMap::skip, 1585 RegisterMap::ProcessFrames::include, 1586 RegisterMap::WalkContinuation::skip); 1587 frame stub_frame = current->last_frame(); 1588 assert(stub_frame.is_runtime_frame(), "sanity check"); 1589 frame caller_frame = stub_frame.sender(®_map); 1590 1591 if (caller_frame.is_interpreted_frame() || 1592 caller_frame.is_entry_frame() || 1593 caller_frame.is_upcall_stub_frame()) { 1594 Method* callee = current->callee_target(); 1595 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1596 current->set_vm_result_metadata(callee); 1597 current->set_callee_target(nullptr); 1598 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1599 // Bypass class initialization checks in c2i when caller is in native. 1600 // JNI calls to static methods don't have class initialization checks. 1601 // Fast class initialization checks are present in c2i adapters and call into 1602 // SharedRuntime::handle_wrong_method() on the slow path. 1603 // 1604 // JVM upcalls may land here as well, but there's a proper check present in 1605 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1606 // so bypassing it in c2i adapter is benign. 1607 return callee->get_c2i_no_clinit_check_entry(); 1608 } else { 1609 return callee->get_c2i_entry(); 1610 } 1611 } 1612 1613 // Must be compiled to compiled path which is safe to stackwalk 1614 methodHandle callee_method; 1615 JRT_BLOCK 1616 // Force resolving of caller (if we called from compiled frame) 1617 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1618 current->set_vm_result_metadata(callee_method()); 1619 JRT_BLOCK_END 1620 // return compiled code entry point after potential safepoints 1621 return get_resolved_entry(current, callee_method); 1622 JRT_END 1623 1624 // Handle abstract method call 1625 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1626 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1627 1628 // Verbose error message for AbstractMethodError. 1629 // Get the called method from the invoke bytecode. 1630 vframeStream vfst(current, true); 1631 assert(!vfst.at_end(), "Java frame must exist"); 1632 methodHandle caller(current, vfst.method()); 1633 Bytecode_invoke invoke(caller, vfst.bci()); 1634 DEBUG_ONLY( invoke.verify(); ) 1635 1636 // Find the compiled caller frame. 1637 RegisterMap reg_map(current, 1638 RegisterMap::UpdateMap::include, 1639 RegisterMap::ProcessFrames::include, 1640 RegisterMap::WalkContinuation::skip); 1641 frame stubFrame = current->last_frame(); 1642 assert(stubFrame.is_runtime_frame(), "must be"); 1643 frame callerFrame = stubFrame.sender(®_map); 1644 assert(callerFrame.is_compiled_frame(), "must be"); 1645 1646 // Install exception and return forward entry. 1647 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1648 JRT_BLOCK 1649 methodHandle callee(current, invoke.static_target(current)); 1650 if (!callee.is_null()) { 1651 oop recv = callerFrame.retrieve_receiver(®_map); 1652 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1653 res = StubRoutines::forward_exception_entry(); 1654 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1655 } 1656 JRT_BLOCK_END 1657 return res; 1658 JRT_END 1659 1660 // return verified_code_entry if interp_only_mode is not set for the current thread; 1661 // otherwise return c2i entry. 1662 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1663 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1664 // In interp_only_mode we need to go to the interpreted entry 1665 // The c2i won't patch in this mode -- see fixup_callers_callsite 1666 return callee_method->get_c2i_entry(); 1667 } 1668 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1669 return callee_method->verified_code_entry(); 1670 } 1671 1672 // resolve a static call and patch code 1673 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1674 PerfTraceTime timer(_perf_resolve_static_total_time); 1675 1676 methodHandle callee_method; 1677 bool enter_special = false; 1678 JRT_BLOCK 1679 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1680 current->set_vm_result_metadata(callee_method()); 1681 JRT_BLOCK_END 1682 // return compiled code entry point after potential safepoints 1683 return get_resolved_entry(current, callee_method); 1684 JRT_END 1685 1686 // resolve virtual call and update inline cache to monomorphic 1687 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1688 PerfTraceTime timer(_perf_resolve_virtual_total_time); 1689 1690 methodHandle callee_method; 1691 JRT_BLOCK 1692 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1693 current->set_vm_result_metadata(callee_method()); 1694 JRT_BLOCK_END 1695 // return compiled code entry point after potential safepoints 1696 return get_resolved_entry(current, callee_method); 1697 JRT_END 1698 1699 1700 // Resolve a virtual call that can be statically bound (e.g., always 1701 // monomorphic, so it has no inline cache). Patch code to resolved target. 1702 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1703 PerfTraceTime timer(_perf_resolve_opt_virtual_total_time); 1704 1705 methodHandle callee_method; 1706 JRT_BLOCK 1707 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1708 current->set_vm_result_metadata(callee_method()); 1709 JRT_BLOCK_END 1710 // return compiled code entry point after potential safepoints 1711 return get_resolved_entry(current, callee_method); 1712 JRT_END 1713 1714 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1715 JavaThread* current = THREAD; 1716 ResourceMark rm(current); 1717 CallInfo call_info; 1718 Bytecodes::Code bc; 1719 1720 // receiver is null for static calls. An exception is thrown for null 1721 // receivers for non-static calls 1722 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1723 1724 methodHandle callee_method(current, call_info.selected_method()); 1725 1726 AtomicAccess::inc(&_ic_miss_ctr); 1727 1728 #ifndef PRODUCT 1729 // Statistics & Tracing 1730 if (TraceCallFixup) { 1731 ResourceMark rm(current); 1732 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1733 callee_method->print_short_name(tty); 1734 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1735 } 1736 1737 if (ICMissHistogram) { 1738 MutexLocker m(VMStatistic_lock); 1739 RegisterMap reg_map(current, 1740 RegisterMap::UpdateMap::skip, 1741 RegisterMap::ProcessFrames::include, 1742 RegisterMap::WalkContinuation::skip); 1743 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1744 // produce statistics under the lock 1745 trace_ic_miss(f.pc()); 1746 } 1747 #endif 1748 1749 // install an event collector so that when a vtable stub is created the 1750 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1751 // event can't be posted when the stub is created as locks are held 1752 // - instead the event will be deferred until the event collector goes 1753 // out of scope. 1754 JvmtiDynamicCodeEventCollector event_collector; 1755 1756 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1757 RegisterMap reg_map(current, 1758 RegisterMap::UpdateMap::skip, 1759 RegisterMap::ProcessFrames::include, 1760 RegisterMap::WalkContinuation::skip); 1761 frame caller_frame = current->last_frame().sender(®_map); 1762 CodeBlob* cb = caller_frame.cb(); 1763 nmethod* caller_nm = cb->as_nmethod(); 1764 1765 CompiledICLocker ml(caller_nm); 1766 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1767 inline_cache->update(&call_info, receiver()->klass()); 1768 1769 return callee_method; 1770 } 1771 1772 // 1773 // Resets a call-site in compiled code so it will get resolved again. 1774 // This routines handles both virtual call sites, optimized virtual call 1775 // sites, and static call sites. Typically used to change a call sites 1776 // destination from compiled to interpreted. 1777 // 1778 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1779 JavaThread* current = THREAD; 1780 ResourceMark rm(current); 1781 RegisterMap reg_map(current, 1782 RegisterMap::UpdateMap::skip, 1783 RegisterMap::ProcessFrames::include, 1784 RegisterMap::WalkContinuation::skip); 1785 frame stub_frame = current->last_frame(); 1786 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1787 frame caller = stub_frame.sender(®_map); 1788 1789 // Do nothing if the frame isn't a live compiled frame. 1790 // nmethod could be deoptimized by the time we get here 1791 // so no update to the caller is needed. 1792 1793 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1794 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1795 1796 address pc = caller.pc(); 1797 1798 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1799 assert(caller_nm != nullptr, "did not find caller nmethod"); 1800 1801 // Default call_addr is the location of the "basic" call. 1802 // Determine the address of the call we a reresolving. With 1803 // Inline Caches we will always find a recognizable call. 1804 // With Inline Caches disabled we may or may not find a 1805 // recognizable call. We will always find a call for static 1806 // calls and for optimized virtual calls. For vanilla virtual 1807 // calls it depends on the state of the UseInlineCaches switch. 