1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "cds/archiveBuilder.hpp" 26 #include "cds/archiveUtils.inline.hpp" 27 #include "classfile/classLoader.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/stringTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/aotCodeCache.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/compiledIC.hpp" 35 #include "code/nmethod.inline.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/abstractCompiler.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jfr/jfrEvents.hpp" 46 #include "jvm.h" 47 #include "logging/log.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "metaprogramming/primitiveConversions.hpp" 51 #include "oops/klass.hpp" 52 #include "oops/method.inline.hpp" 53 #include "oops/objArrayKlass.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/forte.hpp" 56 #include "prims/jvmtiExport.hpp" 57 #include "prims/jvmtiThreadState.hpp" 58 #include "prims/methodHandles.hpp" 59 #include "prims/nativeLookup.hpp" 60 #include "runtime/arguments.hpp" 61 #include "runtime/atomicAccess.hpp" 62 #include "runtime/basicLock.inline.hpp" 63 #include "runtime/frame.inline.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/init.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/java.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/jniHandles.inline.hpp" 70 #include "runtime/osThread.hpp" 71 #include "runtime/perfData.inline.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/stubRoutines.hpp" 75 #include "runtime/synchronizer.hpp" 76 #include "runtime/timerTrace.hpp" 77 #include "runtime/vframe.inline.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "runtime/vm_version.hpp" 80 #include "services/management.hpp" 81 #include "utilities/copy.hpp" 82 #include "utilities/dtrace.hpp" 83 #include "utilities/events.hpp" 84 #include "utilities/globalDefinitions.hpp" 85 #include "utilities/hashTable.hpp" 86 #include "utilities/macros.hpp" 87 #include "utilities/xmlstream.hpp" 88 #ifdef COMPILER1 89 #include "c1/c1_Runtime1.hpp" 90 #endif 91 #ifdef COMPILER2 92 #include "opto/runtime.hpp" 93 #endif 94 #if INCLUDE_JFR 95 #include "jfr/jfr.inline.hpp" 96 #endif 97 98 // Shared runtime stub routines reside in their own unique blob with a 99 // single entry point 100 101 102 #define SHARED_STUB_FIELD_DEFINE(name, type) \ 103 type* SharedRuntime::BLOB_FIELD_NAME(name); 104 SHARED_STUBS_DO(SHARED_STUB_FIELD_DEFINE) 105 #undef SHARED_STUB_FIELD_DEFINE 106 107 nmethod* SharedRuntime::_cont_doYield_stub; 108 109 PerfTickCounters* SharedRuntime::_perf_resolve_opt_virtual_total_time = nullptr; 110 PerfTickCounters* SharedRuntime::_perf_resolve_virtual_total_time = nullptr; 111 PerfTickCounters* SharedRuntime::_perf_resolve_static_total_time = nullptr; 112 PerfTickCounters* SharedRuntime::_perf_handle_wrong_method_total_time = nullptr; 113 PerfTickCounters* SharedRuntime::_perf_ic_miss_total_time = nullptr; 114 115 #if 0 116 // TODO tweak global stub name generation to match this 117 #define SHARED_STUB_NAME_DECLARE(name, type) "Shared Runtime " # name "_blob", 118 const char *SharedRuntime::_stub_names[] = { 119 SHARED_STUBS_DO(SHARED_STUB_NAME_DECLARE) 120 }; 121 #endif 122 123 //----------------------------generate_stubs----------------------------------- 124 void SharedRuntime::generate_initial_stubs() { 125 // Build this early so it's available for the interpreter. 126 _throw_StackOverflowError_blob = 127 generate_throw_exception(StubId::shared_throw_StackOverflowError_id, 128 CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); 129 } 130 131 void SharedRuntime::generate_stubs() { 132 _wrong_method_blob = 133 generate_resolve_blob(StubId::shared_wrong_method_id, 134 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method)); 135 _wrong_method_abstract_blob = 136 generate_resolve_blob(StubId::shared_wrong_method_abstract_id, 137 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract)); 138 _ic_miss_blob = 139 generate_resolve_blob(StubId::shared_ic_miss_id, 140 CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss)); 141 _resolve_opt_virtual_call_blob = 142 generate_resolve_blob(StubId::shared_resolve_opt_virtual_call_id, 143 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C)); 144 _resolve_virtual_call_blob = 145 generate_resolve_blob(StubId::shared_resolve_virtual_call_id, 146 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C)); 147 _resolve_static_call_blob = 148 generate_resolve_blob(StubId::shared_resolve_static_call_id, 149 CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C)); 150 151 _throw_delayed_StackOverflowError_blob = 152 generate_throw_exception(StubId::shared_throw_delayed_StackOverflowError_id, 153 CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError)); 154 155 _throw_AbstractMethodError_blob = 156 generate_throw_exception(StubId::shared_throw_AbstractMethodError_id, 157 CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); 158 159 _throw_IncompatibleClassChangeError_blob = 160 generate_throw_exception(StubId::shared_throw_IncompatibleClassChangeError_id, 161 CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); 162 163 _throw_NullPointerException_at_call_blob = 164 generate_throw_exception(StubId::shared_throw_NullPointerException_at_call_id, 165 CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); 166 167 #if COMPILER2_OR_JVMCI 168 // Vectors are generated only by C2 and JVMCI. 169 bool support_wide = is_wide_vector(MaxVectorSize); 170 if (support_wide) { 171 _polling_page_vectors_safepoint_handler_blob = 172 generate_handler_blob(StubId::shared_polling_page_vectors_safepoint_handler_id, 173 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 174 } 175 #endif // COMPILER2_OR_JVMCI 176 _polling_page_safepoint_handler_blob = 177 generate_handler_blob(StubId::shared_polling_page_safepoint_handler_id, 178 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 179 _polling_page_return_handler_blob = 180 generate_handler_blob(StubId::shared_polling_page_return_handler_id, 181 CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception)); 182 183 generate_deopt_blob(); 184 185 if (UsePerfData) { 186 EXCEPTION_MARK; 187 NEWPERFTICKCOUNTERS(_perf_resolve_opt_virtual_total_time, SUN_CI, "resovle_opt_virtual_call"); 188 NEWPERFTICKCOUNTERS(_perf_resolve_virtual_total_time, SUN_CI, "resovle_virtual_call"); 189 NEWPERFTICKCOUNTERS(_perf_resolve_static_total_time, SUN_CI, "resovle_static_call"); 190 NEWPERFTICKCOUNTERS(_perf_handle_wrong_method_total_time, SUN_CI, "handle_wrong_method"); 191 NEWPERFTICKCOUNTERS(_perf_ic_miss_total_time , SUN_CI, "ic_miss"); 192 if (HAS_PENDING_EXCEPTION) { 193 vm_exit_during_initialization("SharedRuntime::generate_stubs() failed unexpectedly"); 194 } 195 } 196 } 197 198 void SharedRuntime::init_adapter_library() { 199 AdapterHandlerLibrary::initialize(); 200 } 201 202 static void print_counter_on(outputStream* st, const char* name, PerfTickCounters* counter, uint cnt) { 203 st->print(" %-28s " JLONG_FORMAT_W(6) "us", name, counter->elapsed_counter_value_us()); 204 if (TraceThreadTime) { 205 st->print(" (elapsed) " JLONG_FORMAT_W(6) "us (thread)", counter->thread_counter_value_us()); 206 } 207 st->print(" / %5d events", cnt); 208 st->cr(); 209 } 210 211 void SharedRuntime::print_counters_on(outputStream* st) { 212 st->print_cr("SharedRuntime:"); 213 if (UsePerfData) { 214 print_counter_on(st, "resolve_opt_virtual_call:", _perf_resolve_opt_virtual_total_time, _resolve_opt_virtual_ctr); 215 print_counter_on(st, "resolve_virtual_call:", _perf_resolve_virtual_total_time, _resolve_virtual_ctr); 216 print_counter_on(st, "resolve_static_call:", _perf_resolve_static_total_time, _resolve_static_ctr); 217 print_counter_on(st, "handle_wrong_method:", _perf_handle_wrong_method_total_time, _wrong_method_ctr); 218 print_counter_on(st, "ic_miss:", _perf_ic_miss_total_time, _ic_miss_ctr); 219 220 jlong total_elapsed_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->elapsed_counter_value() + 221 _perf_resolve_virtual_total_time->elapsed_counter_value() + 222 _perf_resolve_static_total_time->elapsed_counter_value() + 223 _perf_handle_wrong_method_total_time->elapsed_counter_value() + 224 _perf_ic_miss_total_time->elapsed_counter_value()); 225 st->print("Total: " JLONG_FORMAT_W(5) "us", total_elapsed_time_us); 226 if (TraceThreadTime) { 227 jlong total_thread_time_us = Management::ticks_to_us(_perf_resolve_opt_virtual_total_time->thread_counter_value() + 228 _perf_resolve_virtual_total_time->thread_counter_value() + 229 _perf_resolve_static_total_time->thread_counter_value() + 230 _perf_handle_wrong_method_total_time->thread_counter_value() + 231 _perf_ic_miss_total_time->thread_counter_value()); 232 st->print(" (elapsed) " JLONG_FORMAT_W(5) "us (thread)", total_thread_time_us); 233 234 } 235 st->cr(); 236 } else { 237 st->print_cr(" no data (UsePerfData is turned off)"); 238 } 239 } 240 241 #if INCLUDE_JFR 242 //------------------------------generate jfr runtime stubs ------ 243 void SharedRuntime::generate_jfr_stubs() { 244 ResourceMark rm; 245 const char* timer_msg = "SharedRuntime generate_jfr_stubs"; 246 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 247 248 _jfr_write_checkpoint_blob = generate_jfr_write_checkpoint(); 249 _jfr_return_lease_blob = generate_jfr_return_lease(); 250 } 251 252 #endif // INCLUDE_JFR 253 254 #include <math.h> 255 256 // Implementation of SharedRuntime 257 258 // For statistics 259 uint SharedRuntime::_ic_miss_ctr = 0; 260 uint SharedRuntime::_wrong_method_ctr = 0; 261 uint SharedRuntime::_resolve_static_ctr = 0; 262 uint SharedRuntime::_resolve_virtual_ctr = 0; 263 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 264 265 #ifndef PRODUCT 266 uint SharedRuntime::_implicit_null_throws = 0; 267 uint SharedRuntime::_implicit_div0_throws = 0; 268 269 int64_t SharedRuntime::_nof_normal_calls = 0; 270 int64_t SharedRuntime::_nof_inlined_calls = 0; 271 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 272 int64_t SharedRuntime::_nof_static_calls = 0; 273 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 274 int64_t SharedRuntime::_nof_interface_calls = 0; 275 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 276 277 uint SharedRuntime::_new_instance_ctr=0; 278 uint SharedRuntime::_new_array_ctr=0; 279 uint SharedRuntime::_multi2_ctr=0; 280 uint SharedRuntime::_multi3_ctr=0; 281 uint SharedRuntime::_multi4_ctr=0; 282 uint SharedRuntime::_multi5_ctr=0; 283 uint SharedRuntime::_mon_enter_stub_ctr=0; 284 uint SharedRuntime::_mon_exit_stub_ctr=0; 285 uint SharedRuntime::_mon_enter_ctr=0; 286 uint SharedRuntime::_mon_exit_ctr=0; 287 uint SharedRuntime::_partial_subtype_ctr=0; 288 uint SharedRuntime::_jbyte_array_copy_ctr=0; 289 uint SharedRuntime::_jshort_array_copy_ctr=0; 290 uint SharedRuntime::_jint_array_copy_ctr=0; 291 uint SharedRuntime::_jlong_array_copy_ctr=0; 292 uint SharedRuntime::_oop_array_copy_ctr=0; 293 uint SharedRuntime::_checkcast_array_copy_ctr=0; 294 uint SharedRuntime::_unsafe_array_copy_ctr=0; 295 uint SharedRuntime::_generic_array_copy_ctr=0; 296 uint SharedRuntime::_slow_array_copy_ctr=0; 297 uint SharedRuntime::_find_handler_ctr=0; 298 uint SharedRuntime::_rethrow_ctr=0; 299 uint SharedRuntime::_unsafe_set_memory_ctr=0; 300 301 int SharedRuntime::_ICmiss_index = 0; 302 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 303 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 304 305 306 void SharedRuntime::trace_ic_miss(address at) { 307 for (int i = 0; i < _ICmiss_index; i++) { 308 if (_ICmiss_at[i] == at) { 309 _ICmiss_count[i]++; 310 return; 311 } 312 } 313 int index = _ICmiss_index++; 314 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 315 _ICmiss_at[index] = at; 316 _ICmiss_count[index] = 1; 317 } 318 319 void SharedRuntime::print_ic_miss_histogram_on(outputStream* st) { 320 if (ICMissHistogram) { 321 st->print_cr("IC Miss Histogram:"); 322 int tot_misses = 0; 323 for (int i = 0; i < _ICmiss_index; i++) { 324 st->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 325 tot_misses += _ICmiss_count[i]; 326 } 327 st->print_cr("Total IC misses: %7d", tot_misses); 328 } 329 } 330 331 #ifdef COMPILER2 332 // Runtime methods for printf-style debug nodes (same printing format as fieldDescriptor::print_on_for) 333 void SharedRuntime::debug_print_value(jboolean x) { 334 tty->print_cr("boolean %d", x); 335 } 336 337 void SharedRuntime::debug_print_value(jbyte x) { 338 tty->print_cr("byte %d", x); 339 } 340 341 void SharedRuntime::debug_print_value(jshort x) { 342 tty->print_cr("short %d", x); 343 } 344 345 void SharedRuntime::debug_print_value(jchar x) { 346 tty->print_cr("char %c %d", isprint(x) ? x : ' ', x); 347 } 348 349 void SharedRuntime::debug_print_value(jint x) { 350 tty->print_cr("int %d", x); 351 } 352 353 void SharedRuntime::debug_print_value(jlong x) { 354 tty->print_cr("long " JLONG_FORMAT, x); 355 } 356 357 void SharedRuntime::debug_print_value(jfloat x) { 358 tty->print_cr("float %f", x); 359 } 360 361 void SharedRuntime::debug_print_value(jdouble x) { 362 tty->print_cr("double %lf", x); 363 } 364 365 void SharedRuntime::debug_print_value(oopDesc* x) { 366 x->print(); 367 } 368 #endif // COMPILER2 369 370 #endif // PRODUCT 371 372 373 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 374 return x * y; 375 JRT_END 376 377 378 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 379 if (x == min_jlong && y == CONST64(-1)) { 380 return x; 381 } else { 382 return x / y; 383 } 384 JRT_END 385 386 387 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 388 if (x == min_jlong && y == CONST64(-1)) { 389 return 0; 390 } else { 391 return x % y; 392 } 393 JRT_END 394 395 396 #ifdef _WIN64 397 const juint float_sign_mask = 0x7FFFFFFF; 398 const juint float_infinity = 0x7F800000; 399 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 400 const julong double_infinity = CONST64(0x7FF0000000000000); 401 #endif 402 403 #if !defined(X86) 404 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 405 #ifdef _WIN64 406 // 64-bit Windows on amd64 returns the wrong values for 407 // infinity operands. 408 juint xbits = PrimitiveConversions::cast<juint>(x); 409 juint ybits = PrimitiveConversions::cast<juint>(y); 410 // x Mod Infinity == x unless x is infinity 411 if (((xbits & float_sign_mask) != float_infinity) && 412 ((ybits & float_sign_mask) == float_infinity) ) { 413 return x; 414 } 415 return ((jfloat)fmod_winx64((double)x, (double)y)); 416 #else 417 return ((jfloat)fmod((double)x,(double)y)); 418 #endif 419 JRT_END 420 421 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 422 #ifdef _WIN64 423 julong xbits = PrimitiveConversions::cast<julong>(x); 424 julong ybits = PrimitiveConversions::cast<julong>(y); 425 // x Mod Infinity == x unless x is infinity 426 if (((xbits & double_sign_mask) != double_infinity) && 427 ((ybits & double_sign_mask) == double_infinity) ) { 428 return x; 429 } 430 return ((jdouble)fmod_winx64((double)x, (double)y)); 431 #else 432 return ((jdouble)fmod((double)x,(double)y)); 433 #endif 434 JRT_END 435 #endif // !X86 436 437 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 438 return (jfloat)x; 439 JRT_END 440 441 #ifdef __SOFTFP__ 442 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 443 return x + y; 444 JRT_END 445 446 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 447 return x - y; 448 JRT_END 449 450 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 451 return x * y; 452 JRT_END 453 454 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 455 return x / y; 456 JRT_END 457 458 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 459 return x + y; 460 JRT_END 461 462 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 463 return x - y; 464 JRT_END 465 466 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 467 return x * y; 468 JRT_END 469 470 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 471 return x / y; 472 JRT_END 473 474 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 475 return (jdouble)x; 476 JRT_END 477 478 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 479 return (jdouble)x; 480 JRT_END 481 482 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 483 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 484 JRT_END 485 486 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 487 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 488 JRT_END 489 490 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 491 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 492 JRT_END 493 494 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 495 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 496 JRT_END 497 498 // Functions to return the opposite of the aeabi functions for nan. 499 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 500 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 501 JRT_END 502 503 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 504 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 505 JRT_END 506 507 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 508 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 509 JRT_END 510 511 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 512 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 513 JRT_END 514 515 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 516 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 517 JRT_END 518 519 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 520 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 521 JRT_END 522 523 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 524 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 525 JRT_END 526 527 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 528 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 529 JRT_END 530 531 // Intrinsics make gcc generate code for these. 