1808 // 1809 // With Inline Caches disabled we can get here for a virtual call 1810 // for two reasons: 1811 // 1 - calling an abstract method. The vtable for abstract methods 1812 // will run us thru handle_wrong_method and we will eventually 1813 // end up in the interpreter to throw the ame. 1814 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1815 // call and between the time we fetch the entry address and 1816 // we jump to it the target gets deoptimized. Similar to 1 1817 // we will wind up in the interprter (thru a c2i with c2). 1818 // 1819 CompiledICLocker ml(caller_nm); 1820 address call_addr = caller_nm->call_instruction_address(pc); 1821 1822 if (call_addr != nullptr) { 1823 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1824 // bytes back in the instruction stream so we must also check for reloc info. 1825 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1826 bool ret = iter.next(); // Get item 1827 if (ret) { 1828 switch (iter.type()) { 1829 case relocInfo::static_call_type: 1830 case relocInfo::opt_virtual_call_type: { 1831 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1832 cdc->set_to_clean(); 1833 break; 1834 } 1835 1836 case relocInfo::virtual_call_type: { 1837 // compiled, dispatched call (which used to call an interpreted method) 1838 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1839 inline_cache->set_to_clean(); 1840 break; 1841 } 1842 default: 1843 break; 1844 } 1845 } 1846 } 1847 } 1848 1849 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1850 1851 AtomicAccess::inc(&_wrong_method_ctr); 1852 1853 #ifndef PRODUCT 1854 if (TraceCallFixup) { 1855 ResourceMark rm(current); 1856 tty->print("handle_wrong_method reresolving call to"); 1857 callee_method->print_short_name(tty); 1858 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1859 } 1860 #endif 1861 1862 return callee_method; 1863 } 1864 1865 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1866 // The faulting unsafe accesses should be changed to throw the error 1867 // synchronously instead. Meanwhile the faulting instruction will be 1868 // skipped over (effectively turning it into a no-op) and an 1869 // asynchronous exception will be raised which the thread will 1870 // handle at a later point. If the instruction is a load it will 1871 // return garbage. 1872 1873 // Request an async exception. 1874 thread->set_pending_unsafe_access_error(); 1875 1876 // Return address of next instruction to execute. 1877 return next_pc; 1878 } 1879 1880 #ifdef ASSERT 1881 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1882 const BasicType* sig_bt, 1883 const VMRegPair* regs) { 1884 ResourceMark rm; 1885 const int total_args_passed = method->size_of_parameters(); 1886 const VMRegPair* regs_with_member_name = regs; 1887 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1888 1889 const int member_arg_pos = total_args_passed - 1; 1890 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1891 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1892 1893 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1894 1895 for (int i = 0; i < member_arg_pos; i++) { 1896 VMReg a = regs_with_member_name[i].first(); 1897 VMReg b = regs_without_member_name[i].first(); 1898 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1899 } 1900 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1901 } 1902 #endif 1903 1904 // --------------------------------------------------------------------------- 1905 // We are calling the interpreter via a c2i. Normally this would mean that 1906 // we were called by a compiled method. However we could have lost a race 1907 // where we went int -> i2c -> c2i and so the caller could in fact be 1908 // interpreted. If the caller is compiled we attempt to patch the caller 1909 // so he no longer calls into the interpreter. 1910 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1911 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1912 1913 // It's possible that deoptimization can occur at a call site which hasn't 1914 // been resolved yet, in which case this function will be called from 1915 // an nmethod that has been patched for deopt and we can ignore the 1916 // request for a fixup. 1917 // Also it is possible that we lost a race in that from_compiled_entry 1918 // is now back to the i2c in that case we don't need to patch and if 1919 // we did we'd leap into space because the callsite needs to use 1920 // "to interpreter" stub in order to load up the Method*. Don't 1921 // ask me how I know this... 1922 1923 // Result from nmethod::is_unloading is not stable across safepoints. 1924 NoSafepointVerifier nsv; 1925 1926 nmethod* callee = method->code(); 1927 if (callee == nullptr) { 1928 return; 1929 } 1930 1931 // write lock needed because we might patch call site by set_to_clean() 1932 // and is_unloading() can modify nmethod's state 1933 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1934 1935 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1936 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1937 return; 1938 } 1939 1940 // The check above makes sure this is an nmethod. 1941 nmethod* caller = cb->as_nmethod(); 1942 1943 // Get the return PC for the passed caller PC. 1944 address return_pc = caller_pc + frame::pc_return_offset; 1945 1946 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1947 return; 1948 } 1949 1950 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1951 CompiledICLocker ic_locker(caller); 1952 ResourceMark rm; 1953 1954 // If we got here through a static call or opt_virtual call, then we know where the 1955 // call address would be; let's peek at it 1956 address callsite_addr = (address)nativeCall_before(return_pc); 1957 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1958 if (!iter.next()) { 1959 // No reloc entry found; not a static or optimized virtual call 1960 return; 1961 } 1962 1963 relocInfo::relocType type = iter.reloc()->type(); 1964 if (type != relocInfo::static_call_type && 1965 type != relocInfo::opt_virtual_call_type) { 1966 return; 1967 } 1968 1969 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1970 callsite->set_to_clean(); 1971 JRT_END 1972 1973 1974 // same as JVM_Arraycopy, but called directly from compiled code 1975 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1976 oopDesc* dest, jint dest_pos, 1977 jint length, 1978 JavaThread* current)) { 1979 #ifndef PRODUCT 1980 _slow_array_copy_ctr++; 1981 #endif 1982 // Check if we have null pointers 1983 if (src == nullptr || dest == nullptr) { 1984 THROW(vmSymbols::java_lang_NullPointerException()); 1985 } 1986 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1987 // even though the copy_array API also performs dynamic checks to ensure 1988 // that src and dest are truly arrays (and are conformable). 1989 // The copy_array mechanism is awkward and could be removed, but 1990 // the compilers don't call this function except as a last resort, 1991 // so it probably doesn't matter. 1992 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1993 (arrayOopDesc*)dest, dest_pos, 1994 length, current); 1995 } 1996 JRT_END 1997 1998 // The caller of generate_class_cast_message() (or one of its callers) 1999 // must use a ResourceMark in order to correctly free the result. 2000 char* SharedRuntime::generate_class_cast_message( 2001 JavaThread* thread, Klass* caster_klass) { 2002 2003 // Get target class name from the checkcast instruction 2004 vframeStream vfst(thread, true); 2005 assert(!vfst.at_end(), "Java frame must exist"); 2006 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 2007 constantPoolHandle cpool(thread, vfst.method()->constants()); 2008 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 2009 Symbol* target_klass_name = nullptr; 2010 if (target_klass == nullptr) { 2011 // This klass should be resolved, but just in case, get the name in the klass slot. 2012 target_klass_name = cpool->klass_name_at(cc.index()); 2013 } 2014 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 2015 } 2016 2017 2018 // The caller of generate_class_cast_message() (or one of its callers) 2019 // must use a ResourceMark in order to correctly free the result. 2020 char* SharedRuntime::generate_class_cast_message( 2021 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 2022 const char* caster_name = caster_klass->external_name(); 2023 2024 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 2025 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 2026 target_klass->external_name(); 2027 2028 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 2029 2030 const char* caster_klass_description = ""; 2031 const char* target_klass_description = ""; 2032 const char* klass_separator = ""; 2033 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 2034 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 2035 } else { 2036 caster_klass_description = caster_klass->class_in_module_of_loader(); 2037 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 2038 klass_separator = (target_klass != nullptr) ? "; " : ""; 2039 } 2040 2041 // add 3 for parenthesis and preceding space 2042 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 2043 2044 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2045 if (message == nullptr) { 2046 // Shouldn't happen, but don't cause even more problems if it does 2047 message = const_cast<char*>(caster_klass->external_name()); 2048 } else { 2049 jio_snprintf(message, 2050 msglen, 2051 "class %s cannot be cast to class %s (%s%s%s)", 2052 caster_name, 2053 target_name, 2054 caster_klass_description, 2055 klass_separator, 2056 target_klass_description 2057 ); 2058 } 2059 return message; 2060 } 2061 2062 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2063 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2064 JRT_END 2065 2066 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2067 if (!SafepointSynchronize::is_synchronizing()) { 2068 // Only try quick_enter() if we're not trying to reach a safepoint 2069 // so that the calling thread reaches the safepoint more quickly. 2070 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 2071 return; 2072 } 2073 } 2074 // NO_ASYNC required because an async exception on the state transition destructor 2075 // would leave you with the lock held and it would never be released. 2076 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2077 // and the model is that an exception implies the method failed. 2078 JRT_BLOCK_NO_ASYNC 2079 Handle h_obj(THREAD, obj); 2080 ObjectSynchronizer::enter(h_obj, lock, current); 2081 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2082 JRT_BLOCK_END 2083 } 2084 2085 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2086 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2087 SharedRuntime::monitor_enter_helper(obj, lock, current); 2088 JRT_END 2089 2090 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2091 assert(JavaThread::current() == current, "invariant"); 2092 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2093 ExceptionMark em(current); 2094 2095 // Check if C2_MacroAssembler::fast_unlock() or 2096 // C2_MacroAssembler::fast_unlock_lightweight() unlocked an inflated 2097 // monitor before going slow path. Since there is no safepoint 2098 // polling when calling into the VM, we can be sure that the monitor 2099 // hasn't been deallocated. 2100 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2101 if (m != nullptr) { 2102 assert(!m->has_owner(current), "must be"); 2103 current->clear_unlocked_inflated_monitor(); 2104 2105 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2106 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2107 // Some other thread acquired the lock (or the monitor was 2108 // deflated). Either way we are done. 2109 return; 2110 } 2111 } 2112 2113 // The object could become unlocked through a JNI call, which we have no other checks for. 2114 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2115 if (obj->is_unlocked()) { 2116 if (CheckJNICalls) { 2117 fatal("Object has been unlocked by JNI"); 2118 } 2119 return; 2120 } 2121 ObjectSynchronizer::exit(obj, lock, current); 2122 } 2123 2124 // Handles the uncommon cases of monitor unlocking in compiled code 2125 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2126 assert(current == JavaThread::current(), "pre-condition"); 2127 SharedRuntime::monitor_exit_helper(obj, lock, current); 2128 JRT_END 2129 2130 #ifndef PRODUCT 2131 2132 void SharedRuntime::print_statistics() { 2133 ttyLocker ttyl; 2134 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2135 2136 SharedRuntime::print_ic_miss_histogram_on(tty); 2137 SharedRuntime::print_counters_on(tty); 2138 AdapterHandlerLibrary::print_statistics_on(tty); 2139 2140 if (xtty != nullptr) xtty->tail("statistics"); 2141 } 2142 2143 //void SharedRuntime::print_counters_on(outputStream* st) { 2144 // // Dump the JRT_ENTRY counters 2145 // if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr); 2146 // if (_new_array_ctr) st->print_cr("%5u new array requires GC", _new_array_ctr); 2147 // if (_multi2_ctr) st->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2148 // if (_multi3_ctr) st->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2149 // if (_multi4_ctr) st->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2150 // if (_multi5_ctr) st->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2151 // 2152 // st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2153 // st->print_cr("%5u wrong method", _wrong_method_ctr); 2154 // st->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2155 // st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2156 // st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2157 // 2158 // if (_mon_enter_stub_ctr) st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2159 // if (_mon_exit_stub_ctr) st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2160 // if (_mon_enter_ctr) st->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2161 // if (_mon_exit_ctr) st->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2162 // if (_partial_subtype_ctr) st->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2163 // if (_jbyte_array_copy_ctr) st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2164 // if (_jshort_array_copy_ctr) st->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2165 // if (_jint_array_copy_ctr) st->print_cr("%5u int array copies", _jint_array_copy_ctr); 2166 // if (_jlong_array_copy_ctr) st->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2167 // if (_oop_array_copy_ctr) st->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2168 // if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2169 // if (_unsafe_array_copy_ctr) st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2170 // if (_generic_array_copy_ctr) st->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2171 // if (_slow_array_copy_ctr) st->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2172 // if (_find_handler_ctr) st->print_cr("%5u find exception handler", _find_handler_ctr); 2173 // if (_rethrow_ctr) st->print_cr("%5u rethrow handler", _rethrow_ctr); 2174 // if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2175 //} 2176 2177 inline double percent(int64_t x, int64_t y) { 2178 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2179 } 2180 2181 class MethodArityHistogram { 2182 public: 2183 enum { MAX_ARITY = 256 }; 2184 private: 2185 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2186 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2187 static uint64_t _total_compiled_calls; 2188 static uint64_t _max_compiled_calls_per_method; 2189 static int _max_arity; // max. arity seen 2190 static int _max_size; // max. arg size seen 2191 2192 static void add_method_to_histogram(nmethod* nm) { 2193 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2194 if (method != nullptr) { 2195 ArgumentCount args(method->signature()); 2196 int arity = args.size() + (method->is_static() ? 0 : 1); 2197 int argsize = method->size_of_parameters(); 2198 arity = MIN2(arity, MAX_ARITY-1); 2199 argsize = MIN2(argsize, MAX_ARITY-1); 2200 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2201 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2202 _total_compiled_calls += count; 2203 _arity_histogram[arity] += count; 2204 _size_histogram[argsize] += count; 2205 _max_arity = MAX2(_max_arity, arity); 2206 _max_size = MAX2(_max_size, argsize); 2207 } 2208 } 2209 2210 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2211 const int N = MIN2(9, n); 2212 double sum = 0; 2213 double weighted_sum = 0; 2214 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2215 if (sum >= 1) { // prevent divide by zero or divide overflow 2216 double rest = sum; 2217 double percent = sum / 100; 2218 for (int i = 0; i <= N; i++) { 2219 rest -= (double)histo[i]; 2220 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2221 } 2222 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2223 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2224 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2225 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2226 } else { 2227 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2228 } 2229 } 2230 2231 void print_histogram() { 2232 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2233 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2234 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2235 print_histogram_helper(_max_size, _size_histogram, "size"); 2236 tty->cr(); 2237 } 2238 2239 public: 2240 MethodArityHistogram() { 2241 // Take the Compile_lock to protect against changes in the CodeBlob structures 2242 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2243 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2244 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2245 _max_arity = _max_size = 0; 2246 _total_compiled_calls = 0; 2247 _max_compiled_calls_per_method = 0; 2248 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2249 CodeCache::nmethods_do(add_method_to_histogram); 2250 print_histogram(); 2251 } 2252 }; 2253 2254 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2255 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2256 uint64_t