532 float SharedRuntime::fneg(float f) { 533 return -f; 534 } 535 536 double SharedRuntime::dneg(double f) { 537 return -f; 538 } 539 540 #endif // __SOFTFP__ 541 542 #if defined(__SOFTFP__) || defined(E500V2) 543 // Intrinsics make gcc generate code for these. 544 double SharedRuntime::dabs(double f) { 545 return (f <= (double)0.0) ? (double)0.0 - f : f; 546 } 547 548 #endif 549 550 #if defined(__SOFTFP__) 551 double SharedRuntime::dsqrt(double f) { 552 return sqrt(f); 553 } 554 #endif 555 556 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 557 if (g_isnan(x)) 558 return 0; 559 if (x >= (jfloat) max_jint) 560 return max_jint; 561 if (x <= (jfloat) min_jint) 562 return min_jint; 563 return (jint) x; 564 JRT_END 565 566 567 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 568 if (g_isnan(x)) 569 return 0; 570 if (x >= (jfloat) max_jlong) 571 return max_jlong; 572 if (x <= (jfloat) min_jlong) 573 return min_jlong; 574 return (jlong) x; 575 JRT_END 576 577 578 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 579 if (g_isnan(x)) 580 return 0; 581 if (x >= (jdouble) max_jint) 582 return max_jint; 583 if (x <= (jdouble) min_jint) 584 return min_jint; 585 return (jint) x; 586 JRT_END 587 588 589 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 590 if (g_isnan(x)) 591 return 0; 592 if (x >= (jdouble) max_jlong) 593 return max_jlong; 594 if (x <= (jdouble) min_jlong) 595 return min_jlong; 596 return (jlong) x; 597 JRT_END 598 599 600 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 601 return (jfloat)x; 602 JRT_END 603 604 605 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 606 return (jfloat)x; 607 JRT_END 608 609 610 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 611 return (jdouble)x; 612 JRT_END 613 614 615 // Exception handling across interpreter/compiler boundaries 616 // 617 // exception_handler_for_return_address(...) returns the continuation address. 618 // The continuation address is the entry point of the exception handler of the 619 // previous frame depending on the return address. 620 621 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 622 // Note: This is called when we have unwound the frame of the callee that did 623 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 624 // Notably, the stack is not walkable at this point, and hence the check must 625 // be deferred until later. Specifically, any of the handlers returned here in 626 // this function, will get dispatched to, and call deferred checks to 627 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 628 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 629 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 630 631 #if INCLUDE_JVMCI 632 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 633 // and other exception handler continuations do not read it 634 current->set_exception_pc(nullptr); 635 #endif // INCLUDE_JVMCI 636 637 if (Continuation::is_return_barrier_entry(return_address)) { 638 return StubRoutines::cont_returnBarrierExc(); 639 } 640 641 // The fastest case first 642 CodeBlob* blob = CodeCache::find_blob(return_address); 643 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 644 if (nm != nullptr) { 645 // native nmethods don't have exception handlers 646 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 647 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 648 if (nm->is_deopt_pc(return_address)) { 649 // If we come here because of a stack overflow, the stack may be 650 // unguarded. Reguard the stack otherwise if we return to the 651 // deopt blob and the stack bang causes a stack overflow we 652 // crash. 653 StackOverflow* overflow_state = current->stack_overflow_state(); 654 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 655 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 656 overflow_state->set_reserved_stack_activation(current->stack_base()); 657 } 658 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 659 // The deferred StackWatermarkSet::after_unwind check will be performed in 660 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 661 return SharedRuntime::deopt_blob()->unpack_with_exception(); 662 } else { 663 // The deferred StackWatermarkSet::after_unwind check will be performed in 664 // * OptoRuntime::handle_exception_C_helper for C2 code 665 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 666 #ifdef COMPILER2 667 if (nm->compiler_type() == compiler_c2) { 668 return OptoRuntime::exception_blob()->entry_point(); 669 } 670 #endif // COMPILER2 671 return nm->exception_begin(); 672 } 673 } 674 675 // Entry code 676 if (StubRoutines::returns_to_call_stub(return_address)) { 677 // The deferred StackWatermarkSet::after_unwind check will be performed in 678 // JavaCallWrapper::~JavaCallWrapper 679 assert (StubRoutines::catch_exception_entry() != nullptr, "must be generated before"); 680 return StubRoutines::catch_exception_entry(); 681 } 682 if (blob != nullptr && blob->is_upcall_stub()) { 683 return StubRoutines::upcall_stub_exception_handler(); 684 } 685 // Interpreted code 686 if (Interpreter::contains(return_address)) { 687 // The deferred StackWatermarkSet::after_unwind check will be performed in 688 // InterpreterRuntime::exception_handler_for_exception 689 return Interpreter::rethrow_exception_entry(); 690 } 691 692 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 693 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 694 695 #ifndef PRODUCT 696 { ResourceMark rm; 697 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 698 os::print_location(tty, (intptr_t)return_address); 699 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 700 tty->print_cr("b) other problem"); 701 } 702 #endif // PRODUCT 703 ShouldNotReachHere(); 704 return nullptr; 705 } 706 707 708 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 709 return raw_exception_handler_for_return_address(current, return_address); 710 JRT_END 711 712 713 address SharedRuntime::get_poll_stub(address pc) { 714 address stub; 715 // Look up the code blob 716 CodeBlob *cb = CodeCache::find_blob(pc); 717 718 // Should be an nmethod 719 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 720 721 // Look up the relocation information 722 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 723 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 724 725 #ifdef ASSERT 726 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 727 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 728 Disassembler::decode(cb); 729 fatal("Only polling locations are used for safepoint"); 730 } 731 #endif 732 733 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 734 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 735 if (at_poll_return) { 736 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 737 "polling page return stub not created yet"); 738 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 739 } else if (has_wide_vectors) { 740 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 741 "polling page vectors safepoint stub not created yet"); 742 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 743 } else { 744 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 745 "polling page safepoint stub not created yet"); 746 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 747 } 748 log_trace(safepoint)("Polling page exception: thread = " INTPTR_FORMAT " [%d], pc = " 749 INTPTR_FORMAT " (%s), stub = " INTPTR_FORMAT, 750 p2i(Thread::current()), 751 Thread::current()->osthread()->thread_id(), 752 p2i(pc), 753 at_poll_return ? "return" : "loop", 754 p2i(stub)); 755 return stub; 756 } 757 758 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 759 if (JvmtiExport::can_post_on_exceptions()) { 760 vframeStream vfst(current, true); 761 methodHandle method = methodHandle(current, vfst.method()); 762 address bcp = method()->bcp_from(vfst.bci()); 763 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 764 } 765 766 #if INCLUDE_JVMCI 767 if (EnableJVMCI) { 768 vframeStream vfst(current, true); 769 methodHandle method = methodHandle(current, vfst.method()); 770 int bci = vfst.bci(); 771 MethodData* trap_mdo = method->method_data(); 772 if (trap_mdo != nullptr) { 773 // Set exception_seen if the exceptional bytecode is an invoke 774 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 775 if (call.is_valid()) { 776 ResourceMark rm(current); 777 778 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 779 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 780 781 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 782 if (pdata != nullptr && pdata->is_BitData()) { 783 BitData* bit_data = (BitData*) pdata; 784 bit_data->set_exception_seen(); 785 } 786 } 787 } 788 } 789 #endif 790 791 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 792 } 793 794 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 795 Handle h_exception = Exceptions::new_exception(current, name, message); 796 throw_and_post_jvmti_exception(current, h_exception); 797 } 798 799 // The interpreter code to call this tracing function is only 800 // called/generated when UL is on for redefine, class and has the right level 801 // and tags. Since obsolete methods are never compiled, we don't have 802 // to modify the compilers to generate calls to this function. 803 // 804 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 805 JavaThread* thread, Method* method)) 806 if (method->is_obsolete()) { 807 // We are calling an obsolete method, but this is not necessarily 808 // an error. Our method could have been redefined just after we 809 // fetched the Method* from the constant pool. 810 ResourceMark rm; 811 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 812 } 813 814 LogStreamHandle(Trace, interpreter, bytecode) log; 815 if (log.is_enabled()) { 816 ResourceMark rm; 817 log.print("method entry: " INTPTR_FORMAT " %s %s%s%s%s", 818 p2i(thread), 819 (method->is_static() ? "static" : "virtual"), 820 method->name_and_sig_as_C_string(), 821 (method->is_native() ? " native" : ""), 822 (thread->class_being_initialized() != nullptr ? " clinit" : ""), 823 (method->method_holder()->is_initialized() ? "" : " being_initialized")); 824 } 825 return 0; 826 JRT_END 827 828 // ret_pc points into caller; we are returning caller's exception handler 829 // for given exception 830 // Note that the implementation of this method assumes it's only called when an exception has actually occured 831 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 832 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 833 assert(nm != nullptr, "must exist"); 834 ResourceMark rm; 835 836 #if INCLUDE_JVMCI 837 if (nm->is_compiled_by_jvmci()) { 838 // lookup exception handler for this pc 839 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 840 ExceptionHandlerTable table(nm); 841 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 842 if (t != nullptr) { 843 return nm->code_begin() + t->pco(); 844 } else { 845 bool make_not_entrant = true; 846 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant); 847 } 848 } 849 #endif // INCLUDE_JVMCI 850 851 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 852 // determine handler bci, if any 853 EXCEPTION_MARK; 854 855 Handle orig_exception(THREAD, exception()); 856 857 int handler_bci = -1; 858 int scope_depth = 0; 859 if (!force_unwind) { 860 int bci = sd->bci(); 861 bool recursive_exception = false; 862 do { 863 bool skip_scope_increment = false; 864 // exception handler lookup 865 Klass* ek = exception->klass(); 866 methodHandle mh(THREAD, sd->method()); 867 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 868 if (HAS_PENDING_EXCEPTION) { 869 recursive_exception = true; 870 // We threw an exception while trying to find the exception handler. 871 // Transfer the new exception to the exception handle which will 872 // be set into thread local storage, and do another lookup for an 873 // exception handler for this exception, this time starting at the 874 // BCI of the exception handler which caused the exception to be 875 // thrown (bugs 4307310 and 4546590). Set "exception" reference 876 // argument to ensure that the correct exception is thrown (4870175). 877 recursive_exception_occurred = true; 878 exception.replace(PENDING_EXCEPTION); 879 CLEAR_PENDING_EXCEPTION; 880 if (handler_bci >= 0) { 881 bci = handler_bci; 882 handler_bci = -1; 883 skip_scope_increment = true; 884 } 885 } 886 else { 887 recursive_exception = false; 888 } 889 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 890 sd = sd->sender(); 891 if (sd != nullptr) { 892 bci = sd->bci(); 893 } 894 ++scope_depth; 895 } 896 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 897 } 898 899 // found handling method => lookup exception handler 900 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 901 902 ExceptionHandlerTable table(nm); 903 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 904 905 // If the compiler did not anticipate a recursive exception, resulting in an exception 906 // thrown from the catch bci, then the compiled exception handler might be missing. 907 // This is rare. Just deoptimize and let the interpreter rethrow the original 908 // exception at the original bci. 909 if (t == nullptr && recursive_exception_occurred) { 910 exception.replace(orig_exception()); // restore original exception 911 bool make_not_entrant = false; 912 return Deoptimization::deoptimize_for_missing_exception_handler(nm, make_not_entrant); 913 } 914 915 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 916 // Allow abbreviated catch tables. The idea is to allow a method 917 // to materialize its exceptions without committing to the exact 918 // routing of exceptions. In particular this is needed for adding 919 // a synthetic handler to unlock monitors when inlining 920 // synchronized methods since the unlock path isn't represented in 921 // the bytecodes. 922 t = table.entry_for(catch_pco, -1, 0); 923 } 924 925 #ifdef COMPILER1 926 if (t == nullptr && nm->is_compiled_by_c1()) { 927 assert(nm->unwind_handler_begin() != nullptr, ""); 928 return nm->unwind_handler_begin(); 929 } 930 #endif 931 932 if (t == nullptr) { 933 ttyLocker ttyl; 934 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 935 tty->print_cr(" Exception:"); 936 exception->print(); 937 tty->cr(); 938 tty->print_cr(" Compiled exception table :"); 939 table.print(); 940 nm->print(); 941 nm->print_code(); 942 guarantee(false, "missing exception handler"); 943 return nullptr; 944 } 945 946 if (handler_bci != -1) { // did we find a handler in this method? 