MethodArityHistogram::_total_compiled_calls; 2257 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2258 int MethodArityHistogram::_max_arity; 2259 int MethodArityHistogram::_max_size; 2260 2261 void SharedRuntime::print_call_statistics_on(outputStream* st) { 2262 tty->print_cr("Calls from compiled code:"); 2263 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2264 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2265 int64_t mono_i = _nof_interface_calls; 2266 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2267 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2268 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2269 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2270 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2271 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2272 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2273 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2274 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2275 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2276 tty->cr(); 2277 tty->print_cr("Note 1: counter updates are not MT-safe."); 2278 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2279 tty->print_cr(" %% in nested categories are relative to their category"); 2280 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2281 tty->cr(); 2282 2283 MethodArityHistogram h; 2284 } 2285 #endif 2286 2287 #ifndef PRODUCT 2288 static int _lookups; // number of calls to lookup 2289 static int _equals; // number of buckets checked with matching hash 2290 static int _archived_hits; // number of successful lookups in archived table 2291 static int _runtime_hits; // number of successful lookups in runtime table 2292 #endif 2293 2294 // A simple wrapper class around the calling convention information 2295 // that allows sharing of adapters for the same calling convention. 2296 class AdapterFingerPrint : public MetaspaceObj { 2297 private: 2298 enum { 2299 _basic_type_bits = 4, 2300 _basic_type_mask = right_n_bits(_basic_type_bits), 2301 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2302 }; 2303 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2304 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2305 2306 int _length; 2307 2308 static int data_offset() { return sizeof(AdapterFingerPrint); } 2309 int* data_pointer() { 2310 return (int*)((address)this + data_offset()); 2311 } 2312 2313 // Private construtor. Use allocate() to get an instance. 2314 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) { 2315 int* data = data_pointer(); 2316 // Pack the BasicTypes with 8 per int 2317 assert(len == length(total_args_passed), "sanity"); 2318 _length = len; 2319 int sig_index = 0; 2320 for (int index = 0; index < _length; index++) { 2321 int value = 0; 2322 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2323 int bt = adapter_encoding(sig_bt[sig_index++]); 2324 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2325 value = (value << _basic_type_bits) | bt; 2326 } 2327 data[index] = value; 2328 } 2329 } 2330 2331 // Call deallocate instead 2332 ~AdapterFingerPrint() { 2333 ShouldNotCallThis(); 2334 } 2335 2336 static int length(int total_args) { 2337 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int; 2338 } 2339 2340 static int compute_size_in_words(int len) { 2341 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int))); 2342 } 2343 2344 // Remap BasicTypes that are handled equivalently by the adapters. 2345 // These are correct for the current system but someday it might be 2346 // necessary to make this mapping platform dependent. 2347 static int adapter_encoding(BasicType in) { 2348 switch (in) { 2349 case T_BOOLEAN: 2350 case T_BYTE: 2351 case T_SHORT: 2352 case T_CHAR: 2353 // There are all promoted to T_INT in the calling convention 2354 return T_INT; 2355 2356 case T_OBJECT: 2357 case T_ARRAY: 2358 // In other words, we assume that any register good enough for 2359 // an int or long is good enough for a managed pointer. 2360 #ifdef _LP64 2361 return T_LONG; 2362 #else 2363 return T_INT; 2364 #endif 2365 2366 case T_INT: 2367 case T_LONG: 2368 case T_FLOAT: 2369 case T_DOUBLE: 2370 case T_VOID: 2371 return in; 2372 2373 default: 2374 ShouldNotReachHere(); 2375 return T_CONFLICT; 2376 } 2377 } 2378 2379 void* operator new(size_t size, size_t fp_size) throw() { 2380 assert(fp_size >= size, "sanity check"); 2381 void* p = AllocateHeap(fp_size, mtCode); 2382 memset(p, 0, fp_size); 2383 return p; 2384 } 2385 2386 template<typename Function> 2387 void iterate_args(Function function) { 2388 for (int i = 0; i < length(); i++) { 2389 unsigned val = (unsigned)value(i); 2390 // args are packed so that first/lower arguments are in the highest 2391 // bits of each int value, so iterate from highest to the lowest 2392 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2393 unsigned v = (val >> j) & _basic_type_mask; 2394 if (v == 0) { 2395 continue; 2396 } 2397 function(v); 2398 } 2399 } 2400 } 2401 2402 public: 2403 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) { 2404 int len = length(total_args_passed); 2405 int size_in_bytes = BytesPerWord * compute_size_in_words(len); 2406 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len); 2407 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match"); 2408 return afp; 2409 } 2410 2411 static void deallocate(AdapterFingerPrint* fp) { 2412 FreeHeap(fp); 2413 } 2414 2415 int value(int index) { 2416 int* data = data_pointer(); 2417 return data[index]; 2418 } 2419 2420 int length() { 2421 return _length; 2422 } 2423 2424 unsigned int compute_hash() { 2425 int hash = 0; 2426 for (int i = 0; i < length(); i++) { 2427 int v = value(i); 2428 //Add arithmetic operation to the hash, like +3 to improve hashing 2429 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2430 } 2431 return (unsigned int)hash; 2432 } 2433 2434 const char* as_string() { 2435 stringStream st; 2436 st.print("0x"); 2437 for (int i = 0; i < length(); i++) { 2438 st.print("%x", value(i)); 2439 } 2440 return st.as_string(); 2441 } 2442 2443 const char* as_basic_args_string() { 2444 stringStream st; 2445 bool long_prev = false; 2446 iterate_args([&] (int arg) { 2447 if (long_prev) { 2448 long_prev = false; 2449 if (arg == T_VOID) { 2450 st.print("J"); 2451 } else { 2452 st.print("L"); 2453 } 2454 } 2455 switch (arg) { 2456 case T_INT: st.print("I"); break; 2457 case T_LONG: long_prev = true; break; 2458 case T_FLOAT: st.print("F"); break; 2459 case T_DOUBLE: st.print("D"); break; 2460 case T_VOID: break; 2461 default: ShouldNotReachHere(); 2462 } 2463 }); 2464 if (long_prev) { 2465 st.print("L"); 2466 } 2467 return st.as_string(); 2468 } 2469 2470 BasicType* as_basic_type(int& nargs) { 2471 nargs = 0; 2472 GrowableArray<BasicType> btarray; 2473 bool long_prev = false; 2474 2475 iterate_args([&] (int arg) { 2476 if (long_prev) { 2477 long_prev = false; 2478 if (arg == T_VOID) { 2479 btarray.append(T_LONG); 2480 } else { 2481 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter 2482 } 2483 } 2484 switch (arg) { 2485 case T_INT: // fallthrough 2486 case T_FLOAT: // fallthrough 2487 case T_DOUBLE: 2488 case T_VOID: 2489 btarray.append((BasicType)arg); 2490 break; 2491 case T_LONG: 2492 long_prev = true; 2493 break; 2494 default: ShouldNotReachHere(); 2495 } 2496 }); 2497 2498 if (long_prev) { 2499 btarray.append(T_OBJECT); 2500 } 2501 2502 nargs = btarray.length(); 2503 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs); 2504 int index = 0; 2505 GrowableArrayIterator<BasicType> iter = btarray.begin(); 2506 while (iter != btarray.end()) { 2507 sig_bt[index++] = *iter; 2508 ++iter; 2509 } 2510 assert(index == btarray.length(), "sanity check"); 2511 #ifdef ASSERT 2512 { 2513 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt); 2514 assert(this->equals(compare_fp), "sanity check"); 2515 AdapterFingerPrint::deallocate(compare_fp); 2516 } 2517 #endif 2518 return sig_bt; 2519 } 2520 2521 bool equals(AdapterFingerPrint* other) { 2522 if (other->_length != _length) { 2523 return false; 2524 } else { 2525 for (int i = 0; i < _length; i++) { 2526 if (value(i) != other->value(i)) { 2527 return false; 2528 } 2529 } 2530 } 2531 return true; 2532 } 2533 2534 // methods required by virtue of being a MetaspaceObj 2535 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2536 int size() const { return compute_size_in_words(_length); } 2537 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2538 2539 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2540 NOT_PRODUCT(_equals++); 2541 return fp1->equals(fp2); 2542 } 2543 2544 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2545 return fp->compute_hash(); 2546 } 2547 }; 2548 2549 #if INCLUDE_CDS 2550 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2551 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2552 } 2553 2554 class ArchivedAdapterTable : public OffsetCompactHashtable< 2555 AdapterFingerPrint*, 2556 AdapterHandlerEntry*, 2557 adapter_fp_equals_compact_hashtable_entry> {}; 2558 #endif // INCLUDE_CDS 2559 2560 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2561 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2562 AnyObj::C_HEAP, mtCode, 2563 AdapterFingerPrint::compute_hash, 2564 AdapterFingerPrint::equals>; 2565 static AdapterHandlerTable* _adapter_handler_table; 2566 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2567 2568 // Find a entry with the same fingerprint if it exists 2569 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) { 2570 NOT_PRODUCT(_lookups++); 2571 assert_lock_strong(AdapterHandlerLibrary_lock); 2572 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2573 AdapterHandlerEntry* entry = nullptr; 2574 #if INCLUDE_CDS 2575 // if we are building the archive then the archived adapter table is 2576 // not valid and we need to use the ones added to the runtime table 2577 if (AOTCodeCache::is_using_adapter()) { 2578 // Search archived table first. It is read-only table so can be searched without lock 2579 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2580 #ifndef PRODUCT 2581 if (entry != nullptr) { 2582 _archived_hits++; 2583 } 2584 #endif 2585 } 2586 #endif // INCLUDE_CDS 2587 if (entry == nullptr) { 2588 assert_lock_strong(AdapterHandlerLibrary_lock); 2589 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2590 if (entry_p != nullptr) { 2591 entry = *entry_p; 2592 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2593 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2594 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2595 #ifndef PRODUCT 2596 _runtime_hits++; 2597 #endif 2598 } 2599 } 2600 AdapterFingerPrint::deallocate(fp); 2601 return entry; 2602 } 2603 2604 #ifndef PRODUCT 2605 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) { 2606 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2607 return sizeof(*key) + sizeof(*a); 2608 }; 2609 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2610 ts.print(st, "AdapterHandlerTable"); 2611 st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2612 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2613 int total_hits = _archived_hits + _runtime_hits; 2614 st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)", 2615 _lookups, _equals, total_hits, _archived_hits, _runtime_hits); 2616 } 2617 #endif // !PRODUCT 2618 2619 // --------------------------------------------------------------------------- 2620 // Implementation of AdapterHandlerLibrary 2621 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2622 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2623 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2624 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2625 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2626 #if INCLUDE_CDS 2627 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2628 #endif // INCLUDE_CDS 2629 static const int AdapterHandlerLibrary_size = 16*K; 2630 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2631 volatile uint AdapterHandlerLibrary::_id_counter = 0; 2632 2633 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2634 assert(_buffer != nullptr, "should be initialized"); 2635 return _buffer; 2636 } 2637 2638 static void post_adapter_creation(const AdapterHandlerEntry* entry) { 2639 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2640 AdapterBlob* adapter_blob = entry->adapter_blob(); 2641 char blob_id[256]; 2642 jio_snprintf(blob_id, 2643 sizeof(blob_id), 2644 "%s(%s)", 2645 adapter_blob->name(), 2646 entry->fingerprint()->as_string()); 2647 if (Forte::is_enabled()) { 2648 Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end()); 2649 } 2650 2651 if (JvmtiExport::should_post_dynamic_code_generated()) { 2652 JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end()); 2653 } 2654 } 2655 } 2656 2657 void AdapterHandlerLibrary::initialize() { 2658 { 2659 ResourceMark rm; 2660 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2661 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2662 } 2663 2664 #if INCLUDE_CDS 2665 // Link adapters in AOT Cache to their code in AOT Code Cache 2666 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) { 2667 link_aot_adapters(); 2668 lookup_simple_adapters(); 2669 return; 2670 } 2671 #endif // INCLUDE_CDS 2672 2673 ResourceMark rm; 2674 { 2675 MutexLocker mu(AdapterHandlerLibrary_lock); 2676 2677 _no_arg_handler = create_adapter(0, nullptr); 2678 2679 BasicType obj_args[] = { T_OBJECT }; 2680 _obj_arg_handler = create_adapter(1, obj_args); 2681 2682 BasicType int_args[] = { T_INT }; 2683 _int_arg_handler = create_adapter(1, int_args); 2684 2685 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2686 _obj_int_arg_handler = create_adapter(2, obj_int_args); 2687 2688 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2689 _obj_obj_arg_handler = create_adapter(2, obj_obj_args); 2690 2691 // we should always get an entry back but we don't have any 2692 // associated blob on Zero 2693 assert(_no_arg_handler != nullptr && 2694 _obj_arg_handler != nullptr && 2695 _int_arg_handler != nullptr && 2696 _obj_int_arg_handler != nullptr && 2697 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created"); 2698 } 2699 2700 // Outside of the lock 2701 #ifndef ZERO 2702 // no blobs to register when we are on Zero 2703 post_adapter_creation(_no_arg_handler); 2704 post_adapter_creation(_obj_arg_handler); 2705 post_adapter_creation(_int_arg_handler); 2706 post_adapter_creation(_obj_int_arg_handler); 2707 post_adapter_creation(_obj_obj_arg_handler); 2708 #endif // ZERO 2709 } 2710 2711 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2712 uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1); 2713 assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods"); 2714 return AdapterHandlerEntry::allocate(id, fingerprint); 2715 } 2716 2717 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2718 int total_args_passed = method->size_of_parameters(); // All args on stack 2719 if (total_args_passed == 0) { 2720 return _no_arg_handler; 2721 } else if (total_args_passed == 1) { 2722 if (!method->is_static()) { 2723 return _obj_arg_handler; 2724 } 2725 switch (method->signature()->char_at(1)) { 2726 case JVM_SIGNATURE_CLASS: 2727 case JVM_SIGNATURE_ARRAY: 2728 return _obj_arg_handler; 2729 case JVM_SIGNATURE_INT: 2730 case JVM_SIGNATURE_BOOLEAN: 2731 case JVM_SIGNATURE_CHAR: 2732 case JVM_SIGNATURE_BYTE: 2733 case JVM_SIGNATURE_SHORT: 2734 return _int_arg_handler; 2735 } 2736 } else if (total_args_passed == 2 && 2737 !method->is_static()) { 2738 switch (method->signature()->char_at(1)) { 2739 case JVM_SIGNATURE_CLASS: 2740 case JVM_SIGNATURE_ARRAY: 2741 return _obj_obj_arg_handler; 2742 case JVM_SIGNATURE_INT: 2743 case JVM_SIGNATURE_BOOLEAN: 2744 case JVM_SIGNATURE_CHAR: 2745 case JVM_SIGNATURE_BYTE: 2746 case JVM_SIGNATURE_SHORT: 2747 return _obj_int_arg_handler; 2748 } 2749 } 2750 return nullptr; 2751 } 2752 2753 class AdapterSignatureIterator : public SignatureIterator { 2754 private: 2755 BasicType stack_sig_bt[16]; 2756 BasicType* sig_bt; 2757 int index; 2758 2759 public: 2760 AdapterSignatureIterator(Symbol* signature, 2761 fingerprint_t fingerprint, 2762 bool is_static, 2763 int total_args_passed) : 2764 SignatureIterator(signature, fingerprint), 2765 index(0) 2766 { 2767 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2768 if (!is_static) { // Pass in receiver first 2769 sig_bt[index++] = T_OBJECT; 2770 } 2771 do_parameters_on(this); 2772 } 2773 2774 BasicType* basic_types() { 2775 return sig_bt; 2776 } 2777 2778 #ifdef ASSERT 2779 int slots() { 2780 return index; 2781 } 2782 #endif 2783 2784 private: 2785 2786 friend class SignatureIterator; // so do_parameters_on can call do_type 2787 void do_type(BasicType type) { 2788 sig_bt[index++] = type; 2789 if (type == T_LONG || type == T_DOUBLE) { 2790 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2791 } 2792 } 2793 }; 2794 2795 2796 const char* AdapterHandlerEntry::_entry_names[] = { 2797 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 2798 }; 2799 2800 #ifdef ASSERT 2801 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) { 2802 // we can only check for the same code if there is any 2803 #ifndef ZERO 2804 AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true); 2805 assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison"); 2806 assert(comparison_entry->compare_code(cached_entry), "code must match"); 2807 // Release the one just created 2808 AdapterHandlerEntry::deallocate(comparison_entry); 2809 # endif // ZERO 2810 } 2811 #endif /* ASSERT*/ 2812 2813 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2814 assert(!method->is_abstract(), "abstract methods do not have adapters"); 2815 // Use customized signature handler. Need to lock around updates to 2816 // the _adapter_handler_table (it is not safe for concurrent readers 2817 // and a single writer: this could be fixed if it becomes a 2818 // problem). 