947 sd->method()->set_exception_handler_entered(handler_bci); // profile 948 } 949 return nm->code_begin() + t->pco(); 950 } 951 952 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 953 // These errors occur only at call sites 954 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 955 JRT_END 956 957 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 958 // These errors occur only at call sites 959 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 960 JRT_END 961 962 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 963 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 964 JRT_END 965 966 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 967 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 968 JRT_END 969 970 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 971 // This entry point is effectively only used for NullPointerExceptions which occur at inline 972 // cache sites (when the callee activation is not yet set up) so we are at a call site 973 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 974 JRT_END 975 976 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 977 throw_StackOverflowError_common(current, false); 978 JRT_END 979 980 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 981 throw_StackOverflowError_common(current, true); 982 JRT_END 983 984 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 985 // We avoid using the normal exception construction in this case because 986 // it performs an upcall to Java, and we're already out of stack space. 987 JavaThread* THREAD = current; // For exception macros. 988 InstanceKlass* k = vmClasses::StackOverflowError_klass(); 989 oop exception_oop = k->allocate_instance(CHECK); 990 if (delayed) { 991 java_lang_Throwable::set_message(exception_oop, 992 Universe::delayed_stack_overflow_error_message()); 993 } 994 Handle exception (current, exception_oop); 995 if (StackTraceInThrowable) { 996 java_lang_Throwable::fill_in_stack_trace(exception); 997 } 998 // Remove the ScopedValue bindings in case we got a 999 // StackOverflowError while we were trying to remove ScopedValue 1000 // bindings. 1001 current->clear_scopedValueBindings(); 1002 // Increment counter for hs_err file reporting 1003 AtomicAccess::inc(&Exceptions::_stack_overflow_errors); 1004 throw_and_post_jvmti_exception(current, exception); 1005 } 1006 1007 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 1008 address pc, 1009 ImplicitExceptionKind exception_kind) 1010 { 1011 address target_pc = nullptr; 1012 1013 if (Interpreter::contains(pc)) { 1014 switch (exception_kind) { 1015 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 1016 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 1017 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 1018 default: ShouldNotReachHere(); 1019 } 1020 } else { 1021 switch (exception_kind) { 1022 case STACK_OVERFLOW: { 1023 // Stack overflow only occurs upon frame setup; the callee is 1024 // going to be unwound. Dispatch to a shared runtime stub 1025 // which will cause the StackOverflowError to be fabricated 1026 // and processed. 1027 // Stack overflow should never occur during deoptimization: 1028 // the compiled method bangs the stack by as much as the 1029 // interpreter would need in case of a deoptimization. The 1030 // deoptimization blob and uncommon trap blob bang the stack 1031 // in a debug VM to verify the correctness of the compiled 1032 // method stack banging. 1033 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 1034 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 1035 return SharedRuntime::throw_StackOverflowError_entry(); 1036 } 1037 1038 case IMPLICIT_NULL: { 1039 if (VtableStubs::contains(pc)) { 1040 // We haven't yet entered the callee frame. Fabricate an 1041 // exception and begin dispatching it in the caller. Since 1042 // the caller was at a call site, it's safe to destroy all 1043 // caller-saved registers, as these entry points do. 1044 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 1045 1046 // If vt_stub is null, then return null to signal handler to report the SEGV error. 1047 if (vt_stub == nullptr) return nullptr; 1048 1049 if (vt_stub->is_abstract_method_error(pc)) { 1050 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 1051 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 1052 // Instead of throwing the abstract method error here directly, we re-resolve 1053 // and will throw the AbstractMethodError during resolve. As a result, we'll 1054 // get a more detailed error message. 1055 return SharedRuntime::get_handle_wrong_method_stub(); 1056 } else { 1057 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 1058 // Assert that the signal comes from the expected location in stub code. 1059 assert(vt_stub->is_null_pointer_exception(pc), 1060 "obtained signal from unexpected location in stub code"); 1061 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1062 } 1063 } else { 1064 CodeBlob* cb = CodeCache::find_blob(pc); 1065 1066 // If code blob is null, then return null to signal handler to report the SEGV error. 1067 if (cb == nullptr) return nullptr; 1068 1069 // Exception happened in CodeCache. Must be either: 1070 // 1. Inline-cache check in C2I handler blob, 1071 // 2. Inline-cache check in nmethod, or 1072 // 3. Implicit null exception in nmethod 1073 1074 if (!cb->is_nmethod()) { 1075 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 1076 if (!is_in_blob) { 1077 // Allow normal crash reporting to handle this 1078 return nullptr; 1079 } 1080 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 1081 // There is no handler here, so we will simply unwind. 1082 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1083 } 1084 1085 // Otherwise, it's a compiled method. Consult its exception handlers. 1086 nmethod* nm = cb->as_nmethod(); 1087 if (nm->inlinecache_check_contains(pc)) { 1088 // exception happened inside inline-cache check code 1089 // => the nmethod is not yet active (i.e., the frame 1090 // is not set up yet) => use return address pushed by 1091 // caller => don't push another return address 1092 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 1093 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1094 } 1095 1096 if (nm->method()->is_method_handle_intrinsic()) { 1097 // exception happened inside MH dispatch code, similar to a vtable stub 1098 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 1099 return SharedRuntime::throw_NullPointerException_at_call_entry(); 1100 } 1101 1102 #ifndef PRODUCT 1103 _implicit_null_throws++; 1104 #endif 1105 target_pc = nm->continuation_for_implicit_null_exception(pc); 1106 // If there's an unexpected fault, target_pc might be null, 1107 // in which case we want to fall through into the normal 1108 // error handling code. 1109 } 1110 1111 break; // fall through 1112 } 1113 1114 1115 case IMPLICIT_DIVIDE_BY_ZERO: { 1116 nmethod* nm = CodeCache::find_nmethod(pc); 1117 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 1118 #ifndef PRODUCT 1119 _implicit_div0_throws++; 1120 #endif 1121 target_pc = nm->continuation_for_implicit_div0_exception(pc); 1122 // If there's an unexpected fault, target_pc might be null, 1123 // in which case we want to fall through into the normal 1124 // error handling code. 1125 break; // fall through 1126 } 1127 1128 default: ShouldNotReachHere(); 1129 } 1130 1131 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 1132 1133 if (exception_kind == IMPLICIT_NULL) { 1134 #ifndef PRODUCT 1135 // for AbortVMOnException flag 1136 Exceptions::debug_check_abort("java.lang.NullPointerException"); 1137 #endif //PRODUCT 1138 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1139 } else { 1140 #ifndef PRODUCT 1141 // for AbortVMOnException flag 1142 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 1143 #endif //PRODUCT 1144 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 1145 } 1146 return target_pc; 1147 } 1148 1149 ShouldNotReachHere(); 1150 return nullptr; 1151 } 1152 1153 1154 /** 1155 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 1156 * installed in the native function entry of all native Java methods before 1157 * they get linked to their actual native methods. 1158 * 1159 * \note 1160 * This method actually never gets called! The reason is because 1161 * the interpreter's native entries call NativeLookup::lookup() which 1162 * throws the exception when the lookup fails. The exception is then 1163 * caught and forwarded on the return from NativeLookup::lookup() call 1164 * before the call to the native function. This might change in the future. 1165 */ 1166 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1167 { 1168 // We return a bad value here to make sure that the exception is 1169 // forwarded before we look at the return value. 1170 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1171 } 1172 JNI_END 1173 1174 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1175 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1176 } 1177 1178 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1179 #if INCLUDE_JVMCI 1180 if (!obj->klass()->has_finalizer()) { 1181 return; 1182 } 1183 #endif // INCLUDE_JVMCI 1184 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1185 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1186 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1187 JRT_END 1188 1189 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1190 assert(thread != nullptr, "No thread"); 1191 if (thread == nullptr) { 1192 return 0; 1193 } 1194 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1195 "current cannot touch oops after its GC barrier is detached."); 1196 oop obj = thread->threadObj(); 1197 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1198 } 1199 1200 /** 1201 * This function ought to be a void function, but cannot be because 1202 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1203 * 6254741. Once that is fixed we can remove the dummy return value. 1204 */ 1205 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1206 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1207 } 1208 1209 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1210 return dtrace_object_alloc(thread, o, o->size()); 1211 } 1212 1213 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1214 assert(DTraceAllocProbes, "wrong call"); 1215 Klass* klass = o->klass(); 1216 Symbol* name = klass->name(); 1217 HOTSPOT_OBJECT_ALLOC( 1218 get_java_tid(thread), 1219 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1220 return 0; 1221 } 1222 1223 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1224 JavaThread* current, Method* method)) 1225 assert(current == JavaThread::current(), "pre-condition"); 1226 1227 assert(DTraceMethodProbes, "wrong call"); 1228 Symbol* kname = method->klass_name(); 1229 Symbol* name = method->name(); 1230 Symbol* sig = method->signature(); 1231 HOTSPOT_METHOD_ENTRY( 1232 get_java_tid(current), 1233 (char *) kname->bytes(), kname->utf8_length(), 1234 (char *) name->bytes(), name->utf8_length(), 1235 (char *) sig->bytes(), sig->utf8_length()); 1236 return 0; 1237 JRT_END 1238 1239 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1240 JavaThread* current, Method* method)) 1241 assert(current == JavaThread::current(), "pre-condition"); 1242 assert(DTraceMethodProbes, "wrong call"); 1243 Symbol* kname = method->klass_name(); 1244 Symbol* name = method->name(); 1245 Symbol* sig = method->signature(); 1246 HOTSPOT_METHOD_RETURN( 1247 get_java_tid(current), 1248 (char *) kname->bytes(), kname->utf8_length(), 1249 (char *) name->bytes(), name->utf8_length(), 1250 (char *) sig->bytes(), sig->utf8_length()); 1251 return 0; 1252 JRT_END 1253 1254 1255 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1256 // for a call current in progress, i.e., arguments has been pushed on stack 1257 // put callee has not been invoked yet. Used by: resolve virtual/static, 1258 // vtable updates, etc. Caller frame must be compiled. 1259 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1260 JavaThread* current = THREAD; 1261 ResourceMark rm(current); 1262 1263 // last java frame on stack (which includes native call frames) 1264 vframeStream vfst(current, true); // Do not skip and javaCalls 1265 1266 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1267 } 1268 1269 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1270 nmethod* caller = vfst.nm(); 1271 1272 address pc = vfst.frame_pc(); 1273 { // Get call instruction under lock because another thread may be busy patching it. 1274 CompiledICLocker ic_locker(caller); 1275 return caller->attached_method_before_pc(pc); 1276 } 1277 return nullptr; 1278 } 1279 1280 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1281 // for a call current in progress, i.e., arguments has been pushed on stack 1282 // but callee has not been invoked yet. Caller frame must be compiled. 1283 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1284 CallInfo& callinfo, TRAPS) { 1285 Handle receiver; 1286 Handle nullHandle; // create a handy null handle for exception returns 1287 JavaThread* current = THREAD; 1288 1289 assert(!vfst.at_end(), "Java frame must exist"); 1290 1291 // Find caller and bci from vframe 1292 methodHandle caller(current, vfst.method()); 1293 int bci = vfst.bci(); 1294 1295 if (caller->is_continuation_enter_intrinsic()) { 1296 bc = Bytecodes::_invokestatic; 1297 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1298 return receiver; 1299 } 1300 1301 Bytecode_invoke bytecode(caller, bci); 1302 int bytecode_index = bytecode.index(); 1303 bc = bytecode.invoke_code(); 1304 1305 methodHandle attached_method(current, extract_attached_method(vfst)); 1306 if (attached_method.not_null()) { 1307 Method* callee = bytecode.static_target(CHECK_NH); 1308 vmIntrinsics::ID id = callee->intrinsic_id(); 1309 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1310 // it attaches statically resolved method to the call site. 1311 if (MethodHandles::is_signature_polymorphic(id) && 1312 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1313 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1314 1315 // Adjust invocation mode according to the attached method. 1316 switch (bc) { 1317 case Bytecodes::_invokevirtual: 1318 if (attached_method->method_holder()->is_interface()) { 1319 bc = Bytecodes::_invokeinterface; 1320 } 1321 break; 1322 case Bytecodes::_invokeinterface: 1323 if (!attached_method->method_holder()->is_interface()) { 1324 bc = Bytecodes::_invokevirtual; 1325 } 1326 break; 1327 case Bytecodes::_invokehandle: 1328 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1329 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1330 : Bytecodes::_invokevirtual; 1331 } 1332 break; 1333 default: 1334 break; 1335 } 1336 } 1337 } 1338 1339 assert(bc != Bytecodes::_illegal, "not initialized"); 1340 1341 bool has_receiver = bc != Bytecodes::_invokestatic && 1342 bc != Bytecodes::_invokedynamic && 1343 bc != Bytecodes::_invokehandle; 1344 1345 // Find receiver for non-static call 1346 if (has_receiver) { 1347 // This register map must be update since we need to find the receiver for 1348 // compiled frames. The receiver might be in a register. 1349 RegisterMap reg_map2(current, 1350 RegisterMap::UpdateMap::include, 1351 RegisterMap::ProcessFrames::include, 1352 RegisterMap::WalkContinuation::skip); 1353 frame stubFrame = current->last_frame(); 1354 // Caller-frame is a compiled frame 1355 frame callerFrame = stubFrame.sender(®_map2); 1356 1357 if (attached_method.is_null()) { 1358 Method* callee = bytecode.static_target(CHECK_NH); 1359 if (callee == nullptr) { 1360 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1361 } 1362 } 1363 1364 // Retrieve from a compiled argument list 1365 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1366 assert(oopDesc::is_oop_or_null(receiver()), ""); 1367 1368 if (receiver.is_null()) { 1369 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1370 } 1371 } 1372 1373 // Resolve method 1374 if (attached_method.not_null()) { 1375 // Parameterized by attached method. 1376 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1377 } else { 1378 // Parameterized by bytecode. 1379 constantPoolHandle constants(current, caller->constants()); 1380 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1381 } 1382 1383 #ifdef ASSERT 1384 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1385 if (has_receiver) { 1386 assert(receiver.not_null(), "should have thrown exception"); 1387 Klass* receiver_klass = receiver->klass(); 1388 Klass* rk = nullptr; 1389 if (attached_method.not_null()) { 1390 // In case there's resolved method attached, use its holder during the check. 1391 rk = attached_method->method_holder(); 1392 } else { 1393 // Klass is already loaded. 