2819 2820 // Fast-path for trivial adapters 2821 AdapterHandlerEntry* entry = get_simple_adapter(method); 2822 if (entry != nullptr) { 2823 return entry; 2824 } 2825 2826 ResourceMark rm; 2827 bool new_entry = false; 2828 2829 // Fill in the signature array, for the calling-convention call. 2830 int total_args_passed = method->size_of_parameters(); // All args on stack 2831 2832 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2833 method->is_static(), total_args_passed); 2834 assert(si.slots() == total_args_passed, ""); 2835 BasicType* sig_bt = si.basic_types(); 2836 { 2837 MutexLocker mu(AdapterHandlerLibrary_lock); 2838 2839 // Lookup method signature's fingerprint 2840 entry = lookup(total_args_passed, sig_bt); 2841 2842 if (entry != nullptr) { 2843 #ifndef ZERO 2844 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 2845 #endif 2846 #ifdef ASSERT 2847 if (!entry->in_aot_cache() && VerifyAdapterSharing) { 2848 verify_adapter_sharing(total_args_passed, sig_bt, entry); 2849 } 2850 #endif 2851 } else { 2852 entry = create_adapter(total_args_passed, sig_bt); 2853 if (entry != nullptr) { 2854 new_entry = true; 2855 } 2856 } 2857 } 2858 2859 // Outside of the lock 2860 if (new_entry) { 2861 post_adapter_creation(entry); 2862 } 2863 return entry; 2864 } 2865 2866 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 2867 ResourceMark rm; 2868 const char* name = AdapterHandlerLibrary::name(handler); 2869 const uint32_t id = AdapterHandlerLibrary::id(handler); 2870 2871 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name); 2872 if (blob != nullptr) { 2873 handler->set_adapter_blob(blob->as_adapter_blob()); 2874 } 2875 } 2876 2877 #ifndef PRODUCT 2878 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) { 2879 ttyLocker ttyl; 2880 ResourceMark rm; 2881 int insts_size; 2882 // on Zero the blob may be null 2883 handler->print_adapter_on(tty); 2884 AdapterBlob* adapter_blob = handler->adapter_blob(); 2885 if (adapter_blob == nullptr) { 2886 return; 2887 } 2888 insts_size = adapter_blob->code_size(); 2889 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 2890 handler->fingerprint()->as_basic_args_string(), 2891 handler->fingerprint()->as_string(), insts_size); 2892 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 2893 if (Verbose || PrintStubCode) { 2894 address first_pc = adapter_blob->content_begin(); 2895 if (first_pc != nullptr) { 2896 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 2897 st->cr(); 2898 } 2899 } 2900 } 2901 #endif // PRODUCT 2902 2903 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT], 2904 int entry_offset[AdapterBlob::ENTRY_COUNT]) { 2905 entry_offset[AdapterBlob::I2C] = 0; 2906 entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C]; 2907 entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C]; 2908 if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) { 2909 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1; 2910 } else { 2911 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C]; 2912 } 2913 } 2914 2915 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler, 2916 int total_args_passed, 2917 BasicType* sig_bt, 2918 bool is_transient) { 2919 if (log_is_enabled(Info, perf, class, link)) { 2920 ClassLoader::perf_method_adapters_count()->inc(); 2921 } 2922 2923 #ifndef ZERO 2924 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2925 CodeBuffer buffer(buf); 2926 short buffer_locs[20]; 2927 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2928 sizeof(buffer_locs)/sizeof(relocInfo)); 2929 MacroAssembler masm(&buffer); 2930 VMRegPair stack_regs[16]; 2931 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2932 2933 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2934 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2935 address entry_address[AdapterBlob::ENTRY_COUNT]; 2936 SharedRuntime::generate_i2c2i_adapters(&masm, 2937 total_args_passed, 2938 comp_args_on_stack, 2939 sig_bt, 2940 regs, 2941 entry_address); 2942 // On zero there is no code to save and no need to create a blob and 2943 // or relocate the handler. 2944 int entry_offset[AdapterBlob::ENTRY_COUNT]; 2945 address_to_offset(entry_address, entry_offset); 2946 #ifdef ASSERT 2947 if (VerifyAdapterSharing) { 2948 handler->save_code(buf->code_begin(), buffer.insts_size()); 2949 if (is_transient) { 2950 return true; 2951 } 2952 } 2953 #endif 2954 AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset); 2955 if (adapter_blob == nullptr) { 2956 // CodeCache is full, disable compilation 2957 // Ought to log this but compile log is only per compile thread 2958 // and we're some non descript Java thread. 2959 return false; 2960 } 2961 handler->set_adapter_blob(adapter_blob); 2962 if (!is_transient && AOTCodeCache::is_dumping_adapter()) { 2963 // try to save generated code 2964 const char* name = AdapterHandlerLibrary::name(handler); 2965 const uint32_t id = AdapterHandlerLibrary::id(handler); 2966 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name); 2967 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled"); 2968 } 2969 #endif // ZERO 2970 2971 #ifndef PRODUCT 2972 // debugging support 2973 if (PrintAdapterHandlers || PrintStubCode) { 2974 print_adapter_handler_info(tty, handler); 2975 } 2976 #endif 2977 2978 return true; 2979 } 2980 2981 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed, 2982 BasicType* sig_bt, 2983 bool is_transient) { 2984 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2985 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 2986 if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) { 2987 AdapterHandlerEntry::deallocate(handler); 2988 return nullptr; 2989 } 2990 if (!is_transient) { 2991 assert_lock_strong(AdapterHandlerLibrary_lock); 2992 _adapter_handler_table->put(fp, handler); 2993 } 2994 return handler; 2995 } 2996 2997 #if INCLUDE_CDS 2998 void AdapterHandlerEntry::remove_unshareable_info() { 2999 #ifdef ASSERT 3000 _saved_code = nullptr; 3001 _saved_code_length = 0; 3002 #endif // ASSERT 3003 _adapter_blob = nullptr; 3004 _linked = false; 3005 } 3006 3007 class CopyAdapterTableToArchive : StackObj { 3008 private: 3009 CompactHashtableWriter* _writer; 3010 ArchiveBuilder* _builder; 3011 public: 3012 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 3013 _builder(ArchiveBuilder::current()) 3014 {} 3015 3016 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 3017 LogStreamHandle(Trace, aot) lsh; 3018 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 3019 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 3020 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 3021 assert(buffered_fp != nullptr,"sanity check"); 3022 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 3023 assert(buffered_entry != nullptr,"sanity check"); 3024 3025 uint hash = fp->compute_hash(); 3026 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 3027 _writer->add(hash, delta); 3028 if (lsh.is_enabled()) { 3029 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 3030 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 3031 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 3032 } 3033 } else { 3034 if (lsh.is_enabled()) { 3035 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 3036 } 3037 } 3038 return true; 3039 } 3040 }; 3041 3042 void AdapterHandlerLibrary::dump_aot_adapter_table() { 3043 CompactHashtableStats stats; 3044 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 3045 CopyAdapterTableToArchive copy(&writer); 3046 _adapter_handler_table->iterate(©); 3047 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 3048 } 3049 3050 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 3051 _aot_adapter_handler_table.serialize_header(soc); 3052 } 3053 3054 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 3055 #ifdef ASSERT 3056 if (TestAOTAdapterLinkFailure) { 3057 return; 3058 } 3059 #endif 3060 lookup_aot_cache(handler); 3061 #ifndef PRODUCT 3062 // debugging support 3063 if (PrintAdapterHandlers || PrintStubCode) { 3064 print_adapter_handler_info(tty, handler); 3065 } 3066 #endif 3067 } 3068 3069 // This method is used during production run to link archived adapters (stored in AOT Cache) 3070 // to their code in AOT Code Cache 3071 void AdapterHandlerEntry::link() { 3072 ResourceMark rm; 3073 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 3074 bool generate_code = false; 3075 // Generate code only if AOTCodeCache is not available, or 3076 // caching adapters is disabled, or we fail to link 3077 // the AdapterHandlerEntry to its code in the AOTCodeCache 3078 if (AOTCodeCache::is_using_adapter()) { 3079 AdapterHandlerLibrary::link_aot_adapter_handler(this); 3080 // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null 3081 if (_adapter_blob == nullptr) { 3082 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 3083 generate_code = true; 3084 } 3085 } else { 3086 generate_code = true; 3087 } 3088 if (generate_code) { 3089 int nargs; 3090 BasicType* bt = _fingerprint->as_basic_type(nargs); 3091 if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) { 3092 // Don't throw exceptions during VM initialization because java.lang.* classes 3093 // might not have been initialized, causing problems when constructing the 3094 // Java exception object. 3095 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 3096 } 3097 } 3098 if (_adapter_blob != nullptr) { 3099 post_adapter_creation(this); 3100 } 3101 assert(_linked, "AdapterHandlerEntry must now be linked"); 3102 } 3103 3104 void AdapterHandlerLibrary::link_aot_adapters() { 3105 uint max_id = 0; 3106 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available"); 3107 /* It is possible that some adapters generated in assembly phase are not stored in the cache. 3108 * That implies adapter ids of the adapters in the cache may not be contiguous. 3109 * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may 3110 * result in collision of adapter ids between AOT stored handlers and runtime generated handlers. 3111 * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers. 3112 */ 3113 _aot_adapter_handler_table.iterate([&](AdapterHandlerEntry* entry) { 3114 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 3115 entry->link(); 3116 max_id = MAX2(max_id, entry->id()); 3117 }); 3118 // Set adapter id to the maximum id found in the AOTCache 3119 assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage"); 3120 _id_counter = max_id; 3121 } 3122 3123 // This method is called during production run to lookup simple adapters 3124 // in the archived adapter handler table 3125 void AdapterHandlerLibrary::lookup_simple_adapters() { 3126 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 3127 3128 MutexLocker mu(AdapterHandlerLibrary_lock); 3129 _no_arg_handler = lookup(0, nullptr); 3130 3131 BasicType obj_args[] = { T_OBJECT }; 3132 _obj_arg_handler = lookup(1, obj_args); 3133 3134 BasicType int_args[] = { T_INT }; 3135 _int_arg_handler = lookup(1, int_args); 3136 3137 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 3138 _obj_int_arg_handler = lookup(2, obj_int_args); 3139 3140 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 3141 _obj_obj_arg_handler = lookup(2, obj_obj_args); 3142 3143 assert(_no_arg_handler != nullptr && 3144 _obj_arg_handler != nullptr && 3145 _int_arg_handler != nullptr && 3146 _obj_int_arg_handler != nullptr && 3147 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3148 assert(_no_arg_handler->is_linked() && 3149 _obj_arg_handler->is_linked() && 3150 _int_arg_handler->is_linked() && 3151 _obj_int_arg_handler->is_linked() && 3152 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3153 } 3154 #endif // INCLUDE_CDS 3155 3156 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3157 LogStreamHandle(Trace, aot) lsh; 3158 if (lsh.is_enabled()) { 3159 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3160 lsh.cr(); 3161 } 3162 it->push(&_fingerprint); 3163 } 3164 3165 AdapterHandlerEntry::~AdapterHandlerEntry() { 3166 if (_fingerprint != nullptr) { 3167 AdapterFingerPrint::deallocate(_fingerprint); 3168 _fingerprint = nullptr; 3169 } 3170 #ifdef ASSERT 3171 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3172 #endif 3173 FreeHeap(this); 3174 } 3175 3176 3177 #ifdef ASSERT 3178 // Capture the code before relocation so that it can be compared 3179 // against other versions. If the code is captured after relocation 3180 // then relative instructions won't be equivalent. 3181 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3182 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3183 _saved_code_length = length; 3184 memcpy(_saved_code, buffer, length); 3185 } 3186 3187 3188 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3189 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3190 3191 if (other->_saved_code_length != _saved_code_length) { 3192 return false; 3193 } 3194 3195 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3196 } 3197 #endif 3198 3199 3200 /** 3201 * Create a native wrapper for this native method. The wrapper converts the 3202 * Java-compiled calling convention to the native convention, handles 3203 * arguments, and transitions to native. On return from the native we transition 3204 * back to java blocking if a safepoint is in progress. 3205 */ 3206 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3207 ResourceMark rm; 3208 nmethod* nm = nullptr; 3209 3210 // Check if memory should be freed before allocation 3211 CodeCache::gc_on_allocation(); 3212 3213 assert(method->is_native(), "must be native"); 3214 assert(method->is_special_native_intrinsic() || 3215 method->has_native_function(), "must have something valid to call!"); 3216 3217 { 3218 // Perform the work while holding the lock, but perform any printing outside the lock 3219 MutexLocker mu(AdapterHandlerLibrary_lock); 3220 // See if somebody beat us to it 3221 if (method->code() != nullptr) { 3222 return; 3223 } 3224 3225 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3226 assert(compile_id > 0, "Must generate native wrapper"); 3227 3228 3229 ResourceMark rm; 3230 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3231 if (buf != nullptr) { 3232 CodeBuffer buffer(buf); 3233 3234 if (method->is_continuation_enter_intrinsic()) { 3235 buffer.initialize_stubs_size(192); 3236 } 3237 3238 struct { double data[20]; } locs_buf; 3239 struct { double data[20]; } stubs_locs_buf; 3240 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3241 #if defined(AARCH64) || defined(PPC64) 3242 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3243 // in the constant pool to ensure ordering between the barrier and oops 3244 // accesses. For native_wrappers we need a constant. 3245 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3246 // static java call that is resolved in the runtime. 3247 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3248 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3249 } 3250 #endif 3251 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3252 MacroAssembler _masm(&buffer); 3253 3254 // Fill in the signature array, for the calling-convention call. 3255 const int total_args_passed = method->size_of_parameters(); 3256 3257 VMRegPair stack_regs[16]; 3258 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3259 3260 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3261 method->is_static(), total_args_passed); 3262 BasicType* sig_bt = si.basic_types(); 3263 assert(si.slots() == total_args_passed, ""); 3264 BasicType ret_type = si.return_type(); 3265 3266 // Now get the compiled-Java arguments layout. 3267 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3268 3269 // Generate the compiled-to-native wrapper code 3270 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3271 3272 if (nm != nullptr) { 3273 { 3274 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3275 if (nm->make_in_use()) { 3276 method->set_code(method, nm); 3277 } 3278 } 3279 3280 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3281 if (directive->PrintAssemblyOption) { 3282 nm->print_code(); 3283 } 3284 DirectivesStack::release(directive); 3285 } 3286 } 3287 } // Unlock AdapterHandlerLibrary_lock 3288 3289 3290 // Install the generated code. 3291 if (nm != nullptr) { 3292 const char *msg = method->is_static() ? "(static)" : ""; 3293 CompileTask::print_ul(nm, msg); 3294 if (PrintCompilation) { 3295 ttyLocker ttyl; 3296 CompileTask::print(tty, nm, msg); 3297 } 3298 nm->post_compiled_method_load_event(); 3299 } 3300 } 3301 3302 // ------------------------------------------------------------------------- 3303 // Java-Java calling convention 3304 // (what you use when Java calls Java) 3305 3306 //------------------------------name_for_receiver---------------------------------- 3307 // For a given signature, return the VMReg for parameter 0. 3308 VMReg SharedRuntime::name_for_receiver() { 3309 VMRegPair regs; 3310 BasicType sig_bt = T_OBJECT; 3311 (void) java_calling_convention(&sig_bt, ®s, 1); 3312 // Return argument 0 register. In the LP64 build pointers 3313 // take 2 registers, but the VM wants only the 'main' name. 3314 return regs.first(); 3315 } 3316 3317 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3318 // This method is returning a data structure allocating as a 3319 // ResourceObject, so do not put any ResourceMarks in here. 3320 3321 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3322 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3323 int cnt = 0; 3324 if (has_receiver) { 3325 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3326 } 3327 3328 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3329 BasicType type = ss.type(); 3330 sig_bt[cnt++] = type; 3331 if (is_double_word_type(type)) 3332 sig_bt[cnt++] = T_VOID; 3333 } 3334 3335 if (has_appendix) { 3336 sig_bt[cnt++] = T_OBJECT; 3337 } 3338 3339 assert(cnt < 256, "grow table size"); 3340 3341 int comp_args_on_stack; 3342 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3343 3344 // the calling convention doesn't count out_preserve_stack_slots so 3345 // we must add that in to get "true" stack offsets. 