1394 constantPoolHandle constants(current, caller->constants()); 1395 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1396 } 1397 Klass* static_receiver_klass = rk; 1398 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1399 "actual receiver must be subclass of static receiver klass"); 1400 if (receiver_klass->is_instance_klass()) { 1401 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1402 tty->print_cr("ERROR: Klass not yet initialized!!"); 1403 receiver_klass->print(); 1404 } 1405 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1406 } 1407 } 1408 #endif 1409 1410 return receiver; 1411 } 1412 1413 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1414 JavaThread* current = THREAD; 1415 ResourceMark rm(current); 1416 // We need first to check if any Java activations (compiled, interpreted) 1417 // exist on the stack since last JavaCall. If not, we need 1418 // to get the target method from the JavaCall wrapper. 1419 vframeStream vfst(current, true); // Do not skip any javaCalls 1420 methodHandle callee_method; 1421 if (vfst.at_end()) { 1422 // No Java frames were found on stack since we did the JavaCall. 1423 // Hence the stack can only contain an entry_frame. We need to 1424 // find the target method from the stub frame. 1425 RegisterMap reg_map(current, 1426 RegisterMap::UpdateMap::skip, 1427 RegisterMap::ProcessFrames::include, 1428 RegisterMap::WalkContinuation::skip); 1429 frame fr = current->last_frame(); 1430 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1431 fr = fr.sender(®_map); 1432 assert(fr.is_entry_frame(), "must be"); 1433 // fr is now pointing to the entry frame. 1434 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1435 } else { 1436 Bytecodes::Code bc; 1437 CallInfo callinfo; 1438 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1439 callee_method = methodHandle(current, callinfo.selected_method()); 1440 } 1441 assert(callee_method()->is_method(), "must be"); 1442 return callee_method; 1443 } 1444 1445 // Resolves a call. 1446 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1447 JavaThread* current = THREAD; 1448 ResourceMark rm(current); 1449 RegisterMap cbl_map(current, 1450 RegisterMap::UpdateMap::skip, 1451 RegisterMap::ProcessFrames::include, 1452 RegisterMap::WalkContinuation::skip); 1453 frame caller_frame = current->last_frame().sender(&cbl_map); 1454 1455 CodeBlob* caller_cb = caller_frame.cb(); 1456 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1457 nmethod* caller_nm = caller_cb->as_nmethod(); 1458 1459 // determine call info & receiver 1460 // note: a) receiver is null for static calls 1461 // b) an exception is thrown if receiver is null for non-static calls 1462 CallInfo call_info; 1463 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1464 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1465 1466 NoSafepointVerifier nsv; 1467 1468 methodHandle callee_method(current, call_info.selected_method()); 1469 1470 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1471 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1472 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1473 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1474 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1475 1476 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1477 1478 // tracing/debugging/statistics 1479 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1480 (is_virtual) ? (&_resolve_virtual_ctr) : 1481 (&_resolve_static_ctr); 1482 AtomicAccess::inc(addr); 1483 1484 #ifndef PRODUCT 1485 if (TraceCallFixup) { 1486 ResourceMark rm(current); 1487 tty->print("resolving %s%s (%s) call to", 1488 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1489 Bytecodes::name(invoke_code)); 1490 callee_method->print_short_name(tty); 1491 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1492 p2i(caller_frame.pc()), p2i(callee_method->code())); 1493 } 1494 #endif 1495 1496 if (invoke_code == Bytecodes::_invokestatic) { 1497 assert(callee_method->method_holder()->is_initialized() || 1498 callee_method->method_holder()->is_reentrant_initialization(current), 1499 "invalid class initialization state for invoke_static"); 1500 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1501 // In order to keep class initialization check, do not patch call 1502 // site for static call when the class is not fully initialized. 1503 // Proper check is enforced by call site re-resolution on every invocation. 1504 // 1505 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1506 // explicit class initialization check is put in nmethod entry (VEP). 1507 assert(callee_method->method_holder()->is_linked(), "must be"); 1508 return callee_method; 1509 } 1510 } 1511 1512 1513 // JSR 292 key invariant: 1514 // If the resolved method is a MethodHandle invoke target, the call 1515 // site must be a MethodHandle call site, because the lambda form might tail-call 1516 // leaving the stack in a state unknown to either caller or callee 1517 1518 // Compute entry points. The computation of the entry points is independent of 1519 // patching the call. 1520 1521 // Make sure the callee nmethod does not get deoptimized and removed before 1522 // we are done patching the code. 1523 1524 1525 CompiledICLocker ml(caller_nm); 1526 if (is_virtual && !is_optimized) { 1527 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1528 inline_cache->update(&call_info, receiver->klass()); 1529 } else { 1530 // Callsite is a direct call - set it to the destination method 1531 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1532 callsite->set(callee_method); 1533 } 1534 1535 return callee_method; 1536 } 1537 1538 // Inline caches exist only in compiled code 1539 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1540 PerfTraceTime timer(_perf_ic_miss_total_time); 1541 1542 #ifdef ASSERT 1543 RegisterMap reg_map(current, 1544 RegisterMap::UpdateMap::skip, 1545 RegisterMap::ProcessFrames::include, 1546 RegisterMap::WalkContinuation::skip); 1547 frame stub_frame = current->last_frame(); 1548 assert(stub_frame.is_runtime_frame(), "sanity check"); 1549 frame caller_frame = stub_frame.sender(®_map); 1550 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1551 #endif /* ASSERT */ 1552 1553 methodHandle callee_method; 1554 JRT_BLOCK 1555 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1556 // Return Method* through TLS 1557 current->set_vm_result_metadata(callee_method()); 1558 JRT_BLOCK_END 1559 // return compiled code entry point after potential safepoints 1560 return get_resolved_entry(current, callee_method); 1561 JRT_END 1562 1563 1564 // Handle call site that has been made non-entrant 1565 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1566 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1567 1568 // 6243940 We might end up in here if the callee is deoptimized 1569 // as we race to call it. We don't want to take a safepoint if 1570 // the caller was interpreted because the caller frame will look 1571 // interpreted to the stack walkers and arguments are now 1572 // "compiled" so it is much better to make this transition 1573 // invisible to the stack walking code. The i2c path will 1574 // place the callee method in the callee_target. It is stashed 1575 // there because if we try and find the callee by normal means a 1576 // safepoint is possible and have trouble gc'ing the compiled args. 1577 RegisterMap reg_map(current, 1578 RegisterMap::UpdateMap::skip, 1579 RegisterMap::ProcessFrames::include, 1580 RegisterMap::WalkContinuation::skip); 1581 frame stub_frame = current->last_frame(); 1582 assert(stub_frame.is_runtime_frame(), "sanity check"); 1583 frame caller_frame = stub_frame.sender(®_map); 1584 1585 if (caller_frame.is_interpreted_frame() || 1586 caller_frame.is_entry_frame() || 1587 caller_frame.is_upcall_stub_frame()) { 1588 Method* callee = current->callee_target(); 1589 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1590 current->set_vm_result_metadata(callee); 1591 current->set_callee_target(nullptr); 1592 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1593 // Bypass class initialization checks in c2i when caller is in native. 1594 // JNI calls to static methods don't have class initialization checks. 1595 // Fast class initialization checks are present in c2i adapters and call into 1596 // SharedRuntime::handle_wrong_method() on the slow path. 1597 // 1598 // JVM upcalls may land here as well, but there's a proper check present in 1599 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1600 // so bypassing it in c2i adapter is benign. 1601 return callee->get_c2i_no_clinit_check_entry(); 1602 } else { 1603 return callee->get_c2i_entry(); 1604 } 1605 } 1606 1607 // Must be compiled to compiled path which is safe to stackwalk 1608 methodHandle callee_method; 1609 JRT_BLOCK 1610 // Force resolving of caller (if we called from compiled frame) 1611 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1612 current->set_vm_result_metadata(callee_method()); 1613 JRT_BLOCK_END 1614 // return compiled code entry point after potential safepoints 1615 return get_resolved_entry(current, callee_method); 1616 JRT_END 1617 1618 // Handle abstract method call 1619 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1620 PerfTraceTime timer(_perf_handle_wrong_method_total_time); 1621 1622 // Verbose error message for AbstractMethodError. 1623 // Get the called method from the invoke bytecode. 1624 vframeStream vfst(current, true); 1625 assert(!vfst.at_end(), "Java frame must exist"); 1626 methodHandle caller(current, vfst.method()); 1627 Bytecode_invoke invoke(caller, vfst.bci()); 1628 DEBUG_ONLY( invoke.verify(); ) 1629 1630 // Find the compiled caller frame. 1631 RegisterMap reg_map(current, 1632 RegisterMap::UpdateMap::include, 1633 RegisterMap::ProcessFrames::include, 1634 RegisterMap::WalkContinuation::skip); 1635 frame stubFrame = current->last_frame(); 1636 assert(stubFrame.is_runtime_frame(), "must be"); 1637 frame callerFrame = stubFrame.sender(®_map); 1638 assert(callerFrame.is_compiled_frame(), "must be"); 1639 1640 // Install exception and return forward entry. 1641 address res = SharedRuntime::throw_AbstractMethodError_entry(); 1642 JRT_BLOCK 1643 methodHandle callee(current, invoke.static_target(current)); 1644 if (!callee.is_null()) { 1645 oop recv = callerFrame.retrieve_receiver(®_map); 1646 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1647 res = StubRoutines::forward_exception_entry(); 1648 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1649 } 1650 JRT_BLOCK_END 1651 return res; 1652 JRT_END 1653 1654 // return verified_code_entry if interp_only_mode is not set for the current thread; 1655 // otherwise return c2i entry. 1656 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1657 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1658 // In interp_only_mode we need to go to the interpreted entry 1659 // The c2i won't patch in this mode -- see fixup_callers_callsite 1660 return callee_method->get_c2i_entry(); 1661 } 1662 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1663 return callee_method->verified_code_entry(); 1664 } 1665 1666 // resolve a static call and patch code 1667 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1668 PerfTraceTime timer(_perf_resolve_static_total_time); 1669 1670 methodHandle callee_method; 1671 bool enter_special = false; 1672 JRT_BLOCK 1673 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1674 current->set_vm_result_metadata(callee_method()); 1675 JRT_BLOCK_END 1676 // return compiled code entry point after potential safepoints 1677 return get_resolved_entry(current, callee_method); 1678 JRT_END 1679 1680 // resolve virtual call and update inline cache to monomorphic 1681 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1682 PerfTraceTime timer(_perf_resolve_virtual_total_time); 1683 1684 methodHandle callee_method; 1685 JRT_BLOCK 1686 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1687 current->set_vm_result_metadata(callee_method()); 1688 JRT_BLOCK_END 1689 // return compiled code entry point after potential safepoints 1690 return get_resolved_entry(current, callee_method); 1691 JRT_END 1692 1693 1694 // Resolve a virtual call that can be statically bound (e.g., always 1695 // monomorphic, so it has no inline cache). Patch code to resolved target. 1696 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1697 PerfTraceTime timer(_perf_resolve_opt_virtual_total_time); 1698 1699 methodHandle callee_method; 1700 JRT_BLOCK 1701 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1702 current->set_vm_result_metadata(callee_method()); 1703 JRT_BLOCK_END 1704 // return compiled code entry point after potential safepoints 1705 return get_resolved_entry(current, callee_method); 1706 JRT_END 1707 1708 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1709 JavaThread* current = THREAD; 1710 ResourceMark rm(current); 1711 CallInfo call_info; 1712 Bytecodes::Code bc; 1713 1714 // receiver is null for static calls. An exception is thrown for null 1715 // receivers for non-static calls 1716 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1717 1718 methodHandle callee_method(current, call_info.selected_method()); 1719 1720 AtomicAccess::inc(&_ic_miss_ctr); 1721 1722 #ifndef PRODUCT 1723 // Statistics & Tracing 1724 if (TraceCallFixup) { 1725 ResourceMark rm(current); 1726 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1727 callee_method->print_short_name(tty); 1728 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1729 } 1730 1731 if (ICMissHistogram) { 1732 MutexLocker m(VMStatistic_lock); 1733 RegisterMap reg_map(current, 1734 RegisterMap::UpdateMap::skip, 1735 RegisterMap::ProcessFrames::include, 1736 RegisterMap::WalkContinuation::skip); 1737 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1738 // produce statistics under the lock 1739 trace_ic_miss(f.pc()); 1740 } 1741 #endif 1742 1743 // install an event collector so that when a vtable stub is created the 1744 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1745 // event can't be posted when the stub is created as locks are held 1746 // - instead the event will be deferred until the event collector goes 1747 // out of scope. 1748 JvmtiDynamicCodeEventCollector event_collector; 1749 1750 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1751 RegisterMap reg_map(current, 1752 RegisterMap::UpdateMap::skip, 1753 RegisterMap::ProcessFrames::include, 1754 RegisterMap::WalkContinuation::skip); 1755 frame caller_frame = current->last_frame().sender(®_map); 1756 CodeBlob* cb = caller_frame.cb(); 1757 nmethod* caller_nm = cb->as_nmethod(); 1758 1759 CompiledICLocker ml(caller_nm); 1760 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1761 inline_cache->update(&call_info, receiver()->klass()); 1762 1763 return callee_method; 1764 } 1765 1766 // 1767 // Resets a call-site in compiled code so it will get resolved again. 1768 // This routines handles both virtual call sites, optimized virtual call 1769 // sites, and static call sites. Typically used to change a call sites 1770 // destination from compiled to interpreted. 1771 // 1772 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1773 JavaThread* current = THREAD; 1774 ResourceMark rm(current); 1775 RegisterMap reg_map(current, 1776 RegisterMap::UpdateMap::skip, 1777 RegisterMap::ProcessFrames::include, 1778 RegisterMap::WalkContinuation::skip); 1779 frame stub_frame = current->last_frame(); 1780 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1781 frame caller = stub_frame.sender(®_map); 1782 1783 // Do nothing if the frame isn't a live compiled frame. 1784 // nmethod could be deoptimized by the time we get here 1785 // so no update to the caller is needed. 1786 1787 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1788 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1789 1790 address pc = caller.pc(); 1791 1792 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1793 assert(caller_nm != nullptr, "did not find caller nmethod"); 1794 1795 // Default call_addr is the location of the "basic" call. 1796 // Determine the address of the call we a reresolving. With 1797 // Inline Caches we will always find a recognizable call. 1798 // With Inline Caches disabled we may or may not find a 1799 // recognizable call. We will always find a call for static 1800 // calls and for optimized virtual calls. For vanilla virtual 1801 // calls it depends on the state of the UseInlineCaches switch. 1802 // 1803 // With Inline Caches disabled we can get here for a virtual call 1804 // for two reasons: 1805 // 1 - calling an abstract method. The vtable for abstract methods 1806 // will run us thru handle_wrong_method and we will eventually 1807 // end up in the interpreter to throw the ame. 1808 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1809 // call and between the time we fetch the entry address and 1810 // we jump to it the target gets deoptimized. Similar to 1 1811 // we will wind up in the interprter (thru a c2i with c2). 1812 // 1813 CompiledICLocker ml(caller_nm); 1814 address call_addr = caller_nm->call_instruction_address(pc); 1815 1816 if (call_addr != nullptr) { 1817 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1818 // bytes back in the instruction stream so we must also check for reloc info. 1819 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1820 bool ret = iter.next(); // Get item 1821 if (ret) { 1822 switch (iter.type()) { 1823 case relocInfo::static_call_type: 1824 case relocInfo::opt_virtual_call_type: { 1825 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1826 cdc->set_to_clean(); 1827 break; 1828 } 1829 1830 case relocInfo::virtual_call_type: { 1831 // compiled, dispatched call (which used to call an interpreted method) 1832 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1833 inline_cache->set_to_clean(); 1834 break; 1835 } 1836 default: 1837 break; 1838 } 1839 } 1840 } 1841 } 1842 1843 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1844 1845 AtomicAccess::inc(&_wrong_method_ctr); 1846 1847 #ifndef PRODUCT 1848 if (TraceCallFixup) { 1849 ResourceMark rm(current); 1850 tty->print("handle_wrong_method reresolving call to"); 1851 callee_method->print_short_name(tty); 1852 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1853 } 1854 #endif 1855 1856 return callee_method; 1857 } 1858 1859 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1860 // The faulting unsafe accesses should be changed to throw the error 1861 // synchronously instead. Meanwhile the faulting instruction will be 1862 // skipped over (effectively turning it into a no-op) and an 1863 // asynchronous exception will be raised which the thread will 1864 // handle at a later point. If the instruction is a load it will 1865 // return garbage. 1866 1867 // Request an async exception. 1868 thread->set_pending_unsafe_access_error(); 1869 1870 // Return address of next instruction to execute. 1871 return next_pc; 1872 } 1873 1874 #ifdef ASSERT 1875 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1876 const BasicType* sig_bt, 1877 const VMRegPair* regs) { 1878 ResourceMark rm; 1879 const int total_args_passed = method->size_of_parameters(); 1880 const VMRegPair* regs_with_member_name = regs; 1881 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1882 1883 const int member_arg_pos = total_args_passed - 1; 1884 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1885 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1886 1887 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1888 1889 for (int i = 0; i < member_arg_pos; i++) { 1890 VMReg a = regs_with_member_name[i].first(); 1891 VMReg b = regs_without_member_name[i].first(); 1892 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1893 } 1894 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1895 } 1896 #endif 1897 1898 // --------------------------------------------------------------------------- 1899 // We are calling the interpreter via a c2i. Normally this would mean that 1900 // we were called by a compiled method. However we could have lost a race 1901 // where we went int -> i2c -> c2i and so the caller could in fact be 1902 // interpreted. If the caller is compiled we attempt to patch the caller 1903 // so he no longer calls into the interpreter. 1904 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1905 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1906 1907 // It's possible that deoptimization can occur at a call site which hasn't 1908 // been resolved yet, in which case this function will be called from 1909 // an nmethod that has been patched for deopt and we can ignore the 1910 // request for a fixup. 1911 // Also it is possible that we lost a race in that from_compiled_entry 1912 // is now back to the i2c in that case we don't need to patch and if 1913 // we did we'd leap into space because the callsite needs to use 1914 // "to interpreter" stub in order to load up the Method*. Don't 1915 // ask me how I know this... 1916 1917 // Result from nmethod::is_unloading is not stable across safepoints. 1918 NoSafepointVerifier nsv; 1919 1920 nmethod* callee = method->code(); 1921 if (callee == nullptr) { 1922 return; 1923 } 1924 1925 // write lock needed because we might patch call site by set_to_clean() 1926 // and is_unloading() can modify nmethod's state 1927 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1928 1929 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1930 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1931 return; 1932 } 1933 1934 // The check above makes sure this is an nmethod. 1935 nmethod* caller = cb->as_nmethod(); 1936 1937 // Get the return PC for the passed caller PC. 1938 address return_pc = caller_pc + frame::pc_return_offset; 1939 1940 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1941 return; 1942 } 1943 1944 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1945 CompiledICLocker ic_locker(caller); 1946 ResourceMark rm; 1947 1948 // If we got here through a static call or opt_virtual call, then we know where the 1949 // call address would be; let's peek at it 1950 address callsite_addr = (address)nativeCall_before(return_pc); 1951 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1952 if (!iter.next()) { 1953 // No reloc entry found; not a static or optimized virtual call 1954 return; 1955 } 1956 1957 relocInfo::relocType type = iter.reloc()->type(); 1958 if (type != relocInfo::static_call_type && 1959 type != relocInfo::opt_virtual_call_type) { 1960 return; 1961 } 1962 1963 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1964 callsite->set_to_clean(); 1965 JRT_END 1966 1967 1968 // same as JVM_Arraycopy, but called directly from compiled code 1969 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1970 oopDesc* dest, jint dest_pos, 1971 jint length, 1972 JavaThread* current)) { 1973 #ifndef PRODUCT 1974 _slow_array_copy_ctr++; 1975 #endif 1976 // Check if we have null pointers 1977 if (src == nullptr || dest == nullptr) { 1978 THROW(vmSymbols::java_lang_NullPointerException()); 1979 } 1980 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1981 // even though the copy_array API also performs dynamic checks to ensure 1982 // that src and dest are truly arrays (and are conformable). 1983 // The copy_array mechanism is awkward and could be removed, but 1984 // the compilers don't call this function except as a last resort, 1985 // so it probably doesn't matter. 1986 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1987 (arrayOopDesc*)dest, dest_pos, 1988 length, current); 1989 } 1990 JRT_END 1991 1992 // The caller of generate_class_cast_message() (or one of its callers) 1993 // must use a ResourceMark in order to correctly free the result. 1994 char* SharedRuntime::generate_class_cast_message( 1995 JavaThread* thread, Klass* caster_klass) { 1996 1997 // Get target class name from the checkcast instruction 1998 vframeStream vfst(thread, true); 1999 assert(!vfst.at_end(), "Java frame must exist"); 2000 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 2001 constantPoolHandle cpool(thread, vfst.method()->constants()); 2002 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 2003 Symbol* target_klass_name = nullptr; 2004 if (target_klass == nullptr) { 2005 // This klass should be resolved, but just in case, get the name in the klass slot. 2006 target_klass_name = cpool->klass_name_at(cc.index()); 2007 } 2008 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 2009 } 2010 2011 2012 // The caller of generate_class_cast_message() (or one of its callers) 2013 // must use a ResourceMark in order to correctly free the result. 2014 char* SharedRuntime::generate_class_cast_message( 2015 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 2016 const char* caster_name = caster_klass->external_name(); 2017 2018 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 2019 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 2020 target_klass->external_name(); 2021 2022 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 2023 2024 const char* caster_klass_description = ""; 2025 const char* target_klass_description = ""; 2026 const char* klass_separator = ""; 2027 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 2028 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 2029 } else { 2030 caster_klass_description = caster_klass->class_in_module_of_loader(); 2031 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 2032 klass_separator = (target_klass != nullptr) ? "; " : ""; 2033 } 2034 2035 // add 3 for parenthesis and preceding space 2036 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 2037 2038 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2039 if (message == nullptr) { 2040 // Shouldn't happen, but don't cause even more problems if it does 2041 message = const_cast<char*>(caster_klass->external_name()); 2042 } else { 2043 jio_snprintf(message, 2044 msglen, 2045 "class %s cannot be cast to class %s (%s%s%s)", 2046 caster_name, 2047 target_name, 2048 caster_klass_description, 2049 klass_separator, 2050 target_klass_description 2051 ); 2052 } 2053 return message; 2054 } 2055 2056 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2057 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2058 JRT_END 2059 2060 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2061 if (!SafepointSynchronize::is_synchronizing()) { 2062 // Only try quick_enter() if we're not trying to reach a safepoint 2063 // so that the calling thread reaches the safepoint more quickly. 2064 if (ObjectSynchronizer::quick_enter(obj, lock, current)) { 2065 return; 2066 } 2067 } 2068 // NO_ASYNC required because an async exception on the state transition destructor 2069 // would leave you with the lock held and it would never be released. 2070 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2071 // and the model is that an exception implies the method failed. 2072 JRT_BLOCK_NO_ASYNC 2073 Handle h_obj(THREAD, obj); 2074 ObjectSynchronizer::enter(h_obj, lock, current); 2075 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2076 JRT_BLOCK_END 2077 } 2078 2079 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2080 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2081 SharedRuntime::monitor_enter_helper(obj, lock, current); 2082 JRT_END 2083 2084 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2085 assert(JavaThread::current() == current, "invariant"); 2086 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2087 ExceptionMark em(current); 2088 2089 // Check if C2_MacroAssembler::fast_unlock() or 2090 // C2_MacroAssembler::fast_unlock() unlocked an inflated 2091 // monitor before going slow path. Since there is no safepoint 2092 // polling when calling into the VM, we can be sure that the monitor 2093 // hasn't been deallocated. 2094 ObjectMonitor* m = current->unlocked_inflated_monitor(); 2095 if (m != nullptr) { 2096 assert(!m->has_owner(current), "must be"); 2097 current->clear_unlocked_inflated_monitor(); 2098 2099 // We need to reacquire the lock before we can call ObjectSynchronizer::exit(). 2100 if (!m->try_enter(current, /*check_for_recursion*/ false)) { 2101 // Some other thread acquired the lock (or the monitor was 2102 // deflated). Either way we are done. 2103 return; 2104 } 2105 } 2106 2107 // The object could become unlocked through a JNI call, which we have no other checks for. 2108 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2109 if (obj->is_unlocked()) { 2110 if (CheckJNICalls) { 2111 fatal("Object has been unlocked by JNI"); 2112 } 2113 return; 2114 } 2115 ObjectSynchronizer::exit(obj, lock, current); 2116 } 2117 2118 // Handles the uncommon cases of monitor unlocking in compiled code 2119 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2120 assert(current == JavaThread::current(), "pre-condition"); 2121 SharedRuntime::monitor_exit_helper(obj, lock, current); 2122 JRT_END 2123 2124 #ifndef PRODUCT 2125 2126 void SharedRuntime::print_statistics() { 2127 ttyLocker ttyl; 2128 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 2129 2130 SharedRuntime::print_ic_miss_histogram_on(tty); 2131 SharedRuntime::print_counters_on(tty); 2132 AdapterHandlerLibrary::print_statistics_on(tty); 2133 2134 if (xtty != nullptr) xtty->tail("statistics"); 2135 } 2136 2137 //void SharedRuntime::print_counters_on(outputStream* st) { 2138 // // Dump the JRT_ENTRY counters 2139 // if (_new_instance_ctr) st->print_cr("%5u new instance requires GC", _new_instance_ctr); 2140 // if (_new_array_ctr) st->print_cr("%5u new array requires GC", _new_array_ctr); 2141 // if (_multi2_ctr) st->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 2142 // if (_multi3_ctr) st->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 2143 // if (_multi4_ctr) st->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 2144 // if (_multi5_ctr) st->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 2145 // 2146 // st->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 2147 // st->print_cr("%5u wrong method", _wrong_method_ctr); 2148 // st->print_cr("%5u unresolved static call site", _resolve_static_ctr); 2149 // st->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 2150 // st->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2151 // 2152 // if (_mon_enter_stub_ctr) st->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 2153 // if (_mon_exit_stub_ctr) st->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 2154 // if (_mon_enter_ctr) st->print_cr("%5u monitor enter slow", _mon_enter_ctr); 2155 // if (_mon_exit_ctr) st->print_cr("%5u monitor exit slow", _mon_exit_ctr); 2156 // if (_partial_subtype_ctr) st->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 2157 // if (_jbyte_array_copy_ctr) st->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 2158 // if (_jshort_array_copy_ctr) st->print_cr("%5u short array copies", _jshort_array_copy_ctr); 2159 // if (_jint_array_copy_ctr) st->print_cr("%5u int array copies", _jint_array_copy_ctr); 2160 // if (_jlong_array_copy_ctr) st->print_cr("%5u long array copies", _jlong_array_copy_ctr); 2161 // if (_oop_array_copy_ctr) st->print_cr("%5u oop array copies", _oop_array_copy_ctr); 2162 // if (_checkcast_array_copy_ctr) st->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 2163 // if (_unsafe_array_copy_ctr) st->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 2164 // if (_generic_array_copy_ctr) st->print_cr("%5u generic array copies", _generic_array_copy_ctr); 2165 // if (_slow_array_copy_ctr) st->print_cr("%5u slow array copies", _slow_array_copy_ctr); 2166 // if (_find_handler_ctr) st->print_cr("%5u find exception handler", _find_handler_ctr); 2167 // if (_rethrow_ctr) st->print_cr("%5u rethrow handler", _rethrow_ctr); 2168 // if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 2169 //} 2170 2171 inline double percent(int64_t x, int64_t y) { 2172 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 2173 } 2174 2175 class MethodArityHistogram { 2176 public: 2177 enum { MAX_ARITY = 256 }; 2178 private: 2179 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2180 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2181 static uint64_t _total_compiled_calls; 2182 static uint64_t _max_compiled_calls_per_method; 2183 static int _max_arity; // max. arity seen 2184 static int _max_size; // max. arg size seen 2185 2186 static void add_method_to_histogram(nmethod* nm) { 2187 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2188 if (method != nullptr) { 2189 ArgumentCount args(method->signature()); 2190 int arity = args.size() + (method->is_static() ? 