3346 3347 if (comp_args_on_stack) { 3348 for (int i = 0; i < cnt; i++) { 3349 VMReg reg1 = regs[i].first(); 3350 if (reg1->is_stack()) { 3351 // Yuck 3352 reg1 = reg1->bias(out_preserve_stack_slots()); 3353 } 3354 VMReg reg2 = regs[i].second(); 3355 if (reg2->is_stack()) { 3356 // Yuck 3357 reg2 = reg2->bias(out_preserve_stack_slots()); 3358 } 3359 regs[i].set_pair(reg2, reg1); 3360 } 3361 } 3362 3363 // results 3364 *arg_size = cnt; 3365 return regs; 3366 } 3367 3368 // OSR Migration Code 3369 // 3370 // This code is used convert interpreter frames into compiled frames. It is 3371 // called from very start of a compiled OSR nmethod. A temp array is 3372 // allocated to hold the interesting bits of the interpreter frame. All 3373 // active locks are inflated to allow them to move. The displaced headers and 3374 // active interpreter locals are copied into the temp buffer. Then we return 3375 // back to the compiled code. The compiled code then pops the current 3376 // interpreter frame off the stack and pushes a new compiled frame. Then it 3377 // copies the interpreter locals and displaced headers where it wants. 3378 // Finally it calls back to free the temp buffer. 3379 // 3380 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3381 3382 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3383 assert(current == JavaThread::current(), "pre-condition"); 3384 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 3385 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3386 // frame. The stack watermark code below ensures that the interpreted frame is processed 3387 // before it gets unwound. This is helpful as the size of the compiled frame could be 3388 // larger than the interpreted frame, which could result in the new frame not being 3389 // processed correctly. 3390 StackWatermarkSet::before_unwind(current); 3391 3392 // 3393 // This code is dependent on the memory layout of the interpreter local 3394 // array and the monitors. On all of our platforms the layout is identical 3395 // so this code is shared. If some platform lays the their arrays out 3396 // differently then this code could move to platform specific code or 3397 // the code here could be modified to copy items one at a time using 3398 // frame accessor methods and be platform independent. 3399 3400 frame fr = current->last_frame(); 3401 assert(fr.is_interpreted_frame(), ""); 3402 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3403 3404 // Figure out how many monitors are active. 3405 int active_monitor_count = 0; 3406 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3407 kptr < fr.interpreter_frame_monitor_begin(); 3408 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3409 if (kptr->obj() != nullptr) active_monitor_count++; 3410 } 3411 3412 // QQQ we could place number of active monitors in the array so that compiled code 3413 // could double check it. 3414 3415 Method* moop = fr.interpreter_frame_method(); 3416 int max_locals = moop->max_locals(); 3417 // Allocate temp buffer, 1 word per local & 2 per active monitor 3418 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3419 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3420 3421 // Copy the locals. Order is preserved so that loading of longs works. 3422 // Since there's no GC I can copy the oops blindly. 3423 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3424 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3425 (HeapWord*)&buf[0], 3426 max_locals); 3427 3428 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3429 int i = max_locals; 3430 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3431 kptr2 < fr.interpreter_frame_monitor_begin(); 3432 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3433 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3434 BasicLock *lock = kptr2->lock(); 3435 if (UseObjectMonitorTable) { 3436 buf[i] = (intptr_t)lock->object_monitor_cache(); 3437 } 3438 #ifdef ASSERT 3439 else { 3440 buf[i] = badDispHeaderOSR; 3441 } 3442 #endif 3443 i++; 3444 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3445 } 3446 } 3447 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3448 3449 RegisterMap map(current, 3450 RegisterMap::UpdateMap::skip, 3451 RegisterMap::ProcessFrames::include, 3452 RegisterMap::WalkContinuation::skip); 3453 frame sender = fr.sender(&map); 3454 if (sender.is_interpreted_frame()) { 3455 current->push_cont_fastpath(sender.sp()); 3456 } 3457 3458 return buf; 3459 JRT_END 3460 3461 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3462 FREE_C_HEAP_ARRAY(intptr_t, buf); 3463 JRT_END 3464 3465 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3466 bool found = false; 3467 #if INCLUDE_CDS 3468 if (AOTCodeCache::is_using_adapter()) { 3469 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3470 return (found = (b == CodeCache::find_blob(handler->get_i2c_entry()))); 3471 }; 3472 _aot_adapter_handler_table.iterate(findblob_archived_table); 3473 } 3474 #endif // INCLUDE_CDS 3475 if (!found) { 3476 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3477 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 3478 }; 3479 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3480 _adapter_handler_table->iterate(findblob_runtime_table); 3481 } 3482 return found; 3483 } 3484 3485 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) { 3486 return handler->fingerprint()->as_basic_args_string(); 3487 } 3488 3489 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) { 3490 return handler->id(); 3491 } 3492 3493 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3494 bool found = false; 3495 #if INCLUDE_CDS 3496 if (AOTCodeCache::is_using_adapter()) { 3497 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3498 if (b == CodeCache::find_blob(handler->get_i2c_entry())) { 3499 found = true; 3500 st->print("Adapter for signature: "); 3501 handler->print_adapter_on(st); 3502 return true; 3503 } else { 3504 return false; // keep looking 3505 } 3506 }; 3507 _aot_adapter_handler_table.iterate(findblob_archived_table); 3508 } 3509 #endif // INCLUDE_CDS 3510 if (!found) { 3511 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3512 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3513 found = true; 3514 st->print("Adapter for signature: "); 3515 a->print_adapter_on(st); 3516 return true; 3517 } else { 3518 return false; // keep looking 3519 } 3520 }; 3521 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3522 _adapter_handler_table->iterate(findblob_runtime_table); 3523 } 3524 assert(found, "Should have found handler"); 3525 } 3526 3527 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3528 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3529 if (adapter_blob() != nullptr) { 3530 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3531 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3532 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3533 if (get_c2i_no_clinit_check_entry() != nullptr) { 3534 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3535 } 3536 } 3537 st->cr(); 3538 } 3539 3540 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3541 assert(current == JavaThread::current(), "pre-condition"); 3542 StackOverflow* overflow_state = current->stack_overflow_state(); 3543 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3544 overflow_state->set_reserved_stack_activation(current->stack_base()); 3545 JRT_END 3546 3547 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3548 ResourceMark rm(current); 3549 frame activation; 3550 nmethod* nm = nullptr; 3551 int count = 1; 3552 3553 assert(fr.is_java_frame(), "Must start on Java frame"); 3554 3555 RegisterMap map(JavaThread::current(), 3556 RegisterMap::UpdateMap::skip, 3557 RegisterMap::ProcessFrames::skip, 3558 RegisterMap::WalkContinuation::skip); // don't walk continuations 3559 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3560 if (!fr.is_java_frame()) { 3561 continue; 3562 } 3563 3564 Method* method = nullptr; 3565 bool found = false; 3566 if (fr.is_interpreted_frame()) { 3567 method = fr.interpreter_frame_method(); 3568 if (method != nullptr && method->has_reserved_stack_access()) { 3569 found = true; 3570 } 3571 } else { 3572 CodeBlob* cb = fr.cb(); 3573 if (cb != nullptr && cb->is_nmethod()) { 3574 nm = cb->as_nmethod(); 3575 method = nm->method(); 3576 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3577 method = sd->method(); 3578 if (method != nullptr && method->has_reserved_stack_access()) { 3579 found = true; 3580 } 3581 } 3582 } 3583 } 3584 if (found) { 3585 activation = fr; 3586 warning("Potentially dangerous stack overflow in " 3587 "ReservedStackAccess annotated method %s [%d]", 3588 method->name_and_sig_as_C_string(), count++); 3589 EventReservedStackActivation event; 3590 if (event.should_commit()) { 3591 event.set_method(method); 3592 event.commit(); 3593 } 3594 } 3595 } 3596 return activation; 3597 } 3598 3599 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3600 // After any safepoint, just before going back to compiled code, 3601 // we inform the GC that we will be doing initializing writes to 3602 // this object in the future without emitting card-marks, so 3603 // GC may take any compensating steps. 3604 3605 oop new_obj = current->vm_result_oop(); 3606 if (new_obj == nullptr) return; 3607 3608 BarrierSet *bs = BarrierSet::barrier_set(); 3609 bs->on_slowpath_allocation_exit(current, new_obj); 3610 } --- EOF ---