0 : 1); 2191 int argsize = method->size_of_parameters(); 2192 arity = MIN2(arity, MAX_ARITY-1); 2193 argsize = MIN2(argsize, MAX_ARITY-1); 2194 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2195 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2196 _total_compiled_calls += count; 2197 _arity_histogram[arity] += count; 2198 _size_histogram[argsize] += count; 2199 _max_arity = MAX2(_max_arity, arity); 2200 _max_size = MAX2(_max_size, argsize); 2201 } 2202 } 2203 2204 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2205 const int N = MIN2(9, n); 2206 double sum = 0; 2207 double weighted_sum = 0; 2208 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2209 if (sum >= 1) { // prevent divide by zero or divide overflow 2210 double rest = sum; 2211 double percent = sum / 100; 2212 for (int i = 0; i <= N; i++) { 2213 rest -= (double)histo[i]; 2214 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2215 } 2216 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2217 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2218 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2219 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2220 } else { 2221 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2222 } 2223 } 2224 2225 void print_histogram() { 2226 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2227 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2228 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2229 print_histogram_helper(_max_size, _size_histogram, "size"); 2230 tty->cr(); 2231 } 2232 2233 public: 2234 MethodArityHistogram() { 2235 // Take the Compile_lock to protect against changes in the CodeBlob structures 2236 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2237 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2238 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2239 _max_arity = _max_size = 0; 2240 _total_compiled_calls = 0; 2241 _max_compiled_calls_per_method = 0; 2242 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2243 CodeCache::nmethods_do(add_method_to_histogram); 2244 print_histogram(); 2245 } 2246 }; 2247 2248 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2249 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2250 uint64_t MethodArityHistogram::_total_compiled_calls; 2251 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2252 int MethodArityHistogram::_max_arity; 2253 int MethodArityHistogram::_max_size; 2254 2255 void SharedRuntime::print_call_statistics_on(outputStream* st) { 2256 tty->print_cr("Calls from compiled code:"); 2257 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2258 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2259 int64_t mono_i = _nof_interface_calls; 2260 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2261 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2262 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2263 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2264 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2265 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2266 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2267 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2268 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2269 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2270 tty->cr(); 2271 tty->print_cr("Note 1: counter updates are not MT-safe."); 2272 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2273 tty->print_cr(" %% in nested categories are relative to their category"); 2274 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2275 tty->cr(); 2276 2277 MethodArityHistogram h; 2278 } 2279 #endif 2280 2281 #ifndef PRODUCT 2282 static int _lookups; // number of calls to lookup 2283 static int _equals; // number of buckets checked with matching hash 2284 static int _archived_hits; // number of successful lookups in archived table 2285 static int _runtime_hits; // number of successful lookups in runtime table 2286 #endif 2287 2288 // A simple wrapper class around the calling convention information 2289 // that allows sharing of adapters for the same calling convention. 2290 class AdapterFingerPrint : public MetaspaceObj { 2291 private: 2292 enum { 2293 _basic_type_bits = 4, 2294 _basic_type_mask = right_n_bits(_basic_type_bits), 2295 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2296 }; 2297 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2298 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2299 2300 int _length; 2301 2302 static int data_offset() { return sizeof(AdapterFingerPrint); } 2303 int* data_pointer() { 2304 return (int*)((address)this + data_offset()); 2305 } 2306 2307 // Private construtor. Use allocate() to get an instance. 2308 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt, int len) { 2309 int* data = data_pointer(); 2310 // Pack the BasicTypes with 8 per int 2311 assert(len == length(total_args_passed), "sanity"); 2312 _length = len; 2313 int sig_index = 0; 2314 for (int index = 0; index < _length; index++) { 2315 int value = 0; 2316 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2317 int bt = adapter_encoding(sig_bt[sig_index++]); 2318 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2319 value = (value << _basic_type_bits) | bt; 2320 } 2321 data[index] = value; 2322 } 2323 } 2324 2325 // Call deallocate instead 2326 ~AdapterFingerPrint() { 2327 ShouldNotCallThis(); 2328 } 2329 2330 static int length(int total_args) { 2331 return (total_args + (_basic_types_per_int-1)) / _basic_types_per_int; 2332 } 2333 2334 static int compute_size_in_words(int len) { 2335 return (int)heap_word_size(sizeof(AdapterFingerPrint) + (len * sizeof(int))); 2336 } 2337 2338 // Remap BasicTypes that are handled equivalently by the adapters. 2339 // These are correct for the current system but someday it might be 2340 // necessary to make this mapping platform dependent. 2341 static int adapter_encoding(BasicType in) { 2342 switch (in) { 2343 case T_BOOLEAN: 2344 case T_BYTE: 2345 case T_SHORT: 2346 case T_CHAR: 2347 // There are all promoted to T_INT in the calling convention 2348 return T_INT; 2349 2350 case T_OBJECT: 2351 case T_ARRAY: 2352 // In other words, we assume that any register good enough for 2353 // an int or long is good enough for a managed pointer. 2354 #ifdef _LP64 2355 return T_LONG; 2356 #else 2357 return T_INT; 2358 #endif 2359 2360 case T_INT: 2361 case T_LONG: 2362 case T_FLOAT: 2363 case T_DOUBLE: 2364 case T_VOID: 2365 return in; 2366 2367 default: 2368 ShouldNotReachHere(); 2369 return T_CONFLICT; 2370 } 2371 } 2372 2373 void* operator new(size_t size, size_t fp_size) throw() { 2374 assert(fp_size >= size, "sanity check"); 2375 void* p = AllocateHeap(fp_size, mtCode); 2376 memset(p, 0, fp_size); 2377 return p; 2378 } 2379 2380 template<typename Function> 2381 void iterate_args(Function function) { 2382 for (int i = 0; i < length(); i++) { 2383 unsigned val = (unsigned)value(i); 2384 // args are packed so that first/lower arguments are in the highest 2385 // bits of each int value, so iterate from highest to the lowest 2386 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2387 unsigned v = (val >> j) & _basic_type_mask; 2388 if (v == 0) { 2389 continue; 2390 } 2391 function(v); 2392 } 2393 } 2394 } 2395 2396 public: 2397 static AdapterFingerPrint* allocate(int total_args_passed, BasicType* sig_bt) { 2398 int len = length(total_args_passed); 2399 int size_in_bytes = BytesPerWord * compute_size_in_words(len); 2400 AdapterFingerPrint* afp = new (size_in_bytes) AdapterFingerPrint(total_args_passed, sig_bt, len); 2401 assert((afp->size() * BytesPerWord) == size_in_bytes, "should match"); 2402 return afp; 2403 } 2404 2405 static void deallocate(AdapterFingerPrint* fp) { 2406 FreeHeap(fp); 2407 } 2408 2409 int value(int index) { 2410 int* data = data_pointer(); 2411 return data[index]; 2412 } 2413 2414 int length() { 2415 return _length; 2416 } 2417 2418 unsigned int compute_hash() { 2419 int hash = 0; 2420 for (int i = 0; i < length(); i++) { 2421 int v = value(i); 2422 //Add arithmetic operation to the hash, like +3 to improve hashing 2423 hash = ((hash << 8) ^ v ^ (hash >> 5)) + 3; 2424 } 2425 return (unsigned int)hash; 2426 } 2427 2428 const char* as_string() { 2429 stringStream st; 2430 st.print("0x"); 2431 for (int i = 0; i < length(); i++) { 2432 st.print("%x", value(i)); 2433 } 2434 return st.as_string(); 2435 } 2436 2437 const char* as_basic_args_string() { 2438 stringStream st; 2439 bool long_prev = false; 2440 iterate_args([&] (int arg) { 2441 if (long_prev) { 2442 long_prev = false; 2443 if (arg == T_VOID) { 2444 st.print("J"); 2445 } else { 2446 st.print("L"); 2447 } 2448 } 2449 switch (arg) { 2450 case T_INT: st.print("I"); break; 2451 case T_LONG: long_prev = true; break; 2452 case T_FLOAT: st.print("F"); break; 2453 case T_DOUBLE: st.print("D"); break; 2454 case T_VOID: break; 2455 default: ShouldNotReachHere(); 2456 } 2457 }); 2458 if (long_prev) { 2459 st.print("L"); 2460 } 2461 return st.as_string(); 2462 } 2463 2464 BasicType* as_basic_type(int& nargs) { 2465 nargs = 0; 2466 GrowableArray<BasicType> btarray; 2467 bool long_prev = false; 2468 2469 iterate_args([&] (int arg) { 2470 if (long_prev) { 2471 long_prev = false; 2472 if (arg == T_VOID) { 2473 btarray.append(T_LONG); 2474 } else { 2475 btarray.append(T_OBJECT); // it could be T_ARRAY; it shouldn't matter 2476 } 2477 } 2478 switch (arg) { 2479 case T_INT: // fallthrough 2480 case T_FLOAT: // fallthrough 2481 case T_DOUBLE: 2482 case T_VOID: 2483 btarray.append((BasicType)arg); 2484 break; 2485 case T_LONG: 2486 long_prev = true; 2487 break; 2488 default: ShouldNotReachHere(); 2489 } 2490 }); 2491 2492 if (long_prev) { 2493 btarray.append(T_OBJECT); 2494 } 2495 2496 nargs = btarray.length(); 2497 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nargs); 2498 int index = 0; 2499 GrowableArrayIterator<BasicType> iter = btarray.begin(); 2500 while (iter != btarray.end()) { 2501 sig_bt[index++] = *iter; 2502 ++iter; 2503 } 2504 assert(index == btarray.length(), "sanity check"); 2505 #ifdef ASSERT 2506 { 2507 AdapterFingerPrint* compare_fp = AdapterFingerPrint::allocate(nargs, sig_bt); 2508 assert(this->equals(compare_fp), "sanity check"); 2509 AdapterFingerPrint::deallocate(compare_fp); 2510 } 2511 #endif 2512 return sig_bt; 2513 } 2514 2515 bool equals(AdapterFingerPrint* other) { 2516 if (other->_length != _length) { 2517 return false; 2518 } else { 2519 for (int i = 0; i < _length; i++) { 2520 if (value(i) != other->value(i)) { 2521 return false; 2522 } 2523 } 2524 } 2525 return true; 2526 } 2527 2528 // methods required by virtue of being a MetaspaceObj 2529 void metaspace_pointers_do(MetaspaceClosure* it) { return; /* nothing to do here */ } 2530 int size() const { return compute_size_in_words(_length); } 2531 MetaspaceObj::Type type() const { return AdapterFingerPrintType; } 2532 2533 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2534 NOT_PRODUCT(_equals++); 2535 return fp1->equals(fp2); 2536 } 2537 2538 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2539 return fp->compute_hash(); 2540 } 2541 }; 2542 2543 #if INCLUDE_CDS 2544 static inline bool adapter_fp_equals_compact_hashtable_entry(AdapterHandlerEntry* entry, AdapterFingerPrint* fp, int len_unused) { 2545 return AdapterFingerPrint::equals(entry->fingerprint(), fp); 2546 } 2547 2548 class ArchivedAdapterTable : public OffsetCompactHashtable< 2549 AdapterFingerPrint*, 2550 AdapterHandlerEntry*, 2551 adapter_fp_equals_compact_hashtable_entry> {}; 2552 #endif // INCLUDE_CDS 2553 2554 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2555 using AdapterHandlerTable = HashTable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2556 AnyObj::C_HEAP, mtCode, 2557 AdapterFingerPrint::compute_hash, 2558 AdapterFingerPrint::equals>; 2559 static AdapterHandlerTable* _adapter_handler_table; 2560 static GrowableArray<AdapterHandlerEntry*>* _adapter_handler_list = nullptr; 2561 2562 // Find a entry with the same fingerprint if it exists 2563 AdapterHandlerEntry* AdapterHandlerLibrary::lookup(int total_args_passed, BasicType* sig_bt) { 2564 NOT_PRODUCT(_lookups++); 2565 assert_lock_strong(AdapterHandlerLibrary_lock); 2566 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2567 AdapterHandlerEntry* entry = nullptr; 2568 #if INCLUDE_CDS 2569 // if we are building the archive then the archived adapter table is 2570 // not valid and we need to use the ones added to the runtime table 2571 if (AOTCodeCache::is_using_adapter()) { 2572 // Search archived table first. It is read-only table so can be searched without lock 2573 entry = _aot_adapter_handler_table.lookup(fp, fp->compute_hash(), 0 /* unused */); 2574 #ifndef PRODUCT 2575 if (entry != nullptr) { 2576 _archived_hits++; 2577 } 2578 #endif 2579 } 2580 #endif // INCLUDE_CDS 2581 if (entry == nullptr) { 2582 assert_lock_strong(AdapterHandlerLibrary_lock); 2583 AdapterHandlerEntry** entry_p = _adapter_handler_table->get(fp); 2584 if (entry_p != nullptr) { 2585 entry = *entry_p; 2586 assert(entry->fingerprint()->equals(fp), "fingerprint mismatch key fp %s %s (hash=%d) != found fp %s %s (hash=%d)", 2587 entry->fingerprint()->as_basic_args_string(), entry->fingerprint()->as_string(), entry->fingerprint()->compute_hash(), 2588 fp->as_basic_args_string(), fp->as_string(), fp->compute_hash()); 2589 #ifndef PRODUCT 2590 _runtime_hits++; 2591 #endif 2592 } 2593 } 2594 AdapterFingerPrint::deallocate(fp); 2595 return entry; 2596 } 2597 2598 #ifndef PRODUCT 2599 void AdapterHandlerLibrary::print_statistics_on(outputStream* st) { 2600 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2601 return sizeof(*key) + sizeof(*a); 2602 }; 2603 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2604 ts.print(st, "AdapterHandlerTable"); 2605 st->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2606 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2607 int total_hits = _archived_hits + _runtime_hits; 2608 st->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d (archived=%d+runtime=%d)", 2609 _lookups, _equals, total_hits, _archived_hits, _runtime_hits); 2610 } 2611 #endif // !PRODUCT 2612 2613 // --------------------------------------------------------------------------- 2614 // Implementation of AdapterHandlerLibrary 2615 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2616 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2617 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2618 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2619 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2620 #if INCLUDE_CDS 2621 ArchivedAdapterTable AdapterHandlerLibrary::_aot_adapter_handler_table; 2622 #endif // INCLUDE_CDS 2623 static const int AdapterHandlerLibrary_size = 16*K; 2624 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2625 volatile uint AdapterHandlerLibrary::_id_counter = 0; 2626 2627 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2628 assert(_buffer != nullptr, "should be initialized"); 2629 return _buffer; 2630 } 2631 2632 static void post_adapter_creation(const AdapterHandlerEntry* entry) { 2633 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2634 AdapterBlob* adapter_blob = entry->adapter_blob(); 2635 char blob_id[256]; 2636 jio_snprintf(blob_id, 2637 sizeof(blob_id), 2638 "%s(%s)", 2639 adapter_blob->name(), 2640 entry->fingerprint()->as_string()); 2641 if (Forte::is_enabled()) { 2642 Forte::register_stub(blob_id, adapter_blob->content_begin(), adapter_blob->content_end()); 2643 } 2644 2645 if (JvmtiExport::should_post_dynamic_code_generated()) { 2646 JvmtiExport::post_dynamic_code_generated(blob_id, adapter_blob->content_begin(), adapter_blob->content_end()); 2647 } 2648 } 2649 } 2650 2651 void AdapterHandlerLibrary::initialize() { 2652 { 2653 ResourceMark rm; 2654 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2655 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2656 } 2657 2658 #if INCLUDE_CDS 2659 // Link adapters in AOT Cache to their code in AOT Code Cache 2660 if (AOTCodeCache::is_using_adapter() && !_aot_adapter_handler_table.empty()) { 2661 link_aot_adapters(); 2662 lookup_simple_adapters(); 2663 return; 2664 } 2665 #endif // INCLUDE_CDS 2666 2667 ResourceMark rm; 2668 { 2669 MutexLocker mu(AdapterHandlerLibrary_lock); 2670 2671 _no_arg_handler = create_adapter(0, nullptr); 2672 2673 BasicType obj_args[] = { T_OBJECT }; 2674 _obj_arg_handler = create_adapter(1, obj_args); 2675 2676 BasicType int_args[] = { T_INT }; 2677 _int_arg_handler = create_adapter(1, int_args); 2678 2679 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2680 _obj_int_arg_handler = create_adapter(2, obj_int_args); 2681 2682 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2683 _obj_obj_arg_handler = create_adapter(2, obj_obj_args); 2684 2685 // we should always get an entry back but we don't have any 2686 // associated blob on Zero 2687 assert(_no_arg_handler != nullptr && 2688 _obj_arg_handler != nullptr && 2689 _int_arg_handler != nullptr && 2690 _obj_int_arg_handler != nullptr && 2691 _obj_obj_arg_handler != nullptr, "Initial adapter handlers must be properly created"); 2692 } 2693 2694 // Outside of the lock 2695 #ifndef ZERO 2696 // no blobs to register when we are on Zero 2697 post_adapter_creation(_no_arg_handler); 2698 post_adapter_creation(_obj_arg_handler); 2699 post_adapter_creation(_int_arg_handler); 2700 post_adapter_creation(_obj_int_arg_handler); 2701 post_adapter_creation(_obj_obj_arg_handler); 2702 #endif // ZERO 2703 } 2704 2705 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint) { 2706 uint id = (uint)AtomicAccess::add((int*)&_id_counter, 1); 2707 assert(id > 0, "we can never overflow because AOT cache cannot contain more than 2^32 methods"); 2708 return AdapterHandlerEntry::allocate(id, fingerprint); 2709 } 2710 2711 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2712 int total_args_passed = method->size_of_parameters(); // All args on stack 2713 if (total_args_passed == 0) { 2714 return _no_arg_handler; 2715 } else if (total_args_passed == 1) { 2716 if (!method->is_static()) { 2717 return _obj_arg_handler; 2718 } 2719 switch (method->signature()->char_at(1)) { 2720 case JVM_SIGNATURE_CLASS: 2721 case JVM_SIGNATURE_ARRAY: 2722 return _obj_arg_handler; 2723 case JVM_SIGNATURE_INT: 2724 case JVM_SIGNATURE_BOOLEAN: 2725 case JVM_SIGNATURE_CHAR: 2726 case JVM_SIGNATURE_BYTE: 2727 case JVM_SIGNATURE_SHORT: 2728 return _int_arg_handler; 2729 } 2730 } else if (total_args_passed == 2 && 2731 !method->is_static()) { 2732 switch (method->signature()->char_at(1)) { 2733 case JVM_SIGNATURE_CLASS: 2734 case JVM_SIGNATURE_ARRAY: 2735 return _obj_obj_arg_handler; 2736 case JVM_SIGNATURE_INT: 2737 case JVM_SIGNATURE_BOOLEAN: 2738 case JVM_SIGNATURE_CHAR: 2739 case JVM_SIGNATURE_BYTE: 2740 case JVM_SIGNATURE_SHORT: 2741 return _obj_int_arg_handler; 2742 } 2743 } 2744 return nullptr; 2745 } 2746 2747 class AdapterSignatureIterator : public SignatureIterator { 2748 private: 2749 BasicType stack_sig_bt[16]; 2750 BasicType* sig_bt; 2751 int index; 2752 2753 public: 2754 AdapterSignatureIterator(Symbol* signature, 2755 fingerprint_t fingerprint, 2756 bool is_static, 2757 int total_args_passed) : 2758 SignatureIterator(signature, fingerprint), 2759 index(0) 2760 { 2761 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2762 if (!is_static) { // Pass in receiver first 2763 sig_bt[index++] = T_OBJECT; 2764 } 2765 do_parameters_on(this); 2766 } 2767 2768 BasicType* basic_types() { 2769 return sig_bt; 2770 } 2771 2772 #ifdef ASSERT 2773 int slots() { 2774 return index; 2775 } 2776 #endif 2777 2778 private: 2779 2780 friend class SignatureIterator; // so do_parameters_on can call do_type 2781 void do_type(BasicType type) { 2782 sig_bt[index++] = type; 2783 if (type == T_LONG || type == T_DOUBLE) { 2784 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2785 } 2786 } 2787 }; 2788 2789 2790 const char* AdapterHandlerEntry::_entry_names[] = { 2791 "i2c", "c2i", "c2i_unverified", "c2i_no_clinit_check" 2792 }; 2793 2794 #ifdef ASSERT 2795 void AdapterHandlerLibrary::verify_adapter_sharing(int total_args_passed, BasicType* sig_bt, AdapterHandlerEntry* cached_entry) { 2796 // we can only check for the same code if there is any 2797 #ifndef ZERO 2798 AdapterHandlerEntry* comparison_entry = create_adapter(total_args_passed, sig_bt, true); 2799 assert(comparison_entry->adapter_blob() == nullptr, "no blob should be created when creating an adapter for comparison"); 2800 assert(comparison_entry->compare_code(cached_entry), "code must match"); 2801 // Release the one just created 2802 AdapterHandlerEntry::deallocate(comparison_entry); 2803 # endif // ZERO 2804 } 2805 #endif /* ASSERT*/ 2806 2807 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2808 assert(!method->is_abstract(), "abstract methods do not have adapters"); 2809 // Use customized signature handler. Need to lock around updates to 2810 // the _adapter_handler_table (it is not safe for concurrent readers 2811 // and a single writer: this could be fixed if it becomes a 2812 // problem). 2813 2814 // Fast-path for trivial adapters 2815 AdapterHandlerEntry* entry = get_simple_adapter(method); 2816 if (entry != nullptr) { 2817 return entry; 2818 } 2819 2820 ResourceMark rm; 2821 bool new_entry = false; 2822 2823 // Fill in the signature array, for the calling-convention call. 2824 int total_args_passed = method->size_of_parameters(); // All args on stack 2825 2826 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2827 method->is_static(), total_args_passed); 2828 assert(si.slots() == total_args_passed, ""); 2829 BasicType* sig_bt = si.basic_types(); 2830 { 2831 MutexLocker mu(AdapterHandlerLibrary_lock); 2832 2833 // Lookup method signature's fingerprint 2834 entry = lookup(total_args_passed, sig_bt); 2835 2836 if (entry != nullptr) { 2837 #ifndef ZERO 2838 assert(entry->is_linked(), "AdapterHandlerEntry must have been linked"); 2839 #endif 2840 #ifdef ASSERT 2841 if (!entry->in_aot_cache() && VerifyAdapterSharing) { 2842 verify_adapter_sharing(total_args_passed, sig_bt, entry); 2843 } 2844 #endif 2845 } else { 2846 entry = create_adapter(total_args_passed, sig_bt); 2847 if (entry != nullptr) { 2848 new_entry = true; 2849 } 2850 } 2851 } 2852 2853 // Outside of the lock 2854 if (new_entry) { 2855 post_adapter_creation(entry); 2856 } 2857 return entry; 2858 } 2859 2860 void AdapterHandlerLibrary::lookup_aot_cache(AdapterHandlerEntry* handler) { 2861 ResourceMark rm; 2862 const char* name = AdapterHandlerLibrary::name(handler); 2863 const uint32_t id = AdapterHandlerLibrary::id(handler); 2864 2865 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::Adapter, id, name); 2866 if (blob != nullptr) { 2867 handler->set_adapter_blob(blob->as_adapter_blob()); 2868 } 2869 } 2870 2871 #ifndef PRODUCT 2872 void AdapterHandlerLibrary::print_adapter_handler_info(outputStream* st, AdapterHandlerEntry* handler) { 2873 ttyLocker ttyl; 2874 ResourceMark rm; 2875 int insts_size; 2876 // on Zero the blob may be null 2877 handler->print_adapter_on(tty); 2878 AdapterBlob* adapter_blob = handler->adapter_blob(); 2879 if (adapter_blob == nullptr) { 2880 return; 2881 } 2882 insts_size = adapter_blob->code_size(); 2883 st->print_cr("i2c argument handler for: %s %s (%d bytes generated)", 2884 handler->fingerprint()->as_basic_args_string(), 2885 handler->fingerprint()->as_string(), insts_size); 2886 st->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(handler->get_c2i_entry())); 2887 if (Verbose || PrintStubCode) { 2888 address first_pc = adapter_blob->content_begin(); 2889 if (first_pc != nullptr) { 2890 Disassembler::decode(first_pc, first_pc + insts_size, st, &adapter_blob->asm_remarks()); 2891 st->cr(); 2892 } 2893 } 2894 } 2895 #endif // PRODUCT 2896 2897 void AdapterHandlerLibrary::address_to_offset(address entry_address[AdapterBlob::ENTRY_COUNT], 2898 int entry_offset[AdapterBlob::ENTRY_COUNT]) { 2899 entry_offset[AdapterBlob::I2C] = 0; 2900 entry_offset[AdapterBlob::C2I] = entry_address[AdapterBlob::C2I] - entry_address[AdapterBlob::I2C]; 2901 entry_offset[AdapterBlob::C2I_Unverified] = entry_address[AdapterBlob::C2I_Unverified] - entry_address[AdapterBlob::I2C]; 2902 if (entry_address[AdapterBlob::C2I_No_Clinit_Check] == nullptr) { 2903 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = -1; 2904 } else { 2905 entry_offset[AdapterBlob::C2I_No_Clinit_Check] = entry_address[AdapterBlob::C2I_No_Clinit_Check] - entry_address[AdapterBlob::I2C]; 2906 } 2907 } 2908 2909 bool AdapterHandlerLibrary::generate_adapter_code(AdapterHandlerEntry* handler, 2910 int total_args_passed, 2911 BasicType* sig_bt, 2912 bool is_transient) { 2913 if (log_is_enabled(Info, perf, class, link)) { 2914 ClassLoader::perf_method_adapters_count()->inc(); 2915 } 2916 2917 #ifndef ZERO 2918 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2919 CodeBuffer buffer(buf); 2920 short buffer_locs[20]; 2921 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2922 sizeof(buffer_locs)/sizeof(relocInfo)); 2923 MacroAssembler masm(&buffer); 2924 VMRegPair stack_regs[16]; 2925 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2926 2927 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2928 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2929 address entry_address[AdapterBlob::ENTRY_COUNT]; 2930 SharedRuntime::generate_i2c2i_adapters(&masm, 2931 total_args_passed, 2932 comp_args_on_stack, 2933 sig_bt, 2934 regs, 2935 entry_address); 2936 // On zero there is no code to save and no need to create a blob and 2937 // or relocate the handler. 2938 int entry_offset[AdapterBlob::ENTRY_COUNT]; 2939 address_to_offset(entry_address, entry_offset); 2940 #ifdef ASSERT 2941 if (VerifyAdapterSharing) { 2942 handler->save_code(buf->code_begin(), buffer.insts_size()); 2943 if (is_transient) { 2944 return true; 2945 } 2946 } 2947 #endif 2948 AdapterBlob* adapter_blob = AdapterBlob::create(&buffer, entry_offset); 2949 if (adapter_blob == nullptr) { 2950 // CodeCache is full, disable compilation 2951 // Ought to log this but compile log is only per compile thread 2952 // and we're some non descript Java thread. 2953 return false; 2954 } 2955 handler->set_adapter_blob(adapter_blob); 2956 if (!is_transient && AOTCodeCache::is_dumping_adapter()) { 2957 // try to save generated code 2958 const char* name = AdapterHandlerLibrary::name(handler); 2959 const uint32_t id = AdapterHandlerLibrary::id(handler); 2960 bool success = AOTCodeCache::store_code_blob(*adapter_blob, AOTCodeEntry::Adapter, id, name); 2961 assert(success || !AOTCodeCache::is_dumping_adapter(), "caching of adapter must be disabled"); 2962 } 2963 #endif // ZERO 2964 2965 #ifndef PRODUCT 2966 // debugging support 2967 if (PrintAdapterHandlers || PrintStubCode) { 2968 print_adapter_handler_info(tty, handler); 2969 } 2970 #endif 2971 2972 return true; 2973 } 2974 2975 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(int total_args_passed, 2976 BasicType* sig_bt, 2977 bool is_transient) { 2978 AdapterFingerPrint* fp = AdapterFingerPrint::allocate(total_args_passed, sig_bt); 2979 AdapterHandlerEntry* handler = AdapterHandlerLibrary::new_entry(fp); 2980 if (!generate_adapter_code(handler, total_args_passed, sig_bt, is_transient)) { 2981 AdapterHandlerEntry::deallocate(handler); 2982 return nullptr; 2983 } 2984 if (!is_transient) { 2985 assert_lock_strong(AdapterHandlerLibrary_lock); 2986 _adapter_handler_table->put(fp, handler); 2987 } 2988 return handler; 2989 } 2990 2991 #if INCLUDE_CDS 2992 void AdapterHandlerEntry::remove_unshareable_info() { 2993 #ifdef ASSERT 2994 _saved_code = nullptr; 2995 _saved_code_length = 0; 2996 #endif // ASSERT 2997 _adapter_blob = nullptr; 2998 _linked = false; 2999 } 3000 3001 class CopyAdapterTableToArchive : StackObj { 3002 private: 3003 CompactHashtableWriter* _writer; 3004 ArchiveBuilder* _builder; 3005 public: 3006 CopyAdapterTableToArchive(CompactHashtableWriter* writer) : _writer(writer), 3007 _builder(ArchiveBuilder::current()) 3008 {} 3009 3010 bool do_entry(AdapterFingerPrint* fp, AdapterHandlerEntry* entry) { 3011 LogStreamHandle(Trace, aot) lsh; 3012 if (ArchiveBuilder::current()->has_been_archived((address)entry)) { 3013 assert(ArchiveBuilder::current()->has_been_archived((address)fp), "must be"); 3014 AdapterFingerPrint* buffered_fp = ArchiveBuilder::current()->get_buffered_addr(fp); 3015 assert(buffered_fp != nullptr,"sanity check"); 3016 AdapterHandlerEntry* buffered_entry = ArchiveBuilder::current()->get_buffered_addr(entry); 3017 assert(buffered_entry != nullptr,"sanity check"); 3018 3019 uint hash = fp->compute_hash(); 3020 u4 delta = _builder->buffer_to_offset_u4((address)buffered_entry); 3021 _writer->add(hash, delta); 3022 if (lsh.is_enabled()) { 3023 address fp_runtime_addr = (address)buffered_fp + ArchiveBuilder::current()->buffer_to_requested_delta(); 3024 address entry_runtime_addr = (address)buffered_entry + ArchiveBuilder::current()->buffer_to_requested_delta(); 3025 log_trace(aot)("Added fp=%p (%s), entry=%p to the archived adater table", buffered_fp, buffered_fp->as_basic_args_string(), buffered_entry); 3026 } 3027 } else { 3028 if (lsh.is_enabled()) { 3029 log_trace(aot)("Skipping adapter handler %p (fp=%s) as it is not archived", entry, fp->as_basic_args_string()); 3030 } 3031 } 3032 return true; 3033 } 3034 }; 3035 3036 void AdapterHandlerLibrary::dump_aot_adapter_table() { 3037 CompactHashtableStats stats; 3038 CompactHashtableWriter writer(_adapter_handler_table->number_of_entries(), &stats); 3039 CopyAdapterTableToArchive copy(&writer); 3040 _adapter_handler_table->iterate(©); 3041 writer.dump(&_aot_adapter_handler_table, "archived adapter table"); 3042 } 3043 3044 void AdapterHandlerLibrary::serialize_shared_table_header(SerializeClosure* soc) { 3045 _aot_adapter_handler_table.serialize_header(soc); 3046 } 3047 3048 void AdapterHandlerLibrary::link_aot_adapter_handler(AdapterHandlerEntry* handler) { 3049 #ifdef ASSERT 3050 if (TestAOTAdapterLinkFailure) { 3051 return; 3052 } 3053 #endif 3054 lookup_aot_cache(handler); 3055 #ifndef PRODUCT 3056 // debugging support 3057 if (PrintAdapterHandlers || PrintStubCode) { 3058 print_adapter_handler_info(tty, handler); 3059 } 3060 #endif 3061 } 3062 3063 // This method is used during production run to link archived adapters (stored in AOT Cache) 3064 // to their code in AOT Code Cache 3065 void AdapterHandlerEntry::link() { 3066 ResourceMark rm; 3067 assert(_fingerprint != nullptr, "_fingerprint must not be null"); 3068 bool generate_code = false; 3069 // Generate code only if AOTCodeCache is not available, or 3070 // caching adapters is disabled, or we fail to link 3071 // the AdapterHandlerEntry to its code in the AOTCodeCache 3072 if (AOTCodeCache::is_using_adapter()) { 3073 AdapterHandlerLibrary::link_aot_adapter_handler(this); 3074 // If link_aot_adapter_handler() succeeds, _adapter_blob will be non-null 3075 if (_adapter_blob == nullptr) { 3076 log_warning(aot)("Failed to link AdapterHandlerEntry (fp=%s) to its code in the AOT code cache", _fingerprint->as_basic_args_string()); 3077 generate_code = true; 3078 } 3079 } else { 3080 generate_code = true; 3081 } 3082 if (generate_code) { 3083 int nargs; 3084 BasicType* bt = _fingerprint->as_basic_type(nargs); 3085 if (!AdapterHandlerLibrary::generate_adapter_code(this, nargs, bt, /* is_transient */ false)) { 3086 // Don't throw exceptions during VM initialization because java.lang.* classes 3087 // might not have been initialized, causing problems when constructing the 3088 // Java exception object. 3089 vm_exit_during_initialization("Out of space in CodeCache for adapters"); 3090 } 3091 } 3092 if (_adapter_blob != nullptr) { 3093 post_adapter_creation(this); 3094 } 3095 assert(_linked, "AdapterHandlerEntry must now be linked"); 3096 } 3097 3098 void AdapterHandlerLibrary::link_aot_adapters() { 3099 uint max_id = 0; 3100 assert(AOTCodeCache::is_using_adapter(), "AOT adapters code should be available"); 3101 /* It is possible that some adapters generated in assembly phase are not stored in the cache. 3102 * That implies adapter ids of the adapters in the cache may not be contiguous. 3103 * If the size of the _aot_adapter_handler_table is used to initialize _id_counter, then it may 3104 * result in collision of adapter ids between AOT stored handlers and runtime generated handlers. 3105 * To avoid such situation, initialize the _id_counter with the largest adapter id among the AOT stored handlers. 3106 */ 3107 _aot_adapter_handler_table.iterate_all([&](AdapterHandlerEntry* entry) { 3108 assert(!entry->is_linked(), "AdapterHandlerEntry is already linked!"); 3109 entry->link(); 3110 max_id = MAX2(max_id, entry->id()); 3111 }); 3112 // Set adapter id to the maximum id found in the AOTCache 3113 assert(_id_counter == 0, "Did not expect new AdapterHandlerEntry to be created at this stage"); 3114 _id_counter = max_id; 3115 } 3116 3117 // This method is called during production run to lookup simple adapters 3118 // in the archived adapter handler table 3119 void AdapterHandlerLibrary::lookup_simple_adapters() { 3120 assert(!_aot_adapter_handler_table.empty(), "archived adapter handler table is empty"); 3121 3122 MutexLocker mu(AdapterHandlerLibrary_lock); 3123 _no_arg_handler = lookup(0, nullptr); 3124 3125 BasicType obj_args[] = { T_OBJECT }; 3126 _obj_arg_handler = lookup(1, obj_args); 3127 3128 BasicType int_args[] = { T_INT }; 3129 _int_arg_handler = lookup(1, int_args); 3130 3131 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 3132 _obj_int_arg_handler = lookup(2, obj_int_args); 3133 3134 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 3135 _obj_obj_arg_handler = lookup(2, obj_obj_args); 3136 3137 assert(_no_arg_handler != nullptr && 3138 _obj_arg_handler != nullptr && 3139 _int_arg_handler != nullptr && 3140 _obj_int_arg_handler != nullptr && 3141 _obj_obj_arg_handler != nullptr, "Initial adapters not found in archived adapter handler table"); 3142 assert(_no_arg_handler->is_linked() && 3143 _obj_arg_handler->is_linked() && 3144 _int_arg_handler->is_linked() && 3145 _obj_int_arg_handler->is_linked() && 3146 _obj_obj_arg_handler->is_linked(), "Initial adapters not in linked state"); 3147 } 3148 #endif // INCLUDE_CDS 3149 3150 void AdapterHandlerEntry::metaspace_pointers_do(MetaspaceClosure* it) { 3151 LogStreamHandle(Trace, aot) lsh; 3152 if (lsh.is_enabled()) { 3153 lsh.print("Iter(AdapterHandlerEntry): %p(%s)", this, _fingerprint->as_basic_args_string()); 3154 lsh.cr(); 3155 } 3156 it->push(&_fingerprint); 3157 } 3158 3159 AdapterHandlerEntry::~AdapterHandlerEntry() { 3160 if (_fingerprint != nullptr) { 3161 AdapterFingerPrint::deallocate(_fingerprint); 3162 _fingerprint = nullptr; 3163 } 3164 #ifdef ASSERT 3165 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3166 #endif 3167 FreeHeap(this); 3168 } 3169 3170 3171 #ifdef ASSERT 3172 // Capture the code before relocation so that it can be compared 3173 // against other versions. If the code is captured after relocation 3174 // then relative instructions won't be equivalent. 3175 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3176 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3177 _saved_code_length = length; 3178 memcpy(_saved_code, buffer, length); 3179 } 3180 3181 3182 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3183 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 3184 3185 if (other->_saved_code_length != _saved_code_length) { 3186 return false; 3187 } 3188 3189 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3190 } 3191 #endif 3192 3193 3194 /** 3195 * Create a native wrapper for this native method. The wrapper converts the 3196 * Java-compiled calling convention to the native convention, handles 3197 * arguments, and transitions to native. On return from the native we transition 3198 * back to java blocking if a safepoint is in progress. 3199 */ 3200 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3201 ResourceMark rm; 3202 nmethod* nm = nullptr; 3203 3204 // Check if memory should be freed before allocation 3205 CodeCache::gc_on_allocation(); 3206 3207 assert(method->is_native(), "must be native"); 3208 assert(method->is_special_native_intrinsic() || 3209 method->has_native_function(), "must have something valid to call!"); 3210 3211 { 3212 // Perform the work while holding the lock, but perform any printing outside the lock 3213 MutexLocker mu(AdapterHandlerLibrary_lock); 3214 // See if somebody beat us to it 3215 if (method->code() != nullptr) { 3216 return; 3217 } 3218 3219 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3220 assert(compile_id > 0, "Must generate native wrapper"); 3221 3222 3223 ResourceMark rm; 3224 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3225 if (buf != nullptr) { 3226 CodeBuffer buffer(buf); 3227 3228 if (method->is_continuation_enter_intrinsic()) { 3229 buffer.initialize_stubs_size(192); 3230 } 3231 3232 struct { double data[20]; } locs_buf; 3233 struct { double data[20]; } stubs_locs_buf; 3234 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3235 #if defined(AARCH64) || defined(PPC64) 3236 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3237 // in the constant pool to ensure ordering between the barrier and oops 3238 // accesses. For native_wrappers we need a constant. 3239 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 3240 // static java call that is resolved in the runtime. 3241 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 3242 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 3243 } 3244 #endif 3245 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 3246 MacroAssembler _masm(&buffer); 3247 3248 // Fill in the signature array, for the calling-convention call. 3249 const int total_args_passed = method->size_of_parameters(); 3250 3251 VMRegPair stack_regs[16]; 3252 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3253 3254 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3255 method->is_static(), total_args_passed); 3256 BasicType* sig_bt = si.basic_types(); 3257 assert(si.slots() == total_args_passed, ""); 3258 BasicType ret_type = si.return_type(); 3259 3260 // Now get the compiled-Java arguments layout. 3261 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3262 3263 // Generate the compiled-to-native wrapper code 3264 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 3265 3266 if (nm != nullptr) { 3267 { 3268 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 3269 if (nm->make_in_use()) { 3270 method->set_code(method, nm); 3271 } 3272 } 3273 3274 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 3275 if (directive->PrintAssemblyOption) { 3276 nm->print_code(); 3277 } 3278 DirectivesStack::release(directive); 3279 } 3280 } 3281 } // Unlock AdapterHandlerLibrary_lock 3282 3283 3284 // Install the generated code. 3285 if (nm != nullptr) { 3286 const char *msg = method->is_static() ? "(static)" : ""; 3287 CompileTask::print_ul(nm, msg); 3288 if (PrintCompilation) { 3289 ttyLocker ttyl; 3290 CompileTask::print(tty, nm, msg); 3291 } 3292 nm->post_compiled_method_load_event(); 3293 } 3294 } 3295 3296 // ------------------------------------------------------------------------- 3297 // Java-Java calling convention 3298 // (what you use when Java calls Java) 3299 3300 //------------------------------name_for_receiver---------------------------------- 3301 // For a given signature, return the VMReg for parameter 0. 3302 VMReg SharedRuntime::name_for_receiver() { 3303 VMRegPair regs; 3304 BasicType sig_bt = T_OBJECT; 3305 (void) java_calling_convention(&sig_bt, ®s, 1); 3306 // Return argument 0 register. In the LP64 build pointers 3307 // take 2 registers, but the VM wants only the 'main' name. 3308 return regs.first(); 3309 } 3310 3311 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3312 // This method is returning a data structure allocating as a 3313 // ResourceObject, so do not put any ResourceMarks in here. 3314 3315 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3316 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3317 int cnt = 0; 3318 if (has_receiver) { 3319 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3320 } 3321 3322 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3323 BasicType type = ss.type(); 3324 sig_bt[cnt++] = type; 3325 if (is_double_word_type(type)) 3326 sig_bt[cnt++] = T_VOID; 3327 } 3328 3329 if (has_appendix) { 3330 sig_bt[cnt++] = T_OBJECT; 3331 } 3332 3333 assert(cnt < 256, "grow table size"); 3334 3335 int comp_args_on_stack; 3336 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3337 3338 // the calling convention doesn't count out_preserve_stack_slots so 3339 // we must add that in to get "true" stack offsets. 3340 3341 if (comp_args_on_stack) { 3342 for (int i = 0; i < cnt; i++) { 3343 VMReg reg1 = regs[i].first(); 3344 if (reg1->is_stack()) { 3345 // Yuck 3346 reg1 = reg1->bias(out_preserve_stack_slots()); 3347 } 3348 VMReg reg2 = regs[i].second(); 3349 if (reg2->is_stack()) { 3350 // Yuck 3351 reg2 = reg2->bias(out_preserve_stack_slots()); 3352 } 3353 regs[i].set_pair(reg2, reg1); 3354 } 3355 } 3356 3357 // results 3358 *arg_size = cnt; 3359 return regs; 3360 } 3361 3362 // OSR Migration Code 3363 // 3364 // This code is used convert interpreter frames into compiled frames. It is 3365 // called from very start of a compiled OSR nmethod. A temp array is 3366 // allocated to hold the interesting bits of the interpreter frame. All 3367 // active locks are inflated to allow them to move. The displaced headers and 3368 // active interpreter locals are copied into the temp buffer. Then we return 3369 // back to the compiled code. The compiled code then pops the current 3370 // interpreter frame off the stack and pushes a new compiled frame. Then it 3371 // copies the interpreter locals and displaced headers where it wants. 3372 // Finally it calls back to free the temp buffer. 3373 // 3374 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3375 3376 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3377 assert(current == JavaThread::current(), "pre-condition"); 3378 JFR_ONLY(Jfr::check_and_process_sample_request(current);) 3379 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3380 // frame. The stack watermark code below ensures that the interpreted frame is processed 3381 // before it gets unwound. This is helpful as the size of the compiled frame could be 3382 // larger than the interpreted frame, which could result in the new frame not being 3383 // processed correctly. 3384 StackWatermarkSet::before_unwind(current); 3385 3386 // 3387 // This code is dependent on the memory layout of the interpreter local 3388 // array and the monitors. On all of our platforms the layout is identical 3389 // so this code is shared. If some platform lays the their arrays out 3390 // differently then this code could move to platform specific code or 3391 // the code here could be modified to copy items one at a time using 3392 // frame accessor methods and be platform independent. 3393 3394 frame fr = current->last_frame(); 3395 assert(fr.is_interpreted_frame(), ""); 3396 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3397 3398 // Figure out how many monitors are active. 3399 int active_monitor_count = 0; 3400 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3401 kptr < fr.interpreter_frame_monitor_begin(); 3402 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3403 if (kptr->obj() != nullptr) active_monitor_count++; 3404 } 3405 3406 // QQQ we could place number of active monitors in the array so that compiled code 3407 // could double check it. 3408 3409 Method* moop = fr.interpreter_frame_method(); 3410 int max_locals = moop->max_locals(); 3411 // Allocate temp buffer, 1 word per local & 2 per active monitor 3412 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3413 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3414 3415 // Copy the locals. Order is preserved so that loading of longs works. 3416 // Since there's no GC I can copy the oops blindly. 3417 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3418 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3419 (HeapWord*)&buf[0], 3420 max_locals); 3421 3422 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3423 int i = max_locals; 3424 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3425 kptr2 < fr.interpreter_frame_monitor_begin(); 3426 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3427 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 3428 BasicLock *lock = kptr2->lock(); 3429 if (UseObjectMonitorTable) { 3430 buf[i] = (intptr_t)lock->object_monitor_cache(); 3431 } 3432 #ifdef ASSERT 3433 else { 3434 buf[i] = badDispHeaderOSR; 3435 } 3436 #endif 3437 i++; 3438 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3439 } 3440 } 3441 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3442 3443 RegisterMap map(current, 3444 RegisterMap::UpdateMap::skip, 3445 RegisterMap::ProcessFrames::include, 3446 RegisterMap::WalkContinuation::skip); 3447 frame sender = fr.sender(&map); 3448 if (sender.is_interpreted_frame()) { 3449 current->push_cont_fastpath(sender.unextended_sp()); 3450 } 3451 3452 return buf; 3453 JRT_END 3454 3455 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3456 FREE_C_HEAP_ARRAY(intptr_t, buf); 3457 JRT_END 3458 3459 const char* AdapterHandlerLibrary::name(AdapterHandlerEntry* handler) { 3460 return handler->fingerprint()->as_basic_args_string(); 3461 } 3462 3463 uint32_t AdapterHandlerLibrary::id(AdapterHandlerEntry* handler) { 3464 return handler->id(); 3465 } 3466 3467 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3468 bool found = false; 3469 #if INCLUDE_CDS 3470 if (AOTCodeCache::is_using_adapter()) { 3471 auto findblob_archived_table = [&] (AdapterHandlerEntry* handler) { 3472 if (b == handler->adapter_blob()) { 3473 found = true; 3474 st->print("Adapter for signature: "); 3475 handler->print_adapter_on(st); 3476 return false; // abort iteration 3477 } else { 3478 return true; // keep looking 3479 } 3480 }; 3481 _aot_adapter_handler_table.iterate(findblob_archived_table); 3482 } 3483 #endif // INCLUDE_CDS 3484 if (!found) { 3485 auto findblob_runtime_table = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* handler) { 3486 if (b == handler->adapter_blob()) { 3487 found = true; 3488 st->print("Adapter for signature: "); 3489 handler->print_adapter_on(st); 3490 return false; // abort iteration 3491 } else { 3492 return true; // keep looking 3493 } 3494 }; 3495 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3496 _adapter_handler_table->iterate(findblob_runtime_table); 3497 } 3498 assert(found, "Should have found handler"); 3499 } 3500 3501 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3502 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3503 if (adapter_blob() != nullptr) { 3504 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3505 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3506 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3507 if (get_c2i_no_clinit_check_entry() != nullptr) { 3508 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3509 } 3510 } 3511 st->cr(); 3512 } 3513 3514 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3515 assert(current == JavaThread::current(), "pre-condition"); 3516 StackOverflow* overflow_state = current->stack_overflow_state(); 3517 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3518 overflow_state->set_reserved_stack_activation(current->stack_base()); 3519 JRT_END 3520 3521 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3522 ResourceMark rm(current); 3523 frame activation; 3524 nmethod* nm = nullptr; 3525 int count = 1; 3526 3527 assert(fr.is_java_frame(), "Must start on Java frame"); 3528 3529 RegisterMap map(JavaThread::current(), 3530 RegisterMap::UpdateMap::skip, 3531 RegisterMap::ProcessFrames::skip, 3532 RegisterMap::WalkContinuation::skip); // don't walk continuations 3533 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3534 if (!fr.is_java_frame()) { 3535 continue; 3536 } 3537 3538 Method* method = nullptr; 3539 bool found = false; 3540 if (fr.is_interpreted_frame()) { 3541 method = fr.interpreter_frame_method(); 3542 if (method != nullptr && method->has_reserved_stack_access()) { 3543 found = true; 3544 } 3545 } else { 3546 CodeBlob* cb = fr.cb(); 3547 if (cb != nullptr && cb->is_nmethod()) { 3548 nm = cb->as_nmethod(); 3549 method = nm->method(); 3550 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3551 method = sd->method(); 3552 if (method != nullptr && method->has_reserved_stack_access()) { 3553 found = true; 3554 } 3555 } 3556 } 3557 } 3558 if (found) { 3559 activation = fr; 3560 warning("Potentially dangerous stack overflow in " 3561 "ReservedStackAccess annotated method %s [%d]", 3562 method->name_and_sig_as_C_string(), count++); 3563 EventReservedStackActivation event; 3564 if (event.should_commit()) { 3565 event.set_method(method); 3566 event.commit(); 3567 } 3568 } 3569 } 3570 return activation; 3571 } 3572 3573 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3574 // After any safepoint, just before going back to compiled code, 3575 // we inform the GC that we will be doing initializing writes to 3576 // this object in the future without emitting card-marks, so 3577 // GC may take any compensating steps. 3578 3579 oop new_obj = current->vm_result_oop(); 3580 if (new_obj == nullptr) return; 3581 3582 BarrierSet *bs = BarrierSet::barrier_set(); 3583 bs->on_slowpath_allocation_exit(current, new_obj); 3584 } --- EOF ---